A FAMILY OF REPRESENTATIONS OF BRAID GROUPS ON SURFACES

Byung Hee An and Ki Hyoung Ko
A FAMILY OF REPRESENTATIONS OF BRAID GROUPS ON SURFACES

BYUNG HEE AN AND KI HYOUNG KO

We propose a family of homological representations of the braid groups on surfaces. This family extends linear representations of the braid groups on a disc, such as the Burau representation and the Lawrence–Krammer–Bigelow representation.

1. Introduction

1A. Preliminaries and history. Let \( \Sigma(g, p) \) be a compact, connected, orientable 2-dimensional manifold of genus \( g \) with \( p \) boundary components. Set \( \Sigma = \Sigma(g, p) \). Let \( \{z_1^0, \ldots, z_n^0\} \) be a set of \( n \) preferred distinct points in \( \Sigma \) for \( n \geq 0 \), and let \( \Sigma_n = \Sigma - \{z_1^0, \ldots, z_n^0\} \). We call \( \Sigma_n \) the surface \( \Sigma \) with \( n \) punctures.

For integers \( n, k \geq 0 \), we consider three types of configuration spaces as follows:

- The space of \( k \)-tuples of distinct points in \( \Sigma_n \) is denoted by \( P_{n,k}(\Sigma) = \{(z_1, \ldots, z_k) \in \Sigma_n \times \cdots \times \Sigma_n \mid z_i \neq z_j \text{ for } i \neq j\} \),
- the space of subsets of \( k \) elements in \( \Sigma_n \) is denoted by \( B_{n,k}(\Sigma) = \{\{z_1, \ldots, z_k\} \subset \Sigma_n\} \),
- and the space \( B_{n;k}(\Sigma) \) of pairs of disjoint subsets of \( n \) elements and \( k \) elements in \( \Sigma \) is denoted by \( B_{n;k}(\Sigma) = \{\{(z_1, \ldots, z_n), (z_{n+1}, \ldots, z_{n+k})\} \mid z_i \in \Sigma, z_i \neq z_j \text{ for } i \neq j\} \).

It is easy to see that \( B_{n,k}(\Sigma) = P_{n,k}(\Sigma)/S_k \) and \( B_{n;k}(\Sigma) = P_{0,n+k}(\Sigma)/S_n \times S_k \), where the symmetric group \( S_k \) acts on \( P_{n,k}(\Sigma) \) by permuting components of a \( k \)-tuple and similarly \( S_n \times S_k \subset S_{n+k} \) acts on \( P_{0,n+k}(\Sigma) \).

The braid groups on a surface \( \Sigma \) are defined by the fundamental groups of configuration spaces. Choose a basepoint \( \{z_{n+1}^0, \ldots, z_{n+k}^0\} \) in \( \partial \Sigma \) if \( \partial \Sigma \neq \emptyset \). If \( \Sigma \) is

MSC2000: 20F36, 57M07, 57M10.

Keywords: homological representation, surface braid group.

This work was supported by the Korea Science and Engineering Foundation grant funded by the Korean government, MOST number R01-2006-000-10152-0.
closed, then place it anywhere in \( \Sigma_n \). The \textit{pure k-braid group} on \( \Sigma_n \) is defined and denoted by
\[
P_{n,k}(\Sigma) = \pi_1(P_{n,k}(\Sigma), (z_{n+1}^0, \ldots, z_{n+k}^0)).
\]
Similarly, the \textit{(full) k-braid group} on \( \Sigma_n \) is given by
\[
B_{n,k}(\Sigma) = \pi_1(B_{n,k}(\Sigma), (z_{n+1}^0, \ldots, z_{n+k}^0)),
\]
and the \textit{intertwining (n, k)-braid group} on \( \Sigma \) is given by
\[
B_{n;k}(\Sigma) = \pi_1(B_{n;k}(\Sigma), (|z_1^0, \ldots, z_n^0|, |z_{n+1}^0, \ldots, z_{n+k}^0|)).
\]
It is sometimes easier to understand if these groups are regarded as subgroups of \( B_{0,n+k}(\Sigma) \). The intertwining \((n, k)\)-braid group \( B_{n;k}(\Sigma) \) is the preimage of \( S_n \times S_k \) under the canonical projection: \( B_{0,n+k}(\Sigma) \to S_{n+k} \). In addition, \( B_{n,k}(\Sigma) \) is the subgroup of \((n + k)\)-braids in \( B_{n;k}(\Sigma) \) that become trivial by forgetting the last \( k \) strands, and \( P_{n,k}(\Sigma) \) is the subgroup of \((n + k)\)-braids in \( B_{n,k}(\Sigma) \) that are pure, that is, the induced permutation is trivial. If the surface \( \Sigma \) is the 2-disc \( D \), we will call the braid groups \textit{classical}. For example, \( B_{0,n}(D) \) denotes the classical \( n \)-braid group studied by E. Artin.

In the 60s and 70s, presentations for braid groups on various surfaces were found, on the 2-sphere and the projective plane in [Fadell and van Buskirk 1962; Van Buskirk 1966], on the torus in [Birman 1969], and on all closed surfaces in [Scott 1970]. The study of braid groups on surfaces has been revived recently. González-Meneses [2001] found new presentations of the braid groups on surfaces, and the authors of [Bellingeri 2004; Bellingeri and Godelle 2007] found positive presentations of the braid groups \( B_{n,k}(\Sigma) \) for all surfaces \( \Sigma \), with or without boundary. Here, we are interested in braid groups on surfaces with nonempty boundary and will use Bellingeri’s presentations.

Boundary components of a surface can be traded with punctures when we consider braid groups. Let \( \Sigma = \Sigma(g, p) \) and \( \Sigma' = \Sigma(g, p + q) \). Then there are continuous maps \( i : \Sigma_q \to \Sigma' \) and \( j : \Sigma' \to \Sigma_g \) that are homotopy inverses each other. The induced maps \( \tilde{i} : B_{n+q,k}(\Sigma) \to B_{n,k}(\Sigma') \) and \( \tilde{j} : B_{n,k}(\Sigma') \to B_{n+q,k}(\Sigma) \) on configuration spaces are also homotopy inverses each other and induce isomorphisms \( \tilde{i}_* \) and \( \tilde{j}_* \) on fundamental groups [Bellingeri 2004; Paris and Rolfsen 1999]. Therefore we may assume \( \Sigma = \Sigma(g, 1) \) by treating all but one boundary component as a puncture whenever we deal with a surface with nonempty boundary.

We use Bellingeri’s presentation [2004] for the braid group \( B_{n,k}(\Sigma(g, 1)) \):

- The generators are \( \sigma_1, \ldots, \sigma_{k-1}, a_1, \ldots, a_g, b_1, \ldots, b_g, \zeta_1, \ldots, \zeta_n \).
- The relations are
  - \( \text{BR}_1 \) \( [\sigma_i, \sigma_j] \) for \(|i - j| \geq 2 \);
  - \( \text{BR}_2 \) \( \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j \) for \(|i - j| = 1 \);
for braid index 4. This representation is essentially the same as the one considered on a punctured disk as taking exponent sums or taking induced permutations. The braid action on the set of punctures.

1 \rightarrow B_{n,k}(\Sigma) \rightarrow B_{n}(\Sigma) \rightarrow B_{0,n}(\Sigma) \rightarrow 1,

always splits for \( k \geq 1 \) if \( \Sigma \) has nonempty boundaries.

The braid groups are closely related to the mapping class groups. Birman [1974] determined when surface braid group embeds into the corresponding mapping class group. In particular, if \( \partial \Sigma \) is nonempty, \( B_{0,n}(\Sigma) \) embeds into the mapping class group on \( \Sigma_n \) and so an \( n \)-braid on \( \Sigma \) can be regarded as a homeomorphism of \( \Sigma \) that preserves the set of \( n \) punctures.

The classical braid groups have various representations that can be as simple as taking exponent sums or taking induced permutations. The braid action on the punctured disk \( D_n \) gives rise to a faithful representation into automorphism groups of free groups, and a characterization of automorphisms coming from braid actions is possible. Each representation serves its own purpose. It is common to try to construct a linear representation to have a better understanding of a given group via matrices over a certain commutative ring and their multiplications.

For the classical braid groups, linear representations are abundant. Burau in 1936 and Gassner in 1961 found linear representations of \( B_{0,n}(D) \) and \( P_{0,n}(D) \), respectively. These representations are derived from braid actions on homologies of appropriate coverings of \( D_n \). These representations take the form of \((n-1) \times (n-1)\) matrices that can also be computed via Fox’s free differential calculus on automorphisms of free groups mentioned above. The Burau representation is faithful for \( n \leq 3 \) but not for \( n \geq 5 \) [Bigelow 1999]. The faithfulness of the Gassner representation is known only for \( n \leq 3 \).

Lawrence [1990] discovered a family of linear representations of \( B_{0,n}(D) \) via a monodromy on a vector bundle over \( P_{n,k}(D) \). Krammer [2000] defined a free \( \mathbb{Z}[g^{\pm 1}, t^{\pm 1}] \)-module \( V \) using forks and relations between them, and he proved using an algebraic and combinatorial argument that the braid group acts on \( V \) faithfully for braid index 4. This representation is essentially the same as the one considered
by Lawrence for $k = 2$ but uses the configuration space $B_{n,2}(D)$ instead of $P_{n,2}(D)$ and is now called the Lawrence–Krammer–Bigelow representation. Bigelow reinterpreted this representation using covering spaces and covering transformation groups instead of vector bundles and local coefficients. Then the monodromy corresponds to the braid action on homology groups of covering spaces, as it did for the Burau representation and the Gassner representation. Bigelow [2001] constructed a linear representation using homology group $H_2(\tilde{B}_{n,2}(D))$ of the covering space $\tilde{B}_{n,2}(D)$ whose covering transformation group is $\langle q \rangle \oplus \langle t \rangle$, and he proved that $\mathbb{R} \otimes V$ is isomorphic to $\mathbb{R} \otimes H_2(\tilde{B}_{n,2}(D))$. Also, Krammer [2002] and Bigelow [2001] independently proved that the Lawrence–Krammer–Bigelow representation is faithful for all $n \geq 1$, and so the classical braid groups are linear. Bardakov [2005] applied this linearity to show that the braid groups of the sphere and projective plane are linear. Bigelow and Budney [2001] proved using the Lawrence–Krammer–Bigelow representation and a suitable branched covering that the mapping class group of genus 2 surface has a faithful linear representation. However, Paoluzzi and Paris showed that there is a difference between $V$ and $H_2(\tilde{B}_{n,2}(D);\mathbb{Z}[q^{\pm 1},t^{\pm 1}])$ as a $\mathbb{Z}[q^{\pm 1},t^{\pm 1}]$-module for $n \geq 3$ and a found basis for a $\mathbb{Z}[q^{\pm 1},t^{\pm 1}]$-module $H_2(\tilde{B}_{n,2}(D))$; so the exact definition of “Lawrence–Krammer–Bigelow representation” became somewhat ambiguous.

For any $k \geq 1$, Bigelow [2004] considered the braid action on the Borel–Moore homology group $H_{BM}^k(\tilde{B}_{n,k}(D))$. He obtained a family of representations via the induced action on the image of $H_{BM}^k(\tilde{B}_{n,k}(D))$ in $H_{BM}^k(\tilde{B}_{n,k}(D),\partial\tilde{B}_{n,k}(D))$.

For simplicity, we will consider the braid action on the free module $H_{BM}^k(\tilde{B}_{n,k}(D))$, whose basis can be easily described by forks to obtain a linear representation. We will call these representations homology linear representations. The Burau representation, and the Lawrence–Krammer–Bigelow representation of $B_{0,n}(D)$ are homology linear representations

$$\Phi_k : B_{0,n}(D) \to GL\left(\binom{n+k-2}{k}, \mathbb{Z}[q^{\pm 1},t^{\pm 1}]\right)$$

obtained from the braid action on homologies of covers of $B_{n,k}(D)$ when $k = 1$ ($t = 1$ in this case) and $k = 2$, respectively [Bigelow 2004]. For $k \geq 3$, Zheng [2005] proved that $\Phi_k$ is faithful for all $n \geq 1$.

