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EXPRESSIONS FOR CATALAN KRONECKER PRODUCTS

ANDREW A. H. BROWN,
STEPHANIE VAN WILLIGENBURG AND MIKE ZABROCKI

We give some elementary manifestly positive formulas for the Kronecker
products s(d,d) ∗ s(d+k,d−k). These formulas demonstrate some fundamen-
tal properties of the Kronecker coefficients, and we use them to deduce a
number of enumerative and combinatorial results.

1. Introduction

A classic open problem in algebraic combinatorics is to explain in a manifestly
positive combinatorial formula the Kronecker product (or internal product) of two
Schur functions. This product is the Frobenius image of the internal tensor product
of two irreducible symmetric group modules, or it is alternatively the characters
of the induced tensor product of general linear group modules. Although for rep-
resentation theoretic reasons this expression clearly has nonnegative coefficients
when expanded in terms of Schur functions, it remains an open problem to provide
a satisfying positive combinatorial or algebraic formula for the Kronecker product
of two Schur functions.

Many attempts have been made to capture some aspect of these coefficients, for
example, special cases [Bessenrodt and Behns 2004; Bessenrodt and Kleshchev
1999; Remmel and Whitehead 1994; Rosas 2001], asymptotics [Ballantine and
Orellana 2005; 2005], stability [Vallejo 1999], the complexity of calculating them
[Bürgisser and Ikenmeyer 2008], and conditions under which they are nonzero
[Dvir 1993]. Given that the Littlewood–Richardson rule and many successors have
so compactly and cleanly been able to describe the external product of two Schur
functions, it seems as though some new ideas for capturing the combinatorics of
Kronecker coefficients are needed.

The results in this paper were inspired by the symmetric function identity of
[Garsia et al. 2009, Theorem I.1] for the Kronecker product s(d,d) ∗ s(d,d) of two
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Schur functions. More precisely, for a subset of partitions X of 2d , if we set
[X ] =

∑
λ∈X sλ, called a rug, then

(1-1) s(d,d) ∗ s(d,d) = [4 parts all even or all odd].

This identity differs significantly from most published results on the Kronecker
product: instead of giving a combinatorial interpretation or algorithm, it clearly
states exactly which partitions have nonzero coefficients and that all of the coeffi-
cients are 0 or 1.

This computation arose in the solution to a mathematical physics problem related
to resolving the interference of 4 qubits [Wallach 2005] because the sum of these
coefficients is equal to the dimensions of polynomial invariants of four copies of
SL(2,C) acting on C8. Understanding the Kronecker product of s(d,d) with sλ for
partitions λ with 4 parts that are all even or all odd would be useful for calculating
the dimensions of invariants of six copies of SL(2,C) acting on C12, which is
a measure of entanglement of 6 qubits. Ultimately we would like to be able to
compute

CTa1,a2,...,ak

( ∏k
i=1(1− a2

i )∏
S⊆{1,2,...k}(1− q

∏
i∈S ai/

∏
j /∈S a j )

)
=

∑
d≥0

〈s∗k(d,d), s(2d)〉q2d

(see [Garsia et al. 2010, formulas I.4 and I.5] and [Luque and Thibon 2006] for
a discussion), where CT represents the operation of taking the constant term and
equations of this type are a motivation for understanding the Kronecker product
with s(d,d) as completely as possible.

Using s(d,d) ∗ s(d,d) as our inspiration, we show in Corollary 3.6 that

s(d,d) ∗ s(d+1,d−1) = [2 even parts and 2 odd parts]

and with a similar computation we also derive that

s(d,d) ∗ s(d+2,d−2) = [4 parts, all even or all odd, but not 3 the same]

+ [4 distinct parts].

Interestingly, this formula says that all of the coefficients in the Schur expansion
of s(d,d)∗s(d+2,d−2) are either 0, 1 or 2, and that the coefficient is 2 for those Schur
functions indexed by partitions with 4 distinct parts that are all even or all odd.

These and further examples suggest that the Schur function expansion of s(d,d)∗
s(d+k,d−k) has the pattern of a boolean lattice of subsets, in that it can be written as
the sum of bk/2c+1 intersecting sums of Schur functions each with coefficient 1.
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The main result of this article is Theorem 3.1, which states that

(1-2) s(d,d) ∗ s(d+k,d−k) =

k∑
i=0

[(k+ i, k, i)P] +
k∑

i=1

[(k+ i + 1, k+ 1, i)P],

where we have used the notation γP to represent the set of partitions λ of 2d of
length less than or equal to 4 such that λ− γ (representing a vector difference) is
a partition with 4 even parts or 4 odd parts. The disjoint sets of this sum can be
grouped so that the sum is of only bk/2c+1 terms, which shows that the coefficients
always lie in the range 0 through bk/2c + 1. The most interesting aspect of this
formula is that we see the lattice of subsets arising in a natural and unexpected way
in a representation-theoretic setting. This is potentially part of a more general result
and the hope is that this particular model will shed light on a general formula for the
Kronecker product of two Schur functions, but our main motivation for computing
these is to develop computational tools.

