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We prove that for a weakly exact magnetic system on a closed connected
Riemannian manifold, almost all energy levels contain a closed orbit. More
precisely, we prove the following stronger statements. Let (M, g) denote a
closed connected Riemannian manifold and σ ∈ �2(M) a weakly exact 2-
form. Let φt : T M → T M denote the magnetic flow determined by σ , and
let c(g, σ ) ∈ R ∪ {∞} denote the Mañé critical value of the pair (g, σ ). We
prove that if k > c(g, σ ), then for every nontrivial free homotopy class of
loops on M there exists a closed orbit of φt with energy k whose projection
to M belongs to that free homotopy class. We also prove that for almost all
k < c(g, σ ) there exists a closed orbit of φt with energy k whose projection
to M is contractible. In particular, when c(g, σ ) = ∞ this implies that
almost every energy level has a contractible closed orbit. As a corollary we
deduce that a weakly exact magnetic flow with [σ ] 6= 0 on a manifold with
amenable fundamental group (which implies c(g, σ )= ∞) has contractible
closed orbits on almost every energy level.

1. Introduction

Let (M, g) denote a closed connected d-dimensional Riemannian manifold, with
tangent bundle π : T M → M and universal cover M̃ . We will assume M is not
simply connected, as otherwise M̃ = M and all results proved in this paper reduce
to special cases of the results in [Contreras 2006]. Let σ ∈�2(M) denote a closed
2-form, and let σ̃ ∈ �2(M̃) denote its pullback to the universal cover. In this
paper we consider the case where σ is weakly exact, that is, when σ̃ is exact (this
is equivalent to requiring that σ |π2(M) = 0); however we do not assume that σ̃
necessarily admits a bounded primitive.

Let ωg denote the standard symplectic form on T M obtained by pulling back the
canonical symplectic form dq ∧ dp on T ∗M via the Riemannian metric. Let ω :=
ωg + π

∗σ denote the twisted symplectic form determined by the pair (g, σ ). Let
E : T M→R denote the energy Hamiltonian E(q, v)= 1

2 |v|
2. Let φt : T M→ T M
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denote the flow of the symplectic gradient of E with respect to ω; such φt is known
as a twisted geodesic flow or a magnetic flow. The reason for the latter terminology
is that this flow can be thought of as modeling the motion of a particle of unit mass
and unit charge under the effect of a magnetic field represented by the 2-form σ .
Given k ∈ R+ := {t ∈ R : t > 0}, let 6k := E−1(k)⊆ T M .

There exists a number c = c(g, σ ) ∈ R ∪ {∞}, the Mañé critical value (see
[Mañé 1996; Contreras et al. 1997; Contreras and Iturriaga 1999; Burns and Pater-
nain 2002] or Section 2 for the precise definition), such that the dynamics of the
hypersurface 6k differs dramatically depending on whether k < c, k = c or k > c.
Moreover c <∞ if and only if σ̃ admits a bounded primitive.

In this paper we study the old problem of the existence of closed orbits on pre-
scribed energy levels. In the case when σ is exact, this has been essentially solved
by Contreras [2006]; see Theorem D therein in particular, which gives contractible
closed orbits in almost every energy level below the Mañé critical value, and closed
orbits in every free homotopy class for any energy level above the critical value.
In the case of surfaces a stronger result is known to hold: Contreras, Macarini and
Paternain have proved in [Contreras et al. 2004, Theorem 1.1] that in this case every
energy level admits a closed orbit. However the case of a magnetic monopole (that
is, when σ is not exact) remains open, although much progress has been made.
Let us describe now some of these results. A more comprehensive survey can be
found in the introduction to [Contreras et al. 2004]; see also [Ginzburg 1996] for
a introductory account of the problem.

Macarini [2004], extending an earlier result of Polterovich [1998], proved that
if [σ ] 6= 0 there exist nontrivial contractible closed orbits of the magnetic flow
in a sequence of arbitrarily small energy levels. Kerman [2000] proved the same
result for magnetic fields given by symplectic forms. This was then sharpened by
Ginzburg and Gürel [2009] and finally by Usher [2009], where it is proved that
when σ is symplectic, contractible closed orbits exist for all low energy levels.
See also [Lu 2006] for another interesting approach to the problem in the case of
symplectic σ . Perhaps the most general result so far is due to Schlenk [2006], who
showed that for any closed 2-form (not necessarily weakly exact), almost every
sufficiently small energy level contains a contractible closed orbit.

This paper extends [Contreras 2006, Theorem D] to the weakly exact case.

Theorem 1.1. Let (M, g) denote a closed connected Riemannian manifold, and
let σ ∈�2(M) denote a closed 2-form whose pullback to the universal cover M̃ is
exact. Let c= c(g, σ ) ∈R∪{∞} denote the Mañé critical value, and let φt denote
the magnetic flow defined by σ .

(1) If c<∞, then for all k> c and for each nontrivial homotopy class ν ∈ [T,M],
there is a closed orbit of φt with energy k whose projection to M belongs to ν.
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(2) For almost all k ∈ (0, c), where possibly c = ∞, there exists a contractible
closed orbit of φt with energy k.

Theorem 1.1(1) has, under a mild technical assumption on π1(M), been proved by
Paternain [2006]. We use a completely different method of proof however, which
bypasses the need for this additional assumption. For c(g, σ )<∞, Theorem 1.1(2)
is due to Osuna [2005]; we believe the main contribution of this paper is the case
c(g, σ )=∞.

Remark. We will actually prove a slightly stronger statement than the one stated
above; see Proposition 5.8 below for details.

When π1(M) is amenable and σ is not exact, we always have c(g, σ ) = ∞;
see for instance [Paternain 2006, Corollary 5.4]. Thus the following corollary is
immediate.

Corollary 1.2. Let (M, g) denote a closed connected Riemannian manifold, and
let σ ∈ �2(M) denote a closed nonexact 2-form whose pullback to the universal
cover M̃ is exact. Suppose π1(M) is amenable. Then almost every energy level
contains a contractible closed orbit of the magnetic flow defined by σ .

Let us now give a brief outline of our method of attack. Fix a primitive θ of σ̃ ,
and consider the Lagrangian L : T M̃→ R defined by

L(q, v) := 1
2 |v|

2
− θq(v).

The Euler–Lagrange flow of L is precisely the lifted flow φ̃t : T M̃ → T M̃ of the
magnetic flow φt : T M → T M ; see for example [Contreras and Iturriaga 1999].
Recall that the action A(y) of the Lagrangian L over an absolutely continuous
curve y : [0, T ] → M̃ is given by

A(y) :=
∫ T

0
L(y(t), ẏ(t))dt =

∫ T

0

1
2 |ẏ(t)|

2dt −
∫

y
θ.

Set
Ak(y) :=

∫ T

0
(L(y(t), ẏ(t))+ k)dt = A(y)+ kT .

A closed orbit of φ̃t with energy k can be realized as a critical point of the functional
y 7→ Ak(y). More precisely, let 3M̃ denote the Hilbert manifold of absolutely
continuous square integrable curves x : T→ M̃ and consider S̃k :3M̃ ×R+→ R

defined by

S̃k(x, T ) :=
∫ 1

0
T · L(x(t), ẋ(t)/T )dt + kT =

∫ 1

0

1
2T
|ẋ(t)|2dt + kT −

∫
x
θ.

Then the pair (x, T ) is a critical point S̃k if and only if y(t) := x(t/T ) is the
projection to M̃ of a closed orbit of φ̃t with energy k; see [Contreras et al. 2000].
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If σ was actually exact then we could define L on T M , instead of just on T M̃ .
In this case it has been shown in [Contreras et al. 2000] that S̃k for k > c(g, σ )
satisfies the Palais–Smale condition and is bounded below. Standard results from
Morse theory [Contreras et al. 2000, Corollary 23] then tell us that S̃k admits a
global minimum, and this gives us our desired closed orbit. In [Contreras 2006]
this was extended to give contractible orbits on almost every energy level below the
critical value. Crucially however, these results use compactness of M and hence
are not applicable directly in the weakly exact case, since then L is defined only
on T M̃ .