**Overview.** We construct a family of homological representations of braid groups on a surface with nonempty boundary; these extend the homological linear representations of the classical braid group. In Section 2, we first try to follow how the homology linear representations of $B_{0,n}(D)$ were constructed via a covering of the configuration space $B_{n,k}(D)$. In the case of the disk, the braid action automatically commutes with covering transformations, or in other words, braids act trivially on
local coefficients. However, in the case of surfaces of genus \( \geq 1 \), this condition forces the variable \( q \) to equal 1; see Lemma 2.6. Then the braid action becomes almost trivial. For example, if \( k = 1 \), the action of \( \sigma_i^2 \) is trivial. To get around this problem, we introduce in Section 3 the intertwining braid group \( B_{n,k}(\Sigma) \) to replace \( B_{n,k}(\Sigma) \). As we mentioned earlier, this group is a semidirect product of \( B_{n,k}(\Sigma) \) and \( B_{0,n}(\Sigma) \). Although the braid action does not preserve the local coefficient given by the \( B_{n,k}(\Sigma) \) factor, the \( B_{0,n}(\Sigma) \) factor of \( B_{n,k}(\Sigma) \) can adjust the coefficient so that the braid action becomes compatible. We will extend the coefficient ring for homology representations to give room to control the braid action, at the expense of giving up its commutativity, so that it becomes more interesting and still preserves coefficients. Eventually we obtain in Theorem 3.2 representations of braid groups on surfaces that extend homology linear representations of the classical braid group. Also we explicitly compute the representations in the form of matrices using a geometric argument. We extend the intersection pairing between \( H_k^{BM}(\tilde{B}_{n,k}(D)) \) and its dual space \( H_k(\tilde{B}_{n,k}(D), \partial \tilde{B}_{n,k}(D)) \) and use bases for the two spaces that are described by forks and noodles; see Theorem 3.4.

In Section 4, we argue that the construction of our representations is natural and that there are no other alternatives if one wants to obtain an extension of the homological representation using covers of the configuration space \( B_{n,k}(D) \). We show that the intertwining braid group \( B_{n,k}(\Sigma) \) is the normalizer of \( B_{n,k}(\Sigma) \) in \( B_{0,n+k}(\Sigma) \) so that the intertwining braid group \( B_{n,k}(\Sigma) \) is such a group that is unique and maximal up to a meaningless extension; see Theorem 4.2. The coefficient ring for our representations is the integral group ring of a quotient group of \( B_{n,k}(\Sigma) \). Theorem 4.3 shows that for \( k \geq 3 \) the quotient group is uniquely determined if one wants to extend homology linear representations of the classical braid group. For \( k = 1, 2 \), the quotient group is the simplest that serves our purpose. Theorem 4.4 shows that the braid action on the quotient group is virtually unique.

Our construction involving the group extension \( B_{n,k}(\Sigma) \) of \( B_{n,k}(\Sigma) \) is purely algebraic, without a good geometric interpretation. Thus, some useful geometric tools are not available. For example, the intersection pairing mentioned above is not invariant under the braid group action. This seems to make it difficult to discuss properties of our representations such as faithfulness and irreducibility. Although the corresponding representation of the classical braid group is faithful for \( k = 2 \) and irreducible for \( k \leq 2 \) [Jones 1987; Zinno 2001], the faithfulness and irreducibility of our representations are beyond the scope of this article.

### 2. Homology linear representations

We first review the construction of homology linear representations of the classical braid group \( B_{0,n}(D) \) using the configuration space \( B_{n,k}(D) \); we then discuss the
difficulty in extending these homology linear representations to the braid group $B_{0,n}(\Sigma)$ on a surface $\Sigma$ with nonempty boundary. As we noted earlier, boundary components can be traded with punctures. From now on, we assume that $\Sigma$ denotes a compact, connected, oriented surface with exactly one boundary component and that $n$ and $k$ are positive integers.

**Homology linear representations of classical braid group.** Let $\phi : B_{n,k}(D) \to G$ be an epimorphism onto a group $G$. Consider the covering $p : \tilde{B}_{n,k}(D) \to B_{n,k}(D)$ corresponding to $\text{Ker } \phi$. Since the classical braid group embeds into the mapping class group of the punctured disk $D_n$, we may assume we have a homeomorphism $\tilde{\beta} : B_{n,k}(D) \to \tilde{B}_{n,k}(D)$ for each $\beta \in B_{0,n}$. By the lifting criteria, $\tilde{\beta}$ lifts to $\tilde{\beta} : B_{n,k}(D) \to \tilde{B}_{n,k}(D)$ if and only if $\tilde{\beta}_*(\text{Ker } \phi) \subset \text{Ker } \phi$. Equivalently, there is an induced automorphism $\beta_\ast$ on $\tilde{\beta}$ such that $\beta_\ast \phi = \phi \tilde{\beta}_\ast$.

Now we consider Borel–Moore homology [Borel and Moore 1960; Hughes and Ranicki 1996] defined by

$$H^\text{BM}_t(\tilde{B}_{n,k}(D)) = \lim_{\leftarrow} H_t(\tilde{B}_{n,k}(D), p^{-1}(B_{n,k}(D) \setminus A)),$$

where the inverse limit is taken over all compact subsets $A$ of $B_{n,k}(D)$.

The middle-dimensional homology group $H^\text{BM}_k(\tilde{B}_{n,k}(D))$ is a free $\mathbb{Z}[G]$-module of rank $\binom{n+k-2}{k}$ (see [Bigelow 2004]) and $\tilde{\beta}$ induces a map $\tilde{\beta}_* : H^\text{BM}_k(\tilde{B}_{n,k}(D)) \to H^\text{BM}_k(\tilde{B}_{n,k}(D))$ such that

$$\tilde{\beta}_*(yc) = \beta_\ast(y)\tilde{\beta}_*(c) \quad \text{for } y \in G \text{ and } c \in H^\text{BM}_k(\tilde{B}_{n,k}(D)).$$

Thus the map $\tilde{\beta}_*$ is a $\mathbb{Z}[G]$-module homomorphism if and only if $\beta_\ast(y) = y$ for all $y \in G$ if and only if

$$(*) \quad \phi = \phi \tilde{\beta}_* \quad \text{for all } \beta \in B_{0,n}.$$  

Notice that the condition $(*)$ also implies $\tilde{\beta}_*(\text{Ker } \phi) \subset \text{Ker } \phi$. Here we need to know that the induced homomorphism $\tilde{\beta}_*$ depends only on the isotopy class of the homeomorphism $\beta$. In fact, since $D$ has a boundary, we choose the basepoint $\{z_n^{0}, \ldots, z_{n+k}^{0}\}$ of $B_{n,k}(D)$ in $\partial D$, and then the isotopy preserves the basepoint and gives the same induced map $\tilde{\beta}_*$. Consequently, if we choose a group $G$ and an epimorphism $\phi : B_{n,k}(D) \to G$ satisfying $(*)$, we obtain a family of representations $\Phi_k$ from $B_{0,n}(D)$ to $\text{Aut}_{\mathbb{Z}[G]}(H^\text{BM}_k(\tilde{B}_{n,k}(D)))$, the group of $\mathbb{Z}[G]$-module automorphisms on $H^\text{BM}_k(\tilde{B}_{n,k}(D))$; these $\Phi_k$ are defined by

$$\Phi_k(\beta) = \tilde{\beta}_* : H^\text{BM}_k(\tilde{B}_{n,k}(D)) \to H^\text{BM}_k(\tilde{B}_{n,k}(D)).$$

Because we want to get a linear representation, $G$ should be abelian. By the presentation given in Section 1A, $B_{n,k}(D)$ is generated by $\zeta_1, \ldots, \zeta_n, \sigma_1, \ldots, \sigma_{k-1}$. 

Suppose that \( \phi: B_{n,k}(D) \to G \) is an epimorphism such that (\( \ast \)) holds and \( G \) is abelian. Each generator \( \sigma_i \) of \( B_{0,n}(D) \) acts trivially on \( B_{n,k}(D) \) except for

\[
(\tilde{\sigma}_i)_* (\zeta_i) = \zeta_i \zeta_{i+1} \zeta_i^{-1} \quad \text{and} \quad (\tilde{\sigma}_i)_* (\zeta_{i+1}) = \zeta_i.
\]

Then the condition (\( \ast \)) implies that \( \phi(\zeta_i) = \phi((\tilde{\sigma}_i)_*(\zeta_{i+1})) = \phi(\zeta_{i+1}) \). Hence for \( k = 1 \), \( G \) is a quotient of \( \langle q \rangle \), and \( \phi(\zeta_i) = q \) for \( i = 1, \ldots, n \). For \( k \geq 2 \), \( G \) is a quotient of \( \langle q \rangle \oplus \langle t \rangle \), and \( \phi(\zeta_i) = q \) and \( \phi(\sigma_j) = t \) for \( i = 1, \ldots, n \) and \( j = 1, \ldots, k-1 \).

We define a group \( G_D \) and an epimorphism \( \phi_D: B_{n,k}(D) \to G_D \) depending only on \( k \) as follows:

\[
\phi_D: B_{n,k}(D) \to G_D = \begin{cases} \langle q \rangle & \text{if } k = 1, \\ \langle q \rangle \oplus \langle t \rangle & \text{if } k \geq 2. \end{cases}
\]

**Theorem 2.1** [Bigelow 2004; Lawrence 1990]. Let \( \phi_D: B_{n,k}(D) \to G_D \) be the epimorphism defined above. Then there is a homomorphism

\[
\Phi_k: B_{0,n}(D) \to \text{Aut}(H^\text{BM}_k(\tilde{B}_{n,k}(D))).
\]

In fact, \( \Phi_1 \) is the Burau representation and \( \Phi_2 \) is the Lawrence–Krammer–Bigelow representation.

**Naive extension to braid groups on surfaces.** Let \( \Sigma \) be a surface of genus \( g \geq 1 \) having one boundary component. The assumption \( \partial \Sigma \neq \emptyset \) is necessary for another reason besides the two mentioned at the end of Section 1A. Suppose that \( \partial \Sigma = \emptyset \) and \( \beta \in B_{0,n}(\Sigma) \) uniquely determines the isotopy class of a homeomorphism \( \tilde{\beta}: B_{n,k}(\Sigma) \to B_{n,k}(\Sigma) \). Then we must choose the basepoint \( \{z^0_{n+1}, \ldots, z^0_{n+k}\} \) in the interior of \( \Sigma \). We can easily find a homeomorphism \( \beta: B_{n,k}(\Sigma) \to B_{n,k}(\Sigma) \) that is isotopic to the identity via an isotopy that does not preserve the basepoint. Then \( \beta \) represents the identity element in \( B_{0,n}(\Sigma) \) but \( \tilde{\beta}_*: H^\text{BM}_k(\tilde{B}_{n,k}(\Sigma)) \to H^\text{BM}_k(\tilde{B}_{n,k}(\Sigma)) \) may be nontrivial. Thus no representation can be obtained in this way if \( \partial \Sigma = \emptyset \).

We need to define what it means to say that a representation of the braid group \( B_{0,n}(\Sigma) \) extends homology linear representations of the classical braid groups.

**Definition 2.2.** Given a ring \( R \), let \( M \) be an \( R \)-module on which the braid group \( B_{0,n}(\Sigma) \) acts as \( R \)-module isomorphisms. The \( R \)-module \( M \) is an extension of homology linear representations of the classical braid groups \( B_{0,n}(D) \) if there exists a \( \mathbb{Z}[G_D] \)-submodule \( M' \) of \( M \) such that

(i) \( M' \) is invariant under the action by the subgroup \( B_{0,n}(D) \) of \( B_{0,n}(\Sigma) \); and

(ii) for some \( k \geq 1 \), \( R \) contains \( \mathbb{Z}[G_D] \) as a subring and there is a \( \mathbb{Z}[G_D] \)-isomorphism from \( H^\text{BM}_k(\tilde{B}_{n,k}(D)) \) to \( M' \) that commutes with the \( B_{0,n}(D) \) action.
As in the classical braid cases, we have to look at the action of $B_{0,n}(\Sigma)$ on $B_{n,k}(\Sigma)$. The following lemma helps us to observe the action we want.