There are yet further motivations for restricting our attention to the Kronecker
product of s(d,d) with another Schur function. The Schur functions indexed by the
partition (d, d) are a special family for several combinatorial reasons, and so there
is reason to believe that their behavior will be more accessible than the general case
of the Kronecker product of two Schur functions. More precisely, Schur functions
indexed by partitions with two parts are notable because they are the difference of
two homogeneous symmetric functions, for which a combinatorial formula for the
Kronecker product is known. In addition, a partition (d, d) is rectangular and hence
falls under a second category of Schur functions that are often combinatorially
more straightforward to manipulate than the general case.

From the hook length formula it follows that the number of standard tableau of
shape (d, d) is equal to the Catalan number

Cd =
1

d+1

(
2d
d

)
.

Therefore, from the perspective of S2d representations, we may, by taking the
Kronecker product with the Schur function s(d,d) and the Frobenius image of a
module, explain how the tensor of a representation with a particular irreducible
module of dimension Cd decomposes.

The paper is structured as follows. In Section 2, we review pertinent background
information including necessary symmetric function notation and lemmas needed
for later computation. In Section 3, we consider a generalization of formula (1-1)
to an expression for s(d,d)∗s(d+k,d−k). Finally, Section 4 is devoted to combinatorial
and symmetric function consequences of our results. In particular, we are able to
give generating functions for the partitions that have a particular coefficient in the
expression s(d,d) ∗ s(d+k,d−k).
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2. Background

Partitions. A partition λ of an integer n, denoted λ ` n, is a finite sequence of
nonnegative integers (λ1 ≥ λ2 ≥ · · · ≥ λ`) whose values sum to n. The height or
length of the partition, denoted `(λ), is the maximum index for which λ`(λ)>0. We
call the λi parts or rows of the partition, and if λi appears ni times we abbreviate
this subsequence to λni

i . With this in mind if λ = (knk , (k − 1)nk−1, . . . , 1n1), then
we define zλ = 1n11! 2n22! · · · knk k!. The 0 parts of the partition are optional and
we will assume that λi = 0 for i > `(λ).

Let λ = (λ1, λ2, . . . , λ`) be a partition of n. To form the diagram associated
with λ, place a cell at each point ( j, i) in matrix notation, where 1 ≤ i ≤ λ j and
1 ≤ j ≤ `. We say λ has transpose λ′ if the diagram for λ′ is given by the points
(i, j) for which 1≤ i ≤ λ j and 1≤ j ≤ `.

Symmetric functions and the Kronecker product. The ring of symmetric func-
tions is the graded subring of Q[x1, x2, . . . ] given by 3 :=Q[p1, p2, . . . ], where
pi = x i

1 + x i
2 + · · · are the elementary power sum symmetric functions. For

λ= (λ1, λ2, . . . , λ`), we define pλ := pλ1 pλ2 · · · pλ` . The interested reader should
consult a reference such as [Macdonald 1995] for more details of the structure of
this ring. It is straightforward to see that {pλ}λ`n≥0 forms a basis for 3. This basis
is orthogonal to itself with respect to the scalar product on 3:

〈pλ, pµ〉 = zλδλµ.

However, our focus for this paper will be the basis {sλ}λ`n≥0 of 3 known as the
basis of Schur functions, which is the orthonormal basis under the scalar product:

〈sλ, sµ〉 = δλµ.

The Kronecker product is the operation

(2-1)
pλ
zλ
∗

pµ
zµ
= δλµ

pλ
zλ

on symmetric functions that in terms of the Schur functions becomes

sµ ∗ sν =
∑
λ`|µ|

Cµνλsλ.

The Kronecker coefficients Cµνλ encode the inner tensor product of symmetric
group representations. That is, if we denote the irreducible Sn module indexed by
a partition λ by Mλ and if Mµ

⊗Mν represents the tensor of two modules with the
diagonal action, then the module decomposes as

Mµ
⊗Mν

'

⊕
λ

(Mλ)⊕Cµνλ .
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The Kronecker coefficients also encode the decomposition of GLnm polynomial
representations to GLn ⊗GLm representations

ResGLmn
GLn ⊗GLm

(V λ)'
⊕
µ,ν

(V µ
⊗ V ν)⊕Cµνλ .

It easily follows from (2-1) and the linearity of the product that these coefficients
satisfy the symmetries

Cµνλ = Cνµλ = Cµλν = Cµ′ν′λ and Cλµ(n) = Cλµ′(1n) =

{
1 if λ= µ,
0 otherwise,

which we will use extensively in what follows.
We will need some symmetric function identities. Recall that for a symmetric

function f , the symmetric function operator f ⊥ (read “eff perp”) is defined to be
the operator dual to multiplication with respect to the scalar product. That is,

(2-2) 〈 f ⊥g, h〉 = 〈g, f · h〉.

The perp operator can also be defined linearly by s⊥λ sµ = sµ/λ =
∑

ν`|µ|−|λ| c
µ
λνsν ,

where the cµλν are the Littlewood–Richardson coefficients. We will make use of the
following well-known relation, which connects the internal and external products:

(2-3) 〈sλ f, g ∗ h〉 =
∑
µ,ν`|λ|

Cλµν〈 f, (s⊥µ g) ∗ (s⊥ν h)〉.

