Vol. 248, No. 1, 2010

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Infinitesimal rigidity of polyhedra with vertices in convex position

Ivan Izmestiev and Jean-Marc Schlenker

Vol. 248 (2010), No. 1, 171–190
Abstract

Let P 3 be a polyhedron. It was conjectured that if P is weakly convex (that is, its vertices lie on the boundary of a strictly convex domain) and decomposable (that is, P can be triangulated without adding new vertices), then it is infinitesimally rigid. We prove this conjecture under a weak additional assumption of codecomposability.

The proof relies on a result of independent interest about the Hilbert–Einstein function of a triangulated convex polyhedron. We determine the signature of the Hessian of that function with respect to deformations of the interior edges. In particular, if there are no interior vertices, then the Hessian is negative definite.

Keywords
rigidity, polyhedra, nonconvex, Hilbert–Einstein functional
Mathematical Subject Classification 2000
Primary: 52B10, 52C25
Milestones
Received: 22 August 2009
Accepted: 28 November 2009
Published: 1 October 2010
Authors
Ivan Izmestiev
Institut für Mathematik, MA 8-3
Technische Universität Berlin
Strasse des 17. Juni 136
10623 Berlin
Germany
http://www.math.tu-berlin.de/~izmestie/
Jean-Marc Schlenker
Institut de Mathématiques de Toulouse, UMR CNRS 5219
Université Toulouse III
31062 Toulouse cedex 9
France
http://www.math.univ-toulouse.fr/~schlenker/