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SEMIQUANDLES AND FLAT VIRTUAL KNOTS

ALLISON HENRICH AND SAM NELSON

We define an algebraic structure we call a semiquandle, whose axioms are
derived from the flat Reidemeister moves. Finite semiquandles have asso-
ciated counting invariants and enhanced invariants, defined for flat virtual
knots and links. We also introduce singular semiquandles and virtual singu-
lar semiquandles, which define invariants of flat singular virtual knots and
links. As an application, we use semiquandle invariants to compare two
Vassiliev invariants.

1. Introduction

Recent works, such as [Kauffman 1999], take a combinatorial approach to knot
theory, in which knots and links are regarded as equivalence classes of knot and
link diagrams. New types of combinatorial knots and links can then be defined
by introducing new types of crossings and Reidemeister-style moves that govern
their interactions. These new combinatorial classes of knots and links have various
topological and geometric interpretations relating to simple closed curves in 3-
manifolds, rigid vertex isotopy of graphs, and so on.

A flat crossing is a classical crossing in which we ignore the over/under infor-
mation. A flat knot or link is a planar projection (or shadow) of a knot or link,
on the surface on which the knot or link diagram is drawn. Every classical knot
diagram may be regarded as a lift of a flat knot and, conversely, every classical
knot diagram has a corresponding flat shadow.

Flat knots might seem uninteresting since flattening classical crossings appar-
ently throws away the information which defines the knotting. However, a little
thought reveals potential applications of flat crossings; for example, invariants of
links with classical intercomponent crossings and flat intracomponent crossings are
related to link homotopy and the Milnor invariants of ordinary classical links.

Flat crossings also prove useful in virtual knot theory. Every purely flat knot
is trivial, that is, reducible by flat Reidemeister moves to the unknot. However,
flat virtual knots and links (that is, diagrams with virtual and flat crossings) are
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generally nontrivial. The nontriviality of a flat virtual knot says that no choice of
classical crossing information for the flat crossings would yield a classical knot.
Hence, flat crossings are useful in the study of nonclassicality for virtual knots.

A singular crossing is a crossing where two strands are fused together. Singular
knots and links may be understood as rigid vertex isotopy classes of knotted and
linked graphs, and they play a role in the study of Vassiliev invariants of classical
knots and links.

In this paper, we define an algebraic structure we call a semiquandle, which
yields counting invariants for flat virtual knots. The paper is organized as follows.
In Section 2, we define flat, singular, and virtual knots and links. In Section 3,
we define semiquandles and give some examples. In Section 4, we define singu-
lar semiquandles by including operations at singular crossings. In Section 5, we
introduce virtual semiquandles and virtual singular semiquandles by including an
operation at virtual crossings. In Section 6, we give examples to show that the
counting invariants with respect to finite semiquandles can distinguish flat virtual
knots and links. In Section 7, we give an application to Vassiliev invariants of
virtual knots. In Section 8, we collect some questions for further research.

2. Flat knots, virtual knots and singular knots

We introduce several types of knots discussed in this paper. We assume that all
knots are oriented, unless otherwise specified. The simplest type of knot among
those we consider, a flat knot, is an immersion of S1 in R2. Alternatively, a flat
knot can be described as an equivalence class of knot diagrams where under/over
strand information at each crossing is unspecified. Their equivalence relation is
given by flat versions of the Reidemeister moves, illustrated here:

It is an easy exercise to show that any flat knot is related by a sequence of flat
Reidemeister moves to the trivial flat knot (that is, the flat knot with no crossings).
While the theory of flat knots appears uninteresting, if we consider the analogous
theory of flat virtual knots, we enter a highly nontrivial category.

A flat virtual knot is a decorated immersion of S1 in R2, where each crossing is
decorated to indicate whether it is flat or virtual. (Virtual crossings are pictured by
an encircled flat crossing.) Once again, we may also describe a flat virtual knot as
an equivalence class of virtual knot diagrams where under/over strand information
at each classical crossing is unspecified. The corresponding equivalence relation
is given by the flat versions of the virtual Reidemeister moves, in addition to the
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flat versions of the ordinary Reidemeister moves.

The move is forbidden.
As with ordinary virtual knots, flat virtual knot diagrams have a geometric in-

terpretation as flat knot diagrams on surfaces. In this case, the virtual crossings are
interpreted as artifacts of a projection of the knot diagram on the surface to a knot
diagram in the plane [Kauffman 1999].

