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KIRIL DATCHEV AND IVAN VENTURA

We study the Hartree equation with a slowly varying smooth potential,
V (x) = W(hx), and with an initial condition that is ε ≤

√
h away in H1

from a soliton. We show that up to time |log h|/h and errors of size ε+ h2

in H1, the solution is a soliton evolving according to the classical dynam-
ics of a natural effective Hamiltonian. This result is based on methods of
Holmer and Zworski, who prove a similar theorem for the Gross–Pitaevskii
equation, and on spectral estimates for the linearized Hartree operator re-
cently obtained by Lenzmann. We also provide an extension of the result of
Holmer and Zworski to more general initial conditions.

1. Introduction

In this paper we study the Hartree equation with an external potential:

(1-1)
i∂t u =− 1

21u+ V (x)u− (|x |−1
∗ |u|2)u,

u(x, 0)= u0(x) ∈ H 1(R3
;C).

In the case V ≡ 0, solving the associated nonlinear eigenvalue equation,

(1-2) −
1
21η− (|η|

2
∗ |x |−1)η =−λη,

gives solutions to (1-1) with evolution u(t, x) = eiλtη(x). It is known that (1-2)
has a unique radial, positive solution η ∈ H 1(R3) for a given λ > 0; see [Lieb
1977] and [Lenzmann 2009, Appendix A], as well as Appendix A. For convenience
of exposition we take λ so that ‖η‖2L2 = 2, but this is not essential. Using the
symmetries of (1-1), we can construct from this η the following family of soliton
solutions to (1-1) in the case V ≡ 0:

u(x, t)= ei x ·vei |v|2t/2eiγ eiλtµ2η(µ(x − a− vt))

for (a, v, γ, µ) ∈ R3
×R3

×R×R+.
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If V is not identically zero but is slowly varying, there exist approximate soliton
solutions in a sense made precise by the following theorem.

Theorem 1. Let V (x) = W (hx), where W ∈ C3(R3
;R) is bounded together with

all derivatives up to order 3. Fix a constant 0 < c1, and fix (v0, a0) ∈ R3
× R3.

Suppose 0< δ ≤ 1/2, 0< h ≤ h0, and u0 ∈ H 1(R3) satisfies

‖u0− eiv0·(x−a0)η(x − a0)‖H1 ≤ c1h2.

Then if u(t, x) solves (1-1) and

0≤ t ≤
c1

h
+
δ|log h|

c2h
,

we have ∥∥u(t, x)− ev(t)·(x−a(t))eiγ (t)η((x − a(t)))
∥∥

H1
x (R

3)
≤ c2h2−δ.

Here (a, v, γ ) solve the system

(1-3)

ȧ = v,

v̇ =−
1
2

∫
∇V (x + a) η2(x)dx,

γ̇ = 1
2 |v|

2
+ λ−

1
2

∫
V (x + a) η2(x)dx + 1

2

∫
x · ∇V (x + a) η2(x)dx

with initial data (a0, v0, 0). The constants h0 and c2, depend only on c1, |v0|, and
‖W‖C3(R3). They are in particular independent of δ.

Note that in (1-3), the equation of motion of the center of mass a of the soliton is
given by Newton’s equation, ä=−∇V (a), where V :=V ∗η2/2. Observe also that
because η is exponentially localized (see Appendix A), η2/2 is an approximation
of a delta function and hence the effective potential V that governs the motion of
the soliton is an approximation of V . The evolution of γ is more complicated and
explained by the Hamiltonian formulation of the problem developed in Section 2.

Our next theorem gives a slightly weaker result in the case of a more general
initial condition.

Theorem 2. Let V (x) = W (hx), where W ∈ C3(R3
;R) is bounded together with

all of its derivatives up to order 3. Fix constants 0 < c1, and 0 ≤ 2δ ≤ δ0 < 3/4,
and fix (v0, a0) ∈ R3

×R3. Suppose 0< h ≤ h0, and u0 ∈ H 1(R3) satisfies

‖u0− eiv0·(x−a0)η(x − a0)‖H1 =: ε ≤ c1h1/2+δ0 .

Then for

0≤ t ≤
c1

h
+
δ|log h|

c2h
,
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we have∥∥u(t, x)− ev(t)·(x−a(t))eiγ (t)µ(t)2η(µ(t)(x − a(t)))
∥∥

H1
x (R

3)
≤ c2h−δ ε̃,

where ε̃ := ε+ h2. Here (a, v, µ, γ ) solve the system

ȧ = v+O(ε̃2),

v̇ =−
µ

2

∫
∇V (x/µ+ a)η2(x)dx +O(ε̃2),

µ̇= O(ε̃2),

γ̇ = 1
2 |v|

2
+ λµ2

−
1
2

∫
V (x/µ+ a)η2(x)dx

−
1

2µ

∫
x · ∇V (x/µ+ a)η2(x)dx +O(ε̃2),

with initial data (a0, v0, 1, 0). The constants h0 and c2, as well as the implicit
constants in the O error terms, depend only on c1, |v0|, and ‖W‖C3(R3). They are in
particular independent of δ.

This phenomenon was studied in the physics literature by Éboli and Marques
[1983], who show for various (not necessarily slowly varying) potentials V that
soliton solutions obeying Newtonian equations of motion exist. Later Bronski and
Jerrard [2000] proved a similar theorem in the case of a power nonlinearity, and
then more general nonlinearities were treated by Fröhlich, Tsai, and Yau [2002]
and by Fröhlich, Gustafson, Jonsson, and Sigal [2004]. More recently Jonsson,
Fröhlich, Gustafson, and Sigal [2006] have extended the validity of the effective
dynamics to longer time in the case of a confining potential V , and Abou Salem
[2008] has treated the case of a potential V that is permitted to vary in time. The
case of the cubic nonlinear Schrödinger equation in dimension one was also studied
by Holmer and Zworski [2007; 2008]. Other papers have established effective
classical dynamics in quantum equations of motion in a wide variety of settings:
see [Fröhlich, Gustafson, Jonsson and Sigal 2004] and [Abou Salem 2008] for
many references.

Our result improves the results of [Fröhlich, Tsai and Yau 2002; Fröhlich,
Gustafson, Jonsson and Sigal 2004] and [Abou Salem 2008] in the case of (1-1) in
several respects. First, we provide a more precise error bound, improving ε̃ from
h + ε to h2

+ ε. Second, we remove the errors in the equations of motion when
ε = O(h2−δ). Finally, we establish the effective dynamics for longer time: The
result in the first two papers was valid only up to time c(ε2

+ h)−1 for a small
constant c, while in the third the result was valid only up to time δ|log h|/h and
required the assumption ε = O(h).
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Fröhlich, Gustafson, Jonsson, and Sigal [2004] consider more general initial
data: ε is assumed to be small but not necessarily O(h1/2+), although in this case
the result is obtained only for time ε−2. In that situation the methods of this pa-
per, although applicable, do not improve that result, so for ease of exposition we
consider only the special case ε = O(h1/2+) where we have an improvement.

In this paper we follow most closely [Holmer and Zworski 2008], which in
turn builds on [Holmer and Zworski 2007] and on earlier work on soliton stability
going back to Weinstein [1986]. We adapt those arguments to a higher-dimensional
setting where in particular there is no longer an explicit form for η, and to the
nonlocal Hartree nonlinearity. For this last task we make use of the classical Hardy–
Littlewood–Sobolev inequality and of Lenzmann’s [2009] spectral estimates for the
linearized Hartree operator

Lw := − 1
21w− (|x |

−1
∗ η(w+w))η− (|x |−1

∗ η2)w+ λw.

In Section 4, we also extend the methods of [Holmer and Zworski 2008] by
adapting them to more general initial data. It is at this point that our proofs depart
most significantly from theirs. The crucial addition is a closer analysis of the differ-
ential equation for the error studied in Lemmas 4.3 and 4.4. This analysis applies
also to the Gross–Pitaevskii equation studied in [Holmer and Zworski 2008], giving
us Theorem 3.

