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We propose a family of homological representations of the braid groups on
surfaces. This family extends linear representations of the braid groups
on a disc, such as the Burau representation and the Lawrence–Krammer–
Bigelow representation.

1. Introduction

1A. Preliminaries and history. Let 6(g, p) be a compact, connected, orientable
2-dimensional manifold of genus g with p boundary components. Set6=6(g, p).
Let {z0

1, . . . , z0
n} be a set of n preferred distinct points in 6 for n ≥ 0, and let

6n =6−{z0
1, . . . , z0

n}. We call 6n the surface 6 with n punctures.
For integers n, k≥0, we consider three types of configuration spaces as follows:

The space of k-tuples of distinct points in 6n is denoted by

Pn,k(6)= {(z1, . . . , zk) ∈6n × · · ·×6n | zi 6= z j for i 6= j},
the space of subsets of k elements in 6n is denoted by

Bn,k(6)= {{z1, . . . , zk} ⊂6n},
and the space Bn;k(6) of pairs of disjoint subsets of n elements and k elements in
6 is denoted by

Bn;k(6)= {({z1, . . . , zn}, {zn+1, . . . , zn+k}) | zi ∈6, zi 6= z j for i 6= j}.
It is easy to see that Bn,k(6) = Pn,k(6)/Sk and Bn;k(6) = P0,n+k(6)/Sn × Sk ,
where the symmetric group Sk acts on Pn,k(6) by permuting components of a
k-tuple and similarly Sn ×Sk ⊂ Sn+k acts on P0,n+k(6).

The braid groups on a surface 6 are defined by the fundamental groups of con-
figuration spaces. Choose a basepoint {z0

n+1, . . . , z0
n+k} in ∂6 if ∂6 6= ∅. If 6 is

MSC2000: 20F36, 57M07, 57M10.
Keywords: homological representation, surface braid group.
This work was supported by the Korea Science and Engineering Foundation grant funded by the
Korean government, MOST number R01-2006-000-10152-0.

257



258 BYUNG HEE AN AND KI HYOUNG KO

closed, then place it anywhere in 6n . The pure k-braid group on6n is defined and
denoted by

Pn,k(6)= π1(Pn,k(6), (z0
n+1, . . . , z0

n+k)).

Similarly, the ( full) k-braid group on 6n is given by

Bn,k(6)= π1(Bn,k(6), {z0
n+1, . . . , z0

n+k}),
and the intertwining (n, k)-braid group on 6 is given by

Bn;k(6)= π1(Bn;k(6), ({z0
1, . . . , z0

n}, {z0
n+1, . . . , z0

n+k})).
It is sometimes easier to understand if these groups are regarded as subgroups of
B0,n+k(6). The intertwining (n, k)-braid group Bn;k(6) is the preimage of Sn×Sk

under the canonical projection: B0,n+k(6) → Sn+k . In addition, Bn,k(6) is the
subgroup of (n+k)-braids in Bn;k(6) that become trivial by forgetting the last k
strands, and Pn,k(6) is the subgroup of (n+k)-braids in Bn,k(6) that are pure,
that is, the induced permutation is trivial. If the surface 6 is the 2-disc D, we will
call the braid groups classical. For example, B0,n(D) denotes the classical n-braid
group studied by E. Artin.

In the 60s and 70s, presentations for braid groups on various surfaces were
found, on the 2-sphere and the projective plane in [Fadell and van Buskirk 1962;
Van Buskirk 1966], on the torus in [Birman 1969], and on all closed surfaces
in [Scott 1970]. The study of braid groups on surfaces has been revived recently.
González-Meneses [2001] found new presentations of the braid groups on surfaces,
and the authors of [Bellingeri 2004; Bellingeri and Godelle 2007] found positive
presentations of the braid groups Bn,k(6) for all surfaces6, with or without bound-
ary. Here, we are interested in braid groups on surfaces with nonempty boundary
and will use Bellingeri’s presentations.

Boundary components of a surface can be traded with punctures when we con-
sider braid groups. Let 6 = 6(g, p) and 6′ = 6(g, p + q). Then there are
continuous maps i : 6q → 6′ and j : 6′→ 6q that are homotopy inverses each
other. The induced maps ī : Bn+q,k(6)→ Bn,k(6

′) and j̄ : Bn,k(6
′)→ Bn+q,k(6)

on configuration spaces are also homotopy inverses each other and induce isomor-
phisms ī∗ and j̄∗ on fundamental groups [Bellingeri 2004; Paris and Rolfsen 1999].
Therefore we may assume6=6(g, 1) by treating all but one boundary component
as a puncture whenever we deal with a surface with nonempty boundary.

We use Bellingeri’s presentation [2004] for the braid group Bn,k(6(g, 1)):

• The generators are σ1, . . . , σk−1, a1, . . . , ag, b1, . . . , bg, ζ1, . . . , ζn .

• The relations are
(BR1) [σi , σ j ] for |i − j | ≥ 2;

(BR2) σiσ jσi = σ jσiσ j for |i − j | = 1;
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(CR1) [ar , σi ], [br , σi ], [ζt , σi ] for i > 1;

(CR2) [ar , σ1arσ1], [br , σ1brσ1], [ζt , σ1ζtσ1];
(CR3) [ar , σ

−1
1 asσ1], [ar , σ

−1
1 bsσ1], [br , σ

−1
1 asσ1], [br , σ

−1
1 bsσ1] for r < s,

[ar , σ
−1
1 ζuσ1], [br , σ

−1
1 ζuσ1], [ζt , σ

−1
1 ζuσ1] for t < u;

(SCR) σ1brσ1arσ1 = arσ1br .

The corresponding result for configuration spaces of pure braids by Fadell and
Neuwirth can be generalized to show that the projection Bn;k(6)→ B0,n(6) is
a fiber bundle with fiber Bn,k(6). Except for the cases 6 = S2 and 6 = RP2,
Gonçalves and Guaschi [2003] completely determined when the short exact se-
quences of braid groups derived from Fadell–Neuwirth fibrations split. In particu-
lar, the short exact sequence derived from the fibration above, that is,

1→ Bn,k(6)→ Bn;k(6)→ B0,n(6)→ 1,

always splits for k ≥ 1 if 6 has nonempty boundaries.
The braid groups are closely related to the mapping class groups. Birman [1974]

determined when surface braid group embeds into the corresponding mapping class
group. In particular, if ∂6 is nonempty, B0,n(6) embeds into the mapping class
group on 6n and so an n-braid on 6 can be regarded as a homeomorphism of 6
that preserves the set of n punctures.

The classical braid groups have various representations that can be as simple
as taking exponent sums or taking induced permutations. The braid action on the
punctured disk Dn gives rise to a faithful representation into automorphism groups
of free groups, and a characterization of automorphisms coming from braid actions
is possible. Each representation serves its own purpose. It is common to try to
construct a linear representation to have a better understanding of a given group
via matrices over a certain commutative ring and their multiplications.

For the classical braid groups, linear representations are abundant. Burau in
1936 and Gassner in 1961 found linear representations of B0,n(D) and P0,n(D), re-
spectively. These representations are derived from braid actions on homologies of
appropriate coverings of Dn . These representations take the form of (n−1)×(n−1)
matrices that can also be computed via Fox’s free differential calculus on auto-
morphisms of free groups mentioned above. The Burau representation is faithful
for n ≤ 3 but not for n ≥ 5 [Bigelow 1999]. The faithfulness of the Gassner
representation is known only for n ≤ 3.

