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INVARIANCE OF THE BFV COMPLEX

FLORIAN SCHÄTZ

The Batalin–Vilkovisky–Fradkin (BFV) formalism, introduced to handle
classical systems equipped with symmetries, associates a differential graded
Poisson algebra to any coisotropic submanifold S of a Poisson manifold
(M, 5). However, the assignment given by mapping a coisotropic subman-
ifold to a differential graded Poisson algebra is not canonical since in the
construction several choices have to be made. One has to fix an embedding
of the normal bundle N S of S into M as a tubular neighborhood, a connec-
tion ∇ on N S, and a special element �.

We show that different choices of a connection and an element � —
but with the tubular neighborhood fixed — lead to isomorphic differential
graded Poisson algebras. If the tubular neighborhood is changed as well,
invariance can still be restored at the level of germs.

1. Introduction

The Batalin–Vilkovisky–Fradkin (BFV) complex was introduced to understand
physical systems with complicated symmetries [Batalin and Fradkin 1983; Batalin
and Vilkovisky 1977]. The connection to homological algebra was made explicit
in [Stasheff 1997] later on. We focus on the smooth setting; that is, we want to
consider arbitrary coisotropic submanifolds of smooth finite-dimensional Poisson
manifolds. Bordemann [2000] and Herbig [2006] found a convenient adaptation of
the BFV construction in this framework: One obtains a differential graded Poisson
algebra associated to any coisotropic submanifold. In [Schätz 2009a], a slight
modification of the construction of Bordemann and Herbig was presented. It made
use of the language of higher homotopy structures and provided in particular a
conceptual construction of the BFV bracket.

In the smooth setting, the construction of the BFV complex requires a choice
of the following data: (1) an embedding of the normal bundle of the coisotropic
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submanifold as a tubular neighborhood into the ambient Poisson manifold, (2) a
connection on the normal bundle, and (3) a special function on a smooth graded
manifold, called a BFV charge.

We apply the point of view established in [Schätz 2009a] to clarify the depen-
dence of the resulting BFV complex on these data. If one leaves the embedding
fixed and only changes the connection and the BFV charge, one simply obtains
two isomorphic differential graded Poisson algebras; see Theorem 3.4. Note that
the dependence on the choice of BFV charge was already well understood; see
[Stasheff 1997], for instance. Dependence on the embedding is more subtle. In
Definition 4.2, we introduce the notion of restriction of a given BFV complex to
an open neighborhood of the coisotropic submanifold inside its normal bundle, and
in Theorem 4.4 we show that different choices of embeddings lead to isomorphic
restricted BFV complexes. Corollary 4.6 says that a germ version of the BFV
complex is independent of all the choices up to isomorphism.

As it turns out, the differential graded Poisson algebra associated to a fixed
embedding of the normal bundle as a tubular neighborhood yields a description
of the moduli space of coisotropic sections in terms of the BFV complex; see
[Schätz 2009b].

2. Preliminaries

The purpose of this section is threefold: to recollect some facts about the theory of
higher homotopy structures, to recall some concepts concerning Poisson manifolds
and coisotropic submanifolds, and to outline the construction of the BFV complex.
More details on these subjects can be found in [Schätz 2009a, Sections 2 and 3]
and in the references therein. We assume the reader to be familiar with the theory
of graded algebras and smooth graded manifolds.

2a. L∞-algebras: Homotopy transfer and homotopies. Let V be a Z-graded vec-
tor space over R (or any other field of characteristic 0); that is, V is a collection
(Vi )i∈Z of vector spaces Vi over R. The homogeneous elements of V of degree
i ∈ Z are the elements of Vi . We denote the degree of a homogeneous element
x ∈ V by |x |. A morphism f : V → W of graded vector spaces is a collection
( fi : Vi → Wi )i∈Z of linear maps. The n-th suspension functor [n] from the
category of graded vector spaces to itself is defined as follows: Given a graded
vector space V , we denote by V [n] the graded vector space corresponding to the
collection V [n]i :=Vn+i . The n-th suspension of a morphism f :V→W of graded
vector spaces is given by the collection ( f [n]i := fn+i : Vn+i → Wn+i )i∈Z. The
tensor product of two graded vector spaces V and W over R is the graded vector
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whose component in degree k is given by

(V ⊗W )k :=
⊕

r+s=k

Vr ⊗Ws .

The denote this graded vector space by V ⊗W .
The structure of a flat L∞[1]-algebra on V is given by a family of multilinear

maps (µk
: V⊗k

→ V [1])k≥1 such that

(1) µk( · · · ⊗ a⊗ b⊗ · · · ) = (−1)|a||b|µk( · · · ⊗ b⊗ a⊗ · · · ) holds for all k ≥ 1
and all homogeneous elements a and b of V ;

(2) the family of Jacobiators (J k)k≥1 defined by

J k(x1 · · · xn)

:=

∑
r+s=k

∑
σ∈(r,s)-shuffles

sign(σ ) µs+1(µr (xσ(1)⊗ · · ·⊗ xσ(r))⊗ xσ(r+1)⊗ · · ·⊗ xσ(n)),

vanishes identically. Here sign( · ) is the Koszul sign, that is, the representa-
tion of 6n on V⊗n induced by mapping the transposition (2, 1) to a ⊗ b 7→
(−1)|a||b|b⊗ a, and (r, s)-shuffles are permutations σ of {1, . . . , k = r + s}
such that σ(1) < · · ·< σ(r) and σ(r + 1) < · · ·< σ(k).

Since we are only going to consider flat L∞[1]-algebras, we will suppress the ad-
jective “flat” from now on. In this case the vanishing of the first Jacobiator implies
that µ1 is a coboundary operator. We remark that an L∞[1]-algebra structure on V
is equivalent to the more traditional notion of an L∞-algebra structure on V [−1];
see for instance [Markl et al. 2002].

Given an L∞-algebra structure (µk)k≥1 on V , there is a distinguished subset
of V1 that contains elements v ∈ V1 satisfying the Maurer–Cartan equation (MC
equation, for short) ∑

k≥1

1
k!
µk(v⊗ · · ·⊗ v)= 0.