In the weakly exact case, whilst S̃k is not well defined on T M , its differential
is. This leads to our key observation that we can still work directly on 3M . More
precisely, we define a functional Sk :3M×R+→R with1 the property that (x, T )
is a critical point of Sk if and only if a lift ỹ to M̃ of the curve y(t) := x(t/T ) is
the projection to M̃ of a flow line of φ̃t with energy k. The functional Sk is given
by

Sk(x, T ) :=
∫ 1

0

1
2T
|ẋ(t)|2dt + kT −

∫
C(x)

σ,

where C(x) is any cylinder with boundary x(T)∪ xν(T), where xν ∈3M is some
fixed reference loop in the free homotopy class ν ∈ [T,M] that x belongs to. If
c(g, σ ) <∞, then since σ is weakly exact, the value

∫
C(x) σ is independent of the

choice of cylinder C(x) for any curve x ∈3M . In the case c(g, σ )=∞, the value∫
C(x) σ is independent of the choice of cylinder only when x is a contractible loop.

The functional Sk allows one to extend other results previously known only for
the exact case to the weakly exact case. For instance, in [Merry 2010] we will
use Sk to establish the short exact sequence [Cieliebak et al. 2010; Abbondandolo
and Schwarz 2009a] between the Rabinowitz Floer homology of a weakly exact
twisted cotangent bundle and the singular (co)homology of the free loop space.

2. Preliminaries

The setup. It will be convenient to view M and M̃ as being embedded isometrically
in some RN (which is possible by Nash’s theorem). We will be interested in various
spaces of absolutely continuous curves.

Given q0, q1 ∈ M and T ≥ 0, let Cac
M(q0, q1; T ) denote the set of absolutely

continuous curves y : [0, T ] → M with y(0)= q0 and y(T )= q1. Let

Cac
M(q0, q1) :=

⋃
T≥0

Cac
M(q0, q1; T ).

1If σ̃ does not admit any bounded primitives, Sk is only defined on 30 ×R+, where 30 ⊆ 3M
is the subset of contractible loops.
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We can repeat the construction on M̃ to obtain for q0, q1 ∈ M̃ sets Cac
M̃
(q0, q1; T )

and Cac
M̃
(q0, q1) of curves on M̃ .

Next, consider the space W 1,2(RN ) of absolutely continuous maps x : I → RN

such that
∫ 1

0 |ẋ(t)|
2dt <∞ and the space

W 1,2(M) := {x ∈W 1,2(RN ) : x(I )⊆ M},

with W 1,2(M̃) defined similarly. Here and throughout, I := [0, 1].
Let 3RN ⊆ W 1,2(RN ) denote the set of closed loops of class W 1,2 on RN , and

let 3M := W 1,2(M)∩3RN . We will think of maps x ∈ 3M as maps x : T→ M
(here T = R/Z, which we shall often identify with S1). Given a free homotopy
class ν ∈ [T,M], let 3ν ⊆3M denote the connected component of 3M consisting
of the loops belonging to ν.

The tangent space to 3RN at x ∈3RN is given by

Tx3RN = {ξ ∈W 1,2(RN ) : ξ(0)= ξ(1)}.

Given (x, T ) ∈3M ×R+, we thus have

T(x,T )(3M ×R+)= {(ξ, ψ) ∈W 1,2(RN )×R : ξ(0)= ξ(1)}.

Let 〈 · , · 〉 denote the standard Euclidean metric. The metric on W 1,2(RN ) we
will work with is

〈ξ, ζ 〉1,2 := 〈ξ(0), ζ(0)〉+
∫ 1

0

〈
ξ̇ (t), ζ̇ (t)

〉
dt.

This defines a metric that we shall denote simply by 〈 · , · 〉 on W 1,2(RN )×R+ by

(2-1) 〈(ξ, ψ), (ζ, χ)〉 := 〈ξ, ζ 〉1,2+ψχ.

Mañé’s critical value. We now recall the definition of c(g, σ ), the critical value
introduced in [Mañé 1996], which plays a decisive role in all that follows.

Let us fix a primitive θ of σ̃ . Given k ∈ R+, we define Ak as follows. Let
q0, q1 ∈ M̃ . Define Ak : Cac

M̃
(q0, q1)→ R by

Ak(y) :=
∫ T

0

1
2 |ẏ(t)|

2
+ kT −

∫
y
θ.

We define Mañé’s action potential mk : M̃ × M̃→ R∪ {−∞} by

mk(q0, q1) := inf
T>0

inf
y∈Cac

M̃
(q0,q1;T )

Ak(y).

Then we have the following result; for a proof see [Contreras and Iturriaga 1999,
Proposition 2-1.1] for the first five statements, and [Burns and Paternain 2002,
Appendix A] for a proof of the last statement.
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Lemma 2.1. Properties of mk :

(1) If k ≤ k ′, then mk(q0, q1)≤ mk′(q0, q1) for all q0, q1 ∈ M̃.

(2) For all k ∈ R and all q0, q1, q2 ∈ M̃ , we have

mk(q0, q2)≤ mk(q0, q1)+mk(q1, q2).

(3) Fix k ∈R. Then either mk(q0, q1)=−∞ for all q0, q1 ∈ M̃ , or mk(q0, q1)∈R

for all q0, q1 ∈ M̃ and mk(q, q)= 0 for all q ∈ M̃.

(4) If
c(g, σ ) := inf{k ∈ R : mk(q0, q1) ∈ R for all q0, q1 ∈ M̃},

then mc(g,σ ) is finite everywhere.

(5) We can alternatively define c(g, σ ) by

(2-2) c(g, σ )= inf
u∈C∞(M̃)

sup
q∈M̃

1
2 |dqu+ θq |

2.

We call the number c(g, σ ) the Mañé critical value. Using (2-2) it is clear that
c(g, σ ) <∞ if and only if θ is bounded, that is, if

(2-3) ‖θ‖∞ := sup
q∈M̃
|θq |<∞.

The functional Sk. We will now define a second functional Sk , which will be our
main object of study. In the case c(g, σ ) < ∞, it is defined on 3M × R+. For
c(g, σ ) = ∞, it is only defined on 30 × R+. The following lemma is the key
observation required to define Sk . In the statement, T2 denotes the 2-torus.

Lemma 2.2. If c(g, σ ) <∞, then f ∗σ is exact for any smooth map f : T2
→ M.

Proof. Consider G := f∗(π1(T
2))≤π1(M). Then G is amenable since π1(T

2)=Z2,
which is amenable. Then [Paternain 2006, Lemma 5.3] says that since ‖θ‖∞<∞,
we can replace θ by a G-invariant primitive θ ′ of σ̃ , which descends to define a
primitive θ ′′ ∈�1(T2) of f ∗σ . �

For each free homotopy class ν ∈ [T,M], pick a reference loop xν ∈3ν . Given
any x ∈3ν , let C(x) denote a cylinder with boundary x(T)∪ xν(T).

