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DMITRY FUCHS AND CONSTANCE WILMARTH

We prove that a maximal nilpotent subalgebra of a Kac–Moody Lie algebra
has an (essentially unique) Euclidean metric whose Laplace operator in the
chain complex is scalar on each component of a given degree. Moreover,
both the Lie algebra structure and the metric are uniquely determined by
this property.

1. Introduction

Let g be a real Lie algebra that is either finite-dimensional or has a grading g =⊕
k∈Zn g(k) such that all the chain spaces

C (k)
q (g)=

⊕
k1+···+kq=k

(g(k1) ∧ · · · ∧ g(kq ))

are finite-dimensional. (We consider only the case g=
⊕

(k1,...,kn)�(0,...,0) g
(k1,...,kn)

where the notation (k1, . . . , kn) � (`1, . . . , `n) means that k1 ≥ `1, . . . , kn ≥ `n ,
and (k1, . . . , kn) 6= (`1, . . . , `n), and all the spaces g(k1,...,kn) are finite-dimensional.)
Suppose that for each value of k, some Euclidean structure is fixed for g(k). Then
Euclidean structures arise in all the chain spaces C (k)

q (g), and they give rise to
canonical isomorphisms between the chain spaces and the corresponding cochain
spaces, Cq

(k)(g) = (C
(k)
q (g))∗. Thus, we can regard the boundary and coboundary

operators as acting in the same spaces, that is,

∂ : C (k)
q (g)→ C (k)

q−1(g) and δ : C (k)
q (g)→ C (k)

q+1(g),

and to form the Laplace operators 1 : C (k)
q (g)→ C (k)

q (g). Chains (cochains) that
are annihilated by 1 are called harmonic. The finite-dimensional version of the
Hodge–de Rham theory yields the following result.
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Proposition 1. Every harmonic chain (cochain) is a cycle (cocycle), and every ho-
mology (cohomology) class of g with trivial coefficients is represented by a unique
harmonic chain (cochain). In particular, there are canonical isomorphisms

Ker(1 : C (k)
q (g)→ C (k)

q (g))= H (k)
q (g)= Hq

(k)(g).

For details, see [Fuchs 1986, Section 1.5.3]

Remark. The results discussed below indicate that not only the kernel but also the
whole spectrum of the Laplacian must have significance for the (co)homology. We
will return to this matter in subsequent publications.

The first computation of the spectrum of the Laplace operator in the cochain
complex of an infinite-dimensional Lie algebra was done by I. M. Gel’fand, B. L.
Feı̆gin, and D. Fuchs (of this paper) [1978], with a subsequent important correction
made by F. V. Weinstein [1993], for a maximal nilpotent subalgebra of the Virasoro
algebra; this nilpotent Lie algebra is denoted as L1(1). It has a basis {ei | i > 0}
with the commutator operation [ei , e j ] = ( j− i)ei+ j . We introduce in this algebra
a Z-grading and a Euclidean structure, letting deg ei = i and ‖ei‖= 1. For positive
integers i1, . . . , iq such that ir − ir−1 ≥ 3 for r = 2, . . . , q , let

E(i1, . . . , iq)=

q∑
s=1

( is
3

)
−

∑
1≤`<m≤q

i`im,

αr (i1, . . . , iq)=


0 if r = 1 and i1 < 3,
1 if r = 1 and i1 ≥ 3,
0 if 1< r ≤ q and ir − ir−1 = 3,
1 if 1< r ≤ q and ir − ir−1 > 3,

α(i1, . . . , iq)=

q∑
r=1

αr (i1, . . . , iq).

It is easy to check that E(1, 4, 7, . . . , 3q − 2) = E(2, 5, 8, . . . , 3q − 1) = 0, and
all other values of the function E are positive.

Theorem 2 [Gel’fand et al. 1978; Weinstein 1993]. The set of eigenvalues of the
Laplace operator 1 : C∗(L1(1))→ C∗(L1(1)) coincides with the set of numbers
E(i1, . . . , iq). The multiplicity of the eigenvalue E(i1, . . . , iq) equals 2α(i1,...,iq ).
(Occasional coincidences E(i1, . . . , iq)=E(i ′1, . . . , i ′q ′) are possible; in such cases
the multiplicities are added.)