This set is called the set of Maurer–Cartan elements (MC elements) of V .
Let V be equipped with an L∞-algebra structure whose coboundary operator

µ1 decomposes into d+δ, with d2
= 0= δ2 and d ◦δ+δ◦d = 0. That is, (V, d, δ)

is a double complex. Then, under mild convergence assumptions, it is possible to
construct an L∞-algebra structure on H(V, d) that is isomorphic up to homotopy
to the original L∞-algebra structure on V [Gugenheim and Lambe 1989]. More
concretely, one has to fix an embedding i of H(V, d) into V , a projection pr from
V to H(V, d), and a homotopy operator h (of degree −1) that satisfies

d ◦ h+ h ◦ d = idV −i ◦ pr .
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For simplicity, we will also impose the side conditions

h ◦ h = 0, pr ◦ h = 0, h ◦ i = 0.

Then explicit formulas for the structure maps of an L∞-algebra on H(V, d) can be
written down in terms of rooted planar trees; see [Schätz 2009a] for a review. We
will explain the construction in more detail later for the examples that are relevant
to our purpose.

One also obtains L∞ morphisms between H(V, d) and V that induce inverse
maps on cohomology. Such L∞ morphisms are called L∞ quasi-isomorphisms.

Consider the differential graded algebra (�([0, 1]), dDR ,∧) of smooth forms
on the interval I := [0, 1]. The inclusions of a point {∗} for s in 0≤ s ≤ 1 induce a
chain map evs : (�(I ), dDR)→ (R, 0) that is a morphisms of algebras. Given any
L∞-algebra structure on V , there is a natural L∞-algebra structure on V ⊗�(I )
defined by

µ̃1(v⊗α) := µ1(v)⊗α+ (−1)|v|v⊗ dDRα,

µ̃k((v1⊗α1)⊗ · · ·⊗ (vk ⊗αk)
)
:= (−1)#µk(v1⊗ · · ·⊗ vk)⊗ (α1 ∧ · · · ∧αk)

for k≥2. Here # denotes the sign one picks up by assigning (−1)|vi+1||αi | to passing
αi from the left side of vi+1 to the right side (and replacing αi+1 by αi ∧αi+1).

Following [Markl et al. 2002], we call two L∞ morphisms f and g from A to
B homotopic if there exists an L∞ morphism F from A to B⊗�(I ) such that

(id⊗ ev0) ◦ F = f and (id⊗ ev1) ◦ F = g.

This defines an equivalence relation on the set of L∞ morphisms from A to B.
If F is an L∞ morphism from A to B ⊗ �(I ), then fs := evs ◦F is an L∞

morphism between A and B for any s ∈ I . Given an MC element v in A, one
obtains a one-parameter family

ws :=
∑
k≥1

1
n!
( fs)k(v⊗ · · ·⊗ v).

of MC elements of B. Here ( fs)k denotes the k-th Taylor component of fs .
In the main body of this paper, we are only interested in the case that B is a

differential graded Lie algebra (that is, only the first and second structure maps
are nonvanishing). Denote the graded Lie bracket by [ · , · ]. Furthermore, assume
that the differential D is given by the adjoint action of a degree +1 element 0 that
satisfies [0,0] = 0. The MC equation for an element w of (B, D = [0, · ], [ · , · ])
reads

[0+w,0+w] = 0.
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From the one-parameter family of MC elements ws in B, one obtains a one-
parameter family of differential graded Lie algebras on B by setting

Ds( · ) := [0+ws, · ]

while leaving the bracket unchanged.
How are the differential graded Lie algebras (B, Ds, [ · , · ]) related for different

values of s ∈ I ? To answer this we first apply the L∞ morphism F : A→ B⊗�(I )
to v and obtain an MC element w(t)+ u(t) dt in B ⊗�(I ). It is straightforward
to check that w(s)=ws for all s ∈ I . The MC equation in B⊗�(I ) splits up into

[0+w(t), 0+w(t)] = 0 and d
dt
w(t)= [u(t), 0+w(t)].

The second equation implies that if the adjoint action of u(t) on B can be integrated
to a one-parameter family of automorphisms (U (t))t∈I , then U (s) establishes an
automorphism of (B, [ · , · ]) that maps 0+w(0) to 0+w(s) for any s ∈ I . Thus:

Lemma 2.1. Let A and (B, [0, · ], [ · , · ]) be differential graded Lie algebras, let
v be an MC element in A, and let F be an L∞ morphism from A to B⊗�(I ) such
that ∑

k≥1

1
k!

Fk(v⊗ · · ·⊗ v)

is well-defined in B⊗�(I ); denote this element by w(t)+u(t)dt. Assume that the
flow equation

X (0)= b and d
dt

∣∣∣∣
t=s

X (t)= [u(s), X (s)] for s ∈ I

has a unique solution for arbitrary b ∈ B.
Then the one-parameter family U (t) of automorphisms of B that integrates the

adjoint action by u(t) maps 0 + w(0) to 0 + w(t). In particular, U (s) is an
isomorphism

(B, [0+w(0), · ], [ · , · ])→ (B, [0+w(s), · ], [ · , · ])

of differential graded Lie algebras for arbitrary s ∈ I .

2b. Coisotropic submanifolds. We essentially follow [Weinstein 1988], omitting
some details. Let M be a smooth, finite-dimensional manifold. The bivector field
5 on M is Poisson if the binary operation { · , · } on C∞(M) given by ( f, g) 7→
〈5, d f ∧ dg〉 satisfies the Jacobi identity; that is, if

{ f, {g, h}} = {{ f, g}, h}+ {g, { f, h}}

holds for all smooth functions f , g and h. Here, 〈 · , · 〉 denotes the natural pairing
between T M and T ∗M . Alternatively, one can consider the graded algebra V(M)
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of multivector fields on M equipped with the Schouten–Nijenhuis bracket [ · , · ]SN.
A bivector field 5 is Poisson if and only if [5,5]SN = 0.

Contraction associates to any Poisson bivector field 5 on M a vector bundle
morphism 5#

: T ∗M → T M . Consider a submanifold S of M . The annihilator
N ∗S of T S is a subbundle of T ∗M . This subbundle fits into a short exact sequence
0→ N ∗S→ T ∗M |S→ T ∗S→ 0 of vector bundles.

Definition 2.2. A submanifold S of a smooth, finite-dimensional Poisson manifold
(M,5) is called coisotropic if the restriction of 5# to N ∗S has image in T S.

There is an equivalent characterization of coisotropic submanifolds: Define the
vanishing ideal of S by IS := { f ∈ C∞(M) : f |S = 0}. A submanifold S is
coisotropic if and only if IC is a Lie subalgebra of (C∞(M), { · , · }).