**Lemma 2.3** [Birman 1974; Fadell and Neuwirth 1962; Gonçalves and Guaschi 2003]. Let $\pi_n : B_{n,k}(\Sigma) \to B_{0,n}(\Sigma)$ be the projection onto the first $n$ coordinates. Then the space $B_{n,k}(\Sigma)$ is a fiber bundle with fiber $B_{n,k}(\Sigma)$, and the induced short exact sequence

$$1 \to B_{n,k}(\Sigma) \xrightarrow{(\pi_n)_*} B_{n,k}(\Sigma) \xrightarrow{(\pi_n)_*} B_{0,n}(\Sigma) \to 1$$

splits for all $k \geq 1$.

This lemma shows us how to decompose a braid $\beta \in B_{n,k}(\Sigma)$ into a product $\beta = \beta_1 \beta_2$ for $\beta_1 \in B_{0,n}(\Sigma)$ and $\beta_2 \in B_{n,k}(\Sigma)$. Let $i : B_{0,n}(\Sigma) \to B_{n,k}(\Sigma)$ be the splitting map. Then the lemma shows that $B_{n,k}(\Sigma)$ can be generated by the sets

$$X_1 = \{ \bar{\sigma}_1, \ldots, \bar{\sigma}_{n-1}, \bar{\mu}_1, \ldots, \bar{\mu}_g, \bar{\lambda}_1, \ldots, \bar{\lambda}_g \},$$

$$X_2 = \{ \sigma_1, \ldots, \sigma_{k-1}, \zeta_1, \ldots, \zeta_n, \mu_1, \ldots, \mu_g, \lambda_1, \ldots, \lambda_g \},$$

where the generators in $X_1$ are the images of generators in $B_{0,n}(\Sigma)$ under the inclusion map $i$.

Then the action of $B_{0,n}(\Sigma)$ on $B_{n,k}(\Sigma)$ is equivalent to the conjugate action in $B_{n,k}(\Sigma)$ if we regard these two groups as subgroups of $B_{n,k}(\Sigma)$. The following easy lemma shows how $B_{0,n}(\Sigma)$ acts on $B_{n,k}(\Sigma)$.

**Lemma 2.4.** Each generator of $B_{0,n}(\Sigma)$ acts on $B_{n,k}(\Sigma)$ as follows.

1. For $1 \leq i \leq n - 1$,
   $$\begin{align*}
   (\bar{\sigma}_i)_* (\bar{\zeta}_i) &= \begin{cases} 
   \bar{\zeta}_i \bar{\zeta}_{i+1} \bar{\zeta}_i^{-1} & \text{if } t = i, \\
   \bar{\zeta}_i & \text{if } t = i + 1.
   \end{cases}
   \end{align*}$$

2. For $1 \leq r \leq g$,
   $$\begin{align*}
   (\bar{\mu}_r)_* (\bar{\zeta}_1) &= \mu_r \zeta_1 \mu_r^{-1}, \\
   (\bar{\mu}_r)_* (\mu_s) &= \begin{cases} 
   \mu_r \zeta_1 \mu_r \zeta_1^{-1} \mu_r^{-1} & \text{if } s = r, \\
   [\mu_r, \zeta_1] \mu_s [\mu_r, \zeta_1]^{-1} & \text{if } r < s,
   \end{cases} \\
   (\bar{\mu}_r)_* (\lambda_s) &= \begin{cases} 
   \lambda_r \mu_r \zeta_1^{-1} \mu_r^{-1} & \text{if } s = r, \\
   [\mu_r, \zeta_1] \lambda_s [\mu_r, \zeta_1]^{-1} & \text{if } r < s.
   \end{cases}
   \end{align*}$$

3. For $1 \leq r \leq g$,
   $$\begin{align*}
   (\bar{\lambda}_r)_* (\bar{\zeta}_1) &= \lambda_r \zeta_1 \lambda_r^{-1}, \\
   (\bar{\lambda}_r)_* (\mu_s) &= \begin{cases} 
   \lambda_r \zeta_1 \lambda_r^{-1} \mu_r \zeta_1 \lambda_r \zeta_1^{-1} \lambda_r^{-1} & \text{if } s = r, \\
   [\lambda_r, \zeta_1] \mu_s [\lambda_r, \zeta_1]^{-1} & \text{if } r < s,
   \end{cases} \\
   (\bar{\lambda}_r)_* (\lambda_s) &= \begin{cases} 
   \lambda_r \zeta_1 \lambda_r \zeta_1^{-1} \lambda_r^{-1} & \text{if } s = r, \\
   [\lambda_r, \zeta_1] \lambda_s [\lambda_r, \zeta_1]^{-1} & \text{if } r < s.
   \end{cases}
   \end{align*}$$
(4) All other generators act trivially.

We can find the presentation for $B_{n;k}(\Sigma)$ using this lemma as follows.

**Lemma 2.5.** The braid group $B_{n;k}(\Sigma)$ admits the presentation in which

- the generators are
  
  \[
  X_1 = \{\bar{\sigma}_1, \ldots, \bar{\sigma}_{n-1}, \bar{\mu}_1, \ldots, \bar{\mu}_g, \bar{\lambda}_1, \ldots, \bar{\lambda}_g\},
  \]
  
  \[
  X_2 = \{\sigma_1, \ldots, \sigma_{k-1}, \zeta_1, \ldots, \zeta_n, \mu_1, \ldots, \mu_g, \lambda_1, \ldots, \lambda_g\};
  \]

- the relations are
  
  (i) (BR$_1$) through (SCR) among generators in $X_1$,
  
  (ii) (BR$_1$) through (SCR) among generators in $X_2$, and
  
  (iii) $\bar{x}^{-1}y\bar{x} = (\bar{x}_a)(y)$ for all $\bar{x} \in X_1$ and $y \in X_2$,

where the action by $\bar{x}_a$ is given in Lemma 2.4.

**Proof.** By Lemma 2.3, the intertwining braid group $B_{n;k}(\Sigma)$ is a semidirect product of the normal subgroup $B_{n,k}(\Sigma)$ and $B_{0,n}(\Sigma)$, where $B_{0,n}(\Sigma)$ acts on $B_{n,k}(\Sigma)$ by conjugation as shown in Lemma 2.4. Then it is easy to show that the semidirect product $B_{n;k}(\Sigma)$ admits the desired presentation.

For surfaces, the condition (*) implies an undesirable consequence:

**Lemma 2.6.** Let $\phi : B_{n;k}(\Sigma) \rightarrow G$ be an epimorphism satisfying $\phi = \phi \bar{\beta}_a$ for any $\beta \in B_{n,k}(\Sigma)$. Then $\phi(\zeta_i) = 1$ for $i = 1, \ldots, n$.

**Proof.** As seen earlier, the hypothesis on $\phi$ implies that $(\mu_r)_*(y) = y$ for all $y \in G$ and $r = 1, \ldots, g$. But by Lemma 2.4(2), we have

\[
(\mu_r)_*\phi(\lambda_r) = \phi((\bar{\mu}_r)_*(\lambda_r)) = \phi(\lambda_r \mu_r \zeta_1^{-1} \mu_r^{-1})
= \phi(\lambda_r)\phi((\bar{\mu}_r)_*(\zeta_1^{-1})) = \phi(\lambda_r)(\mu_r)_*(\phi(\zeta_1^{-1})) = \phi(\lambda_r)\phi(\zeta_1^{-1}).
\]

Since $(\mu_r)_*(\phi(\lambda_r)) = \phi(\lambda_r)$ by hypothesis, $\phi(\zeta_1) = 1$ and so $\phi(\zeta_i) = 1$ for all $1 \leq i \leq n$ by Lemma 2.4(1).

This lemma says that the condition (*) forces us to set $q = 1$ in the group $G_D$. Thus $\mathbb{Z}[G_D]$ cannot be a subring of $\mathbb{Z}[G]$, and so a naive attempt to obtain a representation of the braid group $B_{0,n}(\Sigma)$ using a covering of $B_{n,k}(\Sigma)$ corresponding to any epimorphism $\phi : B_{n,k}(\Sigma) \rightarrow G$ cannot give an extension of any homology linear representation of the classical braid groups.
3. A family of proposed representations

As we have seen in the previous section, we are forced to take a rather small covering of $B_{n,k}(\Sigma)$ in order that the condition (*) be satisfied, that is, the braid action commutes with covering transformations so that it preserves the coefficient. The remedy we propose in this article is to use the same configuration space $B_{n,k}(\Sigma)$ with an extended coefficient ring so that we have some room to adjust coefficients to make the braid action compatible with the coefficients. This remedy is a reasonable thing to do if we hope to construct an extension of homology linear representations of the classical braid groups. Indeed, we successfully obtain an extension that seems the most general among ones obtained from coverings of $B_{n,k}(\Sigma)$.

3A. Existence of extensions of homology linear representations. We first consider the intertwining braid group $B_{n,k}(\Sigma)$. Note that $B_{n,k}(\Sigma)$ is a candidate for group extension of $B_{n,k}(\Sigma)$ by Lemma 2.3, and $B_{0,n}(\Sigma)$ acts on $B_{n,k}(\Sigma)$ by right multiplication and acts on $B_{n,k}(\Sigma)$ by conjugation because $B_{n,k}(\Sigma)$ is the semi-direct product of $B_{0,n}(\Sigma)$ and $B_{n,k}(\Sigma)$.

Let $H_{\Sigma}$ be the abstract group depending only on $k$ that admits for $k \geq 2$ the presentation in which

- the generators are $q, t, m_1, \ldots, m_g, \ell_1, \ldots, \ell_g, m_1, \ldots, m_g, \ell_1, \ldots, \ell_g$;
- the relations are such that all generators commute except that
  
  \[ [m_r, \ell_r] = t^2 \quad \text{and} \quad [m_r, \ell_r] = [m_r, \ell_r] = q. \]

Define $\psi_{\Sigma}$ to be the epimorphism from $B_{n,k}(\Sigma)$ to the group $H_{\Sigma}$ such that

\[
\psi_{\Sigma}(\sigma_i) = t, \quad \psi_{\Sigma}(\zeta_j) = q, \quad \psi_{\Sigma}(\bar{\sigma}_m) = 1,
\]

\[
\psi_{\Sigma}(\mu_r) = m_r, \quad \psi_{\Sigma}(\lambda_r) = \ell_r, \quad \psi_{\Sigma}(\bar{\mu}_r) = \bar{m}_r, \quad \psi_{\Sigma}(\bar{\lambda}_r) = \bar{\ell}_r,
\]

where $1 \leq i \leq k - 1$, $1 \leq j \leq n$, $1 \leq m \leq n - 1$ and $1 \leq r \leq g$. If $k = 1$, then we redefine $H_{\Sigma}$ to be the quotient of the group above by $t = 1$. Then $H_D$ is isomorphic to $G_D$ defined earlier for all $k \geq 1$, and is a subgroup of $H_{\Sigma}$ for any $\Sigma$ and $k \geq 1$. Even though $H_{\Sigma}$ (or $H_D$) depends on whether $k = 1$ or $k \geq 2$, our notation does not show it for the sake of simplicity.