Lawrence [1990] discovered a family of linear representations of B0,n(D) via
a monodromy on a vector bundle over Pn,k(D). Krammer [2000] defined a free
Z[q±1, t±1]-module V using forks and relations between them, and he proved using
an algebraic and combinatorial argument that the braid group acts on V faithfully
for braid index 4. This representation is essentially the same as the one considered
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by Lawrence for k= 2 but uses the configuration space Bn,2(D) instead of Pn,2(D)
and is now called the Lawrence–Krammer–Bigelow representation. Bigelow rein-
terpreted this representation using covering spaces and covering transformation
groups instead of vector bundles and local coefficients. Then the monodromy cor-
responds to the braid action on homology groups of covering spaces, as it did for the
Burau representation and the Gassner representation. Bigelow [2001] constructed
a linear representation using homology group H2(B̃n,2(D)) of the covering space
B̃n,2(D) whose covering transformation group is 〈q〉 ⊕ 〈t〉, and he proved that
R⊗ V is isomorphic to R⊗ H2(B̃n,2(D)). Also, Krammer [2002] and Bigelow
[2001] independently proved that the Lawrence–Krammer–Bigelow representation
is faithful for all n ≥ 1, and so the classical braid groups are linear. Bardakov
[2005] applied this linearity to show that the braid groups of the sphere and pro-
jective plane are linear. Bigelow and Budney [2001] proved using the Lawrence–
Krammer–Bigelow representation and a suitable branched covering that the map-
ping class group of genus 2 surface has a faithful linear representation. However,
Paoluzzi and Paris showed that there is a difference between V and H2(B̃n,2)(D)
as a Z[q±1, t±1]-module for n ≥ 3 and a found basis for a Z[q±1, t±1]-module
H2(B̃n,2(D)); so the exact definition of “Lawrence–Krammer–Bigelow represen-
tation” became somewhat ambiguous.

For any k ≥ 1, Bigelow [2004] considered the braid action on the Borel–Moore
homology group H BM

k (B̃n,k(D)). He obtained a family of representations via the
induced action on the image of H BM

k (B̃n,k(D)) in H BM
k (B̃n,k(D), ∂ B̃n,k(D)). For

simplicity, we will consider the braid action on the free module H BM
k (B̃n,k(D)),

whose basis can be easily described by forks to obtain a linear representation.
We will call these representations homology linear representations. The Burau
representation, and the Lawrence–Krammer–Bigelow representation of B0,n(D)
are homology linear representations

8k : B0,n(D)→ GL
((

n+ k− 2
k

)
,Z[q±1, t±1]

)
obtained from the braid action on homologies of covers of Bn,k(D) when k = 1
(t = 1 in this case) and k = 2, respectively [Bigelow 2004]. For k ≥ 3, Zheng
[2005] proved that 8k is faithful for all n ≥ 1.

Overview. We construct a family of homological representations of braid groups
on a surface with nonempty boundary; these extend the homological linear repre-
sentations of the classical braid group. In Section 2, we first try to follow how the
homology linear representations of B0,n(D) were constructed via a covering of the
configuration space Bn,k(D). In the case of the disk, the braid action automatically
commutes with covering transformations, or in other words, braids act trivially on
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local coefficients. However, in the case of surfaces of genus ≥ 1, this condition
forces the variable q to equal 1; see Lemma 2.6. Then the braid action becomes
almost trivial. For example, if k = 1, the action of σ 2

i is trivial. To get around this
problem, we introduce in Section 3 the intertwining braid group Bn;k(6) to replace
Bn,k(6). As we mentioned earlier, this group is a semidirect product of Bn,k(6)

and B0,n(6). Although the braid action does not preserve the local coefficient
given by the Bn,k(6) factor, the B0,n(6) factor of Bn;k(6) can adjust the coeffi-
cient so that the braid action becomes compatible. We will extend the coefficient
ring for homology representations to give room to control the braid action, at the
expense of giving up its commutativity, so that it becomes more interesting and
still preserves coefficients. Eventually we obtain in Theorem 3.2 representations
of braid groups on surfaces that extend homology linear representations of the
classical braid group. Also we explicitly compute the representations in the form of
matrices using a geometric argument. We extend the intersection pairing between
H BM

k (B̃n,k(D)) and its dual space Hk(B̃n,k(D), ∂ B̃n,k(D)) and use bases for the
two spaces that are described by forks and noodles; see Theorem 3.4.

In Section 4, we argue that the construction of our representations is natural
and that there are no other alternatives if one wants to obtain an extension of the
homological representation using covers of the configuration space Bn,k(D). We
show that the intertwining braid group Bn;k(6) is the normalizer of Bn,k(6) in
B0,n+k(6) so that the intertwining braid group Bn;k(6) is such a group that is
unique and maximal up to a meaningless extension; see Theorem 4.2. The coef-
ficient ring for our representations is the integral group ring of a quotient group
of Bn;k(6). Theorem 4.3 shows that for k ≥ 3 the quotient group is uniquely
determined if one wants to extend homology linear representations of the classical
braid group. For k=1, 2, the quotient group is the simplest that serves our purpose.
Theorem 4.4 shows that the braid action on the quotient group is virtually unique.

Our construction involving the group extension Bn;k(6) of Bn,k(6) is purely
algebraic, without a good geometric interpretation. Thus, some useful geometric
tools are not available. For example, the intersection pairing mentioned above is
not invariant under the braid group action. This seems to make it difficult to discuss
properties of our representations such as faithfulness and irreducibility. Although
the corresponding representation of the classical braid group is faithful for k=2 and
irreducible for k ≤ 2 [Jones 1987; Zinno 2001], the faithfulness and irreducibility
of our representations are beyond the scope of this article.

2. Homology linear representations

We first review the construction of homology linear representations of the classical
braid group B0,n(D) using the configuration space Bn,k(D); we then discuss the



262 BYUNG HEE AN AND KI HYOUNG KO

difficulty in extending these homology linear representations to the braid group
B0,n(6) on a surface 6 with nonempty boundary. As we noted earlier, boundary
components can be traded with punctures. From now on, we assume that6 denotes
a compact, connected, oriented surface with exactly one boundary component and
that n and k are positive integers.

Homology linear representations of classical braid group. Let φ : Bn,k(D)→ G
be an epimorphism onto a group G. Consider the covering p : B̃n,k(D)→ Bn,k(D)
corresponding to Kerφ. Since the classical braid group embeds into the mapping
class group of the punctured disk Dn , we may assume we have a homeomorphism
β̄ : Bn,k(D)→ Bn,k(D) for each β ∈ B0,n . By the lifting criteria, β̄ lifts to β̃ :
B̃n,k(D)→ B̃n,k(D) if and only if β̄∗(Kerφ) ⊂ Kerφ. Equivalently, there is an
induced automorphism β] on G such that β]φ = φβ̄∗.

Now we consider Borel–Moore homology [Borel and Moore 1960; Hughes and
Ranicki 1996] defined by

H BM
` (B̃n,k(D))= lim←− H`(B̃n,k(D), p−1(Bn,k(D) \ A)),

where the inverse limit is taken over all compact subsets A of Bn,k(D).
The middle-dimensional homology group H BM

k (B̃n,k(D)) is a free Z[G]-module
of rank

(n+k−2
k

)
(see [Bigelow 2004]) and β̃ induces a map β̃∗ : H BM

k (B̃n,k(D))→
H BM

k (B̃n,k(D)) such that

β̃∗(yc)= β](y)β̃∗(c) for y ∈ G and c ∈ H BM
k (B̃n,k(D)).

Thus the map β̃∗ is a Z[G]-module homomorphism if and only if β](y)= y for all
y ∈ G if and only if

(∗) φ = φβ̄∗ for all β ∈ B0,n.

Notice that the condition (∗) also implies β̄∗(Kerφ) ⊂ Kerφ. Here we need
to know that the induced homomorphism β̃∗ depends only on the isotopy class of
the homeomorphism β. In fact, since D has a boundary, we choose the basepoint
{z0

n+1, . . . , z0
n+k} of Bn,k(D) in ∂D, and then the isotopy preserves the basepoint

and gives the same induced map β̃∗. Consequently, if we choose a group G and
an epimorphism φ : Bn,k(D)→ G satisfying (∗), we obtain a family of represen-
tations 8k from B0,n(D) to AutZ[G](H BM

k (B̃n,k(D))), the group of Z[G]-module
automorphisms on H BM

k (B̃n,k(D)); the 8k are defined by

8k(β)= β̃∗ : H BM
k (B̃n,k(D))→ H BM

k (B̃n,k(D)).

Because we want to get a linear representation, G should be abelian. By the
presentation given in Section 1A, Bn,k(D) is generated by ζ1, . . . , ζn , σ1, . . . , σk−1.
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Suppose that φ : Bn,k(D)→ G is an epimorphism such that (∗) holds and G is
abelian. Each generator σi of B0,n(D) acts trivially on Bn,k(D) except for

(σ̄i )∗(ζi )= ζiζi+1ζ
−1
i and (σ̄i )∗(ζi+1)= ζi .