This formula follows because of the relationship between the internal coproduct
and the scalar product. It may also be seen to hold on the power sum basis since

(2-4)
〈
pλ pµ,

pγ
zγ
∗

pν
zν

〉
=

〈
pµ,

(
p⊥λ

pγ
zγ

)
∗

(
p⊥λ

pν
zν

)〉
,

which holds because both the sides are 1 if and only if γ = ν and are both equal to
the union of the parts of λ and µ. This given, (2-3) follows by linearity.

From these two identities and the Littlewood–Richardson rule, we derive this:

Lemma 2.1. If `(λ) > 4, then C(d,d)(a,b)λ = 0. Otherwise it satisfies the following
recurrences. If `(λ)= 4, then

(2-5) 〈s(d,d) ∗ s(d+k,d−k), sλ〉 = 〈s(d−2,d−2) ∗ s(d+k−2,d−k−2), sλ−(14)〉.

If `(λ)= 3, then

(2-6) 〈s(d,d) ∗ s(d+k,d−k), sλ〉 = 〈s(d−1,d−1) ∗ s(d+k−1,d−k−1), s(1)sλ−(13)〉

− 〈s(d−2,d−2) ∗ s(d+k−2,d−k−2), s⊥(1)sλ−(13)〉.
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If `(λ)= 2, then

(2-7) 〈s(d,d) ∗ s(d+k,d−k), sλ〉 =
{

1 if k ≡ λ2 (mod 2) and λ2 ≥ k,
0 otherwise.

Proof. For (2-7), see [Remmel and Whitehead 1994, Theorem 3.3] and [Rosas
2001, Corollary 1]. The result also appears in [Garsia et al. 2010, Theorem 2.2].

Regev [1980] proves that the maximum height of an indexing partition of the
terms of s(d,d)∗s(d+k,d−k) will be at most 4; hence we can conclude that if `(λ)> 4,
then C(d,d)(a,b)λ = 0.

Assume that `(λ)= 4. By the Pieri rule, s(14)sλ−(14) is equal to sλ plus terms of
the form sγ, where `(γ) > 4. As a consequence,

〈s(d,d) ∗ s(d+k,d−k), sλ〉 = 〈s(d,d) ∗ s(d+k,d−k), s(14)sλ−(14)〉

=

∑
µ`4

〈(s⊥µ s(d,d)) ∗ (s⊥µ′s(d+k,d−k)), sλ−(14)〉.

Every term in this sum is 0 unless both µ and µ′ have length no more than 2. The
only term for which this is true is µ= (2, 2), and s⊥(2,2)(s(a,b))= s(a−2,b−2); hence
(2-5) holds.

Assume that `(λ)= 3. Although there are cases to check, it follows again from
the Pieri rule that s(13)sλ−(13) − s(14)s⊥(1)sλ−(13) is equal to sλ plus terms involving
sγ, where `(γ) > 4. Therefore,

〈s(d,d) ∗ s(d+k,d−k), sλ〉 = 〈s(d,d) ∗ s(d+k,d−k), s(13)sλ−(13)− s(14)s
⊥

(1)sλ−(13)〉

=

∑
µ`3

〈(s⊥µ s(d,d)) ∗ (s⊥µ′s(d+k,d−k)), sλ−(13)〉

− 〈s(d−2,d−2) ∗ s(d+k−2,d−k−2), s⊥(1)sλ−(13)〉.

Again, in the sum the only terms that are not equal to 0 are those such that the length
of both µ and µ′ less than or equal to 2, and in this case the only such partition
is µ = (2, 1). By the Littlewood–Richardson rule, s⊥(2,1)(s(a,b)) = s⊥(1)(s(a−1,b−1));
hence this last expression is equal to

〈(s⊥(1)s(d−1,d−1)) ∗ (s⊥(1)s(d+k−1,d−k−1)), sλ−(13)〉

− 〈s(d−2,d−2) ∗ s(d+k−2,d−k−2), s⊥(1)sλ−(13)〉

= 〈s(d−1,d−1) ∗ s(d+k−1,d−k−1)), s(1)sλ−(13)〉

− 〈s(d−2,d−2) ∗ s(d+k−2,d−k−2), s⊥(1)sλ−(13)〉. �

To express our main results we will use the characteristic of a boolean-valued
proposition. If R is a proposition, then we denote the propositional characteristic
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(or indicator) function of R by

((R))=
{

1 if proposition R is true,
0 otherwise.

3. The Kronecker product s(d,d) ∗ s(d+k,d−k)

Let P indicate the set of partitions with four even parts or four odd parts, and let P
be the set of partitions with 2 even parts and 2 odd parts (that is, the complement
of P in the set of partitions of even size with at most 4 parts).

We let γP represent the set of partitions λ of 2d (the value of d will be implicit
in the left hand side of the expression) such that λ−γ ∈ P . We also let (γ]α)P =
γP ∪αP . In the cases we consider, the partitions in γP and αP are disjoint.

Theorem 3.1. For λ a partition of 2d ,

(3-1) 〈s(d,d) ∗ s(d+k,d−k), sλ〉

=

k∑
i=0

((λ ∈ (k+i, k, i)P))+
k∑

i=1

((λ ∈ (k+i+1, k+1, i)P)).