To state this theorem, we suppose u : R×R→ C solves

(1-4)
i∂t u =− 1

2∂
2
x u+ V (x)u− |u|2u,

u(x, 0)= u0(x) ∈ H 1(R;C).

In this case the ground state soliton solution of the corresponding elliptic nonlinear
eigenvalue equation

−
1
2η =−

1
2η
′′
− η3

is given by
η(x)= sech(x).

Theorem 3. Let V (x) = W (hx), where W ∈ C3(R;R) is bounded together with
all derivatives up to order 3. Fix constants 0 < c1 and 0 < δ0 < 3/4 and fix
(v0, a0) ∈ R×R. Suppose 0≤ 2δ ≤ δ0 and 0< h ≤ h0. For u0 ∈ H 1(R), put∥∥u0− eiv0·(x−a0) sech(x − a0)

∥∥
H1 := ε ≤ c1h1/2+δ0 .

Then for
0≤ t ≤

c1

h
+
δ|log h|

c2h
,

we have∥∥u(t, x)− ev(t)·(x−a(t))eiγ (t)µ(t) sech(µ(t)(x − a(t)))
∥∥

H1
x (R

3)
≤ c2h−δ ε̃,
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where u solves (1-4) and ε̃ := ε+ h2. Here (a, v, µ, γ ) solve the system

ȧ = v+O(ε̃2),

v̇ =−
µ2

2

∫
V ′(x + a) sech2(µx)dx +O(ε̃2),

µ̇= O(ε̃2),

γ̇ = 1
2µ

2
+

1
2v

2
−µ

∫
V (x + a) sech2(µx)dx

+µ2
∫

xV (x + a) sech2(µx) tanh(µx)dx +O(ε̃2)

with initial data (a0, v0, 1, 0). The constants h0 and c2, as well as the implicit
constants in the O error terms, depend only on c1, δ0, |v0|, and ‖W‖C3(R3). They
are in particular independent of δ.

This is proved by replacing [Holmer and Zworski 2008, Lemmas 5.1 and 5.2]
with our Lemmas 4.3 and 4.4. Because the details are very similar to the ones
given in Section 4, we omit them.

The methods of this paper can be extended to more general nonlinearities under
additional spectral nondegeneracy assumptions: see [Fröhlich, Gustafson, Jonsson
and Sigal 2004] for examples. That paper, and also [Fröhlich, Tsai and Yau 2002],
considers more general classes of equations under such assumptions. Here we
restrict our attention to two physical nonlinearities for which the necessary spectral
results are known.

The outline of the proof and of this paper are as follows.
In Section 2, we recast (1-1) as a Hamiltonian evolution equation in H 1(R3),

with the Hamiltonian given by (2-14). We define the manifold of solitons to be
the set of functions of the form ev·(x−a)eiγµ2η(µ(x − a)) for some (a, v, γ, µ) in
R3
×R3
×R×R+, and we show that the equations (1-3) come from the restriction

of the Hamiltonian (2-14) to this manifold.
In Section 3, we review and extend slightly the relevant spectral results from

[Lenzmann 2009].
In Section 4, we compute the differential equation for the difference between

the true solution u and the “closest point” on the manifold of solitons. We then
estimate this difference, proving Theorem 2.

In Section 5, we show how the additional assumption on the initial condition in
Theorem 1 gives the exact equations of motion (1-3).

In Appendix A we collect the properties of η that we need for our proofs, and
in Appendix B we review a standard proof of the global well-posedness of (1-1).
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2. Hamiltonian equations of motion

This section has four subsections. In the first, we define a symplectic structure
on H 1 and recall a few basic lemmas from symplectic geometry. In the second,
we define the manifold of solitons, which has a natural action on it by the group
of symmetries of (1-1). We compute the Lie algebra associated to this group of
symmetries and from that deduce a formula for the derivative of a curve in the group
in terms of the Lie algebra. In the third, we prove that the manifold of solitons is a
symplectic submanifold and compute the restriction of the symplectic form to it. In
the fourth, we compute the Hartree Hamiltonian and its restriction to the manifold
of solitons, and derive the equations (1-3) as the equations of motion associated to
the restricted Hamiltonian. Most of the ideas in this section are present in [Holmer
and Zworski 2007, Section 2].

Symplectic structure. We work over the vector space

V := H 1(R,C)⊂ L2(R,C),

viewed as a real Hilbert space. The inner product and the symplectic form are
given by

(2-1) 〈u, v〉 := Re
∫

uv and ω(u, v) := Im
∫

uv.

Let H :V→R be a function, a Hamiltonian. The associated Hamiltonian vector
field is a map 4H : V→ T V. The vector field 4H is defined by the relation

(2-2) ω(v, (4H )u)= du H(v),

where v ∈ TuV, and du H : TuV→ R is defined by

du H(v)= d
ds

∣∣∣
s=0

H(u+ sv).

In the notation above, we have

(2-3) du H(v)= 〈d Hu, v〉 and (4H )u =−id Hu,

where the first equation provides a definition of d Hu , and the second a formula for
computing 4H .

For reference we present two simple lemmas from symplectic geometry. The
proofs can be found in [Holmer and Zworski 2007, Section 2].

Lemma 2.1. Suppose that g :V→V is a diffeomorphism such that g∗ω=µ(g)ω,
where µ(g) ∈ C∞(V,R). Then for f ∈ C∞(V,R)

(2-4) (g−1)∗
(
(4 f )g(ρ)

)
=

1
µ(g)

4g∗ f (ρ) for ρ ∈ V.
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Suppose that f ∈ C∞(V,R) and that d f (ρ0)= 0. Then the Hessian of f at ρ0,
f ′′(ρ0) : TρV→ T ∗ρ V, is well-defined. We can identify TρV with T ∗ρ V using the
inner product, and define the Hamiltonian map F : TρV→ TρV by

(2-5) F =−i f ′′(ρ0) and 〈 f ′′(ρ0)X, Y 〉 = ω(Y, F X).

Lemma 2.2. Suppose that N is a finite-dimensional symplectic submanifold of V

and f ∈ C∞(V,R) satisfies

4 f (ρ) ∈ TρN ⊂ TρV for ρ ∈ N .

If d f (ρ0)= 0 at ρ0 ∈ N , then the Hamiltonian map defined by (2-5) satisfies

F(TρN )⊂ TρN .

Manifold of solitons as group orbit. For g= (a, v, γ, µ)∈R3
×R3
×R×R+, we

define the map

(2-6) H 1
3 u 7→ g · u ∈ H 1, (g · u)(x) := eiγ eiv·(x−a)µ2u(µ(x − a)).

This action gives the group structure

(a, v, γ, µ) · (a′, v′, γ ′, µ′)= (a′′, v′′, γ ′′, µ′′)

on R7
×R+, where

v′′ = v+µv′, a′′ = a+ a′/µ, γ ′′ = γ + γ ′+ va′/µ, µ′′ = µµ′.

The action of G is conformally symplectic in that

(2-7) g∗ω = µω and g = (a, v, γ, µ),

as is easily seen from (2-1).
The Lie algebra of G, denoted g, is generated by the eight elements

(2-8)

e1 =−∂x1, e4 = i x1 e7 = i,

e2 =−∂x2, e5 = i x2, e8 = 2+ x · ∇,

e3 =−∂x3, e6 = i x3.

These are simply the partial derivatives at the identity of (g · u)(x) with respect
to each of the eight parameters (a, v, γ, µ). The following computation gives the
derivative of a curve in G in terms of this basis.