Then the condition (∗) implies that φ(ζi ) = φ((σ̄i )∗(ζi+1)) = φ(ζi+1). Hence
for k = 1, G is a quotient of 〈q〉, and φ(ζi ) = q for i = 1, . . . , n. For k ≥ 2,
G is a quotient of 〈q〉 ⊕ 〈t〉, and φ(ζi ) = q and φ(σ j ) = t for i = 1, . . . , n and
j = 1, . . . , k− 1.

We define a group G D and an epimorphism φD :Bn,k(D)→G D depending only
on k as follows:

φD : Bn,k(D)→ G D =
{〈q〉 if k = 1,
〈q〉⊕ 〈t〉 if k ≥ 2.

Theorem 2.1 [Bigelow 2004; Lawrence 1990]. Let φD : Bn,k(D)→ G D be the
epimorphism defined above. Then there is a homomorphism

8k : B0,n(D)→ Aut
Z[G D]

(H BM
k (B̃n,k(D))).

In fact,81 is the Burau representation and82 is the Lawrence–Krammer–Bigelow
representation.

Naive extension to braid groups on surfaces. Let 6 be a surface of genus g ≥ 1
having one boundary component. The assumption ∂6 6=∅ is necessary for another
reason besides the two mentioned at the end of Section 1A. Suppose that ∂6 =∅
and β ∈ B0,n(6) uniquely determines the isotopy class of a homeomorphism
β̄ : Bn,k(6) → Bn,k(6). Then we must choose the basepoint {z0

n+1, . . . , z0
n+k}

in the interior of 6. We can easily find a homeomorphism β̄ : Bn,k(6)→ Bn,k(6)

that is isotopic to the identity via an isotopy that does not preserve the basepoint.
Then β represents the identity element in B0,n(6) but β̃∗ : H BM

k (B̃n,k(6)) →
H BM

k (B̃n,k(6)) may be nontrivial. Thus no representation can be obtained in this
way if ∂6 =∅.

We need to define what it means to say that a representation of the braid group
B0,n(6) extends homology linear representations of the classical braid groups.

Definition 2.2. Given a ring R, let M be an R-module on which the braid group
B0,n(6) acts as R-module isomorphisms. The R-module M is an extension of
homology linear representations of the classical braid groups B0,n(D) if there exists
a Z[G D]-submodule M ′ of M such that

(i) M ′ is invariant under the action by the subgroup B0,n(D) of B0,n(6); and

(ii) for some k ≥ 1, R contains Z[G D] as a subring and there is a Z[G D]-
isomorphism from H BM

k (B̃n,k(D)) to M ′ that commutes with the B0,n(D)
action.
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As in the classical braid cases, we have to look at the action of B0,n(6) on
Bn,k(6). The following lemma helps us to observe the action we want.

Lemma 2.3 [Birman 1974; Fadell and Neuwirth 1962; Gonçalves and Guaschi
2003]. Let πn : Bn;k(6)→ B0,n(6) be the projection onto the first n coordinates.
Then the space Bn;k(6) is a fiber bundle with fiber Bn,k(6), and the induced short
exact sequence

1→ Bn,k(6) // Bn;k(6)
(πn)∗ // B0,n(6)→ 1

splits for all k ≥ 1.

This lemma shows us how to decompose a braid β ∈ Bn;k(6) into a product
β = β1β2 for β1 ∈ B0,n(6) and β2 ∈ Bn,k(6). Let ι : B0,n(6)→ Bn;k(6) be the
splitting map. Then the lemma shows that Bn;k(6) can be generated by the sets

X1 = {σ̄1, . . . , σ̄n−1, µ̄1, . . . , µ̄g, λ̄1, . . . , λ̄g},
X2 = {σ1, . . . , σk−1, ζ1, . . . , ζn, µ1, . . . , µg, λ1, . . . , λg},

where the generators in X1 are the images of generators in B0,n(6) under the
inclusion map ι.

Then the action of B0,n(6) on Bn,k(6) is equivalent to the conjugate action in
Bn;k(6) if we regard these two groups as subgroups of Bn;k(6). The following
easy lemma shows how B0,n(6) acts on Bn,k(6).

Lemma 2.4. Each generator of B0,n(6) acts on Bn,k(6) as follows.

(1) For 1≤ i ≤ n− 1,

(σ̄i )∗(ζt)=
{
ζiζi+1ζ

−1
i if t = i,

ζi if t = i + 1.

(2) For 1≤ r ≤ g,

(µ̄r )∗(ζ1)= µrζ1µ
−1
r ,

(µ̄r )∗(µs)=
{
µrζ1µrζ

−1
1 µ−1

r if s = r,
[µr , ζ1]µs[µr , ζ1]−1 if r < s,

(µ̄r )∗(λs)=
{
λrµrζ

−1
1 µ−1

r if s = r,
[µr , ζ1]λs[µr , ζ1]−1 if r < s.

(3) For 1≤ r ≤ g,

(λ̄r )∗(ζ1)= λrζ1λ
−1
r ,

(λ̄r )∗(µs)=
{
λrζ1λ

−1
r µrζ1λrζ

−1
1 λ−1

r if s = r,
[λr , ζ1]µs [λr , ζ1]−1 if r < s,

(λ̄r )∗(λs)=
{
λrζ1λrζ

−1
1 λ−1

r if s = r,
[λr , ζ1] λs [λr , ζ1]−1 if r < s.
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(4) All other generators act trivially.

We can find the presentation for Bn;k(6) using this lemma as follows.

Lemma 2.5. The braid group Bn;k(6) admits the presentation in which

• the generators are

X1 = {σ̄1, . . . , σ̄n−1, µ̄1, . . . , µ̄g, λ̄1, . . . , λ̄g},
X2 = {σ1, . . . , σk−1, ζ1, . . . , ζn, µ1, . . . , µg, λ1, . . . , λg};

• the relations are

(i) (BR1) through (SCR) among generators in X1,

(ii) (BR1) through (SCR) among generators in X2, and

(iii) x̄−1 yx̄ = (x̄∗)(y) for all x̄ ∈ X1 and y ∈ X2,

where the action by x̄∗ is given in Lemma 2.4.

Proof. By Lemma 2.3, the intertwining braid group Bn;k(6) is a semidirect product
of the normal subgroup Bn,k(6) and B0,n(6), where B0,n(6) acts on Bn,k(6) by
conjugation as shown in Lemma 2.4. Then it is easy to show that the semidirect
product Bn;k(6) admits the desired presentation. �

For surfaces, the condition (∗) implies an undesirable consequence:

Lemma 2.6. Let φ : Bn,k(6)→ G be an epimorphism satisfying φ = φβ̄∗ for any
β ∈ Bn,k(6). Then φ(ζi )= 1 for i = 1, . . . , n.

Proof. As seen earlier, the hypothesis on φ implies that (µr )](y)= y for all y ∈ G
and r = 1, . . . , g. But by Lemma 2.4(2), we have

(µr )]φ(λr )= φ((µ̄r )∗(λr ))= φ(λrµrζ
−1
1 µ−1

r )

= φ(λr )φ((µ̄r )∗(ζ−1
1 ))= φ(λr )(µr )](φ(ζ

−1
1 ))= φ(λr )φ(ζ

−1
1 ).

Since (µr )](φ(λr )) = φ(λr ) by hypothesis, φ(ζ1) = 1 and so φ(ζi ) = 1 for all
1≤ i ≤ n by Lemma 2.4(1). �

This lemma says that the condition (∗) forces us to set q = 1 in the group G D .
Thus Z[G D] cannot be a subring of Z[G], and so a naive attempt to obtain a rep-
resentation of the braid group B0,n(6) using a covering of Bn,k(6) corresponding
to any epimorphism φ : Bn,k(6)→ G cannot give an extension of any homology
linear representation of the classical braid groups.
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3. A family of proposed representations

As we have seen in the previous section, we are forced to take a rather small cov-
ering of Bn,k(6) in order that the condition (∗) be satisfied, that is, the braid action
commutes with covering transformations so that it preserves the coefficient. The
remedy we propose in this article is to use the same configuration space Bn,k(6)

with an extended coefficient ring so that we have some room to adjust coefficients to
make the braid action compatible with the coefficients. This remedy is a reasonable
thing to do if we hope to construct an extension of homology linear representations
of the classical braid groups. Indeed, we successfully obtain an extension that
seems the most general among ones obtained from coverings of Bn,k(6).

