A NEW PROBABILITY DISTRIBUTION WITH APPLICATIONS

Mingjin Wang
A NEW PROBABILITY DISTRIBUTION WITH APPLICATIONS

MINGJIN WANG

We introduce a new probability distribution, which is useful in the study of basic hypergeometric series. As applications, we give probabilistic derivations of the \(q \)-binomial theorem, the \(q \)-Gauss summation formula, a new multiple identity, and an extension of the Rogers–Ramanujan identities.

1. Introduction

The probabilistic method is a useful tool in the study of basic hypergeometric series [Chapman 2005; Evans 2002; Fulman 2001; Rawlings 1997]. In this paper, we introduce a new probability distribution and then demonstrate the applications of this distribution in \(q \)-series. We begin with recall some definitions, notations and known results in [Andrews et al. 1999; Gasper and Rahman 1990; Liu 2003]. Throughout the paper, we suppose that \(0 < q < 1 \). The \(q \)-shifted factorials are defined as

\[
(a; q)_0 = 1, \quad (a; q)_n = \prod_{k=0}^{n-1} (1 - a q^k), \quad (a; q)_\infty = \prod_{k=0}^{\infty} (1 - a q^k).
\]

We also adopt a compact notation for multiple \(q \)-shifted factorials:

\[
(a_1, a_2, \ldots, a_m; q)_n = (a_1; q)_n (a_2; q)_n \cdots (a_m; q)_n,
\]

where \(n \) is an integer or \(\infty \). The \(q \)-binomial coefficient is defined by

\[
\binom{n}{k} = \frac{(q; q)_n}{(q; q)_k (q; q)_{n-k}}.
\]

In 1846, Heine introduced the \(r+1 \phi_r \) basic hypergeometric series, which is defined by

\[
r+1 \phi_r \left(\begin{array}{c}
(a_1, a_2, \ldots, a_{r+1}; q)_n \; x^n \\
(b_1, b_2, \ldots, b_r; q)_n
\end{array} \right) = \sum_{n=0}^{\infty} \frac{(a_1, a_2, \ldots, a_{r+1}; q)_n x^n}{(q, b_1, b_2, \ldots, b_r; q)_n}.
\]

MSC2000: primary 60E05; secondary 33D15, 05A10.

Keywords: probability distribution, basic hypergeometric series, Andrews–Askey integral, Al-Salam–Carlitz polynomials, Lebesgue’s dominated convergence theorem, Tannery’s theorem, Rogers–Ramanujan identities.
F. H. Jackson [1910] defined the \(q \)-integral by

\[
\int_0^d f(t) d_q t = d(1-q) \sum_{n=0}^{\infty} f(dq^n) q^n,
\]

and

\[
\int_c^d f(t) d_q t = \int_0^d f(t) d_q t - \int_0^c f(t) d_q t.
\]

The \(q \)-integrals are important in the theory and application of basic hypergeometric series. For example, the author gives some applications of the \(q \)-integral in [Wang 2008; 2009b; 2009a; 2010b; 2010a]. The Andrews–Askey [1981] integral is

\[
\int_c^d \frac{(qt/c, qt/d, q)_{\infty}}{(at, bt; q)_{\infty}} d_q t = \frac{d(1-q)(q, dq/c, c/d, abcd; q)_{\infty}}{(ac, ad, bc, bd; q)_{\infty}},
\]

which can be derived from Ramanujan’s \(\psi_1 \) summation provided that no zero factors occur in the denominator of the integral.

The Al-Salam–Carlitz polynomials \(\phi_n^{(a)}(x | q) \) are defined by

\[
\phi_n^{(a)}(x | q) = \sum_{k=0}^{n} \left[\begin{array}{c} n \\ k \end{array} \right] x^k (a; q)_k,
\]

[Srivastava and Jain 1989] and have the \(q \)-integral representation [Wang 2009b]

\[
\phi_n^{(a)}(x | q) = \frac{(ax, a; q)_{\infty}}{(1-q)(q, q/x, x; q)_{\infty}} \int_1^1 \frac{(qt/x, qt; q)_{\infty}}{(at; q)_{\infty}} t^n d_q t
\]

provided that no zero factors occur in the denominator.

We frequently use the following well-known theorems:

Theorem (analytic continuation theorem). If \(f \) and \(g \) are analytic at \(z_0 \) and agree at infinitely many points, which include \(z_0 \) as an accumulation point, then \(f = g \).

Theorem (Lebesgue’s dominated convergence theorem). Suppose that \(\{X_n, n \geq 1\} \) is a sequence of random variables such that \(X_n \to X \) pointwise almost everywhere as \(n \to \infty \), and such that \(|X_n| \leq Y \) for all \(n \), where the random variable \(Y \) is integrable. Then \(X \) is integrable, and

\[
\lim_{n \to \infty} E X_n = E X,
\]

where \(E(\cdot) \) denotes expected value.

