TWISTED SYMMETRIC GROUP ACTIONS

Akinari Hoshi and Ming-chang Kang
TWISTED SYMMETRIC GROUP ACTIONS

AKINARI HOSHI AND MING-CHANG KANG

Let K be any field, let $K(x_1, \ldots, x_n)$ be the rational function field of n variables over K, and let S_n and A_n be the symmetric group and the alternating group of degree n, respectively. For any $a \in K \setminus \{0\}$, define an action of S_n on $K(x_1, \ldots, x_n)$ by $\sigma \cdot x_i = x_{\sigma(i)}$ for $\sigma \in A_n$ and $\sigma \cdot x_i = a/x_{\sigma(i)}$ for $\sigma \in S_n \setminus A_n$. We prove that for any field K and $n = 3, 4, 5$, the fixed field $K(x_1, \ldots, x_n)^{S_n}$ is rational (that is, purely transcendental) over K.

1. Introduction

Let K be any field, let $K(x_1, \ldots, x_n)$ be the rational function field of n variables over K, and let S_n and A_n be the symmetric group and the alternating group of degree n, respectively. For any $a \in K \setminus \{0\}$, define a twisted action of S_n on $K(x_1, \ldots, x_n)$ by

$$
\sigma(x_i) := \begin{cases}
 x_{\sigma(i)} & \text{if } \sigma \in A_n, \\
 a/x_{\sigma(i)} & \text{if } \sigma \in S_n \setminus A_n.
\end{cases}
$$

Consider the fixed subfield

$$
K(x_1, \ldots, x_n)^{S_n} = \{ \alpha \in K(x_1, \ldots, x_n) : \sigma(\alpha) = \alpha \text{ for any } \sigma \in S_n \}.
$$

If $n = 2$, then $K(x_1, x_2)^{S_2} = K(x_1 + (a/x_2), ax_1/x_2)$ is rational (that is, purely transcendental) over K. When $a = 1$ (equivalently when $a \in K^\times$), we have the following theorem.

Theorem 1.1 [Hajja and Kang 1997, Theorem 3.5]. Let K be any field and let $a \in K^\times$. Then $K(x_1, \ldots, x_n)^{S_n}$ is rational over K.

The case when $a \in K^\times \setminus K^\times^2$ and $n \geq 3$ had been intractable for many years; see [Hajja and Kang 1997, page 638; Hajja 2000, Example 5.12, page 147; Kang 2001, Question 3.8, page 215]. Even the case $n = 3$ was unsolved. The next theorem is our recent result for the cases $n = 3, 4, 5$.

MSC2000: 13A50, 12F20.
Keywords: rationality problem, conic bundles.

Hoshi was partially supported by Waseda University Grant for Special Research Projects number 2007B-067 and Rikkyo University Special Fund for Research. Kang was partially supported by National Center for Theoretic Sciences, Taipei Office.
Theorem 1.2. Let K be any field, let $a \in K \setminus \{0\}$, and let S_n act on $K(x_1, \ldots, x_n)$ as defined in (1-1). If $n = 3, 4, 5$, then $K(x_1, \ldots, x_n)^{S_n}$ is rational over K.

We will prove Theorem 1.2 in Section 2. It is interesting that we use three different methods for the three cases of n; it seems that there is no unified proof for the three cases. One of the reasons is that the solutions to Noether’s problem for the alternating group A_n are rather different when $n = 3$ and when $n = 5$; see Theorem 2.2 and Theorem 2.5. Since Noether’s problem for A_n is still open in the case $n \geq 6$ (see [Maeda 1989] and [Hajja and Kang 1995, Section 4] for the statement of this problem), it is not so surprising that our question is solvable at present only for $n \leq 5$. It is still unknown whether the fixed field $K(x_1, \ldots, x_n)^{S_n}$ is rational when $n \geq 6$.

In Section 3 we propose another approach to the rationality of $K(x_1, \ldots, x_n)^{S_n}$. We show in Theorem 3.4 that it is isomorphic to the function field of a conic bundle over \mathbb{P}^{n-1} of the form $x^2 - ay^2 = h(v_1, \ldots, v_{n-1})$ with affine coordinates v_1, \ldots, v_{n-1}. Although this approach is valid only when $\text{char } K \neq 2$, it does provide a new technique in studying rationality problems. The structure of a conic bundle together with its rationality problem is a central subject in algebraic geometry [Iskovskih 1991]. Fortunately, when $n = 3$ and $n = 4$, the conic bundle in our case contains singularities and the rationality problem can be solved by a suitable blowing-up process. In particular, we find another proof of Theorem 1.2 when $\text{char } K \neq 2$ and $n = 3, 4$. For other rationality problems of conic bundles, see [Kang 2007, Section 4].

Since the fixed field $K(x_1, \ldots, x_n)^{S_n}$ is the quotient field of the ring of invariants $K[x_1, \ldots, x_n]^{S_n}$, it seems plausible to study it through the structure of the latter. This strategy is carried out in Section 4, and we give another proof of Theorem 1.2 when $\text{char } K = 2$ and $n = 3, 4$.

2. Proof of Theorem 1.2

Theorem 2.1 [Kang 2004, Theorem 2.4]. Let K be any field and let $K(x, y)$ be the rational function field of two variables over K. Let σ be a K-automorphism on $K(x, y)$ defined by

$$\sigma : x \mapsto a/x, \quad y \mapsto b/y,$$

where $a \in K \setminus \{0\}$ and $b = c(x + (a/x)) + d$ such that $c, d \in K$ and at least one of c and d is nonzero. Then $K(x, y)^{\langle \sigma \rangle} = K(s, t)$, where

$$s = \frac{x - (a/x)}{xy - (ab/xy)}, \quad t = \frac{y - (b/y)}{xy - (ab/xy)}.$$

The next result is essentially due to Masuda [1955, page 62] when $\text{char } K \neq 3$ (with a misprint in the original expression). We thank Y. Rikuna who pointed out
that the same formula is still valid when \(\text{char } K = 3 \) if we compare this formula with the proof in [Kuniyoshi 1955]. For convenience, we provide a new proof.

Theorem 2.2 [Masuda 1955, Theorem 3]. Let \(K \) be any field, \(K(x_1, x_2, x_3) \) be the rational function field of three variables over \(K \). Let \(\sigma \) be a \(K \)-automorphism on \(K(x_1, x_2, x_3) \) defined by

\[
\sigma : x_1 \mapsto x_2 \mapsto x_3 \mapsto x_1.
\]

Then \(K(x_1, x_2, x_3)^{(\sigma)} = K(s_1, u, v) = K(s_3, u, v) \), where \(s_i \) is the elementary symmetric function of degree \(i \) for \(1 \leq i \leq 3 \), and \(u \) and \(v \) are defined by

\[
u := \frac{x_1^2x_2 + x_2^2x_3 + x_3^2x_1 - 3x_1x_2x_3}{x_1^2 + x_2^2 + x_3^2 - x_1x_2 - x_2x_3 - x_3x_1},
\]

\[
u := \frac{x_1^2x_2 + x_2^2x_3 + x_3^2x_1 - 3x_1x_2x_3}{x_1^2 + x_2^2 + x_3^2 - x_1x_2 - x_2x_3 - x_3x_1}.
\]

Moreover, we have the identities

\[
s_2 = s_1(u + v) - 3(u^2 - uv + v^2),
\]

\[
s_3 = s_1uv - (u^3 + v^3),
\]

\[
x_1^2x_2 + x_2^2x_3 + x_3^2x_1 = s_1^2u - 3s_1u^2 + 3(2u - v)(u^2 - uv + v^2),
\]

\[
x_1^2x_2 + x_2^2x_3 + x_3^2x_1 = s_1^2v - 3s_1v^2 - 3(u - 2v)(u^2 - uv + v^2).
\]

Proof. With the aid of computer packages, say Mathematica or Maple, it is easy to verify the theorem’s identities. We have \([K(x_1, x_2, x_3) : K(s_1, s_2, s_3)] = 6 \) and \([K(x_1, x_2, x_3)^{(\sigma)} : K(s_1, s_2, s_3)] = 2 \). Since \(x_1x_2^2 + x_2x_3^2 + x_3x_1^2 \not\in K(s_1, s_2, s_3) \), it follows that \(K(x_1, x_2, x_3)^{(\sigma)} = K(s_1, s_2, s_3) \subset K(s_1, u, v) \). Hence \(K(x_1, x_2, x_3)^{(\sigma)} = K(s_1, u, v) = K(s_3, u, v) \). \(\square \)

Proof of Theorem 2.2 when \(n = 3 \). Let \(\sigma = (1, 2, 3) \), \(\tau = (1, 2) \in S_3 \).

By Theorem 2.2, we find that \(K(x_1, x_2, x_3)^{(\sigma)} = K(s_3, u, v) \).