2c. The BFV complex. The BFV complex was introduced by Batalin, Fradkin
and Vilkovisky, with applications to physics in mind [Batalin and Fradkin 1983;
Batalin and Vilkovisky 1977]. Later on, Stasheff [1997] gave an interpretation of
the BFV complex in terms of homological algebra. The construction we present
below is explained with more details in [Schätz 2009a]. It uses a globalization
of the BFV complex for arbitrary coisotropic submanifolds found by Bordemann
[2000] and Herbig [2006].

Let S be a coisotropic submanifold of a smooth, finite-dimensional Poisson
manifold (M,5). We outline the construction of a differential graded Poisson
algebra, which we call a BFV complex for S in (M,5). The construction depends
on the choice of three pieces of data: (1) an embedding of the normal bundle of
S into M as a tubular neighborhood, (2) a connection on N S, and (3) a special
smooth function, called the charge, on a smooth graded manifold.

Denote the normal bundle of S inside M by E . Consider the graded vector
bundle E∗[1] ⊕ E[−1] → S over S, and let E∗[1] ⊕E[−1] → E be the pullback
of E∗[1]⊕ E[−1] → S along E→ S.

We define BFV(E) to be the space of smooth functions on the graded manifold
that is represented by the graded vector bundle E∗[1] ⊕ E[−1] over E . In terms
of sections, one has BFV(E) = 0(

∧
E⊗

∧
E∗). This algebra carries a bigrading

given by
BFV(p,q)(E) := 0(

∧p E⊗
∧q E∗).

In physics terminology, p and q are referred to as the ghost degree and ghost-
momentum degree, respectively. One defines

BFVk(E) :=
⊕

p−q=k

BFV(p,q)(E),

and calls k the total degree (in physics terminology, this is the ghost number).
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The smooth graded manifold E∗[1] ⊕ E[−1] comes equipped with a Poisson
bivector field G given by the natural fiber-pairing between E and E∗; that is, it is
defined to be the natural contraction on 0(E)⊗0(E∗) and is extended to a graded
skew-symmetric biderivation of BFV(E).

Choice 1: Embedding. Fix an embedding ψ : E ↪→ M of the normal bundle of S
into M . Hence, the normal bundle E inherits a Poisson bivector field which we
also denote by 5. (Keep in mind that 5 depends on ψ .)

Choice 2: Connection. Next choose a connection on the vector bundle E → S.
This induces a connection on

∧
E ⊗

∧
E∗→ S and, via pullback, one obtains a

connection ∇ on
∧

E⊗
∧

E∗→ E . We denote the corresponding horizontal lift
of multivector fields by

ι
∇
: V(E)→ V(E∗[1]⊗E[−1]).

It extends to an isomorphism

ϕ :A := C∞
(
T ∗[1]E ⊕E∗[1]⊕E[−1]⊕E[0]⊕E∗[2]

)
→ V

(
E∗[1]⊕E[−1]

)
of graded commutative unital associative algebras. Using ϕ, we lift5 to a bivector
field on E∗[1]⊕E[−1]. Since in general ϕ fails to be a morphism of Gerstenhaber
algebras, ϕ(5) is not a Poisson bivector field. Similarly, the sum G+ϕ(5) fails to
be a Poisson bivector field in general. However, the following proposition provides
an appropriate correction term:

Proposition 2.3. Let E be a finite-rank vector bundle with connection ∇ over a
smooth, finite-dimensional manifold E. Consider the smooth graded manifold
E∗[1] ⊕ E[−1] → E , and denote by G the Poisson bivector field on it coming
from the natural fiber pairing between E and E∗.

Then there is an L∞ quasi-isomorphism L
∇

between the graded Lie algebra

(V(E)[1], [ · , · ]SN)

and the differential graded Lie algebra(
V(E∗[1]⊕E[−1])[1], [G, · ]SN, [ · , · ]SN

)
.

A proof can be found in [Schätz 2009a]. Immediately, we have:

Corollary 2.4. Let E→ E be a finite-rank vector bundle with connection ∇ over a
smooth, finite-dimensional Poisson manifold (E,5). Consider the smooth graded
manifold E∗[1] ⊕ E[−1] → E , and denote by G the Poisson bivector field on it
coming from the natural fiber pairing between E and E∗.

Then, there is a Poisson bivector field 5̂ on E∗[1]⊕E[−1] such that

5̂= G+ϕ(5)+4 for 4 ∈ V(1,1)(E∗[1]⊕E[−1]).
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For a proof, see again [Schätz 2009a].
We remark that V(1,1)(E∗[1] ⊕E[−1]) is the ideal of V(E∗[1] ⊕E[−1]) that is

generated by the multiderivations that map any tensor product of functions of total
bidegree (p, q) to a function of bidegree (P, Q), where P > p and Q > q . In
general, let V(r,s)(E∗[1]⊕E[−1]) be the ideal generated by the multiderivations of
C∞(E∗[1]⊕E[−1]) with total ghost degree larger than or equal to r and with total
ghost-momentum degree larger than or equal to s, respectively.

The bivector field 5̂ from Corollary 2.4 equips E∗[1]⊕E[−1] with the structure
of a graded Poisson manifold. Consequently, BFV(E) inherits a graded Poisson
bracket [ · , · ]BFV, called the BFV bracket. Keep in mind that the BFV bracket
depends on the connection we have chosen on E→ S.

Choice 3: Charge. The last step in the construction of the BFV complex is to
provide a special solution to the MC equation associated to (BFV(E), [ · , · ]BFV);
that is, one constructs a degree +1 element � that satisfies

[�,�]BFV = 0.

Additionally, one requires that this element � contains the tautological section of
E→ E as the lowest order term. To be more precise, recall that

BFV1(E)=
⊕
k≥0

0(
∧k E⊗

∧k−1 E∗).

Hence, any element of BFV1(E) contains a (possibly zero) component in 0(E).
One requires that the component of � in 0(E) be given by the tautological section
of E→ E . A MC element satisfying this requirement is called a BFV charge.

Proposition 2.5. Let (E,5) be a vector bundle equipped with a Poisson bivector
field, and denote its zero section by S. Fix a connection on E → S, and equip the
ghost/ghost-momentum bundle E∗[1] ⊕ E[−1] → E with the corresponding BFV
bracket [ · , · ]BFV.