Let $\phi_{\Sigma} : B_{n,k}(\Sigma) \rightarrow G_{\Sigma}$ be the restriction of $\psi_{\Sigma}$ to $B_{n,k}(\Sigma)$ onto $G_{\Sigma}$, the subgroup $\psi_{\Sigma}(B_{n,k}(\Sigma))$ of $H_{\Sigma}$. Then $G_{\Sigma}$ is generated by

\[ \{q, t, m_1, \ldots, m_g, \ell_1, \ldots, \ell_g\}. \]

Since any two elements of $G_{\Sigma}$ commute up to multiplications by central elements $q$ and $t$, it is a normal subgroup of $H_{\Sigma}$. We can find the covering $p : \tilde{B}_{n,k}(\Sigma) \rightarrow B_{n,k}(\Sigma)$ corresponding to Ker $\phi_{\Sigma}$. Since the braid group $B_{0,n}(\Sigma)$ embeds into the mapping class group of punctured surface $\Sigma_n$, a braid $\beta \in B_{0,n}(\Sigma)$ determines a
homeomorphism $\tilde{\beta} : B_{n,k}(\Sigma) \to B_{n,k}(\Sigma)$. Recall that the induced homomorphism $\tilde{\beta}_* \in B_{n,k}(\Sigma)$ is in fact the same as the conjugation by $i(\beta)$ where $i : B_{0,n}(\Sigma) \to B_{n,k}(\Sigma)$ is the splitting map in Lemma 2.3.

Lemma 3.1. With the notation above, the homeomorphism $\tilde{\beta} : B_{n,k}(\Sigma) \to B_{n,k}(\Sigma)$ lifts to a homeomorphism $\tilde{\beta} : \tilde{B}_{n,k}(\Sigma) \to \tilde{B}_{n,k}(\Sigma)$ for any $\beta \in B_{0,n}(\Sigma)$, and the restriction $\varphi_{\Sigma}$ of $\varphi_{\Sigma}$ satisfies $\beta_* \varphi_{\Sigma} = \varphi_{\Sigma} \tilde{\beta}_*$. By the lifting criteria, $\varphi_{\Sigma}$ lifts to a homeomorphism $\tilde{\beta}$.

Proof. By the lifting criteria, $\tilde{\beta}$ lifts if and only if $\tilde{\beta}_*(\ker \varphi_{\Sigma}) \subset \ker \varphi_{\Sigma}$ if and only if there is an induced automorphism $\beta_\sharp$ on $G_{\Sigma}$ given by $\beta_\sharp \varphi_{\Sigma} = \varphi_{\Sigma} \tilde{\beta}_*$. Thus it suffices to show that $\varphi_{\Sigma} \tilde{\beta}_*(W) = 1$ for any $W \in \ker \varphi_{\Sigma}$ and $\beta \in B_{0,n}(\Sigma)$. Let $W$ be a word in the generators $\{\mu_i, \lambda_i, \sigma_i, \zeta_i\}$ of $B_{n,k}(\Sigma)$. Since the presentation for $H_{\Sigma}$ shows that any two elements are commutative up to multiplications by central elements $q$ and $t$, we have

$$\varphi_{\Sigma}(W) = W(\mu_i \leftarrow m_i, \lambda_i \leftarrow \ell_i, \sigma_i \leftarrow t, \zeta_i \leftarrow q) = q^c t^d \prod m_i^a \ell_i^b,$$

where $W(\{x_i \leftarrow y_i\})$ denotes the word obtained from $W$ by replacing the generators $x_i$ by the generators $y_i$.

Suppose $\varphi_{\Sigma}(W) = 1$. Then $a_i = b_i = 0$ for all $1 \leq i \leq g$. Thus for generators $\sigma_r, \mu_r, \lambda_r$ for $B_{0,n}(\Sigma)$, we have

$$\varphi_{\Sigma}(\tilde{\sigma}_r W) = \varphi_{\Sigma}(W(\tilde{\sigma}_r, \tilde{\zeta}_r, \tilde{\zeta}_r+1, \zeta_r)) = W(\mu_i \leftarrow m_i, \lambda_i \leftarrow \ell_i, \sigma_i \leftarrow t, \zeta_i \leftarrow q) = 1,$$

$$\varphi_{\Sigma}(\tilde{\mu}_r W) = \varphi_{\Sigma}(W(\tilde{\mu}_r, \tilde{\lambda}_r, \tilde{\zeta}_r)) = W(\mu_i \leftarrow m_i, \lambda_i \leftarrow \ell_i, \sigma_i \leftarrow t, \zeta_i \leftarrow q) = q^{-h} W(\mu_i \leftarrow m_i, \lambda_i \leftarrow \ell_i, \sigma_i \leftarrow t, \zeta_i \leftarrow q) = 1,$$

$$\varphi_{\Sigma}(\tilde{\lambda}_r W) = \varphi_{\Sigma}(W(\tilde{\mu}_r, \tilde{\lambda}_r, \tilde{\zeta}_r)) = W(\mu_i \leftarrow m_i, \mu_r \leftarrow q, \lambda_i \leftarrow \ell_i, \sigma_i \leftarrow t, \zeta_i \leftarrow q) = q^a W(\mu_i \leftarrow m_i, \lambda_i \leftarrow \ell_i, \sigma_i \leftarrow t, \zeta_i \leftarrow q) = 1.$$

Therefore $\varphi_{\Sigma}(\tilde{\beta}_* W) = 1$ and so $\beta_* (\varphi_{\Sigma}(\alpha)) = \varphi_{\Sigma}(\tilde{\beta}_* \alpha)$ for all $\alpha \in B_{n,k}(\Sigma)$. □

By the lemma above, we have a $\mathbb{Z}$-module automorphism $\tilde{\beta}_*$ on $H^BM_{k}(\tilde{B}_{n,k}(\Sigma))$. Note that $\tilde{\beta}_*$ is not necessarily a $\mathbb{Z}[G_{\Sigma}]$-module homomorphism since the condition (**) may not hold, that is, the automorphism $\beta_\sharp$ of $G_{\Sigma}$ may not be the identity.

On the other hand, $B_{0,n}(\Sigma)$ acts on $B_{n,k}(\Sigma)$ by right multiplication and so there is an induced action of $\beta$ on $H_{\Sigma}$ given by $\beta \cdot h = h \psi_{\Sigma}(\beta)$ for $h \in H_{\Sigma}$. It is possible to alter the induced action by multiplying with a certain function $\chi$ from $B_{0,n}(\Sigma)$ to the centralizer of $G_{\Sigma}$ in $H_{\Sigma}$. We will discuss this possibility in Theorem 4.4.
Using the $\mathbb{Z}$-module automorphism $\tilde{\beta}_*$ and the action on $\mathcal{B}_{n,k}(\Sigma)$ by $\mathcal{B}_0(n)(\Sigma)$, we construct a $\mathbb{Z}[H_\Sigma]$-module automorphism $\beta \otimes \tilde{\beta}_*$ on $\mathbb{Z}[H_\Sigma] \otimes_{\mathbb{Z}[G_\Sigma]} H_{BM}^k(\tilde{B}_{n,k}(\Sigma))$ by 

$$(\beta \otimes \tilde{\beta}_*)(h \otimes c) = (\beta \cdot h) \otimes \tilde{\beta}_*(c) \quad \text{for } h \in H_\Sigma \text{ and } c \in H_{BM}^k(\tilde{B}_{n,k}(\Sigma)).$$

**Theorem 3.2.** Let $\Sigma$ be a compact, connected, oriented 2-dimensional manifold with nonempty boundary. Define the group $H_\Sigma$ (depending on $k$) and the epimorphism $\psi : \mathcal{B}_{n;\Sigma}(\Sigma) \rightarrow H_\Sigma$ as above. Let $\phi_\Sigma$ be the restriction of $\psi_\Sigma$ to $\mathcal{B}_{n;\Sigma}(\Sigma)$. Set $G_\Sigma = \phi_\Sigma(\mathcal{B}_{n;\Sigma}(\Sigma))$. Then there is a homomorphism 

$$\Phi_k : \mathcal{B}_0(n)(\Sigma) \rightarrow \text{Aut}_{\mathbb{Z}[H_\Sigma]}(\mathbb{Z}[H_\Sigma] \otimes_{\mathbb{Z}[G_\Sigma]} H_{BM}^k(\tilde{B}_{n,k}(\Sigma))), \quad \beta \mapsto \beta \otimes \tilde{\beta}_*,$$ 

where the action of $\beta$ on $H_\Sigma$ is given by $\beta \cdot h = h \psi(\beta)$ for $h \in H_\Sigma$.

This family $\Phi_k$ of representations is an extension of a homology linear representation of the classical braid group $\mathcal{B}_0(n)(D)$ in the sense of Definition 2.2.

**Proof.** Clearly $\Phi_k$ is a group homomorphism. To see the well-definedness and the $\mathbb{Z}[H_\Sigma]$-linearity of $\Phi_k(\beta)$, we claim that 

$$\beta \cdot (hh') = (\beta \cdot h) \beta_*(h') \quad \text{for all } h \in H_\Sigma, h' \in G_\Sigma.$$ 

Then, for $c \in H_{BM}^k(\tilde{B}_{n,k}(\Sigma))$, 

$$(\beta \otimes \tilde{\beta}_*)(h \otimes h' c) = (\beta \cdot h) \otimes \tilde{\beta}_*(h' c) = (\beta \cdot h) \otimes \beta_*(h') \tilde{\beta}_*(c)$$

$$= (\beta \cdot h) \beta_*(h') \otimes \tilde{\beta}_*(c) = (\beta \otimes \tilde{\beta}_*)(hh' \otimes c)$$

$$= hh'(\beta \otimes \tilde{\beta}_*)(1 \otimes c).$$

Here the last equality is clear by the definition of the action by $\beta$.

To show the claim, choose $\alpha \in \mathcal{B}_{n;\Sigma}(\Sigma)$ so that $\phi_\Sigma(\alpha) = h'$. By Lemma 3.1, we have 

$$\beta_*(\phi_\Sigma(\alpha)) = \phi_\Sigma(\tilde{\beta}_*(\alpha)) = \psi_\Sigma(\tilde{\beta}_*(\alpha)) = \psi_\Sigma(\beta^{-1} \alpha \beta) = \psi_\Sigma(\beta^{-1} \phi_\Sigma(\alpha) \psi_\Sigma(\beta)).$$

Thus 

$$\beta \cdot (hh') = hh' \psi_\Sigma(\beta) = (h \psi_\Sigma(\beta))(\psi_\Sigma(\beta)^{-1} h' \psi_\Sigma(\beta)) = (\beta \cdot h) \beta_*(h').$$

To show that $\Phi_k$ is an extension of a homology linear representation of the classical braid groups, we regard an $n$ punctured disk $D_n$ as a subspace of $\Sigma_n$. Then the configuration space $B_{n,k}(D)$ is a subspace of the configuration space $B_{n,k}(\Sigma)$. For the covering $p : \tilde{B}_{n,k}(\Sigma) \to B_{n,k}(\Sigma)$ corresponding to $\phi_\Sigma$, we denote a connected component of $p^{-1}(B_{n,k}(D))$ by $\tilde{B}_{n,k}(D)$. Since $G_D$ embeds into $G_\Sigma$, the restriction $p|_{\tilde{B}_{n,k}(D)} : \tilde{B}_{n,k}(D) \to B_{n,k}(D)$ is the covering over $B_{n,k}(D)$ corresponding to $\psi|_{B_{n,k}(D)} : B_{n,k}(D) \to G_D$. In fact, $H_{BM}^k(\tilde{B}_{n,k}(D))$ is a submodule of
Lemma 3.3. The homology group \( H_{\ell}^{BM}(\tilde{B}_{n,k}(\Sigma)) \) is the direct sum of

\[
\left( \binom{2g+n+k-2}{k} \right)
\]

copies of \( \mathbb{Z}[G_{\Sigma}] \) for \( \ell = k \) and is trivial otherwise.