Tannery’s theorem is a special case of Lebesgue’s dominated convergence theorem on the sequence space \(L^1 \).
Theorem [Tannery 1904]. If \(s(n) = \sum_{k \geq 0} f_k(n) \) is a finite sum (or a convergent series) for each \(n \),
\[
\lim_{n \to \infty} f_k(n) = f_k, \quad |f_k(n)| \leq M_k, \quad \text{and} \quad \sum_{k=0}^{\infty} M_k < \infty
\]
then
\[
\lim_{n \to \infty} s(n) = \sum_{k=0}^{\infty} f_k.
\]

2. A new probability distribution

In order to use Lebesgue’s dominated convergence theorem to get \(q \)-identities, we need to find some special probability distributions. In this section, we introduce a useful probability distribution.

The main method of this paper as follows: First, we define a probability distribution by \(q \)-shifted factorials; its expected value can be easily obtained. Then we construct a sequence of random variables with this probability distribution. Finally, we use Lebesgue’s dominated convergence theorem to obtain a \(q \)-identity.

Lemma 2.1. Suppose \(x \) is a real such that \(x < 0 \); then we have
\[
(2-1) \quad \frac{(-x)^n(x^{n-1}q^{k+1}, x^n q^{k+1}; q)_{\infty} q^k}{(q, q/x, x; q)_{\infty}} \geq 0
\]
and
\[
(2-2) \quad \sum_{n=0}^{1} \sum_{k=0}^{\infty} \frac{(-x)^n(x^{n-1}q^{k+1}, x^n q^{k+1}; q)_{\infty} q^k}{(q, q/x, x; q)_{\infty}} = 1,
\]
where \(n = 0, 1 \) and \(k = 0, 1, 2, \ldots \).

Proof. Inequality (2-1) is obvious by the definition of the \(q \)-shifted factorials and the assumption that \(x < 0 \). We only need to prove (2-2).

Since
\[
(2-3) \quad \sum_{n=0}^{1} \sum_{k=0}^{\infty} \frac{(-x)^n(x^{n-1}q^{k+1}, x^n q^{k+1}; q)_{\infty} q^k}{(q, q/x, x; q)_{\infty}} = \frac{1}{(1-q)(q, q/x, x; q)_{\infty}} \times \left((1-q) \sum_{k=0}^{\infty} (q^{k+1}/x, q^{k+1}; q)_{\infty} q^k - x (1-q) \sum_{k=0}^{\infty} (q^{k+1}, xq^{k+1}; q)_{\infty} q^k \right),
\]
using the definition of the q-integral gives

$$
(1 - q) \sum_{k=0}^{\infty} (q^{k+1}/x, q^{k+1}; q)_{\infty} q^k = \int_0^1 (qt/x, qt; q)_{\infty} d_q t
$$

and

$$
x (1 - q) \sum_{k=0}^{\infty} (q^{k+1}, xq^{k+1}; q)_{\infty} q^k = \int_0^x (qt/x, qt; q)_{\infty} d_q t.
$$

Consequently, we have

$$
(2-4) \quad (1 - q) \sum_{k=0}^{\infty} (q^{k+1}/x, q^{k+1}; q)_{\infty} q^k
$$

$$
= \int_0^1 (qt/x, qt; q)_{\infty} d_q t - \int_0^x (qt/x, qt; q)_{\infty} d_q t = \int_1^x (qt/x, qt; q)_{\infty} d_q t.
$$

Employing the Andrews–Askey integral (1-3) gives

$$
(2-5) \quad \int_1^x (qt/x, qt; q)_{\infty} d_q t = (1 - q)(q, q/x, x; q)_{\infty}.
$$

Substituting (2-4) and (2-5) into (2-3) gives (2-2). \hfill \Box

Definition 2.2. A random variable ξ has distribution $W(x; q)$ if

$$
P(\xi = x^n q^k) = \frac{(-x)^n (x^{n-1} q^{k+1}, x^n q^{k+1}; q)_{\infty} q^k}{(q, q/x, x; q)_{\infty}},
$$

where $x < 0$, $0 < q < 1$, $n = 0, 1$ and $k = 0, 1, 2, \ldots$

The distribution $W(x; q)$ has some applications in the study of basic hypergeometric series.

Before giving applications, we need the following lemmas.