Finally, we consider flat knots and flat virtual knots that have singularities. The
singularities should be thought of as rigid vertices, or places where the knot is
actually glued to itself. Thus, flat singular knots are simply equivalence classes of
flat knots where some crossings are decorated to indicate that they are singular. The
Reidemeister moves corresponding to flat singular equivalence are the ordinary flat
equivalence moves together with these two moves:

Similarly, flat virtual singular knots are equivalence classes of flat virtual knots
where some of the crossings may be designated as singular. Hence, there are three
types of crossings that may be contained in a diagram of a flat virtual singular knot.
The equivalence relation is given by all of the previous flat, virtual, and singular
moves, together with this:
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The simplest nontrivial flat virtual singular knot that contains all three types of
crossings is the triple trefoil:

3. Semiquandles

In recent years, a number of algebraic structures have been defined with axioms
derived from variations on the oriented Reidemeister moves. The earliest of these
is the quandle [Joyce 1982; Matveev 1982], in which we have generators corre-
sponding to arcs in a link diagram, and an invertible binary operation at crossings.

Subsequent papers have generalized this idea in various ways. Fenn and Rourke
[1992] replace ambient isotopy with framed isotopy to define racks. In [Kauffman
and Radford 2003; Fenn et al. 1995], arcs in an oriented knot diagram are replaced
with semiarcs, to define biquandles. Kauffman and Manturov [2005] include an
operation at virtual crossings in the biquandle definition to yield virtual biquandles.

Definition 1. A semiquandle is a set X with two binary operations (x, y) 7→ x y

and (x, y) 7→ xy such that, for all x, y, z ∈ X ,

(0) there are unique w and z ∈ X with x = wy and x = zy ;

(i) xy = y if and only if yx
= x ;

(ii) (xy)
(yx )
= x and (x y)(yx ) = x ;

(iii) (x y)z = (x zy )yz
, (yx)

zx y
= (yz)x zy and (zx y )yx = (zy)x .

Axiom (0) says that the actions x 7→ x y and x 7→ xy are invertible; these unique
z and w will be denoted by z = xy−1 and w = x y−1

. The axioms come from
dividing an oriented flat knot into semiarcs, that is, edges between vertices in the
flat diagram regarded as a graph, and then translating the flat Reidemeister moves
into algebraic axioms.

x

In the first Reidemeister move, right invertibility guarantees the uniqueness of y
given x , and the relationship between x and y becomes axiom (i).
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y y

The direct II move, in which both strands are oriented in the same direction,
gives us axiom (ii). Given axiom (0), the reverse II move yields the same relation-
ship between x and y, where the uncrossed strands are labeled by x and yx .

y xy

x

x

y yx

x

y x y

Reidemeister move III yields the three equations in axiom (iii).

(x   )

y

(y  )x

yx
zxy

(z   )xy
zxy

(x  )y  z

xy

(y  )x

xz y

(z  )y

zy

y

(y  )zz

xz

yz
x xyzy

y z

xz

Definition 2. For any flat virtual link L , the fundamental semiquandle FSQ(L)
of L is the set of equivalence classes of semiquandle words in a set of genera-
tors corresponding to semiarcs in a diagram D of L , that is, edges in the graph
obtained from D by considering flat crossings as vertices under the equivalence
relation generated by the semiquandle axioms and the relations at the crossings.
As with the knot quandle, fundamental rack, and knot biquandle, we can express
the fundamental semiquandle with a presentation read from a diagram.

Example 3. The flat Kishino knot is

b h

d f
a

e

c g
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and has the fundamental semiquandle presentation

FSQ(K )=
〈
a, b, c, d, e, f, g, h

∣∣∣ ac
= b, ca = d, bd

= e, db = c,
eg
= f, ge = h, f h

= g, h f = a

〉
.

Remark 4. An alternative definition for the fundamental semiquandle of a flat
virtual knot is that FSQ(L) is the quotient of the (strong) knot biquandle of any lift
of L (that is, of any choice of classical crossing type for the flat crossings of L),
under the equivalence relation generated by setting ab̄

∼ ab and ab̄ ∼ ab for all
a, b ∈ B(L). Indeed, this operation yields a “flattening” functor SQ :B→S from
the category of strong biquandles to the category of semiquandles.

