SOME REMARKS ABOUT CLOSED CONVEX CURVES

KE OU AND SHENGLIANG PAN
SOME REMARKS ABOUT CLOSED CONVEX CURVES

KÉOU AND SHENGLIANG PAN

We introduce a function \(w_k(\theta) \) for closed convex plane curves, and then prove a geometric inequality involving \(w_k(\theta) \) and the area \(A \) enclosed by the curve. As a by-product, we give a new proof of the classical isoperimetric inequality. Finally, we give some properties of convex curves with \(w_k(\theta) \) being constant and pose an open problem motivated by the elegant Blaschke–Lebesgue theorem.

1. Introduction

Geometric inequalities involving convex sets have received much attention during the last centuries; see for example [Bonnesen and Fenchel 1934; Burago and Zalgaller 1988; Schneider 1993]. Among them the isoperimetric inequalities are of special interest; see [Ball 1991; Blaschke 1956; Bonnesen 1929; Osserman 1978; 1979; Pan and Zhang 2007; Schneider 1993] and references therein. For convex curves in the Euclidean plane \(\mathbb{R}^2 \), there are also many interesting inequalities involving their geometric quantities such as inradius, outradius, width, area, length and curvature or radius of curvature; see for example [Chernoff 1969; Gage 1983; Green and Osher 1999; Hernández Cifre 2000; Ma and Cheng 2009; Ma and Zhu 2008; Pan and Yang 2008; Sholander 1952].

Chernoff [1969] got an area-width inequality for convex plane curves. Let \(\alpha \) be a closed convex curve in the Euclidean plane \(\mathbb{R}^2 \) with area \(A \) and width function \(w(\theta) \). Then the geometric inequality

\[
A \leq \frac{1}{2} \int_{0}^{\pi/2} w(\theta) w(\theta + \frac{1}{2}\pi) d\theta
\]

holds, with equality if and only if \(\alpha \) is a circle. To our knowledge, this beautiful inequality has not been generalized yet. One purpose of this note is to make some generalization of the Chernoff inequality. To this end, we introduce for convex

\[\text{MSC2000: primary 52A38; secondary 52A40.}\]
\[\text{Keywords: closed convex plane curves, Minkowski’s support function, geometric inequality.}\]
\[\text{Supported in part by National Science Foundation of China number 10871070 and the Shanghai Leading Academic Discipline Project, number B407.}\]
\[\text{Pan is the corresponding author.}\]
plane curves a function \(w_k(\theta) \) for integer \(k \geq 2 \). This function is defined in (3-1) below and is a generalization of the usual width of a convex curve. Then Chernoff’s area-width inequality generalizes as

\[
(1-1) \quad A \leq \frac{1}{k} \int_0^{\pi/k} w_k(\theta)w_k(\theta + \frac{1}{k}\pi)d\theta,
\]

with equality if and only if \(\alpha \) is a circle. Moreover, we can calculate

\[
(1-2) \lim_{k \to \infty} \frac{1}{k} \int_0^{\pi/k} w_k(\theta)w_k(\theta + \frac{1}{k}\pi)d\theta = \frac{L^2}{4\pi}.
\]

Thus (1-1) and (1-2) give a new proof of the classical isoperimetric inequality \(L^2 \geq 4\pi A \) with equality if and only if the curve is a circle.

Another purpose here is to give some properties of closed convex curves with \(w_k(\theta) \) being constant. We will get in Theorem 3.2 an analogue of Barbier’s theorem and in Theorem 3.3 we will characterize the support function of such curves. In particular, we pose an open problem that was motivated by the elegant Blaschke–Lebesgue theorem.