Now \(\tau(x_1) = a/x_2 \), \(\tau(x_2) = a/x_3 \), and \(\tau(x_3) = a/x_1 \). Note that

\[
\tau(s_1) = as_2/s_3, \quad \tau(s_2) = a^2s_1/s_3, \quad \tau(s_3) = a^3/s_3,
\]

\[
\tau(x_1x_2^2 + x_2x_3^2 + x_3x_1^2) = a^3(x_1x_2^2 + x_2x_3^2 + x_3x_1^2)/s_3^2,
\]

\[
\tau(x_1^2x_2 + x_2^2x_3 + x_3^2x_1) = a^3(x_1^2x_2 + x_2^2x_3 + x_3^2x_1)/s_3^2.
\]

With the aid of Theorem 2.2, it is not difficult to find that

\[
(2-1) \quad \tau : s_3 \mapsto \frac{a^3}{s_3}, \quad u \mapsto \frac{au}{u^2-uv+v^2}, \quad v \mapsto \frac{av}{u^2-uv+v^2}.
\]
Define $w := u/v$. Then $K(s_3, u, v) = K(s_3, v, w)$ and
\[
\tau : s_3 \mapsto \frac{a^3}{s_3}, \quad v \mapsto \frac{a}{v(1-w+w^2)}, \quad w \mapsto w.
\]

By Theorem 2.1, $K(s_3, v, w)^{(\tau)}$ is rational over $K(w)$. Hence $K(x_1, x_2, x_3)^{S_3} = K(s_3, v, w)^{(\tau)}$ is rational over K. □

Proof of Theorem 1.2 when $n = 4$. Define
\[
\sigma := (123) : x_1 \mapsto x_2 \mapsto x_3 \mapsto x_1,
\tau := (12) : x_1 \mapsto a/x_2, \quad x_2 \mapsto a/x_1, \quad x_3 \mapsto a/x_3, \quad x_4 \mapsto a/x_4,
\rho_1 := (12)(34) : x_1 \mapsto x_2, \quad x_2 \mapsto x_1, \quad x_3 \mapsto x_4, \quad x_4 \mapsto x_3,
\rho_2 := (13)(24) : x_1 \mapsto x_3, \quad x_3 \mapsto x_1, \quad x_2 \mapsto x_4, \quad x_4 \mapsto x_2.
\]

Note that $\{1\} \triangleleft V_4 = \langle \rho_1, \rho_2 \rangle \triangleleft A_4 = \langle \sigma, \rho_1, \rho_2 \rangle \triangleleft S_4 = \langle \sigma, \tau, \rho_1, \rho_2 \rangle$ is a normal series.

First we will show that $K(x_1, \ldots, x_4)^{V_4}$ is rational over K. Define
\[
s_1 := x_1 + x_2 + x_3 + x_4, \quad s_4 := x_1x_2x_3x_4,
S := \frac{x_1 + x_2 - x_3 - x_4}{x_1x_2 - x_3x_4}, \quad T := \frac{x_1 - x_2 - x_3 + x_4}{x_1x_4 - x_2x_3}, \quad U := \frac{x_1 - x_2 + x_3 - x_4}{x_1x_3 - x_2x_4}.
\]
Then we have $K(s_1, s_4, S, T, U) \subset K(x_1, x_2, x_3, x_4)^{V_4}$ and
\[
(2-2) \quad \sigma : s_1 \mapsto s_1, \quad s_4 \mapsto s_4, \quad S \mapsto T, \quad T \mapsto U, \quad U \mapsto S.
\]

Lemma 2.3.

(i) $K(x_1, x_2, x_3, x_4)^{V_4} = K(s_1, S, T, U) = K(s_4, S, T, U)$.

(ii) $K(x_1, x_2, x_3, x_4)^{A_4} = K(s_4, f, g, h)$ where f, g, h are defined by
\[
f = S + T + U, \quad g = \frac{ST^2 + TU^2 + US^2 - 3STU}{S^2 + T^2 + U^2 - ST - TU - US},
\]
\[
h = \frac{S^2 T^2 + T^2 U^2 + U^2 S - 3STU}{S^2 + T^2 + U^2 - ST - TU - US}.
\]

Proof. Define $u_1 := S + T + U, \ u_2 := ST + TU + SU$ and $u_3 := STU$. Then it can be checked that $K(x_1, x_2, x_3, x_4) = K(s_1, S, T, U)(x_4)$ directly from the equalities
\[
x_1 = \frac{4 - s_1 T + (-2u_1 + s_1 T(S + U))x_4 + SU(1 - s_1 T)x_4^2 + u_3x_4^3}{S - T + U - SUx_4},
\]
\[
x_2 = \frac{4 - s_1 U + (-2u_1 + s_1 U(T + S))x_4 + TS(1 - s_1 U)x_4^2 + u_3x_4^3}{T - U + S - TSx_4},
\]
\[
x_3 = \frac{4 - s_1 S + (-2u_1 + s_1 S(U + T))x_4 + UT(1 - s_1 S)x_4^2 + u_3x_4^3}{U - S + T - UTx_4}.
\]
We see that \([K(s_1, S, T, U)(x_4) : K(s_1, S, T, U)] \leq 4\) by the equality
\[u_1^2 - 4u_2 + s_1u_3 + (8 - s_1u_1)u_3x_4 - (2u_1 - s_1u_2)u_3x_4^2 - s_1u_3^2x_4^3 + u_3^2x_4 = 0.\]
Hence we get \(K(x_1, x_2, x_3, x_4)^{V_4} = K(s_1, S, T, U)\). It follows from the equality
\[s_4 = (u_1^2 - 4u_2 + u_3s_1)/u_3^2\] that \(K(s_1, S, T, U) = K(s_4, S, T, U)\).

As for the field \(K(x_1, x_2, x_3, x_4)^{A_4}\), apply Theorem 2.2 to \(K(s_4, S, T, U)^{(\sigma)} = K(S, T, U)^{(\sigma)}(s_4)\).

We have \(K(x_1, x_2, x_3, x_4)^{S_4} = (K(x_1, x_2, x_3, x_4)^{V_4})^{S_4/V_4} = K(s_4, S, T, U)^{(\sigma, \tau)}\).

The action of \(\langle \sigma, \tau \rangle\) on \(K(s_4, S, T, U)\) is given by
\[
\begin{align*}
\sigma &: s_4 \mapsto s_4, \quad S \mapsto T, \quad T \mapsto U, \quad U \mapsto S, \\
\tau &: s_4 \mapsto \frac{a^4}{s_4}, \quad S \mapsto \frac{-S+T+U}{aTU}, \quad T \mapsto \frac{S+T-U}{aST}, \quad U \mapsto \frac{S-T+U}{aSU}.
\end{align*}
\]
Define
\[
N := \begin{cases}
\frac{s_4 + a^2}{s_4 - a^2} & \text{if } \text{char } K \neq 2, \\
\frac{s_4}{s_4 + a^2} & \text{if } \text{char } K = 2.
\end{cases}
\]
Then we get \(K(s_4, S, T, U) = K(N, S, T, U), \quad \sigma(N) = N\) and
\[
\tau(N) = \begin{cases}
-N & \text{if } \text{char } K \neq 2, \\
N + 1 & \text{if } \text{char } K = 2.
\end{cases}
\]
Applying [Hajja and Kang 1995, Theorem 1], we find that \(K(x_1, x_2, x_3, x_4)^{S_4} = K(N, S, T, U)^{(\sigma, \tau)}\) is rational over \(K\), provided that \(K(S, T, U)^{(\sigma, \tau)}\) is rational over \(K\). Explicitly, define \(P\) by
\[
P := \begin{cases}
N \cdot \left(S + T + U + \frac{S^2 + T^2 + U^2 - 2(ST + TU + US)}{aSTU} \right) & \text{if } \text{char } K \neq 2, \\
N + \frac{S+T+U}{S+T+U+aSTU} & \text{if } \text{char } K = 2.
\end{cases}
\]
Then we have that \(K(N, S, T, U) = K(P, S, T, U)\) and \(K(x_1, x_2, x_3, x_4)^{S_4} = K(P, S, T, U)^{(\sigma, \tau)} = K(S, T, U)^{(\sigma, \tau)}(P)\), where \(\sigma(P) = \tau(P) = P\).