For a sketch of a proof see [Fuchs 1986, Section 2.3.1(B)].
S. Kumar [1984], using ideas from [Kostant 1963], calculated the spectrum of

the Laplacian for a maximal nilpotent subalgebra of the Kac–Moody Lie algebra
(see also the related works [Feı̆gin 1980] and [Lepowsky 1979]). He noted that
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actually the Laplace operator is scalar in every homogeneous component with re-
spect to the canonical Zr -grading (where r is the rank of the algebra), and derived
a simple formula relating the eigenvalue to the degree.

Here, we develop a different approach to the calculating the Laplace spectrum.
In so doing, we will not only obtain a fairly elementary proof of the Kumar for-
mulas, but in addition prove that the relation between the Laplace eigenvalues
and degrees uniquely determines both the Lie algebra structure and the Euclidean
structure (which may be regarded as an alternative description of the class of Kac–
Moody Lie algebras).

We supply below all the necessary definitions; for the general theory of Kac–
Moody Lie algebras, see [Kac 1990].

Let A = ‖ai j‖ be an n × n matrix with all the diagonal entries equal to 2 and
all nondiagonal entries being nonpositive integers. We assume the matrix A is
symmetrizable, which means that there exists a diagonal matrix D whose diagonal
entries d1, . . . , dn are positive integers such that the matrix D A is symmetric. We
may also assume the matrix A is irreducible, which means that there is no partition
of {1, . . . , n} into nonempty parts I, J such that ai j = 0 for all i ∈ I and j ∈ J .
Let G =G(A) be the (real) Kac–Moody Lie algebra with Cartan matrix A, and let
N = N (A) be the corresponding nilpotent Lie algebra. In other words, N has a sys-
tem of generators e1, . . . , en with the defining set of relations (ad ei )

−ai j+1e j = 0.
The algebra N has a natural Zn-grading N =

⊕
(k1,...,kn)�(0,...,0) N (k1,...,kn) where

N (k1,...,kn) consists of linear combinations of commutator monomials of the gener-
ators involving precisely ki letters ei for i = 1, . . . , n. The following statement,
proved in Section 2, is our main result; compare with [Kumar 1984, Theorem 2.1].

Theorem 3. There exist unique Euclidean structures in the spaces N (k1,...,kn) such
that ‖ei‖ = 1 for i = 1, . . . , n and such that the corresponding Laplace operator
1 : C (k1,...,kn)

∗ (N )→ C (k1,...,kn)
∗ (N ) is the multiplication by

E(k1, . . . , kn)=
∑

i

di ki −
1
2

∑
i, j

di ai j ki k j .

Moreover, if a Zr -graded Lie algebra is generated by r generators of degrees

(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)

and the Laplace operator in its cochain complex with respect to some Euclidean
structures in the homogeneous components is described by the formulas above,
then there exists an isometric isomorphism between this Lie algebra and the nilpo-
tent Kac–Moody Lie algebra N.

Proposition 4. If E(k) 6= 0, then H (k)
∗ (N (A))= 0.

This follows from Proposition 1 and Theorem 3.
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Proposition 4 is not new: it is essentially contained in [Kac and Kazhdan 1979],
which yields a description of a Bernstein–Gel’fand–Gel’fand resolution of the
trivial module over a Kac–Moody Lie algebra. This is also a free resolution of
the trivial module over N (A).

2. Proof of Theorem 3

2.1. The Laplace operator has order 2. In the standard calculus, a linear operator
D :C∞(R)→C∞(R) is a differential operator of order 1 (that is, D( f )= a f ′+b f
where a and b are functions), if the identity

D( f g)= D( f )g+ D(g) f − D(1) f g

holds for any functions f and g. Similarly, an operator of order 2 is characterized
by the identity

D( f gh)

= D( f g)h+ D( f h)g+ D(hg) f − D( f )gh− D(g) f h− D(h) f g+ D(1) f gh

(and so on, but we do not need operators of orders greater than 2). It is well known
that the commutator of operators of order p and q has order p+ q − 1.

In the noncommutative (supercommutative) case of chains/cochains of a Lie
algebra (with a Euclidean structure), the notion of a differential order looks slightly
different. In particular, the operator δ : C∗(g)→ C∗(g) has order 1, meaning

δ(c1 ∧ c2)= δ(c1)∧ c2+ (−1)d1d2δ(c2)∧ c1 for ci ∈ Cdi (g).