In the notation we have introduced, Theorem 3.1 can easily be restated:

Corollary 3.2. For k ≥ 0, if k is odd, then

s(d,d) ∗ s(d+k,d−k)

= [((k, k)] (k+ 1, k, 1)] (k+ 2, k+ 1, 1))P]

+

(k−1)/2∑
i=1

[((k+ 2i, k, 2i)] (k+ 2i + 1, k+ 1, 2i)

] (k+ 2i + 1, k, 2i + 1)] (k+ 2i + 2, k+ 1, 2i + 1))P],

and if k is even, then

s(d,d) ∗s(d+k,d−k)= [(k, k)P]+
k/2∑
i=1

[((k+2i−1, k, 2i−1)] (k+2i, k+1, 2i−1)

] (k+ 2i, k, 2i)] (k+ 2i + 1, k+ 1, 2i))P].

As a consequence, the coefficients of s(d,d)∗s(d+k,d−k) will all be less than or equal
to bk/2c+ 1.

Remark 3.3. The upper bound on the coefficients that appear in the expressions
s(d,d) ∗s(d+k,d−k) are sharp in that for sufficiently large d , there is a coefficient that
will be equal to bk/2c+ 1.

Remark 3.4. This regrouping of the rugs is not unique but is useful because there
are partitions that will fall in the intersection of each of these sets. This set of
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rugs is also not unique in that it is possible to describe other collections of sets of
partitions (for example, see (3-4)).

Remark 3.5. This case has been considered in more generality by Remmel and
Whitehead [1994] and Rosas [Rosas 2001] in their study of the Kronecker product
of two Schur functions indexed by two-row shapes. In relation to these results,
our first (lengthy) derivation of a similar result started with the formula of Rosas,
but was later replaced by the current simpler identity. Meanwhile, R. Orellana, in
a personal communication, has informed us that the journal version of the earlier
paper has an error in it. Our computer implementation of [Remmel and White-
head 1994, Theorem 2.1] does not agree, for example, with direct computation for
(h, k) = (4, 1) and (l,m) = (3, 2) and ν = (3, 1, 1). Consequently, we wanted an
independent proof of Theorem 3.1, and as a result our derivation is an elementary
proof that uses induction involving symmetric function identities.

We note that for k= 2, the expression stated in the introduction does not exactly
follow this decomposition, but it does follow from some manipulation.

Corollary 3.6. For d ≥ 1,

s(d,d) ∗ s(d,d) = [P],(3-2)

s(d,d) ∗ s(d+1,d−1) = [P](3-3)

and for d ≥ 2,

(3-4) s(d,d) ∗ s(d+2,d−2) = [P ∩ at most two equal parts] + [distinct partitions].

Proof. Note that (3-2) is just a restatement of Corollary 3.2 in the case that k = 0
and is [Garsia et al. 2009, Theorem I.1].

First, by Theorem 3.1 we note that

C(d,d)(d+1,d−1)λ = ((λ ∈ (1, 1)P))+ ((λ ∈ (2, 1, 1)P))+ ((λ ∈ (3, 2, 1)P)).

If λ ∈ P , then λ− (1, 1), λ− (2, 1, 1), λ− (3, 2, 1) are all not in P , so each of
the terms in that expression are 0. If λ is a partition with two even parts and two
odd parts (that is, λ ∈ P), then either λ1 ≡ λ2 and λ3 ≡ λ4 (mod 2) or λ1 ≡ λ3 and
λ2 ≡ λ4 (mod 2) or λ2 ≡ λ3 and λ1 ≡ λ4 (mod 2). In each of these three cases,
exactly one of the expressions ((λ∈ (1, 1)P)), ((λ∈ (2, 1, 1)P)) or ((λ∈ (3, 2, 1)P))
will be 1 and the other two will be zero. Therefore,∑

λ`2d

C(d,d)(d+1,d−1)λsλ = [P].
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We also have by Theorem 3.1

C(d,d)(d+2,d−2)λ = ((λ ∈ (2, 2)P))+ ((λ ∈ (4, 2, 2)P))− ((λ ∈ (6, 4, 2)P))

+ ((λ ∈ (3, 2, 1)P))+ ((λ ∈ (4, 3, 1)P))

+ ((λ ∈ (5, 3, 2)P))+ ((λ ∈ (6, 4, 2)P)).

Any distinct partition in P is also in (6, 4, 2)P . Every distinct partition in P will
have two odd parts and two even parts and will be in one of (3, 2, 1)P , (4, 3, 1)P or
(5, 3, 2)P , depending on which of λ2, λ1 or λ3 is equal to λ4 (mod 2), respectively.
Therefore, we have

(3-5) [distinct partitions] = [((3, 2, 1)] (4, 3, 1)] (5, 3, 2)] (6, 4, 2))P].

If λ∈ (2, 2)P∩(4, 2, 2)P , then λ2≥λ3+2 because λ∈ (2, 2)P , and λ1≥λ2+2
and λ3 ≥ λ4+2 because λ ∈ (4, 2, 2)P , so λ ∈ (6, 4, 2)P . Conversely, one verifies
that in fact (2, 2)P ∩ (4, 2, 2)P = (6, 4, 2)P; hence

[(2, 2)P ∪ (4, 2, 2)P] = [(2, 2)P] + [(4, 2, 2)P] − [(6, 4, 2)P].