(1) There is a degree +1 element � of BFV(E) whose component in 0(E) is
given by the tautological section �0 and that satisfies

[�,�]BFV = 0

if and only if S is a coisotropic submanifold of (E,5).

(2) If� and�′ are two BFV charges, then there is an automorphism of the graded
Poisson algebra (BFV(E), [ · , · ]BFV) that maps � to �′.

See [Stasheff 1997] for a proof.
Given a BFV charge �, one can define a differential DBFV( · ) := [�, · ]BFV,

called BFV differential. It is well known that the cohomology with respect to D is
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isomorphic to the Lie algebroid cohomology of S (as a coisotropic submanifold of
(E,5)).

By the second part of Proposition 2.5, different choices of the BFV charge lead
to isomorphic differential graded Poisson algebra structures on BFV(E). In the
next section, we will establish that different choices of connection on E → S
lead to differential Poisson algebras that lie in the same isomorphism class. The
dependence on the embedding of the normal bundle of S is more subtle and will
be clarified in Section 4.

3. Choice of connection

Consider a vector bundle E equipped with a Poisson bivector field 5 such that its
zero section S is coisotropic. This section investigates how the differential graded
Poisson algebra (BFV(E), DBFV, [ · , · ]BFV) constructed in Section 2c depends on
the choice of connection ∇ on E→ S.

Recall a connection ∇ on E → S was used to lift the Poisson bivector field 5
to a bivector field on E∗[1]⊕E[−1]. The L∞ quasi-isomorphism between

(V(E)[1], [ · , · ]SN) and (V(E∗[1]⊕E[−1])[1], [G, · ]SN, [ · , · ]SN)

in Proposition 2.3 depends on ∇ too. Consequently, so does the graded Poisson
bracket [ · , · ]BFV on BFV(E).

Let ∇0 and ∇1 be two connections on a smooth finite-rank vector bundle E→ E .
By Proposition 2.3, we obtain two L∞ quasi-isomorphisms L∇0 and L∇1 from
(V(E)[1], [ · , · ]SN) to (V(E∗[1] ⊕ E[−1])[1], [G, · ]SN, [ · , · ]SN). Although the
morphisms depend on the connections, this dependence is very well controlled:

Proposition 3.1. Let E be a smooth finite-rank vector bundle over a smooth, finite-
dimensional manifold E equipped with two connections ∇0 and ∇1. Denote by
L0 and L1 the associated L∞ quasi-isomorphisms from Proposition 2.3 between
(V(E)[1], [ · , · ]SN) and (V(E∗[1]⊕E[−1]), [G, · ]SN, [ · , · ]SN), respectively.

Then there is an L∞ quasi-isomorphism

L̂ :(V(E)[1], [ · , · ]SN)→
(
V(E∗[1]⊕E[−1])⊗�(I ), [G, · ]SN+ dDR , [ · , · ]SN

)
such that (id⊗ ev0) ◦ L̂= L0 and (id⊗ ev1) ◦ L̂= L1.

Proof. Given two connections ∇0 and ∇1, one can define a family of connections
∇s := ∇0 + s(∇1 −∇0) parametrized by the closed unit interval I . Consequently
we obtain a one-parameter family of isomorphisms of graded algebras

ϕs :A := C∞
(
T ∗[1]E ⊕E∗[1]⊕E[−1]⊕E[0]⊕E∗[2]

) ∼=
−→ V

(
E∗[1]⊕E[−1]

)
,

extending the horizontal lift with respect to the connection ∇s ⊕ ∇
∗
s . Via this

identification, A inherits a one-parameter family of Gerstenhaber brackets, which
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we denote by [ · , · ]s , and a differential Q̃, which can be checked to be independent
of s in local coordinates.

For arbitrary s ∈ I , these structures fit into the commutative diagram

(A[1], Q̃, [ · , · ]0)
Pr

xx

ϕ0

))
(V(E)[1], [ · , · ]SN) (V(E∗[1]⊕E[−1])[1], [G, · ]SN, [ · , · ]SN)

(A[1], Q̃, [ · , · ]s)
Pr

ff

ϕs

55
ψs

OO

where ψs := ϕ
−1
0 ◦ϕs is a morphism of differential graded algebras and of Gersten-

haber algebras. Pr denotes the natural projection.
It is straightforward to show that the cohomology of (A, Q̃) is V(E), and that

the induced L∞ algebra coincides with (V(E)[1], [ · , · ]); see [Schätz 2009a, proof
of Proposition 1]. Hence we obtain a one-parameter family of L∞ quasi-isomor-
phisms Js : (V(E)[1], [ · , · ]SN)→ (A[1], Q̃, [ · , · ]s). Composition withψs yields
a one-parameter family of L∞ quasi-isomorphisms

Ks : (V(E)[1], [ · , · ]SN)→ (A[1], Q̃, [ · , · ]0).

We remark that the composition of Js with ϕs yields the L∞ quasi-isomorphism
Ls between (V(E), [ · , · ]SN) and (V(E∗[1]⊕ E[−1]), [G, · ]SN, [ · , · ]SN) associ-
ated to the connection ∇s from Proposition 2.3. Consequently, L0 and L1 are the
compositions of K0 and K1, respectively, with ϕ0.

Next consider the differential graded Lie algebra

(A[1]⊗�(I ), Q̃+ dDR , [ · , · ]0).

To prove Proposition 2.3, a homotopy H̃ for Q̃ was constructed in [Schätz 2009a]
such that Q̃◦H̃+H̃◦Q̃= id−ι◦Pr .Here ι denotes the natural inclusion V(E) ↪→A.
One defines a one-parameter family of homotopies H̃s :=ψs ◦ H̃ ◦ψ−1

s and checks
that Q̃ ◦ H̃s + H̃s ◦ Q̃ = id−ψs ◦ ι ◦Pr.

We define P̂r :A⊗�(I )→V(E)⊗�(I ) to be Pr⊗ id, and ι̂ :V(E)⊗�(I )→
A⊗�(I ) to be ι̂ := (ψs ◦ ι)⊗ id. Clearly P̂r ◦ ι̂= id and H̃s provides a homotopy
between id and ι̂◦ P̂r. Moreover, the side conditions H̃s ◦ H̃s = 0, P̂r◦ H̃s = 0 and
H̃s ◦ ι̂= 0 are still satisfied. We summarize the situation in the diagram

(V(E)⊗�(I ), 0)
ι̂s // (A⊗�(I ), Q̃)
P̂r

oo , H̃s .
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Following Section 2a, these data can be used to perform homological transfer. The
input consists of the differential graded Lie algebra

(A[1]⊗�(I ), Q̃+ dDR , [ · , · ]0).