Define Sk :3ν ×R+→ R by

Sk(x, T ) :=
∫ 1

0

1
2T
|ẋ(t)|2dt + kT −

∫
C(x)

σ,

This is well defined because
∫

C(x) σ is independent of the choice of cylinder: If
C ′(x) is another cylinder with the same boundary, then T2(x) :=C(x)∪C ′(x) is a
torus (where C ′(x) denotes the cylinder C ′(x) taken with the opposite orientation),
and

∫
T2(x) σ = 0 since σ |T2(x) is exact by the previous lemma.
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If c(g, σ ) = ∞, we cannot define Sk on all of 3M × R+, since in this case
Lemma 2.2 fails. It is however well defined on 30×R+. To see why, consider the
case of contractible loops when c(g, σ ) <∞ again. If x : T→ M is contractible
and x : D2

→ M denotes a capping disc, so that x|∂D2 = x , it is easy to see that

(2-4)
∫

C(x)
σ =

∫
D2

x∗σ ;

note that the right side is (as it should be) independent of the choice of capping
disc x, and depends only on x and σ , since σ |π2(M)= 0. Moreover the right side is
well defined and depends only on x and σ even when c(g, σ )=∞. Thus it makes
sense to define Sk |30×R+ by

Sk(x, T )=
∫ 1

0

1
2T
|ẋ(t)|2dt + kT −

∫
D2

x∗σ ;

this is consistent with the previous definition of Sk |30×R+ when c(g, σ ) <∞.
Next we will explicitly calculate the derivative of Sk . Let (xs, Ts) be a variation

of (x, T ), with ξ(t) := ∂
∂s

∣∣
s=0xs(t) and ψ := ∂

∂s

∣∣
s=0Ts . Write Eq and Ev for ∂E

∂q and
∂E
∂v respectively. Then an easy calculation in local coordinates shows that the first
variation (that is, the Gateaux derivative) of Sk at (ξ, ψ), that is, ∂

∂s

∣∣
s=0Sk(xs, Ts)

is given by

(2-5) ∂
∂s

∣∣∣
s=0

Sk(xs, Ts)

= ψ

∫ 1

0
(k− E(x(t), ẋ(t)/T ))dt +

∫ 1

0
σx(t)(ξ(t), ẋ(t))dt

+

∫ 1

0

(
T · Eq(x(t), ẋ(t)/T ) · ξ(t)+ Ev(x(t), ẋ(t)/T ) · ξ̇ (t)

)
dt.

We claim now that Sk is differentiable with respect to the canonical Hilbert man-
ifold structure of 3ν ×R+ (that is, Sk is Fréchet differentiable). In fact, Sk is of
class C2. For this we quote the fact that

(x, T ) 7→
∫ 1

0

1
2T
|ẋ(t)|2dt + kT

is of class C2 (see for instance [Abbondandolo and Schwarz 2009b]) and thus is
remains to check that x 7→

∫
C(x) σ is differentiable. This can be checked directly. It

thus follows that the first variation ∂
∂s

∣∣
s=0Sk(xs, Ts) is actually equal to the (Fréchet)

derivative d(x,T )Sk(ξ, ψ).
Finally, let us note that

(2-6) ∂
∂T

Sk(x, T )= 1
T

∫ T

0
(k− E(y, ẏ))dt, where y(t) := x(t/T ).
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Relating Sk and Ak. Next, if (x, T ) is a critical point of Sk , then y(t) := x(t/T )
satisfies ∫ T

0

(
Eq(y, ẏ)− d

dt
Ev(y, ẏ)

)
ζdt − 1

T

∫ T

0
σy(ζ, ẏ)dt = 0,

where ζ(t) = ξ(t/T ). Since this holds for all variations ζ , this implies that if
ỹ : [0, T ] → M̃ is a lift of y, then ỹ satisfies the Euler–Lagrange equations for L ,
that is,

Lq(ỹ, ˙̃y)−
d
dt

Lv(ỹ, ˙̃y)= 0.

Thus ỹ is the lift to M̃ of the projection to M of an orbit of φt , and we have the
following result.

Corollary 2.3. Let x ∈ 3M and x̃ denote a lift of x to M̃. Let T ∈ R+. Define
ỹ(t) := x̃(t/T ). Then the following are equivalent:

(1) The pair (x, T ) is a critical point of Sk .

(2) ỹ is a critical point of Ak .

Thus the pair (x, T ) ∈3M ×R+ is a critical point of Sk if and only if t 7→ x(t/T )
is the projection to M of a closed orbit of φt .

To specify the lifts we work with, let us fix a lift x̃ν : I → M̃ of xν for each
ν ∈ [T,M]. Throughout the paper, given any two paths y and y′ such that the end
point of y is the start point of y′, the path y ∗ y′ is the path obtained by first going
along y and then going along y′. Similarly the path y−1 is the path obtained by
going along y backwards.

Suppose now that c(g, σ ) <∞. Fix a free homotopy class ν ∈ [T,M] (which
could be the trivial free homotopy class). Let x ∈ 3ν , and let xs denote a free
homotopy from x0 = x to x1 = xν . Let z(s) := xs(0). Let x̃s denote the unique
homotopy of curves on M̃ that projects down onto xs and satisfies x̃1(t) = x̃ν(t).
Let x̃(t) := x̃0(t), z̃0(s) := x̃s(0) and z̃1(s) := x̃s(1).

Now observe that if R ⊆ M̃ denotes the rectangle R = im x̃s , then we have∫
C(x)

σ =

∫
R
σ̃ =

∫
R

dθ =
∫
∂R
θ =

∫
x̃∗z̃1∗x̃−1

ν ∗z̃−1
0

θ.

Let ϕ ∈ π1(M) denote the unique covering transformation taking z̃0 to z̃1. Since
〈ϕ〉 ≤ π1(M) is an amenable subgroup, [Paternain 2006, Lemma 5.3] allows us to
assume without loss of generality that θ is ϕ-invariant. Thus

∫
z̃−1

0
θ +

∫
z̃1
θ = 0. It

thus follows that
∫

C(x) σ =
∫

x̃ θ +
∫

x̃−1
ν
θ .

Set aν :=
∫

x̃−1
ν
θ . We conclude that

∫
C(x) σ =

∫
x̃ θ + aν . This computation

shows if c(g, σ ) <∞, then for any (x, T ) ∈ 3ν × R+, if x̃ is any lift of x and
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ỹ(t) := x̃(t/T ), then

(2-7) Sk(x, T )= Ak(ỹ)+ aν .

For the case ν = 0 ∈ [T,M] the trivial free homotopy class, we may choose the
curve x0 above to be a constant map, from which it is easy to see that a0 = 0. In
particular, if (x, T ) ∈30×R+ and ỹ is defined as before, then

(2-8) Sk(x, T )= Ak(ỹ).

Finally, if c(g, σ ) =∞, Sk is only defined on 30 ×R+, and it is clear that (2-8)
still holds.

3. The Palais–Smale condition

Let (M, 〈 · , · 〉) be a Riemannian Hilbert manifold, and suppose S :M→ R is C1.

Definition 3.1. We say S satisfies the Palais–Smale condition if every sequence
(xn)⊆M such that ‖dxn S‖→0 as n→∞ and supn|S(xn)|<∞ admits a convergent
subsequence. We say S satisfies the Palais–Smale condition at the level µ ∈ R if
every sequence (xn) ⊆ M with ‖dxn S‖ → 0 as n→∞ and S(xn)→ µ admits a
convergent subsequence.

The following result, concerning Sk satisfying the Palais–Smale condition, is
adapted from [Contreras 2006, Propositions 3.8 and 3.12]. We will first consider
only the case where c(g, σ ) <∞; see Proposition 3.7 for the case c(g, σ ) =∞.
In the statement of the theorem, ‖ · ‖ denotes the operator norm with respect to the
metric 〈 · , · 〉.

Theorem 3.2. Suppose c(g, σ ) <∞. Let A, B, k ∈ R+, and suppose (xn, Tn) ⊆

3M ×R+ satisfies

sup
n
|Sk(xn, Tn)| ≤ A, sup

n
Tn ≤ B, ‖d(xn,Tn)Sk‖< 1/n.

(1) If lim inf Tn > 0, then, passing to a subsequence if necessary, the sequence
(xn, Tn) is convergent in the W 1,2-topology.