Thus it remains to prove this:

Theorem 2.4. Let \(K\) be any field and let \(K(S, T, U)\) be the rational function field of three variables \(S, T\) and \(U\) over \(K\). Let \(\sigma\) and \(\tau\) be \(K\)-automorphisms of \(K(S, T, U)\) defined by
\[
\begin{align*}
\sigma &: S \mapsto T, \quad T \mapsto U, \quad U \mapsto S, \\
\tau &: S \mapsto \frac{-S+T+U}{aTU}, \quad T \mapsto \frac{S+T-U}{aST}, \quad U \mapsto \frac{S-T+U}{aSU},
\end{align*}
\] where \(a \in K \setminus \{0\}\). Then \(\langle \sigma, \tau \rangle \cong S_3\) and \(K(S, T, U)^{(\sigma, \tau)}\) is rational over \(K\).
Proof. By Theorem 2.2, we may choose a transcendence basis of \(K(S, T, U)^{(\sigma)} \) over \(K \) by \(K(S, T, U)^{(\sigma)} = K(f, g, h) \), where

\[
 f = S + T + U, \quad g = \frac{ST^2 + TU^2 + US^2 - 3STU}{S^2 + T^2 + U^2 - ST - TU - US},
\]

\[
 h = \frac{ST + T^2U + US^2 - 3STU}{S^2 + T^2 + U^2 - ST - TU - US}.
\]

Thus we have \(K(S, T, U)^{(\sigma, \tau)} = (K(S, T, U)^{(\sigma)})^{(\tau)} = K(f, g, h)^{(\tau)} \). The action of \(\tau \) on \(K(f, g, h) \) is given by

\[
 f \mapsto \frac{f^2 - 4f(g + h) + 12X}{aY},
\]

\[
 g \mapsto \frac{-f^2h(f - 4h) + 2f(f - 2g - 8h)X + 24X^2 - 8gY}{a(f^2 - 2f(g + h) + 4X)Y},
\]

\[
 h \mapsto \frac{-f^2(fg + 4h^2) + 6f(f - 2g)X + 24X^2 - 4(f + 2h)Y}{a(f^2 - 2f(g + h) + 4X)Y},
\]

where \(X = g^2 - gh + h^2 \) and \(Y = g^3 - fgh + h^3 \).

Case 1: \(\text{char} \ K \neq 2 \).

Define

\[F := g + h, \quad G := g - h, \quad H := f - (g + h). \]

Then \(K(S, T, U)^{(\sigma)} = K(f, g, h) = K(F, G, H) \) and \(\tau \) acts on \(K(F, G, H) \) by

\[
 F \mapsto \frac{4(27G^4 - 7FG^2H + 5G^2H^2 - FH^3)}{a(4FG^2 - F^2H + G^2H)(3G^2 + H^2)},
\]

\[
 G \mapsto \frac{4G(FG^2 + 7G^2H - FH^2 + H^3)}{a(4FG^2 - F^2H + G^2H)(3G^2 + H^2)},
\]

\[
 H \mapsto \frac{4H(FG^2 + 7G^2H - FH^2 + H^3)}{a(4FG^2 - F^2H + G^2H)(3G^2 + H^2)}.
\]

Note that \(\tau(G/H) = G/H \). Define

\[A := F/G, \quad B := G, \quad C := G/H. \]

Then \(K(S, T, U)^{(\sigma)} = K(F, G, H) = K(A, B, C) \) and \(\tau \) acts on \(K(A, B, C) \) by

\[
 A \mapsto \frac{-A + 5C - 7AC^2 + 27C^3}{1 - AC + 7C^2 + AC^3},
\]

\[
 B \mapsto \frac{4(1 - AC + 7C^2 + AC^3)}{aB(1 - A^2 + 4AC)(1 + 3C^2)}, \quad C \mapsto C.
\]

Define

\[D := 1 - AC + 7C^2 + AC^3, \quad E := 2C(C^2 - 1)/B. \]
Then $K(A, B, C) = K(C, D, E)$ and the action of τ on $K(C, D, E)$ is given by
\[C \mapsto C, \quad D \mapsto (1 + 3C^2)^3/D, \]
\[E \mapsto -a(1 + 3C^2)(D + (1 + 3C^2)^3/D - 2(1 + 5C^2 + 2C^4))/E. \]
Hence the assertion follows from Theorem 2.1.

Case 2: $\text{char } K = 2$.

The action of τ on $K(f, g, h)$ is given by
\[\tau: f \mapsto \frac{f^2}{aY}, \quad g \mapsto \frac{fh}{aY}, \quad h \mapsto \frac{fg}{aY}, \]
where $Y = g^3 + fgh + h^3$. Define
\[A := f/(g + h), \quad B := g/h, \quad C := 1/h. \]
Then $K(f, g, h) = K(A, B, C)$ and τ acts on $K(A, B, C)$ by
\[A \mapsto A, \quad B \mapsto \frac{1}{B}, \quad C \mapsto \frac{a}{A}(B + \frac{1}{B} + A + 1)/C. \]
Hence the assertion follows from Theorem 2.1. We will give another proof when $n = 4$ and $\text{char } K = 2$ in Section 4.

This concludes the proof of Theorem 1.2 when $n = 4$. \qed

Proof of Theorem 1.2 when $n = 5$.

We recall Maeda’s theorem for the A_5 action.

Theorem 2.5 [Maeda 1989]. Let K be any field, $K(x_1, \ldots, x_5)$ be the rational function field of five variables over K. Then $K(x_1, \ldots, x_5)^{A_5}$ is rational over K. Moreover a transcendental basis F_1, \ldots, F_5 of $K(x_1, \ldots, x_5)^{A_5}$ over K may be given explicitly as follows:

(i) When $\text{char } K \neq 2$,
\[
F_1 = \frac{\sum_{\sigma \in S_5} \sigma([12][13][14][15][23]^4[45]^4x_1)}{\sum_{\sigma \in S_5} \sigma([12][13][14][15][23]^4[45]^4)}, \quad F_2 = \frac{\sum_{\sigma \in S_5} \sigma([12]^3[13]^3[14]^3[15]^3[23]^{10}[45]^{10})}{\prod_{i < j} [ij]^2 \cdot \sum_{\sigma \in S_5} \sigma([12][13][14][15][23]^4[45]^4)}, \quad F_3 = \frac{\sum_{\sigma \in S_5} \sigma([12]^3[13]^3[14]^3[15]^3[23]^{10}[45]^{10}x_1)}{\prod_{i < j} [ij]^2 \cdot \sum_{\sigma \in S_5} \sigma([12][13][14][15][23]^4[45]^4)}, \quad F_4 = \frac{\sum_{\mu \in R_1} \mu([12]^2[13]^2[23]^2[45]^4)}{\prod_{i < j} [ij]}, \quad F_5 = \frac{\sum_{\mu \in R_1} \mu([12]^2[13]^2[23]^2[45]^4[24]^4[34]^4[15]^4[25]^4[35]^4)}{\prod_{i < j} [ij]^3},
\]
where \([ij] = x_i - x_j\) and \(R_1 = \{1, (34), (354), (234), (2354), (24)(35), (1234), (12354), (124)(35), (13524)\}.

(ii) When \(\text{char } K = 2\),
\[
F_1 = \frac{\sum_{i<j<k} x_i x_j x_k}{\sum_{i<j} x_i x_j}, \quad F_4 = \frac{\sum_{v \in R_4} v([12][4][13][2][24][15][25][35][45])}{\prod_{i<j}[ij]},
\]
\[
F_2 = \frac{\sum_{i=1}^{5} ([12][13][14][15] \cdot I^2)^{(1i)}}{\prod_{i<j}[ij] \cdot \sum_{i<j} x_i x_j}, \quad F_5 = \text{the same } F_5 \text{ as in (i)},
\]
\[
F_3 = \frac{\sum_{i=1}^{5} ([12][13][14][15] \cdot I^2 \cdot x_1)^{(1i)}}{\prod_{i<j}[ij] \cdot \sum_{i<j} x_i x_j},
\]
\[
\text{where } [ij] = x_i - x_j, \quad I = \sum_{\tau \in R_2} \tau(x_2 x_3 (x_2 x_3 + x_1^2 + x_5^2)), \quad R_2 = \{1, (34), (354), (234), (2354), (24)(35)\} \text{ and } R_3 = \{1, (234), (243), (152), (15234), (15243), (125), (12345), (12435), (15432), (154), (15423), (15342), (15324), (153)\}.
\]

In the theorem, note that \(R_1, R_2\) and \(R_3\) are coset representatives with respect to various subgroups:
\[
S_5 = \bigcup_{\mu \in R_1} H_1 \mu, \quad H = \bigcup_{\tau \in R_2} H_2 \tau, \quad A_5 = \bigcup_{v \in R_3} H_3 v,
\]
where
\[
H = \langle (23), (24), (25) \rangle \cong S_4, \quad H_1 = \langle (12), (13), (45) \rangle \cong D_6,
\]
\[
H_2 = \langle (23), (45) \rangle \cong V_4, \quad H_3 = \langle (12)(34), (13)(24) \rangle \cong V_4,
\]
and \(D_6\) is the dihedral group of order 12.

Now we start to prove Theorem 1.2 when \(n = 5\). Let \(\tau = (12) \in S_5\). By Theorem 2.5, we see that \(K(x_1, \ldots, x_5)^{A_5} = K(F_1, \ldots, F_5)\).

With the aid of a computer, we can evaluate the action of \(\tau\) on \(K(F_1, \ldots, F_5)\) as follows:
\[
\tau : F_1 \mapsto a/F_1, \quad F_2 \mapsto F_3/F_1, \quad F_3 \mapsto aF_2/F_1, \quad F_4 \mapsto -F_4, \quad F_5 \mapsto -F_5 \quad \text{when char } K \neq 2;
\]
\[
\tau : F_1 \mapsto a/F_1, \quad F_2 \mapsto F_3/F_1, \quad F_3 \mapsto aF_2/F_1, \quad F_4 \mapsto F_4 + 1, \quad F_5 \mapsto F_5 \quad \text{when char } K = 2.
\]

Case 1: char \(K \neq 2\).

