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THE UNITARY DUAL OF p-ADIC S̃p(2)

MARCELA HANZER AND IVAN MATIĆ

We investigate the composition series of the induced admissible represen-
tations of the metaplectic group S̃p(2) over a p-adic field F. In this way,
we determine the nonunitary and unitary duals of S̃p(2) modulo cuspidal
representations.

1. Introduction

The admissible representations of reductive groups over p-adic fields have been
studied intensively by many authors, but knowledge about the unitary dual of such
groups is still incomplete. Besides some results concerning specific parts of the
unitary dual of some classical and exceptional groups (that is, spherical, generic
[Lapid et al. 2004] and so on), there are some situations where, for some low rank
groups, the complete unitary dual is described [Sally and Tadić 1993; Muić 1997;
Hanzer 2006; Matić 2010].

In this paper, we completely describe the noncuspidal unitary dual of the double
cover of the symplectic group of split rank two. Although this is not an algebraic
group, some recent results enabled us to study this group in the same spirit as the
classical split groups. More concretely, Hanzer and Muić [2009] related reducibil-
ities of the induced representations of metaplectic groups with those of the odd
orthogonal groups (using theta correspondence), while their paper [2010] describes
the extension of the Jacquet module techniques of Tadić for classical groups to
metaplectic groups. More specifically, Tadić’s structure formula for symplectic
and odd-orthogonal groups [1995] (which is a version of a geometric lemma of
[Bernstein and Zelevinsky 1977]) is extended to metaplectic groups. These in-
gredients made the determination of the irreducible subquotients of the principal
series for S̃p(2) very similar to the one obtained in [Matić ≥ 2010] for SO(5), but
this happens to be insufficient tool in some cases. In these cases, we will use the
theta correspondence to again obtain the formal similarity to the SO(5) case. This
similarity was expected; see for example [Zorn 2010]. After determining complete
nonunitary dual, modulo cuspidal representations, the unitary dual follows in the
almost the same way as in [Matić 2010], but after discussion of some exceptional

MSC2000: primary 22E35, 22E50; secondary 11F70.
Keywords: metaplectic groups, unitary dual, theta correspondence.

107

http://pjm.berkeley.edu
http://dx.doi.org/10.2140/pjm.2010.248-1


108 MARCELA HANZER AND IVAN MATIĆ

cases (for example, the discussion of the unitary principal series): In the case of
the odd orthogonal group SO(5), the irreducibility of the unitary principal series
follows from the considerations about R-groups, and in the case of S̃p(2), since
the R-group theory for metaplectic groups is not available in its full generality,
irreducibility is obtained using theta correspondence. In the forthcoming paper
[Hanzer and Matić 2010], we extend the methods used here to prove for general n
the irreducibility of unitary principal series for S̃p(n). We hope these results will
have applications in the theory of automorphic forms.

We now describe the content of the paper. In Section 2, we recall the definition
of the metaplectic double cover S̃p(n). We also recall the notions of parabolic
subgroups, Jacquet functor, and parabolic induction in the context of metaplectic
groups. We then recall the notion of the dual pair, and the lifts of an irreducible
representations of one member of the pair dual to the Weil representation of the
ambient metaplectic group. We recall the criteria for the square integrability and
temperedness of the irreducible representations of metaplectic groups, due to Ban
and Jantzen [2009] and recall the classification of the irreducible genuine represen-
tations of S̃p(n) obtained in [Hanzer and Muić 2010]. In Section 3, we analyze the
principal series for S̃p(2), using both theta correspondence and Tadić’s methods
applied to metaplectic groups. In Section 4, we determine the unitary dual of
S̃p(2) supported in the minimal parabolic subgroup. In Section 5, we describe
irreducible representations of S̃p(2) supported on maximal parabolic subgroups,
and the unitary dual of S̃p(2) supported on maximal parabolic subgroups.

2. Preliminaries

Let S̃p(2) be the unique nontrivial two-fold central extension of symplectic group
Sp(2, F), where F is a non-Archimedean local field of characteristic different from
two. In other words, we have maps

1→ µ2→ S̃p(2)→ Sp(2, F)→ 1.

The multiplication in S̃p(2), which is as a set given by Sp(2, F)× µ2, is given
the cocycle of [Ranga Rao 1993]. The topology of S̃p(n) is explained in detail
in [Hanzer and Muić 2010, Section 3.3]. There exist compact open subgroups of
Sp(n) that split in S̃p(n). Recall that a maximal good compact subgroup Sp(OF )

splits if the residual characteristic of F is odd (here OF denotes the ring of integers
on F). In [Hanzer and Muić 2010], the metaplectic group S̃p(2) was denoted by
S̃p(W2). We say that the representation of S̃p(2) (or, more generally, S̃p(n)) is
smooth if, for every vector v in the representation space V , there exists a compact
open subgroup K1 of Sp(2) that splits in S̃p(2) and fixes v. The representation is
admissible if for every K1 as above, the space V K1 is finite-dimensional.
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Lemma 2.1. Irreducible smooth representations of S̃p(n) are admissible.

Proof. First, we prove that an irreducible, smooth, cuspidal representation of S̃p(n)
is admissible. We can proceed as in the corollary on [Bernstein 1992, page 36], so
we have to prove that an irreducible cuspidal representation of S̃p(n) is compact,
and that was proved in proving [Hanzer and Muić 2009, Lemma 3.1]. Then, on
this compact irreducible representation we can apply [Bernstein 1992, Proposition
11], which is formulated for a general totally disconnected group (so the meta-
plectic groups satisfy the conditions), and says that finitely generated compact
representations are admissible. The claim follows since every irreducible smooth
representation can be embedded in the representations parabolically induced from
the cuspidal representations of Levi subgroups (and for the representations of Levi
subgroups, the same reasoning as above shows that these representations are also
admissible), which was proved in [Hanzer and Muić 2008, Proposition 4.4]. �

In this paper we are interested only in genuine representations of S̃p(n) (that
is, those that do not factor through µ2). So, let R(n) be the Grothendieck group
of the category of all admissible genuine representations of finite length of S̃p(n)
(that is, a free abelian group over the set of all irreducible genuine representations
of S̃p(n)), and define R =

⊕
n≥0 R(n). By ν we denote a character of GL(k, F)

defined by |det|F . Further, for an ordered partition s = (n1, n2, . . . , n j ) of some
m ≤ n, we denote by Ps a standard parabolic subgroup of Sp(n, F) (consisting of
block upper-triangular matrices), whose Levi factor equals GL(n1)×GL(n2)×· · ·×

GL(n j )× Sp(n− |s|, F), where |s| =
∑ j

i=1 ni . By a standard parabolic subgroup
P̃s of S̃p(n) we mean the preimage of Ps in S̃p(n). We have the analogous notation
for the Levi subgroups of the metaplectic groups, and, for the completeness, we
explicitly describe the structure of the parabolic and Levi subgroups, as explained
in [Hanzer and Muić 2010, Section 2.2]. There is a natural splitting from the
unipotent radical of Ns of the corresponding standard parabolic subgroup Ps of
Sp(n, F) to its cover [Mœglin et al. 1987, Lemma 2.9 on page 43]; let N ′s be the
image of that homomorphism. We then have P̃s ∼= M̃s n N ′s .

We can explicitly describe M̃s as follows. There is a natural epimorphism

(1) φ : ˜GL(n1, F)× · · ·× ˜GL(nk, F)× ˜Sp(Wn−|s|)→ M̃s

given by

(2) ([g1, ε1], . . . , [gk, εk], [h, ε]) 7→ [(g1, g2, . . . , gk, h), ε1 · · · εkεβ],

with β =
∏

i< j (det gi , det g j )F
(∏k

i=1(det gi , x(h))F
)
, where x(h) is defined in

[Ranga Rao 1993, Lemma 5.1] and ( · , · )F denotes the Hilbert symbol of the
field F . Although M̃ is not exactly the product at left in (1), it differs from it
by a finite subgroup that enables us to write every irreducible representation π
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of M̃ in the form π1 ⊗ · · · ⊗ πk ⊗ π
′, where the representations π1, . . . , πk, π

′

are either all genuine or none genuine. This simple property enables us to set up
Tadić’s machinery [Tadić 1995; Hanzer and Muić 2008] of parabolic induction and
Jacquet functors. Recall that the irreducible representations in this paper, unless
mentioned otherwise, are assumed to be genuine (that is, nontrivial on µ2). Also,
the cuspidality of representations is defined in the same way as for the reductive
groups (because of the splitting of the unipotent radical) and characterized in terms
if the support of the matrix coefficients also as for the reductive groups.

Let σ be a representation of S̃p(2). Following the notation introduced in [Hanzer
and Muić 2010], we denote by R P̃(1,1)(σ ) the normalized Jacquet module with re-
spect to M̃(1,1); by R P̃1(σ ) the normalized Jacquet module with respect to M̃(1);
and by R P̃2(σ ) the normalized Jacquet module with respect to M̃(2).

We fix a nontrivial additive character ψ of F and let ωn,r be the pullback of
the Weil representation ωn(2r+1),ψ of the group ˜Sp(n(2r + 1)), restricted to the
dual pair S̃p(n)×O(2r+1) [Kudla 1996, Chapter II]. Here O(2r+1) denotes the
split odd-orthogonal group of the split rank r , with the one-dimensional anisotropic
space sitting at the bottom of the orthogonal tower [Kudla 1996, Chapter III.1]. The
standard parabolic subgroups (containing the upper triangular Borel subgroup) of
O(2r + 1) have the analogous description as the standard parabolic subgroups of
Sp(n, F); we use the analogous notation for the normalized Jacquet functors.

Let σ be an irreducible smooth genuine representation of S̃p(n). We write
2(σ, r) for the smooth isotypic component of σ in ωn,r (we view it as a repre-
sentation of O(2r +1)). Denote by r0 the smallest r such that 2(σ, r) 6= 0. When
σ is cuspidal, we know that 2(σ, r0) is an irreducible cuspidal representation of
O(2r + 1).

Let ˜GL(n, F) be a double cover of GL(n, F), where the multiplication is given
by

(g1, ε1)(g2, ε2)= (g1g2, ε1ε2(det g1, det g2)F ).

Here εi ∈ µ2 for i = 1, 2 and ( · , · )F denotes the Hilbert symbol of the field
F , and this cocycle on GL(n, F) is actually a restriction of Ranga Rao’s co-
cyle on Sp(n, F) to GL(n, F), if we view this group as the Siegel Levi sub-
group of Sp(n, F) [Kudla 1986, page 235]. Now we fix a character χV,ψ(g, ε) =
χV (det g)εγ (det g, ψ1/2)

−1 of ˜GL(n, F). Here γ denotes the Weil invariant, while
χV is a character related to the quadratic form on O(2r + 1) [Kudla 1996, pages
17 and 37], and ψa(x) = ψ(ax) for a ∈ F∗. We may suppose χV ≡ 1 (but the
arguments that follow are valid without this assumption). We write α = χ2

V,ψ and
observe that α is a quadratic character on GL(n, F).