Lemma 2.3. Let $-1 < x < 0$ and $|a| < 1$. Let ξ denote a random variable having with $W(x; q)$. Then we have

$$
E\left(\frac{\xi^m}{(a\xi; q)_{\infty}}\right) = \frac{1}{(a, ax; q)_{\infty}} \varphi_m^{(a)}(x | q) \quad \text{for} \quad m = 0, 1, 2, \ldots
$$
Proof. Using the definition of the q-integral (1-1), (1-2) and the q-integral representation of the Al-Salam–Carlitz polynomials (1-4), we have
\[
E\left(\frac{\xi^m}{(a\xi, q)_\infty}\right) = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{(-x)^n (x^{n-1} q^{k+1}, x^n q^{k+1}; q)_\infty q^k}{(q, q/x, x; q)_\infty} \cdot \frac{x^{nm} q^{km}}{(ax^n q^k; q)_\infty}
\]
\[
= \frac{1}{(1-q)(q, q/x, x; q)_\infty} \left((1-q) \sum_{k=0}^{\infty} q^{k+1} / (q^{k+1}; q)_\infty \cdot \frac{q^{k(m+1)}}{(aq^k; q)_\infty} - x(1-q) \sum_{k=0}^{\infty} q^{k+1} / (x q^{k+1}; q)_\infty \cdot \frac{x^m q^{k(m+1)}}{(ax q^k; q)_\infty}\right)
\]
\[
= \frac{1}{(1-q)(q, q/x, x; q)_\infty} \left(\int_0^1 \frac{(qt/x, qt; q)_\infty t^m}{(at; q)_\infty} \cdot d_q t - \int_x^1 \frac{(qt/x, qt; q)_\infty t^m}{(at; q)_\infty} \cdot d_q t\right)
\]
\[
= \frac{1}{(1-q)(q, q/x, x; q)_\infty} \int_0^1 \frac{(qt/x, qt; q)_\infty t^m}{(at; q)_\infty} \cdot d_q t
\]
\[
= \frac{1}{(a, ax; q)_\infty} \phi_m^{(a)}(x | q).
\]

Lemma 2.4. Let $-1 < x < 0$ and $|a| < 1$. Let ξ denote a random variable having distribution $W(x; q)$. Then we have
\[
E\left(\frac{1}{(a\xi, b\xi; q)_\infty}\right) = \frac{(abx, ; q)_\infty}{(a, b, ax, bx; q)_\infty}.
\]

Proof. Using the definition of the q-integral (1-1), (1-2) and the Andrews–Askey integral (1-3), we have
\[
E\left(\frac{1}{(a\xi, b\xi; q)_\infty}\right) = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{(-x)^n (x^{n-1} q^{k+1}, x^n q^{k+1}; q)_\infty q^k}{(q, q/x, x; q)_\infty} \cdot \frac{1}{(ax^n q^k, bx^n q^k; q)_\infty}
\]
\[
= \frac{1}{(1-q)(q, q/x, x; q)_\infty} \left((1-q) \sum_{k=0}^{\infty} q^{k+1} / (q^{k+1}; q)_\infty \cdot \frac{q^k}{(aq^k, bq^k; q)_\infty} - x(1-q) \sum_{k=0}^{\infty} q^{k+1} / (x q^{k+1}; q)_\infty \cdot \frac{q^k}{(ax q^k, bx q^k; q)_\infty}\right)
\]
\[
\int_0^1 \frac{(qt/x, qt; q)_{\infty}}{(at, bt; q)_{\infty}} d_q t = \int_0^x \frac{(qt/x, qt; q)_{\infty}}{(at, bt; q)_{\infty}} d_q t
\]

which completes the proof. □

Lemma 2.5. Let \(|x| < 1\). Then

(2-7) \[
\lim_{n \to \infty} \varphi^{(a)}_n(x \mid q) = \sum_{k=0}^{\infty} \frac{(a; q)_k x^k}{(q; q)_k}.
\]

Proof. Let \(f_k(n) = \left[{n \atop k} \right] x^k (a; q)_k \) if \(k \leq n\) and \(f_k(n) = 0\) if \(k > n\). We have

\[
\varphi^{(a)}_n(x \mid q) = \sum_{k=0}^{\infty} f_k(n).
\]

Since

\[
\lim_{n \to \infty} f_k(n) = \frac{(a; q)_k x^k}{(q; q)_k}, \quad |f_k(n)| \leq \frac{|(a; q)_k x^k|}{(q; q)_\infty}, \quad \sum_{k=0}^{\infty} \frac{|(a; q)_k x^k|}{(q; q)_\infty} < \infty,
\]

by Tannery’s theorem we know (2-7) holds. □

3. The \(q\)-binomial theorem

One of the most important summation formulas for basic hypergeometric series is the \(q\)-binomial theorem, which was derived by Cauchy in 1843, Heine in 1847, and by other mathematicians. There are many proofs. By using the probability distribution \(W(x; q)\) and the Lebesgue dominated convergence theorem, we give a probabilistic derivation; see also [Andrews et al. 1999; Gasper and Rahman 1990].