To construct the induced structure maps, one has to consider oriented rooted trees
with bivalent and trivalent interior vertices. The leaves (the exterior vertices with
the root excluded) are decorated by ι̂, the root by P̂r, the interior bivalent vertices
by dDR , the interior trivalent vertices by [ · , · ]0, and the interior edges (that is, the
edges not connected to any exterior vertices) by −H̃s . One then composes these
maps in the order given by the orientation towards the root. The associated L∞
quasi-isomorphism is constructed in the same manner; however, the root is not
decorated by P̂r but by −H̃s instead.

Recall that V(r,s)(E∗[1]⊕E[−1]) is the ideal generated by the multiderivations
of C∞(E∗[1] ⊕E[−1]) with total ghost degree larger than or equal to r , and total
ghost-momentum degree larger than or equal to s, respectively. One can check
inductively that trees decorated with e copies of −H̃s increase the filtration index
by (e, e). Also, trees containing more than one interior bivalent vertex do not
contribute since dDR increases the form degree by 1. These facts imply that the
induced structure is given by (V(E)[1] ⊗�(I ), dDR , [ · , · ]SN), and that there is
an L∞ quasi-isomorphism

(V(E)[1]⊗�(I ), dDR , [ · , · ]SN)→ (A[1]⊗�(I ), Q̃+ dDR , [ · , · ]0).

We define

K̃ : (V(E)[1], [ · , · ]SN)→ (V(A[1]⊗�(I ), Q̃+ dDR , [ · , · ]SN)

to be the composition of this L∞ quasi-isomorphism and the obvious L∞ quasi-
isomorphism (V(E)[1], [ · , · ]SN) ↪→ (V(E)[1]⊗�(I ), dDR , [ · , · ]SN).

The composition of K̂ with id⊗ evs :A⊗�(I )→A can be computed as follows.
First, only trees without any bivalent interior edges contribute since all elements
of form degree 1 vanish under id⊗ evs . Using the identities

ψ−1
s ([ψs( · ), ψs( · )]0)= [ · , · ]s, H̃s = ψs ◦ H̃ ◦ψ−1

s , ι̂= ψs ◦ ι,

it is straightforward to show that (id⊗ evs) ◦ K̂= ψs ◦Ks . Hence

ϕ0 ◦ (id⊗ evs) ◦ K̂= ϕs ◦Ks = Ls .

Finally, we define the L∞ quasi-isomorphism L̂ between (V(E)[1], [ · , · ]SN) and

(V(E∗[1]⊕E[−1])[1]⊗�(I ), [G, · ]SN+ dDR , [ · , · ]SN)

to be (ϕ0⊗ id)◦ K̂. By construction, (id⊗ ev0)◦ L̂=L0 and (id⊗ ev1)◦ L̂=L1

are satisfied. �



464 FLORIAN SCHÄTZ

Propositions 2.3 and 3.1 seem to permit higher analogues where one incorpo-
rates the differential graded algebra of differential forms on the n-simplex �(4n)

instead of just �({∗}) = R, as in Proposition 2.3, or �(I ), as in Proposition 3.1;
see [Costello 2007], where this idea was worked out in the context of the BV
formalism.

Corollary 3.2. Let E be a finite-rank vector bundle over a smooth, finite-dimen-
sional Poisson manifold (E,5). Let ∇0 and ∇1 be two connections on E→ E.
Denote by L0 and L1 the associated L∞ quasi-isomorphisms between

(V(E)[1], [ · , · ]SN) and (V(E∗[1]⊕E[−1])[1], [G, · ]SN, [ · , · ]SN)

from Proposition 2.3, respectively. Applying these L∞ quasi-isomorphisms to 5
yields two MC elements 5̃0 and 5̃1 of

(V(E∗[1]⊕E[−1])[1], [G, · ]SN, [ · , · ]SN).

Hence
5̂0 := G+ 5̃0 and 5̂1 := G+ 5̃1

are MC elements of (V(E∗[1]⊕E[−1])[1], [ · , · ]SN), that is, Poisson bivector fields
on E∗[1]⊕E[−1].

There is a diffeomorphism of the smooth graded manifold E∗[1] ⊕ E[1] such
that the induced automorphism of V(E∗[1] ⊕E[−1]) maps 5̂0 to 5̂1. This diffeo-
morphism induces a diffeomorphism of the base E that coincides with the identity.

Proof. Apply the L∞ quasi-isomorphism L̂ from Proposition 3.1 to 5, and add G
to obtain an MC element 5̂+Ẑ dt of (V(E∗[1]⊕E[−1])[1]⊗�(I ), dDR , [ · , · ]SN).
Let Ls denote the L∞ quasi-isomorphism from Proposition 2.3 constructed with
the help of the connection ∇0+ s(∇1−∇0). Recall that (id⊗ evs)◦ L̂=Ls holds
for all s ∈ I .

We set 5̂s := (id⊗ evs)(5̂) and Ẑs := (id⊗ evs)(Ẑ). Proposition 3.1 implies
that this definition of 5̂s is compatible with the 5̂0 and 5̂1 defined in our corollary.

We want to apply Lemma 2.1 to

A := (V(E)[1], [ · , · ]SN), B := (V(E∗[1]⊕E[−1])[1], [G, · ]SN, [ · , · ]SN)

and F := L̂. To do so, it remains to show that the flow of Ẑs is globally well-defined
for s ∈ [0, 1]. Recall that Ẑ is the one-form part of the MC element constructed
from the Poisson bivector field5 on E with the help of the L∞ quasi-isomorphism
L̂ : (V(E)[1], [ · , · ]SN)→ (V(E∗[1]⊕E[−1])⊗�(I ), [G, · ]SN+dDR , [ · , · ]SN).
Only trees with exactly one bivalent interior vertex give nonzero contributions be-
cause the form degree must be one. Therefore, there is at least one homotopy in the
diagram, and by the degree estimate in the proof of Proposition 3.1, this implies that
Ẑ is contained in V(1,1)(E∗[1]⊕E[−1])⊗�(I ). Hence the derivation [Ẑ , · ]SN is
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nilpotent and can be integrated. Furthermore, the degree estimate directly implies
the last claim of our corollary. �

The following is an immediate consequence of the previous corollary:

Corollary 3.3. Let (E,5) be a vector bundle E → S equipped with a Poisson
structure 5 such that S is a coisotropic submanifold. Fix two connections ∇0 and
∇1 on E→ S, and denote the corresponding graded Poisson brackets on BFV(E)
by [ · , · ]0BFV and [ · , · ]1BFV, respectively.