If λ ∈ P does not have three equal parts, then either λ2 > λ3, or λ1 > λ2 and
λ3 > λ4. Therefore, λ ∈ (2, 2)P ∪ (4, 2, 2)P and hence (2, 2)P ∪ (4, 2, 2)P =
P ∩ (at most two equal parts). �

Proof of Theorem 3.1. Our proof proceeds by induction on the value of d and uses
the Lemma 2.1. We will consider two base cases because (2-6) and (2-5) give
recurrences for two smaller values of d . The exception for this is of course that
λ is a partition of length 2 since it is easily verified that the two sides of (3-1)
agree: the only term on the right hand side of the equation that can be nonzero is
((λ ∈ (k, k)P)).

When d=k, the left hand side of (3-1) is 〈s(k,k)∗s(2k), sλ〉, which is 1 if λ= (k, k)
and 0 otherwise. On the right hand side of (3-1) we have ((λ ∈ (k, k)P)) is 1 if and
only if λ= (k, k) and all other terms are 0, and hence the two expressions agree.

If d = k+1, then s(k+1,k+1) ∗ s(2k−1,1) = s(k+1,k,1)+ s(k+2,k). The only partitions
λ of 2k + 2 such that the indicator functions on the right hand side of (3-1) can
be satisfied are ((λ ∈ (k, k)P)) when λ = (k+2, k) and ((λ ∈ (k+1, k, 1)P)) when
λ= (k+1, k, 1). All others must be 0 because the partitions that are subtracted off
are larger than 2k+2.

Now assume that (3-1) holds for all values strictly smaller than d . If `(λ) = 4,
then λ− γ ∈ P if and only if λ− γ − (14) ∈ P for all partitions γ of length less
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than or equal to 3, so

〈s(d,d) ∗ s(d+k,d−k), sλ〉 = 〈s(d−2,d−2) ∗ s(d+k−2,d−k−2), sλ−(14)〉

=

k∑
i=0

((λ−(14) ∈ (k+i, k, i)P))+
k∑

i=1

((λ−(14) ∈ (k+i+1, k+1, i)P))

=

k∑
i=0

((λ ∈ (k+i, k, i)P))+
k∑

i=1

((λ ∈ (k+i+1, k+1, i)P)).

So we can now assume that `(λ) = 3. By (2-6) we need to consider the coef-
ficients of the form 〈s(d,d) ∗ s(d+k,d−k), sµ〉, where sµ appears in the expansion of
s(1)sλ−(13) or s⊥(1)sλ−(13). If λ has three distinct parts and λ3 ≥ 2 then µ = λ− δ,
where

δ ∈ {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1,−1), (2, 1, 1), (1, 2, 1), (1, 1, 2)}

and we can assume by induction that these expand into terms having the form
±((λ− δ− γ ∈ P)), where γ is a partition. However, if λ is not distinct or λ3 = 1,
then for some δ in the set, λ− δ will not be a partition and ((λ− δ ∈ γP)) will be
0, and we can add these terms to our formulas so that we can treat the argument
uniformly and not have to consider different possible λ.

One obvious reduction we can make to treat the expressions more uniformly is
to note that ((λ− (1, 1, 1,−1) ∈ γP))= ((λ− (2, 2, 2) ∈ γP)).

Let
C1 = {(1, 1, 0), (1, 0, 1), (0, 1, 1), (2, 2, 2)},

C2 = {(2, 1, 1), (1, 2, 1), (1, 1, 2)}.

By the induction hypothesis and (2-6), we have

〈s(d,d) ∗ s(d+k,d−k), sλ〉

=

∑
δ∈C1

( k∑
i=0

((λ−δ ∈ (k+i, k, i)P))+
k∑

i=1

((λ−δ ∈ (k+i+1, k+1, i)P))
)

−

∑
δ∈C2

( k∑
i=0

((λ−δ ∈ (k+i, k, i)P))+
k∑

i=1

((λ−δ ∈ (k+i+1, k+1, i)P))
)
.

We notice that

λ− (2, 2, 2)− (k+i, k, i)= λ− (1, 1, 2)− (k+i+1, k+1, i),

λ− (2, 1, 1)− (k+i, k, i)= λ− (1, 0, 1)− (k+i+1, k+1, i),

λ− (1, 2, 1)− (k+i, k, i)= λ− (0, 1, 1)− (k+i+1, k+1, i),
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so the corresponding terms always cancel. With this reduction, we are left with the
terms∑
δ∈C3

k∑
i=0

((λ−δ ∈ (k+i, k, i)P))+
∑
δ∈C4

k∑
i=1

((λ−δ ∈ (k+i+1, k+1, i)P))

−

k∑
i=0

((λ−(1, 1, 2) ∈ (k+i, k, i)P))−
∑
δ∈C5

k∑
i=1

((λ−δ ∈ (k+i+1, k+1, i)P))

− ((λ−(1, 2, 1) ∈ (k, k)P))− ((λ−(2, 1, 1) ∈ (k, k)P))+ ((λ−(2, 2, 2) ∈ (k, k)P)),

where
C3 = {(0, 1, 1), (1, 0, 1), (1, 1, 0)},

C4 = {(1, 1, 0), (2, 2, 2)},

C5 = {(2, 1, 1), (1, 2, 1)}.