Example 5. For any set X and bijection σ : X→ X , the operations x y
= σ(x) and

xy=σ
−1(x) define a semiquandle structure on X . We call this type of semiquandle

a constant-action semiquandle, since the action of y on x is constant as y varies.

As is the case with quandles and biquandles [Ho and Nelson 2005; Nelson and
Vo 2006], for a finite semiquandle X = {x1, . . . , xn} we can conveniently express
the semiquandle structure with a block matrix MX = [U | L], where Ui, j = k and
L i, j = l for xk = (xi )

(x j ) and xl = (xi )(x j ). This matrix notation enables us to do
computations with semiquandles without the need for formulas for x y and xy .

Example 6. The constant-action semiquandle on X = {1, 2, 3} with σ = (132) has
semiquandle matrix

MX =

 3 3 3
1 1 1
2 2 2

∣∣∣∣∣∣
2 2 2
3 3 3
1 1 1

 .
Example 7. Any (strong) biquandle in which ab

=ab and ab=ab is a semiquandle.
Indeed, an alternative name for semiquandles might be symmetric biquandles. An
example of a nonconstant action semiquandle, found in [Nelson and Vo 2006], is

MT =


1 4 2 3
2 3 1 4
4 1 3 2
3 2 4 1

∣∣∣∣∣∣∣∣
1 3 4 2
3 1 2 4
2 4 3 1
4 2 1 3

 .
4. Singular semiquandles

We now consider what happens to our algebraic structure when we allow singular
crossings in an oriented flat virtual knot. As with flat crossings, we define two
binary operations at a singular crossing. One notable difference is that, unlike
flat crossings, singular crossings are permanent — there are no moves that either
introduce or remove singular crossings. Indeed, the number of singular crossings
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is an invariant of the singular knot type. In particular, at singular crossings, we do
not need right invertibility for our operations.

Definition 8. Let X be a semiquandle. A singular semiquandle structure on X is
a pair (x, y) 7→ x ŷ and (x, y) 7→ x ŷ of binary operations on X that satisfy, for all
x, y, z ∈ X ,

(hi) (yx)
(x̂ y)
= (yx̂)

(x ŷ) and (x y)(ŷx ) = (x
ŷ)(yx̂ );

(hii) (x y)ẑ = (x ẑy )yz
, (yx)

z ˆx y = (yz)x ẑ y , and (z x̂ y )yx = (zy)x̂ .

We call axioms (hi) and (hii) the hat axioms. These axioms come from the
subset of the oriented singular flat Reidemeister moves pictured here:

y

(y  )

x

x (x  )y(x  )y

(y  )x

y yx

x y

(y  )

x

x (x  )y(x  )y

(y  )x

y yx

x

(x   )

y

(y  )x

yx
zxy

(z   )xy
zxy

(x  )y  z

xy

(y  )x

xz y

(z  )y

zy

y

(y  )zz

xz

yz
x xyzy

y z

xz

To see that the two pictured oriented singular moves are sufficient to give us all of
the oriented flat singular moves, we note the following key lemmas.

Lemma 9. The move follows from the flat Reidemeister

moves and the two pictured moves.

Proof. ←→ ←→ ←→ �

Similar move sequences yield the other oriented flat/singular type III moves.

Lemma 10. The reverse oriented singular II move follows from the flat moves and
the moves pictured above.
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Proof. Starting with one side of a reverse singular II move, we can use flat moves
to get a symmetric diagram in which we can apply a direct singular II move.

←→ ←→

Reversing the process gives the other side of the reverse singular II move. �

Example 11. Let X be a semiquandle. Clearly, setting x ŷ
= x y and x ŷ = xy for

all x, y ∈ X defines a compatible singular structure (X, X), which we call the flat
singular structure.

Example 12. If X is a semiquandle, then ab̂
= ab̂ = b is a compatible singular

structure, since we have

(yx)
(x̂ y)
= x y

= (yx̂)
(x ŷ), (yx)

z x̂ y = (yx)
x y
= y = (yz)ẑy = (y

z)x ẑ y ,

(x y)(ŷx ) = yx = (x ŷ)(yx̂ ), (x y)ẑ = z = (zy)
yz
= (x ẑy )yz

,

(z x̂ y )yx = (x
y)yx = x = (zy)x̂ .

We call this singular structure the operator singular structure on X and denote it
by (X, O).