There is an isomorphism

(BFV(E), [ · , · ]0BFV)
∼=
−→ (BFV(E), [ · , · ]0BFV)

of graded Poisson algebras. The induced automorphism of C∞(E) coincides with
the identity.

Combining Proposition 2.5 and Corollary 3.3, we obtain a theorem:

Theorem 3.4. Let E be a vector bundle equipped with a Poisson bivector 5 such
that the zero section S is a coisotropic submanifold. Recall that the pullback of
E→ S by E→ S is denoted by E→ E , and that

BFV(E) := C∞(E∗[1]⊕E[−1])= 0(
∧

E⊗
∧

E∗).

Different choices of a connection ∇ on E→ S and of a degree +1 element � of
(BFV(S), [ · , · ]BFV) for which

(1) the lowest-order term of � is given by the tautological section �0 of E→ E
and

(2) [�,�]∇BFV = 0

lead to isomorphic differential graded Poisson algebras

(BFV(E), [�, · ]∇BFV, [ · , · ]
∇

BFV).

Proof. Pick two connections ∇0 and ∇1 on E → S, and consider the associated
graded Poisson algebras (BFV(E), [ · , · ]0BFV) and (BFV(E), [ · , · ]1BFV), respec-
tively. By Corollary 3.3, there is an isomorphism

γ : (BFV(E), [ · , · ]0BFV)
∼=
−−→ (BFV(E), [ · , · ]1BFV)

of graded Poisson algebras. Moreover, the induced automorphism of C∞(E) is
the identity. Assume that � and �̃ are two BFV charges of (BFV(E), [ · , · ]0BFV)

and (BFV(E), [ · , · ]1BFV), respectively. Applying the automorphism γ to � yields
another element of (BFV(E), [ · , · ]1BFV), which can be checked to be a BFV charge
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again. By Proposition 2.5, this implies that there is an inner automorphism β of
(BFV(E), [ · , · ]1BFV) that maps γ (�) to �̃. Hence

β ◦ γ : (BFV(E), [ · , · ]0BFV)
∼=
−−→ (BFV(E), [ · , · ]1BFV)

is an isomorphism of graded Poisson algebras that maps � to �̃. �

4. Choice of tubular neighborhood

Suppose S is a coisotropic submanifold of a smooth, finite-dimensional Poisson
manifold (M,5). Throughout this section, E denotes the normal bundle of S
inside M . As explained in Section 2c, the first step in the construction of the BFV
complex for S inside (M,5) is the choice of an embedding ψ : E ↪→ M . Such an
embedding equips E with a Poisson bivector field 5ψ , which is used to construct
the BFV bracket on the ghost/ghost-momentum bundle; see Section 2c.

First, we consider the case where the embedding is changed by composition
with a linear automorphism of the normal bundle E :

Lemma 4.1. For some choice of tubular neighborhood ψ : E ↪→ M , let

(BFV(E), [�, · ]BFV, [ · , · ]BFV)

be the corresponding BFV complex; let

(BFV(E), [�g, · ]
g
BFV, [ · , · ]

g
BFV)

be a BFV complex corresponding to the embeddingψ◦g :E ↪→M , where g :E→E
is a vector-bundle isomorphism covering the identity.

Then there is an isomorphism of graded Poisson algebras

(BFV(E), [ · , · ]BFV)→ (BFV(E), [ · , · ]gBFV)

that maps � to �g.

Proof. Let5 and5g be the Poisson bivector fields on E obtained fromψ : E ↪→M
and ψ ◦ g : E ↪→ M , respectively. Clearly 5g

= (g)∗(5).
Choose some connection ∇ of E , which is used to construct the L∞ quasi-

isomorphism

L : (V(E)[1], [ · , · ]SN)→ (V(E∗[1]⊕E[−1])[1], [ · , · ]SN, [G, · ]SN).

Plugging in5 results in the BFV bracket [ · , · ]BFV. On the other hand, we can use
∇

g
:= (g−1)∗∇ to construct another L∞ quasi-isomorphism Lg. Plugging in 5g

results in another BFV bracket [ · , · ]gBFV.
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We claim that [ · , · ]BFV and [ · , · ]gBFV are isomorphic graded Poisson brackets.
First, observe that the isomorphism g : E→ E lifts to a vector-bundle isomorphism

E
ĝ //

��

E

��
E

g // E,

such that the tautological section gets mapped to itself under (ĝ)∗. We denote the
induced automorphism of E∗[1]⊕ E[−1] by ĝ as well.

By naturality of the pullback of connections, we obtain the commutative diagram

V(E)
ι
∇ //

(g)∗
��

V(E∗[1]⊕ E[−1])

(ĝ)∗
��

V(E)
ι∇g // V(E∗[1]⊕ E[−1]),

where ι
∇

and ι∇g are the horizontal lifts induced by ∇ and ∇g, respectively. Using
this, together with the explicit description of the L∞ quasi-isomorphism L from
Proposition 2.3 (contained in [Schätz 2009a] or in the proof of Proposition 3.1),
one concludes that

(Lg)k = (ĝ)∗ ◦ (L)k ◦ ((g)−1
∗
⊗ · · ·⊗ (g)−1

∗
).

Here (L)k denotes the k-th structure map of the L∞ quasi-isomorphism L.
This immediately implies that ĝ induces an isomorphism between [ · , · ]BFV and
[ · , · ]

g
BFV. Since ĝ maps the tautological section to itself, it maps any BFV charge

to another one.
Finally, Theorem 3.4 implies the statement of Lemma 4.1. �

A different choice of embedding can cause drastic changes in the associated
BFV complexes. Consider S = {0} inside M = R2 equipped with the smooth
Poisson bivector field

5(x, y) :=

{
0 for x2

+ y2
≤ 4,

exp
(
−

1
x2+y2−4

)
∂

∂x
∧
∂

∂y
for x2

+ y2
≥ 4.