Lemma 2.3. Let g ∈ C1(R,G) and u ∈ S(R). Then, in the notation of (2-6),

d
dt

g(t) · u = g(t) · (Y (t)u),
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where Y (t) ∈ g is given by

(2-9) Y (t)= µ(t)
3∑

j=1

ȧ j (t)e j +µ(t)
3∑

j=1

v̇ j (t)
µ(t)

e3+ j

+ (γ̇ (t)− ȧ(t) · v(t))e7+
µ̇(t)
µ(t)

e8,

where
g(t)= (a(t), v(t), γ (t), µ(t))

= (a1(t), a2(t), a3(t), v1(t), v2(t), v3(t), γ (t), µ(t)).

We define the submanifold M ⊂ H 1 of solitons as the orbit of η under G, where
η is the function described in Appendix A:

(2-10) M = G · η ' G/Z and TηM = g · η ' g.

The quotient corresponds to the Z-action

(a, v, γ, µ) 7→ (a, v, γ + 2πk, µ) for k ∈ Z.

The following is a simple consequence of the implicit function theorem and of
the nondegeneracy of ω. The proof can be found, for example, in [Holmer and
Zworski 2007, Lemma 3.1].

Lemma 2.4. For 6 and compact subset of G/Z, let

U6,δ =
{
u ∈ H 1

: infg∈6‖u− g · η‖H1 < δ
}
.

If δ ≤ δ0 = δ0(6), then for any u ∈U6,δ, there exists a unique g(u) ∈6 such that

ω(g(u)−1
· u− η, X · η)= 0 for all X ∈ g.

Moreover, the map u 7→ g(u) is in C1(U6,δ, 6).

Symplectic structure on the manifold of solitons. We compute the symplectic
form ω|M on TηM by using

(ω|M)η(ei , e j )= Im
∫
(ei · η)(x)(e j · η)(x).

We remind the reader (as mentioned in Appendix A) that ‖η‖2L2 = 2. Using (2-8)
we compute all these forms.

Lemma 2.5. The evaluation at η of the restriction of the symplectic form to M is
given by

(ω|M)η = (dv∧ da+ dγ ∧ dµ)(0,0,0,1) = (d(vda+ γ dµ))(0,0,0,1).
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Proof. If j, k are both taken from {1, 2, 3, 8} or both taken from {4, 5, 6, 7}, then the
integrand (e j ·η)(x)(ek · η)(x) is a real function, implying that (ω|M)η(e j , ek)= 0.

If j ∈ {1, 2, 3} and k ∈ {4, 5, 6}, we have e j =−∂ j and ek = i xk−3.
If j 6= k− 3, integrating by parts gives

(ω|M)η(e j , ek)= Im
∫
(e j · η)(x)(ek · η)(x)

= Im
∫
(−∂ jη)(i xk−3η)=−

∫
(η)(xk−3∂ jη).

This implies that (ω|M)η(e j , ek)= 0.
If j = k− 3, integrating by parts gives

(ω|M)η(e j , ek)= Im
∫
(e j ·η)(x)(ek · η)(x)=

∫
(∂ jη)(x jη)=−

∫
(η(η+x j∂ jη)).

Solving this yields (ω|M)η(e j , ek)=−1.
If j ∈ {1, 2, 3} and k = 7, integrating by parts gives

(ω|M)η(e j , ek)= Im
∫
(e j · η)(x)(ek · η)(x)

= Im
∫
(−∂ jη)(iη)=

∫
(∂ jη)(η)=−

∫
(η)(∂ jη),

implying (ω|M)η(e j , ek)= 0.
If j ∈ {4, 5, 6} and k = 8, we get

(ω|M)η(e j , ek)= Im
∫
(e j · η)(x)(ek · η)(x)= Im

∫
i x jη(2+ x · ∇)η

= 2
∫

x jη
2
+

∫
x jηx · ∇η

= 2
∫

x jη
2
+

∫
x jη(x1∂1η+ x2∂2η+ x3∂3η).

Now
∫

x jη
2 is zero since it is odd in the x j variable. Since all the terms in

this last expression can be reduced to this by integrating by parts, we see that
(ω|M)η (e j , ek)= 0.

If j = 7 and k = 8, we observe that since by integration by parts we have∫
ηx · ∇η =− 3

2‖η‖
2
L2 , we also have

(ω|M)η(e j , ek)= Im
∫
(e j ·η)(x)(ek · η)(x)=

∫
η(2+x ·∇)η= 2‖η‖2L2−

3
2‖η‖

2
L2,

giving (ω|M)η(e j , ek)= 1.
Putting all this together gives the result. �
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We now observe from (2-10) and (2-7) that

(2-11) ω|M = µdv∧ da+ vdµ∧ da+ dγ ∧ dµ.

Now let f be a function defined on M , that is, f = f (a, v, γ, µ). The associated
Hamiltonian vector field 4 f is given by

ω(·, 4 f )= d f = fada+ fvdv+ fµdµ+ fγ dγ.

Using (2-11), we obtain

(2-12) 4 f =
1
µ
∇v f · ∇a +

1
µ

(
−∇a f − (∂γ f )v

)
· ∇v

+
∂

∂γ
f ∂µ+

( 1
µ
v · ∇v f −−∂µ f

)
∂γ .

The Hamiltonian flow is obtained by solving

v̇ =−∇a f − (∂γ f )v, ȧ = 1
µ
∇v f, µ̇= ∂γ f, γ̇ =

1
µ
v · ∇v f − ∂µ f.

The Hartree Hamiltonian restricted to the manifold of solitons. Using the sym-
plectic form given in (2-1), and

H(u) :=
∫

1
4 |∇u|2− 1

4 |u|
2(|u|2 ∗ |x |−1),

we find that

du H(v)= Re
∫ (
−

1
21u− (|u|2 ∗ |x |−1)u

)
v.

The Hamiltonian flow associated to this vector field is

(2-13) u̇ = (4H )u =−i
(
−

1
21u− (|u|2 ∗ |x |−1)u

)
.

The restriction of

H(u)=
∫

1
4 |∇u|2− 1

4 |u|
2(|u|2 ∗ |x |−1),

to M is given by computing

H(g · η)= 1
4 |v|

2µ‖η‖2L2 +µ
3 H(η)= 1

2 |v|
2µ+µ3 H(η) for g = (a, v, γ, µ).

The flow of (2-12) for this f describes the evolution of a soliton. We have in
particular γ̇ = 1

2 |v|
2
− 3µ2 H(η), and because we know that eiλtη(x) solves (1-1),

we can compute that H(η)=−λ/3.
We now consider the Hartree Hamiltonian,

(2-14) HV (u)=
1
4

∫
|∇u|2− 1

4

∫
|u|2(|u|2 ∗ |x |−1)+

1
2

∫
V (x)|u|2,
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and its restriction to M = G · η given by

(2-15) HV |M =
1
2 |v|

2µ+ λ 1
3µ

3
+

1
2µ

4
∫

V (x)η2(µ(x − a)).

The flow of HV |M can be read off from (2-12):

v̇ =− 1
2µ

∫
∇V (x/µ+ a)η2(x)dx, ȧ = v, µ̇= 0,

γ̇ = 1
2 |v|

2
+ λµ2

−
1
2

∫
V (x/µ+ a)η2(x)dx + 1

2µ

∫
x · ∇V (x/µ+ a)η2(x)dx .

These are the same as the ones given in (1-3). The evolution of a and v is simply
the Hamiltonian evolution of 1

2 |v|
2
+

1
2µ

3
∫
∇V (x + a)η2(µx) when µ is held

constant. As a result the evolution of the phase is explained by (2-15).
Finally we give an important application of Lemma 2.2. We put

Hλ(u)=
∫

1
4 |∇u|2− 1

4 |u|
2(|u|2 ∗ |x |−1)+ 1

2λ

∫
|u|2,

and observe that η is a critical point of this functional, while the Hessian of Hλ
at η is given by

(2-16) Lw := − 1
21u− (|x |−1

∗ η(w+w))η− (|x |−1
∗ η2)w+ λw.