Define
\[
G_1 := F_1, \quad G_2 := F_4 + 1/F_4 - 1, \quad G_3 := F_4(F_2 - F_3/F_1),
\]
\[
G_4 := F_2 + F_3/F_1, \quad G_5 := F_4 F_5.
\]
Then we have $K(x_1, \ldots, x_5)^{A_5} = K(F_1, \ldots, F_5) = K(G_1, \ldots, G_5)$ and

$$\tau : G_1 \mapsto a/G_1, \quad G_2 \mapsto 1/G_2, \quad G_3 \mapsto G_3, \quad G_4 \mapsto G_4, \quad G_5 \mapsto G_5.$$

So it follows from Theorem 2.1 that $K(x_1, \ldots, x_5)^{S_5} = K(G_3, G_4, G_5)(G_1, G_2)^{(\tau)}$ is rational over K.

Case 2: $\text{char } K = 2$.

Define

$$G_1 := F_1, \quad G_2 := F_2, \quad G_3 := \frac{F_2F_3}{F_1}, \quad G_4 := F_4 + \frac{F_3}{F_1F_2 + F_3}, \quad G_5 := F_5.$$

Then we have $K(x_1, \ldots, x_5)^{A_5} = K(F_1, \ldots, F_5) = K(G_1, \ldots, G_5)$ and

$$\tau : G_1 \mapsto a/G_1, \quad G_2 \mapsto G_3/G_2, \quad G_3 \mapsto G_3, \quad G_4 \mapsto G_4, \quad G_5 \mapsto G_5.$$

We use Theorem 2.1 and find that $K(x_1, \ldots, x_5)^{S_5} = K(G_3, G_4, G_5)(G_1, G_2)^{(\tau)}$ is rational over K. \hfill \square

3. Conic bundles: Another approach when $\text{char } K \neq 2$

Throughout this section we assume that $\text{char } K \neq 2$.

In this section, we will give another proof of Theorem 1.2 when $n = 3, 4$ (and $\text{char } K \neq 2$) by presenting $K(x_1, \ldots, x_n)^{S_n}$ as the function field of a conic bundle over \mathbb{P}^{n-1}.

Consider the action of S_n on $K(x_1, \ldots, x_n)$ defined by Equation (1-1). Because of Theorem 1.1, we may assume that $a \in K^\times \setminus K^\times 2$ without loss of generality.

Define $\alpha := \sqrt{a}$ and $\text{Gal}(K(\alpha)/K) = \langle \rho \rangle$, where $\rho(\alpha) = -\alpha$. Extend the actions of S_n and ρ to $K(\alpha)(x_1, \ldots, x_n) = K(\alpha) \otimes_K K(x_1, \ldots, x_n)$ by requiring that S_n acts trivially on $K(\alpha)$ and τ acts trivially on $K(x_1, \ldots, x_n)$.

Define $z_i := (\alpha - x_i)/\alpha + x_i$ for $1 \leq i \leq n$. We find that $K(\alpha)(x_1, \ldots, x_n) = K(\alpha)(x_1, \ldots, z_n)$ and

$$\sigma : z_i \mapsto -z_{\sigma(i)}$$

for any $\sigma \in S_n \setminus A_n$, and

$$\rho : \alpha \mapsto -\alpha, \quad z_i \mapsto 1/z_i.$$

Define $z_0 := z_1 + \cdots + z_n, y_i := z_i/z_0$ for $1 \leq i \leq n$. Hence $y_1 + \cdots + y_n = 1$.

Let t_1, \ldots, t_n be the elementary symmetric functions of y_1, \ldots, y_n. In particular, $t_1 = 1$. Define $\Delta := \prod_{1 \leq i < j \leq n}(y_i - y_j) \in K(y_1, \ldots, y_n)$ and $u := z_0 \cdot \Delta$. Note that Δ^2 can be written as a polynomial in t_1, \ldots, t_n, and thus in t_2, \ldots, t_n.

Lemma 3.1. $K(x_1, \ldots, x_n)^{S_n} = K(\alpha)(t_2, \ldots, t_n, u)^{(\rho)}$ and

$$\rho : \alpha \mapsto -\alpha, \quad t_i \mapsto t_{n-i}(t_n/t_{n-1})^iy_{n-1}^{-1}, \quad u \mapsto f(t_2, \ldots, t_n) \cdot u^{-1},$$
where \(f(t_2, \ldots, t_n) \in K(t_2, \ldots, t_n) \) is given by

\[
(3-1) \quad f(t_2, \ldots, t_n) := (-1)^{n(n-1)/2} t_n^{-(n-1)}(t_n/t_{n-1})^{(n+1)(n-2)/2} \Delta^2
\]

and we adopt the convention that \(t_0 = 1 \).

Proof. Note that \(K(\alpha)(y_1, \ldots, y_n, z_0) = K(\alpha)(y_1, \ldots, y_n, u) \). Since \(u \) is fixed by the action of \(S_n \), it follows that \(K(\alpha)(y_1, \ldots, y_n, z_0)^{S_n} = K(\alpha)(y_1, \ldots, y_n)^{S_n}(u) = K(\alpha)(t_2, \ldots, t_n, u) \); the last equality follows, for example, from the proof of [Hajja and Kang 1995, Lemma 1] because \(\sigma(y_i) = y_{\sigma(i)} \) for any \(\sigma \in S_n \) and \(i \) in \(1 \leq i \leq n \).

Thus \(K(x_1, \ldots, x_n)^{S_n} = (K(\alpha)(\rho)(x_1, \ldots, x_n))^{S_n} = K(\alpha)(x_1, \ldots, x_n)^{(S_n, \rho)} = (K(\alpha)(x_1, \ldots, x_n)^{(\rho)} = K(\alpha)(t_2, \ldots, t_n, u)^{(\rho)}.

It is easy to verify that the action of \(\rho \) on \(K(\alpha)(t_2, \ldots, t_n, u) \) is as stated. □

We write \(n = 2m + 1 \) if \(n \) is odd, and \(n = 2m \) otherwise. Define

\[
(3-2) \quad u_i := t_{i+1}, \quad u_{n-i} := \rho(t_{i+1}) = t_{n-(i+1)}t_n^{i+1}/t_{n-1} \quad \text{for} \quad i = 1, \ldots, m - 1
\]

and

\[
(3-3) \quad \begin{cases} u_m := t_{m+1}, & u_{m+1} := \rho(t_{m+1}) = t_m t_n^{m+1}/t_{n-1} & \text{if} \quad n \text{ is odd}, \\
 u_m := t_n/t_{n-1}, & \end{cases} \quad \text{if} \quad n \text{ is even.}
\]

Lemma 3.2. \(K(x_1, \ldots, x_n)^{S_n} = K(\alpha)(u_1, \ldots, u_{n-1}, u)^{(\rho)} \) and

\[
\rho : \alpha \mapsto -\alpha, \quad u_1 \mapsto u_{n-1} \quad \text{for} \quad i = 1, \ldots, n - 1,
\]

\[
u \mapsto g(u_1, \ldots, u_{n-1}) \cdot u^{-1},
\]

where \(g(u_1, \ldots, u_{n-1}) = f(t_2, \ldots, t_n) \) and \(f(t_2, \ldots, t_n) \) is given as in \((3-1) \).

Proof. The assertion follows from \(K(\alpha)(t_2, \ldots, t_n, u) = K(\alpha)(u_1, \ldots, u_{n-1}, u) \) and Lemma 3.1. Indeed we may show \(K(t_2, \ldots, t_n) \subset K(u_1, \ldots, u_{n-1}) \) as follows.

Case 1: \(n = 2m + 1 \) is odd.

The fact that \(t_2, \ldots, t_{m+1} \in K(u_1, \ldots, u_{n-1}) \) follows from \((3-2) \) and \((3-3) \). We have \(t_n \in K(u_1, \ldots, u_{n-1}) \) because

\[
(u_{m+1}^{m+1}/u_m^{m+2})^{m+1} = (\frac{1}{u_{m+2}})^{m+1}(\frac{t_{m+1}^{m+1}t_n}{t_{m-1}^{m+1}})^m \cdot (\frac{t_{n-1}}{t_{m+1}^{m+1}t_{n-1}})^{m+1} = t_n.
\]

and \(t_{n-1} \in K(u_1, \ldots, u_{n-1}) \) because

\[
t_n (u_{n-1}^{m+1}/u_{m+2}) u_{m+2} \cdot (\frac{1}{u_{m+1}}) = t_n \cdot (\frac{t_{m+1}^{m+1}t_n}{t_{m-1}^{m+1}}) \cdot (\frac{t_{n-1}^{m+1}}{t_{m+1}^{m+1}t_{n-1}}) = t_{n-1}.
\]

From \((3-2) \) we find that \(t_{n-(i+1)} = u_{n-i}^{i+1}/t_n^i \) for \(1 \leq i \leq m - 2 \). Thus \(t_{m+2}, \ldots, t_{n-2} \in K(u_1, \ldots, u_{n-1}) \).