3A. Existence of extensions of homology linear representations. We first con-
sider the intertwining braid group Bn;k(6). Note that Bn;k(6) is a candidate for
group extension of Bn,k(6) by Lemma 2.3, and B0,n(6) acts on Bn;k(6) by right
multiplication and acts on Bn,k(6) by conjugation because Bn;k(6) is the semi-
direct product of B0,n(6) and Bn,k(6).

Let H6 be the abstract group depending only on k that admits for k ≥ 2 the
presentation in which

• the generators are q, t,m1, . . . ,mg, ¯̀1, . . . , ¯̀g,m1, . . . ,mg, `1, . . . , `g;

• the relations are such that all generators commute except that

[mr , `r ] = t2 and [mr , `r ] = [mr , ¯̀r ] = q.

Define ψ6 to be the epimorphism from Bn;k(6) to the group H6 such that

ψ6(σi )= t, ψ6(ζ j )= q, ψ6(σ̄m)= 1,

ψ6(µr )= mr , ψ6(λr )= `r , ψ6(µ̄r )= mr , ψ6(λ̄r )= ¯̀r ,
where 1≤ i ≤ k− 1, 1≤ j ≤ n, 1≤ m ≤ n− 1 and 1≤ r ≤ g. If k = 1, then we
redefine H6 to be the quotient of the group above by t = 1. Then HD is isomorphic
to G D defined earlier for all k ≥ 1, and is a subgroup of H6 for any 6 and k ≥ 1.
Even though H6 (or HD) depends on whether k = 1 or k ≥ 2, our notation does
not show it for the sake of simplicity.

Let φ6 : Bn,k(6) → G6 be the restriction of ψ6 to Bn,k(6) onto G6 , the
subgroup ψ6(Bn,k(6)) of H6 . Then G6 is generated by

{q, t,m1, . . . ,mg, `1, . . . , `g}.
Since any two elements of G6 commute up to multiplications by central elements
q and t , it is a normal subgroup of H6 . We can find the covering p : B̃n,k(6)→
Bn,k(6) corresponding to Kerφ6 . Since the braid group B0,n(6) embeds into the
mapping class group of punctured surface 6n , a braid β ∈ B0,n(6) determines a
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homeomorphism β̄ : Bn,k(6)→ Bn,k(6). Recall that the induced homomorphism
β̄∗ on Bn,k(6) is in fact the same as the conjugation by ι(β) where ι : B0,n(6)→
Bn;k(6) is the splitting map in Lemma 2.3.

Lemma 3.1. With the notation above, the homeomorphism β̄ : Bn,k(6)→ Bn,k(6)

lifts to a homeomorphism β̃ : B̃n,k(6)→ B̃n,k(6) for any β ∈ B0,n(6), and the
restriction φ6 of ψ6 satisfies β]φ6 = φ6β̄∗
Proof. By the lifting criteria, β̄ lifts to β̃ if and only if β̄∗(Kerφ6)⊂Kerφ6 if and
only if there is an induced automorphism β] on G6 given by β]φ6 = φ6β̄∗. Thus
it suffices to show that φ6β̄∗(W )= 1 for any W ∈Kerφ6 and β ∈B0,n(6). Let W
be a word in the generators {µi , λi , σi , ζi } of Bn,k(6). Since the presentation for
H6 shows that any two elements are commutative up to multiplications by central
elements q and t , we have

φ6 (W )=W (µi ← mi , λi ← `i , σi ← t, ζi ← q)= qctd
∏

mai
i `

bi
i ,

where W ({xi← yi }) denotes the word obtained from W by replacing the generators
xi by the generators yi .

Suppose φ6(W ) = 1. Then ai = bi = 0 for all 1 ≤ i ≤ g. Thus for generators
σr , µr , λr for B0,n(6), we have

φ6((σ̄r )∗ (W ))= φ6(W (ζr ← ζrζr+1ζ
−1
r , ζr+1← ζr ))

=W (µi ← mi , λi ← `i , σi ← t, ζi ← q)= 1,

φ6((µ̄r )∗ (W ))= φ6(W (λr ← λrµrζ
−1
1 µ−1

r ))

=W (µi ← mi , λi ← `i , λr ← q−1`r , σi ← t, ζi ← q)

= q−br W (µi ← mi , λi ← `i , σi ← t, ζi ← q)= 1,

φ6((λ̄r )∗ (W ))= φ6(W (µr ← λrζ1λ
−1
r µrζ1λrζ

−1
1 λ−1

r ))

=W (µi ← mi , µr ← qmr , λi ← `i , σi ← t, ζi ← q)

= qar W (µi ← mi , λi ← `i , σi ← t, ζi ← q)= 1.

Therefore φ6(β̄∗(W ))= 1 and so β](φ6(α))= φ6(β̄∗(α)) for all α ∈ Bn,k(6). �

By the lemma above, we have a Z-module automorphism β̃∗ on H BM
k (B̃n,k(6)).

Note that β̃∗ is not necessarily a Z[G6]-module homomorphism since the condition
(∗) may not hold, that is, the automorphism β] of G6 may not be the identity.

On the other hand, B0,n(6) acts on Bn;k(6) by right multiplication and so there
is an induced action of β on H6 given by β ·h= hψ6(β) for h ∈ H6 . It is possible
to alter the induced action by multiplying with a certain function χ from B0,n(6)

to the centralizer of G6 in H6 . We will discuss this possibility in Theorem 4.4.
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Using the Z-module automorphism β̃∗ and the action on Bn;k(6) by B0,n(6), we
construct a Z[H6]-module automorphism β⊗ β̃∗ on Z[H6]⊗Z[G6 ] H BM

k (B̃n,k(6))

by

(β⊗ β̃∗)(h⊗ c)= (β · h)⊗ β̃∗(c) for h ∈ H6 and c ∈ H BM
k (B̃n,k(6)).

Theorem 3.2. Let 6 be a compact, connected, oriented 2-dimensional manifold
with nonempty boundary. Define the group H6 (depending on k) and the epimor-
phism ψ6 : Bn;k(6)→ H6 as above. Let φ6 be the restriction of ψ6 to Bn,k(6).
Set G6 = φ6(Bn,k(6)). Then there is a homomorphism

8k : B0,n(6)→ Aut
Z[H6 ]

(Z[H6]⊗Z[G6 ] H BM
k (B̃n,k(6))), β 7→ β⊗ β̃∗,

where the action of β on H6 is given by β · h = hψ(β) for h ∈ H6 .
This family8k of representations is an extension of a homology linear represen-

tation of the classical braid group B0,n(D) in the sense of Definition 2.2.

Proof. Clearly 8k is a group homomorphism. To see the well-definedness and the
Z[H6]-linearity of 8k(β), we claim that

β · (hh′)= (β · h)β](h′) for all h ∈ H6, h′ ∈ G6 .

Then, for c ∈ H BM
k (B̃n,k(6)),

(β⊗ β̃∗)(h⊗ h′c)= (β · h)⊗ β̃∗(h′c)= (β · h)⊗β](h′)β̃∗(c)
= (β · h)β](h′)⊗ β̃∗(c)= (β⊗ β̃∗)(hh′⊗ c)

= hh′(β⊗ β̃∗)(1⊗ c).

Here the last equality is clear by the definition of the action by β.
To show the claim, choose α ∈ Bn,k(6) so that φ6(α)= h′. By Lemma 3.1, we

have

β](φ6(α))= φ6(β̄∗(α))= ψ6(β̄∗(α))= ψ6(β−1αβ)= ψ6(β)−1φ6(α)ψ6(β).