Theorem 3.1. \[
\sum_{n=0}^{\infty} \frac{(a; q)_n x^n}{(q; q)_n} = \frac{(ax; q)_\infty}{(x; q)_\infty} \quad \text{for } |x| < 1.
\]

Proof. Let \(\xi\) be a random variable having distribution \(W(x; q)\), where \(-1 < x < 0\). We consider the sequence

\[
\left\{ \frac{\xi^n}{(a \xi; q)_\infty} \right\}_{n=1}^{\infty} \quad \text{for } |a| < 1
\]

of random variables (on a probability space). It is easy to see that \(\xi^n\) converges to \(I_{(\xi=1)}\), which has Binomial distribution \(B(1, 1/(x; q)_\infty)\) and

\[
\lim_{n \to \infty} \frac{\xi^n}{(a \xi; q)_\infty} = \frac{I_{(\xi=1)}}{(a; q)_\infty},
\]
where \(I_\Omega \) is the indicator function defined by

\[
I_\Omega(x) = \begin{cases}
1 & \text{if } x \in \Omega, \\
0 & \text{if } x \notin \Omega.
\end{cases}
\]

Since

\[
\frac{\xi^n}{(a_\xi; q)_\infty} \leq \frac{1}{(|a|; q)_\infty},
\]

using Lebesgue’s dominated convergence theorem gives

\[
(3-1) \quad \lim_{n \to \infty} E\left(\frac{\xi^n}{(a_\xi; q)_\infty} \right) = E\left(\frac{I_{\xi=1}}{(a; q)_\infty} \right).
\]

Employing (1-4) and using Tannery’s theorem gives

\[
(3-2) \quad \lim_{m \to \infty} E\left(\frac{\xi^m}{(a_\xi; q)_\infty} \right) = \frac{1}{(a, ax; q)_\infty} \lim_{m \to \infty} \phi_m^{(a)}(x | q)
= \frac{1}{(a, ax; q)_\infty} \sum_{m=0}^{\infty} \frac{(a; q)_m x^m}{(q; q)_m}.
\]

By direct calculation,

\[
(3-3) \quad E\left(\frac{I_{\xi=1}}{(a; q)_\infty} \right) = \frac{1}{(a, x; q)_\infty}.
\]

Substituting (3-2) and (3-3) into (3-1) gives

\[
\sum_{n=0}^{\infty} \frac{(a; q)_n x^n}{(q; q)_n} = \frac{(ax; q)_\infty}{(x; q)_\infty},
\]

where \(-1 < x < 0\) and \(|a| < 1\). By analytic continuation, we may replace the assumptions \(-1 < x < 0\) by \(|a| < 1\) by \(|x| < 1\). Thus, we get Theorem 3.1. \(\square\)

4. The \(q\)-Gauss summation formula

In 1847, Heine derived a \(q\)-analogue of Gauss’s summation formula. We show that this result can be recovered with the probability distribution \(W(x; q)\).

Theorem 4.1. \(2\phi_1\left(a,c \frac{c/ab}{ab} ; q, \frac{c}{ab} \right) = \frac{\left(c/a, c/b; q \right)_\infty \left(c, c/ab; q \right)_\infty}{(c, c/ab; q)_\infty} \) for \(|c/(ab)| < 1\).

Proof. Let \(\xi\) and \(\eta\) denote two independent random variables having distributions \(W(x; q)\) and \(W(y; q)\), respectively, where we set \(-1 < x, y < 0\). We consider the following sequence of random variables (on a probability space):

\[
\left\{ \frac{\eta^n}{(a_\xi\eta; q)_\infty} \right\}_{n=1}^{\infty} \text{ for } |a| < 1.
\]
Clearly η^n converges to $I_{(\eta=1)}$ having binomial distribution $B(1, 1/((y; q)_{\infty}))$ and

$$
\lim_{n \to \infty} \frac{\eta^n}{(a\xi \eta; q)_{\infty}} = \frac{I_{(\eta=1)}}{(a\xi; q)_{\infty}},
$$

where I_{Ω} is the indicator function.

Since

$$
\left| \frac{\eta^n}{(a\xi \eta; q)_{\infty}} \right| \leq \frac{1}{(|a|; q)_{\infty}},
$$

using Lebesgue’s dominated convergence theorem gives

$$(4-1) \quad \lim_{n \to \infty} E\left(\frac{\eta^n}{(a\xi \eta; q)_{\infty}} \right) = E\left(\frac{I_{(\eta=1)}}{(a\xi; q)_{\infty}} \right).$$

Observe that

$$
E\left(\frac{\eta^n}{(a\xi \eta; q)_{\infty}} \right) = E\left(\frac{\eta^n}{(a\xi \eta; q)_{\infty}} | \xi \right) \phi^{(a\xi)}(x | q)
$$

$$
= \sum_{k=0}^{n} \binom{n}{k} y^k \cdot \frac{1}{(a\xi q^k, ay \xi; q)_{\infty}}
$$

$$
= \sum_{k=0}^{n} \binom{n}{k} y^k \cdot \frac{(a^2xyq^k; q)_{\infty}}{(aq^k, axq^k, ay, axy; q)_{\infty}}
$$

$$
= \frac{(a^2xy; q)_{\infty}}{(a, ax, ay, axy; q)_{\infty}} \sum_{k=0}^{n} \binom{n}{k} \cdot \frac{(a, ax; q)_{\infty}y^k}{(a^2xy; q)_{\infty}}.
$$