Now in Lemma 2.2 take Hλ to be f , take N to be the eight-dimensional manifold
of solitons M , and take ρ = η. We find that

(2-17) iL(TηM)⊂ TηM.

3. Spectral estimates

In this section we recall crucial spectral estimates for the operator L from (2-16),
which is the linearization of −1

21u − (|u|2 ∗ |x |−1)u + λu. We observe that this
operator can be decomposed as

Lw =

[
L+ 0
0 L−

] [
Rew
Imw

]
,

with

L+ Rew =− 1
21Rew− 2(|x |−1

∗ ηRew)η− (|x |−1
∗ η2)Rew+ λRew,

L− Imw =− 1
21 Imw− (|x |−1

∗ η2) Imw+ λ Imw.

From the second remark following [Lenzmann 2009, Theorem 4] we have the
following proposition:
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Proposition 3.1. Letw ∈ H 1(R,C) and suppose that ω(w, Xη)= 0 for any X ∈ g.
Then

(3-1) 〈Lw,w〉 ≥ c‖w‖2H1,

where c is an absolute constant.

Now we consider solutions f of the equation

(3-2) L+ f = Q(x)η(x),

where Q(x) is real-valued and of the form Q(x) = a0(t) +
∑

ai j (t)xi x j , with
Q(x)η symplectically orthogonal to the generalized kernel of iL, and with ai j (t)
bounded in t .

Proposition 3.2. Equation (3-2) has a unique solution in (ker(L+))⊥ ⊂ L2(R3).
This solution is also in C∞(R3) with the property

(3-3) e(
√

2λ−ε)|x |/2∂α f ∈ L∞(R3)

for all ε > 0 and for any multiindex α ∈ N3. Furthermore

(3-4) ω( f, Xη)= 0 for all X ∈ g.

Proof. We first use Q(x)η ∈ (ker L+)⊥ to show that a unique solution exists.
Indeed, it is suffices to show this result for any Qi j (x) = xi x j or Q0 = 1. By
[Lenzmann 2009, Theorem 4], we know that ker L+= span{∂1η, ∂2η, ∂3η}. Clearly
〈∂ jη, η〉 = 0 for all j ∈ {1, 2, 3}. It remains only to show for all i, j, k ∈ {1, 2, 3}
that

(3-5) 〈−∂iη, x j xkη〉 = 0.

If i 6= j and i 6= k, then (3-5) is clear because the integrand is odd in the xi direction.
So we assume i = j . If j 6= k, then

〈−∂iη, xi xkη〉 = −

∫
∂iη(xi xk)η =

∫
xkη

2
+

∫
∂iη(xi xk)η.

But xkη
2 is odd in the xk direction, leading to (3-5). A similar argument gives (3-5)

for j = k.
It follows from the PDE solved by f that if f ∈ H s(R3) then f ∈ H s+2(R3),

implying that f ∈ C∞(R3). The proof of (3-3) now follows closely the proof of
Proposition A.2, and we give it only in outline. We put w = eφ f and introduce

Lφ+w := eφL+e−φw = (Pφ + λ)w− 2eφη(|x |−1
∗ (ηe−φw)).
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We now have

〈Lφ+w,w〉 =
1
2

∫
|∇w|2+

∫
(Ṽ − 1

2 |∇φ|
2
+ λ)w2

− 2
∫

eφη(|x |−1
∗ (η f ))w+

∫
eφQ(x)ηw.

Then

ε

∫
w2
≤

∫
(λ− 1

2 |∇φ|
2)w2

≤−

∫
Ṽw2
− 2

∫
eφη(|x |−1

∗ (η f ))w+
∫

eφP(x)ηw.

The Ṽ term is handled as before. The two eφ factors in the last term can be
absorbed by the η factor provided the exponential growth in φ is no more than
exp((
√

2λ− ε|x |)/2). For the middle term, observe that, as in the case of Ṽ , the
convolution |x |−1

∗ (η f ) is continuous and decaying to zero at infinity. Then, the
two eφ factors can be absorbed by the η factor just as in the case of the last term.
In this way we show that ∫

w2
≤ C,

and proceed as in the proof of Proposition A.2.
We now prove (3-4). First of all, since f is real, ω( f, e jη)= Im

∫
f e jη= 0 for

j ∈ {1, 2, 3, 8} since then e jη is real. Next write

f = f0+

3∑
j,k=1

f jk, where L+ f = a0 and L+ f jk = a jk x j xk .

Since L+ preserves symmetry in xk for all k, we observe that if j ∈ {4, 5, 6}, then

ω( fk`, e jη)=

∫
fk`x j−1η = 0,

as the integrand will be odd in some xi direction. Finally a calculation shows that
L+((2+ x · ∇)η)= η, from which it follows that

ω( f, e7η)=

∫
f η =

∫
L+( f )(2+ x · ∇)η =

∫
(Q(x)η)(2+ x · ∇)η = 0. �

4. Reparametrized evolution and proof of Theorem 2

We write

u(t)= g(t) · (η+w(t)) and ω(w(t), Xη)= 0 for all X ∈ g.
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To see that this decomposition is possible, initially for small times, we apply
Lemma 2.4, which allows us to define

g(t) := g(u(t)), ũ := g(t)−1u(t), w(t) := ũ− η,

and derive an equation for w(t). Before doing so, however, we introduce some
abbreviated notation. For g(t), we write g = (a, v, γ, µ), and observe that as a
result of Re〈w, η〉 = 0 and the L2 conservation of the original equation, we have

2+‖w‖2L2 = ‖η+w‖
2
L2 = ‖g−1u‖2L2 = µ

−1
‖u0‖

2
L2,

and hence

(4-1)
2− ε

2+‖w‖2L2

≤ µ≤
2+ ε

2+‖w‖2L2

,

with ε as in the statement of Theorem 2. This gives a precise sense in which µ≈ 1.
For the remainder of the section we will assume 0≤ε≤1, although in our theorems
ε is required to be much smaller than 1.

Next we define

α = α(a, µ) := 1
2

∫
V (x/µ+ a)η2(x)dx − 1

2µ

∫
x · ∇V (x/µ+ a)η2(x)dx,

β = β(a, µ) := 1
2µ

∫
∇V (x/µ+ a)η2(x)dx,

X = µ
3∑

j=1

(−ȧ j + v j )e j +

3∑
j=1

(v̇ j/µ−β j )e j+3

+ (−γ̇ + ȧ · v− 1
2 |v|

2
+ λµ2

−α)e7− (µ̇/µ)e8.

Observe that α ∈ R, β ∈ R3, and X ∈ g. Set further

Lw := − 1
21w− (|x |

−1
∗ η2)w− (|x |−1

∗ (η(w+ w̄)))η+ λw,

Nw := (|x |−1
∗ |w|2)η+ (|x |−1

∗ η(w+ w̄))w+ (|x |−1
∗ |w|2)w.

These terms come from writing out i4H (η+w). The operator L collects the linear
terms, and N the nonlinear terms.

Lemma 4.1. In the notation above, the equation for w is

∂tw = Xη+ i(−V (x/µ+ a)+α+β · x)η

+ Xw+ i(−V (x/µ+ a)+α+β · x)w+ iµ2(−L+N)w.

Proof. The proof is a straightforward calculation that follows nearly the same lines
as that of [Holmer and Zworski 2008, Lemma 3.2], and here we give only a sketch.
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We first use the definition of w and the chain rule to write

∂tw =−Y (η+w)+ g−14H g(η+w),

with Y taken from Lemma 2.3. We use Lemma 2.1 to write g−14H g=µ−14g∗H ,
and compute 4g∗H from formula (2-3). Finally, using the soliton equation

−λη+ 1
21η+ (|x |

−1
∗ η2)η = 0

gives the desired formula. �

We now explain the reasons for this notation. Note that if X = 0, then

ȧ = v̇, v̇ =−µβ, γ̇ = 1
2 |v|

2
+ λµ2

−α, µ̇= 0.

giving the equations of motion in (1-3). In this section and the next we prove
that |X | and ‖w‖H1

x
are small, giving Theorem 2. Then in Section 5 we give

the improvement to Theorem 1 under the necessary additional assumptions on the
initial data.