Next we notice that

λ− (1, 1, 2)− (k+i, k, i)= λ− (0, 1, 1)− (k+i + 1, k, i+1),

λ− (2, 1, 1)− (k+i+1, k+1, i)= λ− (1, 1, 0)− (k+i+2, k+1, i+1),

λ− (2, 2, 2)− (k+i+1, k+1, i)= λ− (1, 2, 1)− (k+i+2, k+1, i+1).

Then by canceling these terms and joining the compositions that are being sub-
tracted off in the sum, these sums reduce to the expression

k∑
i=0

((λ ∈ (k+i+1, k, i+1)P))+
k∑

i=0

((λ ∈ (k+i+1, k+1, i)P))

+ ((λ ∈ (k, k+1, 1)P))+ ((λ ∈ (k+3, k+2, 1)P))

+ ((λ ∈ (2k+3, k+3, k+2)P))+ ((λ ∈ (k+2, k+2, 2)P))

− ((λ ∈ (2k+1, k+1, k+2)P))− ((λ ∈ (2k+3, k+2, k+1)P))

− ((λ ∈ (k+3, k+3, 2)P))− ((λ ∈ (k+1, k+2, 1)P))

− ((λ ∈ (k+2, k+1, 1)P)).

Since `(λ)= 3, if λ− (a, b) ∈ P , then λ1− a ≥ λ2− b ≥ λ3 ≥ 2, which is true
if and only if λ1− a− 2≥ λ2− b− 2≥ λ3− 2≥ 0. In particular,

((λ ∈ (k+2, k+2, 2)P))= ((λ ∈ (k, k)P)),

((λ ∈ (k+3, k+3, 2)P))= ((λ ∈ (k+1, k+1)P)).

By verifying a few conditions it is easy to check that λ ∈ (r, s, s + 1)P if and
only if λ ∈ (r + 2, s + 2, s + 1)P , and similarly λ ∈ (s, s + 1, r)P if and only if
λ ∈ (s+2, s+1, r)P . With this relationship, we have these equivalences between
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the terms appearing in the expression above:

((λ ∈ (k, k+1, 1)P))= ((λ ∈ (k+2, k+1, 1)P)),

((λ ∈ (k+1, k+2, 1)P))= ((λ ∈ (k+3, k+2, 1)P)),

((λ ∈ (2k+1, k+1, k+2)P))= ((λ ∈ (2k+3, k+3, k+2)P)),

((λ ∈ (2k+1, k, k+1)P))= ((λ ∈ (2k+3, k+2, k+1)P)).

After we cancel these terms the expression reduces to

k−1∑
i=0

((λ ∈ (k+i+1, k, i+1)P))+
k∑

i=1

((λ ∈ (k+i+1, k+1, i)P))+ ((λ ∈ (k, k)P)).

This concludes the proof by induction on d since we know the identity holds for
each partition λ of length 2, 3 or 4. �

4. Combinatorial and symmetric function consequences

4.1. Tableaux of height less than or equal to 4. Since every partition of even size
and of length less than or equal to 4 lies in either P or P , Corollary 3.6 has the
following corollary.

Corollary 4.1. For d a positive integer,∑
λ`2d,`(λ)≤4

sλ = s(d,d) ∗ (s(d,d)+ s(d+1,d−1)),∑
λ`2d−1,`(λ)≤4

sλ = s(d,d−1) ∗ s(d,d−1).

Proof. For the sum over partitions of 2d , (1-1) (or (3-1)) says that s(d,d) ∗ s(d,d)
is the sum over all sλ with λ ` 2d having four even parts or four odd parts, and
Corollary 3.6 says that s(d,d)∗s(d+1,d−1) is the sum over sλ with λ`2d where λ does
not have four odd parts or four even parts. Hence, s(d,d) ∗ s(d,d)+ s(d,d) ∗ s(d+1,d−1)

is the sum over sλ where λ runs over all partitions with less than or equal to 4 parts.
For the other identity, we use (2-3) to derive

〈s(d,d−1) ∗ s(d,d−1), sλ〉 = 〈s(d,d) ∗ s(d,d), s(1)sλ〉.

If λ is a partition of 2d − 1, then the expression is 0 if `(λ) > 4; if `(λ) ≤ 4 then
s(1)sλ is a sum of at most 5 terms, s(λ1+1,λ2,λ3,λ4), s(λ1,λ2+1,λ3,λ4), s(λ1,λ2,λ3+1,λ4),
s(λ1,λ2,λ3,λ4+1) and s(λ1,λ2,λ3,λ4,1). Because λ has exactly 3 or 1 terms that are odd,
exactly one of these will have 4 even parts or 4 odd parts. �

Regev [1981], Gouyou-Beauchamps [1989], Gessel [1990] and later Bergeron,
Krob, Favreau, and Gascon [Bergeron et al. 1995; Bergeron and Gascon 2000]
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studied tableaux of bounded height. For yk(n) equal to the number of standard
tableaux of height less than or equal to k, Gessel [1990] remarks that expressions
for yk(n) exist for k= 2, 3, 4, 5 that are simpler than the k-fold sum that one would
expect to see. This is perhaps because all four of these cases have more general
formulas in terms of characters.