Hence, we get the left hand side of (4-1):

$$(4-2) \quad \lim_{n \to \infty} E\left(\frac{\eta^n}{(a\xi \eta; q)_{\infty}} \right) = \frac{(a^2xy; q)_{\infty}}{(a, ax, ay, axy; q)_{\infty}} \sum_{k=0}^{\infty} \frac{(a, ax; q)_{\infty}y^k}{(q, a^2xy; q)_{\infty}}.
$$

On the other hand, the right hand side of (4-1) equals

$$(4-3) \quad E\left(\frac{I_{(\eta=1)}}{(a\xi; q)_{\infty}} \right) = p(\eta = 1)E\left(\frac{1}{(a\xi; q)_{\infty}} \right) = \frac{1}{(a, ax, y; q)_{\infty}}.
$$

Substituting (4-2) and (4-3) into (4-1) gives

$$
\sum_{k=0}^{\infty} \frac{(a, ax; q)_{\infty}y^k}{(q, a^2xy; q)_{\infty}} = \frac{(ay, axy; q)_{\infty}}{(a^2xy, y; q)_{\infty}},
$$

which is equivalent to the q-Gauss theorem, Theorem 4.1, by analytic continuation.
5. A multiple identity

Multiple basic hypergeometric series have been investigated by various authors [Milne 1997; Wang 2009a; Zhang 2006; Zhang and Liu 2006]. We will use the distribution \(W(x; q) \) to prove the following multiple identity.

Theorem 5.1. Let \(|a| < 1\). Then for any positive integers \(m \) and \(n \), we have

\[
(5-1) \quad \sum_{y_1 + \cdots + y_m \geq n} \left[\frac{y_1 + \cdots + y_m}{n} \right] q^{y_2 + 2y_3 + \cdots + (m-1)y_m} a^{y_1 + \cdots + y_m} = \frac{a^n}{(a; q)_{n+m}} \left[\frac{n+m-1}{n} \right].
\]

Proof. Let \(\xi \) denote a random variable with distribution \(W(x; q) \), where \(-1 < x < 0\). For any positive integer \(m \), we consider the sequence

\[
\left\{ \frac{(1 - (a\xi)^n)(1 - (aq\xi)^n) \cdots (1 - (aq^{m-1}\xi)^n)}{(a\xi; q)_\infty} \right\}_{n=1}^{\infty}
\]

for \(|a| < 1\)

of random variables (on a probability space). It is easy to see that

\[
\lim_{n \to \infty} \frac{(1 - (a\xi)^n)(1 - (aq\xi)^n) \cdots (1 - (aq^{m-1}\xi)^n)}{(a\xi; q)_\infty} = \frac{1}{(a\xi; q)_\infty}.
\]

Since \(|(1 - (a\xi)^n)(1 - (aq\xi)^n) \cdots (1 - (aq^{m-1}\xi)^n)/(a\xi; q)_\infty| \leq 1/(|a|; q)_\infty\), using Lebesgue’s dominated convergence theorem gives

\[
(5-2) \quad \lim_{n \to \infty} E\left(\frac{(1 - (a\xi)^n)(1 - (aq\xi)^n) \cdots (1 - (aq^{m-1}\xi)^n)}{(a\xi; q)_\infty} \right) = E\left(\frac{1}{(a\xi; q)_\infty} \right).
\]

Employing (2-6), we get the right hand side of (5-2):

\[
(5-3) \quad E\left(\frac{1}{(a\xi; q)_\infty} \right) = \frac{1}{(a, ax; q)_\infty}.
\]

On the other hand, observing that

\[
(1 - (a\xi)^n)(1 - (aq\xi)^n) \cdots (1 - (aq^{m-1}\xi)^n)
\]

\[
= \frac{(a\xi; q)_\infty}{1 - (a\xi)^n} \cdot \frac{1 - (aq\xi)^n}{1 - aq\xi} \cdots \frac{1 - (aq^{m-1}\xi)^n}{1 - aq^{m-1}\xi} \cdot \frac{1}{(aq^m\xi; q)_\infty}
\]

\[
= \sum_{y_1=0}^{\infty} (a\xi)^{y_1} \cdot \sum_{y_2=0}^{\infty} (aq\xi)^{y_2} \cdots \sum_{y_m=0}^{\infty} (aq^{m-1}\xi)^{y_m} \cdot \frac{1}{(aq^m\xi; q)_\infty}
\]

\[
= \sum_{0 \leq y_1, \ldots, y_m \leq n-1} q^{y_2 + 2y_3 + \cdots + (m-1)y_m} a^{y_1 + \cdots + y_m} \cdot \frac{\xi^{y_1 + \cdots + y_m}}{(aq^m\xi; q)_\infty},
\]
we have

\[
E \left(\frac{[1 - (a \xi)^n][1 - (aq \xi)^n] \cdots [1 - (aq^{m-1} \xi)^n]}{(a \xi; q)_{\infty}} \right)
\]

\[
= \sum_{0 \leq y_1, \ldots, y_m \leq n-1} q^{y_2 + 2y_3 + \cdots + (m-1)y_m} a^{y_1 + \cdots + y_m} E \left(\frac{\xi^{y_1 + \cdots + y_m}}{(aq^{m} \xi; q)_{\infty}} \right)
\]

\[
= \frac{1}{(aq^m, ax q^m; q)_{\infty}} \times \sum_{0 \leq y_1, \ldots, y_m \leq n-1} q^{y_2 + 2y_3 + \cdots + (m-1)y_m} a^{y_1 + \cdots + y_m} \varphi_{y_1 + \cdots + y_m}^{(aq^m)}(x | q).
\]