Case 2: \(n = 2m \) is even. That \(t_2, \ldots, t_m \in K(u_1, \ldots, u_{n-1}) \) follows from \((3-2) \).
From (3-2) and (3-3), we get
\[
\frac{u_{k+1}}{u_{k+2}} = \frac{t_k}{t_{k+1}} \cdot \frac{t_n}{t_{n-1}} = \frac{t_k}{t_{k+1}} \cdot u_m,
\]
where \(k = m, \ldots, 2m - 3\). We find that \(t_{k+1} = t_k u_mu_{k+2}/u_{k+1} \in K(u_1, \ldots, u_{n-1})\) for \(m \leq k \leq 2m - 3\). From (3-2), we have \(u_{n-1} = t_{n-2}t_n/t_{n-1}^2 = t_{n-2}u_m/t_{n-1}\). Hence \(t_{n-1} = t_{n-2}u_m/u_{n-1} \in K(u_1, \ldots, u_{n-1})\).

Since \(t_n = u_m t_{n-1}\), it follows that \(t_n \in K(u_1, \ldots, u_{n-1})\). \(\square\)

We will change the variables \(u_1, \ldots, u_{n-1}\) to \(v_1, \ldots, v_{n-1}\) as follows. When \(n = 2m + 1\) is odd, define
\[
v_i := \frac{1}{2}(u_i + u_{n-i}), \quad v_{n-i} := \frac{1}{2}(\alpha(u_i - u_{n-i})) \quad \text{for } i = 1, \ldots, m.
\]
When \(n = 2m\) is even, define
\[
v_m := u_m, \quad v_i := \frac{1}{2}(u_i + u_{n-i}), \quad v_{n-i} := \frac{1}{2}(\alpha(u_i - u_{n-i})) \quad \text{for } i = 1, \ldots, m - 1.
\]
Thus \(K(\alpha)(u_1, \ldots, u_{n-1}, u) = K(\alpha)(v_1, \ldots, v_{n-1}, u)\).

In these variables, Lemma 3.2 reads as follows:

Lemma 3.3. \(K(x_1, \ldots, x_n)^{S_n} = K(\alpha)(v_1, \ldots, v_{n-1}, u)^{(\rho)}\) and
\[
\rho : \alpha \mapsto -\alpha, \quad v_i \mapsto v_i \quad \text{for } i = 1, \ldots, n-1, \quad u \mapsto h(v_1, \ldots, v_{n-1}) \cdot u^{-1},
\]
where \(h(v_1, \ldots, v_{n-1}) = f(t_2, \ldots, t_n)\) and \(f(t_2, \ldots, t_n)\) is given as in (3-1).

Hence we get the following theorem, which asserts that \(K(x_1, \ldots, x_n)^{S_n}\) is the function field of a conic bundle over \(\mathbb{P}^{n-1}\) of the form \(x^2 - ay^2 = h(v_1, \ldots, v_{n-1})\) with affine coordinates \(v_1, \ldots, v_{n-1}\); see for example [Shafarevich 1974, page 73] for conic bundles over \(\mathbb{P}^1\).

Theorem 3.4. \(K(x_1, \ldots, x_n)^{S_n} = K(x, y, v_1, \ldots, v_{n-1})\) and the generators \(x, y, v_1, \ldots, v_{n-1}\) satisfy the relation
\[
x^2 - ay^2 = h(v_1, \ldots, v_{n-1}),
\]
where \(h(v_1, \ldots, v_{n-1}) = f(t_2, \ldots, t_n)\) and \(f(t_2, \ldots, t_n)\) is given as in (3-1).

Proof. Define
\[
x := \frac{1}{2}(u + \frac{h(v_1, \ldots, v_{n-1})}{u}), \quad y := \frac{1}{2\alpha}(u - \frac{h(v_1, \ldots, v_{n-1})}{u}).
\]
Then we get \(K(x, y, v_1, \ldots, v_{n-1}) \subset K(x_1, \ldots, x_n)^{S_n} = K(\alpha)(v_1, \ldots, v_{n-1}, u)\). Thus \(K(x, y, v_1, \ldots, v_{n-1}) = K(x_1, \ldots, x_n)^{S_n}\), since \(K(x, y, v_1, \ldots, v_{n})(u) = K(\alpha)(v_1, \ldots, v_{n-1}, u)\) and \([K(x, y, v_1, \ldots, v_{n})(u) : K(x, y, v_1, \ldots, v_{n})] = 2\). We also have \(x^2 - ay^2 = h(v_1, \ldots, v_{n-1})\) by definition. \(\square\)
Proof of Theorem 1.2 when \(n = 3 \) and \(\text{char } K \neq 2 \).

Step 1. By Lemma 3.1 we find that \(K(x_1, x_2, x_3)^{S_3} = K(\alpha)(t_2, t_3, u)^{\langle \rho \rangle} \), where

\[
\rho : \alpha \mapsto -\alpha, \quad t_2 \mapsto t_2^{-2}t_3, \quad t_3 \mapsto t_2^{-3}t_3^2, \quad u \mapsto -t_2^{-2}u^2 \cdot u^{-1}.
\]

Note that \(\Delta^2 = \prod_{1 \leq i < j \leq 3} (y_i - y_j)^2 = t_2^2 - 4t_2^3 - 4t_3 + 18t_2t_3 - 27t_3^2 \) because \(t_1 = 1 \).

Define \(u_1 := t_2, \ u_2 := \rho(t_2) = t_2^{-2}t_3 \). Then \(K(\alpha)(t_2, t_3, u) = K(\alpha)(u_1, u_2, u) \) and

\[
\rho : u_1 \mapsto u_2 \mapsto u_1, \quad u \mapsto g(u_1, u_2) \cdot u^{-1},
\]

where \(g(u_1, u_2) = -1 + 4u_1 + 4u_2 - 18u_1u_2 + 27u_1^2u_2^2 \).

Define \(v_1 := (u_1 + u_2)/2 \) and \(v_2 := \alpha(u_1 - u_2)/2 \). Then \(\rho : v_1 \mapsto v_1, v_2 \mapsto v_2 \) and \(g(u_1, u_2) = h(v_1, v_2) \), where

\[
h(v_1, v_2) = -1 + 8v_1 - 18v_1^2 + 27v_1^4 + (18/a)v_2^2 - (54/a)v_1^2v_2^2 + (27/a^2)v_2^4.
\]

Hence \(K(x_1, x_2, x_3)^{S_3} = K(\alpha)(v_1, v_2, u)^{\langle \rho \rangle} = K(x, y, v_1, v_2) \), where

\[
x = \frac{1}{2}(u + \frac{h(v_1, v_2)}{u}), \quad y = \frac{1}{2\alpha}(u - \frac{h(v_1, v_2)}{u}).
\]

Note that \(x \) and \(y \) satisfy the relation

\[
x^2 - ay^2 = h(v_1, v_2) \tag{3-4}
\]

\[
= (1 + v_1)(-1 + 3v_1^3) - (18/a)v_2^2(-1 + 3v_1^2) + (27/a^2)v_2^4.
\]

Step 2. Suppose that char \(K = 3 \). Then (3-4) becomes \(x^2 - ay^2 = -1 - v_1 \). Hence \(K(x_1, x_2, x_3)^{S_3} = K(x, y, v_1, v_2) = K(x, y, v_2) \) is rational over \(K \).

Step 3. From now on, we assume that char \(K \neq 2, 3 \).

We normalize the generators \(v_1 \) and \(v_2 \) by defining \(T_1 := 3v_1 \) and \(T_2 := 3v_2/a \). We get \(K(x_1, x_2, x_3)^{S_3} = K(x, y, T_1, T_2) \) with a relation

\[
(3-5) \quad 3x^2 - 3ay^2 = -3 + 8T_1 - 6T_1^2 + T_1^4 + 6aT_2^2 - 2aT_1^2T_2^2 + a^2T_2^4.
\]

Step 4. We find the singularities of (3-5). We get \(x = y = -1 + T_1 = T_2 = 0 \). Define \(T_3 := -1 + T_1 \). The relation (3-5) becomes

\[
(3-6) \quad 3x^2 - 3ay^2 = 4aT_2^2 + a^2T_2^4 - 4aT_2^2T_3 - 2aT_2^2T_3^2 + 4T_3^3 + T_3^4.
\]

Step 5. We blow-up Equation (3-6), that is, define \(X_2 := x/T_3, \ Y_2 := y/T_3 \) and \(T_4 := T_2/T_3 \). Then \(K(x, y, T_1, T_2) = K(x, y, T_2, T_3) = K(X_2, Y_2, T_3, T_4) \) and the
relation (3-6) becomes

\[3X_2^2 - 3aY_2^2 = 4T_3 + T_3^2 + 4aT_4^2 - 4aT_3T_4^2 - 2aT_3^2T_4^2 + a^2T_3^2T_4^4\]