As with the flat virtual case, for any flat singular virtual link L there is an associ-
ated fundamental singular semiquandle FSSQ(L), with presentation readable from
the diagram. It elements are equivalence classes of singular semiquandle words, in
generators corresponding to semiarcs in the diagram (here, we divide the diagram
at both flat and singular crossing points, but not at virtual crossings) under the
equivalence relation generated by the axioms (0), (i), (ii), (iii), (hi), and (hii).

Example 13. The triple trefoil below has the fundamental singular semiquandle
presentation 〈a, b, c, d | aĉ

= b, câ = d, db
= a, bd = c〉.

bd

a

c

As with the semiquandle structure, we can represent the singular operations in
a finite singular semiquandle by matrices encoding the operation tables. Indeed,
it seems convenient to combine these matrices with the semiquandle operation
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matrices, into a single block matrix of the form

MT =

 i j i j

i ĵ i ĵ

 .
Example 14. The constant action semiquandle X = {1, 2, 3} with σ = (132) and
operator singular structure ab̂

= ab̂ = b has block matrix

M(X,O) =



3 3 3 2 2 2
1 1 1 3 3 3
2 2 2 1 1 1
1 2 3 1 2 3
1 2 3 1 2 3
1 2 3 1 2 3


.

5. Virtual semiquandles and virtual singular semiquandles

As with singular crossings, we can further generalize semiquandles by adding an
operation at virtual crossings. The simplest way to do this is to use a unary opera-
tion at each virtual crossing, defined by applying a bijection v when going through
a virtual crossing from right to left (looking in the direction of the strand being
crossed) and applying v−1 when going through a virtual crossing from left to right
(looking in the direction of the strand being crossed).

As noted in [Kauffman and Manturov 2005], this setup ensures that the virtual
I, II and III moves are respected by the virtual operation.

v(x)

v(x) v (y)1

The interaction of the virtual crossings with the flat and singular crossings given
by the Reidemeister moves tells us how the virtual operation should interact with
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the semiquandle and singular semiquandle structures; namely, v must be an auto-
morphism of both structures.

Definition 15. A virtual semiquandle is a semiquandle S with a choice of auto-
morphism v : S → S. A virtual singular semiquandle is a singular semiquandle
with a semiquandle automorphism v : S→ S that is also an automorphism of the
singular structure. That is, v : S→ S is a bijection satisfying

v(x y)= v(x)v(y), v(xy)= v(x)v(y), v(x ŷ)= v(x)v̂(y), v(x ŷ)= v(x)v̂(y).

Example 16. Every semiquandle is a virtual semiquandle with v= IdS . More gen-
erally, the set of virtual semiquandle structures on a semiquandle S corresponds
to the set of conjugacy classes in the automorphism group Aut(S) of the semi-
quandle S: if v, v′, ϕ ∈ Aut(S) with v′ = ϕ−1vϕ, then ϕ(S, v) → (S, v′) is an
isomorphism of virtual semiquandles.

Every flat singular virtual knot or link has a fundamental virtual singular semi-
quandle, obtained by dividing the knot or link into semiarcs at flat, singular and
virtual crossings; then FVSSQ(L) has generators corresponding to semiarcs, and
relations at the crossings as determined by crossing type, in addition to relations
coming from the virtual singular semiquandle axioms.

6. Counting invariants of flat singular virtuals

As with finite groups, quandles, and biquandles, finite semiquandles can be used
to define computable invariants of flat virtual knots and links by counting homo-
morphisms.

Definition 17. Let L be a flat virtual link and T a finite semiquandle. The semi-
quandle counting invariant of L with respect to T is the cardinality

sc(L , T )= |Hom(FSQ(L), T )|

of the set of semiquandle homomorphisms f : FSQ(L) → T from the funda-
mental semiquandle of L to T (that is, of maps such that f (xy) = f (x) f (y) and
f (x y)= f (x) f (y) for all x, y ∈ FSQ(L)).
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Remark 18. A semiquandle homomorphism f : FSQ(L)→ T can be pictured as
a “coloring” of a diagram D of L by T , that is, as an assignment of an element
of T to each semiarc in D such that the colors satisfy the semiquandle operation
conditions at every crossing.

Example 19. The semiquandle counting invariant with respect to the semiquandle
T in Example 7 distinguishes the flat Kishino knot FK from the flat unknot FU,
with sc(FK, T )= 16 and sc(FU, T )= 4. This same semiquandle also distinguishes
the flat virtual knot K below [Kauffman 1999] from both the unknot and the flat
Kishino, with sc(K , T )= 2.