2. Preliminaries

Henceforth suppose without loss of generality that \(\alpha \) is a smooth regular positively oriented and closed strictly convex curve in the Euclidean plane \(\mathbb{R}^2 \). Take a point \(O \) inside \(\alpha \) as the origin of our frame. Let \(p \) be the oriented perpendicular distance from \(O \) to the tangent at a point on \(\alpha \), and \(\theta \) the oriented angle from the positive \(x_1 \)-axis to this perpendicular ray. Clearly, \(p \), as a function of \(\theta \), is single-valued and \(2\pi \)-periodic. We usually call \(p(\theta) \) Minkowski’s support function of \(\alpha \). One can check that \(\alpha \) can be parametrized in terms of \(\theta \) and \(p(\theta) \) as

\[
\alpha(\theta) = (\alpha_1(\theta), \alpha_2(\theta)) = (p(\theta) \cos \theta - p'(\theta) \sin \theta, p(\theta) \sin \theta + p'(\theta) \cos \theta);
\]

see for instance [Hsiung 1981]. The curvature \(\kappa \) of \(\alpha \) can be calculated according to \(\kappa(\theta) = d\theta/ds = 1/(p(\theta) + p''(\theta)) > 0 \). Denote by \(L \) and \(A \) the length of \(\alpha \) and the area it bounds. Then one can get

\[
(2-1) \quad L = \int_\alpha ds = \int_0^{2\pi} p(\theta)d\theta = \int_0^{2\pi} p(\theta)d\theta,
\]

\[
(2-2) \quad A = \frac{1}{2} \int_\alpha p(\theta)ds = \frac{1}{2} \int_0^{2\pi} p(\theta)(p(\theta) + p''(\theta))d\theta = \frac{1}{2} \int_0^{2\pi} (p^2(\theta) - p'^2(\theta))d\theta.
\]

These are known as Cauchy’s formula and Blaschke’s formula, respectively.
Since the support function of a given convex curve α is always continuous, bounded and 2π-periodic, it has a Fourier series of the form

$$p(\theta) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos n\theta + b_n \sin n\theta),$$

where

$$a_0 = \frac{1}{\pi} \int_0^{2\pi} p(\theta) d\theta, \quad a_n = \frac{1}{\pi} \int_0^{2\pi} p(\theta) \cos n\theta d\theta, \quad b_n = \frac{1}{\pi} \int_0^{2\pi} p(\theta) \sin n\theta d\theta \quad \text{for } n \geq 1.$$

We wish to express L and A in terms of the Fourier coefficients of $p(\theta)$. From (2-1) and the first equation of (2-4) one easily sees that $L = \pi a_0$. Then differentiating (2-3) with respect to θ gives us $p'(\theta) = \sum_{n=1}^{\infty} n(-a_n \sin n\theta + b_n \cos n\theta)$. By the Parseval equality and (2-2), we get

$$A = \frac{1}{4} \pi a_0^2 + \frac{1}{2} \pi \sum_{n=2}^{\infty} (1 - n^2)(a_n^2 + b_n^2).$$

The width $w(\theta)$ of α in direction $u(\theta) = (\cos \theta, \sin \theta)$ is defined to be the distance between two tangents to α perpendicular to $u(\theta)$. It is clear that

$$w(\theta) = p(\theta) + p(\theta + \pi).$$

The closed convex curve α is said to be of constant width if its width in any direction is a positive constant w_0, and in this case, the constant w_0 is called the width of α. If α is a constant width curve with width w_0, then $p(\theta) + p(\theta + \pi) = w_0$ for any $\theta \in [0, 2\pi]$.

It is obvious that a circle is a constant width curve. There are, however, many other noncircular curves of constant width; see for example [Burke 1966; Hsiung 1981; Rabinowitz 1997]. Among them, the most famous example is the Reuleaux triangle, which has been used in the design of piston for the Wankel engine. A famous result about constant width curves due to Barbier [1860] states that all closed convex curves of constant width w_0 have the same perimeter πw_0. Another elegant result is the Blaschke–Lebesgue theorem, which says that among all closed convex curves with constant width w_0, the Reuleaux triangles of the same constant width have the smallest area.