To understand the other crucial features of the notation in Lemma 4.1, we intro-
duce the symplectic projection P , characterized by

ω(u, Yη)= ω(P(u)η, Yη) for all Y ∈ g.

This is given explicitly by

P =
8∑

j=1

e j Pj , Pj : S′→ R,

Pj (u)=−
2
‖η‖2L2

ω(u, e j+3η)= Re
∫

u(x)x jη(x)dx for j ∈ {1, 2, 3},

Pj (u)=
2
‖η‖2L2

ω(u, e j−3η)=− Im
∫

u(x)∂ j−3η(x)dx for j ∈ {4, 5, 6},

P7(u)=
2
‖η‖2L2

ω(u, e8η)= Im
∫

u(x)(2+ x · ∇)η(x)dx,

P8(u)=−
2
‖η‖2L2

ω(u, e7η)= Re
∫

u(x)η(x)dx .

We now compute

P(i f (x)η(x))=
6∑

j=4

Pj (i f (x)η(x))e j + P7(i f (x)η(x))e7

=−

6∑
j=4

(∫
f (x)η(x)∂ j−3η(x)dx

)
e j +

(∫
f (x)η(x)(2+ x · ∇)η(x)dx

)
e7
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=
1
2

(
−

6∑
j=4

(∫
f (x)∂ j−3η

2(x)dx
)

e j +

(∫
f (x)

(
4η2(x)+ x · ∇η2(x)

)
dx
)

e7

)

=
1
2

( 6∑
j=4

(∫
∂ j−3 f (x)η2(x)dx

)
e j +

(∫ (
f (x)− x · ∇ f (x)

)
η2(x)dx

)
e7

)
:= iα+ iβ · x .

Observe that in the case that f (x) = V (x/µ+ a) these α and β agree with those
defined previously.

We have the following Taylor expansions, where δ jk is the Kronecker delta:

V (x/µ+ a)= V (a)+∇V (a) ·(x/µ)+ 1
µ2

3∑
j,k=1

(1− 1
2δ jk)x j xk∂ j∂k V (a)+O(h3),

α = V (a)+ 3
4µ2

∫ ( 3∑
j=1

x2
j ∂

2
j V (a)

)
η2(x)dx +O(h3),

β =
∇V (a)
µ
+O(h3),

and thus

−V (x/µ+ a)+α+β · x

=−
1
µ2

3∑
j,k=1

(
1− 1

2δ jk
)
x j xk∂ j∂k V (a)+ 3

4µ2

∫ ( 3∑
j=1

x2
j ∂

2
j V (a)

)
η2(x)dx+O(h3),

:=

3∑
j,k=1

a jk x j xk + a0+O(h3) := Q(x)+O(h3).

where all the errors are polynomially bounded in x . In the sequel we will apply
Proposition 3.2 using this Q(x). It satisfies the necessary orthogonality condition
because ω(i(V (x/µ+ a), Xη))= 0, and Q(x) is of order h2.

We now study w by writing w = w̃ +w1, where w̃ solves away the principal
forcing terms of the equation of w. More precisely, we put

w̃ :=

3∑
j,k=1

w̃ jk, w̃ jk := −
∂ j∂k V (a)
µ4 f jk,

f jk := L−1
+

(
−

3∑
j,k=1

(
1− 1

2δ jk
)

x j xk + δ jk
3
4

∫
x2

jη
2(x)dx

)
η.
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Then w̃ satisfies the PDE

∂t w̃ =−iµ2Lw̃−
i
µ2

(
−

3∑
j,k=1

(
1− 1

2δ jk
)
x j xk∂ j∂k V (a)

+
3
4

∫ ( 3∑
j=1

x2
j ∂

2
j V (a)

)
η2(x)dx

)
η+

3∑
j,k=1

θ jk f jk,

where

θ jk(t) :=
d
dt

(
−∂ j∂k V (a)

µ4

)
=
−∂ j∂k∇V (a) · ȧ

µ4 +
4∂ j∂k V (a)µ̇

µ5 .

Lemma 4.2. There exists an absolute constant c such that if ‖w‖H1 ≤ 1/c, then

|X | ≤ c(h2
‖w‖H1 +‖w‖2H1 +‖w‖

3
H1).

Proof. Since Pwt = ∂t Pw = 0, Lemma 4.1 gives

X = P(i(V (x/µ+ a)−α−β · x)η)+ P(i(V (x/µ+ a)−α−β · x)w)

− P(Xw)−µ2 P(iNw)−µ2 P(iLw).

We’ve already seen that the first term vanishes. The estimate |P(Yw)|≤c|Y |‖w‖H1

shows that

|P(i(V (x/µ+ a)−α−β · x)w)| ≤ ch2
‖w‖H1 and |P(Xw)| ≤ c|X |‖w‖H1 .

For the P(iNw) term we must estimate the following integral, where ψk are
taken from w, η, e jη:

(4-2)

∫
|(x−1

∗ (ψ1ψ2))ψ3ψ4| ≤ ‖|x |−1
∗ (ψ1ψ2)‖L3‖ψ3‖L6‖ψ4‖L2

≤ c‖ψ1ψ2‖L1‖ψ3‖L6‖ψ4‖L2

≤ c‖ψ1‖L2‖ψ2‖L2‖ψ3‖H1‖ψ4‖L2 .

For this we used Hölder’s inequality, the Hardy–Littlewood–Sobolev inequality,
and Sobolev embedding. This results in |P(iNw)| ≤ c(‖w‖2H1 +‖w‖

3
H1).

Finally, from (2-17) we have P(iLw) = 0, which combines with the previous
estimates to give

|X | ≤ ch2
‖w‖H1 + c|X |‖w‖H1 + c(‖w‖2H1 +‖w‖

3
H1).

Here we have removed the factors of µ using (4-1). If ‖w‖H1 is sufficiently small,
this implies the desired inequality. �

Lemma 4.3. Suppose there are positive constants c1, and h0 such that

‖w‖L∞
[t1,t2]

H1
x
≤ c1h1/2+δ, h2+2δ(t2− t1)〈t2− t1〉 ≤ c1 if 0< h ≤ h0,
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for some t1 < t2 and nonnegative δ. Then

sup
t1<t<t2

|θ(t)| ≤ ch3 and sup
t1<t<t2

|v(t)| ≤ c

for a constant c depending only on c1, h0, ‖W‖C3(R3) and |v(t1)|.

Proof. The conclusion concerning θ will follow from |µ̇| ≤ ch1+2δ and |ȧ| ≤ c.
Our assumption on w implies that the bounds for µ in (4-1) can be improved to

1− ch1/2+δ
≤ µ≤ 1+ ch1/2+δ.

By the definition of X and the Taylor expansions and the bound on X , we have∣∣∣ v̇
µ
+∇V (a)

∣∣∣+ ∣∣∣ µ̇
µ

∣∣∣+ |µ(−ȧ+ v)| ≤ c|X | ≤ c(h2
‖w‖H1 +‖w‖2H1 +‖w‖

3
H1),

which immediately gives the desired bound on |µ̇|. For the bound on |ȧ|, it suffices
to prove |v| ≤ c, which we do by first integrating the inequality above to obtain

sup
t1<t<t2

|v(t)| ≤ |v(t1)| + ch‖∇W‖L∞(t2− t1)+ c|X |(t2− t1).