(2) If lim inf Tn = 0 and the xn are all contractible, then passing to a subsequence
if necessary, Sk(xn, Tn)→ 0.

Before proving the theorem, let us now fix some notation that we will use
throughout this section, as well as implicitly in the rest of the paper. Given a
sequence (xn, Tn)⊆3M×R+, let yn : [0, Tn]→M be defined by yn(t) := xn(t/Tn).
Define

ln :=

∫ 1

0
|ẋn(t)|dt and en :=

∫ 1

0

1
2Tn
|ẋn(t)|2dt.
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Note that ln is the length of yn and en is the energy of yn . The Cauchy–Schwarz
inequality implies

(3-1) l2
n ≤ 2Tnen.

Suppose now c(g, σ ) <∞. Since ‖θ‖∞ <∞, there exist constants b1, b2 ∈R+

such that

(3-2) L(q, v)≥ b1|v|
2
− b2 for all (q, v) ∈ T M̃ .

Given A, B, k ∈ R+ and a free homotopy class ν ∈ [T,M], we denote by
D(A, B, k, ν) ⊆ 3M × R+ set of pairs (x, T ) such that x ∈ 3ν , Sk(x, T ) ≤ A
and T ≤ B.

Proof of Theorem 3.2. We begin with three preparatory lemmas.

Lemma 3.3. Suppose c(g, σ ) <∞. Let (xn, Tn)⊆ D(A, B, k, ν). Then if

b(A, B, ν) :=
A+ b2 B+ |aν |

2b1

then en ≤ b(A, B, ν) for all n ∈ N.

Proof. We have by (2-7) and (3-2) that

A ≥ Sk(xn, Tn)= Ak(ỹn)− aν ≥ 2b1en − b2Tn + kTn + aν,

and thus

en ≤
A+ b2Tn − kTn + |aν |

2b1
≤

A+ b2 B+ |aν |
2b1

. �

Lemma 3.4. Suppose c(g, σ ) <∞, and suppose (xn)⊆30 are such that ln→ 0.
Then

∫
C(xn)

σ → 0.

Proof. Let xn : D2
→ M denote a capping disc for xn , so (as in (2-4))

xn|∂D2 = xn and
∫

C(xn)

σ =

∫
D2

x∗nσ.

Let x̃n : D2
→ M̃ denote a lift of xn to M̃ . Then∣∣∣∫

D2
x∗nσ

∣∣∣= ∣∣∣∫
D2

x̃∗n(dθ)
∣∣∣= ∣∣∣∫

x̃n

θ
∣∣∣≤ ‖θ‖∞ln→ 0. �

We now reduce Theorem 3.2(1) to a simpler situation:

Lemma 3.5. Suppose c(g, σ )<∞ and (xn, Tn)∈D(A, B, k, ν)with lim inf Tn>0.
Passing to a subsequence we may assume that there exists x ∈3ν such that the xn

converge to x in the C0-topology.
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Proof. First by compactness of M , passing to a subsequence if necessary we may
assume there exists q ∈ M and T ∈ R+ such that limn→∞ xn(0) = xn(1) = q
and limn→∞ Tn = T . Consider g-geodesics cn : I → M such that cn(0) = q and
cn(1)= xn(0). By passing to a subsequence we may assume that distg(xn(0), q)<1,
and thus we have |ċn| ≤ 1. Now consider the curves

wn : [0, Tn+2]→M, t 7→ cn∗yn∗c−1
n and zn :T→M, t 7→wn(t/Tn+2).

Thus zn(0)= zn(1)= q, and (zn)⊆3ν .
Given 0≤ t1 < t2 < Tn + 2,

distg(wn(t1), wn(t2))≤
∫ t2

t1
|ẇn(t)|dt ≤

√
2|t2− t1|1/2

(∫ Tn+2

0

1
2 |ẇn(t)|2dt

)1/2
.

By Lemma 3.3 we have∫ Tn+2

0

1
2
|ẇn(t)|2dt =

∫ 1

0

1
2 |ċn(t)|2dt + en +

∫ 1

0

1
2 |ċ
−1
n (t)|2dt ≤ 1+ b(A, B, ν),

and thus distg(wn(t1), wn(t2))≤
√

2|t2−t1|1/2(1+b(A, B, ν))1/2. Hence the family
(wn) is equicontinuous. The Arzelà–Ascoli theorem then completes the proof. �

Proof of Theorem 3.2. We begin by proving Theorem 3.2(1). This part of the
proof is very similar to the proof of [Contreras et al. 2000, Theorem B]. Suppose
(xn, Tn)⊆D(A, B, k, ν) with lim inf Tn > 0. By the previous lemma, after passing
to a subsequence if necessary, we may assume that (xn, Tn) converges in the C0

topology to some (x, T ), where T > 0.
Without loss of generality, let us assume that the limit curve x is contained in

a single chart U (otherwise simply repeat these arguments finitely many times).
Then after passing possibly to another subsequence, we may assume that the xn

are all contained in U as well. There exists a constant b3 ∈ R+ such that in the
coordinates on U ,

(3-3) b3 := sup
q∈U,v∈Tq M

|Eq(q, v)|
1+ |v|2

<∞.

Write zn(t) := T−1
n xn(t). By Lemma 3.3 we can find a constant R> 0 such that

|xn|1,2 ≤ R and |zn|1,2 ≤ R.

Now since ‖d(xn,Tn)Sk‖→ 0 as n→∞, given ε > 0 there exists N ∈ N such that
for every (ξ, ψ) satisfying |(ξ, ψ)| ≤ 2R and n,m ≥ N , we have

|d(xn,Tn)Sk(ξ, ψ)− d(xm ,Tm)Sk(ξ, ψ)|< ε.
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Take ξ = xn − xm and ψ = 0 and use (2-5) to discover that

(3-4)
∣∣∣∣∫ 1

0

(
Tn · Eq(xn, żn)− Tm · Eq(xm, żm)

)
(xn − xm)dt

+

∫ 1

0
(Ev(xn, żn)− Ev(xm, żm)) (ẋn − ẋm)dt

+

∫ 1

0
σxn (ẋn, ẋm)− σxm (ẋn, ẋm)dt

∣∣∣∣< ε.
Here we are using the canonical parallel transport available to us on Euclidean
spaces to view ẋn − ẋm as a tangent vector in any tangent space of our choosing.
Using (3-3) we can bound the first integral as follows:∣∣∣∣∫ 1

0

(
Tn · Eq(xn, żn)− Tm · Eq(xm, żm)

)
(xn − xm)dt

∣∣∣∣
≤ (2Bb3+ 2b3b(A, B, ν))‖xn − xm‖∞.

Let us write σ |U in local coordinates as σ = σi j dq i
∧dq j , where σi j ∈C∞(U,R).

