Vol. 248, No. 1, 2010

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Uniquely presented finitely generated commutative monoids

Pedro A. García-Sánchez and Ignacio Ojeda

Vol. 248 (2010), No. 1, 91–105
Abstract

A finitely generated commutative monoid is uniquely presented if it has a unique minimal presentation. We give necessary and sufficient conditions for finitely generated, combinatorially finite, cancellative, commutative monoids to be uniquely presented. We use the concept of gluing to construct commutative monoids with this property. Finally, for some relevant families of numerical semigroups we describe the elements that are uniquely presented.

Keywords
commutative monoid, affine semigroup, numerical semigroup, congruences, minimal presentation, Betti numbers, indispensability, gluing of semigroups
Mathematical Subject Classification 2000
Primary: 20M14
Secondary: 20M05
Milestones
Received: 24 July 2009
Revised: 6 May 2010
Accepted: 10 May 2010
Published: 1 October 2010
Authors
Pedro A. García-Sánchez
Departamento de Álgebra
Universidad de Granada
Av. Fuentenueva, s/n
E18071 Granada
Spain
http://www.ugr.es/~pedro/
Ignacio Ojeda
Departamento de Matemáticas
Universidad de Extremadura
Av. de Elvas, s/n
E06071 Badajoz
Spain
http://matematicas.unex.es/~ojedamc/