(3-7) \[= (T_3 - aT_3T_4^2)^2 + 4(T_3 - aT_3T_4^2) + 4aT_4^2\]

\[= (T_3 - aT_3T_4^2)(4 + T_3 - aT_3T_4^2) + 4aT_4^2.\]

Define

\[X_3 := \frac{X_2}{T_3 - aT_3T_4^2}, \quad Y_3 := \frac{Y_2}{T_3 - aT_3T_4^2},\]

\[S_1 := \frac{4 + T_3 - aT_3T_4^2}{T_3 - aT_3T_4^2}, \quad S_2 := \frac{T_4}{T_3 - aT_3T_4^2}.\]

Note that \(K(X_2, Y_2, T_3, T_4) = K(X_3, Y_3, S_1, S_2)\). For \(S_1 \in K(X_3, Y_3, S_1, S_2)\), \(S_1\) is a fractional linear transformation of \(T_3 - aT_3T_4^2\). Hence \(T_3 - aT_3T_4^2 \in K(X_3, Y_3, S_1, S_2)\). Thus \(T_4 = S_2 \cdot (T_3 - aT_3T_4^2) \in K(X_3, Y_3, S_1, S_2)\) also. Now \(S_1\) is a fractional linear transformation of \(T_3\) with coefficients in \(K(T_4)\). Hence \(T_3 \in K(X_3, Y_3, S_1, S_2)\). It follows that \(X_2, Y_2 \in K(X_3, Y_3, S_1, S_2)\) also.

The relation (3-7) becomes \(3X_3^2 - 3aY_3^2 = S_1 + 4aS_2^2\), which is linear in \(S_1\). Hence \(K(x_1, x_2, x_3)^{S_3} = K(X_3, Y_3, S_1, S_2) = K(X_3, Y_3, S_2)\) is rational over \(K\).

Step 6. Here is another proof. Instead of the method in Step 5, we may proceed as follows:

Define \(X_4 := x/T_3^2, \quad Y_4 := y/T_3^2, \quad T_4 := T_2/T_3, \) and \(T_5 := 1/T_3\). Then
\(K(x, y, T_2, T_3) = K(X_4, Y_4, T_4, T_5)\) and (3-6) becomes

\[3X_4^2 - 3aY_4^2 = 1 - 2aT_4^2 + a^2T_4^4 + 4T_5 - 4aT_4^2T_5 + 4aT_4^2T_5^2.\]

The singularities here are \(X_4 = Y_4 = T_4 \pm (1/\sqrt{a}) = T_5 = 0\). If we blow-up with respect to \(1 - aT_4^2\), that is, define

\[X_5 := X_4/(1 - aT_4^2), \quad Y_5 := Y_4/(1 - aT_4^2), \quad T_6 := T_5/(1 - aT_4^2),\]

then \(K(X_4, Y_4, T_4, T_5) = K(X_5, Y_5, T_4, T_6)\) and the relation becomes

(3-8) \[3X_5^2 - 3aY_5^2 = 1 + 4T_6 + 4aT_4^2T_6^2.\]

Thus we get \(K(x_1, x_2, x_3)^{S_3} = K(X_5, Y_5, T_4T_6, T_6) = K(X_5, Y_5, T_4T_6)\) is rational over \(K\) because (3-8) becomes linear in \(T_6\). \(\square\)

Proof of Theorem 1.2 when \(n = 4\) and \(\text{char } K \neq 2\).

Step 1. By Lemma 3.1 we find that \(K(x_1, x_2, x_3, x_4)^{S_4} = K(\alpha)(t_2, t_3, t_4, u)^{(\rho)}\), where

\[\rho : \alpha \mapsto -\alpha, \quad t_2 \mapsto t_2t_3^{-2}t_4, \quad t_3 \mapsto t_3^{-3}t_4^2, \quad t_4 \mapsto t_3^{-4}t_4^3, \quad u \mapsto t_3^{-5}t_4^2\Delta^2 \cdot u^{-1}.\]
\[\Delta^2 = \prod_{1 \leq i < j \leq 4} (y_i - y_j)^2 = t_2^2 t_3^2 - 4t_2^3 t_3^2 - 4t_3^3 + 18t_2 t_3^3 - 27t_3^4 - 4t_2^3 t_4 + 16t_2^4 t_4 + 18t_2 t_3 t_4 - 80t_2^2 t_3 t_4 - 6t_2^4 t_4 + 144t_2^2 t_3 t_4 - 27t_4^2 + 144t_2^2 t_3^2 - 128t_2^2 t_4^2 - 192t_3 t_4^2 + 256t_4^3. \]

Define \(u_1 := t_2, \ u_2 := t_4/t_3 \) and \(u_3 := \rho(t_2) = t_2 t_4/t_3^2 \). Then \(K(\alpha)(t_2, t_3, t_4, u) = K(\alpha)(u_1, u_2, u_3, u) \) and
\[\rho : \alpha \mapsto -\alpha, \quad u_1 \mapsto u_3 \mapsto u_1, \quad u_2 \mapsto u_2, \quad u \mapsto g(u_1, u_2, u_3) \cdot u^{-1}, \]
where
\[g(u_1, u_2, u_3) = \frac{u_2}{u_1 u_3} (-27u_1^2 u_2^2 - 4u_1 u_2 u_3 + 18u_1^2 u_2 u_3 - 6u_1^2 u_3^2 + 144u_1^2 u_2^2 u_3 - 192u_1 u_2^3 u_3 + 256u_1 u_2^4 u_3 + u_1 u_2^2 u_3 - 4u_1^2 u_3^2 + 18u_1 u_2 u_3^2 - 80u_1 u_2^2 u_3^2 - 27u_2^2 u_3^2 + 144u_1 u_2^2 u_3^2 - 128u_1^2 u_2^2 u_3^2 - 4u_1^2 u_3^3 + 16u_1^3 u_3^3). \]

Define \(v_1 := (u_1 + u_3)/2, \ v_2 := u_2 \) and \(v_3 = \alpha(u_1 - u_3)/2 \). Then we obtain \(K(\alpha)(u_1, u_2, u_3, u) = K(\alpha)(v_1, v_2, v_3, u) \) and
\[\rho : \alpha \mapsto -\alpha, \quad v_1 \mapsto v_1, \quad v_2 \mapsto v_2, \quad v_3 \mapsto v_3, \quad u \mapsto h(v_1, v_2, v_3) \cdot u^{-1}, \]
where \(h(v_1, v_2, v_3) = g(u_1, u_2, u_3) \in K(v_1, v_2, v_3) \) is given as
\[h(v_1, v_2, v_3) = \frac{v_2}{av_1^2 - v_3^2} (av_1^2 v_2 (v_1^2 + v_2^2 + v_3^2) - 2v_2 v_3 (v_1^2 - 8v_3^2 + 24v_1 v_2 - 80v_1 v_2^2 + 18v_1 v_2 - 80v_2^2 + 144v_1 v_2 v_3 - 128v_1 v_2^2 - 96v_1 v_3^2 + 128v_3^2) - (1/\alpha)v_2 v_3^4 (-1 + 8v_1 - 48v_1^2 + 80v_2 + 128v_2^2) - (16/\alpha^2)v_2 v_3^6). \]

Step 2. Because \(h(v_1, v_2, v_3) \) is still complicated, we define \(p, q \) and \(r \) as
\[p := \frac{1}{2} \left(\frac{1}{u_1} + \frac{1}{u_3} \right) u_2, \quad q := \frac{\alpha}{2} \left(\frac{1}{u_1} - \frac{1}{u_3} \right) u_2, \quad r := 4u_2. \]
Then \(K(\alpha)(v_1, v_2, v_3, u) = K(\alpha)(p, q, r, u) \). Indeed we have
\[p = \frac{av_1 v_2}{av_1^2 - v_3^2}, \quad q = -\frac{av_2 v_3}{av_1^2 - v_3^2}, \quad r = 4v_2, \]
\[v_1 = -\frac{apr}{4(ap^2 - q^2)}, \quad v_2 = r/4, \quad v_3 = -\frac{apr}{4(ap^2 - q^2)}. \]

Hence we obtain \(K(x_1, x_2, x_3, x_4)^{S_4} = K(\alpha)(p, q, r, u)^{\rho} \) and
\[\rho : \alpha \mapsto -\alpha, \quad p \mapsto p, \quad q \mapsto q, \quad r \mapsto r, \quad u \mapsto \frac{r^2}{64(ap^2 - q^2)^2} \cdot \frac{H(p, q, r)}{u}, \]
(3-9) \[H(p, q, r) = a^2(p - r + 2pr)^2(-16p^2 + r + 4pr + 4p^2r) \]
\[-a(-32p^2 + r + 36pr - 12p^2r - 20r^2 + 72p^2) \]
\[-96p^2r^2 - 8r^3 + 32p^2r^3)q^2 + 16(-1 + r)^3q^4. \]

Define \(U := u \cdot r/(8(ap^2 - q^2)) \). Then \(K(\alpha)(p, q, r, u) = K(\alpha)(p, q, r, U) \), and \(\rho \) acts on \(K(\alpha)(p, q, r, U) \) by
\[\rho : \alpha \mapsto -\alpha, \quad p \mapsto p, \quad q \mapsto q, \quad r \mapsto r, \quad U \mapsto H(p, q, r)/U. \]

Hence \(K(x_1, \ldots, x_4)^{S_4} = K(\alpha)(p, q, r, U)^{(\rho)} = K(X, Y, p, q, r) \) where
\[X = \frac{1}{2}(U + g(p, q, r)/U), \quad Y = \frac{1}{2\alpha}(U - g(p, q, r)/U). \]

Note that \(X \) and \(Y \) satisfy the relation
\[(3-10) \quad X^2 - aY^2 = H(p, q, r). \]

Step 3. Because \(H(p, q, r) \) in (3-9) is a biquadratic equation with respect to \(q \) and its constant term has the square factor \((p - r + 2pr)^2\), we define \(p_2 := p - r + 2pr \).