Thus

β · (hh′)= hh′ψ6(β)= (hψ6(β))(ψ6(β)−1h′ψ6(β))= (β · h)β](h′).
To show that 8k is an extension of a homology linear representation of the

classical braid groups, we regard an n punctured disk Dn as a subspace of 6n .
Then the configuration space Bn,k(D) is a subspace of the configuration space
Bn,k(6). For the covering p : B̃n,k(6)→ Bn,k(6) corresponding to φ6 , we denote
a connected component of p−1(Bn,k) by B̃n,k(D). Since G D embeds into G6 ,
the restriction p|B̃n,k(D) : B̃n,k(D)→ Bn,k(D) is the covering over Bn,k(D) corre-
sponding to ψ |Bn,k(D) : Bn,k(D)→ G D . In fact, H BM

k (B̃n,k(D)) is a submodule of
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H BM
k (B̃n,k(6)) as Z[G D]-module. One can see this more explicitly in the proof

of Lemma 3.3. Each braid β ∈ B0,n(D) gives a Z[HD]-module automorphism
β ⊗ β̃∗ on Z[HD] ⊗Z[G D] H BM

k (B̃n,k(D)). Since G D = HD , this automorphism is
the same as β̃∗ on H BM

k (B̃n,k(D)), which is the homology linear representation of
the classical braid group. �

In Section 4, we will show that if one wants to obtain a result similar to the
theorem above, the extension Bn;k(6) of Bn,k(6) is determined uniquely up to
redundant coefficient extension, and the quotient H6 is uniquely determined for
k ≥ 3 and is the simplest for k ≥ 1 in the sense that any proper quotient of H6 does
not contain G D properly.

Computation of the proposed representations. We now compute explicit matrix
forms of the representations described in Theorem 3.2; these turn out to be ex-
tensions of the Burau and Lawrence–Krammer–Bigelow representations of the
classical braid groups. The following lemma and its proof show not only that
H BM

k (B̃n,k(6)) is a free Z[G6]-module but also how to choose a basis. The lemma
is an extension of the corresponding lemma on a disk by Bigelow [2004], and we
borrow the main idea of his proof.

Lemma 3.3. The homology group H BM
` (B̃n,k(6)) is the direct sum of(2g+n+k−2

k

)
copies of Z[G6] for `= k and is trivial otherwise.

Proof. Let d be a metric on 6 that can be either hyperbolic or Euclidean. Suppose
punctures z0

1, . . . , z0
n lie on a geodesic. Let γ j be the geodesic segment joining z0

j
and z0

j+1 for 1 ≤ j ≤ n− 1. For 1 ≤ i ≤ g, let αi and βi be geodesic loops based
at z0

1 that represent the meridian and the longitude of the i-th handle, so that the
αi , βi , and γ j are mutually disjoint. Let 0 be the union of all of these arcs, so that
0n is a disjoint union of open 2g+ n− 1 geodesic segments. Consider

B0 = Bn,k(0)= {{z1, . . . , zk} ⊂ 0n} .
Then it is not hard to see B0 is homeomorphic to a disjoint union of

(2g+n+k−2
k

)
open k-balls that can be parametrized by (2g+ n− 1)-tuples (r1, . . . , r2g+n−1) of
nonnegative integers that add up to k so that the i-th segment of 0n contains ri

points from {z1, . . . , zk}.
Let p : B̃n,k(6)→ Bn,k(6) be the covering corresponding to the epimorphism

φ6 : Bn,k(6)→ G6 . We will be done if we can show that the map

H BM
` (p−1(B0))→ H BM

` (B̃n,k(6))
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induced by the inclusion is an isomorphism, since H BM
` (B0) is isomorphic to the

direct sum of
(2g+n+k−2

k

)
copies of H`(Dk, Sk−1).

Define a family of compact subsets Aε of 6n by

Aε = {{z1, . . . , zk} ∈ Bn,k(6) | d(zi , z j )≥ ε for i 6= j, d(zi , z0
j )≥ ε for all i, j}.

Since any compact subset of Bn,k(6) is contained in Aε for sufficiently small ε >0,
it suffices to show that

H`(p−1(B0), p−1(B0 − Aε))→ H`(B̃n,k(6), p−1(Bn,k(6)− Aε))

is an isomorphism.
Let 6ε ⊂ 6 be the closed ε-neighborhood of 0, and let Bε = Bn,k(6ε). Then

the obvious homotopy collapsing from Bn,k(6) to Bε gives the isomorphism

H`(p−1(Bε), p−1(Bε − Aε))→ H`(B̃n,k(6), p−1(Bn,k(6)− Aε)).

Let B be the set of {x1, . . . , xk} ∈ Bε such that for each xi there exists a unique
nearest point in0n . Then B is open and contains Aε∩Bε . By excision, the inclusion
induces an isomorphism

H`(p−1(B), p−1(B− Aε))→ H`(p−1(Bε), p−1(Bε − Aε)).

Finally, the obvious deformation retract from B to B0 gives an isomorphism

H`(p−1(B), p−1(B− Aε))→ H`(p−1(B0), p−1(B0 − Aε)). �

We remark that Bε= Bn,k(6ε) and B0= Bn,k(0) do not have the same homotopy
type even though 0 is a deformation retract of 6ε . This is because 0 is a 1-
dimensional complex and movements of points in 0 avoiding collision are more
restricted.

Let I (n, k, g) be the set of (2g+ n− 1)-tuples of nonnegative integers that add
up to k. The proof of Lemma 3.3 shows that a typical basis for H BM

k (B̃n,k(6)) as
free Z[G6]-module can be indexed by the set I (n, k, g). The proof also shows that
a basis for H BM

k (B̃n,k(D)) can be chosen as a subset of a basis for H BM
k (B̃n,k(6)).

Thus the homology linear representations for B0,n(D) appears in matrix forms of
proposed representations for B0,n(6) as minors.

Krammer [2000; 2002] and Bigelow [2001; 2003; 2004] have shown that there
is a natural and useful way of describing a basis geometrically. Recall the loops
αi and βi and the arcs γ j from the proof of Lemma 3.3. For (r1, . . . , r2g+n−1) ∈
I (n, k, g), choose ri disjoint duplicates of αi or βi−g or γi−2g if 1 ≤ i ≤ g or
g+ 1 ≤ i ≤ 2g or 2g+ 1 ≤ i ≤ 2g+ n− 1, respectively. For each i , join these ri

disjoint duplicates to ∂6 by mutually disjoint arcs (that determine a basing). This
geometric object is called a fork. In fact, a fork uniquely determines a k-cycle in
H BM

k (B̃n,k(6)) by lifting the Cartesian product of k curves together with basing
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β1

α2
2

γ 3
2

β∗
1

(α2
2)

∗
(γ 3

2 )∗

Figure 1. An example of a fork F (left) and its dual noodle N (right).

arcs in the fork. The basing is required to have a unique lift. For example, the fork
corresponding to (0, 2, 1, 0, 0, 3) ∈ I (3, 6, 2) looks like the set of curves on the
left of Figure 1.

As Bigelow [2004] showed for the case of the disk, the Poincaré duality, the
universal coefficient theorem, and Lemma 3.3 imply that the ordinary relative
homology Hk(B̃n,k(6), ∂ B̃n,k(6)) is the dual space of the Borel–Moore homology
H BM

k (B̃n,k(6)) in the sense that there is a nonsingular sesquilinear pairing

〈 · , · 〉 : H BM
k (B̃n,k(6))× Hk(B̃n,k(6), ∂ B̃n,k(6))→ Z[S],

where S is a skew field containing Z[G6]. In fact, the group G6 is biordered,
and so it can embed into a skew field such as the Mal’cev–Neumann power series
ring [Mal’cev 1948; Neumann 1949]. Explicitly, the pairing above is defined by
setting, for cycles F ∈ H BM

k (B̃n,k(6)) and N ∈ Hk(B̃n,k(6), ∂ B̃n,k(6)) in each
homology group,

〈F, N 〉 =
∑

y∈G6

y(F, yN ),

where ( · , · ) counts the intersection number.
Let α∗1 , . . . , α

∗
g , β∗1 , . . . , β

∗
g , γ∗1, . . . , γ

∗
g be pairwise disjoint arcs that start and

end at ∂6, and suppose α∗i (or β∗i , or γ∗j ) intersects only αi (or βi , or γ j ) once
transversely. We form a basis of Hk(B̃n,k(6), ∂ B̃n,k(6)) by duplicating the α∗i ,
β∗i or γ∗j , depending on a given (2g + n − 1)-tuple in I (n, k, g). This geometric
object is called a noodle. In fact, a noodle uniquely determines a relative k-cycle
in Hk(B̃n,k(6), ∂ B̃n,k(6)) by lifting the Cartesian product of k arcs in the noodle.
For example, the noodle corresponding to (0, 2, 1, 0, 0, 3) ∈ I (3, 6, 2) looks like
the set of arcs on the right of Figure 1.