However, the operator ∂ : C∗(g)→ C∗(g) has order 2, which means that

∂(c1 ∧ c2 ∧ c3)

= ∂(c1 ∧ c2)∧ c3+ (−1)d2d3∂(c1 ∧ c3)∧ c2+ (−1)d1(d2+d3)∂(c2 ∧ c3)∧ c1

− ∂(c1)∧ c2 ∧ c3− (−1)d1d2∂(c2)∧ c1 ∧ c3− (−1)(d1+d2)d3∂(c3)∧ c1 ∧ c2

for ci ∈ Cdi (g). Since the Laplace operator is a (super)commutator of ∂ and δ, it
also has order 2, and we have the following lemma.

Lemma 5. The Laplace operator 1 : C∗(g)→ C∗(g) has order 2, that is,

1(c1 ∧ c2 ∧ c3)

=1(c1 ∧ c2)∧ c3+ (−1)d2d31(c1 ∧ c3)∧ c2+ (−1)d1(d2+d3)1(c2 ∧ c3)∧ c1

−1(c1)∧ c2 ∧ c3− (−1)d1d21(c2)∧ c1 ∧ c3− (−1)(d1+d2)d31(c3)∧ c1 ∧ c2

for all ci ∈ Cdi (g).
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Remark. It is important that Lemma 5 is compatible with Theorem 3 in the sense
that if g= N = N (A) and ci ∈ C (pi )

di
(N ), where (pi )= (pi1, . . . , pin), then every

term in the equality of Lemma 5 is c1 ∧ c2 ∧ c3 times an approrpiate eigenvalue
of 1, and the equality becomes

E(p1+ p2+ p3)= E(p1+ p2)+E(p1+ p3)+E(p2+ p3)−E(p1)−E(p2)−E(p3),

which is true (because E is a polynomial of degree 2).

2.2. Construction of a Lie algebra with a given Laplace operator. Let A, ai j ,
D and di be the same as in Section 1. We will now construct a graded Lie al-
gebra g =

⊕
(k1,...,kn)�(0,...,0) g

(k1,...,kn) with Euclidean structures in the summed-
over (finite-dimensional) spaces satisfying the conclusion of Theorem 3 (with N
replaced by g). We will see that g is unique up to an isometric isomorphism,
provided that dim g(1,0,...,0) = dim g(0,1,0,...,0) = · · · = dim g(0,...,0,1) = 1. (Later on,
we will see that g=N (A).)

First consider a given graded Lie algebra g with Euclidean structures in g(k1,...,kn).
Choose an orthonormal basis in each g(k), where (k) = (k1, . . . , kn); then wedge
products of the elements of the bases in g(k) form orthonormal bases in the chain
spaces (3qg)(k). For a fixed (k) � (0, . . . , 0), consider the matrix with rows
(columns) labeled by the elements of our orthonormal bases in (3qg)(k) with q
even (odd). Let the shaded blocks represent the boundary/coboundary operators
in the chain/cochain complexes of g, and let the unshaded blocks be zero. To
illustrate:

D(k) =

...

(36g)(k)

(34g)(k)

(32g)(k)

g(k) (33g)(k) (35g)(k) · · ·

Take two rows or two columns of the matrix D(k) corresponding to basis elements
c∈ (3qg)(k) for c′ ∈ (3q ′g)(k) (so q and q ′ have the same parity) and compute their
dot product. If |q ′−q|> 2, then this dot product is obviously zero. If |q ′−q| = 2,
it is also zero because of the relations ∂ ◦∂ = 0 and δ◦δ= 0. Finally, if q ′= q , then
this dot product is the coefficient at c′ in 1(c) (and the coefficient at c in 1(c′)).

If the Laplace operator1 : C (k)
∗ →C (k)

∗ is multiplication by a positive number λ,
then the dot product of every two different rows, as well as of every two different
columns, is equal to zero, and the dot-square of every row or column is equal to λ;
in other words, the whole matrix D(k) is an orthogonal matrix times

√
λ.