Then since

|σi j (xn(t))− σi j (xm(t))| → 0 as n,m→∞, uniformly in t,

and ∫ 1

0
|ẋn||ẋm |dt ≤ 2

√
TnTmenem

is bounded, it follows that for n and m large the third integral is small. Thus the
second integral must also be small for large n and m. Since

|v− v′|2 = (Ev(q, v)− Ev(q ′, v′)) · (v− v′),

we have ∫ 1

0
|żn − żm |

2dt ≤
∫ 1

0
(Ev(xn, żn)− Ev(xm, żm))(żn − żm)dt,

and hence the fact that the second integral in (3-4) is small for large n and m
implies that the sequence (zn), and hence the sequence (xn), converges in the W 1,2

topology. This completes the proof of Theorem 3.2(1).
We now prove Theorem 3.2(2). This part of the proof follows the proof of

[Contreras 2006, Theorem 3.8] very closely. Assume (xn, Tn) ⊆ D(A, B, k, 0)
(where 0 ∈ [T,M] denotes the trivial free homotopy class) and that lim inf Tn = 0.
Passing to a subsequence, we may assume that Tn → 0. It suffices to show that
passing to a subsequence we have en → 0. Then by Lemma 3.4, Sk(xn, Tn) =

en + kTn −
∫

C(xn)
σ → 0.
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We know that en remains bounded by Lemma 3.3. Since Tn→ 0, (3-1) implies
that ln→ 0. Thus as before we may assume that all the curves xn take their image
in the domain of some chart U on M . Thus for the remainder of the proof we work
in coordinates as if M =Rd . Let ξn(t) := xn(t)− xn(0), so that ξn(0)= ξn(1)= 0.
Then (ξn, 0)∈ T(xn,Tn)(3Rd×R+). Let also ζn(t) := ξn(t/Tn), so that ζ̇n(t)= ẏn(t).
Then

|d(xn,Tn)Sk(ξn, 0)| ≤ 1
n

(
Tn

∫ Tn

0
|ζ̇n(t)|2dt

)1/2
≤

1
n

√
2Tnen.

Using (2-5) we have

d(xn,Tn)Sk(ξn, 0)=
∫ Tn

0

(
Eq(yn, ẏn) · ζn + Ev(yn, ẏn) · ζ̇n(t)

)
dt

+

∫ 1

0
σxn(t)(ξn(t), ẋn(t))dt.

There exists b4 ∈ R+ such that∣∣∣∣∫ 1

0
σxn(t)(ξn(t), ẋn(t))dt

∣∣∣∣≤ b4

∫ 1

0
|ξn(t)||ẋn(t)|dt ≤ b4l2

n .

Thus using (3-3) and the fact that Ev(q, v) · ξ = 〈v, ξ〉, we have

d(xn,Tn)Sk(ξn, 0)≥−b3

∫ Tn

0
(1+ |ẏn(t)|2)|yn(t)− yn(0)|dt + 2en − b4l2

n

≥−b3ln(Tn + 2en)+ 2en − b4l2
n .

Putting this together and dividing through by
√

Tn , we have

−b3ln
√

Tn − 2b3
enln
√

Tn
+ 2

en
√

Tn
− b4

l2
n
√

Tn
≤

1
n

√
2en.

By (3-1), we have

lim
n→∞

l2
n
√

Tn
= 0 and lim

n→∞

ln
√

Tn
is bounded;

thus limn→∞ en/
√

Tn must also be bounded, and this can happen if and only if
en→ 0. This completes the proof of Theorem 3.2(2). �

We now wish to study the case where c(g, σ )=∞. Recall in this case Sk is only
defined on 30×R+. For a result similar to Theorem 3.2 to hold in the unbounded
setting, we must restrict to a subset of 30×R+.

Definition 3.6. Suppose K ⊆ M̃ is compact. Define 3K
0 ⊆ 30 to be the set of

loops x ∈30 such that there exists a lift x̃ : T→ M̃ of x such that x̃(T)⊆ K .

Here is the extension of Theorem 3.2 to the case c(g, σ )=∞.
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Proposition 3.7. Suppose that c(g, σ )=∞. Let A, B, k ∈R+ and take K ⊆ M̃ to
be compact. Suppose (xn, Tn)⊆3

K
0 ×R+ satisfy

sup
n
|Sk(xn, Tn)| ≤ A, sup

n
Tn ≤ B, ‖d(xn,Tn)Sk‖< 1/n.

(1) If lim inf Tn > 0, then passing to a subsequence if necessary the sequence
(xn, Tn) is convergent in the W 1,2-topology.

(2) If lim inf Tn = 0, then passing to a subsequence if necessary it holds that
Sk(xn, Tn)→ 0.

Proof. The proof proceeds exactly as before, since any primitive θ of σ̃ is bounded
on K . �

4. Supercritical energy levels: The case k > c(g, σ )

We now assume c(g, σ ) <∞, and study supercritical energies k > c(g, σ ). We
aim to prove Theorem 1.1(1). The key fact we will use is the following result. As
before, let (M, 〈 · , · 〉) be a Riemannian Hilbert manifold, and let S :M→ R be of
class C1.

Proposition 4.1. Suppose S is bounded from below and satisfies the Palais–Smale
condition, and suppose for every A ∈ R+ the set {x ∈ M : S(x) ≤ A} is complete.
Then S has a global minimum.

A proof may be found in [Contreras et al. 2000, Corollary 23]. Fix a nontrivial
free homotopy class ν ∈ [T,M]. The aim of this section is to verify for k> c(g, σ )
that the functional Sk on the Hilbert manifold 3ν × R+ satisfies the hypotheses
of Proposition 4.1, for then the global minimum whose existence Proposition 4.1
guarantees is our desired closed orbit of energy k.

The first step then is the following lemma, whose proof only requires k≥c(g, σ ),
and works for any free homotopy class ν ∈ [T,M].

Lemma 4.2. Let k ≥ c(g, σ ). Then Sk |3ν×R+ is bounded below.

Proof. The argument begins by replicating an argument seen earlier in Section 2.
Fix a free homotopy class ν ∈ [T,M] (which could be the trivial free homotopy
class). Let (x, T ) ∈ 3ν ×R+, and let xs denote a free homotopy from x0 = x to
x1 = xν . Let z(s) := xs(0). Lift xs to a homotopy x̃s in M̃ with x̃1(t)= x̃ν(t), and
let x̃(t) := x̃0(t), z̃0(s)= x̃s(0) and z̃1(s)= x̃s(1).

Now observe that if R ⊆ M̃ denotes the rectangle R = im x̃s , then we have∫
C(x)

σ =

∫
R
σ̃ =

∫
R

dθ =
∫
∂R
θ =

∫
x̃∗z̃1∗x̃−1

ν ∗z̃−1
0

θ.

Suppose ϕ ∈ π1(M) denotes the unique covering transformation taking z̃0 to z̃1.
Since 〈ϕ〉 ≤ π1(M) is an amenable subgroup, [Paternain 2006, Lemma 5.3] allows
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us to assume that without loss of generality, θ is ϕ-invariant. Thus
∫

z̃−1
0
θ+

∫
z̃1
θ =0.

It thus follows that

(4-1)
∫

C(x)
σ =

∫
x̃
θ +

∫
x̃−1
ν

θ.

Let x̃n := ϕ
n x̃ , and use similar notations for z̃n and x̃ν,n . Let ỹn := x̃n(t/T ), so

ỹn : [0, T ]→ M̃ . Then for any n ∈N we consider the closed loop un : [0, Tn]→ M̃
defined by

un = ỹ0 ∗ ỹ1 ∗ · · · ∗ ỹn ∗ z̃n+1 ∗ x̃−1
ν,n ∗ · · · ∗ x̃−1

ν,1 ∗ x̃−1
ν ∗ z̃−1

0 ,

where Tn := (n+ 1)T + 1+ (n+ 1)+ 1. We have

Ak(un)= (n+ 1)
(∫ T

0

1
2 |
˙̃y(t)|2dt +

∫ 1

0

1
2 |
˙̃x−1
ν |

2dt −
∫

ỹ0

θ −

∫
x̃−1
ν

θ
)

+

∫ 1

0

1
2 |
˙̃z1(t)|2dt +

∫ 1

0

1
2 |
˙̃z−1

0 (t)|2dt + kTn.

Now if k ≥ c(g, σ ), then by definition of c(g, σ ) we have Ak(un)≥ 0. Thus,

0≤
∫ T

0

1
2 |
˙̃y0(t)|2dt +

∫ 1

0

1
2 |
˙̃x−1
ν |

2dt −
∫

ỹ0

θ −

∫
x̃−1
ν

θ +
kTn

n+ 1

+
1

n+1

(∫ 1

0
| ˙̃z1(t)|2dt +

∫ 1

0
| ˙̃z−1

0 (t)|2dt
)
.