Our Theorem 3.2 bears analogy to Barbier’s theorem. The open problem posed in the next section is motivated by the Blaschke–Lebesgue theorem first proved by Blaschke [1915] and Lebesgue [1914; 1921]. Harrell [2002] gives a new proof of
this theorem and some historic remarks on it. The higher dimensional Blaschke–Lebesgue problem appears to be very difficult to solve and remains open. For partial results, see [Anciaux and Georgiou 2009; Anciaux and Guilfoyle 2010] and the literature therein.

3. Main results

For an integer $k \geq 2$, we introduce for a convex curve α a function $w_k(\theta)$ by

$$w_k(\theta) = p(\theta) + p(\theta + 2\pi/k) + \cdots + p(\theta + (2k-1)\pi)/k).$$

Since

$$1 + \cos(2\pi/k) + \cdots + \cos(2(k-1)\pi/k) = 0,$$
$$\sin(2\pi/k) + \cdots + \sin(2(k-1)\pi/k) = 0,$$

the function $w_k(\theta)$ is independent of the choice of the origin O (inside α) and thus is well-defined. It is clear that $w_k(\theta)$ is a periodic function with period $2\pi/k$.

If $k = 2$, $w_2(\theta)$ is the usual width (see (2-6)) of a curve, that is, our $w_k(\theta)$ is a generalization of the usual width function $w(\theta)$. In this case, Chernoff [1969] got a nice area-width inequality. For general k, we can generalize:

Theorem 3.1. Let α be a closed convex plane curve, bounding a region of area A. Then

$$A \leq \frac{1}{k} \int_0^{\pi/k} w_k(\theta) w_k(\theta + \pi/k) d\theta,$$

where the equality holds if and only if α is a circle.

Proof. The proof is divided into two steps.

Step 1. We first show that

(3-2) $$\int_0^{\pi/k} w_k(\theta) w_k(\theta + \pi/k) d\theta = \frac{1}{2} \sum_{m=1}^{2k} \int_0^{2\pi/m} p(\theta) p(\theta + (2m-1)\pi/k) d\theta.$$

To see this, write

$$a_{ij} = \int_0^{\pi/k} p\left(\theta + \frac{(2i-1)\pi}{k}\right) p\left(\theta + \frac{(2j-1)\pi}{k}\right) d\theta \quad \text{for } i, j = 1, 2, \ldots, 2k.$$

Then

(3-3) $$\int_0^{\pi/k} w_k(\theta) w_k\left(\theta + \frac{\pi}{k}\right) d\theta$$
$$= \int_0^{\pi/k} \left(p(\theta) + p\left(\theta + \frac{2\pi}{k}\right) + \cdots + p\left(\theta + \frac{2(k-1)\pi}{k}\right)\right)$$
$$\cdot \left(p\left(\theta + \frac{\pi}{k}\right) + p\left(\theta + \frac{3\pi}{k}\right) + \cdots + p\left(\theta + \frac{2(k-1)\pi}{k}\right)\right) d\theta = \sum_{i,j=1}^{k} a_{ij}.$$
Since \(p \) is a \(2\pi \)-periodic function, we get

\[a_{i+k,j} = a_{ij} = a_{i,j+k} \quad \text{for } i, j = 1, 2, \ldots, k. \tag{3-4} \]

Now, we claim that

\[\sum_{m=1}^{k} \sum_{l=1}^{k} a_{m+l-1,l} = \sum_{m=1}^{k} \sum_{l=1}^{k} a_{i,m+l} = \sum_{i,j=1}^{k} a_{ij}. \tag{3-5} \]

The sum at left can be treated as

\[\sum_{l=1}^{k} \left(\sum_{m=1}^{k-l+1} a_{m+l-1,l} + \sum_{m=k-l+2}^{k} a_{m+l-k-1,l} \right) = \sum_{l=1}^{k} \left(\sum_{i=l}^{k} a_{il} + \sum_{i=1}^{l-1} a_{il} \right) = \sum_{l=1}^{k} \sum_{i=1}^{k} a_{il}, \]

while the middle sum becomes

\[\sum_{i=1}^{k} \left(\sum_{m=1}^{k-l} a_{i,m+l} + \sum_{m=k-l+1}^{k} a_{i,m+k-l-1} \right) = \sum_{i=1}^{k} \left(\sum_{i=1}^{k} a_{il} + \sum_{i=1}^{k} a_{il} \right) = \sum_{i=1}^{k} \sum_{i=1}^{k} a_{il}. \]