The following fact, follows directly from [Hanzer and Muić 2010], and we use
it frequently while determining composition series of induced representations: For



THE UNITARY DUAL OF p-ADIC S̃p(2) 111

an irreducible genuine representation π of ˜GL(k, F) and an irreducible genuine
representation σ of S̃p(n) we have π o σ = π̃αo σ (in R), where π o σ denotes
the representation of the group ˜Sp(n+ k) parabolically induced from the represen-
tation π⊗σ of the maximal Levi subgroup M̃(k). We follow here the usual notation
for parabolic induction for classical groups, adapted to the metaplectic case [Tadić
1994; Hanzer and Muić 2010]. We also freely use Zelevinsky’s notation [1980] for
the parabolic induction for general linear groups. We denote the Steinberg repre-
sentation of the reductive algebraic group G by StG and the trivial representation
of that group by 1G . Following [Kudla 1996], we let ω+ψa,n denote the even part
of the Weil representation of S̃p(n) determined by the additive character ψa . The
nontrivial character of µ2, when we view it as a representation of S̃p(0), is denoted
by ω0.

If ζ is a quadratic character of F×, we can write ζ(x)= (xa)F for some a ∈ F×.
Let spζ,1 be an irreducible (square-integrable, according to the criterion for the
square-integrability which we recall below) subrepresentation of χV,ψζν

1/2 oω0.
Then, as in [Kudla 1996, page 89], we have the exact sequence

0→ spζ,1 −→ χV,ψζν
1/2 oω0 −→ ω+ψa,1→ 0.

The results of [Ban and Jantzen 2009] imply that Casselman’s criteria for square-
integrability and temperedness hold for metaplectic groups in a similar form as for
the classical groups (for example symplectic). We now recall these criteria.

Let π be an admissible irreducible (genuine) representation of S̃p(n) and let
P̃s be any standard parabolic subgroup minimal with respect to the property that
R P̃s (π) 6= 0. Write s = (n1, . . . , nk) and let σ be any irreducible subquotient of
R P̃s (π). As we saw above, we can write σ = ρ1⊗ ρ2⊗ · · · ⊗ ρk ⊗ ρ, where ρi is
an irreducible genuine cuspidal representation of some ˜GL(ni , F) for i = 1, . . . , k
and ρ is an irreducible genuine cuspidal representation of some ˜Sp(n− l). Define
e(ρi ) by ρi = ν

e(ρi )ρu
i , where ρu

i is unitary for 1≤ i ≤ n.
Assume that the inequalities

n1e(ρ1) > 0,

n1e(ρ1)+ n2e(ρ2) > 0,
...

n1e(ρ1)+ n2e(ρ2)+ · · ·+ nke(ρk) > 0.

hold for every s and σ as above. Then π is a square integrable representation. For
such s and σ , these inequalities also hold if π is a square integrable representation.

The criterion for tempered representations is given by replacing every>with≥.
We recall the definition of a negative representation [Hanzer and Muić 2010,

Definition 4.1].
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Let σ be an admissible irreducible genuine representation of S̃p(n). Then σ is
a strongly negative (respectively, negative) representation if and only if for every
embedding σ ↪→ρ1×ρ2×· · ·×ρk oρ, where ρi for 1≤ i ≤ k and ρ are irreducible
genuine supercuspidal representations of some of the G̃L and of some ˜Sp(n− l),
we have

n1e(ρ1) < 0 (respectively, ≤ 0),

n1e(ρ1)+ n2e(ρ2) < 0 (respectively, ≤ 0),
...

n1e(ρ1)+ n2e(ρ2)+ · · ·+ nke(ρk) < 0 (respectively, ≤ 0).

As soon as σ as above is genuine, the ρi and ρ are also necessarily genuine.
For notation, we recall [Hanzer and Muić 2010, Theorems 4.5 and 4.6]. Recall
that, for a cuspidal representation ρ of some GL(mρ, F), a segment 1 is a set of
cuspidal representations 1 = {ρ, νρ, . . . , νk−1ρ} and 〈1〉 is a unique irreducible
subrepresentation of ρ× νρ× · · ·× νk−1ρ. We use the same notation for genuine
cuspidal representations of ˜GL(mρ, F) since the transfer from nongenuine to gen-
uine representations in the case of ˜GL(mρ, F) is particularly simple (obtained by
multiplication with the character χV,ψ(g, ε) defined above). Now the two theorems
above follow from the analogous results in the case of classical reductive groups of
[Hanzer and Muić 2008], since the analogous calculations with Jacquet modules
are possible, due to results in [Hanzer and Muić 2010].

• Suppose that 11, . . . ,1k is a sequence of segments (of genuine represen-
tations) such that e(11) ≥ · · · ≥ e(1k) > 0 (we also allow k = 0). Let
σneg be a negative (genuine) representation. Then the induced representation
〈11〉 × 〈12〉 × · · · × 〈1k〉o σneg has a unique irreducible subrepresentation;
we denote it by 〈11, . . . ,1k; σneg〉.

• If σ is an irreducible admissible genuine representation of S̃p(n), then there
exist a sequence of segments (of genuine representations) 11, . . . ,1k such
that e(11) ≥ · · · ≥ e(1k) > 0 and a negative (genuine) representation σneg

such that σ ' 〈11, . . . ,1k; σneg〉.

We can carry over Tadić’s structure formula for classical groups to the metaplec-
tic case [Hanzer and Muić 2010, Proposition 4.5], which enables us to calculate
Jacquet modules of the induced representations. In more detail, let

Rgen
=

⊕
n

R( ˜GL(n, F))gen,

where R( ˜GL(n, F))gen denotes the Grothendieck group of finite length, smooth,
genuine representations of ˜GL(n, F). We denote by × the linear extension to
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Rgen
⊗ Rgen of the parabolic induction (from a maximal parabolic subgroup). We

can easily check that if σ is an irreducible genuine representation of S̃p(Wn),
then rk(σ ), the normalized Jacquet module of σ with respect to the standard maxi-
mal parabolic P̃k , is a genuine representation of M̃(k) and as such can be interpreted
as a (genuine) representation of ˜GL(k, F)× ˜Sp(Wn−k), that is, as an element of
Rgen
⊗R, with R defined as above. So for irreducible genuine σ , we can introduce

µ∗(σ ) ∈ Rgen
⊗ R by

µ∗(σ )=

n∑
k=0

s.s.(rk(σ )),

where s.s. stands for semisimplification. We can extend µ∗ linearly to the whole R.
Using Jacquet modules for the maximal parabolic subgroups of ˜GL(n, F) we can
analogously define

m∗(π)=
n∑

k=0

s.s.(rk(π)) ∈ Rgen
⊗ Rgen

for a genuine, irreducible representation π of ˜GL(n, F) and then extend m∗ linearly
to the whole Rgen. Let κ : Rgen

⊗Rgen
→ Rgen

⊗Rgen be defined by κ(x⊗y)= y⊗x .
We extend the contragredient ˜ to an automorphism of Rgen naturally. Finally, we
define

M∗ = (m⊗ id) ◦ ( ˜α⊗m∗) ◦ κ ◦m∗.

Here ˜α means taking contragredient of a representation, and then multiplying by
the character α, acting on the general linear group as α(g)= (det g,−1)F .

For π in Rgen and σ from R, we have

µ∗(π o σ)= M∗(π)oµ∗(σ ).

Using this formula for the induced representations of S̃p(2), we get the following:

• Fix an admissible representation π of G̃L(2), and suppose that π is of finite
length. Let m∗(π) = 1⊗ π +

∑
i π

1
i ⊗ π

2
i + π ⊗ 1, where

∑
i π

1
i ⊗ π

2
i is a

decomposition into a sum of irreducible representations. Now we have

µ∗(π oω0)= 1⊗π oω0+
∑

i

π1
i ⊗π

2
i oω0+

∑
i

απ̃2
i ⊗π

1
i oω0

+π ⊗ω0+απ̃ ⊗ω0+
∑

i

π1
i ×απ̃

2
i ⊗ω0.

• Fix an admissible representation π of G̃L(1) and an admissible representation
σ of S̃p(1). If we have

µ∗(σ )= 1⊗ σ +
∑

i

σ 1
i ⊗ σ

2
i ,
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where σ 1
i and σ 2

i are irreducible representations, then

µ∗(π o σ)= 1⊗π o σ +π ⊗ σ +απ̃ ⊗ σ
+

∑
i

σ 1
i ⊗π o σ 2

i +
∑

i

π × σ 1
i ⊗ σ

2
i +

∑
i

σ 1
i ×απ̃ ⊗ σ

2
i .

From now on, F̂× denotes the set of the unitary characters of F×, while F̃×

denotes those that are not necessarily unitary.

3. Principal series

We first state an important reducibility result that follows directly from [Hanzer
and Muić 2009, Theorems 3.5. and 4.2].

Proposition 3.1. Let χ ∈ F̂× and let s ∈ R be nonnegative. The representation
χV,ψν

sχ oω0 of S̃p(1) reduces if and only if χ2
= 1F× and s = 1/2.

Let ζ ∈ F̂× such that ζ 2
= 1F× . In R we have (see [Kudla 1996, page 89]

χV,ψν
1/2ζ oω0 = spζ,1+ω

+

ψa,1.

The following proposition is well known and follows easily from the analogous
results for the split SO(3) and SO(5).

Proposition 3.2. (1) Let χ ∈ F̂× and suppose s ∈ R is nonnegative. The repre-
sentation νsχ o 1 of O(3) reduces if and only if χ2

= 1F× and s = 1/2. In
that situation, the length of ν1/2χ o 1 is two, and this representation has the
unique subrepresentation that is square integrable.

(2) Let ζ1, ζ2 ∈ F̂×. Then, the unitary principal series ζ1 × ζ2 o 1 of O(5) is
irreducible.

We use these two propositions in the sequel without explicitly mentioning them.

3.1. Unitary principal series. In this subsection we prove irreducibility of the uni-
tary principal series χV,ψχ1×χV,ψχ2 oω0, where χi ∈ F̂× for i = 1, 2.

Let 5 denote the representation χV,ψχ1 × χV,ψχ2 o ω0. Using the structure
formula for µ∗(5) from the end of the previous section, we get

R P̃1(5)= χV,ψχ
−1
1 ⊗χV,ψχ2 oω0+χV,ψχ1⊗χV,ψχ2 oω0

+χV,ψχ
−1
2 ⊗χV,ψχ1 oω0+χV,ψχ2⊗χV,ψχ1 oω0.

Remark. Let π be an irreducible subrepresentation of5. Because of irreducibility
of the representations χV,ψχ1×χV,ψχ2 and χV,ψχi oω0 for i = 1, 2, we get

π ↪→5' χV,ψχ
−1
1 ×χV,ψχ2 oω0 ' χV,ψχ

−1
2 ×χV,ψχ1 oω0.
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If χi 6= χ
−1
i holds for both i = 1, 2 and χ1 6= χ

±1
2 , then Frobenius reciprocity

implies that R P̃1(π)= R P̃1(5), so π =5 and the representation 5 is irreducible.