We can enhance the semiquandle counting invariant by taking note of the car-
dinality of the image subsemiquandles Im( f ) for each homomorphism to obtain
a multiset-valued invariant, which we can also express in a polynomial form by
converting multiset elements to exponents of a dummy variable z and multiplicities
to coefficients. Note that specializing z = 1 in the enhanced invariant yields the
original counting invariant.

Definition 20. Let L be a flat virtual link and T a finite semiquandle. The enhanced
semiquandle counting multiset is the multiset

sqcm(L , T )= {Im( f ) | f ∈ Hom(FSQ(L), T ))},

and the enhanced semiquandle polynomial is

sqp(L , T )=
∑

f ∈Hom(FSQ(L),T )

z|Im( f )|.

For singular semiquandles, we also have counting invariants and polynomial
enhanced invariants.

Definition 21. Let L be a flat singular virtual link and (T, S) a finite singular
semiquandle. We have the singular semiquandle counting invariant

ssc(L , (T, S))= |Hom(FSSQ(L), (T, S))|,

the enhanced singular semiquandle counting multiset

ssqcm(L , (T, S))= { Im( f ) | f ∈ Hom(FSSQ(L), (T, S)))},

and the enhanced singular semiquandle polynomial

ssqp(L , (T, S))=
∑

f ∈Hom(FSSQ(L),(T,S))

z|Im( f )|.
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Example 22. The constant-action semiquandle (X(132), O) with operator singular
structure distinguishes the triple trefoil TT from the singular knot SU1 with one
singular crossing and no other crossings:

ssqp(TT, (X(132), O))= 0 ssqp(SU1, (X(132), O))= 9z3

Finally, we have counting invariants for flat singular virtual knots and links,
defined analogously using finite virtual singular semiquandles.

Definition 23. Let L be a flat singular virtual link and (T, S, v) a finite virtual
singular semiquandle. Then we have the virtual singular semiquandle counting
invariant vssc(L , (T, S, v))= |Hom(FVSSQ(L), (T, S, v))|, the enhanced virtual
singular semiquandle counting multiset

vssqcm(L , (T, S, v))= {Im( f ) | f ∈ Hom(FVSSQ(L), (T, S, v))},

and the enhanced virtual singular semiquandle polynomial

vssqp(L , (T, S, v))=
∑

f ∈Hom(FVSSQ(L),(T,S,v))

z|Im( f )|.

Example 24. The flat virtual Hopf link fvH below is distinguished from the flat
unlink of two components by the counting invariants with respect to the listed vir-
tual semiquandle. Note that we can regard T as a flat singular virtual semiquandle
with trivial singular operations x ŷ

= x = x ŷ .

MT,S =

 1 3 1
2 2 2
3 1 3

∣∣∣∣∣∣
1 3 1
2 2 2
3 1 3

 , v = (13)

vsqp(fvH, (T, S, v))= q + 4z2 vsqp(U2, (T, S, v))= q + 4z2
+ 4z3

Remark 25. A virtual semiquandle is a virtual singular semiquandle with trivial
singular structure, that is, x ŷ

= x ŷ = x ; a singular semiquandle is a virtual singular
semiquandle with trivial virtual operation, that is, v = Id; and a semiquandle is a
virtual singular semiquandle with trivial virtual and singular structures.
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7. Application to Vassiliev invariants

In [Henrich 2010], one finds several degree-one Vassiliev invariants for virtual
knots. One invariant, S, takes its values in the free abelian group on the set of
two-component flat virtual links. Another invariant, G, takes its values in the free
abelian group on the set of flat virtual singular knots with one singularity. It is
easy to show that G is at least as strong as S, but somewhat difficult to show that
G is strictly stronger than S. Here, we give the definitions of these invariants and
provide an alternative proof that G is strictly stronger than S.

Definition 26. Let K be a virtual knot with diagram K̃ . Let K̃ d
smooth be the flat

virtual link obtained by smoothing K̃ at the crossing d and projecting onto the
associated flat virtual link. Furthermore, let K̃ 0

link be the flat virtual link obtained
by taking the disjoint union of the unknot with the flat projection of K̃ . We let the
bracket [ · ] denote the associated generator of the free abelian group on the set of
(two-component) flat virtual links. Then S is given by the following element of
this free abelian group:

S(K )=
∑

d

sign(d)([K̃ d
smooth] − [K̃

0
link]).