Thus, we get

\[\int_{0}^{\pi/k} w_{k}(\theta) w_{k}(\theta + \pi/k) d\theta = \frac{1}{2} \sum_{i,j=1}^{k} \left(\sum_{l=1}^{k} a_{m+l-1,l} + a_{i,m+l} \right). \tag{3-6} \]

Next, we shall show that, for \(1 \leq m \leq k \),

\[\sum_{l=1}^{k} (a_{m+l-1,l} + a_{i,m+l}) = \int_{0}^{2\pi} p(\theta) p(\theta + (2m-1)\pi/k) d\theta. \tag{3-7} \]

In fact,

left side of (3-7) = \[
\sum_{l=1}^{k} \left(\int_{0}^{\pi/k} p\left(\theta + \frac{2(m+l-1)\pi}{k} \right) p\left(\theta + \frac{2(l-1)\pi}{k} \right) d\theta + \int_{0}^{\pi/k} p\left(\theta + \frac{2l-1)\pi}{k} \right) p\left(\theta + \frac{2(m+l-1)\pi}{k} \right) d\theta \right) = \[
\sum_{l=1}^{k} \left(\int_{0}^{(2l-1)\pi/k} p(\theta) p\left(\theta + \frac{2m-1)\pi}{k} \right) d\theta + \int_{0}^{(2l)\pi/k} p(\theta) p\left(\theta + \frac{2m-1)\pi}{k} \right) d\theta \right) = \int_{0}^{2\pi} p(\theta) p\left(\theta + \frac{2m-1)\pi}{k} \right) d\theta.
\]

Now, combining (3-3)–(3-7) yields (3-2).
Step 2. After some calculations, we get, for \(1 \leq m \leq k\),
\[
(3-8) \quad \int_0^{2\pi} p(\theta) p\left(\theta + \frac{(2m - 1)\pi}{k}\right) d\theta = \frac{1}{2} \pi a_0^2 + \pi \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \cos \frac{n(2m - 1)\pi}{k}.
\]

For any integer \(n\) not a multiple of \(k\), we have
\[
(3-9) \quad \sum_{m=1}^{k} \cos \frac{n(2m - 1)\pi}{k} = \frac{\sin 2n\pi}{2\sin(n\pi/k)} = 0.
\]

It follows from (3-2), (3-8), (3-9) and (2-5) that
\[
(3-10) \quad \frac{1}{k} \int_0^{\pi/k} w_k(\theta) w_k\left(\theta + \frac{\pi}{k}\right) d\theta = \frac{1}{2k} \sum_{m=1}^{k} \int_0^{2\pi} p(\theta) p\left(\theta + \frac{(2m - 1)\pi}{k}\right) d\theta
= \frac{1}{2k} \sum_{m=1}^{k} \frac{a_0^2 + \pi}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \frac{1}{k} \sum_{m=1}^{k} \cos \frac{n(2m - 1)\pi}{k}
= \frac{1}{2k} \sum_{m=1}^{k} \frac{a_0^2 + \pi}{2} \sum_{l=1}^{\infty} (-1)^l (a_{kl}^2 + b_{kl}^2)
= A + \frac{\pi}{2} \left(\sum_{n=2}^{\infty} (a_n^2 + b_n^2)(n^2 - 1) + \sum_{l=1}^{\infty} (-1)^l (a_{kl}^2 + b_{kl}^2) \right)
\geq A.
\]

The equality holds if and only if \(a_n = b_n = 0\) for all \(n \geq 2\), that is, when the curve is a circle. \(\square\)

From the continuity of \(p(\theta)\), it is easy to see that, for all \(\theta_k \in [0, 2\pi/k]\),
\[
\lim_{k \to \infty} \frac{2\pi}{k} w_k(\theta_k) = \lim_{k \to \infty} \frac{2\pi}{k} \sum_{m=1}^{k} p\left(\theta_k + \frac{2m\pi}{k}\right) = \int_0^{2\pi} p(\theta) d\theta.
\]