Letting n→∞ and substituting for the terms with ỹ0 we obtain

(4-2)
∫ 1

0

1
2T
|ẋ(t)|2dt +

∫ 1

0

1
2 |ẋ
−1
ν |

2dt −
∫

x̃
θ − aν + k(T + 1)≥ 0.

Now

Sk(x, T )=
∫ 1

0

1
2T
|ẋ(t)|2dt + kT −

∫
C(x)

σ

=

∫ 1

0

1
2T
|ẋ(t)|2dt + kT −

∫
x̃
θ − aν,

and hence by (4-1) and (4-2),

Sk(x, T )+
∫ 1

0

1
2 |
˙̃x−1
ν (t)|2dt + k ≥ 0,

that is,

Sk(x, T )≥−
∫ 1

0

1
2 |
˙̃xν(t)−1

|
2dt − k >−∞. �
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Let us setik,ν := inf(x,T )∈3ν×R+Sk(x, T ), so that the lemma tells us ik,ν > −∞

for k ≥ c(g, σ ).
The next lemma implies that {Sk |3ν×R+ ≤ A} is complete for any A ≥ 0.

Lemma 4.3. Suppose c(g, σ ) <∞. Let ν ∈ [T,M] be a nontrivial free homotopy
class and let A ∈ R+. There exists T0 = T0(A, k, ν) ∈ R+ such that T ≥ T0 if
(x, T ) ∈ D(A,∞, k, ν).

Proof. Let x̃ denote a lift of x and let ỹ : [0, T ] → M̃ be the curve t 7→ x̃(t/T ).
Using (2-7) and (3-2), we compute that

A≥ Sk(x, T )= Ak(ỹ)+aν≥
b1

T

∫ 1

0
| ˙̃x |2dt−(k−b2)T+aν≥

b1

T
l(ν)−(k−b2)T+aν,

where l(ν) := inf{
∫ 1

0 |ẋ(t)|dt : x ∈3ν}. Since M is closed and ν is a nontrivial free
homotopy class, we have l(ν) > 0, which implies the lemma. �

Proof of Theorem 1.1(1). Take k > c(g, σ ), and fix a nontrivial free homotopy
class ν ∈ [T,M]. Let (xn, Tn) ⊆ D(A,∞, k, ν). We want to show that (xn, Tn)

admits a convergent subsequence in the W 1,2-topology. In view of Theorem 3.2,
it suffices to show that there exists B > 0 such that (xn, Tn) ⊆ D(A, B, k, ν) and
that lim inf Tn > 0.

Lemma 4.4. The sequence (Tn) is bounded above and bounded away from zero.

Proof. First we claim that (Tn) is bounded. Indeed, if c = c(g, σ ),

A ≥ Sk(xn, Tn)= Sc(xn, Tn)+ (k− c)Tn ≥ ic,ν + (k− c)Tn,

and thus (Tn) is bounded. Say Tn ≤ B for all n, where B ∈ R+. Passing to a
subsequence we may assume that if T := lim inf Tn , then Tn → T . It remains
to check T > 0. From (3-1) and Lemma 3.3 if T = 0, then ln → 0. This is a
contradiction since ln > l(ν) > 0 (see the proof of the previous lemma). �

5. Subcritical energy levels: The case k < c(g, σ )

In this section we drop the assumption that c(g, σ ) < ∞, and study subcritical
energies k < c(g, σ ).

Mountain pass geometry. Again let (M, 〈 · , · 〉) be a Riemannian Hilbert manifold
and S : M→ R a function of class C2. Let 8s denote the (local) flow of −∇S.
Define α :M→ R+ ∪ {∞} by

α(x) := sup{r > 0 : s 7→8s(x) is defined on [0, r ]}.

An admissible time is a differentiable function τ :M→R such that 0≤ τ(x)<α(x)
for all x ∈M.
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Let F denote a family of subsets of M, and define µ := infF∈F supx∈F S(x).
Suppose that µ ∈ R. We say that F is S-forward invariant if the following holds:
if τ is an admissible time such that τ(x)= 0 if S(x)≤ µ− δ for some δ > 0, then
for all F ∈ F the set Fτ := {8τ(x)(x) : x ∈ F} is also a member of F.

For convenience, given a subset V⊆M and a ∈R, let Ka,V := crit S∩S−1(a)∩V

denote the set of critical points of S in V at the level a.
Our main tool will be the following mountain pass theorem, whose statement

is similar to that of [Contreras 2006, Proposition 6.3]. In what follows, a strict
local minimizer of a function S :M→ R is a point x ∈M such that there exists a
neighborhood N of x such that S(y) > S(x) for all y ∈ N \ {x}.

Theorem 5.1. Let M be a Riemannian Hilbert manifold and S :M→R a function
of class C2. Suppose we are given a sequence (Fn) of families of subsets of M with
Fn ⊆ Fn+1 for all n ∈ N. Set F∞ :=

⋃
n Fn . Set µ∞ := infF∈F∞ supx∈F S(x).

Suppose in addition that

(1) F∞ is S-forward invariant, and the sets F ∈ F∞ are connected;

(2) µ∞ ∈ R;

(3) the flow 8s of −∇S is relatively complete on {µ∞ − η ≤ S ≤ µ∞ + η} for
some η > 0;

(4) there are closed subsets (Un) of M such that for all ε> 0, there exists n(ε)∈N

such that for all n ≥ n(ε) there exists F ∈ Fn and 0< ε1(n) < ε such that

F ⊆ {S ≤ µ∞− ε1(n)} ∪ (Un ∩ {S ≤ µ∞+ ε}); and

(5) there are closed subsets (Vn) and a sequence (rn)⊆ R+ such that

Brn (Un) := {x ∈M : dist(x,Un) < rn} ⊆ Vn,

and such that S|Vn satisfies the Palais–Smale condition at the level µ∞.

Then if V∞ :=
⋃

n∈N Vn , then S has a critical point x ∈V∞ with S(x)= µ∞, that
is, Kµ∞,V∞ 6=∅. Moreover, if

(5-1) sup
F∈F∞

inf
x∈F

S(x) < µ∞,

then there is a point in Kµ∞,V∞ that is not a strict local minimizer of S.

The proof is an easy application of the following result, which can be found as
[Contreras 2006, Lemma 6.2].

Lemma 5.2. Let M be a Riemannian Hilbert manifold and let U⊆V⊆M be closed
subsets such that Br (U) ⊆ V for some r > 0. Let S : M→ R be a C2 function,
and let µ ∈ R be such that S|V satisfies the Palais–Smale condition at the level µ.
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Suppose also that the flow 8s of −∇S is relatively complete on {|S−µ| ≤ η} for
some η > 0.

Then if N is any neighborhood of Kµ,V relative to V, then for any λ > 0 there
exists ε and δ with 0 < ε < δ < λ such that for any 0 < ε1 < ε there exists an
admissible time τ such that τ(x)= 0 for all x ∈ {|S−µ| ≥ δ}, and such that if

F := {S ≤ µ− ε1} ∪ (U∩ {S ≤ µ+ ε}),

then Fτ ⊆ N∪ {S ≤ µ− ε1}.

Proof of Theorem 5.1. We will show that Kµ∞,Vn 6= ∅ for n large enough. Fix
0 < ε < δ < λ := 1 as in the statement of Lemma 5.2. By hypothesis there exists
n(ε) ∈N such that for all n ≥ n(ε) there exists 0< ε1(n) < ε and F ∈Fn such that

F ⊆ {S ≤ µ∞− ε1(n)} ∪ (Un ∩ {S ≤ µ∞+ ε}).