Proof. Let \( d \) be a metric on \( \Sigma \) that can be either hyperbolic or Euclidean. Suppose punctures \( z_1^0, \ldots, z_n^0 \) lie on a geodesic. Let \( \gamma_j \) be the geodesic segment joining \( z_j^0 \) and \( z_{j+1}^0 \) for \( 1 \leq j \leq n-1 \). For \( 1 \leq i \leq g \), let \( \alpha_i \) and \( \beta_i \) be geodesic loops based at \( z_1^0 \) that represent the meridian and the longitude of the \( i \)-th handle, so that the \( \alpha_i, \beta_i, \) and \( \gamma_j \) are mutually disjoint. Let \( \Gamma \) be the union of all of these arcs, so that \( \Gamma \) is a disjoint union of open \( 2g+n-1 \) geodesic segments. Consider

\[
B_{\Gamma} = B_{n,k}(\Gamma) = \{ \{ z_1, \ldots, z_k \} \subset \Gamma_n \}.
\]

Then it is not hard to see \( B_{\Gamma} \) is homeomorphic to a disjoint union of \( \left( \binom{2g+n+k-2}{k} \right) \) open \( k \)-balls that can be parametrized by \( (2g+n-1) \)-tuples \( (r_1, \ldots, r_{2g+n-1}) \) of nonnegative integers that add up to \( k \) so that the \( i \)-th segment of \( \Gamma_n \) contains \( r_i \) points from \( \{ z_1, \ldots, z_k \} \).

Let \( p : \tilde{B}_{n,k}(\Sigma) \rightarrow B_{n,k}(\Sigma) \) be the covering corresponding to the epimorphism \( \phi_{\Sigma} : B_{n,k}(\Sigma) \rightarrow G_{\Sigma} \). We will be done if we can show that the map

\[
H_{\ell}^{BM}(p^{-1}(B_{\Gamma})) \rightarrow H_{\ell}^{BM}(\tilde{B}_{n,k}(\Sigma))
\]
induced by the inclusion is an isomorphism, since \( H^\ell_{tBM}(B_\Gamma) \) is isomorphic to the direct sum of \( \binom{2g+n+k-2}{k} \) copies of \( H_t(D^k, S^{k-1}) \).

Define a family of compact subsets \( A_\epsilon \) of \( \Sigma_n \) by

\[
A_\epsilon = \{ \{z_1, \ldots, z_k\} \in B_{n,k}(\Sigma) \mid d(z_i, z_j) \geq \epsilon \text{ for } i \neq j, \ d(z_i, z_j^0) \geq \epsilon \text{ for all } i, j \}.
\]

Since any compact subset of \( B_{n,k}(\Sigma) \) is contained in \( A_\epsilon \) for sufficiently small \( \epsilon > 0 \), it suffices to show that

\[
H_\ell(p^{-1}(B_\Gamma), p^{-1}(B_\Gamma - A_\epsilon)) \to H_\ell(\tilde{B}_{n,k}(\Sigma), p^{-1}(B_{n,k}(\Sigma) - A_\epsilon))
\]

is an isomorphism.

Let \( \Sigma_\epsilon \subseteq \Sigma \) be the closed \( \epsilon \)-neighborhood of \( \Gamma \), and let \( B_\epsilon = B_{n,k}(\Sigma_\epsilon) \). Then the obvious homotopy collapsing from \( B_{n,k}(\Sigma) \) to \( B_\epsilon \) gives the isomorphism

\[
H_\ell(p^{-1}(B_\epsilon), p^{-1}(B_\epsilon - A_\epsilon)) \to H_\ell(\tilde{B}_{n,k}(\Sigma), p^{-1}(B_{n,k}(\Sigma) - A_\epsilon)).
\]

Let \( B \) be the set of \( \{x_1, \ldots, x_k\} \in B_\epsilon \) such that for each \( x_i \) there exists a unique nearest point in \( \Gamma_n \). Then \( B \) is open and contains \( A_\epsilon \cap B_\epsilon \). By excision, the inclusion induces an isomorphism

\[
H_\ell(p^{-1}(B), p^{-1}(B - A_\epsilon)) \to H_\ell(p^{-1}(B_\epsilon), p^{-1}(B_\epsilon - A_\epsilon)).
\]

Finally, the obvious deformation retract from \( B \) to \( B_\Gamma \) gives an isomorphism

\[
H_\ell(p^{-1}(B), p^{-1}(B - A_\epsilon)) \to H_\ell(p^{-1}(B_\Gamma), p^{-1}(B_\Gamma - A_\epsilon)).
\]

We remark that \( B_\epsilon = B_{n,k}(\Sigma_\epsilon) \) and \( B_\Gamma = B_{n,k}(\Gamma) \) do not have the same homotopy type even though \( \Gamma \) is a deformation retract of \( \Sigma_\epsilon \). This is because \( \Gamma \) is a 1-dimensional complex and movements of points in \( \Gamma \) avoiding collision are more restricted.

Let \( I(n, k, g) \) be the set of \( (2g+n-1) \)-tuples of nonnegative integers that add up to \( k \). The proof of Lemma 3.3 shows that a typical basis for \( H^\ell_{BM}(\tilde{B}_{n,k}(\Sigma)) \) as free \( \mathbb{Z}[G_\Sigma] \)-module can be indexed by the set \( I(n, k, g) \). The proof also shows that a basis for \( H^\ell_{BM}(\tilde{B}_{n,k}(D)) \) can be chosen as a subset of a basis for \( H^\ell_{BM}(\tilde{B}_{n,k}(\Sigma)) \). Thus the homology linear representations for \( B_{0,n}(D) \) appears in matrix forms of proposed representations for \( B_{0,n}(\Sigma) \) as minors.

Krammer [2000; 2002] and Bigelow [2001; 2003; 2004] have shown that there is a natural and useful way of describing a basis geometrically. Recall the loops \( \alpha_i \) and \( \beta_i \) and the arcs \( \gamma_j \) from the proof of Lemma 3.3. For \( (r_1, \ldots, r_{2g+n-1}) \in I(n, k, g) \), choose \( r_i \) disjoint duplicates of \( \alpha_i \) or \( \beta_{i-g} \) or \( \gamma_i - 2g \) if \( 1 \leq i \leq g \) or \( g + 1 \leq i \leq 2g \) or \( 2g + 1 \leq i \leq 2g + n - 1 \), respectively. For each \( i \), join these \( r_i \) disjoint duplicates to \( \partial \Sigma \) by mutually disjoint arcs (that determine a basing). This geometric object is called a fork. In fact, a fork uniquely determines a \( k \)-cycle in \( H^\ell_{BM}(\tilde{B}_{n,k}(\Sigma)) \) by lifting the Cartesian product of \( k \) curves together with basing
A FAMILY OF REPRESENTATIONS OF BRAID GROUPS ON SURFACES 271

Figure 1. An example of a fork $F$ (left) and its dual noodle $N$ (right).

arcs in the fork. The basing is required to have a unique lift. For example, the fork corresponding to $(0, 2, 1, 0, 0, 3) \in I(3, 6, 2)$ looks like the set of curves on the left of Figure 1.

As Bigelow [2004] showed for the case of the disk, the Poincaré duality, the universal coefficient theorem, and Lemma 3.3 imply that the ordinary relative homology $H_k(\tilde{B}_{n,k}(\Sigma), \partial \tilde{B}_{n,k}(\Sigma))$ is the dual space of the Borel–Moore homology $H_k^BM(\tilde{B}_{n,k}(\Sigma))$ in the sense that there is a nonsingular sesquilinear pairing

$$\langle \cdot, \cdot \rangle : H_k^BM(\tilde{B}_{n,k}(\Sigma)) \times H_k(\tilde{B}_{n,k}(\Sigma), \partial \tilde{B}_{n,k}(\Sigma)) \to \mathbb{Z}[S],$$

where $S$ is a skew field containing $\mathbb{Z}[G_{\Sigma}]$. In fact, the group $G_{\Sigma}$ is biordered, and so it can embed into a skew field such as the Mal’cev–Neumann power series ring [Mal’cev 1948; Neumann 1949]. Explicitly, the pairing above is defined by setting, for cycles $F \in H_k^BM(\tilde{B}_{n,k}(\Sigma))$ and $N \in H_k(\tilde{B}_{n,k}(\Sigma), \partial \tilde{B}_{n,k}(\Sigma))$ in each homology group,

$$\langle F, N \rangle = \sum_{y \in G_{\Sigma}} y(F, yN),$$

where $(\cdot, \cdot)$ counts the intersection number.

Let $\alpha_1^*, \ldots, \alpha_g^*, \beta_1^*, \ldots, \beta_g^*, \gamma_1^*, \ldots, \gamma_g^*$ be pairwise disjoint arcs that start and end at $\partial \Sigma$, and suppose $\alpha_i^*$ (or $\beta_i^*$, or $\gamma_j^*$) intersects only $\alpha_i$ (or $\beta_i$, or $\gamma_j$) once transversely. We form a basis of $H_k(\tilde{B}_{n,k}(\Sigma), \partial \tilde{B}_{n,k}(\Sigma))$ by duplicating the $\alpha_i^*$, $\beta_i^*$ or $\gamma_j^*$, depending on a given $(2g + n - 1)$-tuple in $I(n, k, g)$. This geometric object is called a noodle. In fact, a noodle uniquely determines a relative $k$-cycle in $H_k(\tilde{B}_{n,k}(\Sigma), \partial \tilde{B}_{n,k}(\Sigma))$ by lifting the Cartesian product of $k$ arcs in the noodle. For example, the noodle corresponding to $(0, 2, 1, 0, 0, 3) \in I(3, 6, 2)$ looks like the set of arcs on the right of Figure 1.

For a $k$-cycle $F$ determined by a fork and a relative $k$-cycle $N$ determined by a noodle, the sesquilinear pairing $\langle F, N \rangle$ computes algebraic intersections between them with coefficients in $\mathbb{Z}[G_{\Sigma}]$. This pairing can easily be computed by recording
intersections between the fork and the noodle on \( \Sigma \). The basis determined by forks and the basis determined by noodles are dual with respect to the pairing.

In the case of a disc, Bigelow [2004] showed that this pairing is invariant under the action by \( \mathcal{B}_{0,n}(D) \). However, in the case of a surface \( \Sigma \) of genus \( \geq 1 \), it cannot be invariant under the action by \( \mathcal{B}_{0,n}(\Sigma) \). In fact, the pairing cannot be preserved by any braid group action given by a representation \( \Psi \) into \( \text{Aut}_\mathbb{Z}[G_\Sigma] (H^\mathcal{BM}_k(\tilde{B}_{n,k})) \). Suppose it is preserved, that is,

\[
\langle F, N \rangle = \langle \Psi(\beta)(F), \Psi(\beta)(N) \rangle.
\]

for any \( \beta \in \mathcal{B}_{0,n}(\Sigma) \), a \( k \)-cycle \( F \) determined by a fork, and a relative \( k \)-cycle \( N \) determined by a noodle. Then for any \( y \in G_\Sigma \),

\[
y\langle F, N \rangle = \langle yF, N \rangle = \langle \Psi(\beta)(yF), \Psi(\beta)(N) \rangle = \beta_y(\langle F, N \rangle) = \beta_y(\langle yF, N \rangle) = \beta_y(y)\langle F, N \rangle.
\]

The property \( y = \beta_y(y) \) for all \( y \in G_\Sigma \) would force us to set \( q = 1 \) in \( G_\Sigma \), and so it was abandoned.

Nonetheless, we can extend this pairing to the pairing \( \langle \cdot, \cdot \rangle_{H_\Sigma} \) from

\[
\mathbb{Z}[H_\Sigma] \otimes_{\mathbb{Z}[G_\Sigma]} H^\mathcal{BM}_k(\tilde{B}_{n,k}(\Sigma)) \times \mathbb{Z}[H_\Sigma] \otimes_{\mathbb{Z}[G_\Sigma]} H_k(\tilde{B}_{n,k}(\Sigma), \partial \tilde{B}_{n,k}(\Sigma))
\]

to \( S' \) defined by

\[
\left\langle \sum_i g_i F_i, \sum_j h_j N_j \right\rangle_{H_\Sigma} = \sum_{i,j} g_i \langle F_i, N_j \rangle h_j^{-1},
\]

where \( g_i, h_j \in \mathbb{Z}[H_\Sigma] \) and \( S' \) is the skew field containing \( \mathbb{Z}[H_\Sigma] \). Note that this extended pairing cannot be invariant under the braid group action given by \( \Phi_k \) either. However it can be used to compute proposed representations \( \Phi_k \) explicitly. The following theorem summarizes the above discussion.