Hence, we get the left hand side of (5-2):

\[
(5-4) \quad \lim_{n \to \infty} E \left(\frac{[1 - (a \xi)^n][1 - (aq \xi)^n] \cdots [1 - (aq^{m-1} \xi)^n]}{(a \xi; q)_{\infty}} \right)
\]

\[
= \frac{1}{(aq^m, ax q^m; q)_{\infty}} \times \sum_{y_1, \ldots, y_m \geq 0} q^{y_2 + 2y_3 + \cdots + (m-1)y_m} a^{y_1 + \cdots + y_m} \varphi_{y_1 + \cdots + y_m}^{(aq^m)}(x | q).
\]

Substituting (5-3) and (5-4) into (5-2) gives

\[
(5-5) \quad \sum_{y_1, \ldots, y_m \geq 0} q^{y_2 + 2y_3 + \cdots + (m-1)y_m} a^{y_1 + \cdots + y_m} \varphi_{y_1 + \cdots + y_m}^{(aq^m)}(x | q) = \frac{1}{(a, ax; q)_m}.
\]

Using Theorem 3.1 with \(a = q^m \) and \(x = ax \) gives

\[
(5-6) \quad \sum_{k=0}^{\infty} \binom{m+k-1}{k} a^k x^k = \frac{1}{(ax; q)_m}.
\]

Substituting (5-6) into (5-5) and comparing the coefficients of \(x^n \) gives (5-1). \(\square \)

6. An extension of the Rogers–Ramanujan identities

The well-known Rogers–Ramanujan identities are

\[
(6-1) \quad \sum_{m=0}^{\infty} \frac{q^{m^2}}{(q; q)_m} = \frac{1}{(q, q^4; q^5)_{\infty}},
\]

\[
(6-2) \quad \sum_{m=0}^{\infty} \frac{q^{m^2+m}}{(q; q)_m} = \frac{1}{(q^2, q^3; q^5)_{\infty}}.
\]

There are many proofs of this beautiful pair of identities. Baxter’s [1982] is based on the statistical mechanics, and the proof of Lepowsky and Milne [1978]
uses the character formula on an infinite dimensional Lie algebra. We use our probability distribution to derive an extension of the Rogers–Ramanujan identities.

Theorem 6.1. We have

\[
\sum_{m=n}^{\infty} \frac{q^{m^2}}{(q; q)_m} = \frac{1}{(q; q)_{\infty}} + \sum_{k=1}^{\infty} \frac{(-1)^k q^{\binom{k}{2} + 2k}}{(q; q)_k} \cdot \frac{a^{2k}}{(aq^k; q)_{\infty}}
\]

\[
- \sum_{k=1}^{\infty} \frac{(-1)^k q^{\binom{k}{2} + 4k}}{(q; q)_k} \cdot \frac{\xi^{2k+1}}{(\xi q^k; q)_{\infty}}
\]

for \(|a| \leq 1\).

Then letting \(a = \zeta\) gives

\[
\sum_{m=0}^{\infty} \frac{q^{m^2} \zeta^m}{(q; q)_m} = \frac{1}{(\zeta q; q)_{\infty}} + \sum_{k=1}^{\infty} \frac{(-1)^k q^{\binom{k}{2} + 2k}}{(q; q)_k} \cdot \frac{\zeta^{2k}}{(\zeta q^k; q)_{\infty}}
\]

\[- \sum_{k=1}^{\infty} \frac{(-1)^k q^{\binom{k}{2} + 4k}}{(q; q)_k} \cdot \frac{\zeta^{2k+1}}{(\zeta q^k; q)_{\infty}}.\]

where \(\zeta\) is a random variable with distribution \(W(x; q)\) and \(-1 < x < 0\). Applying the expectation operator \(E\) to both sides of the above, we get

\[
(6-3) \quad E\left(\sum_{m=0}^{\infty} \frac{q^{m^2} \zeta^m}{(q; q)_m}\right) = E\left(\frac{1}{(\zeta q; q)_{\infty}}\right) + \sum_{k=1}^{\infty} \frac{(-1)^k q^{\binom{k}{2} + 2k}}{(q; q)_k} \cdot \frac{\zeta^{2k}}{(\zeta q^k; q)_{\infty}}
\]