Now we prove the irreducibility of the unitary principal series for general unitary
characters. Let ζ1, ζ2 be the unitary characters of F×. We prove irreducibility of
the representation χV,ψζ1 × χV,ψζ2 o ω0 using theta correspondence, beginning
with this lemma:

Lemma 3.3. Let π1 be an irreducible subrepresentation of χV,ψζ1×χV,ψζ2 oω0.
Then 2(π1, 2)= ζ1× ζ2 o 1.

Proof. According to the stable range condition [Kudla 1996, page 48],2(π1, 4) 6=0
(observe that 2(π1, 4) is a smooth representation of O(9)). We have epimor-
phisms ω2,4 → π1 ⊗2(π1, 4) and RP1(ω2,4)→ π1 ⊗ RP1(2(π1, 4)). If τ is an
irreducible quotient of 2(π1, 4), then [Kudla 1986, Corollary 2.6] implies [τ ] =
[ν−3/2, ν−1/2, ζ1, ζ2; 1], where [τ ] denotes the cuspidal support of τ . Clearly,
RP(1,1,1,1)(τ )≥ ν

l1/2⊗ νl2/2⊗ ζ±1
1 ⊗ ζ

±1
2 or RP(1,1,1,1)(τ )≥ ζ

±1
1 ⊗ ν

l1/2⊗ ζ±1
2 ⊗ ν

l2/2

(or we have some order of factors) for some l1, l2 ∈ {±1,±3}. If we assume that in
the Jacquet module RP(1,1,1,1)(τ ) there is an irreducible subquotient as above whose
first factor consists of a unitary character, then, using [Bernstein 1992, Lemma 26]
together with Frobenius reciprocity, easily follows that

Hom(τ, ζ±1
1 × ν

l1/2× ζ±1
2 × ν

l2/2 o 1) 6= 0.

But since ζ±1
i ×ν

li/2∼=νli/2×ζ±1
i , we have Hom(τ, νl1/2×ζ±1

1 ×ζ
±1
2 ×ν

l2/2o1) 6=0.
So, there is an irreducible subquotient τ ′ of ζ1×ζ2×ν

l2/2o1 such that τ is a subrep-
resentation of νl1/2 oτ ′. This implies that RP1(τ )(ν

l1/2), the isotypic component of
RP1(τ ) along the generalized character νl1/2, is nonzero, as is RP1(2(π1, 4))(νl1/2).

Observations above imply that there is an irreducible representation τ1 of O(3)
such that the mappings RP1(ω2,4)→ π1 ⊗ RP1(2(π1, 4))→ π1 ⊗ ν

l1/2 ⊗ τ1 are
epimorphisms. We denote the epimorphism RP1(ω2,4))→ π1 ⊗ ν

l1/2 ⊗ τ1 by T .
Now RP1(ω2,4) has the filtration in which

• I10 = ν
−3/2
⊗ω2,3 is the quotient and

• I11 = IndM1×S̃p(2)
GL(1)×P̃1×O(3)(χV,ψ6

′

1⊗ω1,3) is the subrepresentation.

See [Kudla 1996, page 57] and [Hanzer and Muić 2009, Proposition 3.3], where
the notation is explained in detail.

Suppose T |I11 6= 0. Because χV,ψν
−l1/2 is the isotypic component of νl1/2 in the

˜GL(1, F)×GL(1, F)-module χV,ψ6
′

1, by applying the second Frobenius we get
a nonzero ˜GL(1, F)×GL(1, F)× S̃p(1)× O(3)-homomorphism

νl1/2⊗χV,ψν
−l1/2⊗ω1,3→ νl1/2⊗ τ1⊗ R̃ P̃1(π̃1),
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which implies that R̃ P̃1(π̃1)(χV,ψν
−l1/2) 6= 0. Because l1 6= 0, this contradicts our

assumption π1 ↪→ χV,ψζ1 × χV,ψζ2 o ω0; hence T |I11 = 0. Therefore, we can
consider T as an epimorphism I10→ π1⊗ ν

l1/2⊗ τ1. Consequently, l1 = −3 and
there is an epimorphism ω2,3→ π ⊗ τ1. Obviously, 2(π1, 3) 6= 0.

Repeating the same procedure once again, we obtain 2(π1, 2) 6= 0. Since the
cuspidal support of each irreducible quotient of 2(π1, 2) equals [ζ1, ζ2; 1], all of
the irreducible quotients of 2(π1, 2) are equal to ζ1× ζ2 o 1. �

Proposition 3.4. Let ζ1, ζ2 ∈ F̂×. Then the unitary principal series representation
χV,ψζ1×χV,ψζ2 oω0 is irreducible.

We present two proofs of this proposition, both based on the previous lemma.
The first proof is much simpler than the second — it also uses some known results
about Whittaker models for the principal series for metaplectic groups, but we have
to assume that the residue characteristic of F is odd. The second proof is more
technical, but it doesn’t depend on the residue characteristic of F . We feel that
presenting both proofs may be useful.

First proof of Proposition 3.4. We denote the representation χV,ψζ1×χV,ψζ2 oω0

by5. Suppose that the residue characteristic of F is not 2. Howe’s duality conjec-
ture and lemma then implies that the representation 2(ζ1×ζ2 o1, 2) has a unique
irreducible quotient, so, by Lemma 3.3, all the irreducible subrepresentations of 5
are isomorphic, that is,

5= π ⊕ · · ·⊕π.(3)

Now, observe that the representation5 has a unique Whittaker model [Banks 1998;
Szpruch 2007]. In more words, for a nondegenerate character θ of the unipotent
radical U of Borel subgroup of Sp(n) (observe that S̃p(n) splits over U , and the
mapping n 7→ (n, 1) is the splitting) and a genuine character χV,ψζ1⊗· · ·⊗χV,ψζn

of T̃ (where T̃ denotes the preimage of maximal diagonal torus in Sp(n)), we have

dimC HomS̃pn
(χV,ψζ1× · · ·×χV,ψζn oω0, IndS̃p(n)

U (θ))= 1.

This forces that the number of copies of π in (3) to be one, and this finishes the
first proof. �

Second proof of Proposition 3.4. We have already seen that there is an epimorphism
R P̃1(ω2,2)→ χV,ψζ1⊗χV,ψ oω0⊗ ζ1× ζ2 o 1, so

2(χV,ψζ1⊗χV,ψζ2 oω0⊗ ζ1× ζ2 o 1, R P̃1(ω2,2)) 6= 0.

R P̃1(ω2,2) has the filtration in which

• J10 = χV,ψν
1/2
⊗ω1,2 is the quotient and

• J11 = IndM̃1×O(2)
G̃L(1)×P1×S̃p(1)(χV,ψ6

′

1⊗ω1,1) is the subrepresentation.
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Lemma 3.5. There is an isomorphism

HomM̃1(R P̃1(ω2,2), χV,ψζ1⊗χV,ψζ2 oω0)∼=HomM̃1(J11, χV,ψζ1⊗χV,ψζ2 oω0)

of vector spaces that is given by restriction (that is, T 7→ T |J11).

Proof of Lemma 3.5. The map obtained by the restriction is obviously a homo-
morphism, while the injectivity follows directly. Surjectivity is proved as follows:

We consider the filtration 0⊆W2 ⊆W1 ⊆ R P̃1(ω2,2), where W1 is the represen-
tation J11, and W1/W2 ∼= χV,ψζ1⊗χV,ψζ2 oω0⊗2(χV,ψζ1⊗χV,ψζ2 oω0, J11).
Observe that

(R P̃1(ω2,2)/W2)/(W1/W2)∼= R P̃1(ω2,2)/W1 ∼= J10.

Using standard argument, it can be proved that the representation R P̃1(ω2,2)/W2

is G̃L(1)-finite. Then, using the decomposition along the generalized central char-
acters, which in this case coincide with the central characters because W1/W2 and
J10 have different central characters, we obtain

R P̃1(ω2,2)/W2 ∼=W1/W2⊕ J10.

Now an element of HomM̃1(J11, χV,ψζ1 ⊗ χV,ψζ2 o ω0) is trivial on W2, so it
can be extended to R P̃1(ω2,2) in an obvious way and surjectivity is proved. �

Using a standard relation between taking a smooth part of the isotypic compo-
nent of a representation and the homomorphism functor [Hanzer and Muić 2009,
page 10], it follows from Lemma 3.5 that

2(χV,ψζ1⊗χV,ψζ2 oω0, R P̃1(ω2,2))∼=2(χV,ψζ1⊗χV,ψζ2 oω0, J11),

if we can prove that 2(χV,ψζ1⊗χV,ψζ2 oω0, J11) is admissible.

Lemma 3.6. We have 2(χV,ψζ1⊗χV,ψζ2 oω0, J11)= ζ1× ζ2 o 1.

Proof of Lemma 3.6. Since χV,ψζ1⊗χV,ψζ2 oω0⊗ζ1×ζ2 o1 is a quotient of J11,
there is an epimorphism 2(χV,ψζ1⊗χV,ψζ2 oω0, J11)→ ζ1× ζ2 o 1.

Applying [Hanzer and Muić 2009, Lemma 3.2], we have

HomM̃1×O(2)(J11, χV,ψζ1⊗χV,ψζ2 oω0⊗2(χV,ψζ1⊗χV,ψζ2 oω0, J11))

∼= HomM̃1×M(1)(χV,ψ6
′

1⊗ω1,1,

χV,ψζ1⊗χV,ψζ2 oω0⊗ RP1
(2(χV,ψζ1⊗χV,ψζ2 oω0, J11))).

For every intertwining map T from the first space, let T0 be the correspond-
ing intertwining map from the second space. Let ϕ be a natural homomorphism
belonging to the first space.

Since χV,ψζ1⊗ ζ
−1
1 (respectively, χV,ψζ2 oω0⊗ ζ2 o 1) are the corresponding

isotypic components in the ˜GL(1, F)×GL(1, F)-module χV,ψ6
′

1(respectively, in
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the S̃p(1)×O(3)-module ω1,1), irreducibility of these isotypic components implies
that the image of ϕ0 is isomorphic to χV,ψζ1⊗χV,ψζ2 oω0⊗ ζ

−1
1 ⊗ ζ2 o 1. Now,

we write ϕ0 = ϕ
′′
◦ϕ′, where ϕ′ is a canonical epimorphism

χV,ψ6
′

1⊗ω1,1→ χV,ψζ1⊗χV,ψζ2 oω0⊗ ζ
−1
1 ⊗ ζ2 o 1

and ϕ′′ is an inclusion of the representation

χV,ψζ1⊗χV,ψζ2 oω0⊗ ζ
−1
1 ⊗ ζ2 o 1

in χV,ψζ1 ⊗ χV,ψζ2 o ω0 ⊗ RP1
(2(χV,ψζ1 ⊗ χV,ψζ2 o ω0, J11)). Observe that

Ind(ϕ′) is a homomorphism

IndM̃1×O(2)
G̃L(1)×P1×S̃p(1)

(χV,ψ6
′

1⊗ω1,1)→ χV,ψζ1⊗χV,ψζ2 oω0⊗ ζ
−1
1 × ζ2 o 1.