For a k-cycle F determined by a fork and a relative k-cycle N determined by a
noodle, the sesquilinear pairing 〈F, N 〉 computes algebraic intersections between
them with coefficients in Z[G6]. This pairing can easily be computed by recording
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intersections between the fork and the noodle on6. The basis determined by forks
and the basis determined by noodles are dual with respect to the pairing.

In the case of a disc, Bigelow [2004] showed that this pairing is invariant under
the action by B0,n(D). However, in the case of a surface 6 of genus ≥ 1, it cannot
be invariant under the action by B0,n(6). In fact, the pairing cannot be preserved
by any braid group action given by a representation 9 into AutZ[G6 ](H BM

k (B̃n,k)).
Suppose it is preserved, that is,

〈F, N 〉 = 〈9(β)(F),9(β)(N )〉.
for any β ∈ B0,n(6), a k-cycle F determined by a fork, and a relative k-cycle N
determined by a noodle. Then for any y ∈ G6 ,

y〈F, N 〉 = 〈yF, N 〉
= 〈9(β)(yF),9(β)(N )〉
= β](y)〈9(β)(F),9(β)(N )〉 = β](y)〈F, N 〉.

The property y = β](y) for all y ∈ G6 would force us to set q = 1 in G6 , and so
it was abandoned.

Nonetheless, we can extend this pairing to the pairing 〈 · , · 〉H6 from

Z[H6]⊗Z[G6 ] H BM
k (B̃n,k(6))×Z[H6]⊗Z[G6] Hk(B̃n,k(6), ∂ B̃n,k(6))

to S′ defined by 〈∑
i

gi Fi ,
∑

j
h j N j

〉
H6
=
∑
i, j

gi 〈Fi , N j 〉h−1
j ,

where gi , h j ∈ Z[H6] and S′ is the skew field containing Z[H6]. Note that this
extended pairing cannot be invariant under the braid group action given by 8k

either. However it can be used to compute proposed representations 8k explicitly.
The following theorem summarizes the above discussion.

Theorem 3.4. Let the Fi and Ni be k-cycles and relative k-cycles in dual bases
determined by forks and noodles. Then 8k(β) for each β ∈ B0,n(6) is represented
by a matrix with respect to the basis {Fi | 1≤ i ≤ (2g+n+k−2

k

)} whose (i, j)-th entry
is given by ψ6(β)〈β̃(Fi ), N j 〉H6 , which is an element of Z[H6] rather than of S′.

As an example, we will show the matrix form of the representation 81 of the 3-
braid group B0,3(6) is an extension of the Burau representation when6=6(2, 1).
Since k = 1, the basis of H BM

1 (B̃3,1(6)) determined by forks can be expressed
by {γ1, γ2, α1, α2, β1, β2} and similarly the dual basis of H1(B̃3,1(6), ∂ B̃3,1(6))

determined by noodles is written by {γ∗1, γ∗2, α∗1 , α∗2 , β∗1 , β∗2 }.
Figure 2 shows the action of σ1 on the fork β1. It also shows intersection points

p1 and p2 with γ∗1 and p3 with β∗1 . In the covering space, the intersection point
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β1
σ1

(σ̃1)∗(β1)

γ ∗
1p2

p1p3

β∗
1

Figure 2. An example of the pairing of a fork and a noodle. At
left: fork β1 and σ1. At right: fork and noodles.

p1 lies on the sheet transformed by q since the fork wraps a puncture, and p2

lies on the sheet transformed by `1q since the fork contains the longitude of the
first handle and wraps a puncture. We have the negative sign for p2 since the
orientation is switched. Finally, p3 lies on the sheet containing the base point of
the covering space. Therefore we have81(σ1)(β1)=β1+q(1−`1)γ1. By a similar
computation, we can obtain every entry of 81(σ1):

81(σ1)=

 −q 1 q(1−m1) q(1−m2) q(1− `1) q(1− `2)

0 1 0 0 0 0

0 I4

 ,
81(σ2)=

(
1 0
q −q

)
⊕ I4,

81(µ1)= m1


I2 0

1 0 m1q q(m2− 1) `1− 1 q(`2− 1)
0 0 0 1 0 0

0 0 I2

 ,

81(µ2)= m2


I2 0

0 0 1 0 0 0
1 0 m1− 1 m2q `1− 1 `2− 1

0 0 I2

 ,

81(λ1)= ¯̀1


I2 0

0 q 0 0
0 1

1 0 q(m1q − 1) q(m2− 1) `1q q(`2− 1)
0 0 0 0 0 1

 ,
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81(λ2)= ¯̀2


I2 0

0 1 0 0
0 q

0 0 0 0 1 0
1 0 m1− 1 q(m2q − 1) `1− 1 `2q

 .

Similarly, we can compute the matrix form for k = 2 that is the extension of
Lawrence–Krammer–Bigelow representation. For g = 1 and n = 3, we have by
Lemma 3.3 a 10× 10 matrix for each generator. Fix a basis for H BM

2 (B̃3,2(6)) as
shown in Figure 1. Let

w1,1 = (0, 0, 2, 0), w1,2 = (0, 0, 1, 1), w2,2 = (0, 0, 0, 2),

a0,0 = (2, 0, 0, 0), a0,1 = (1, 0, 1, 0), a0,2 = (1, 0, 0, 1),

b0,0 = (0, 2, 0, 0), b0,1 = (0, 1, 1, 0), b0,2 = (0, 1, 0, 1), z= (1, 1, 0, 0)

in I (3, 2, 1). Then the action of σ1 on this basis is as follows:

82(σ1)(w1,1)= tq2w1,1,

82(σ1)(w1,2)=−tqw1,1−qw1,2,

82(σ1)(w2,2)= w1,1+(1+t−1)w1,2+w2,2,

82(σ1)(a0,0)= a0,0+q(1+t−1)(1−m1t)a0,1+q2(m2
1−(1+t)m1+1)w1,1,

82(σ1)(a0,1)=−qa0,1+q2t (m1−1)w1,1,

82(σ1)(a0,2)= a0,1+a0,2+qt (1−m1)w1,1+q(1−m1)w1,2,

82(σ1)(b0,0)= b0,0+q(1+t−1)(1−`1t)b0,1+q2(`2
1−(1+t)`1+1)w1,1,

82(σ1)(b0,1)=−qb0,1+q2t (`1−1)w1,1,

82(σ1)(b0,2)= b0,1+b0,2+qt (1−`1)w1,1+q(1−`1)w1,2,

82(σ1)(z)= q(t−1−t`1)a0,1+q(1−m1)b0,1+q2(1+m1(`1−1)−t`1)w1,1+z.

The correspondence between the basis {v j,k} in [Bigelow 2001] and our basis is

v1,2 =−tq−4w1,1,

v1,3 =−tq−4(w1,1+ q(1− t−1)w1,2+ q2w2,2),

v2,3 =−tq−2w2,2.

Then the action of 82 on the basis {v j,k} together with substitution t 7→ −t is
exactly that of Lawrence–Krammer–Bigelow representation in [Bigelow 2001].
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4. Justification of the proposed representations

To add to the family of representations proposed in the previous section, we will
now investigate the possibility that there may be other representations of the surface
braid groups that extend the homology linear representations of the classical braid
groups. One may try to consider alternatives in the three ways — a group extension
of Bn,k(6) other than Bn;k(6), a quotient group of Bn;k(6) other than H6 , and an
action on H6 by B0,n(6) other than right multiplication via the quotient map.

Group extension of Bn,k(6). To make adjustment of coefficients in the most flex-
ible way, we may try to find the largest possible group extension En,k(6) of
Bn,k(6) such that B0,n(6) acts on En,k(6). If we regard B0,n(6) and Bn,k(6)

as subgroups of some large braid group B0,n+k+`(6), then B0,n(6) acts naturally
on B0,n+k+`(6) as well as on Bn,k(6) by conjugation. Thus we assume that
Bn,k(6)⊂ En,k(6)⊂ B0,n+k+`(6) for some `≥ 0.