**Theorem 3.4.** Let the \( F_i \) and \( N_i \) be \( k \)-cycles and relative \( k \)-cycles in dual bases determined by forks and noodles. Then \( \Phi_k(\beta) \) for each \( \beta \in \mathcal{B}_{0,n}(\Sigma) \) is represented by a matrix with respect to the basis \( \{ F_i | 1 \leq i \leq (2g+n+k-2) \} \) whose \( (i,j) \)-th entry is given by \( \psi_\Sigma(\beta)(\beta_y(F_i), N_j)_{H_\Sigma} \), which is an element of \( \mathbb{Z}[H_\Sigma] \) rather than of \( S' \).

As an example, we will show the matrix form of the representation \( \Phi_1 \) of the 3-braid group \( \mathcal{B}_{0,3}(\Sigma) \) is an extension of the Burau representation when \( \Sigma = \Sigma(2,1) \). Since \( k = 1 \), the basis of \( H^\mathcal{BM}_1(\tilde{B}_{3,1}(\Sigma)) \) determined by forks can be expressed by \( \{ \gamma_1, \gamma_2, \alpha_1, \alpha_2, \beta_1, \beta_2 \} \) and similarly the dual basis of \( H_1(\tilde{B}_{3,1}(\Sigma), \partial \tilde{B}_{3,1}(\Sigma)) \) determined by noodles is written by \( \{ \gamma^*_1, \gamma^*_2, a^*_1, a^*_2, \beta^*_1, \beta^*_2 \} \).

Figure 2 shows the action of \( \sigma_1 \) on the fork \( \beta_1 \). It also shows intersection points \( p_1 \) and \( p_2 \) with \( \gamma^*_1 \) and \( p_3 \) with \( \beta^*_1 \). In the covering space, the intersection point
Figure 2. An example of the pairing of a fork and a noodle. At left: fork $\beta_1$ and $\sigma_1$. At right: fork and noodles.

$p_1$ lies on the sheet transformed by $q$ since the fork wraps a puncture, and $p_2$ lies on the sheet transformed by $\ell_1 q$ since the fork contains the longitude of the first handle and wraps a puncture. We have the negative sign for $p_2$ since the orientation is switched. Finally, $p_3$ lies on the sheet containing the base point of the covering space. Therefore we have $\Phi_1(\sigma_1)(\beta_1) = \beta_1 + q(1 - \ell_1)\gamma_1$. By a similar computation, we can obtain every entry of $\Phi_1(\sigma_1)$:
Lemma 3.3 a 10×274 BYUNG HEE AN AND LAWRENCE–KRAMMER–BIGELOW representation. For \( g = 1 \) and \( n = 3 \), we have by Lemma 3.3 a 10 × 10 matrix for each generator. Fix a basis for \( H_2^{BM}(\tilde{B}_3,2(\Sigma)) \) as shown in Figure 1. Let

\[
\begin{align*}
& w_{1,1} = (0, 0, 2, 0), \quad w_{1,2} = (0, 0, 1, 1), \quad w_{2,2} = (0, 0, 0, 2), \\
& a_{0,0} = (2, 0, 0, 0), \quad a_{0,1} = (1, 0, 1, 0), \quad a_{0,2} = (1, 0, 0, 1), \\
& b_{0,0} = (0, 2, 0, 0), \quad b_{0,1} = (0, 1, 1, 0), \quad b_{0,2} = (0, 1, 0, 1), \quad z = (1, 1, 0, 0)
\end{align*}
\]

in \( I(3, 2, 1) \). Then the action of \( \sigma_1 \) on this basis is as follows:

\[
\Phi_2(\sigma_1)(w_{1,1}) = tq^2 w_{1,1},
\]

\[
\Phi_2(\sigma_1)(w_{1,2}) = -tqw_{1,1} - qw_{1,2},
\]

\[
\Phi_2(\sigma_1)(w_{2,2}) = w_{1,1} + (1 + t^{-1})w_{1,2} + w_{2,2},
\]

\[
\Phi_2(\sigma_1)(a_{0,0}) = a_{0,0} + q(1 + t^{-1})(1 - m_1 t)a_{0,1} + q^2(m_1^2 - (1 + t)m_1 + 1)w_{1,1},
\]

\[
\Phi_2(\sigma_1)(a_{0,1}) = -qa_{0,1} + q^2t(m_1 - 1)w_{1,1},
\]

\[
\Phi_2(\sigma_1)(a_{0,2}) = a_{0,1} + a_{0,2} + qt(1 - m_1)w_{1,1} + q(1 - m_1)w_{1,2},
\]

\[
\Phi_2(\sigma_1)(b_{0,0}) = b_{0,0} + q(1 + t^{-1})(1 - \ell_1 t)b_{0,1} + q^2(\ell_1^2 - (1 + t)\ell_1 + 1)w_{1,1},
\]

\[
\Phi_2(\sigma_1)(b_{0,1}) = -qb_{0,1} + q^2t(\ell_1 - 1)w_{1,1},
\]

\[
\Phi_2(\sigma_1)(b_{0,2}) = b_{0,1} + b_{0,2} + qt(1 - \ell_1)w_{1,1} + q(1 - \ell_1)w_{1,2},
\]

\[
\Phi_2(\sigma_1)(z) = q(t^{-1} - t\ell_1)a_{0,1} + q(1 - m_1)b_{0,1} + q^2(1 + m_1(\ell_1 - 1) - t\ell_1)w_{1,1} + z.
\]

The correspondence between the basis \( \{v_{j,k}\} \) in [Bigelow 2001] and our basis is

\[
\begin{align*}
v_{1,2} &= -tq^{-4} w_{1,1}, \\
v_{1,3} &= -tq^{-4}(w_{1,1} + q(1 - t^{-1})w_{1,2} + q^2w_{2,2}), \\
v_{2,3} &= -tq^{-2} w_{2,2}.
\end{align*}
\]

Then the action of \( \Phi_2 \) on the basis \( \{v_{j,k}\} \) together with substitution \( t \mapsto -t \) is exactly that of Lawrence–Krammer–Bigelow representation in [Bigelow 2001].
4. Justification of the proposed representations

To add to the family of representations proposed in the previous section, we will now investigate the possibility that there may be other representations of the surface braid groups that extend the homology linear representations of the classical braid groups. One may try to consider alternatives in the three ways — a group extension of \( B_{n,k}(\Sigma) \) other than \( B_{n,k}(\Sigma) \), a quotient group of \( B_{n,k}(\Sigma) \) other than \( H_\Sigma \), and an action on \( H_\Sigma \) by \( B_{0,n}(\Sigma) \) other than right multiplication via the quotient map.

**Group extension of \( B_{n,k}(\Sigma) \).** To make adjustment of coefficients in the most flexible way, we may try to find the largest possible group extension \( E_{n,k}(\Sigma) \) of \( B_{n,k}(\Sigma) \) such that \( B_{0,n}(\Sigma) \) acts on \( E_{n,k}(\Sigma) \). If we regard \( B_{0,n}(\Sigma) \) and \( B_{n,k}(\Sigma) \) as subgroups of some large braid group \( B_{0,n+k+\ell}(\Sigma) \), then \( B_{0,n}(\Sigma) \) acts naturally on \( B_{0,n+k+\ell}(\Sigma) \) as well as on \( B_{n,k}(\Sigma) \) by conjugation. Thus we assume that \( B_{n,k}(\Sigma) \subset E_{n,k}(\Sigma) \subset B_{0,n+k+\ell}(\Sigma) \) for some \( \ell \geq 0 \).

**Lemma 4.1.** Let \( \Sigma \) be a surface with nonempty boundary and let \( \Sigma' \) be a collar neighborhood of \( \partial \Sigma \). Let \( N(B_{n,k}(\Sigma)) \) denote the normalizer of \( B_{n,k}(\Sigma) \) in \( B_{0,n+k+\ell}(\Sigma) \) for some \( \ell \geq 0 \). Then \( N(B_{n,k}(\Sigma)) \cong B_{n,k}(\Sigma) \times B_{0,\ell}(\Sigma') \).

**Proof.** We first identify \( B_{n,k}(\Sigma) \) and \( B_{0,n}(\Sigma) \) with the corresponding subgroups of \( B_{0,n+k+\ell}(\Sigma) \) via the embeddings that add trivial \( \ell \) and \( k+\ell \) strands, respectively. Then we will show \( N(B_{n,k}(\Sigma)) = B_{n,k}(\Sigma) \times B_{0,\ell}(\Sigma') \) as subgroups of \( B_{0,n+k+\ell}(\Sigma) \). It is clear that \( B_{n,k}(\Sigma) \times B_{0,\ell}(\Sigma') \subset N(B_{n,k}(\Sigma)) \) since \( B_{n,k}(\Sigma) \) is a normal subgroup of \( B_{n,k}(\Sigma) \) from the short exact sequence of Lemma 2.3 and since elements of \( B_{0,\ell}(\Sigma') \) commute with those of \( B_{n,k}(\Sigma) \). Conversely, let \( \beta \in N(B_{n,k}(\Sigma)) \subset B_{0,n+k+\ell}(\Sigma) \). Any element \( \alpha \in B_{n,k}(\Sigma) \) and its conjugate \( \beta^{-1} \alpha \beta \in B_{n,k}(\Sigma) \) induce permutations that preserve the sets \( \{1, \ldots, n\}, \{n+1, \ldots, n+k\} \) and \( \{n+k+1, \ldots, n+k+\ell\} \). It is easy to see that the induced permutation of \( \beta \) itself must fix these three sets since \( \alpha \) can be arbitrary in \( B_{n,k}(\Sigma) \). Thus \( \beta \in B_{n,k+\ell}(\Sigma) \) and the split exact sequence

\[
1 \rightarrow B_{n+k,\ell}(\Sigma) \rightarrow B_{n+k,\ell}(\Sigma) \rightarrow B_{0,n+k}(\Sigma) \rightarrow 1
\]

gives a unique decomposition \( \beta = \beta_1 \beta_2 \) for \( \beta_1 \in B_{0,n+k}(\Sigma) \) and \( \beta_2 \in B_{n+k,\ell}(\Sigma) \). In fact, \( \beta_1 = (\pi_{n+k})_*(\beta) \in B_{n,k}(\Sigma) \) since the epimorphism \( (\pi_{n+k})_* \) forgets the last \( \ell \) strands or replaces them by the trivial \( \ell \)-strand braid.

For any \( \alpha \in B_{n,k}(\Sigma) \subset B_{0,n+k}(\Sigma) \subset B_{0,n+k+\ell}(\Sigma) \), we have \( (\pi_{n+k})_*(\beta_2^{-1} \alpha \beta_2) = \beta_2^{-1} \alpha \beta_2 \) since \( \beta_2^{-1} \alpha \beta_2 \in B_{0,n+k} \). On the other hand, \( (\pi_{n+k})_*(\beta_2^{-1} \alpha \beta_2) = \alpha \) since \( (\pi_{n+k})_* \) replaces the last \( \ell \) strands by the trivial braid. Thus we have \( \beta_2^{-1} \alpha \beta_2 = \alpha \).

From the presentation of \( B_{0,n+k+\ell}(\Sigma) \) in Section 1A, it is easy to see that \( \beta_2 \) must be a local braid in order for \( \beta_2 \) to commute with every element of \( B_{n,k}(\Sigma) \). Thus
we have $\beta_2 \in \mathbb{B}_{0,l}(\Sigma')$, where $\Sigma'$ is an annulus that is a collar neighborhood of $\partial \Sigma$ in $\Sigma$. Consequently, we have shown $N(\mathbb{B}_{n,k}(\Sigma)) \subset \mathbb{B}_{n,k}(\Sigma) \times \mathbb{B}_{0,l}(\Sigma')$.