The sum ranges over all classical crossings in K̃ , and sign(d) is the local writhe.

Since this “smoothing” invariant has values involving flat virtual links, it is clear
that semiquandles may be of use in computing S for pairs of virtual knots. More-
over, singular semiquandles can be put to use when computing the next invariant:

Definition 27. Let K be a virtual knot with diagram K̃ . Let K̃ d
glue be the flat

virtual singular knot obtained by gluing K̃ at the crossing d and projecting onto
the associated flat virtual singular knot. Let K̃ 0

sing be the flat virtual singular knot
obtained by taking the flat projection of K̃ , introducing a kink via the flat Rei-
demeister I move, and gluing at the resulting crossing. Here, we let the bracket
[ · ] denote the associated generator of the free abelian group on the set of flat
virtual singular knots (with one singularity). Using this notation, we define G by
G(K ) =

∑
d sign(d)([K̃ d

glue] − [K̃
0
sing]). Again, the sum ranges over all classical

crossings in K̃ and sign(d) is the local writhe.

Henrich [2010] proved that both S and G are degree-one Vassiliev invariants of
virtual knots, and G is at least as strong as S. To show that G is stronger than S,
consider this pair of virtual knots in Figure 1. Call the first of these knots K1, and
the second K2. Since the only difference between the two knots is the signs of the
crossings labeled a and b, we see that

S(K2)−S(K1)= 2([K̃ a
smooth] − [K̃

b
smooth]), and

G(K2)−G(K1)= 2([K̃ a
glue] − [K̃

b
glue]).
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a

b

a

b

Figure 1

Now, K̃ a
smooth is the same as K̃ b

smooth; they are both this flat virtual link:

It follows that S(K1)= S(K2). On the other hand, we can show, by using singular
semiquandles, that K̃ a

glue and K̃ b
glue, as pictured next, are distinct.

a

b

a

b

Consider the following singular semiquandle, T , given in terms of its matrix M .

M =



1 4 2 3 1 3 4 2
2 3 1 4 3 1 2 4
4 1 3 2 2 4 3 1
3 2 4 1 4 2 1 3
1 1 4 4 1 2 2 1
1 1 4 4 4 3 3 4
2 2 3 3 4 3 3 4
2 2 3 3 1 2 2 1


The enhanced singular semiquandle polynomials for K̃ a

glue and K̃ b
glue are

ssqp(K̃ a
glue, T )= 2z and ssqp(K̃ b

glue, T )= 2z+ 2z4.

Hence, the two flat virtual singular knots are distinct, and thus G(K1) 6=G(K2).
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8. Questions

In this section, we collect questions for future research.
Singular semiquandles bear a certain resemblance to virtual biquandles, in which

a biquandle is augmented with operations at virtual crossings. Given a biquandle B,
the set of virtual biquandle structures on B forms a group isomorphic to the auto-
morphism group of B. What is the structure of the set of singular semiquandle
structures on a semiquandle X?

Our algebra-agnostic approach to the computation of our various semiquandle-
based invariants works well for small-cardinality semiquandles and for link di-
agrams with small crossing numbers. However, for links with higher crossing
numbers and for larger coloring semiquandles, we will need more algebraic de-
scriptions. We have given a few examples of classes of semiquandle structures,
such as constant-action semiquandles and operator singular structures. What are
some examples of group-based or module-based semiquandle and singular semi-
quandle structures, akin to Alexander biquandles? (Note that the only Alexander
biquandles which are semiquandles are constant-action Alexander biquandles.)

Enhancement techniques for biquandle counting invariants that should extend to
semiquandles include semiquandle cohomology, which is the special case of Yang–
Baxter cohomology described in [Carter et al. 2004], and the flattened case of S-
cohomology as described in [Ceniceros and Nelson 2009]. Similarly, we might
define semiquandle polynomials and the resulting enhancements of the counting
invariants, as in [Nelson 2008]. What other enhancements of semiquandle counting
invariants are there?

What is the relationship, if any, between semiquandle invariants and the quater-
nionic biquandle invariants described in [Bartholomew and Fenn 2008]?

Our Python code for computing semiquandle-based invariants is available from
the second author’s website at http://www.esotericka.org.
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