We are ready for the construction announced in the beginning of the section. We
use the induction with respect to |k| = k1+· · ·+kn . We put dim g(0,...,0,1,0,...,0)= 1
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and choose (arbitrarily) nonzero vectors e1 ∈ g(1,0,...,0), . . . , en ∈ g(0,...,0,1) to have
length 1. Take a (k)= (k1, . . . , kn) where the ki are nonnegative integers such that
k1 + · · · + kn > 1. If E(k) ≤ 0, we put g(k) = 0; let E(k) > 0. By the induction
hypothesis, the matrix D(k) from above is fully determined, except the bottom left
(shaded) block. Away from this block, the dot product of every two distinct rows or
columns is zero, and the dot-square of every row or column is equal to E(k). This
follows from the identities ∂◦∂=0, δ◦δ=0 and also from Lemma 5 and the remark
after it, which implies that the Laplace operator 1 : C (k)

q → C (k)
q with q ≥ 3 (fully

determined) is multiplication by E(k). Thus, the columns of our matrix disjoint
from the bottom left box are pairwise orthogonal and have dot-squares E(k). We
can construct the missing columns making the whole matrix an orthogonal matrix
times

√
E(k). Since the dot-squares of the rows above the bottom left block are al-

ready equal to E(k), the new columns will be confined to this block. Thus, we will
have a g(k) (with dim g(k)=

∑
q≥2, even dim(3qg)(k)−

∑
q≥3, odd dim(3qg)(k)) with

a ready orthonormal basis, and the new box yields a bracket [ · , · ] : (32g)(k)→g(k).
Moreover, the orthogonality of the columns of the new box to the columns of the
box next to the right means precisely that this bracket satisfies the Jacobi identity.
(Notice that it could happen that

∑
q≥2, even dim(3qg)(k)=

∑
q≥3, odd dim(3qg)(k);

in this case we do not need any new columns and may simply put g(k) = 0.)
This completes the construction promised in the beginning of the section; the

uniqueness is obvious.

End of the proof. It remains to prove that the Lie algebra g of Section 2.2 is N (A).
This follows from three remarks.

First, it follows from the construction of Section 2.2 that if (k1, . . . , kn) �

(0, . . . , 0) and k1+· · ·+kn ≥ 1, then the bracket mapping [ · , · ] : (32g)(k)→ g(k)

is onto; hence, g (like N (A)) is generated by e1, . . . , en .
Second, the defining relations (ad ei )

−ai j+1e j = 0 hold. Indeed, the degree (k)
of (ad ei )

−ai j+1e j is described by the equalities ki =−ai j + 1, k j = 1 and ks = 0
for s 6= i, j . Hence,

E(k)=
∑

di ki −
1
2

∑
ai j ki k j

= di (−ai j + 1)+ d j − di (−ai j + 1)2− d j − di ai j (ai j + 1)

=−di ai j + di + d j − di a2
i j + 2di ai j − di − d j + di a2

i j − di ai j = 0.

By construction, this means that g(k) = 0; hence (ad ei )
−ai j+1e j = 0. Thus, there

is a graded epimorphism N (A)→ g.
Third, it is true that dim g(k) = dim N (A)(k) for all (k). Indeed, for any (k) with

E(k) 6= 0, the dimensions dim g(k) are determined inductively from the relation∑
(−1)q dim(3qg)(k) = 0. A similar relation,

∑
(−1)q dim(3q N (A))(k) = 0 (for

the same values of (k)), follows from Proposition 4 and the Euler–Poincaré lemma.
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In addition to that, dim g(k)= dim N (A)(k)= 1 if (k)= (0, . . . , 0, 1, 0, . . . , 0), and
g(k)= N (A)(k)= 0 if (k)= (k1, . . . , kn)� (0) with k1+· · ·+kn > 1, and E(k)≤ 0.
Hence, our epimorphism N (A)→ g is actually an isomorphism.