In the case k = 4, Corollary 4.1 is a statement about characters indexed by
partitions of bounded height. In particular, if those characters are evaluated at the
identity we see a previously known result:

Corollary 4.2. y4(n)= Cb(n+1)/2cCd(n+1)/2e.

This follows from the hook length formula that says the number of standard
tableaux of shape (d, d) is Cd , the number of standard tableaux of (d, d−1) is Cd ,
and the number of standard tableaux of shape that are either of shape (d, d) or
(d + 1, d − 1) is Cd+1.

Interestingly, some known expressions for y2(n), y3(n) and y5(n) can also be
explained in terms of symmetric function identities using the Pieri rule.

4.2. Generating functions for partitions with coefficient r in s(d,d) ∗ s(d+k,d−k).
An easy consequence of Theorem 3.1 is a generating function formula for the sum
of the coefficients of the expressions s(d,d) ∗ s(d+k,d−k).

Corollary 4.3. For a fixed k ≥ 1,

Gk(q) :=
∑
d≥k

(∑
λ`2d

〈s(d,d)∗s(d+k,d−k), sλ〉
)

qd
=

qk
+ qk+1

+ q2k+1
+
∑2k

r=k+2 2qr

(1− q)(1− q2)2(1− q3)
.

Remark 4.4. Corollary 4.3 only holds for k > 0. In the case that k = 0, the
numerator of the expression above is different and we have from Corollary 3.6

G0(q)=
∑
d≥0

(∑
λ`2d

〈s(d,d) ∗ s(d,d), sλ〉
)

qd
=

∑
d≥0

〈s(d,d) ∗ s(d,d), s(d,d) ∗ s(d,d)〉qd

=

∑
d≥0

〈[P], [P]〉qd
=

∑
d≥0

|P|qd

=
1

(1−q)(1−q2)2(1−q3)
.

This last equality is the formula given in [Garsia et al. 2010, Corollary 1.2] and it
follows because the generating function for partitions with even parts and length
less than or equal to 4 is 1/((1− q)(1− q2)(1− q3)(1− q4)), and the generating
function for the partitions of 2d with odd parts of length less than or equal to
4 is q2/((1 − q)(1 − q2)(1 − q3)(1 − q4)). The sum of these two generating
functions is equal to a generating function for the number of nonzero coefficients
of s(d,d) ∗ s(d,d).
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Proof. Theorem 3.1 gives a formula for s(d,d) ∗ s(d+k,d−k) in terms of rugs of the
form [γP]. We can calculate that for each of the rugs that appears in this expression∑

d≥k

(∑
λ`2d

〈[γP], sλ〉
)

qd
=

∑
d≥k

(∑
λ`2d

〈[P], sλ−γ〉
)

qd

=

∑
d≥k

( ∑
µ`(2d−|γ|)

〈[P], sµ〉
)

qd+|γ|/2

=
q |γ|/2

(1− q)(1− q2)2(1− q3)
.

Now s(d,d) ∗ s(d+k,d−k) is the sum of rugs of the form [γP] with γ equal to
(k, k), (k+ 1, k, 1) and (2k+ 1, k+ 1, k) each contribute a term to the numerator
of the form qk, qk+1 and q2k+1, respectively. The rugs in which γ is equal to
(k+ i+1, k+1, i) and (k+ i+1, k, i+1) for 1≤ i ≤ k−1 each contribute a term
2qk+i+1 to the numerator. �

In order to compute other generating functions of Kronecker products, we need
the following very surprising theorem. It says that the partitions such that the
C(d,d)(d+k,d−k)λ are of coefficient r > 1 are exactly those partitions γ+(6, 4, 2) for
which C(d−6,d−6)(d−6+(k−2),d−6−(k−2))γ is equal to r − 1.

Theorem 4.5. For k ≥ 2, assume that C(d,d)(d+k,d−k)λ > 0. Then

C(d+6,d+6)(d+k+8,d−k+4)(λ+(6,4,2)) = C(d,d)(d+k,d−k)λ+ 1.

Lemma 4.6. For γ a partition with `(γ)≤ 4, λ ∈ γP if and only if λ+ (6, 4, 2) is
in both (γ1+ 2, γ2+ 2, γ3, γ4)P and (γ1+ 4, γ2+ 2, γ3+ 2, γ4)P.

Proof. If λ ∈ γP , then λ− γ is a partition with four even parts or four odd parts.
Hence, both λ−γ+(2, 2)= (λ+(6, 4, 2))−(γ+(4, 2, 2)) and λ−γ+(4, 2, 2)=
(λ+ (6, 4, 2))− (γ+ (2, 2)) are elements of P .