By this lemma, the extension $\mathbb{E}_{n,k}(\Sigma)$ of $\mathbb{B}_{n,k}(\Sigma)$ can be taken as a subgroup of $\mathbb{B}_{n,k}(\Sigma) \times \mathbb{B}_{0,l}(\Sigma')$. We remark that $\mathbb{B}_{n,k}(\Sigma) \times \mathbb{B}_{0,l}(\Sigma')$ is also a subgroup of the intertwining braid group $\mathbb{B}_{n,k+1}(\Sigma)$.

Then we follow the construction given in the discussion before Theorem 3.2 with $\mathbb{E}_{n,k}(\Sigma)$ replacing $\mathbb{B}_{n,k}(\Sigma)$.

Let $\psi : \mathbb{E}_{n,k}(\Sigma) \to H$ be an epimorphism onto a group $H$. If we choose an action of $\mathbb{B}_{0,n}(\Sigma)$ on the extension $\mathbb{E}_{n,k}(\Sigma)$, then the action is carried over $H$ via $\psi$ and it is convenient to use the convention that $(\beta_1 \beta_2) \cdot h = \beta_2 \cdot (\beta_1 \cdot h)$ for $\beta_1, \beta_2 \in \mathbb{B}_{0,n}(\Sigma)$ and $h \in H$. To obtain a $\mathbb{Z}[H]$-module automorphism $\beta \otimes \tilde{\beta}_n$ on $\mathbb{Z}[H] \otimes \mathbb{Z}[G] \tilde{H}_k^{BM}(\tilde{\mathbb{B}}_{n,k}(\Sigma))$ that is an extension of a homology linear representation of the classical braid group, this induced action of $\mathbb{B}_{0,n}(\Sigma)$ on $H$ needs to satisfy two conditions.

(i) Lifting criteria: $\beta_2$ exists and $\beta_2(\phi(\alpha)) = \phi(\tilde{\beta}_n(\alpha))$ for all $\alpha \in \mathbb{B}_{n,k}(\Sigma)$, where $\phi = \psi|_{\mathbb{B}_{n,k}(\Sigma)}$.

(ii) Linearity and compatibility: $hh'(\beta \cdot 1) = \beta \cdot (hh') = (\beta \cdot h)\beta_2(h')$ for all $h \in H$ and $h' \in G = \phi(\mathbb{B}_{n,k}(\Sigma))$.

As in the proof of Theorem 3.2, we then have

$$(\beta \otimes \tilde{\beta}_n)(h \otimes h'c) = (\beta \otimes \tilde{\beta}_n)(hh' \otimes c) = hh'(\beta \otimes \tilde{\beta}_n)(1 \otimes c)$$

for all $h \in H$, $h' \in G$ and $c \in \tilde{H}_k^{BM}(\tilde{\mathbb{B}}_{n,k}(\Sigma))$.

**Theorem 4.2.** Suppose there are an epimorphism $\psi : \mathbb{E}_{n,k}(\Sigma) \to H$ and an action of $\mathbb{B}_{0,n}(\Sigma)$ on $H$ satisfying the two conditions above. Let $\Psi_k$ be the representation obtained from $\psi$ and the action. Then

$$\Psi_k = 1_{\mathbb{Z}[H]} \otimes \mathbb{Z}[H'] \Psi_k'$$

for a representation $\Psi_k'$ obtained from an epimorphism $\psi' : \mathbb{B}_{n,k}(\Sigma) \to H'$ and an action $\mathbb{B}_{0,n}(\Sigma)$ on $H'$, where $1_{\mathbb{Z}[H]}$ is the identity map on $\mathbb{Z}[H]$.

**Proof.** Let $H' = \{\beta \cdot 1 \in H \mid \beta \in \mathbb{B}_{0,n}(\Sigma)\}\phi(\mathbb{B}_{n,k}(\Sigma))$ and $\psi' : \mathbb{B}_{n,k}(\Sigma) \to H'$ be a surjection defined by $\psi'(\beta) = \beta \cdot 1$ for $\beta \in \mathbb{B}_{0,n}(\Sigma)$ and $\psi' = \phi$ on $\mathbb{B}_{n,k}(\Sigma)$. Then since

$$\psi'(\beta_1 \beta_2) = (\beta_1 \beta_2) \cdot 1 = \beta_2 \cdot (\beta_1 \cdot 1) = (\beta_1 \cdot 1)(\beta_2 \cdot 1) = \psi'(\beta_1)\psi'(\beta_2)$$

for all $\beta_1, \beta_2 \in \mathbb{B}_{0,n}(\Sigma)$, the surjection $\psi'$ becomes a homomorphism that preserves the semidirect product structure. Also we have

$$\phi' = \psi'|_{\mathbb{B}_{n,k}(\Sigma)} = \psi|_{\mathbb{B}_{n,k}(\Sigma)} = \phi$$
and so \( \phi \) and \( \phi' \) induce the same homology group \( H_k^{BM}(\tilde{B}_{n,k}(\Sigma)) \), and two \( \mathbb{Z} \)-module automorphisms obtained from \( \beta \) coincide.

Consider two representations \( \Psi_k \) and \( \Psi'_k \) corresponding to \( \psi \) and \( \psi' \), respectively. Then \( \Psi_k(\beta) \) gives a \( \mathbb{Z}[H]\)-homomorphism on \( \mathbb{Z}[H] \otimes_{\mathbb{Z}[G]} H_k^{BM}(\tilde{B}_{n,k}(\Sigma)) \) and \( \Psi'_k(\beta) \) gives a \( \mathbb{Z}[H']\)-homomorphism on \( \mathbb{Z}[H'] \otimes_{\mathbb{Z}[G]} H_k^{BM}(\tilde{B}_{n,k}(\Sigma)) \). Since \( \mathbb{Z}[H] = \mathbb{Z}[H] \otimes_{\mathbb{Z}[H']} \mathbb{Z}[H'] \), the representation \( \Psi_k(\beta) \) is a \( \mathbb{Z}[H]\)-homomorphism on \( \mathbb{Z}[H] \otimes_{\mathbb{Z}[H']} \mathbb{Z}[H'] \otimes_{\mathbb{Z}[G]} H_k^{BM}(\tilde{B}_{n,k}(\Sigma)) \) defined by

\[
\Psi_k(\beta)(hh' \otimes c) = hh'(\beta \cdot 1) \otimes \tilde{\beta}_+(c) = h \otimes h'(\beta \cdot 1) \otimes \tilde{\beta}_+(c)
\]

for all \( h \in \mathbb{Z}[H], \ h' \in \mathbb{Z}[H'] \) and \( c \in H_k^{BM}(\tilde{B}_{n,k}(\Sigma)) \). As claimed, this is equal to \( 1_{\mathbb{Z}[H]} \otimes_{\mathbb{Z}[H']} \Psi'_k(\beta) \).

This theorem implies that we may assume that \( B_{n,k}(\Sigma) \subset E_{n,k}(\Sigma) \) without loss of generality. Then by Lemma 4.1, \( E_{n,k}(\Sigma) = B_{n,k}(\Sigma) \times B \) for some subgroup \( B \) of \( B_{0,1}(\Sigma') \) and the theorem says that any family of representations obtained by using \( E_{n,k}(\Sigma) \) is merely a trivial extension of the family of representations proposed in Section 3.

**Quotient of** \( B_{n,k}(\Sigma) \). According to the scheme described in Theorem 3.2, it is important to find a good epimorphism \( \psi : B_{n,k}(\Sigma) \twoheadrightarrow H \) onto some group \( H \).

Since \( \Sigma \) is not a sphere, the inclusion \( B_{n,k}(D) \hookrightarrow B_{n,k}(\Sigma) \) induces a monomorphism \( B_{n,k}(D) \hookrightarrow B_{n,k}(\Sigma) \); see [Birman 1974]. Similarly, \( B_{n,k}(D) \hookrightarrow B_{n,k}(\Sigma) \) induces a monomorphism \( B_{n,k}(D) \hookrightarrow B_{n,k}(\Sigma) \) (to be regarded as an inclusion).

We first determine an epimorphism \( \psi_D : B_{n,k}(D) \twoheadrightarrow H_D \) to extend the map \( \phi_D : B_{n,k}(D) \twoheadrightarrow G_D \) for the classical braid groups. Since we want to obtain homology linear representations for the classical braid groups, we should use that \( H_D = G_D \), and all of the extra generators \( \tilde{\sigma}_1, \ldots, \tilde{\sigma}_{n-1} \) of \( B_{n,k}(D) \) should be sent to the identity by \( \psi_D \), as we have seen earlier in Section 3A. Then \( \psi_D | B_{n,k}(D) = \phi_D \). For some extension \( H \) of \( G_D \), let \( \psi : B_{n,k}(\Sigma) \twoheadrightarrow H \) be an epimorphism. To obtain an extension of homology linear representations of the classical braid groups via \( \psi \), we require the condition

\[
(\dagger) \quad \psi | B_{n,k}(D) = \psi_D
\]

This condition is nothing but a reinterpretation of Definition 2.2 and is necessary to make the diagram

\[
\begin{align*}
& B_{n,k}(D) \xrightarrow{\phi_D} B_{n,k}(D) \xrightarrow{\psi_D} B_{n,k}(\Sigma) \\
& \downarrow \quad \downarrow \quad \downarrow \\
& G_D \xrightarrow{\psi} H_D \xrightarrow{\psi} H
\end{align*}
\]
commutative, so that \( \psi|_{B_{n,k}(D)} = \phi_D \) and we can then apply the construction of Theorem 3.2. We first show that the condition (†) imposes restrictions on the choice of \( H \).

**Theorem 4.3.** Let \( \psi_\Sigma : B_{n,k}(\Sigma) \to H_\Sigma \) be the epimorphism defined in Section 3A.

1. Let \( h : H_\Sigma \to H \) be an epimorphism such that \( h \circ \psi_\Sigma \) satisfies (†). Then \( h \) is an isomorphism.

2. Let \( \psi : B_{n,k}(\Sigma) \to H \), an arbitrary epimorphism onto a group \( H \), satisfy (†). Then \( \psi_\Sigma \) factors through \( \psi \), and \( H \) is isomorphic to \( H_\Sigma \) for \( k \geq 3 \).

**Proof.** (1) It suffices to show that \( h(W) = 1 \) implies \( W = 1 \) for any word \( W \) in generators of \( H_\Sigma \). Assume \( k \geq 2 \). Using the relations of \( H_\Sigma \), a given word \( W \) can be put into the form

\[
W = q^c t^d \prod_{i=1}^{g} W_i, \quad \text{where } W_i = m_i^{a_i} \ell_i^{b_i} \ell_i^{c_i} m_i^{-a_i} \ell_i^{-b_i}.
\]

First consider \([W, \tilde{\ell}_r] \). Note that \( W_r \) commutes with the other \( W_i \) as well as \( q \) and \( t \). Since \( \tilde{\ell}_r \) commutes with all generators except \( m_r \) and only \( W_r \) contains \( m_r \), we have

\[
[W, \tilde{\ell}_r] = \left( q^c t^d \prod_{i=1}^{g} W_i \right) \tilde{\ell}_r \left( q^c t^d \prod_{i=1}^{g} W_i \right)^{-1} \tilde{\ell}_r^{-1}
\]

\[
= W_r \left( q^c t^d \prod_{i \neq r} W_i \right) \tilde{\ell}_r \left( q^c t^d \prod_{i \neq r} W_i \right)^{-1} W_r^{-1} \tilde{\ell}_r^{-1}
\]

\[
= W_r \tilde{\ell}_r W_r^{-1} \tilde{\ell}_r^{-1}
\]

\[
= (m_r^{a_r} \ell_r^{b_r} \ell_r^{c_r} \tilde{\ell}_r) \left( m_r^{a_r} \ell_r^{b_r} \ell_r^{c_r} \tilde{\ell}_r \right)^{-1} \tilde{\ell}_r^{-1}
\]

\[
= m_r^{a_r} (\ell_r^{b_r} \ell_r^{c_r} \tilde{\ell}_r) \left( \ell_r^{b_r} \ell_r^{c_r} \tilde{\ell}_r \right)^{-1} m_r^{-a_r} \tilde{\ell}_r^{-1}
\]

\[
= m_r^{a_r} \tilde{\ell}_r m_r^{-a_r} \tilde{\ell}_r^{-1} = q^{a_r}.
\]

The last equality follows from the relation \([m_r, \tilde{\ell}_r] = q \). By applying \( h \) and using \( h(W) = 1 \), we have

\[
h(q^{a_r}) = h([W, \tilde{\ell}_r]) = h(W) h(\tilde{\ell}_r) h(W)^{-1} h(\tilde{\ell}_r)^{-1} = 1.
\]

By (†), \( h \) is the identity on \( G_D \) that is the subgroup generated by \( q \) and \( t \), and \( q \) and \( t \) are of infinite order. Thus \( h(q^{a_r}) = q^{a_r} = 1 \) implies \( a_r = 0 \). Similarly, \( b_r = \bar{a}_r = \bar{b}_r = 0 \) by considering \([W, \bar{m}_r], [W, \ell_r], \) and \([W, m_r] \). Therefore \( W_r = 1 \). Since \( r \) is arbitrary other than \( 1 \leq r \leq g \), we now have \( W = q^c t^d \). Then \( 1 = h(W) = q^c t^d \) implies \( c = d = 0 \). Consequently, \( W = 1 \).