\[
- \sum_{k=1}^{\infty} \frac{(-1)^k q^{\binom{k}{2} + 4k}}{(q; q)_k} \cdot \frac{\zeta^{2k+1}}{(\zeta q^k; q)_{\infty}}.
\]
Since $|q^{m^2} z^m / (q; q)_m| \leq q^{m^2} / (q; q)_m$ and the series $\sum_{m=0}^{\infty} q^{m^2} / (q; q)_m$ converges absolutely, using Lebesgue’s dominated convergence theorem and (2-6) gives the left hand side of (6-3):

\begin{equation}
E\left(\sum_{m=0}^{\infty} \frac{q^{m^2} z_m}{(q; q)_m}\right) = \sum_{m=0}^{\infty} \frac{q^{m^2} E\{z_m\}}{(q; q)_m} = \sum_{m=0}^{\infty} \frac{q^{m^2} h_m(x | q)}{(q; q)_m}.
\end{equation}

On the other hand, using (2-6) gives

\begin{align}
E\left(\frac{1}{(\zeta q; q)_\infty}\right) &= \frac{1}{(q, qx; q)_\infty}, \\
E\left(\frac{\zeta^{2k}}{(\zeta q^k; q)_\infty}\right) &= \frac{1}{(q^k, q^kx; q)_\infty} \phi_{2k}^{(q^k)}(x | q), \\
E\left(\frac{\zeta^{2k+1}}{(\zeta q^{k+1}; q)_\infty}\right) &= \frac{1}{(q^k, q^kx; q)_\infty} \phi_{2k+1}^{(q^k)}(x | q).
\end{align}

It is easy to see that

\begin{equation}
\left|\frac{(-1)^k q^5(\xi)_k + 4k}{(q; q)_k} \cdot \frac{\zeta^{2k+1}}{(\zeta q^k; q)_\infty}\right| \leq \left|\frac{(-1)^k q^5(\xi)_k + 2k}{(q; q)_k} \cdot \frac{\zeta^{2k}}{(\zeta q^k; q)_\infty}\right| \leq \frac{q^5(\xi)_k + 2k}{(q; q)_k(q; q)_\infty},
\end{equation}

and the series $\sum_{k=0}^{\infty} q^5(\xi)_k + 2k / ((q; q)_k(q; q)_\infty)$ is converges absolutely. Using Lebesgue’s dominated convergence theorem and (6-5), (6-6) and (6-7) gives the right hand side of (6-3):

\begin{align}
E\left(\frac{1}{(\zeta q; q)_\infty}\right) + E\left(\sum_{k=1}^{\infty} \frac{(-1)^k q^5(\xi)_k + 2k}{(q; q)_k} \cdot \frac{\zeta^{2k}}{(\zeta q^k; q)_\infty}\right) - E\left(\sum_{k=1}^{\infty} \frac{(-1)^k q^5(\xi)_k + 4k}{(q; q)_k} \cdot \frac{\zeta^{2k+1}}{(\zeta q^k; q)_\infty}\right) \\
= E\left(\frac{1}{(\zeta q; q)_\infty}\right) + \sum_{k=1}^{\infty} \frac{(-1)^k q^5(\xi)_k + 2k}{(q; q)_k} E\left(\frac{\zeta^{2k}}{(\zeta q^k; q)_\infty}\right) - \sum_{k=1}^{\infty} \frac{(-1)^k q^5(\xi)_k + 4k}{(q; q)_k} E\left(\frac{\zeta^{2k+1}}{(\zeta q^k; q)_\infty}\right) \\
= \frac{1}{(q, qx; q)_\infty} + \sum_{k=1}^{\infty} \frac{(-1)^k q^5(\xi)_k + 2k}{(q; q)_k} \frac{1}{(q^k, q^kx; q)_\infty} \phi_{2k}^{(q^k)}(x | q) - \sum_{k=1}^{\infty} \frac{(-1)^k q^5(\xi)_k + 4k}{(q; q)_k} \frac{1}{(q^k, q^kx; q)_\infty} \phi_{2k+1}^{(q^k)}(x | q)
\end{align}
A NEW PROBABILITY DISTRIBUTION WITH APPLICATIONS 253

\[
= \frac{1}{(q, qx; q)_\infty} + \frac{1}{(q, x; q)_\infty} \sum_{k=1}^{\infty} \frac{(-1)^k (x; q)_k}{1 - q^k} q^{5\binom{k}{2} + 2k} (\varphi_{2k}^{(q^k)} (x | q) - q^{-2k} \varphi_{2k+1}^{(q^k)} (x | q)).
\]

Substituting this and (6-4) into (6-3) gives

\[
\sum_{m=0}^{\infty} \frac{q^{m^2} h_m(x | q)}{(q; q)_m} = \frac{1}{(q, qx; q)_\infty} + \frac{1}{(q, x; q)_\infty} \sum_{k=1}^{\infty} \frac{(-1)^k (x; q)_k}{1 - q^k} q^{5\binom{k}{2} + 2k} (\varphi_{2k}^{(q^k)} (x | q) - q^{-2k} \varphi_{2k+1}^{(q^k)} (x | q)),
\]

where \(-1 < x < 0\). By analytic continuation, we may replace the assumption \(-1 < x < 0\) by \(|x| < 1\).