For such n, we have Kµ∞,Vn 6= ∅. Indeed, if Kµ∞,Vn = ∅, by Lemma 5.2, there
exists an admissible time τ such that τ ≡ 0 on {S ≤ µ∞ − δ}, and such that Fτ
satisfies Fτ ⊆ {S ≤ µ∞ − ε1(n)} (for we may take N = ∅ in Lemma 5.2). Since
F∞ is forward invariant, Fτ ∈ F∞. This contradicts the definition of µ∞.

To prove the last statement, suppose that Kµ∞,V∞ consists entirely of strict local
minimizers, and that (5-1) holds. Choose λ0 > 0 such that

sup
F∈F∞

inf
x∈F

S(x) < µ∞− 2λ0.

For each x ∈ Kµ∞,V∞ , let N(x) denote a neighborhood of x such that S(y) > S(x)
for all y ∈ N(x) \ {x}, and let

N0 :=
⋃

x∈Kµ∞,V∞

N(x) and Nn := N0 ∩Vn for each n ∈ N.

Let 0 < ε < δ < λ0 be given by Lemma 5.2 for N0. By hypothesis there exists
n(ε) ∈N such that for all n ≥ n(ε) there exists 0< ε1(n) < ε and F ∈Fn such that

F ⊆ {S ≤ µ∞− ε1(n)} ∪ (Un ∩ {S ≤ µ∞+ ε}).

By Lemma 5.2, there exists an admissible time τ such that τ ≡ 0 on {S ≤µ∞− δ}
and such that Fτ ⊆Nn∪{S≤µ∞−ε1(n)} ⊆N0∪{S≤µ∞−ε1(n)}. By definition
of N0, the sets N0 and {S ≤µ∞− ε1(n)} are disjoint, so N0∪{S ≤µ∞− ε1(n)} is
disconnected. Since Fτ is connected by hypothesis, we either have Fτ ⊆ N0 and
Fτ ∩ {S ≤ µ∞ − ε1(n)} = ∅, or Fτ ⊆ {S ≤ µ∞ − ε1(n)}. The former fails since
ε1(n) < ε < λ0, and the value of S decreases under 8s , and the latter contradicts
the definition of µ∞. �
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Proof of the second statement of Theorem 1.1(2). The main tool we will use will
be Theorem 5.1. The first step however is the following result, whose statement
and proof closely parallel [Contreras 2006, Proposition C].

Proposition 5.3. Let k ∈ R+. Then there exists a constant µ0 > 0 such that if
f : I →30×R+ is any path such that, with f (0)= (x0, T0) and f (1)= (x1, T1),
we have

(1) Sk(x0, T0) < 0, and

(2) x1 is the constant curve x1(t)≡ x0(0),

then sups∈I Sk( f (s)) > µ0 > 0.

Remark. The constant µ0 does not depend on T1.

In the statement of the following, as before, we put l(x) :=
∫ 1

0 |ẋ(t)|dt .

Lemma 5.4 [Contreras 2006, Lemma 5.1]. Let θ ∈�1(M̃). Given any q ∈ M̃ and
any open neighborhood V ⊆ M̃ of q, there exists an open neighborhood W ⊆ V
of q and a constant β > 0 such that |

∫
x θ | ≤βl(x)2 for any closed curve x : I→W .

Proof of Proposition 5.3. Compactness of M and the previous lemma imply that
there exists β, ρ0 > 0 such that if x : I → M is any closed contractible curve with
x(I ) contained in a ball of radius ρ0 then |

∫
C(x) σ | ≤ βl(x)2. Let q := x0(0) and

let W denote the ball of radius ρ0 about q . Pick ρ ∈ R+ such that

0< ρ <min{ρ0,
√

k/(2β)2}

Write f (s) = (xs, Ts), so xs ∈ 30 for all s. We claim that there exists s0 ∈ (0, 1)
such that l(xs0)= ρ. Since the functional s 7→ l(xs) is continuous and l(x0)= 0, it
suffices to show that there exists s1 ∈ [0, 1) such that l(xs1) > ρ.

If there exists s1 ∈ [0, 1) such that xs1(I )  W , then we are done, since then
l(xs1)≥ρ0>ρ. The other possibility is that xs(I )⊆W for all s ∈ I . In this case we
claim that we may take s1=0, that is, l(x0)>ρ. By assumption if y0(t)= x0(t/T0),
we have

(5-2)

0> Sk(x0, T0)=

∫ 1

0

1
2T0
|ẋ0(t)|2dt + kT0−

∫
C(x0)

σ

≥
1

2T0
l(x0)

2
+ kT0−

∣∣∣∫
x0

θ
∣∣∣

≥

( 1
2T0
−β

)
l(x0)

2
+ kT0,

where the second inequality came from (3-1) and the third from Lemma 5.4. From
this it follows that T0 > 1/(2β), and thus

l(x0)
2 >

kT0

β − 1/(2T0)
>

k
2β2 > ρ

2.
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and we are done as before.
We claim finally that Sk( f (s0)) > 0. Since xs0 ∈ Cac

M(q, q) and l(xs0) < ρ0, we
have xs0(I )⊆W . In particular, (5-2) holds for xs0 , and so we have

Sk( f (s0))≥
( 1

2Ts0

−β
)
`2
+ kTs0 = P(Ts0)≥ min

t∈R+
P(t),

where P(t) := (1/(2t)−β)ρ2
+ kt . It is elementary to see that

mint∈R+ P(t)=
√
ρ2/(2k)=: µ0 > 0,

and this completes the proof. �

The next lemma will be needed to prove relative completeness of the flow of
−∇Sk on any interval not containing zero.

Lemma 5.5. There exists a constant C > 0 such that for any (x0, T0) ∈3M ×R+

and any r > 0, if (x1, T1) ∈3M ×R+ satisfies dist((x0, T0), (x1, T1)) < r , then

|T0− T1|< r and distHD(x0, x1) < Cr.

This result is essentially proved by Contreras [2006, Lemma 2.3]; Contreras
used a different metric on 3M×R+, which meant that an additional condition was
imposed in the statement of the lemma. Since we are working with the standard
metric (2-1) on 3M ×R+ this additional condition is not needed, and the proof in
[Contreras 2006] goes through without any changes.

Corollary 5.6. Let K ⊆ M̃ and B > 0. Let U := {(x, T ) ∈3K
0 ×R+ : T ≤ B}. Let

C be as in the statement of Lemma 5.5. Then if L ⊆ M̃ satisfies

{q ∈ M̃ : distg̃(q, q ′)≤ Cr for some q ′ ∈ K } ⊆ L

and we set V := {(x, T ) ∈3L
0 ×R+ : T ≤ B+ r}, then Br (U)⊆ V.

Proof. Suppose (x1, T1) ∈Br (U). Then there exists (x0, T0) ∈U with

dist((x0, T0), (x1, T1)) < r.

By Lemma 5.5, distHD(x0, x1) < Cr and |T0− T1|< r . Thus (x1, T1) ∈ V. �

Next, we prove relative completeness of the flow of −∇Sk on any interval that
doesn’t contain zero. This proof is very similar to [Contreras 2006, Lemma 6.9].

Lemma 5.7. For all k ∈ R+, if [a, b] ⊆ R is an interval such that 0 /∈ [a, b], then
the local flow of −∇Sk is relatively complete on (30×R+)∩ {a ≤ Sk ≤ b}.

Proof. Let 8s : 3M × R+→ 3M × R+ denote the local flow of the vector field
−∇Sk . Then for any (x, T ) ∈3M ×R+,

Sk(8s1(x, T ))− Sk(8s2(x, T ))=
∫ s2

s1

|∇Sk(8s(x, T ))|2ds.
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By the Cauchy–Schwarz inequality we see that

dist(8s1(x, T ),8s2(x, T ))2 ≤
(∫ s2

s1

|∇Sk(8s(x, T ))|ds
)2

≤ |s1− s2|

∫ s2

s1

|∇Sk(8s(x, T ))|2ds,

and hence

(5-3) dist(8s1(x, T ),8s2(x, T ))2 ≤ |s1− s2||Sk(8s1(x, T ))− Sk(8s2(x, T ))|.