For the case \( k = 1 \), the proof is similar but simpler since \( t = 1 \) in \( H_\Sigma \).
(2) Consider the commutative diagram

\[
\begin{array}{ccc}
\mathbf{B}_{n;k}(\Sigma) & \xrightarrow{\psi} & H \cong \mathbf{B}_{n;k}(\Sigma)/\text{Ker } \psi \\
\downarrow \psi_{\Sigma} & & \downarrow q \\
\mathbf{H}_{\Sigma} \cong \mathbf{B}_{n;k}(\Sigma)/\text{Ker } \psi_{\Sigma} & \xrightarrow{h} & \mathbf{B}_{n;k}(\Sigma)/(\text{Ker } \psi \cdot \text{Ker } \psi_{\Sigma}),
\end{array}
\]

which consists of obvious quotient homomorphisms. Note that the condition \((\dagger)\) is equivalent to \(\mathbf{B}_{n;k}(D)/(\text{Ker } \psi \cap \mathbf{B}_{n;k}(D)) \cong G_D\). Thus \(\text{Ker } \psi \cap \mathbf{B}_{n;k}(D) = \text{Ker } \psi_{\Sigma} \cap \mathbf{B}_{n;k}(D)\) since \(\psi_{\Sigma}\) also satisfies \((\dagger)\). Then

\[
(\text{Ker } \psi \cdot \text{Ker } \psi_{\Sigma}) \cap \mathbf{B}_{n;k}(D) = (\text{Ker } \psi \cap \mathbf{B}_{n;k}(D)) \cdot (\text{Ker } \psi_{\Sigma} \cap \mathbf{B}_{n;k}(D)) = \text{Ker } \psi_{\Sigma} \cap \mathbf{B}_{n;k}(D).
\]

Thus \(h \circ \psi_{\Sigma}\) satisfies \((\dagger)\) and \(h\) is an isomorphism by part (1). Therefore \(\psi_{\Sigma}\) factors through \(\psi\) via \(h^{-1} \circ q\) for \(k \geq 1\).

For \(k \geq 3\), we will show \(\psi : \mathbf{B}_{n;k}(\Sigma) \to H\) factors through \(\psi_{\Sigma}\), that is, there is an epimorphism \(h : H_{\Sigma} \to H\) such that \(h \psi_{\Sigma} = \psi\). Then \(H_{\Sigma}\) is isomorphic to \(H\) since \(\psi_{\Sigma}\) also factors through \(\psi\).

Recall the presentation for \(\mathbf{B}_{n;k}(\Sigma)\) in Lemma 2.5. The condition \((\dagger)\) implies \(\psi(\sigma_i) = q\), \(\psi(\zeta_j) = t\), and \(\psi(\sigma_m) = 1\) for all \(1 \leq i \leq k - 1\), \(1 \leq j \leq n\), and \(1 \leq m \leq n - 1\). Since \(k \geq 3\), the relation \((\text{CR}_1)\) among generators in \(X_2\) is not vacuous and so the relations \((\text{CR}_1)\) through \((\text{CR}_3)\) for \(X_2\) and the condition \((\dagger)\) imply

\[
[\psi(\mu_r), q] = [\psi(\lambda_r), q] = [\psi(\mu_r), t] = [\psi(\lambda_r), t] = [q, t] = 1
\]

for all \(1 \leq r \leq g\). Also the relation Lemma 2.5(iii) implies

\[
[\psi(\tilde{\mu}_r), q] = [\psi(\tilde{\lambda}_r), q] = [\psi(\tilde{\mu}_r), t] = [\psi(\tilde{\lambda}_r), t] = 1
\]

for all \(1 \leq r \leq g\).

Thus \(q\) and \(t\) lie in the center of \(H\). Using this, all other relations in \(H_{\Sigma}\) can be shown to hold in \(H\). Therefore \(\psi\) induces an epimorphism \(h : H_{\Sigma} \to H\). \(\square\)

Hence \(H_{\Sigma}\) is the unique quotient group of \(\mathbf{B}_{n;k}(\Sigma)\) satisfying \((\dagger)\) for \(k \geq 3\). For \(k \leq 2\), the condition \((\dagger)\) does not uniquely determine a quotient group of \(\mathbf{B}_{n;k}(\Sigma)\). To take advantage of representations in analyzing the surface braid group \(\mathbf{B}_{0,n}(\Sigma)\), one may prefer a simpler coefficient ring as long as the representation carries enough information. For the classical case, there are also several groups satisfying the condition \((\ast)\) if we do not assume they are abelian. For the surface braid groups, we cannot obtain any interesting representation if an abelian coefficient ring is used, as discussed in Section 2. Theorem 4.3(1) says that \(H_{\Sigma}\) is the simplest quotient group satisfying \((\dagger)\) in the sense that any further quotient of \(H_{\Sigma}\) violates \((\dagger)\).

We now discuss possible actions of \(\mathbf{B}_{0,n}(\Sigma)\) on \(H_{\Sigma}\) induced from \(\psi_{\Sigma}\).
Theorem 4.4. Let \( \psi_\Sigma : B_{n,k}(\Sigma) \to H_\Sigma \) be the epimorphism defined in Section 3A. Let \( \beta \cdot h \) denote any action on \( h \in H_\Sigma \) by \( \beta \in B_{0,n}(\Sigma) \) that is induced from \( \psi_\Sigma \) and satisfies the two conditions given above Theorem 4.2. Then

\[
\beta \cdot h = h \chi(\beta) \psi_\Sigma(\beta)
\]

for some function \( \chi : B_{0,n}(\Sigma) \to C_{H_\Sigma}(G_\Sigma) \) with the property that

\[
(\chi, \psi_\Sigma) : B_{0,n}(\Sigma) \to C_{H_\Sigma}(G_\Sigma) \times H_\Sigma
\]

is a homomorphism, where \( C_{H_\Sigma}(G_\Sigma) \) denotes the centralizer of \( G_\Sigma \) in \( H_\Sigma \).

\textbf{Proof.} By the hypotheses of the action, we have

\[
h'(\beta \cdot 1) = \beta \cdot (1' h') = (\beta \cdot 1) \beta_z(h') \quad \text{and} \quad \beta_z(h') = \psi_\Sigma(\beta)^{-1} h' \psi_\Sigma(\beta)
\]

for all \( h' \in G_\Sigma \). By combining these two equations, we have

\[
\psi_\Sigma(\beta)^{-1} h' \psi_\Sigma(\beta) = (\beta \cdot 1)^{-1} h'(\beta \cdot 1).
\]

and so \((\beta \cdot 1) \psi_\Sigma(\beta)^{-1} \in C_{H_\Sigma}(G_\Sigma)\). Hence \((\beta \cdot 1) = \chi(\beta) \psi_\Sigma(\beta)\) for a function \( \chi : B_{0,n}(\Sigma) \to C_{H_\Sigma}(G_\Sigma) \). Since \( \chi(\beta_1 \beta_2) \psi_\Sigma(\beta_1 \beta_2) = (\beta_1 \beta_2) \cdot 1 = \beta_2 \cdot (\beta_1 \cdot 1) = (\chi(\beta_1) \psi_\Sigma(\beta_1)) (\chi(\beta_2)) \psi_\Sigma(\beta_2) \), we have

\[
\chi(\beta_1 \beta_2) = \chi(\beta_1) \psi_\Sigma(\beta_1) \chi(\beta_2) \psi_\Sigma(\beta_2) \chi(\beta_1)^{-1}.
\]

This implies that

\[
(\chi(\beta_1 \beta_2), \psi_\Sigma(\beta_1 \beta_2)) = (\chi(\beta_1) \psi_\Sigma(\beta_1) \chi(\beta_2) \psi_\Sigma(\beta_1)^{-1}, \psi_\Sigma(\beta_1 \beta_2))
\]

\[
= (\chi(\beta_1), \psi_\Sigma(\beta_1))(\chi(\beta_2), \psi_\Sigma(\beta_2)).
\]

Therefore \((\chi, \psi_\Sigma) : B_{0,n}(\Sigma) \to C_{H_\Sigma}(G_\Sigma) \times H_\Sigma\) is a homomorphism. \( \square \)

The function \( \chi \) in this theorem behaves like a character of \( B_{0,n}(\Sigma) \). In fact, if \( k \geq 2 \), it can be shown that \( C_{H_\Sigma}(G_\Sigma) = Z(H_\Sigma) = \langle q \rangle \oplus \langle t \rangle \). Hence \( \chi \) can be any homomorphism from \( B_{0,n}(\Sigma) \) to \( Z(H_\Sigma) \). In this case, the representations \( \Psi_k \) obtained from \( \psi \) are given by \( \Psi_k = \chi \otimes \Phi_k \) for some character \( \chi \), where \( \Phi_k \) is the proposed representation in Theorem 3.2.

\textbf{References}


Received June 1, 2009. Revised July 9, 2010.

BYUNG HEE AN
DEPARTMENT OF MATHEMATICS
KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
DAEJEON 305-701
SOUTH KOREA
anbyhee@knot.kaist.ac.kr

KI HYOUNG KO
DEPARTMENT OF MATHEMATICS
KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
DAEJEON 305-701
SOUTH KOREA
knot@knot.kaist.ac.kr
A family of representations of braid groups on surfaces
BYUNG HEE AN and KI HYOUNG KO
257
Parametrization of holomorphic Segre-preserving maps
R. BLAIR ANGLE
283
Chern classes on differential $K$-theory
ULRICH BUNKE
313
Laplacian spectrum for the nilpotent Kac–Moody Lie algebras
DMITRY FUCHS and CONSTANCE WILMARTH
323
Sigma theory and twisted conjugacy classes
DACIBERG GONÇALVES and DESSISLAVA HRISTOVA KOCHLOUKOVA
335
Properties of annular capillary surfaces with equal contact angles
JAMES GORDON and DAVID SIEGEL
353
Approximating annular capillary surfaces with equal contact angles
JAMES GORDON and DAVID SIEGEL
371
Harmonic quasiconformal self-mappings and Möbius transformations of the unit ball
DAVID KALAJ and MIO Drag S. MATELEVIĆ
389
Klein bottle and toroidal Dehn fillings at distance 5
SANGYOP LEE
407
Representations of the two-fold central extension of $SL_2(\mathbb{Q}_2)$
HUNG YEAN LOKE and GORDAN SAVIN
435
Large quantum corrections in mirror symmetry for a 2-dimensional Lagrangian submanifold with an elliptic umbilic
GIOVANNI MORELLI
455
Crossed pointed categories and their equivariantizations
DEEPAK NAIDU
477
Painlevé analysis of generalized Zakharov equations
HASSAN A. ZEDAN and SALMA M. AL-TUWAIROQI
497