3. Conclusion

3.1. Canonical basis in N(A). The construction of Section 2.2 shows that a max-
imal nilpotent subalgebra of a Kac–Moody Lie algebra has a canonical Euclidean
metric. The metric depends on the choice of generators of length 1, but the com-
mutator relations do not depend on anything. For example, a maximal nilpotent
subalgebra of the rank 2 exceptional Lie algebra G2 has dimension 6. The Cartan
matrix is A =

[ 2 −1
−3 2

]
. There is a basis {e0,1, e1,0, e1,1, e1,2, e1,3, e2,3} in N (A)

with deg ei, j = (i, j) and the commutation relations

[e0,1, e1,0] =
√

3e1,1, [e0,1, e1,1] = 2e1,2, [e0,1, e1,2] =
√

3e1,3,

[e1,0, e1,3] =
√

3e2,3, [e1,1, e1,2] =
√

3e2,3.

If we regard this basis as orthonormal, then the Laplace operator in C (p,q)
∗ is the

multiplication by 3p+ q − 3p2
− q2
+ 3pq .

A more interesting example is provided by the twisted affine Kac–Moody Lie
algebra A(2)2 with Cartan matrix A =

[ 2 −1
−4 2

]
. This Lie algebra (after factor-

ing over the one-dimensional center) is embedded into the current Lie algebra
sl(3)⊗R[t, t−1

]. It is well known that it has a basis ei such that [ei , e j ] = αi j ei+ j ,
where the numbers αi j depend only on i, j mod 8 (see [Kac 1990, Exercise 8.16]).

The basis given in [Kac 1990] is not precisely our canonical basis; to get ours,
we need to modify it by some coefficients:

e8s =
√

2

 t2s 0 0
0 0 0
0 0 −t2s

 , e8s+1 = 2

 0 t2s 0
0 0 t2s

0 0 0

 ,
e8s+2 =

 0 0 0
0 0 0

t2s+1 0 0

 , e8s+3 =

 0 0 0
t2s+1 0 0

0 −t2s+1 0

 ,
e8s+4 =

√
2
3

 t2s+1 0 0
0 −2t2s+1 0
0 0 t2s+1

 , e8s+5 = 2

 0 t2s+1 0
0 0 −t2s+1

0 0 0

 ,
e8s+6 = 4

 0 0 t2s+1

0 0 0
0 0 0

 , e8s+7 =

 0 0 0
t2s+2 0 0

0 t2s+2 0

 .
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The commutation relations of this basis are given by the formula [e8s+i , e8s′+ j ]=

αi j e8(s+s′)+(i+ j) for 1≤ i ≤ 8 and 1≤ j ≤ 8, with the 8× 8 matrix ‖αi j‖ being

0 2
√

6 −
√

6 −2 0
√

2 −
√

2
−2 0 0 0 2 −

√
8 0

√
8

−
√

6 0 0
√

6 −
√

2 2 −2
√

2
√

6 0 −
√

6 0
√

6 0 −
√

6 0
2 −2

√
2 −
√

6 0 0
√

6 −
√

2
0
√

8 −2 0 0 0 2 −
√

8
−
√

2 0 2
√

6 −
√

6 −2 0
√

2
√

2 −
√

8 −
√

2 0
√

2
√

8 −
√

2 0


.

The natural grading of the Lie algebra A(2)2 is given by the rule that if−1≤ s≤6,
then

deg e8n+s =

{
(4n+ s, 2n) if s ≤ 1,
(4n+ s− 2, 2n+ 1) if s > 1.

The Laplace operator 1 : C (p,q)
∗ → C (p,q)

∗ with respect to the metric determined
by the basis {ei , i > 0} is the multiplication by 4p+ q − 4p2

− q2
+ 4pq .

3.2. Some remarks on the multiplicative structure in H∗(N(A)). It follows from
our results (and actually can be proved directly) that there is a basis in H∗(N (A))
represented by uniquely chosen monomial cochains (that is, products of elements
of the basis in C1(N (A)) = N (A)∗ dual to our canonical basis). This gives rise
to a description of the multiplication in H∗(N (A)), which, however, is not very
explicit. Let us begin with a couple of simple remarks.

First, it follows from the description above that the multiplication in H∗(N (A))
is “square-free”: the square of any cohomology class is zero.

Second, every monomial cochain representing a nonzero element of H∗(N (A))
should contain at least one factor from C1

(0,...,0,1,0,...,0)(N (A)); this implies that the
cohomological length of H∗(N (A)) does not exceed the rank of G(A), that is, the
size of A.