Now suppose we are given a pair (x, T ) ∈30×R+, such that there exists a, b ∈R

with 0 /∈ [a, b] and

a ≤ Sk(8s(x, T ))≤ b for all s such that 8s(x, T ) is defined.

Let [0, α) be the maximum interval of definition of s 7→ 8s(x, T ), where α > 0.
To complete the proof we need to show α =∞. Suppose the contrary.

Write 8s(x, T ) = (xs, Ts). If sn ↑ α, then (8sn (x, T )) =: (xn, Tn) is a Cauchy
sequence in (30×R+)∩{a ≤ Sk ≤ b} by (5-3). Thus Tα := lims↑α Ts exists and is
finite.

If Tα > 0, then (xα, Tα) := limn→∞(xn, Tn) exists and is equal to 8α(x, T )
since the sequence (xn, Tn) is Cauchy. Since Sk is C2 we can extend the solution
s 7→ 8s(x, T ) at s = α, contradicting the definition of α. Thus Tα = 0. Hence
there exists a sequence sm ↑ α such that d

ds Tsm ≤ 0. As before write xm := xsm and
Tm := Tsm . By (5-3) and Lemma 5.5, we may assume there exists a compact set
K ⊆ M̃ such that (xm, Tm)⊆3

K
0 ×R+ for all m. If ym(t) := xm(t/Tm), then

0≥ d
ds

Tm = −
∂
∂T

Sk(xm, Tm)=
1

Tm

∫ Tm

0
(−k+ E(ym, ẏm))dt =−k+

em

Tm
,

where the penultimate equality uses (2-6). Since limm→∞ Tm = 0, this forces
limm→∞ em = 0. As in the proof of the second part of Theorem 3.2, this implies
Sk(xm, Tm)→ 0, contradicting the fact that 0 /∈ [a, b]. This implies that we must
have originally had α =∞, and so completes the proof. �

We now move towards proving Theorem 1.1(2). In fact, we will prove a stronger
result, which is based on [Contreras 2006, Proposition 7.1]:

Proposition 5.8. Let c= c(g, σ )∈R∪{∞}. For almost all k ∈ (0, c) there exists a
contractible closed orbit of φt with energy k. This orbit has positive Sk-action, and
is not a strict local minimizer of Sk on30×R+. This holds for a specific k ∈ (0, c)
if Sk is known to satisfy the Palais–Smale condition on the level k.

Proof. Fix k0 ∈ (0, c). There exists (x0, T0) ∈ 30×R+ such that Sk0(x0, T0) < 0.
Indeed, there exists a closed curve ỹ : [0, T0]→ M̃ such that Ak0(ỹ) < 0. Then the
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projection y : [0, T0]→ M of ỹ to M is a closed curve, and if x0(t) := y(tT0), then
(x0, T0) ∈30×R+ and Sk0(x0, T0)= Ak0(ỹ) < 0. There exists ε > 0 such that for
all k ∈ J := [k0, k0+ ε], we have Sk(x0, T0) < 0.

Let x1 denote the constant loop at x0(0). Given k ∈ J , let µ0(k) > 0 be the
constant given by Proposition 5.3 such that any path f ∈ C0(I,30 × R+) with
f (0)= (x0, T0) and f (1)= (x1, T ) for some T > 0 has sups∈I Sk( f (s)) > µ0(k).
Choose T1 > 0 such that T1 < infk∈J µ0(k)/k. Then

max{Sk(x0, T0), Sk(x1, T1)} = kT1 < µ0(k) for all k ∈ J.

Set 0 := { f ∈C0(I,30×R+) : f (0)= (x0, T0), f (1)= (x1, T1)}. Let (Kn)⊆ M̃
denote compact sets such that Kn ⊆ Kn+1 and

⋃
n Kn = M̃ . Let

0n := 0 ∩C0(I,3Kn
0 ×R+).

Define µn(k) := inf f ∈0n sups∈I Sk( f (s)) and µ∞(k) := inf f ∈0 sups∈I Sk( f (s))
for k ∈ J . Then µn(k) ≥ µn+1(k) ≥ µ∞(k) ≥ µ0(k) for all n ∈ N and k ∈ J ,
and the functions µn : J → R converge pointwise to µ∞. Both µn and µ∞ are
nondecreasing. Since µ∞ is nondecreasing, by Lebesgue’s theorem there exists a
subset J0 ⊆ (k0, k0+ε) with J \ J0 having measure zero such that µ∞|J0 is locally
Lipschitz. In other words, for all j ∈ J0 there exist constants M( j)>0 and δ( j)>0
such that

|µ∞( j + δ)−µ∞( j)|< M( j)|δ| for all |δ|< δ( j).

Fix j ∈ J0 and a sequence ( jm)⊆ J0 with jm ↓ j . Let fn,m ∈ 0n be paths such that

max
s∈I

S jm ( fn,m(s))≤ µn( jm)+ ( jm − j).

Next, define Un := {(x, T )∈3Kn
0 ×R+ : T ≤M( j)+2}. Choose another collection

(Ln) ⊆ M̃ of compact sets such that Kn ⊆ Ln , and such that B1(Un) ⊆ Vn for
Vn := {(x, T ) ∈ 3Ln

0 × R+ : T ≤ M( j)+ 3}. Such a collection (Ln) exists by
Corollary 5.6. Since µ∞( j) 6= 0, from Proposition 3.7 it follows that S j |Vn satisfies
the Palais–Smale condition at the level µ∞( j) for all n ∈ N.

Since k 7→ Sk(x, T ) is increasing,

(5-4) max
s∈I

S j ( fn,m(s))≤max
s∈I

S jm ( fn,m(s))≤ µn( jm)+ ( jm − j).

If s∈ I is such that S j ( fn,m(s))>µ∞( j)−( jm− j), writing fn,m(s)=: (xn,m
s , T n,m

s )

we have

T n,m
s =

S jm ( fn,m(s))− S j ( fn,m(s))
jm − j

≤
µ∞( jm)−µn( j)

jm − j
+ 2≤

µ∞( jm)−µ∞( j)
jm − j

+ 2≤ M( j)+ 2,
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for n large enough.
Given ε > 0, first choose m large enough that jm − j < ε/(2(M( j)+ 1)), and

then select n large enough that µn( jm)−µ∞( jm) < ε/2. Then

µn( jm)−µ∞( j)+ ( jm − j)

= (µn( jm)−µ∞( jm))+ (µ∞( jm)−µ∞( j))+ ( jm − j)

< ε/2+M( j)( jm − j)+ ( jm − j) < ε.

Then by (5-4),

fn,m(I )⊆ {S j ≤ µ∞( j)− ( jm − j)} ∩ (Un ∩ {S j ≤ µ∞( j)+ ε}).

Since µ∞( j) 6= 0, by Lemma 5.7 the gradient flow of −S j is relatively complete
on {µ∞( j)− η ≤ S j ≤ µ∞( j)+ η} for some η > 0. Theorem 5.1 then gives a
critical point for S j |30×R+ that is not a strict local minimizer (here we are applying
Theorem 5.1 with Fn := { f (I ) : f ∈ 0n}).

Finally, suppose that k < c(g, σ )≤∞ is such that Sk satisfies the Palais–Smale
condition. Then the theorem is immediate from Lemma 5.7 and Theorem 5.1.
Indeed, by Lemma 5.7 we may simply take Un = Vn = V∞ = 30×R+, as then
the hypotheses of Theorem 5.1 are trivially satisfied. This completes the proof of
Theorem 1.1. �
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