Let ϕ1 be an operator belonging to

Hom(χV,ψζ1⊗χV,ψζ2 oω0⊗ ζ1× ζ2 o 1,

χV,ψζ1⊗χV,ψζ2 oω0⊗2(χV,ψζ1⊗χV,ψζ2 oω0, J11))

such that (ϕ1)0 = ϕ
′′.

Lemma 3.7. Under the assumptions above, (ϕ1 ◦ Ind(ϕ′))0 = ϕ0.

Proof of Lemma 3.7. We prove it much more generally. Let (π, V ) be a smooth
representation of some Levi subgroup M ′ in the parabolic P ′ and the opposite
parabolic P ′ of the group G ′ (which is one of the groups we are considering, that
is, metaplectic or odd orthogonal) and let (5,W ) be a smooth representation of G ′.
Then the second Frobenius isomorphism asserts

HomG ′(IndG ′
M ′(π),5)

∼= HomM ′(π, RP ′(5)).

Let ψ ↪→ RP ′(IndG ′
M ′(π)) be an embedding corresponding to the open cell P ′P ′ in

G ′ given in the following way:
For an open compact subgroup K of G ′ that has Iwahori decomposition with

respect to both P ′ and P ′, and for v ∈ V K∩M ′ , we define

fv,K (g)=
1

measN ′(K∩N ′)


0 if g /∈ P ′K
δ

1/2
P (m)π(m)v if g = mnk

for m ∈ M ′, n ∈ N ′, k ∈ K .

Then ψ : v 7→ fv,K + IndG ′
M ′(π)(N ′) is independent on the choice of K .

For ϕ ∈ HomG ′(IndG ′
M ′(π),5), we take ϕ0 to be the corresponding element of

HomM ′(π, RP(5)). It follows that ϕ0(v)= ϕ( fv,K )+5(N ′). Write ϕ0 = ϕ
′′
◦ϕ′,

where ϕ′ denotes the canonical epimorphism π → π/Kerϕ0 and ϕ′′ denotes the
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embedding π/Kerϕ0 ↪→ RP ′ . So, we are able to construct the mapping Ind(ϕ′) :
IndG ′

M ′(π)→ IndG ′
M ′(π/Kerϕ0). Since

HomM ′(π/Kerϕ0, RP ′(5))
∼= HomG ′(IndG ′

M ′(π/Kerϕ0),5),

analogously as above, we see there is an element ϕ1∈HomG ′(IndG ′
M ′(π/Kerϕ0),5)

such that (ϕ1)0 = ϕ
′′.

To prove (ϕ1 ◦ Ind(ϕ′))0 = ϕ0, it is enough to prove (ϕ1 ◦ Ind(ϕ′))0 = (ϕ1)0 ◦ϕ
′.

Let v ∈ V . Clearly, ϕ′(v)= v+Kerϕ0. Further,

(ϕ1)0(ϕ
′(v))= ϕ1( fv+Kerϕ0,K )+5(N ′),

(ϕ1 ◦ Ind(ϕ′))0(v)= ϕ1(Ind(ϕ′) fv,K )+5(N ′).

It follows easily that fv+Kerϕ0,K = fv,K +Kerϕ0 and Ind(ϕ′) fv,K = fv,K +Kerϕ0,
and the lemma follows. �

We can complete the proof of Lemma 3.6. Lemma 3.7 gives ϕ1 ◦ Ind(ϕ′) = ϕ,
so the image of ϕ is a quotient of χV,ψζ1 ⊗ χV,ψζ2 o ω0 ⊗ ζ

−1
1 × ζ2 o 1. This

implies that 2(χV,ψζ1 ⊗ χV,ψζ2 o ω0, J11) is a quotient of ζ−1
1 × ζ2 o 1. Since

ζ−1
1 × ζ2 o 1' ζ1× ζ2 o 1 is an irreducible representation,

2(χV,ψζ1⊗χV,ψζ2 oω0, J11)= ζ1× ζ2 o 1. �

Lemma 3.8. There is an epimorphism2(ζ1×ζ2 o1, 2)→ χV,ψζ1×χV,ψζ2 oω0.

Proof of Lemma 3.8. We have an isomorphism

HomO(2)(ω2,2, ζ
−1
1 × ζ2 o 1)∼= Hom(RP1(ω2,2), ζ

−1
1 ⊗ ζ2 o 1)

of vector spaces, which also an isomorphism of S̃p(2) modules. By taking the
smooth parts, we obtain

HomS̃p(2)×O(2)(ω2,2, ζ
−1
1 × ζ2 o 1)∞ ∼= Hom(RP1(ω2,2), ζ

−1
1 ⊗ ζ2 o 1)∞,

so that 2(ζ−1
1 × ζ2 o 1, 2)∼ ∼=2(ζ−1

1 ⊗ ζ2 o 1, RP1(ω2,2))
∼.

In the same way as before, we get

2(ζ−1
1 ⊗ ζ2 o 1, RP1(ω2,2))

∼ ∼=2(ζ
−1
1 ⊗ ζ2 o 1, I11)

∼.

Now, the epimorphism I11 → ζ−1
1 ⊗ ζ2 o 1 ⊗ χV,ψζ1 × χV,ψζ2 o ω0 gives an

epimorphism 2(ζ−1
1 ⊗ ζ2 o 1, I11))→ χV,ψζ1×χV,ψζ2 oω0. Since the represen-

tations ζ−1
1 × ζ2 o 1 and ζ1 × ζ2 o 1 are isomorphic, we obtain the epimorphism

2(ζ1× ζ2 o 1, 2)→ χV,ψζ1×χV,ψζ2 oω0, which proves the lemma. �
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Now we finish the second proof of Proposition 3.4. Suppose that the rep-
resentation χV,ψζ1 × χV,ψζ2 o ω0 reduces. Suppose also that it is the repre-
sentation of length 2 and write χV,ψζ1 × χV,ψζ2 o ω0 = π1 ⊕ π2. Obviously,
R P̃1(χV,ψζ1×χV,ψζ2 oω0)= R P̃1(π1)⊕ R P̃1(π2).

We have, by Lemma 3.8, an epimorphism

ω2,2→ ζ1× ζ2 o 1⊗χV,ψζ1×χV,ψζ2 oω0,

which leads to the epimorphisms R P̃1(ω2,2)→ ζ1× ζ2 o 1⊗ (R P̃1(π1)⊕ R P̃1(π2))

and R P̃1(ω2,2)→ χV,ψζ1⊗χV,ψζ2 oω0⊗ (ζ1× ζ2 o 1⊕ ζ1× ζ2 o 1).
Finally, we obtain an epimorphism

2(χV,ψζ1⊗χV,ψζ2 oω0, R P̃1(ω2,2))→ ζ1× ζ2 o 1⊕ ζ1× ζ2 o 1,

which contradicts Lemmas 3.5 and 3.6.
The same proof remains valid if we suppose that χV,ψζ1 × χV,ψζ2 oω0 is the

representation of the length 4. �

3.2. Nonunitary principal series. First we determine the reducibility points of the
representations with cuspidal support in the minimal parabolic subgroup P̃(1,1).

Let χ1, χ2 ∈ F̂× and si ≥ 0 for i = 1, 2, such that si > 0 for at least one i . Define
5= χV,ψν

s1χ1×χV,ψν
s2χ2 oω0. We have

µ∗(5)= χV,ψν
s1χ1⊗χV,ψν

s2χ2 oω0+χV,ψν
−s1χ−1

1 ⊗χV,ψν
s2χ2 oω0

+χV,ψν
s2χ2⊗χV,ψν

s1χ1 oω0+χV,ψν
−s2χ−1

2 ⊗χV,ψν
s1χ1 oω0

+χV,ψν
−s1χ−1

1 ×χV,ψν
s2χ2⊗ω0+χV,ψν

s1χ1×χV,ψν
−s2χ−1

2 ⊗ω0

+χV,ψν
s1χ1×χV,ψν

s2χ2⊗ω0+χV,ψν
−s1χ−1

1 ×χV,ψν
−s2χ−1

2 ⊗ω0

+ 1⊗χV,ψν
s1χ1×χV,ψν

s2χ2 oω0.

We prove that irreducibility of all the representations above implies irreducibility
of the representation 5. We keep this assumption throughout this subsection.

First, suppose that νs1χ1 6= ν
−s1χ−1

1 , νs2χ2 6= ν
−s2χ−1

2 and νs1χ1 6= ν
±s2χ±1

2
(that is, Jacquet modules of 5 are multiplicity one).

Let τ be an irreducible subquotient of 5 such that

χV,ψν
−s1χ−1

1 ×χV,ψν
s2χ2⊗ω0 ≤ R P̃2(τ ).

From transitivity of Jacquet modules we get

χV,ψν
−s1χ−1

1 ⊗χV,ψν
s2χ2⊗ω0+χV,ψν

s2χ2⊗χV,ψν
−s1χ−1

1 ⊗ω0 ≤ R P̃(1,1)(τ ).

This implies

χV,ψν
−s1χ−1

1 ⊗χV,ψν
s2χ2 oω0+χV,ψν

s2χ2⊗χV,ψν
s1χ1 oω0 ≤ R P̃1(τ ).
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We get directly that

R P̃2(τ )= χV,ψν
−s1χ−1

1 ×χV,ψν
s2χ2⊗ω0+χV,ψν

s1χ1×χV,ψν
−s2χ−1

2 ⊗ω0

+χV,ψν
s1χ1×χV,ψν

s2χ2⊗ω0+χV,ψν
−s1χ−1

1 ×χV,ψν
−s2χ−1

2 ⊗ω0,

so τ =5 and 5 is irreducible.
Now we assume that there is some i such that νsiχi 6= ν

−siχ−1
i . Without loss of

generality, let i = 1. So, s1 = 0 and χ1 = χ
−1
1 , that is, χ2

1 = 1F× . We prove that in
this case 5 is also irreducible. Again, we start by writing corresponding Jacquet
modules:

R P̃1(5)= 2χV,ψχ1⊗χV,ψν
s2χ2 oω0+χV,ψν

s2χ2⊗χV,ψχ1 oω0

+χV,ψν
−s2χ−1

2 ⊗χV,ψχ1 oω0,

R P̃2(5)= 2χV,ψχ1×χV,ψν
s2χ2⊗ω0+χV,ψχ1×χV,ψν

−s2χ−1
2 ⊗ω0.

Let τ be an irreducible subquotient of 5 such that

R P̃1(τ )≥ χV,ψν
s2χ2⊗χV,ψχ1 oω0.

Of course, R P̃(1,1)(τ )≥ 2χV,ψν
s2χ2⊗χV,ψχ1⊗ω0, so

R P̃2(τ )≥ 2χV,ψχ1×χV,ψν
s2χ2⊗ω0.