Next we prove a near conservation of classical energy:

sup
t1≤t≤t2

∣∣( 1
2 |v|

2
+ V (a)

)
−
( 1

2 |v(t1)|
2
+ V (a(t1))

)∣∣
≤ (t2− t1) sup

t1≤t≤t2
|v̇ · v+∇V · a|

≤ (t2− t1) sup
t1≤t≤t2

(|v̇+∇V (a)||v| + |∇V (a)||ȧ− v|)

≤ c(t2− t1)
(
|X | sup

t1≤t≤t2
|v| + h‖∇W‖L∞ |X |

)
≤ c|X |(t2− t1)

(
|v(t1)| + ch‖∇W‖L∞〈t2− t1〉+ c|X |(t2− t1)

)
.

From this it follows that supt1≤t≤t2 |v(t)| ≤ c, which concludes the proof. �

This will be crucial for the estimate of the true error w.

Lemma 4.4 (Lyapounov energy estimate). Suppose that, for some constants c1

and h0,
‖w‖L∞

[t1,t2]
H1

x
≤ c1h1/2 if 0< h ≤ h0.

Then, provided
|t2− t1| ≤ c2/h,

we have
‖w‖L∞

[t1,t2]
H1

x
≤ c3‖w1(t1)‖H1 + c4h2.

The constants c2 and c4 depend only upon c1, h0, ‖W‖C3(R3) and |v(t1)|. The
constant c3 is an absolute constant.
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We postpone the proof of this lemma to the end of the section, first demonstrating
how it is applied in the bootstrap argument. We prove the following proposition,
from which Theorem 2 follows.

Proposition 4.5. Let w0 = w(0) and fix constants c̃1 > 0 and δ0 ∈ (0, 3/4). Then
there exist constants h0 and c such that if

0≤ δ ≤ δ0, 0< h ≤ h0, ‖w0‖H1 ≤ c̃1h1/2+3δ0, 0< T ≤
c̃1

h
+
δ|log h|

ch
,

then
‖w‖L∞

[0,T ]H
1
x
≤ ch−δ(‖w0‖H1 + h2).

The constants h0 and c depend only on c̃1, δ0, |v(0)|, and ‖W‖C3(R3).

Proof. To apply Lemma 4.4, we observe that by the continuity in t of ‖w‖L∞
[0,t]H

1
x

we know immediately that the hypotheses are satisfied on [0, t] for sufficiently
small t . At this point the conclusion of the lemma tells us that at the end of this
interval the error is still small enough that we may proceed for larger t , until we
reach t = c2/h. In this way we apply Lemma 4.4 k times on successive intervals
of length c2/h, where c2 and k will be fixed later, giving the bound

‖w‖L∞
[0,c2k/h]H

1
x
≤ ck

3‖w0‖H1 +

( k−1∑
j=0

c j
3

)
c4h2.

This is only valid provided that the hypotheses of Lemmas 4.3 and 4.4 are satisfied
over the whole collection of time intervals. We must use Lemma 4.3 to control |v|
uniformly over the full time interval [0, c2k/h], and to apply this we need

ck
3‖w0‖H1 +

( k−1∑
j=0

c j
3

)
c4h2
≤ c1h1/2+δ and c2

2k2h2δ
≤ c1

for some constant c1. We will determine c1 momentarily, and at that point c2 will
be the constant that emerges from Lemma 4.4. If

k =
c̃1

c2
+ δ
|log h|
log c3

,

it suffices to have

(4-3) cc̃1/c2
3 c̃1h1/2+3δ0−δ+cc̃1/c2

3 c4h2−δ
≤ c1h1/2+δ and c̃2

1

〈
δ
|log h|
log c3

〉2

h2δ
≤ c1.

We can now choose our constants. We first take c1 so that the second inequality
of (4-3) holds. Then c2 is given by Lemma 4.4, and we take h0 so that the first
inequality of (4-3) holds. The hypotheses of Lemma 4.3 are satisfied a fortiori. �

It now remains only to prove Lemma 4.4.
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Proof of Lemma 4.4. In this proof, unless otherwise mentioned, all constants de-
pend only upon c1, ‖W‖W∞,3 and |v(t1)|.

Let w1 := w− w̃. Now

∂tw1 =−iµ2Lw1+ Xη− θ f + i
(
−V

( x
µ
+ a

)
+α+β · x − x

2µ2 · ∇
2V (a)x

+
3

2µ2‖η‖2L2

∫
x · ∇2V (a)xη2(x)dx

)
η

+ Xw+ i
(
−V

( x
µ
+ a

)
+α+β · x

)
w+ iµ2Nw.

By grouping forcing terms into f1, we rewrite this as

∂tw1 =−iµ2Lw1+ Xη+ f1+ Xw+ i
(
−V

( x
µ
+ a

)
+α+β · x

)
w+ iµ2Nw,

observing that, using Lemma 4.3, we have ‖ f1‖H1 ≤ ch3.
We recall that L is self-adjoint with respect to 〈u, v〉 = Re

∫
uv̄, and hence

1
2∂t 〈Lw1, w1〉 = 〈Lw1, ∂tw1〉

= −µ2
〈Lw1, iLw1〉+ 〈Lw1, Xη〉+ 〈Lw1, f1〉+ 〈Lw1, Xw1〉+ 〈Lw1, Xw̃〉

+ 〈Lw1, i
(
−V

( x
µ
+ a

)
+α+β · x

)
w1〉

+ 〈Lw1, i
(
−V

( x
µ
+ a

)
+α+β · x

)
w̃〉+ 〈Lw1, iµ2Nw〉

= I+ II+ III+ IV+V+VI+VII+VIII.

Now we analyze these terms one by one. First

I= II= 0.

In the case of I this follows from (2-1), the definition of 〈 · , · 〉. In the case of II, we
recall that ω(w, Xη)= 0 by construction of w, and that ω(w̃, Xη)= 0 from (3-4),
as a result of which we have ω(w1, Xη)= 0. Finally ω(iLw1, Xη)= 0 by (2-17),
and then we use (2-1) to relate 〈 · , · 〉 and ω( · , · ).

Next we show that

|III| ≤ c‖w1‖H1‖ f1‖H1 ≤ ch3
‖w1‖H1 .

This estimate is straightforward in the case of the convolution-free terms of L. For
the terms with convolutions, we apply (4-2) with f1 in place of ψ4 and the other
ψk chosen appropriately from among η, w and w̄.

Next we look at IV = 〈Lw1, Xw1〉. We first recall that X =
∑8

j=1a j e j with
|a j | ≤ c(h2

‖w‖ + ‖w‖2H1 + ‖w‖
3
H1). We the proceed term by term according to
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Lw1 =
1
2w1−

1
21w1− (|x |−1

∗ η2)w1− η(|x |−1
∗ (η(w1+ w̄1))):

〈w1, Xw1〉 = a8〈w1, 2w1+ x · ∇w1〉 =
1
2a8〈w1, w1〉,

〈1w1, Xw1〉 =

3∑
j=1

a j+3〈1w1, i x jw1〉+ a8〈1w1, 2w1+ x · ∇w1〉

=

3∑
j=1

a j+3〈∂ jw1, iw1〉+
1
2a8〈∇w1,∇w1〉,

and thus these two terms are bounded by c|X |‖w1‖
2
H1 . For the terms involving η

we use (4-2) to obtain the same bound, giving

|IV| ≤ c(h2
+‖w‖H1 +‖w‖2H1)‖w1‖

3
H1 .

Next V=〈Lw1, Xw̃〉 has a similar expansion, but includes more nonzero terms.
We estimate these terms as before in (4-2). We use Hölder’s inequality, Hardy–
Littlewood–Sobolev, and Sobolev embedding to obtain

|V| ≤ c|X |‖w1‖H1‖〈x〉w̃‖H2 .

However, ‖〈x〉w̃‖H2 ≤ ch2, giving

|V| ≤ ch2(h2
+‖w‖H1 +‖w‖2H1)‖w1‖H1 .

For VI, once again we obtain a number of vanishing terms:

VI= 〈Lw1, i(−V (x/µ+ a)+α+β · x)w1〉

=
〈
−

1
21w1− η(|x |−1

∗ (η(w1+ w̄1))), i(−V (x/µ+ a)+α+β · x)w1
〉
.