Moreover, for any \(k \in \mathbb{N}\), there exists a \(\xi_k \in [0, \pi/k]\) such that
\[
\frac{1}{k} \int_0^{\pi/k} w_k(\theta) w_k(\theta + \pi/k) d\theta = \frac{\pi}{k^2} w_k(\xi_k) w_k(\xi_k + \pi/k).
\]
Since \(\xi_k \in [0, \pi/k] \subset [0, 2\pi/k] \), we have \(\xi_k + \pi/k \in [0, 2\pi/k] \). Thus, we obtain

\[
\lim_{k \to \infty} \frac{1}{k} \int_0^{\pi/k} w_k(\theta) w_k(\theta + \pi/k) d\theta = \lim_{k \to \infty} \frac{\pi}{k^2} w_k(\xi_k) w_k(\xi_k + \pi/k)
\]

\[
= \frac{1}{4\pi} \left(\int_0^{2\pi} p(\theta) d\theta \right)^2 = \frac{L^2}{4\pi}.
\]

which with (3-10) gives us a new proof of the classical isoperimetric inequality.

We can also get the following generalization of Barbier’s theorem.

Theorem 3.2. All convex curves for \(w_k(\theta) \) is equal to a constant \(3 \) have the same length \(L = \frac{2\pi}{k} \).

Proof. It is easy to see from (2-1) that \(L = \int_0^{2\pi/k} w_k(\theta) d\theta = \frac{2\pi}{k} \). □

Among all curves with the same length \(L \), circles have the greatest area. For constant width curves, the Blaschke–Lebesgue theorem claims that the Reuleaux triangles have the least area.

Question. Among all closed convex curves with \(w_k(\theta) \) equal to a fixed constant \(3 \), which has the least possible area?

Theorem 3.3. Suppose \(\alpha \) is a closed convex plane curve with \(w_k(\theta) \) equal to a constant \(3 \). Then the Fourier expansion of the support function \(p(\theta) \) of \(\alpha \) is of the form

\[
p(\theta) = \frac{1}{2} a_0 + \sum_{n=1, n \neq mk}^\infty (a_n \cos n\theta + b_n \sin n\theta),
\]

where \(a_0 = \frac{1}{2\pi} \int_0^{2\pi} p(\theta) d\theta = L/\pi = 2\Lambda/k \) and \(m \in \mathbb{N} \).

Proof. In terms of the Fourier expansion of the support function \(p(\theta) \) of \(\alpha \),

\[
w_k(\theta) = \frac{1}{2} k a_0 + \sum_{n=1}^\infty \left(a_n \cos n\theta + b_n \sin n\theta \right) + a_n \cos \left(n\theta + \frac{2n\pi}{k} \right) + b_n \sin \left(n\theta + \frac{2n\pi}{k} \right) + \cdots
\]

\[
\cdots + a_n \cos \left(n\theta + \frac{2n(k-1)\pi}{k} \right) + b_n \sin \left(n\theta + \frac{2n(k-1)\pi}{k} \right)
\]

\[
= \frac{1}{2} k a_0 + \sum_{n=1}^\infty \left(a_n \cos n\theta + b_n \sin n\theta \right) \left(1 + \cos \frac{2n\pi}{k} + \cdots + \cos \frac{2n(k-1)\pi}{k} \right)
\]

\[
+ \left(b_n \cos n\theta - a_n \sin n\theta \right) \left(\sin \frac{2n\pi}{k} + \sin \frac{4n\pi}{k} + \cdots + \sin \frac{2n(k-1)\pi}{k} \right)
\]

\[
= \frac{1}{2} k a_0 + k \sum_{n=1}^\infty \left(a_{kn} \cos (kn\theta) + b_{kn} \sin (kn\theta) \right).
\]

If \(w_k(\theta) = \Lambda \), then one gets \(a_0 = (2/k) \Lambda \) and \(a_{kn} = 0 = b_{kn} \). □
Acknowledgements

We are grateful to the anonymous referee for his or her careful reading of the original manuscript and giving us some invaluable comments.