Let ψ0 be the embedding of E ∼= R2 into R2 given by the identity, and let ψ1 be
the embedding given by

(x, y) 7→ 1√
1+x2+y2

(x, y).

The image of ψ1 is contained in the disk of radius 1. Hence 5ψ1 vanishes identi-
cally whereas 5ψ0 does not.
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The ghost/ghost-momentum bundle E∗[1]⊕E[−1] is of the very simple form

R2
× ((R2)∗[1]⊕R2

[−1])→ R2.

Denote the Poisson bivector field coming from the natural pairing between (R2)∗[1]
and R2

[−1] by G. We choose the standard flat connection on the bundle R2
→ 0.

Then the Poisson bivector fields for the BFV brackets [ · , · ]0BFV and [ · , · ]1BFV are
simply given by the sums G+5ψ0 and G+5ψ1 , respectively.

Any isomorphism of graded Poisson algebras between (BFV(E), [ · , · ]0BFV) and
(BFV(E), [ · , · ]1BFV) yields an induced isomorphism of Poisson algebras between
(C∞(R2), { · , · }5ψ0

) and (C∞(R2), { · , · }5ψ0
). Since 5ψ1 vanishes, the induced

automorphism would have to map something nonvanishing to 0, which is a con-
tradiction. Hence there is no isomorphism of graded Poisson algebras between
(BFV(E), [ · , · ]0BFV) and (BFV(E), [ · , · ]1BFV).

Although different choices of embeddings can lead to differential graded Poisson
algebras that are not isomorphic, it is always possible to find appropriate restric-
tions of the BFV complexes such that the corresponding differential graded Poisson
algebras are isomorphic.

Definition 4.2. Let E be a finite-rank vector bundle over a smooth manifold S.
Assume E is equipped with a Poisson bivector field 5 such that S is a coisotropic
submanifold of E . Let (BFV(E), DBFV, [ · , · ]BFV) be a BFV complex for S in
(E,5), and U an open neighborhood of S inside E . The restriction of the BFV
complex on U is the differential graded Poisson algebra

(BFVU (E), DU
BFV( · )= [�

U , · ]UBFV, [ · , · ]
U
BFV)

given by the following data:

(a) BFVU (E) is the space of smooth functions on the graded vector bundle (E∗[1]
⊕E[−1])|U fitting into the Cartesian square

E∗[1]⊕E[−1]|U //

��

E∗[1]⊕E[−1]

��
U // E .

(b) BFVU (E) inherits a graded Poisson bracket [ · , · ]UBFV from BFV(E), obtained
by restricting the Poisson bivector field corresponding to [ · , · ]BFV to the
graded submanifold (E∗[1]⊕E[−1])|U of E∗[1]⊕E[−1].

(c) An element �U of BFVU (E) is called a restricted BFV charge if it is of
degree +1, if [�U , �U

]
U
BFV = 0, and if the component of �U in 0(E|U ) is

equal to the restriction of the tautological section �0 ∈ 0(E) to U .
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Proposition 4.3. Let S be a coisotropic submanifold of a smooth, finite-dimen-
sional Poisson manifold (M,5). Denote the normal bundle of S by E and fix a
connection ∇ on E. Let ψ0 and ψ1 be two embeddings of E into M as tubular
neighborhoods of S.

Using these data, one builds two graded Poisson algebra structures on BFV(E)
following Section 2c (in particular, one applies Proposition 2.3). Denote the two
corresponding graded Poisson brackets by [ · , · ]0BFV and [ · , · ]1BFV, respectively.

Then there are two open neighborhoods A0 and A1 of S in E such that there ex-
ists an isomorphism (BFVA0(E), [ · , · ]0,A0

BFV)
∼=
−→ (BFVA1(E), [ · , · ]1,A1

BFV) of graded
Poisson algebras.

Proof. We use the fact that any two embeddings of E as a tubular neighborhood
are homotopic up to inner automorphisms of E ; that is, given two embeddings ψ
and ϕ of E into M as a tubular neighborhood, one can find

• a vector bundle isomorphism g of E and

• a smooth map F : E × I → M

such that

• F |E×{0} = ψ and F |E×{1} = ϕ ◦ g,

• ψs := F |E×{s} : E→ M is an embedding for all s ∈ I , and

• ψs |S = idS for all s ∈ I .

The construction of F can be found in [Hirsch 1994], for instance.
Since vector-bundle automorphisms of E yield isomorphic BVF complexes by

Lemma 4.1, we can assume without loss of generality that the two embeddings
ψ := ψ0 and ϕ =: ψ1 are homotopic (that is, g = id).

Denote the images of the ψs by Vs . Since ψs is an embedding of a manifold of
the same dimension as M , the image Vs is an open subset of M . Moreover, S⊂ Vs

holds for arbitrary s ∈ I ; that is, Vs is an open neighborhood of S in M . Because
F is continuous, one can find an open neighborhood V of S in M that is contained
in
⋂

s∈I Vs .
We define F̂ : E × I → M × I by (e, t) 7→ (F(e, t), t) and check that F̂ is

an embedding and hence that its image is a submanifold W of M × I and F̂ is
a diffeomorphism between E × I and W . We then consider the restriction of
F̂−1
:W

∼=
−→ E× I to V × I , which we denote by G. If one restricts G to slices of

the form V×{s}, one obtains ψ−1
s |V . The images of ψ−1

s |V are denoted by Ws . By
the continuity of G, there is an open neighborhood W of S in E that is contained
in
⋂

s∈I Ws .
We define the one-parameter family

ϕs :W0
ψ0|W0
−−−−→ V

(ψs |V )
−1

−−−−−→Ws
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of local diffeomorphisms of E . Moreover, E inherits a one-parameter family of
Poisson bivector fields defined by 5s := (ψs |

−1
Vs
)∗(5|Vs

). The restriction 5s |Ws
is

equal to (ψs |
−1
V )∗(5|V ). Consequently

(1) 5s |Ws
= (ϕs)∗(50|W0

) for all s ∈ I .

Differentiating ϕs yields a smooth one-parameter family of local vector fields
(Ys)s∈I on E . By equation (1), the smooth one-parameter family 5t |W − Yt |W dt
is an MC element of (V(W )[1]⊗�(I ), dDR , [ · , · ]SN).