Third, in the finite-dimensional case, the multiplication in H∗(N (A)) satisfies
the Poincaré duality: If a nonzero element α ∈ Hq(N (A)) is represented by a
monomial cochain ci1 . . . ciq , then the complimentary monomial c j1 . . . c jr , where
q+r =d=dim N (A), also represents a nonzero cohomology class β ∈ H r (N (A)),
and αβ is a nonzero element in H d(N (A)) ∼= R. It follows from the preceding
remark that in the finite-dimensional case of rank 2 there are no other nonzero
products. (It seems likely that in the infinite-dimensional case of rank 2, the mul-
tiplication in H∗(N (A)) is trivial.)
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Now, let us consider some examples. Let N (A) = n(n) be the Lie algebra of
(strictly) upper triangular n× n matrices, associated to the Cartan matrix

A =


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

 .

For this Lie algebra, dim n(n) = 1
2 n(n − 1) and dim H∗(n(n)) = n!. The basis in

H∗(n(n+1)) is parametrized by the integral points of the ellipsoid x2
1+· · ·+x2

n =

x1x2+ x2x3+ · · · + xn−1xn + x1+ · · · + xn , or, still better, by the elements of the
Weyl group Sn+1 whose action on the ellipsoid above is generated by the reflections
si (x1, . . . , xn)= (x1, . . . , xi−1,−xi+xi−1+xi+1+1, xi+1, . . . , xn) for i=1, . . . , n
(in this formula, x0 and xn+1 are taken to be zero). If (p1, . . . , pn)= σ(0, . . . , 0)
for σ ∈ Sn+1, then the corresponding cohomology class γσ is in H `(n(n + 1)),
where ` is the length of σ . In this case, (p1, . . . , pn) has a unique presentation as
the sum

∑q
s=1{is, js} of different points of the form

{i, j} = (0, . . . , 0, 1
(i)
, . . . , 1, 0

( j)
, . . . , 0) for 1≤ i < j ≤ n+ 1

and the class γσ is represented by the monomial cochain ci1, j1 · · · ciq , jq , where ci, j

takes the value 1 on the one-entry matrix Ei, j and takes the value 0 on all other such
matrices. Moreover, if the presentations σ(0, . . . , 0) =

∑
{is, js}, σ ′(0, . . . , 0) =∑

{i ′t , j ′t } are disjoint and
∑
{is, js}+

∑
{i ′t , j ′t } = τ(0, . . . , 0), then γσγσ ′ = γτ ; in

all other cases, γσγσ ′ = 0.
For example, there are 6 permutations in S3: σ1 = (1, 2, 3), σ2 = (2, 1, 3),

σ3 = (1, 3, 2), σ4 = (2, 3, 1), σ5 = (3, 1, 2) and σ6 = (3, 2, 1). Accordingly, there
are 6 integral points on the ellipse x2

+ y2
− x − y− xy = 0, given by

σ1(0, 0)= (0, 0), σ4(0, 0)= (1, 2)= (0, 1)+ (1, 1),

σ2(0, 0)= (1, 0), σ5(0, 0)= (2, 1)= (1, 0)+ (1, 1),

σ3(0, 0)= (0, 1), σ6(0, 0)= (2, 2)= (1, 0)+ (0, 1)+ (1, 1),

the cohomology of n(3) is spanned by

γσ1 = 1 ∈ H 0(n(3)), γσ2, γσ3 ∈ H 1(n(3)),

γσ6 ∈ H 3(n(3)), γσ4, γσ5 ∈ H 2(n(3)),
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γσ2γσ4 = −γσ3γσ5 = γσ6 , and all other products of cohomology classes of pos-
itive dimensions are zero. Similarly for n(4) (we write σ(i jkl) for the permuta-
tion (i, j, k, l)):

σ(1234)(0, 0, 0)= (0, 0, 0), σ(2134)(0, 0, 0)= (1, 0, 0), σ(1324)(0, 0, 0)= (0, 1, 0),

σ(1243)(0, 0, 0)= (0, 0, 1), σ(3214)(0, 0, 0)= (1, 0, 0)+ (0, 1, 0)+ (1, 1, 0),

σ(2314)(0, 0, 0)= (0, 1, 0)+ (1, 1, 0), σ(2341)(0, 0, 0)= (0, 0, 1)+ (0, 1, 1)+ (1, 1, 1),