To estimate the first term, we integrate by parts as before and use

|−(1/µ)∇V (x/µ+ a)+β| ≤ ch.

For the second term, we use (4-2) together with

|(−V (x/µ+ a)+α+β · x)η| ≤ ch2.

This gives the bound |VI| ≤ ch‖w1‖
2
H1 .

For VII, we proceed in the same way, without the vanishing terms but also
without the restriction that only H 1 norms may be used. We obtain

|VII| ≤ c‖w1‖H1‖(−V (x/µ+ a)+α+β · x)w̃‖H1

≤ ch2
‖w1‖H1‖〈x〉2w̃‖H1 ≤ ch4

‖w1‖H1 .

Finally, for VIII = 〈Lw1, iµ2Nw〉 we write w = w1 + w̃ and expand. We
integrate by parts for the 1 term, and use (4-2), twice as needed for the terms with
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two convolutions. This allows us to put all factors in an H 1 norm, giving a bound
of

|VIII| ≤ c(h6
‖w1‖H1 + h4

‖w1‖
2
H1 + h2

‖w1‖
3
H1 +‖w1‖

4
H1).

Combining all this gives

|∂t 〈Lw1, w1〉| ≤ c(h3
‖w‖H1 + h‖w‖2H1 + h2

‖w‖3H1 +‖w‖
4
H1 +‖w‖

5
H1).

From (B-1) we have uniform boundedness of ‖u‖H1 , while from Lemma 4.3 we
have uniform boundedness of |v| over our time interval, from which we conclude
that ‖w‖H1 ≤ c, and hence

|∂t 〈Lw1, w1〉| ≤ c(h3
‖w‖H1 + h‖w‖2H1 +‖w‖

4
H1).

Now we use w = w1+ w̃ to write ‖w‖H1 ≤ c(‖w1‖H1 + h2) and hence

|∂t 〈Lw1, w1〉| ≤ c(h5
+ h‖w1‖

2
H1 +‖w1‖

4
H1).

Integrating in time gives

〈Lw1(t), w1(t)〉 ≤ 〈Lw1(t1), w1(t1)〉+ c(t − t1)(h5
+ h‖w1‖

2
H1 +‖w1‖

4
H1).

From (3-1), we have

‖w1(t)‖2H1 ≤ c〈Lw1(t), w1(t)〉,

and by direct estimation we have

|〈Lw1(t), w1(t)〉| ≤ c‖w1(t)‖2H1 .

This leads to

‖w1‖
2
L∞
[t1,t]

H1
x
≤ c̃‖w1(t1)‖2H1+c(t − t1)

(
h5
+ h‖w1‖

2
L∞
[t1,t]

H1
x
+‖w1‖

4
L∞
[t1,t]

H1
x

)
,

with c̃ an absolute constant. Requiring that t2− t1 ≤ c2/h for a small constant c2

and subtracting the quadratic term to the left hand side implies

‖w1‖
2
L∞
[t1,t]

H1
x
≤ 2c̃‖w1(t1)‖2H1 + c(t2− t1)

(
h5
+ h‖w1‖

4
L∞
[t1,t]

H1
x

)
.

This is a quadratic inequality in ‖w1‖
2
L∞
[t1,t]

H1
x
. In general,

A > 0, B > 0, X ∈ R, B X2
− X + A ≥ 0, X ≤ (2B)−1, 4AB < 1

implies X ≤ 2A. In our case, assuming that

(t2− t1)h‖w1‖
2
L∞
[t1,t]

H1
x
+ (t2− t1)2h6

≤ c2,

we have
‖w1‖

2
L∞
[t1,t2]

H1
x
≤ 4c̃‖w1(t1)‖2H1 + ch5(t2− t1).
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From this, together with w = w1+ w̃ the desired result follows. �

5. Proof of Theorem 1

Lemma 5.1. Suppose that 0< h� 1, and a= a(t), v= v(t), ε1= ε1(t), ε2= ε2(t)
are C1 real-valued functions. Suppose f : R3

→ R is C2 mapping such that | f |
and | f ′| are uniformly bounded. Suppose that on [0, T ],

ȧ = v+ ε1, a(0)= a0,

v̇ = h f (ha)+ ε2, v(0)= v0.

Let a = a(t) and v = v(t) be the C1 real-valued functions satisfying the exact
equations

ȧ = v+ ε1, a(0)= a0,

v̇ = h f (ha)+ ε2, v(0)= v0

with the same initial data. Suppose that on [0, T ], we have |ε j | ≤ h4−δ for j = 1, 2.
Then provided T ≤ ch−1

+ δh−1 log(1/h), we have on [0, T ] the estimates

|a− a| ≤ c̃h2−2δ log(1/h) and |v− v| ≤ c̃h3−2δ log(1/h).

The statement and proof of this lemma is almost identical to those of [Holmer
and Zworski 2008, Lemma 6.1]. The only change in this proof is that we use
g =

∫ 1
0 ∇ f (ha+ t (ha− ha))dt .

For Theorem 1, we assume ε = O(h2), in which case a and v satisfy the ODEs

ȧ = v+O(h4−4δ) and v̇ =− 1
2

∫
∇V (x + a)η2(x)dx +O(h4−4δ).

Lemma 5.1 allows us to replace these with

ȧ = v and v̇ =− 1
2

∫
∇V (x + a)η2(x)dx .

Direct integration of the error terms in the equations for µ and γ allows them to
be dropped as well, giving Theorem 1. �

Appendix A: Properties of η

In this appendix we review the properties of the function η used in this paper. This
material is essentially well known, and further information and references may be
found in [Lenzmann 2009].

Lemma A.1 [Lenzmann 2009, Appendix A]. For each λ > 0, the equation

(A-1) −
1
21η+ Ṽη =−λη

with Ṽ =−|x |−1
∗ η2, has a unique radial, nonnegative solution η ∈ H 1(R3) with

η 6≡ 0. Moreover, η(r) is strictly positive.
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In this paper we choose λ so that ‖η‖2L2 = 2.
We will also need the following exponential decay result.

Proposition A.2. Let η ∈ H 1(R3
;R) satisfy (A-1). Then η ∈C∞(R3), and for any

multiindex α and ε > 0 there exists C such that

|∂αη(x)| ≤ Ce−(
√

2λ−ε)|x |.

Proof. Observe first that Ṽ is continuous and obeys lim|x |→∞ Ṽ = 0. Indeed, write
|x |−1

= χ1+χ2, where χ1 is smooth and agrees with |x |−1 near infinity, and χ2 is
compactly supported and in L p for p < 3. The χ1 term is clearly smooth, and we
prove the decay by treating it in two pieces:∫

|y|≤|x |/2
χ1(x − y)η2(y)dy ≤

∫
|y|≤|x |/2

C
〈x−y〉

η2(y)dy ≤ C
|x |
‖η‖2L2,∫

|y|≥|x |/2
χ1(x − y)η2(y)dy ≤ ‖χ1‖L∞

∫
|y|≥|x |/2

η2(y)dy.

On the other hand, note that since η∈ H 1(R3), the Gagliardo–Nirenberg inequality
implies that η ∈ L6(R3), and in particular η2

∈ L2. Thus χ2 ∗ η
2 has a Fourier

transform in L1, giving the desired regularity and decay.
Now it follows from (A-1) that η∈H 2. Differentiating the equation and applying

the previous argument shows that η ∈ H 3. By induction we find that η ∈ H s , and
in particular η ∈ C∞.

We now prove the exponential decay as follows. Let P =−1
21+ Ṽ , let φ ∈C∞

be bounded together with its first derivatives, and let

Pφ := eφPe−φ =− 1
21+∇φ · ∇ −

1
2 |∇φ|

2
+

1
21φ+ Ṽ .