Lemma 4.1. Let 6 be a surface with nonempty boundary and let 6′ be a col-
lar neighborhood of ∂6. Let N (Bn,k(6)) denote the normalizer of Bn,k(6) in
B0,n+k+`(6) for some `≥ 0. Then N (Bn,k(6))∼= Bn;k(6)×B0,`(6

′).

Proof. We first identify Bn,k(6) and B0,n(6) with the corresponding subgroups
of B0,n+k+`(6) via the embeddings that add trivial ` and k + ` strands, respec-
tively. Then we will show N (Bn,k(6)) = Bn;k(6) × B0,`(6

′) as subgroups of
B0,n+k+`(6). It is clear that Bn;k(6) × B0,`(6

′) ⊂ N (Bn,k(6)) since Bn,k(6)

is a normal subgroup of Bn;k(6) from the short exact sequence of Lemma 2.3
and since elements of B0,`(6

′) commute with those of Bn,k(6). Conversely,
let β ∈ N (Bn,k(6)) ⊂ B0,n+k+`(6). Any element α ∈ Bn,k(6) and its con-
jugate β−1αβ ∈ Bn,k(6) induce permutations that preserve the sets {1, . . . , n},
{n+ 1, . . . , n+ k} and {n+ k+ 1, . . . , n+ k+ `}. It is easy to see that the induced
permutation of β itself must fix these three sets since α can be arbitrary in Bn,k(6).
Thus β ∈ Bn+k;l(6) and the split exact sequence

1→ Bn+k,l(6) // Bn+k;l(6)
(πn+k)∗ // B0,n+k(6)→ 1

gives a unique decomposition β = β1β2 for β1 ∈ B0,n+k(6) and β2 ∈ Bn+k,`(6).
In fact, β1 = (πn+k)∗(β) ∈Bn;k(6) since the epimorphism (πn+k)∗ forgets the last
` strands or replaces them by the trivial `-strand braid.

For any α ∈Bn,k(6)⊂B0,n+k(6)⊂B0,n+k+`(6), we have (πn+k)∗(β−1
2 αβ2)=

β−1
2 αβ2 since β−1

2 αβ2 ∈ B0,n+k . On the other hand, (πn+k)∗(β−1
2 αβ2) = α since

(πn+k)∗ replaces the last ` strands by the trivial braid. Thus we have β−1
2 αβ2 = α.

From the presentation of B0,n+k+`(6) in Section 1A, it is easy to see that β2 must
be a local braid in order for β2 to commute with every element of Bn,k(6). Thus
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we have β2 ∈B0,`(6
′), where 6′ is an annulus that is a collar neighborhood of ∂6

in 6. Consequently, we have shown N (Bn,k(6))⊂ Bn;k(6)×B0,`(6
′) �

By this lemma, the extension En,k(6) of Bn,k(6) can be taken as a subgroup of
Bn;k(6)×B0,l(6

′). We remark that Bn;k(6)×B0,l(6
′) is also a subgroup of the

intertwining braid group Bn;k+l(6).
Then we follow the construction given in the discussion before Theorem 3.2

with En,k(6) replacing Bn;k(6).
Let ψ : En,k(6)→ H be an epimorphism onto a group H . If we choose an

action of B0,n(6) on the extension En,k(6), then the action is carried over H via
ψ and it is convenient to use the convention that (β1β2) · h = β2 · (β1 · h) for
β1, β2 ∈ B0,n(6) and h ∈ H . To obtain a Z[H ]-module automorphism β ⊗ β̃∗ on
Z[H ]⊗Z[G]H BM

k (B̃n,k(6)) that is an extension of a homology linear representation
of the classical braid group, this induced action of B0,n(6) on H needs to satisfy
two conditions.

(i) Lifting criteria: β] exists and β](φ(α))=φ(β̄∗(α)) for all α ∈Bn,k(6), where
φ = ψ |Bn,k(6)

.

(ii) Linearity and compatibility: hh′(β ·1)= β ·(hh′)= (β ·h)β](h′) for all h ∈ H
and h′ ∈ G = φ(Bn,k(6)).

As in the proof of Theorem 3.2, we then have

(β⊗ β̃∗)(h⊗ h′c)= (β⊗ β̃∗)(hh′⊗ c)= hh′(β⊗ β̃∗)(1⊗ c)

for all h ∈ H , h′ ∈ G and c ∈ H BM
k (B̃n,k(6)).

Theorem 4.2. Suppose there are an epimorphism ψ :En,k(6)→ H and an action
of B0,n(6) on H satisfying the two conditions above. Let 9k be the representation
obtained from ψ and the action. Then

9k = 1Z[H ]⊗Z[H ′]9 ′k

for a representation 9 ′k obtained from an epimorphism ψ ′ : Bn;k(6)→ H ′ ⊂ H
and an action B0,n(6) on H ′, where 1Z[H ] is the identity map on Z[H ].
Proof. Let H ′ = {β ·1 ∈ H | β ∈B0,n(6)}φ(Bn,k(6)) and ψ ′ :Bn;k(6)→ H ′ be a
surjection defined by ψ ′(β)= β ·1 for β ∈ B0,n(6) and ψ ′ = φ on Bn,k(6). Then
since

ψ ′(β1β2)= (β1β2) · 1= β2 · (β1 · 1)= (β1 · 1)(β2 · 1)= ψ ′(β1)ψ
′(β2)

for all β1, β2∈B0,n(6), the surjectionψ ′ becomes a homomorphism that preserves
the semidirect product structure. Also we have

φ′ = ψ ′|Bn,k(6)
= ψ |Bn,k(6)

= φ
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and so φ and φ′ induce the same homology group H BM
k (B̃n,k(6)), and two Z-

module automorphisms obtained from β coincide.
Consider two representations 9k and 9 ′k corresponding to ψ and ψ ′, respec-

tively. Then 9k(β) gives a Z[H ]-homomorphism on Z[H ] ⊗Z[G] H BM
k (B̃n,k(6))

and 9 ′k(β) gives a Z[H ′]-homomorphism on Z[H ′] ⊗Z[G] H BM
k (B̃n,k(6)). Since

Z[H ] = Z[H ] ⊗Z[H ′] Z[H ′], the representation 9k(β) is a Z[H ]-homomorphism
on Z[H ]⊗Z[H ′] Z[H ′]⊗Z[G] H BM

k (B̃n,k(6)) defined by

9k(β)(hh′⊗ c)= hh′(β · 1)⊗ β̃∗(c)= h⊗ h′(β · 1)⊗ β̃∗(c)

for all h ∈ Z[H ], h′ ∈ Z[H ′] and c ∈ H BM
k (B̃n,k(6)). As claimed, this is equal to

1Z[H ]⊗Z[H ′]9 ′k(β). �

This theorem implies that we may assume that Bn;k(6)⊂ En,k(6) without loss
of generality. Then by Lemma 4.1, En,k(6)=Bn;k(6)×B for some subgroup B of
B0,`(6

′) and the theorem says that any family of representations obtained by using
En,k(6) is merely a trivial extension of the family of representations proposed in
Section 3.

Quotient of Bn;k(6). According to the scheme described in Theorem 3.2, it is
important to find a good epimorphism ψ : Bn;k(6)→ H onto some group H .

Since 6 is not a sphere, the inclusion Bn,k(D) ↪→ Bn,k(6) induces a monomor-
phism Bn,k(D) ↪→ Bn,k(6); see [Birman 1974]. Similarly, Bn;k(D) ↪→ Bn;k(6)
induces a monomorphism Bn;k(D) ↪→ Bn;k(6) (to be regarded as an inclusion).

We first determine an epimorphism ψD :Bn;k(D)→ HD to extend the map φD :
Bn,k(D)→ G D for the classical braid groups. Since we want to obtain homology
linear representations for the classical braid groups, we should use that HD =G D ,
and all of the extra generators σ̄1, . . . , σ̄n−1 of Bn;k(D) should be sent to the identity
by ψD , as we have seen earlier in Section 3A. Then ψD|Bn,k(D) = φD . For some
extension H of G D , let ψ : Bn;k(6) → H be an epimorphism. To obtain an
extension of homology linear representations of the classical braid groups via ψ ,
we require the condition

(†) ψ |Bn;k(D) = ψD

This condition is nothing but a reinterpretation of Definition 2.2 and is necessary
to make the diagram

Bn,k(D)

φD

��

� � // Bn;k(D)

ψD

��

� � // Bn;k(6)

ψ

��
G D HD

� � // H
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commutative, so that ψ |Bn,k(D) = φD and we can then apply the construction of
Theorem 3.2. We first show that the condition (†) imposes restrictions on the choice
of H .