Then \(p = (p_2 + r)/(1 + 2r) \). We also define \(X_2 := X(1 + 2r) \) and \(Y_2 := Y(1 + 2r) \).

Then \(K(x_1, x_2, x_3, x_4)^{S_4} = K(X_2, Y_2, p_2, q, r) \) and (3-10) becomes
\[X_2^2 - aY_2^2 = a^2 p_2^2(-16p_2^2 + r - 28p_2r + 4p_2^2r - 8r^2 + 16p_2r^2 + 16r^3) \]
\[-a(-32p_2^2 + r - 28p_2r - 12p_2^2r - 12r^2 + 120p_2r^2 \]
\[-96p_2^2r^2 + 48r^3 - 48p_2r^3 + 32p_2^2r^3 - 64r^4 + 64p_2r^4)q^2 \]
\[+16(-1 + r)^3(1 + 2r)^2q^4. \]

The right hand side is biquadratic in \(q \) with constant term on the first line. Hence we define \(p_3 := p_2/q, \ X_3 := X_2/q \) and \(Y_3 := Y_2/q \), and the equation becomes quadratic in \(q \):
\[X_3^2 - aY_3^2 = ar(-1 + 4r)^2(-1 + ap_3^2 + 4r) \]
\[+4ap_3r(7 - 7ap_3^2 - 30r + 4ap_3^2r + 12r^2 - 16r^3)q \]
\[+4(-1) + ap_3^2 - 4r - 4r^2)(4 - 4ap_3^2 - 12r + ap_3^2r + 12r^2 - 4r^3)q^2. \]

Define \(q_2 := 1/q, \ r_2 := 4r, \ X_4 := 4X_3/q, \ Y_4 := 4Y_3/q. \) Then
\[(3-11) \quad X_4^2 - aY_4^2 = 4ar_2(-1 + r_2)^2(-1 + ap_3^2 + r_2)q_2^2 \]
\[+4ap_3r_2(28 - 28ap_3^2 - 30r_2 + 4ap_3^2r_2 + 3r_2 - r_2^3)q_2 \]
\[+(-4 + 4ap_3^2 - 4r_2 - r_2^3)(64 - 64ap_3^2 - 48r_2 + 4ap_3^2r_2 + 12r_2^2 - r_2^3). \]
Because (3-11) is quadratic in q_2, we may eliminate a linear term of q_2 in the usual manner by putting
\[
q_3 := 2q_2 + \frac{p_3(28 - 28ap_3^2 - 30r_2 + 4ap_3^2r_2 + 3r_2^2 - r_3^2)}{(-1 + r_2)^2(-1 + ap_3^2 + r_2)}.
\]
Define
\[
X_5 := X_4(-1 + r_2)(-1 + ap_3^2 + r_2), \quad Y_5 := Y_4(-1 + r_2)(-1 + ap_3^2 + r_2).
\]
Then (3-11) becomes
\[
X_5^2 - aY_5^2 = (2 + r_2)^2(-1 + ap_3^2 + r_2)(4 - 4ap_3^2 - 5r_2 + r_2^2)^3 + ar_2(-1 + r_2)^4(-1 + ap_3^2 + r_2)^3q_3^2.
\]
Defining
\[
q_4 := \frac{q_3(-1 + r_2)^2(-1 + ap_3^2 + r_2)}{(2 + r_2)(4 - 4ap_3^2 - 5r_2 + r_2^2)}
\]
and
\[
X_6 := \frac{X_5}{(2 + r_2)(4 - 4ap_3^2 - 5r_2 + r_2^2)}, \quad Y_6 := \frac{Y_5}{(2 + r_2)(4 - 4ap_3^2 - 5r_2 + r_2^2)},
\]
we get $K(x_1, \ldots, x_4)^{S_1} = K(X_6, Y_6, p_3, q_4, r_2)$ and the equation becomes
\[
(3-12) \quad X_6^2 - aY_6^2 = (-1 + ap_3^2 + r_2)((4 - 4ap_3^2 - 5r_2 + r_2^2) + ar_2q_4^2).
\]

Step 4. We find the singularities of (3-12). We get $p_3 \pm (1/\sqrt{a}) = r_2 = X_6 = Y_6 = 0$. Blow-up with respect to $-1 + ap_3^2$, that is, define
\[
r_3 := r_2/(-1 + ap_3^2), \quad X_7 := X_6/(-1 + ap_3^2), \quad Y_7 := Y_6/(-1 + ap_3^2).
\]
Then $K(p_3, q_4, r_2, X_6, Y_6) = K(p_3, q_4, r_3, X_7, Y_7)$ and (3-12) becomes
\[
X_7^2 - aY_7^2 = (1 + r_3)(-4 - 5r_3 + aq_4^2r_3 - r_3^2 + ap_3^2r_3^2).
\]
Define $p_4 := p_3r_3$. Then
\[
(3-13) \quad X_7^2 - aY_7^2 = (1 + r_3)(-4 - 5r_3 + aq_4^2r_3 - r_3^2 + ap_3^2r_3^2).
\]

Step 5. Equation (3-13) still has a singular locus $p_4 \pm q_4 = r_3 + 1 = X_7 = Y_7 = 0$. If we define $p_5 := p_4 + q_4$ and $r_4 := r_3 + 1$, it becomes
\[
(3-14) \quad X_7^2 - aY_7^2 = r_4(ap_3^2 - 2ap_5q_4 - 3r_4 + aq_4^2r_4 - r_4^2)
\]
with singular locus $S = (p_5 = r_4 = X_7 = Y_7 = 0)$. Blowing this up along S by defining $r_5 := r_4/p_5$, $X_8 := X_7/p_5$, and $Y_8 := Y_7/p_5$, we get
\[
X_8^2 - aY_8^2 = r_5(ap_5 - 2aq_4 - 3r_5 + aq_4^2r_5 - p_5r_5^2).
\]
Note that this is linear in p_5. Hence we conclude that the fixed field $K(x_1, \ldots, x_4)^{S_4} = K(X_8, Y_8, q_4, r_5)$ is rational over K. \hfill \qedsymbol

4. Using the structures of rings of invariants

In this section, we give an another proof of **Theorem 1.2** in the case of $n = 3, 4$ and $\text{char } K = 2$ by using the structure of $K(x_1, \ldots, x_n)^{A_n}$. Throughout, we assume that $\text{char } K = 2$.

For $1 \leq i \leq n$, let s_i be the elementary symmetric function in x_1, \ldots, x_n of degree i.

By Revoy’s theorem [1982], the invariant ring $K[x_1, \ldots, x_n]^{A_n}$ is a free module of rank 2 over the subring $K[x_1, \ldots, x_n]^{S_n} = K[s_1, \ldots, s_n]$. Revoy’s theorem is valid for all characteristics. We will find explicitly a free basis of $K[x_1, \ldots, x_n]^{A_n}$ over $K[x_1, \ldots, x_n]^{S_n}$ for the case $n = 3, 4$. For $n = 3$ and $n = 4$, it suffices by [Neusel and Smith 2002, Example 1, page 75] to find a polynomial of degree 3 and 6, respectively, that is in $K[x_1, \ldots, x_n]^{A_n}$ but not in $K[x_1, \ldots, x_n]^{S_n}$.

Define
\[
b_3 := \sum_{\sigma \in A_3} \sigma(x_1 x_2^2) = x_1 x_2^2 + x_2 x_3^2 + x_3 x_1^2,
\]
\[
b_4 := \sum_{\sigma \in A_4} \sigma(x_1 x_2 x_3 x_4) = x_1^2 x_2 x_3 x_4 + x_1 x_2^2 x_3^2 + x_1 x_2 x_3^2 x_4 + x_1^2 x_2 x_3 x_4^2 + x_1 x_2 x_3 x_4^3 + x_1^2 x_2 x_3 x_4^3.
\]

For $n = 3, 4$, it follows that $\{1, b_n\}$ is a free basis of $K[x_1, \ldots, x_n]^{A_n}$, that is,
\[
K[x_1, x_2, x_3]^{A_3} = K[s_1, s_2, s_3] \oplus b_3 K[s_1, s_2, s_3],
\]
\[
K[x_1, x_2, x_3, x_4]^{A_4} = K[s_1, s_2, s_3, s_4] \oplus b_4 K[s_1, s_2, s_3, s_4].
\]

We have proved this:

Lemma 4.1. Let K be a field of char $K = 2$. Then the fields $K(x_1, x_2, x_3)^{A_3}$ and $K(x_1, x_2, x_3, x_4)^{A_4}$ of invariants are given as follows.