Conversely, assume that λ+ (6, 4, 2) is as stated. Then λ1 + 6− (γ1 + 4) ≥
λ2+4−(γ2+2), λ2+4−(γ2+2)≥λ3+2−γ3, and λ3+2−(γ3+2)≥λ4−γ4≥ 0.
This implies that λ−γ is a partition and since λ−γ+ (2, 2) has four even or four
odd parts; then so does λ− γ and hence λ ∈ γP . �

Proof of Theorem 4.5. Consider the case where λ is a partition of 2d with λ2−k ≡
λ4 (mod 2) since the case where λ2 − k 6≡ λ4 (mod 2) is analogous and just uses
different nonzero terms in the sum below. From Theorem 3.1, we have

(4-1) C(d,d)(d+k,d−k)λ =

k∑
i=0

((λ ∈ (k+ i, k, i)P)),

since the other terms are clearly zero in this case. If λ2 − k ≥ λ3, then the terms
in this sum will be nonzero as long as 0 ≤ i ≤ λ3 − λ4 and 0 ≤ k + i ≤ λ1 − λ2
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and λ3− i ≡ λ4 (mod 2). Consider the case where λ3 ≡ λ4 (mod 2); then (4-1) is
equal to a+1, where a = bmin(λ3−λ4, λ1−λ2−k, k)/2c since the terms that are
nonzero in this sum are ((λ ∈ (k+2 j, k, 2 j)P)), where 0≤ j ≤ a. By Lemma 4.6,
these terms are true if and only if ((λ+ (6, 4, 2) ∈ (k + 2+ 2 j, k + 2, 2 j)P)) are
true for all 0≤ j ≤ a+ 1. But again by Theorem 3.1, in this case we also have

C(d+6,d+6)(d+k+8,d−k−4)(λ+(6,4,2)) = a+ 2= C(d,d)(d+k,d−k)λ+ 1.

The case in which λ3 ≡ λ4 + 1 (mod 2) is similar, but the terms of the form
((λ ∈ (k + 2 j + 1, k, 2 j + 1)P)) in (4-1) are nonzero if and only if the terms
((λ+ (6, 4, 2) ∈ (k + 2+ 2 j + 1, k + 2, 2 j + 1)P)) contribute to the expression
for C(d+6,d+6)(d+k+8,d−k−4)(λ+(6,4,2)) and there is exactly one more nonzero term;
hence C(d+6,d+6)(d+k+8,d−k−4)(λ+(6,4,2)) = C(d,d)(d+k,d−k)λ+ 1. �

Now for computations it is useful to have a way of determining exactly the
number of partitions of 2d that have a given coefficient. For integers d, k, r > 0,
we let Ld,k,r be the number of partitions λ of 2d with 〈s(d,d) ∗ s(d+k,d−k), sλ〉 = r .
Theorem 3.1 has shown that Ld,k,r = 0 for r > bk/2c + 1, and Theorem 4.5 says
Ld,k,r = Ld−6,k−2,r−1+1 for r > 1. These recurrences will allow us to completely
determine the generating functions for the coefficients Ld,k,r . We set

Lk,r (q)=
∑
d≥0

Ld,k,r qd .

Corollary 4.7. With the convention that Gk(q)= 0 for k < 0, we have Lk,r (q)= 0
for r > bk/2c+ 1, and

Lk,1(q)= Gk(q)− 2q6Gk−2(q)+ q12Gk−4(q),(4-2)

Lk,r (q)= q6r−6Lk−2r+2,1(q).(4-3)

Proof. Theorem 4.5 explains (4-3) because

Lk,r (q)=
∑
d≥0

#{λ : C(d,d)(d+k,d−k)λ = r}qd

=

∑
d≥0

#{λ : C(d−6,d−6)(d+k−8,d−k+4)(λ+(6,4,2)) = r − 1}qd

=

∑
d≥0

#{λ : C(d−6r+6,d−6r+6)(d+k−8r+8,d−k+4r−4)(λ+(6r−6,4r−4,2r−2)) = 1}qd

= q6r−6
∑
d≥0

#{λ : C(d−6r+6,d−6r+6)(d+k−8r+8,d−k+4r−4)(λ+(6r−6,4r−4,2r−2)) = 1}

· qd−6r+6

= q6r−6Lk−2r+2,1(q).
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Now we also have by definition and Theorem 3.1 that

(4-4) Gk(q)=
bk/2c+1∑

r=1

r Lk,r (q).

Hence, we can use this formula and (4-3) to define Lk,r (q) recursively. It remains
to show that the formula for Lk,1(q) stated in (4-2) satisfies this formula, which we
do by induction. Note that L0,1(q)=G0(q) and L1,1(q)=G1(q) and Lk,1(q)= 0
for k < 0. Then assuming that the formula holds for values smaller than k > 1, we
have from (4-4)

Lk,1(q)= Gk(q)−
bk/2c+1∑

r=2

r Lk,r (q)

= Gk(q)−
∑
r≥2

rq6r−6Lk−2r+2,1(q)

= Gk(q)−
∑
r≥2

rq6r−6(Gk−2r+2(q)− 2q6Gk−2r (q)+ q12Gk−2r−2(q))

= Gk(q)−
∑
r≥1

(r + 1)q6r Gk−2r (q)+
∑
r≥2

2rq6r Gk−2r (q)

−

∑
r≥3

(r − 1)q6r Gk−2r (q)

= Gk(q)− 2q6Gk−2(q)+ q12Gk−4(q).

Therefore, by induction (4-2) holds for all k > 0. �
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