Continuing in the same way, we get

R P̃(1,1)(τ )≥ 2χV,ψχ1⊗χV,ψν
s2χ2⊗ω0+ 2χV,ψν

s2χ2⊗χV,ψχ1⊗ω0,

R P̃1(τ )≥ 2χV,ψχ1⊗χV,ψν
s2χ2 oω0+χV,ψν

s2χ2⊗χV,ψχ1 oω0.

Finally,

R P̃(1,1)(τ )≥ 2χV,ψχ1⊗χV,ψν
s2χ2⊗ω0+2χV,ψχ1⊗χV,ψν

−s2χ−1
2 ⊗ω0

+2χV,ψν
s2χ2⊗χV,ψχ1⊗ω0,

R P̃2(τ )≥ 2χV,ψχ1×χV,ψν
s2χ2⊗ω0+χV,ψχ1×χV,ψν

−s2χ−1
2 ⊗ω0 = R P̃2(5).

So, 5= τ and 5 is irreducible.
If νs1χ1 = ν

s2χ2 or νs1χ1 = ν
−s2χ−1

2 , then the irreducibility of 5 follows in the
same way as above. Observe that equalities νs1χ1= ν

−s1χ−1
1 and νs2χ2= ν

−s2χ−1
2

lead to unitary principal series.
In this way we have proved irreducibility of the principal series, with these

exceptions:

• Some of the representations χV,ψν
s1χ1 o ω0 or χV,ψν

s2χ2 o ω0 reduce (the
so-called S̃p(1) reducibility).
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• Some of the representations

χV,ψν
−s1χ−1

1 ×χV,ψν
s2χ2, χV,ψν

s1χ1×χV,ψν
−s2χ−1

2 ,

χV,ψν
s1χ1×χV,ψν

s2χ2, χV,ψν
−s1χ−1

1 ×χV,ψν
−s2χ−1

2

reduce (the so-called G̃L(2) reducibility).

3.2.1. S̃p(1) reducibility. Let χ, ζ ∈ F̂×, ζ 2
= 1F× , and s ≥ 0. It is well known

that, in R,

χV,ψν
sχ ×χV,ψν

1/2ζ oω0 = χV,ψν
s o spζ,1+χV,ψν

s oω+ψa,1.

Let 5 denote χV,ψν
s o spζ,1.

Calculating Jacquet modules, we find

R P̃1(5)= χV,ψν
−sχ−1

⊗ spζ,1+χV,ψν
sχ ⊗ spζ,1+χV,ψν

1/2ζ ⊗χV,ψν
sχ oω0,

R P̃2(5)= χV,ψν
−sχ−1

×χV,ψν
1/2ζ ⊗ω0+χV,ψν

sχ ×χV,ψν
1/2ζ ⊗ω0.

If the representation χV,ψν
sχ oω0 is irreducible (that is, when νsχ 6= ν±1/2ζ2,

where ζ 2
2 = 1F×), we proceed in the following way:

Let ρ be an irreducible subquotient of 5 such that

χV,ψν
1/2ζ ⊗χV,ψν

sχ oω0 ≤ s1(ρ).

We directly get that

χV,ψν
1/2ζ ⊗χV,ψν

sχ ⊗ω0+χV,ψν
1/2ζ ⊗χV,ψν

−sχ−1
⊗ω0 ≤ R P̃(1,1)(ρ).

If both χV,ψν
−sχ−1

×χV,ψν
1/2ζ and χV,ψν

sχ ×χV,ψν
1/2ζ are irreducible, 5 is

also irreducible.
For the reducibility of the S̃p(1) part we still have to determine the composition

factors of the representations

(i) χV,ψν
1/2ζ1×χV,ψν

1/2ζ2 oω0,

(ii) χV,ψν
1/2ζ ×χV,ψν

1/2ζ oω0, and

(iii) χV,ψν
3/2ζ ×χV,ψν

1/2ζ oω0, where ζ 2
= ζ 2

1 = ζ
2
2 = 1F∗ .

Thus, we have proved the following result:

Proposition 3.9. Let χ ∈ F̂×, a nonnegative s ∈ R, and ζ ∈ F̂× with ζ 2
= 1F× .

The representations χV,ψν
sχ o spζ,1 and χV,ψν

sχ oω+ψa,1 are irreducible unless
(s, χ)= (3/2, ζ ) or (1/2, ζ1), where ζ 2

1 = 1F× . In R, we have

χV,ψν
sχ ×χV,ψν

1/2ζ oω0 = χV,ψν
sχ o spζ,1+χV,ψν

sχ oω+ψa,1.
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Also, if (s, χ) 6= (3/2, ζ ) and (s, χ) 6= (1/2, ζ1), then

χV,ψν
sχ o spζ,1 =


〈χV,ψν

1/2ζ ;χV,ψχ oω0〉 if s = 0,

〈χV,ψν
1/2ζ, χV,ψν

sχ;ω0〉 if 0< s ≤ 1/2,

〈χV,ψν
sχ, χV,ψν

1/2ζ ;ω0〉 if s > 1/2,

χV,ψν
sχ oω+ψa,1 =

{
χV,ψχ oω+ψa,1 if s = 0,
〈χV,ψν

sχ;ω+ψa,1〉 if s > 0.

3.2.2. G̃L(2) reducibility. Let χ ∈ F̂× and s ∈ R be nonnegative. In R, we have

χV,ψν
s+1/2χ ×χV,ψν

s−1/2χ oω0 = χV,ψν
sχ StGL(2) oω0+χV,ψν

sχ 1GL(2) oω0.

Let5 denote the representation χV,ψν
sχ StGL(2) oω0. Calculation of µ∗(5) gives

R P̃1(5)= χV,ψν
s+1/2χ ⊗χV,ψν

s−1/2χ oω0

+χV,ψν
1/2−sχ−1

⊗χV,ψν
s+1/2χ oω0,

R P̃2(5)= χV,ψν
sχ StGL(2)⊗ω0+χV,ψν

−sχ−1 StGL(2)⊗ω0

+χV,ψν
s+1/2χ ×χV,ψν

1/2−sχ−1
⊗ω0.

Looking at Jacquet modules with respect to different parabolic subgroups we
can conclude, in the same way as in the S̃p(1) reducibility case, that if

χV,ψν
s−1/2χ oω0, χV,ψν

s+1/2χ oω0, χV,ψν
s+1/2χ ×χV,ψν

1/2−sχ−1

are irreducible representations, then the representation 5 is also irreducible.
Observe that the representation χV,ψν

s+1/2χ o ω0 reduces for (χ, s) = (ζ, 0),
while χV,ψν

s−1/2χ oω0 reduces for (χ, s)= (ζ, 1), where ζ 2
= 1F× .

The representation χV,ψν
s+1/2χ×χV,ψν

1/2−sχ−1 reduces for (χ, s)= (ζ, 1/2),
where ζ 2

= 1F× . These observations imply this:

Proposition 3.10. Let χ ∈ F̂× and s ∈ R be nonnegative. The representations
χV,ψν

sχ StGL(2) o1 and χV,ψν
sχ 1GL(2) o1 are irreducible except in the cases that

(s, χ) = (1/2, ζ ), (s, χ) = (1, ζ ) or (s, χ) = (0, ζ ), where ζ 2
= 1F× . In R, we

have

χV,ψν
s+1/2χ ×χV,ψν

s−1/2χ oω0 = χV,ψν
sχ StGL(2) oω0+χV,ψν

sχ 1GL(2) oω0.

Also, if χV,ψν
s+1/2χ × χV,ψν

s−1/2χ o ω0 is a representation of length 2, then
χV,ψν

sχ 1GL(2) oω0 = 〈χV,ψν
sχ 1GL(2);ω0〉 and

χV,ψν
sχ StGL(2) oω0 =


〈χV,ψν

s+1/2χ, χV,ψν
1/2−sχ;ω0〉 if s < 1/2,

〈χV,ψν
s+1/2χ;χV,ψν

s−1/2χ oω0〉 if s = 1/2,
〈χV,ψν

s+1/2χ, χV,ψν
s−1/2χ;ω0〉 if s > 1/2.
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For the reducibility of the G̃L(2) part, we still have to determine the composition
factors of the representations

(i) χV,ψν
1/2ζ ×χV,ψν

1/2ζ oω0,

(ii) χV,ψν
3/2ζ ×χV,ψν

1/2ζ oω0, and

(iii) χV,ψνζ ×χV,ψζ oω0, where ζ 2
= 1F× .

Altogether, this leaves us four exceptional cases of the representations whose
composition series we have to determine:

(a) χV,ψν
1/2ζ1×χV,ψν

1/2ζ2 oω0,

(b) χV,ψν
1/2ζ ×χV,ψν

1/2ζ oω0,

(c) χV,ψν
3/2ζ ×χV,ψν

1/2ζ oω0,

(d) χV,ψνζ ×χV,ψζ oω0, where ζ 2
= ζ 2

1 = ζ
2
2 = 1F× and ζ1 6= ζ2.

These cases are treated in the following subsection.

3.2.3. Exceptional cases. All the equalities that follow are given in semisimplifi-
cations. We obtain desired composition series using case-by-case examination:

(a) Write χV,ψν
1/2ζi oω0 = χV,ψ spζi ,1+ω

+

ψai ,1
for i = 1, 2. In R, we have

χV,ψν
1/2ζ1×χV,ψν

1/2ζ2 oω0 = χV,ψν
1/2ζ2×χV,ψν

1/2ζ1 oω0

= χV,ψν
1/2ζ1 o spζ2,1+χV,ψν

1/2ζ1 oω+ψa2,1

= χV,ψν
1/2ζ2 o spζ1,1+χV,ψν

1/2ζ2 oω+ψa1,1
.

Using standard calculations, we obtain

R P̃1(χV,ψν
1/2ζ1 o spζ2,1)= χV,ψν

−1/2ζ1⊗ spζ1,1+χV,ψν
1/2ζ1⊗ spζ2,1

+χV,ψν
1/2ζ2⊗ spζ1,1+χV,ψν

1/2ζ2⊗ω
+

ψa1,1

and

R P̃2(χV,ψν
1/2ζ1 o spζ2,1)= χV,ψν

−1/2ζ1×χV,ψν
1/2ζ2⊗ω0

+χV,ψν
1/2ζ1×χV,ψν

1/2ζ2⊗ω0.

The last equality implies that the length of χV,ψν
1/2ζ1 o spζ2,1 is no more than 2.

If χV,ψν
1/2ζ1 o spζ2,1 were an irreducible representation, then it would have to

be equal either to χV,ψν
1/2ζ2 o spζ1,1 or to χV,ψν

1/2ζ2 oω+ψa1,1
, but Jacquet mod-

ules of those two representations show that this is not the case. So, we write
χV,ψν

1/2ζ1 o spζ2,1 = ρ1 + ρ2, where ρ1 and ρ2 are irreducible representations
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such that
R P̃2(ρ1)= χV,ψν

−1/2ζ1×χV,ψν
1/2ζ2⊗ω0,

R P̃2(ρ2)= χV,ψν
1/2ζ1×χV,ψν

1/2ζ2⊗ω0.