σ(3124)(0, 0, 0)= (1, 0, 0)+ (1, 1, 0), σ(3142)(0, 0, 0)= (1, 0, 0)+ (0, 0, 1)+ (1, 1, 1),

σ(2143)(0, 0, 0)= (1, 0, 0)+ (0, 0, 1), σ(2413)(0, 0, 0)= (0, 1, 0)+ (1, 1, 0)+ (0, 1, 1),

σ(1342)(0, 0, 0)= (0, 0, 1)+ (0, 1, 1), σ(4123)(0, 0, 0)= (1, 0, 0)+ (1, 1, 0)+ (1, 1, 1),

σ(1423)(0, 0, 0)= (0, 1, 0)+ (0, 1, 1), σ(1432)(0, 0, 0)= (0, 1, 0)+ (0, 0, 1)+ (0, 1, 1),

σ(3241)(0, 0, 0)= (1, 0, 0)+ (0, 0, 1)+ (0, 1, 1)+ (1, 1, 1),

σ(2431)(0, 0, 0)= (0, 1, 0)+ (0, 0, 1)+ (0, 1, 1)+ (1, 1, 1),

σ(3412)(0, 0, 0)= (0, 1, 0)+ (1, 1, 0)+ (0, 1, 1)+ (1, 1, 1),

σ(4213)(0, 0, 0)= (1, 0, 0)+ (0, 1, 0)+ (1, 1, 0)+ (1, 1, 1),

σ(4132)(0, 0, 0)= (1, 0, 0)+ (0, 0, 1)+ (1, 1, 0)+ (1, 1, 1),

σ(3421)(0, 0, 0)= (0, 1, 0)+ (0, 0, 1)+ (1, 1, 0)+ (0, 1, 1)+ (1, 1, 1),

σ(4231)(0, 0, 0)= (1, 0, 0)+ (0, 0, 1)+ (1, 1, 0)+ (0, 1, 1)+ (1, 1, 1),

σ(4312)(0, 0, 0)= (1, 0, 0)+ (0, 1, 0)+ (1, 1, 0)+ (0, 1, 1)+ (1, 1, 1),

σ(4321)(0, 0, 0)= (1, 0, 0)+ (0, 1, 0)+ (0, 0, 1)+ (1, 1, 0)+ (0, 1, 1)+ (1, 1, 1).

The cohomology classes of the corresponding monomial cochains form a basis in
the cohomology:

γ(1234) = 1 ∈ H 0(n(4)),

γ(2134), γ(1324), γ(1243) ∈ H 1(n(4)),

γ(2314), γ(3124), γ(2143), γ(1342), γ(1423) ∈ H 2(n(4)),

γ(3214), γ(2341), γ(3142), γ(2413), γ(4123), γ(1432) ∈ H 3(n(4)),

γ(3241), γ(2413), γ(3412), γ(4213), γ(4132) ∈ H 4(n(4)),

γ(3421), γ(4231), γ(4312) ∈ H 5(n(4)),

γ(4321) ∈ H 6(n(4)).

The multiplication is described by the following relations:

γ(2134)γ(1243) = γ(2143);

γ(2134)γ(2314) =−γ(1324)γ(3124) = γ(3214),
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γ(1324)γ(1342) =−γ(1243)γ(1423) = γ(1432);

γ(2134)γ(2341) = γ(3241),

γ(1324)γ(2341) = γ(2431),

γ(1324)γ(4123) =−γ(4213),

γ(1243)γ(4123) =−γ(4132);

γ(1243)γ(3412) = γ(2314)γ(2341) =−γ(3421),

−γ(3124)γ(2341) = γ(1342)γ(4123) = γ(4231),

γ(2134)γ(3412) = γ(1423)γ(4123) = γ(4312);

−γ(2134)γ(1243)γ(3412) =−γ(2134)γ(2314)γ(2341) = γ(1324)γ(3124)γ(2341)

= γ(1324)γ(1342)γ(4123) =−γ(1243)γ(1423)γ(4123)

= γ(3142)γ(2413) = γ(4321).

Although the procedure always determines the multiplication in H∗(N (A)), it
does not give a satisfactory explicit description even of the ring H∗(n(n)), for
reasons unclear to us.
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