Theorem 4.3. Let ψ6 : Bn;k(6)→ H6 be the epimorphism defined in Section 3A.

(1) Let h : H6 → H be an epimorphism such that h ◦ψ6 satisfies (†). Then h is
an isomorphism.

(2) Let ψ : Bn;k(6)→ H , an arbitrary epimorphism onto a group H , satisfy (†).
Then ψ6 factors through ψ , and H is isomorphic to H6 for k ≥ 3.

Proof. (1) It suffices to show that h(W ) = 1 implies W = 1 for any word W in
generators of H6 . Assume k ≥ 2. Using the relations of H6 , a given word W can
be put into the form

W = qctd
g∏

i=1

Wi , where Wi = mai
i `

bi
i m āi

i
¯̀b̄i
i .

First consider [W, ¯̀r ]. Note that Wr commutes with the other Wi as well as q
and t . Since ¯̀r commutes with all generators except mr and only Wr contains mr ,
we have

[W, ¯̀r ] =
(

qctd
∏

i

Wi

) ¯̀r(qctd
∏

i

Wi

)−1 ¯̀−1
r

=Wr

(
qctd

∏
i 6=r

Wi

) ¯̀r(qctd
∏
i 6=r

Wi

)−1
W−1

r
¯̀−1
r

=Wr ¯̀r W−1
r
¯̀−1
r

= (mar
r `

br
r m ār

r
¯̀b̄r
r
) ¯̀r(mar

r `
br
r m ār

r
¯̀b̄r
r
)−1 ¯̀−1

r

= mar
r
(
`br

r m ār
r
¯̀b̄r
r
) ¯̀r(`br

r m ār
r
¯̀b̄r
r
)−1m−ar

r
¯̀−1
r

= mar
r
¯̀r m−ar

r
¯̀−1
r = qar .

The last equality follows from the relation [mr , ¯̀r ] = q . By applying h and using
h(W )= 1, we have

h(qar )= h([W, ¯̀r ])= h(W )h( ¯̀r )h(W )−1h( ¯̀r )−1 = 1.

By (†), h is the identity on G D that is the subgroup generated by q and t , and q
and t are of infinite order. Thus h(qar )=qar =1 implies ar =0. Similarly, br = ār =
b̄r = 0 by considering [W,mr ], [W, `r ], and [W,mr ]. Therefore Wr = 1. Since r
is arbitrary other than 1≤ r ≤ g, we now have W = qctd . Then 1= h(W )= qctd

implies c = d = 0. Consequently, W = 1.
For the case k = 1, the proof is similar but simpler since t = 1 in H6 .
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(2) Consider the commutative diagram

Bn;k(6)
ψ //

ψ6
��

H ∼= Bn;k(6)/Kerψ

q
��

H6 ∼= Bn;k(6)/Kerψ6
h // Bn;k(6)/(Kerψ ·Kerψ6),

which consists of obvious quotient homomorphisms. Note that the condition (†)
is equivalent to Bn;k(D)/(Kerψ ∩ Bn;k(D)) ∼= G D . Thus Kerψ ∩ Bn;k(D) =
Kerψ6 ∩Bn;k(D) since ψ6 also satisfies (†). Then

(Kerψ ·Kerψ6)∩Bn;k(D)= (Kerψ ∩Bn;k(D)) · (Kerψ6 ∩Bn;k(D))

= Kerψ6 ∩Bn;k(D).

Thus h◦ψ6 satisfies (†) and h is an isomorphism by part (1). Therefore ψ6 factors
through ψ via h−1 ◦ q for k ≥ 1.

For k ≥ 3, we will show ψ : Bn;k(6)→ H factors through ψ6 , that is, there is
an epimorphism h : H6 → H such that hψ6 = ψ . Then H6 is isomorphic to H
since ψ6 also factors through ψ .

Recall the presentation for Bn;k(6) in Lemma 2.5. The condition (†) implies
ψ(σi ) = q, ψ(ζ j ) = t , and ψ(σ̄m) = 1 for all 1 ≤ i ≤ k − 1, 1 ≤ j ≤ n, and
1 ≤ m ≤ n − 1. Since k ≥ 3, the relation (CR1) among generators in X2 is not
vacuous and so the relations (CR1) through (CR3) for X2 and the condition (†)
imply

[ψ(µr ), q] = [ψ(λr ), q] = [ψ(µr ), t] = [ψ(λr ), t] = [q, t] = 1

for all 1≤ r ≤ g. Also the relation Lemma 2.5(iii) implies

[ψ(µ̄r ), q] = [ψ(λ̄r ), q] = [ψ(µ̄r ), t] = [ψ(λ̄r ), t] = 1 for all 1≤ r ≤ g.

Thus q and t lie in the center of H . Using this, all other relations in H6 can be
shown to hold in H . Therefore ψ induces an epimorphism h : H6→ H . �

Hence H6 is the unique quotient group of Bn;k(6) satisfying (†) for k ≥ 3. For
k ≤ 2, the condition (†) does not uniquely determine a quotient group of Bn;k(6).
To take advantage of representations in analyzing the surface braid group B0,n(6),
one may prefer a simpler coefficient ring as long as the representation carries
enough information. For the classical case, there are also several groups satisfying
the condition (∗) if we do not assume they are abelian. For the surface braid groups,
we cannot obtain any interesting representation if an abelian coefficient ring is used,
as discussed in Section 2. Theorem 4.3(1) says that H6 is the simplest quotient
group satisfying (†) in the sense that any further quotient of H6 violates (†).

We now discuss possible actions of B0,n(6) on H6 induced from ψ6 .
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Theorem 4.4. Let ψ6 : Bn;k(6)→ H6 be the epimorphism defined in Section 3A.
Let β ·h denote any action on h ∈ H6 by β ∈B0,n(6) that is induced from ψ6 and
satisfies the two conditions given above Theorem 4.2. Then

β · h = hχ(β)ψ6(β)

for some function χ : B0,n(6)→ CH6 (G6) with the property that

(χ, ψ6) : B0,n(6)→ CH6 (G6)o H6

is a homomorphism, where CH6 (G6) denotes the centralizer of G6 in H6 .

Proof. By the hypotheses of the action, we have

h′(β · 1)= β · (1h′)= (β · 1)β](h′) and β](h′)= ψ6(β)−1h′ψ6(β)

for all h′ ∈ G6 . By combining these two equations, we have

ψ6(β)
−1h′ψ6(β)= (β · 1)−1h′(β · 1).

and so (β · 1)ψ6(β)−1 ∈ CH6 (G6). Hence (β · 1) = χ(β)ψ6(β) for a function
χ : B0,n(6)→ CH6 (G6). Since χ(β1β2)ψ6(β1β2) = (β1β2) · 1 = β2 · (β1 · 1) =
(χ(β1)ψ6(β1))χ(β2)ψ6(β2), we have

χ(β1β2)= χ(β1)ψ6(β1)χ(β2)ψ6(β1)
−1.

This implies that

(χ(β1β2), ψ6(β1β2))= (χ(β1)ψ6(β1)χ(β2)ψ6(β1)
−1, ψ6(β1β2))

= (χ(β1), ψ6(β1))(χ(β2), ψ6(β2)).

Therefore (χ, ψ6) : B0,n(6)→ CH6 (G6)o H6 is a homomorphism. �

The function χ in this theorem behaves like a character of B0,n(6). In fact,
if k ≥ 2, it can be shown that CH6 (G6) = Z(H6) = 〈q〉 ⊕ 〈t〉. Hence χ can be
any homomorphism from B0,n(6) to Z(H6). In this case, the representations 9k

obtained from ψ are given by 9k = χ⊗8k for some character χ , where 8k is the
proposed representation in Theorem 3.2.
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