References

[Bonnessen and Fenchel 1934] T. Bonnesen and W. Fenchel, Theorie der konvexen Körper, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 1, Springer, 1934. MR 51 #8954 Zbl 0008.07708 JFM 60.0673.01

[Lebesgue 1921] H. Lebesgue, “Sur quelques questions des minimums, relatives aux courbes orbi-
JFM 48.0838.01

1182–1238. MR 58 #18161 Zbl 0411.52006

86:1 (1979), 1–29. MR 80h:52013 Zbl 0404.52012

Zbl 1169.35033

[Schneider 1993] R. Schneider, Convex bodies: the Brunn–Minkowski theory, Encyclopedia of
0798.52001

Received September 10, 2009. Revised November 13, 2009.

KE OU
DEPARTMENT OF MATHEMATICS,
EAST CHINA NORMAL UNIVERSITY
SHANGHAI 200241
CHINA
justinok1311@163.com

SHENGLIANG PAN
DEPARTMENT OF MATHEMATICS
TONGJI UNIVERSITY
SHANGHAI 200092
CHINA
slpan@tongji.edu.cn
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topological description of Riemannian foliations with dense leaves</td>
<td>257</td>
</tr>
<tr>
<td>Jesús A. Álvarez López and Alberto Candel</td>
<td></td>
</tr>
<tr>
<td>The nonexistence of quasi-Einstein metrics</td>
<td>277</td>
</tr>
<tr>
<td>Jeffrey S. Case</td>
<td></td>
</tr>
<tr>
<td>Twisted symmetric group actions</td>
<td>285</td>
</tr>
<tr>
<td>Akinari Hoshi and Ming-Chang Kang</td>
<td></td>
</tr>
<tr>
<td>Optimal transportation and monotonic quantities on evolving manifolds</td>
<td>305</td>
</tr>
<tr>
<td>Hong Huang</td>
<td></td>
</tr>
<tr>
<td>Hopf structures on the Hopf quiver $Q(\langle g \rangle, g)$</td>
<td>317</td>
</tr>
<tr>
<td>Hua-Lin Huang, Yu Ye and Qing Zhao</td>
<td></td>
</tr>
<tr>
<td>Minimal surfaces in S^3 foliated by circles</td>
<td>335</td>
</tr>
<tr>
<td>Nikolai Kutev and Velichka Milousheva</td>
<td></td>
</tr>
<tr>
<td>Prealternative algebras and prealternative bialgebras</td>
<td>355</td>
</tr>
<tr>
<td>Xiang Ni and Chengming Bai</td>
<td></td>
</tr>
<tr>
<td>Some remarks about closed convex curves</td>
<td>393</td>
</tr>
<tr>
<td>Ke Ou and Shengliang Pan</td>
<td></td>
</tr>
<tr>
<td>Orbit correspondences for real reductive dual pairs</td>
<td>403</td>
</tr>
<tr>
<td>Shu-Yen Pan</td>
<td></td>
</tr>
<tr>
<td>Graphs of bounded degree and the p-harmonic boundary</td>
<td>429</td>
</tr>
<tr>
<td>Michael J. Puls</td>
<td></td>
</tr>
<tr>
<td>Invariance of the BFV complex</td>
<td>453</td>
</tr>
<tr>
<td>Florian Schätz</td>
<td></td>
</tr>
<tr>
<td>Some elliptic PDEs on Riemannian manifolds with boundary</td>
<td>475</td>
</tr>
<tr>
<td>Yannick Sire and Enrico Valdinoci</td>
<td></td>
</tr>
<tr>
<td>Representations of Lie superalgebras in prime characteristic, III</td>
<td>493</td>
</tr>
<tr>
<td>Lei Zhao</td>
<td></td>
</tr>
</tbody>
</table>