Substituting the expansion

\[
\frac{1}{(z; q)_\infty} = \sum_{l=0}^{\infty} \frac{z^l}{(q; q)_l}
\]

into the last, we have

\[
\sum_{m=0}^{\infty} \frac{q^{m^2} h_m(x | q)}{(q; q)_m} = \frac{1}{(q; q)_\infty} \sum_{l=0}^{\infty} \frac{q^l x^l}{(q; q)_l} + \frac{1}{(q; q)_\infty} \sum_{k=1}^{\infty} \sum_{l=0}^{\infty} \left(\frac{q^{kl} x^l}{(q; q)_l} \cdot \frac{(-1)^k q^{5\binom{k}{2} + 2k}}{1 - q^k} (\varphi_{2k}^{(q^k)} (x | q) - q^{-2k} \varphi_{2k+1}^{(q^k)} (x | q)) \right).
\]

Comparing the coefficients of \(x^n\) in this identity gives

\[
\sum_{m=n}^{\infty} \frac{q^{m^2} [m]_n}{(q; q)_m} = \frac{q^n}{(q; q)_\infty (q; q)_n} + \frac{1}{(q; q)_\infty} \sum_{k=1}^{n} \sum_{l=0}^{n-k} \frac{(-1)^k (q^k; q)_l}{(1 - q^k) (q; q)_n-l} q^{5\binom{k}{2} + k(n+2-l)} \left(\binom{2k}{l} + q^{2k} \binom{2k+1}{l} \right),
\]

which can be written as Theorem 6.1.

The Rogers–Ramanujan identities are special cases of Theorem 6.1. Letting \(n = 0\) and then applying the Jacobi triple product identity [Andrews et al. 1999]

\[
\sum_{n=-\infty}^{\infty} (-1)^n q^{\binom{n}{2}} x^n = (q, x, q/x; q)_\infty
\]
leads to the Rogers–Ramanujan identity (6-1). In fact, when \(n = 0 \), we have
\[
\sum_{m=0}^{\infty} \frac{q^{m^2}}{(q; q)_m} = \frac{1}{(q; q)_\infty} \left(1 + \sum_{k=1}^{\infty} (-1)^k (1 + q^k) q^{5\binom{k}{2} + 2k} \right)
\]
\[
= \frac{1}{(q; q)_\infty} \sum_{k=-\infty}^{\infty} (-1)^k q^{5\binom{k}{2} + 2k}
\]
\[
= \frac{(q^5, q^2, q^3; q^5)_\infty}{(q; q)_\infty} = \frac{1}{(q, q^4; q^5)_\infty}.
\]
Similarly, the case \(n = 1 \) of Theorem 6.1 results in another identity due to Rogers and Ramanujan:
\[
\sum_{m=0}^{\infty} \frac{q^{m^2+m}}{(q; q)_m} = \sum_{m=0}^{\infty} \frac{q^{m^2}}{(q; q)_m} - \sum_{m=1}^{\infty} \frac{q^{m^2}}{(q; q)_{m-1}}
\]
\[
= \frac{1}{(q; q)_\infty} \left(1 + \sum_{k=1}^{\infty} (1 - q^{2k+1}) q^{5\binom{k}{2} + 4k} \right)
\]
\[
= \frac{1}{(q; q)_\infty} \sum_{k=-\infty}^{\infty} (-1)^k q^{5\binom{k}{2} + 4k}
\]
\[
= \frac{(q, q^4, q^5; q^5)_\infty}{(q; q)_\infty} = \frac{1}{(q^2, q^3; q^5)_\infty}.
\]

References

Received February 21, 2009. Revised December 12, 2009.

MINGJIN WANG
DEPARTMENT OF APPLIED MATHEMATICS
CHANGZHOU UNIVERSITY
CHANGZHOU 213164
CHINA
wmj@cczu.edu.cn
Classification results for easy quantum groups
Teodor Banica, Stephen Curran and Roland Speicher

Batalin–Vilkovisky coalgebra of string topology
Xiaojun Chen and Wee Liang Gan

Invariant Finsler metrics on polar homogeneous spaces
Shaoqiang Deng

A proof of the Concus–Finn conjecture
Kirk E. Lancaster

The existence and monotonicity of a three-dimensional transonic shock in a finite nozzle with axisymmetric exit pressure
Jun Li, Zhouping Xin and Huicheng Yin

Bi-Hamiltonian flows and their realizations as curves in real semisimple homogeneous manifolds
Gloria Marí Beffa

Closed orbits of a charge in a weakly exact magnetic field
Will J. Merry

Ringel–Hall algebras and two-parameter quantized enveloping algebras
Xin Tang

A new probability distribution with applications
Mingjin Wang