Clearly, ρ2 is square-integrable (since ρ2 = 〈χV,ψν
1/2ζ1, χV,ψν

1/2ζ2;ω0〉) and
ρ1 = 〈χV,ψν

1/2ζ2;ω
+

ψa1,1
〉.

Reasoning in the same way, we obtain that χV,ψν
1/2ζ1 oω+ψa2,1

= ρ3+ρ4, where
ρ3 and ρ4 are irreducible representations such that

R P̃2(ρ3)= χV,ψν
−1/2ζ1×χV,ψν

−1/2ζ2⊗ω0,

R P̃2(ρ4)= χV,ψν
1/2ζ1×χV,ψν

−1/2ζ2⊗ω0.

So, ρ3 is a strongly negative representation, while ρ4=〈χV,ψν
1/2ζ1;ω

+

ψa2,1
〉. Using

Jacquet modules again, we easily obtain the composition factors of the represen-
tations above. Thus, we conclude:

Proposition 3.11. Let ζ1, ζ2 ∈ F̂× such that ζ 2
i = 1F× for i = 1, 2 (with ζ1 6= ζ2).

Than the representations

χV,ψν
1/2ζ2 oω+ψa1,1

, χV,ψν
1/2ζ2 o spζ1,1,

χV,ψν
1/2ζ1 oω+ψa2,1

, χV,ψν
1/2ζ1 o spζ2,1

are reducible and χV,ψν
1/2ζ1×χV,ψν

1/2ζ2 oω0 is a representation of length 4.
The representations χV,ψν

1/2ζ1 o spζ2,1 and χV,ψν
1/2ζ2 o spζ1,1 have exactly one

irreducible subquotient in common; that subquotient is square-integrable, and we
denote it with σ (that is, σ = 〈χV,ψν

1/2ζ1, χV,ψν
1/2ζ2;ω0〉). Also, the unique

irreducible common subquotient of

χV,ψν
1/2ζ1 oω+ψa2,1

and χV,ψν
1/2ζ2 oω+ψa1,1

is a strongly negative representation; we denote it by ρsneg. In R, we have

χV,ψν
1/2ζ1 o spζ2,1 = σ +〈χV,ψν

1/2ζ2;ω
+

ψa1,1
〉,

χV,ψν
1/2ζ1 oω+ψa2,1

= 〈χV,ψν
1/2ζ1;ω

+

ψa2,1
〉+ ρsneg,

χV,ψν
1/2ζ2 o spζ1,1 = σ +〈χV,ψν

1/2ζ1;ω
+

ψa2,1
〉,

χV,ψν
1/2ζ2 oω+ψa1,1

= 〈χV,ψν
1/2ζ2;ω

+

ψa1,1
〉+ ρsneg.

(b) In this case, we have

χV,ψν
1/2ζ ×χV,ψν

−1/2ζ oω0 = χV,ψν
1/2ζ o spζ,1+χV,ψν

1/2ζ oω+ψa,1

= χV,ψζ StGL(2) oω0+χV,ψζ 1GL(2) oω0.
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From Jacquet modules, we get

R P̃1(χV,ψν
1/2ζ o spζ,1)= 2χV,ψν

1/2ζ ⊗ spζ,1+χV,ψν
−1/2ζ ⊗ spζ,1

+χV,ψν
1/2ζ ⊗ω+ψa,1,

R P̃1(χV,ψν
1/2ζ oω+ψ1

)= 2χV,ψν
−1/2ζ ⊗ω+ψa,1+χV,ψν

1/2ζ ⊗ω+ψa,1

+χV,ψν
−1/2ζ ⊗ spζ,1,

R P̃1(χV,ψζ StGL(2) oω0)= 2χV,ψν
1/2ζ ⊗ spζ,1+2χV,ψν

1/2ζ ⊗ω+ψa,1,

R P̃1(χV,ψζ 1GL(2) oω0)= 2χV,ψν
−1/2ζ ⊗ spζ,1+2χV,ψν

−1/2ζ ⊗ω+ψa,1.

From preceding Jacquet modules we conclude, as in [Tadić 1994, Chapter 3],
that χV,ψν

1/2ζ oω+ψa,1 and χV,ψζ StGL(2) oω0 have an irreducible subquotient in
common, which is different from both χV,ψν

1/2ζ oω+ψa,1 and χV,ψζ StGL(2) oω0.
For simplicity of the notation, we let ρ1 stand for this subquotient. Thus R P̃1(ρ1)=

χV,ψν
1/2ζ ⊗ω+ψa,1.

In the same way, let ρ2 be an irreducible common subquotient that

χV,ψν
1/2ζ o spζ,1 and χV,ψζ 1GL(2) oω0

have in common. Then R P̃1(ρ2)= χV,ψν
−1/2ζ ⊗ spζ,1.

The representations χV,ψζ 1GL(2)⊗ω0 and χV,ψζ StGL(2)⊗ω0 are irreducible
and unitary. The multiplicity of χV,ψζ 1GL(2)⊗ω0 in R P̃2(χV,ψζ 1GL(2) oω0) is
equal to 2, which implies that length of χV,ψζ 1GL(2) oω0 is 2. Analogously, the
length of χV,ψζ StGL(2) oω0 also equals 2.

Now we write χV,ψζ StGL(2) oω0 = ρ1 + ρ3 and χV,ψζ 1GL(2) oω0 = ρ2 + ρ4.
Observe that

R P̃1(ρ3)= 2χV,ψν
1/2ζ ⊗ spζ,1+χV,ψν

1/2ζ ⊗ω+ψa,1,

R P̃1(ρ4)= χV,ψν
−1/2ζ ⊗ spζ,1+2χV,ψν

−1/2ζ ⊗ω+ψa,1.

We immediately get this:

Proposition 3.12. Let ζ ∈ F̂× such that ζ 2
= 1F× . Then the representations

ζ 1G̃L(2) oω0, χV,ψζ StGL(2) oω0, χV,ψν
1/2ζ oω+ψa,1 χV,ψν

1/2ζ o spζ,1

are reducible and χV,ψν
1/2ζ ×χV,ψν

1/2ζ oω0 is a representation of length 4. The
representations

χV,ψζ StGL(2) oω0 and ν1/2χV,ψζ oω+ψa,1

(respectively χV,ψν
1/2ζ o spζ,1) have exactly one irreducible subquotient in com-

mon, which is tempered and denoted by τ1 (respectively τ2). Observe that

τ1 = 〈χV,ψν
1/2ζ ;ω+ψa,1〉 and τ2 = 〈χV,ψν

1/2ζ, χV,ψν
1/2ζ ;ω0〉.
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Also, the unique irreducible common subquotient of

χV,ψζ 1GL(2) oω0 and χV,ψν
1/2ζ oω+ψa,1

is a negative representation, which we denote by ρneg. In R, we have

χV,ψζ StGL(2) oω0 = τ1+ τ2, χV,ψζ 1GL(2) oω0 = ρneg+〈χV,ψζ 1GL(2);ω0〉

χV,ψν
1/2ζ oω+ψa,1 = τ1+ ρneg, χV,ψν

1/2ζ o spζ,1 = τ2+〈χV,ψζ 1GL(2);ω0〉.

(c) In this case we have

χV,ψν
3/2ζ ×χV,ψν

1/2ζ oω0 = χV,ψν
3/2ζ o spζ,1+χV,ψν

3/2ζ oω+ψa,1

= χV,ψνζ StGL(2) oω0+χV,ψνζ 1GL(2) oω0.

Observe that χV,ψν
3/2ζ × χV,ψν

1/2ζ oω0 is a regular representation. So, it is
a representation of the length 22

= 4 by [Tadić 1998b] (there only the techniques
of Jacquet modules were used, so they can be applied in our case). Since the
irreducible subquotients of χV,ψν

3/2ζ ×χV,ψν
1/2ζ oω0 are

〈χV,ψν
3/2ζ, χV,ψν

1/2ζ ;ω0〉, 〈χV,ψνζ 1GL(2);ω0〉, ω+ψa,2, 〈χV,ψν
3/2ζ ;ω+ψa,1〉,

using Jacquet modules we easily obtain the following proposition:

Proposition 3.13. Let ζ ∈ F̂× such that ζ 2
= 1F× . Then the representations

χV,ψν
3/2ζ o spζ,1, χV,ψν

3/2ζ oω+ψa,1,

χV,ψνζ StGL(2) oω0, χV,ψνζ 1GL(2) oω0

are reducible and χV,ψν
3/2ζ ×χV,ψν

1/2ζ oω0 is a representation of length 4. The
unique irreducible common subquotient of the representations χV,ψν

3/2ζ o spζ,1
and χV,ψνζ StGL(2) oω0 is square-integrable. In R, we have

χV,ψν
3/2ζ o spζ,1 = 〈χV,ψν

3/2ζ, χV,ψν
1/2ζ ;ω0〉+ 〈χV,ψνζ 1GL(2);ω0〉,

χV,ψν
3/2ζ oω+ψa,1 = ω

+

ψa,2+〈χV,ψν
3/2ζ ;ω+ψa,1〉,

χV,ψνζ StGL(2) oω0 = 〈χV,ψν
3/2ζ, χV,ψν

1/2ζ ;ω0〉+ 〈χV,ψν
3/2ζ ;ω+ψa,1〉,

χV,ψνζ 1GL(2) oω0 = 〈χV,ψνζ 1GL(2);ω0〉+ω
+

ψa,2.

(d) In this case,

χV,ψνζ ×χV,ψζ oω0 = χV,ψν
1/2ζ StGL(2) oω0+χV,ψν

1/2ζ 1GL(2) oω0.

Since it isn’t known yet if the results related to the R-groups [Goldberg 1994]
also hold for metaplectic groups, this case will not be solved using only the method
Jacquet modules. Tadić [1998a] used a combination of Jacquet modules techniques
and knowledge about R-groups for symplectic groups to determine the composition
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series of the representations similar to this one (for symplectic groups). We resolve
this case using theta correspondence.

Lemma 3.14. The following equalities hold:

(1) 2(ζν⊗ ζ o 1, RP1(ω2,2))= χV,ψν
−1ζ ×χV,ψζ oω0,

(2) 2(ζν−1
⊗ ζ o 1, RP1(ω2,2))= χV,ψνζ ×χV,ψζ oω0,

(3) 2(ζ ⊗ ζνo 1, RP1(ω2,2))= χV,ψζ ×χV,ψνζ oω0,

(4) 2(χV,ψνζ ⊗χV,ψζ oω0, R P̃1(ω2,2))= ζν
−1
× ζ o 1,

(5) 2(χV,ψν
−1ζ ⊗χV,ψζ oω0, R P̃1(ω2,2))= ζν× ζ o 1,

(6) 2(χV,ψζ ⊗χV,ψνζ oω0, R P̃1(ω2,2))= ζ × ζνo 1.