(i) $K(x_1, x_2, x_3)^{A_3} = K(s_1, s_2, s_3, b_3)$ with the relation
\[
b_3^2 + b_3 s_1 s_2 + s_2^3 + b_3 s_3 + s_1^3 s_3 + s_3^2 = 0.
\]

(ii) $K(x_1, x_2, x_3, x_4)^{A_4} = K(s_1, s_2, s_3, s_4, b_4)$ with the relation
\[
b_4^2 + b_4 s_1 s_2 s_3 + b_4 s_2^2 + s_2^2 s_3^2 + s_1^3 s_3^2 + s_3^4 + b_4 s_1^2 s_4 + s_1^3 s_2^3 s_4 + s_1^4 s_4^2 = 0.
\]

Proof of Theorem 1.2 when $n = 3$ and char $K = 2$. First, τ acts on $K(x_1, x_2, x_3)^{A_3} = K(s_1, s_2, s_3, b_3)$ as
\[
s_1 \mapsto a s_2 / s_3, \quad s_2 \mapsto a^2 s_1 / s_3, \quad s_3 \mapsto a^3 / s_3, \quad b_3 \mapsto a^3 b_3 / s_3^2.
\]
Apply Theorem 2.2. We find $K(x_1,x_2,x_3)^{A_3} = K(s_3,u,v)$, where u and v are the same as in Theorem 2.2. It is not difficult to check that

$$u = \frac{b_3 + s_3}{s_1^2 + s_2^2} \quad \text{and} \quad v = \frac{b_3 + s_1s_2}{s_1^2 + s_2^2}.$$

Moreover, the action of τ is given by

$$\tau : s_3 \mapsto \frac{a^3}{s_3}, \quad u \mapsto \frac{au}{u^2-uv+v^2}, \quad v \mapsto \frac{av}{u^2-uv+v^2}.$$

Define $w := u/v$. Then $K(x_1,x_2,x_3)^{A_3} = K(s_3,v,w)$ and

$$\tau : s_3 \mapsto \frac{a^3}{s_3}, \quad v \mapsto \frac{a}{v(1-w+w^2)}, \quad w \mapsto w.$$

By Theorem 2.1, $K(x_1,x_2,x_3)^{S_3} = K(s_3,v,w)^{(\tau)}$ is rational over K. \hfill \Box

Proof of Theorem 1.2 when $n = 4$ and char $K = 2$.

In this case, τ acts on $K(x_1,x_2,x_3,x_4)^{A_4} = K(s_1,s_2,s_3,s_4,b_4)$ as

$$s_1 \mapsto as_3/s_4, \quad s_2 \mapsto a^2s_2/s_4, \quad s_3 \mapsto a^3s_1/s_4, \quad s_4 \mapsto a^4/s_4, \quad b_4 \mapsto a^6(b_4 + s_1s_2s_3 + s_3^2 + s_1^2s_4)/s_4^3.$$

Define

$$t_1 := \frac{s_1s_3}{s_2}, \quad t_2 := s_2, \quad t_3 := s_3, \quad t_4 := \frac{s_1s_2s_3 + s_3^2 + s_1^2s_4}{s_2^2}, \quad t_5 := \frac{b_4 + s_2^3}{s_2}.$$

It follows that $K(s_1,s_2,s_3,s_4,b_4) = K(t_1,t_2,t_3,t_4,t_5)$. It is easy to check that the relation among the generators t_1,\ldots,t_5 is given by

$$t_1^3 + t_1^2t_2 + t_1t_2^2 + t_2^3 + t_2t_4^2 + t_2t_4t_5 + t_2t_5^2 = 0.$$

Define

$$u_1 := t_1, \quad u_2 := \frac{t_2}{t_1}, \quad u_3 := t_3, \quad u_4 := \frac{t_4}{(t_1 + t_2)}, \quad u_5 := \frac{t_5}{(t_1 + t_2)}.$$

Then we get $K(t_1,\ldots,t_5) = K(u_1,\ldots,u_5)$ with the relation

$$u_2(u_4^2 + u_4u_5 + u_5^2 + 1) + 1 = 0.$$

Because this relation is linear in u_2, we obtain the following lemma.

Lemma 4.2. $K(x_1,\ldots,x_4)^{A_4} = K(u_1,u_3,u_4,u_5)$, where

$$u_1 = \frac{s_1s_3}{s_2}, \quad u_3 = s_3, \quad u_4 = \frac{s_1s_2s_3 + s_3^2 + s_1^2s_4}{s_2(s_2^2 + s_1s_3)}, \quad u_5 = \frac{b_4 + s_2^3}{s_2(s_2^2 + s_1s_3)}.$$
Now we will prove Theorem 1.2 when $n = 4$ and char $K = 2$.

Write $p = u_1$, $q = u_3$, $r = u_4$, $s = u_5$ and $\tau = (12) \in S_4 \setminus A_4$. Note that $K(x_1, \ldots, x_4)^{S_4} = K(p, q, r, s)^{(\tau)}$ and the action of τ on $K(p, q, r, s)$ is given by

$$p \mapsto \frac{r^2 + rs + s^2 + 1}{ap},$$
$$q \mapsto \frac{a^3 p^6 q}{(r^2 + rs + s^2 + 1)^3 + p^3 q ((r + 1)(r^2 + rs + s^2 + 1) + 1)},$$
$$r \mapsto r, \quad s \mapsto s + r.$$

Define

$$t := \frac{(r^2 + rs + s^2 + 1)^3}{p^3 q ((r + 1)(r^2 + rs + s^2 + 1) + 1)}.$$

Then $K(x_1, x_2, x_3, x_4)^{S_4} = K(p, q, r, s)^{(\tau)} = K(p, t, r, s)^{(\tau)}$ and the action of τ on $K(p, t, r, s)$ is given by

$$\tau : p \mapsto (r^2 + rs + s^2 + 1)/(ap), \quad t \mapsto t + 1, \quad r \mapsto r, \quad s \mapsto s + r.$$

Define

$$A := r + s + rt, \quad B := (r + s)/s, \quad C := pr/s.$$

It follows that $K(p, q, r, s) = K(r, A, B, C)$. Thus we have $K(x_1, x_2, x_3, x_4)^{S_4} = K(r)(A, B, C)^{(\tau)}$ and

$$\tau : r \mapsto r, \quad A \mapsto A, \quad B \mapsto \frac{1}{B}, \quad C \mapsto \frac{1}{a} \left((r^2 + 1) \left(\frac{1}{B} + B \right) + r^2 \right)/C.$$

Apply Theorem 2.1. We find that $K(x_1, x_2, x_3, x_4)^{S_4}$ is rational over K. \hfill \Box

References

Received September 2, 2009. Revised December 22, 2009.

AKINARI HOSHI

DEPARTMENT OF MATHEMATICS

RIKKYO UNIVERSITY

3-34-1 NISHI-IKEBUKURO

TOSHIMA-KU, TOKYO 171-8501

JAPAN

hoshi@rikkyo.ac.jp

MING-CHANG KANG

DEPARTMENT OF MATHEMATICS

NATIONAL TAIWAN UNIVERSITY

TAIPEI

TAIWAN

kang@math.ntu.edu.tw
Topological description of Riemannian foliations with dense leaves
JESÚS A. ÁLVAREZ LÓPEZ and ALBERTO CANDEL
257

The nonexistence of quasi-Einstein metrics
JEFFREY S. CASE
277

Twisted symmetric group actions
AKINARI HOSHI and MING-CHANG KANG
285

Optimal transportation and monotonic quantities on evolving manifolds
HONG HUANG
305

Hopf structures on the Hopf quiver $Q(\langle g \rangle, g)$
HUA-LIN HUANG, YU YE and QING ZHAO
317

Minimal surfaces in S^3 foliated by circles
NIKOLAI KUTEV and VELICHKA MILOUSHEVA
335

Prealternative algebras and prealternative bialgebras
XIANG NI and CHENGMING BAI
355

Some remarks about closed convex curves
KE OU and SHENGLIANG PAN
393

Orbit correspondences for real reductive dual pairs
SHU-YEN PAN
403

Graphs of bounded degree and the p-harmonic boundary
MICHAEL J. PULS
429

Invariance of the BFV complex
FLORIAN SCHÄTZ
453

Some elliptic PDEs on Riemannian manifolds with boundary
YANNICK SIRE and ENRICO VALDINOCI
475

Representations of Lie superalgebras in prime characteristic, III
LEI ZHAO
493