Let w = eφη and, observing that integrating by parts gives
∫
(∇φ · ∇w)w =

−
∫
(∇φ · ∇w)w−

∫
(1φ)w2, write

0= 〈(Pφ + λ)w,w〉L2 =
1
2

∫
|∇w|2+

∫
(Ṽ + λ− 1

2 |∇φ|
2)w2.

Now, provided |∇φ|2 ≤ 2λ− 2ε, we have

ε

∫
w2
≤

∫
(λ− 1

2 |∇φ|
2)w2
≤−

∫
Ṽw2

≤
1
2ε

∫
{x :Ṽ (x)≥−ε/2}

w2
−

∫
{x :Ṽ (x)<−ε/2}

Ṽw2.

The integral over {x : Ṽ (x)≥−ε/2} can now be subtracted to the other side of the
inequality, while {x : Ṽ (x) < −ε/2} is a bounded set since lim|x |→∞ Ṽ (x) = 0.
We may then write

∫
w2
≤ C , where C depends on η, sup|φ|, and ε. If we apply

this result with a sequence of functions φn such that φn is equal to (
√

2λ− 2ε)x1



SOLITARY WAVES FOR THE HARTREE EQUATION 87

on the ball of radius n and is modified outside that ball to be smooth with bounded
derivatives, we find that e

√
2λ−2εx1η ∈ L2, and similarly

e
√

2λ−2ε|x |η(x) ∈ L2.

Differentiating (A-1) and applying the same argument proves that

e
√

2λ−2ε|x |∂αη(x) ∈ L2,

from which the desired result follows. �

Appendix B: Well-posedness

In this appendix we prove well-posedness for Equation (1-1) in H 1(R3). This result
is known (see for example [Cazenave 1996]), but for the reader’s convenience we
review the result in the special case that we study here. We adopt the notation
‖u‖W k,p =

∑
|α|≤k‖∂

αu‖L p .
We will use these Strichartz estimates (see for example [Keel and Tao 1998]):

Lemma B.1. Suppose q, r, q̃ ′, r̃ ′ ∈ [1,∞] satisfy

2
q
+

n
r
=

n
2

and 2
q̃ ′
+

n
r̃ ′
=

4+n
2
.

Then

‖ei t1u0‖Lq
[0,T ]L

r
x
≤ c‖u0‖L2 and

∥∥∥∫ t

0
ei(t−s)1 f (s)ds

∥∥∥
Lq
[0,T ]L

r
x

≤ c‖ f ‖
L q̃′
[0,T ]L

r̃ ′
x

for all u0 ∈ L2(Rn) and f ∈ L q̃ ′([0, T ], L r̃ ′(Rn)).

In the remainder of this section only, c denotes a constant that may vary from
line to line, but is absolute and independent of all parameters in the problem. Let
V ∈W 1,∞(R3,R), let u0 ∈ H 1(R3) be given, and define

N (u)=−(|x |−1
∗ |u|2)u,

F(u)(t)= ei t1u0− i
∫ t

0
ei(t−s)1(N (u(s))+ V u(s))ds.

A function u solves the Hartree equation if and only if it is a fixed point of F .

Lemma B.2. For any T > 0, we have

‖N (u)‖H1(R3) ≤ c‖u‖L2(R3)‖∇u‖H1(R3),

‖F(u)‖L∞([0,T ],H1(R3)) ≤ ‖u0‖H1(R3)+T 1/2(c‖u‖3H1(R3)
+‖V ‖W 1,∞(R3)‖u‖H1(R3)),

where c is an absolute constant.
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Proof. We first compute

(B-1)
‖(|x |−1

∗ |u|2)u‖L2 ≤ ‖(|x |−1
∗ |u|2)‖L3‖u‖L6

≤ c‖|u|2‖L1‖u‖L6 ≤ c‖∇u‖L2‖u‖2L2,

where we have used in the first inequality Hölder, in the second Hardy–Littlewood–
Sobolev, and in the third Hölder followed by the Sobolev inclusion of Ḣ 1(R3) into
L6(R3). From this the result concerning N follows.

We now look at F . We have ‖ei t1u0‖L∞([0,T ],H1(R3)) = ‖u0‖H1(R3) because the
Schrödinger propagator is unitary on all Sobolev spaces. We then compute using
Strichartz estimates that∥∥∥∫ t

0
ei(t−s)1N (u(s))ds

∥∥∥
L∞([0,T ],L2(R3))

≤ c‖N (u)‖L2
[0,T ]L

6/5
x

≤ cT 1/2
‖N (u)‖L∞

[0,T ]L
6/5
x
.

Using the same sequence of inequalities as in (B-1), we get∥∥(|x |−1
∗ |u|2)u

∥∥
L6/5 ≤

∥∥|x |−1
∗ |u|2

∥∥
L3‖u‖L2 ≤ c‖|u|2‖L1‖u‖L2 = c‖u‖3L2 .

The same arguments show that∥∥∥∇ ∫ t

0
ei(t−s)1N (u(s))ds

∥∥∥
L∞([0,T ],L2(R3))

≤ T 1/2
‖u‖2L2‖∇u‖L2 . �

Proposition B.3. For each u0 ∈ H 1(R3
;C), there exists T ∈ R such that (1-1) has

a solution u(x, t) ∈ L∞([0, T ], H 1(R3)). This T depends only on ‖u0‖H1 .

Proof. We prove this using a standard contraction argument. We adopt the notation
‖ · ‖ = ‖ · ‖L∞([0,T ]H1(R3)):

‖F(u)− F(v)‖

≤

∥∥∥∫ t

0
ei(t−s)1(N (u(s))− N (v(s)))ds

∥∥∥+ ∥∥∥∫ t

0
ei(t−s)1

[V u(s)− V v(s)]ds
∥∥∥

≤ c
(
‖N (u(t))− N (v(t))‖L2

[0,T ]W
1,6/5
x
+ T ‖V u(t)− V v(t)‖

)
.

But then

c‖N (u(t))−N (v(t))‖L2
[0,T ]W

1,6/5
x

≤ cT 1/2
‖N (u)−N (v)‖L∞

[0,T ]W
1,6/5
x

≤ cT 1/2(
‖(|x |−1

∗|u|2)(u−v)‖L∞
[0,T ]W

1,6/5
x
+‖(|x |−1

∗u(ū− v̄))v‖L∞
[0,T ]W

1,6/5
x

+‖(|x |−1
∗(u−v)v̄)v‖L∞

[0,T ]W
1,6/5
x

)
≤ cT 1/2

‖u−v‖(‖u‖2+‖u‖‖v‖+‖v‖2).



SOLITARY WAVES FOR THE HARTREE EQUATION 89

Thus taking

T 1/2
≤

1
c
(
‖u‖2+‖u‖‖v‖+‖v‖2+‖V ‖W 1,∞(R3)

) ,
we find that F is a contraction on a closed ball of L∞([0, T ], H 1(R3)), implying
there exists a solution to (1-1). �

We use almost conservation of energy to extend this to global well-posedness.

Proposition B.4. Equation (1-1) has a solution in L∞(R, H 1(R3)).

Proof. Because of Proposition B.3, it is sufficient to prove that the H 1 norm of u
is bounded. Clearly ‖u‖L2 is preserved so it suffices to bound ‖∇u‖L2 . To do this,
we study the energy

E(t)= ‖∇u‖−
∫

R3
N (u)u.

An argument as above shows that∫
(|x |−1

∗ |u|2)|u|2 ≤ ‖|x |−1
∗ |u|2‖L3‖u2

‖L3/2 ≤ c‖u‖3L2‖∇u‖L2

≤
c
ε
‖u‖3L2 + cε‖∇u‖L2 .

From this we deduce that

‖∇u‖2L2 ≤ c
(
E(t)+‖u‖3L2 +‖V ‖W 1,∞

)
.

This bounds ‖u‖H1
x

uniformly in time, giving the desired conclusion. �
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