Proof. Recall that RP1(ω2,2) has the filtration in which

• I10 = ν
1/2
⊗ω2,1 is the quotient, and

• I11 = IndM1×S̃p(2)
GL(1)×P̃1×O(3)(χV,ψ6

′

1⊗ω1,1) is the subrepresentation.

We will prove (1); the proofs of (2)–(6) are analogous. In the same way as in
the second proof of Proposition 3.4, we get

2(ζν⊗ ζ o 1, RP1(ω2,2))=2(ζν⊗ ζ o 1, I11),

so it is sufficient to show 2(ζν⊗ ζ o 1, I11)= χV,ψν
−1ζ ×χV,ψζ oω0. It can be

seen easily that there is an GL(1)× M̃1× O(3)-invariant epimorphism

χV,ψ6
′

1⊗ω1,1→ χV,ψζν
−1
⊗χV,ψζ oω0⊗ ζν⊗ ζ o 1.

Consequently, we get an M1× S̃p(2)-invariant epimorphism

I11 = IndM1×S̃p(2)
GL(1)×P̃1×O(3)(χV,ψ6

′

1⊗ω1,1)→ ζν⊗ ζ o 1⊗χV,ψζν
−1
×χV,ψζ oω0,

so we conclude that χV,ψζν
−1
×χV,ψζ oω0 is a quotient of 2(ζν⊗ ζ o 1, I11).

We prove that 2(ζν⊗ ζ o1, I11) is also a quotient of χV,ψζν
−1
×χV,ψζ oω0.

Let ϕ ∈ Hom(I11, ζ ν⊗ ζ o 1⊗2(ζν⊗ ζ o 1, I11)). Using the second Frobenius
reciprocity, as before, we get

Hom(I11, ζ ν⊗ ζ o 1⊗2(ζν⊗ ζ o 1, I11))

∼= Hom(χV,ψ6
′

1⊗ω1,1, ζ ν⊗ ζ o 1⊗ R P̃1
(2(ζν⊗ ζ o 1, I11)));

let ϕ0 be an element corresponding to ϕ. Since the representations ζ o 1 and
χV,ψζ o ω0 are irreducible, the image of ϕ0 equals ζν ⊗ ζ o 1 ⊗ χV,ψζν

−1
⊗

χV,ψζ o ω0. Reasoning as before, we get that the image of ϕ is a quotient of
ζν⊗ ζ o 1⊗χV,ψζν

−1
×χV,ψζ oω0. Finally, 2(ζν⊗ ζ o 1, I11) is a quotient of

χV,ψζν
−1
×χV,ψζ oω0. Hence 2(ζν⊗ζ o1, I11)= χV,ψζν

−1
×χV,ψζ oω0. �
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Proposition 3.15. Let ζ ∈ F̂× such that ζ 2
= 1F× . Then the representations

χV,ψν
1/2ζ StGL(2) oω0 and χV,ψν

1/2ζ 1GL(2) oω0

are irreducible and χV,ψνζ ×χV,ψζ oω0 is a representation of length 2. Also

χV,ψν
1/2ζ StGL(2) oω0 = 〈χV,ψνζ ;χV,ψζ oω0〉,

χV,ψν
1/2ζ 1GL(2) oω0 = 〈χV,ψν

1/2ζ 1GL(2);ω0〉.

Proof. Suppose on the contrary that the representation χV,ψν
1/2ζ StGL(2) oω0

reduces. Jacquet modules imply that length of this representation is at most 2.
Choose π1 and π2 so the equality χV,ψν

1/2ζ StGL(2) oω0 = π1 + π2 holds in R.
Also suppose R P̃1(π1)=χV,ψζ⊗χV,ψζνoω0 and R P̃1(π2)=χV,ψζν⊗χV,ψζoω0.
Frobenius reciprocity implies

Hom(ω2,2, π1⊗ ζ × ζν
−1 o 1)∼= Hom(RP1(ω2,2), π1⊗ ζ ⊗ ζν

−1 o 1).

Using Lemma 3.14 we obtain

Hom(RP1(ω2,2), π1⊗ ζ ⊗ ζν
−1 o 1)∼= Hom(χV,ψζ ×χV,ψν

−1ζ oω0, π1) 6= 0,

because π1 is a quotient of χV,ψζ ×χV,ψνζ oω0. So, 2(π1, 2) 6= 0.
The representation χV,ψζ ⊗χV,ψζνoω0⊗2(π1, 2) is a quotient of R P̃1(ω2,2).

Lemma 3.14 implies that 2(π1, 2) is a quotient of ζ ×ζνo1. Listing quotients of
ζ × ζνo 1 we get the possibilities

(a) 2(π1, 2)= ζ × ζνo 1,

(b) 2(π1, 2)= ν1/2ζ StGL(2) o1,

(c) 2(π1, 2)= ν−1/2ζ 1GL(2) o1.

Suppose that (a) holds. Obviously, π1⊗ζν
−1
⊗ζo1 is then a quotient of RP1(ω2,2),

since it is a quotient of π1 ⊗ RP1(ζ × ζν o 1). This implies that π1 is a quotient
of χV,ψζν × χV,ψζ o ω0 and R P̃1(π1) contains χV,ψζν

−1
⊗ χV,ψζ o ω0. This

contradicts our assumption on π1.
Similarly, using Jacquet modules, we obtain contradiction with (b) and (c). So,

χV,ψν
1/2ζ StGL(2) oω0 is irreducible.

Irreducibility of χV,ψν
1/2ζ 1GL(2) oω0 can be proved in the same way. �

4. Unitary dual supported in minimal parabolic subgroup

Let π be an irreducible genuine admissible representation of S̃p(n). We recall that
the contragredient representation is denoted by π̃ . We write π for the complex
conjugate representation of the representation π . The representation π is called
Hermitian if π ' π̃ . It is well known that every unitary representation is Hermitian.
For a deeper discussion, we refer the reader to [Muić and Tadić 2007].
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Suppose that 11, . . . ,1k is a sequence of segments such that e(11) ≥ · · · ≥

e(1k) > 0, let σneg be a negative representation of some S̃p(n′). From [Hanzer and
Muić 2010, Theorem 4.5(v)], we directly get

〈11, . . . ,1k; σneg〉 = 〈11, . . . ,1k; σ neg〉.

Also, we have an epimorphism 〈1̃1〉×· · ·×〈1̃k〉oσ̃neg→〈11, . . . ,1k; σneg〉
∼.

We know that the group GSp(n) acts on S̃p(n), by [Mœglin et al. 1987, II.1(3)].
Moreover, by [ibid., page 92], this action extends to the action on irreducible rep-
resentations, which is equivalent to taking contragredients. We choose an element
η′= (1, η)∈GSp(n), where η∈GSp(n′) is an element with similitude equal to−1,
and 1 denotes the identity acting on the GL part. Thus, we obtain an epimorphism

α〈1̃1〉× · · · ×α〈1̃k〉o σ̃ ηneg→ 〈11, . . . ,1k; σneg〉
∼η′ .

Since σ̃ ηneg ' σneg, we have 〈11, . . . ,1k; σneg〉
∼
= 〈α11, . . . , α1k; σ̃neg〉.

Remark. When we are dealing with the action of the group of similitudes on the
symplectic groups, α does not appear in the situation similar to the one above.
However, since the action of GSp(n) on the metaplectic group is not trivial on its
center µ2, one has to compare the action η on the metaplectic part of the Levi
subgroup with the action of η′ on the whole Levi subgroup. The calculation is
not very complicated and resembles the calculations in [Hanzer and Muić 2010,
Lemma 3.2].

First, we classify Hermitian irreducible genuine representations.

Proposition 4.1. Let χ, ζ, ζ1, ζ2 ∈ F̂× such that ζ 2
= ζ 2

i = 1F× for i = 1, 2,
with ζ1 and ζ2 not necessarily different. Let s, s1, s2 > 0. The following families
of representations are Hermitian and exhaust all irreducible Hermitian genuine
representations of S̃p(2) supported in the minimal parabolic subgroup P̃(1,1):

(1) irreducible tempered representations supported in P̃(1,1),

(2) 〈χV,ψν
sχ, χV,ψν

sχ−1
;ω0〉,

(3) 〈χV,ψν
s1ζ1, χV,ψν

s2ζ2;ω0〉,

(4) 〈χV,ψν
sζ 1GL(2);ω0〉,

(5) 〈χV,ψν
sζ ;χV,ψχ oω0〉,

(6) 〈χV,ψν
sζ ;ω+ψa,1〉,

(7) ω+ψa,2.

Proof. Using the reasoning before this proposition, we see that a representation
〈11, . . . ,1k; σneg〉 is Hermitian, if and only if

〈11, . . . ,1k; σneg〉 = 〈α11, . . . , α1k; σ̃ neg〉.
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The representation σneg also has to be Hermitian. Now we just check this require-
ment on the set of all irreducible representations of S̃p(2) with the support in the
minimal parabolic subgroup; we have classified them in the previous section. For
example, if we analyze the representation 5 = 〈χV,ψν

s1χ1, χV,ψν
s2χ2;ω0〉 with

s2 ≥ s1 > 0, we have

5̃= 〈αχV,ψν
s1χ1, αχV,ψν

s2χ2;ω0〉.

Now we see that this representation is isomorphic to 5 if and only if χ2
1 = 1= χ2

2
or s1 = s2 and χ−1

1 = χ2. This gives us the second and the third case from the
proposition. All other cases are dealt with analogously. �

Theorem 4.2. Let χ, ζ, ζ1, ζ2 ∈ (F̂×) such that ζ 2
= ζ 2

i = 1F× for i = 1, 2, with
ζ1 and ζ2 not necessarily different. The following families of representations are
unitary and exhaust all irreducible unitary genuine representations of S̃p(2) that
are supported in the minimal parabolic subgroup P̃(1,1):

(1) irreducible tempered representations supported in P̃(1,1).

(2) 〈χV,ψν
sχ, χV,ψν

sχ−1
;ω0〉 for 0< s ≤ 1/2,

(3) 〈χV,ψν
s1ζ1, χV,ψν

s2ζ2;ω0〉 for s2 ≤ s1 and 0< s1 ≤ 1/2,

(4) 〈χV,ψν
sζ ;χV,ψχ oω0〉 for 0< s ≤ 1/2,

(5) 〈χV,ψν
sζ ;ω+ψa,1〉 for s ≤ 1/2,

(6) ω+ψa,2.

Proof. We first review some basic facts of representation theory of reductive
groups, which directly carry over to the case of metaplectic groups.

Unitarizability of the complementary series. As explained in detail in [Tadić 1993,
Section 3], it is enough to have a continuous family of S̃p(2)-invariant hermit-
ian forms (and the representations should be realized on one space — a compact
picture). Then, a linear algebra argument (involving finite-dimensional represen-
tations of a compact subgroup) ensures that if this family of hermitian forms is
positive definite at one point, it has to be positive definite everywhere, and this fin-
ishes the argument. So, we first have to show that, the restriction of an irreducible
admissible (hermitian) representation π of S̃p(2) to the inverse image K̃ in S̃p(2)
of a maximal, good compact subgroup of Sp(2) (for example, K = Sp(2, OF ),
where OF is the ring of integers of F) decomposes into a direct sum of irreducible
representations of K̃ with finite multiplicities. But this follows directly from the
admissibility of the representation π . Second, we have to have a way to form a
continuous families of hermitian forms. This is obtained using intertwining opera-
tors, in the same way as for the algebraic groups. To define them, we note that the
unipotent radicals of the standard parabolic subgroups of Sp(2) are split in S̃p(2).
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Then we can define standard intertwining operators for the complex argument deep
enough in the Weyl chamber in the same way as in [Shahidi 1981]. These operators
can be meromorphically continued, using the results on filtration via Bruhat cells;
see [Casselman 1995, Section 6 and 7] or [Muić 2008]. The arguments in the last
reference carry over to the metaplectic groups without change, through the splitting
of the unipotent radicals and Frobenius reciprocity, also valid for the metaplectic
group. This passage in the construction of the intertwining operators from the
linear case to the case of metaplectic groups is explained in detail also in [Zorn
2007; 2010]. We now illustrate how the hermitian form is defined. For example,
suppose that χ1, χ2 ∈ F̂× such that χ2

1 = χ
2
2 = 1, so that, for the longest element

w0 of the Weyl group, we have a map A(s1, s2, χ1, χ2, w0) from

χV,ψχ1ν
s1 ×χV,ψχ2ν

s2 oω0 to χV,ψν
−s1χ1×χV,ψν

−s2χ2 oω0.

Let fs1,s2, gs1,s2 be sections from the compact picture of the induced representation
χV,ψχ1ν

s1×χV,ψχ2ν
s2 oω0. Then, a hermitian form indexed by (s1, s2) is defined

by

( f, g)(s1,s2) =

∫
K̃

A(s1, s2, χ1, χ2, w0) fs1,s2 (̃k)gs1,s2 (̃k) d̃k.

The S̃p(2)-invariance of this form follows from [Casselman 1981, Theorem 2.4.2]
(in the context of totally disconnected groups) and then from Proposition 3.1.3
therein, after normalizing the measure on P̃ so that P̃ ∩ K̃ is of volume one (since
P̃ K̃ = G̃).

Unitarizability of the ends of the complementary series. For the reductive algebraic
groups, the unitarizability of the ends of the complementary series is proved by
Miličić [1973] using C∗-algebra arguments. To avoid that (although this argument
may also apply in the case of metaplectic groups), we use a similar result, that is,
[Tadić 1986, Theorem 2.5]. The proof of this result relies on calculations of the
limits of the operators acting on the finite-dimensional complex vector spaces, and
the only requirements are admissibility of the irreducible smooth representations
in question (our Lemma 2.1) and a result of Bernstein about uniform admissibility.
But, since we do not require the generality in which that theorem is posed, we
actually do not need Bernstein’s argument, since we are dealing with the family of
representations in the complementary series — all of them have the same restriction
to the compact open subgroup K1 (which splits in S̃p), and the requirement labeled
(∗) there is automatically fulfilled. Hecke algebra H(S̃p(2), K1) is defined in the
same way as in the case of reductive groups.
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The asymptotics of the matrix coefficients of the representations of the metaplectic
group. These can also be estimated in terms of Jacquet modules of the represen-
tations [Casselman 1981, Section 4]. Indeed, the arguments there rely on the cal-
culation of the spaces of the coinvariants for the unipotent subgroups (which split
in S̃p(2)) and spaces of vectors fixed by some small compact subgroups of S̃p(2).
These subgroups can always be taken to belong to the maximal compact subgroup
of Sp(2) that splits in S̃p(2) (if the residual characteristic is odd) or to some smaller
open compact subgroup that splits, so we actually take the fixed vectors by these
splittings of compact subgroups.

On the other hand, the reducibility points of the principal series for SO(5) are
analogous to those for S̃p(2), so the unbounded areas of [Matić 2010, Figure 1 of
Theorem 3.5], through the asymptotics explained above, give rise to the represen-
tations with unbounded matrix coefficients. Thus none of these representations are
unitarizable (because of the continuity of the hermitian forms on these unbounded
parts).

The arguments above (plus the irreducibility of the unitary principal series) were
the main tools in the proof of [Matić 2010, Theorem 3.5]; there was only the
problem of how to deal with certain isolated representations.

Recall that in R we have χV,ψν
3/2ζ ×χV,ψν

1/2ζ oω0 is equal to

〈χV,ψν
3/2ζ, χV,ψν

1/2ζ ;ω0〉+ω
+

ψa,2+〈χV,ψν
3/2ζ ;ω+ψa,1〉+ 〈χV,ψνζ 1GL(2);ω0〉,

where 〈χV,ψν
3/2ζ, χV,ψν

1/2ζ ;ω0〉 and ω+ψa,2 are unitarizable. Observe that the
representation 〈χV,ψν

3/2ζ ;ω+ψa,1〉 (respectively, 〈χV,ψνζ 1GL(2);ω0〉) has Jacquet
modules analogous to those of the representation L(δ([ν1/2, ν3/2

]), 1) (respec-
tively, L(ν3/2,StSO(3))) of the group SO(5). Hence, nonunitarizability of these
two representations can be proved analagously to the nonunitarizability of the rep-
resentations L(δ([ν1/2, ν3/2

]), 1) and L(ν3/2,StSO(3)), which is a special case of
[Hanzer and Tadić 2010, Propositions 4.1 and 4.6]. The arguments used there rely
on the Jacquet modules method, which also applies to group S̃p(2), and the simple
fact that every unitary representation is also semisimple. �

5. Unitary dual supported in maximal parabolic subgroups

5.1. The Siegel case. Using [Hanzer and Muić 2009], [Matić 2010, Proposition
4.1] and previously discussed issues of complementary series and nonunitarizabil-
ity of the representations indexed by the (geometrically) unbounded pieces of the
plane, we directly get the following:

Proposition 5.1. Let ρ be an irreducible cuspidal representation of GL(2, F).
There is at most one s ≥ 0 such that χV,ψν

sρ oω0 reduces. One of the following
holds:
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(1) If ρ is not self-dual, then χV,ψρoω0 is irreducible and unitarizable. Also, the
representations χV,ψν

sρoω0 are irreducible and nonunitarizable for s > 0.

(2) If ρ is self-dual and ωρ = 1, where ωρ denotes the central character of ρ,
then the representation χV,ψρ o ω0 reduces, while all of the representations
χV,ψν

sρoω0 are nonunitarizable for s > 0.

(3) If ρ is self-dual and ωρ 6= 1, then the unique s ≥ 0 such that χV,ψν
sρ o ω0

reduces is equal to 1/2. For 0 ≤ s ≤ 1/2, the representations χV,ψν
sρ oω0

are all unitarizable; for s > 1/2, the representations χV,ψν
sρ o ω0 are all

nonunitarizable. All irreducible subquotients of χV,ψν
1/2ρoω0 are unitariz-

able.

5.2. The non-Siegel case. Hanzer and Muić [2009, Section 5.2] determine the
reducibility points of the representations χV,ψν

sζ o π , where s ∈ R, ζ ∈ F̂×

and π is an irreducible cuspidal representation of S̃p(1). After determining the
reducibility points, the unitarizability of the induced representations and irreducible
subquotients follow in the same way as in Proposition 5.1. For the convenience of
the reader, we write down all the results.

To the fixed quadratic character χV we attach, as in [Kudla 1996, Chapter V],
two odd-orthogonal towers, the+-tower and the−-tower. We denote by2±(π) the
first appearance of the representation2(π) in the respective±-tower. Analogously,
for r ≥ 0, we denote by 2±(π, r) the lift of the representation π to the r -th level
of the respective ±-tower.

Since the representation χV,ψν
sζ o π is irreducible for ζ 2

6= 1, we suppose
ζ 2
= 1 and consider two cases:

(a) ζ 6=1. Applying [Hanzer and Muić 2009, Theorem 3.5] we see that χV,ψν
sζoπ

reduces if and only if ζνs o2+(π) reduces (in the +-tower) if and only if ζνs o
2−(π) reduces (in the −-tower).

Now 2+(π) is an irreducible cuspidal representation of some of the groups
O(1), O(3) or O(5). Let r denote the first occurrence of a nonzero lift of π in the
odd orthogonal +-tower. We have several cases depending on r :

• If r = 0, that is, if π equals ωψ−a ,1, which is an odd part of the Weil repre-
sentation attached to additive character ψ , then 2+(π, 0) = sgnO(1), so the
representation ζνs o sgnO(1) reduces if and only if ζνs o 1 reduces in SO(3).
It is well known that this representation reduces when s = 1/2.

• If r = 1, the representation ζνs oπ reduces if and only if the representation
ζνs o2+(π, 1)|SO(3) reduces. As in [Matić 2010], we obtain that the unique s
such that ζνs oπ reduces is equal to 1/2.

• If r = 2, the representation ζνs o π reduces if and only if ζνs o2+(π, 2)
reduces, and that is if and only if ζνs o 2+(π, 2)|SO(5) reduces. We do
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not know if the representation 2+(π, 2) is generic, so we turn our atten-
tion to the representation ζνs o2−(π, 0), because we know that 2−(π, 0)
is a nonzero representation of O(1) (since π is cuspidal, the dichotomy con-
jecture holds). Recall that ζνs o 2−(π, 0) reduces for s = 0 if and only
if µ(s, ζ ⊗ 2−(π, 0)) 6= 0 for s = 0 and that ζνs o 2−(π, 0) reduces for
s0 > 0 if and only if µ(s, ζ ⊗ 2−(π, 0)) has a pole for s = s0. In the
same way as in [Hanzer and Muić 2009, Section 5.2, case 3], we obtain
µ(s, ζ⊗2−(π, 0))∼=µ(s, ζ⊗J L(2−(π, 0))), where J L(2−(π, 0))) denotes
the Jacquet–Langlands lift of 2−(π, 0)). Now we consider two possibilities:

(I) 2−(π, 0) is not one-dimensional. In this case, J L(2−(π, 0)) is a cuspidal
generic representation of SO(3, F) and the reducibility point is s = 1/2.

(II) 2−(π, 0) = ζ1 ◦ νD , where ζ1 is a quadratic character of F×, while νD

is a reduced norm on D× (here D is a nonsplit quaternion algebra over F).
We have J L(2−(π, 0)) = ζ1 StGL(2,F). If ζ1 = ζ , then the reducibility point
is s = 1/2, otherwise the reducibility point is s = 3/2.

(b) ζ =1. This case can be completely solved using [Hanzer and Muić 2009, Theo-
rem 4.2]. We again denote by r the first occurrence of nonzero lift of representation
π in the odd orthogonal +-tower and consider all the possible cases:

• If r = 0, then π equals ωψ−a ,1 and the representation χV,ψν
s oωψ−a ,1 reduces

for s =±3/2.

• If r = 1, the representation χV,ψν
s oπ reduces for s = 1/2.

• If r = 2, the representation χV,ψν
s oπ reduces for s = 1/2.
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