The L∞ quasi-isomorphism

L
∇
: (V(E)[1], [ · , · ]SN)→ (V(E∗[1]⊕E[−1])[1], [G, · ]SN, [ · , · ]SN)

from Proposition 2.3 restricts to an L∞ quasi-isomorphism

L
∇
|W : (V(W )[1], [ · , · ]SN)→

(
V((E∗[1]⊕E[−1])|W )[1], [G, · ]SN, [ · , · ]SN).

Hence we obtain an L∞ quasi-isomorphism

L
∇
|W ⊗ id : (V(W )[1]⊗�(I ), dDR , [ · , · ]SN)

→ (V(E∗[1]⊕E[−1]|W )[1]⊗�(I ), dDR + [G, · ]SN, [ · , · ]SN).

Applying L
∇
|W ⊗ id to the MC element 5t |W − Yt |W dt and adding G yields an

MC element 5̂t − Ŷt dt of (V(E∗[1]⊕E[−1]|W )[1]⊗�(I ), dDR , [ · , · ]SN).
It is straightforward to check that 5̂s is the restriction of L

∇
(
∑

k≥11/(k!)5⊗k
s )

to W and that Ŷs is the sum of the horizontal lift ι
∇
(Ys) of Ys (with respect to ∇)

restricted to W plus a part in V(1,1)(E∗[1] ⊕ E[−1]) (which acts as a nilpotent
derivation).

Using parallel transport with respect to ∇, we can integrate (ι
∇
(Yt))t∈I to a

one-parameter family of vector-bundle automorphisms

ϕ̂s : E
∗
[1]⊕E[−1]|W0

→ E∗[1]⊕E[−1]|Ws

covering ϕs :W0→Ws for arbitrary s ∈ I . In a way similar to the construction of
V and W , one finds an open neighborhood A0 of S in W such that

ϕt |A0
: A0

∼=
−−→ At

with
⋃

s∈I As ⊂W . Therefore the restriction of ϕ̂s to E∗[1]⊕E[−1]|A0
has image

E∗[1]⊕E[−1]|As
, which is a submanifold of E∗[1]⊕E[−1]|W for arbitrary s ∈ I .

Hence the one-parameter family

(ι
∇
(Yt)|(E∗[1]⊕E[−1])|At

)t∈I

of local vector fields can be uniquely integrated to a one-parameter family of local
diffeomorphisms (ϕ̂t)t∈I , and therefore the one-parameter family of local vector
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fields (Ŷt |At
)t∈I can be uniquely integrated to a one-parameter family of local

diffeomorphisms, which we denote by

ϕs : (E
∗
[1]⊕E[−1])|A0

→ (E∗[1]⊕E[−1])|As
for s ∈ I .

Applying Lemma 2.1 shows that 5̂s |As
= (ϕs)∗(5̂0|A0

) holds for all s∈ I . Hence

(ϕ1)∗ : C
∞(E∗[1]⊕E[−1]|A0

)→ C∞(E∗[1]⊕E[−1]|A1
)

is an isomorphism of Poisson algebras. �

Theorem 4.4. Let S be a coisotropic submanifold of a smooth, finite-dimensional
Poisson manifold (M,5). Suppose

(BFV(E), D0
BFV, [ · , · ]

0
BFV) and (BFV(E), D1

BFV, [ · , · ]
1
BFV)

are two BFV complexes constructed with the help of two arbitrary embeddings of
E into M , two arbitrary connections on E→ S, and two arbitrary BFV charges.

Then there are two open neighborhoods B0 and B1 of S in E such that there
exists an isomorphism

(BFVB0(E), D0,B0
BFV, [ · , · ]

0,B0
BFV)

∼=
−→ (BFVB1(E), D1,B1

BFV, [ · , · ]
1,B1
BFV).

of differential graded Poisson algebras

Proof. By Theorem 3.4, we can assume without loss of generality that the two
chosen connections coincide. It suffices to prove that there is an isomorphism of
graded Poisson algebras from some restriction of (BFV(E), [ · , · ]0BFV) to some
restriction of (BFV(E), [ · , · ]0BFV) that maps a restricted BFV charge to another
restricted BFV charge. This is a consequence of the fact that Theorem 3.4 holds
also in the restricted setting as long as the open neighborhood U of S in E that we
restrict to is contractible to S along the fibers of E .

By Lemma 4.1, we may assume without loss of generality that the two embed-
dings we consider are homotopic. Hence there is a smooth one-parameter family
of isomorphisms of graded Poisson algebras

(ϕs)∗ : (BFVA0(E), [ · , · ]0,A0
BFV)→ (BFVAs (E), [ · , · ]s,As

BFV),

which we constructed in the proof of Proposition 4.3. The smoothness of this
family and the fact that the zero section S is fixed under (ϕs)s∈I imply there is a
open neighborhood A of S in E such that A ⊂

⋂
s∈I As .

Fix a restricted BFV charge � of (BFVA0(E), [ · , · ]0,A0
BFV). The restriction of

(�(t) := (ϕt)∗(�))t∈I

to A yields a smooth one-parameter family of sections of
∧

E⊗
∧

E∗|A. Although
[�(s)|A, �(s)|A]

s,A
BFV = 0 for all s ∈ I , the restriction �(s)|A is in general not a
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BFV charge since its component in 0(E|W ) is �0(s) := (ϕs)∗(�0), which does not
need to be equal to �0 as required; see Definition 4.2. In particular, �(1) might
not be a restricted BFV charge of (BFV(E), [ · , · ]1BFV). However, in the remainder
of the proof, we will show that �(1) can be gauged to a BFV charge.

We recall some of the ingredients of the proof of Proposition 2.5. First observe
that δ := [�0, · ]G is a differential. Here we denote by �0 the tautological section
of E→ E , by G the Poisson bivector field associated to the fiber pairing between
E and E∗, and by [ · , · ]G the graded Poisson bracket on BFV(E) corresponding
to G. Second, it is possible to construct a homotopy h for δ, that is, a degree −1
map satisfying

(2) δ ◦ h+ h ◦ δ = id−i ◦ pr,

where i is an embedding of the cohomology of δ into BFV(E), and pr is a projection
from BFV(E) onto cohomology. We remark that h does not restrict to arbitrary
open neighborhoods of S in E . However, one can check that it does restrict to open
neighborhoods that can be contracted to S along the fibers of E . Without loss of
generality, we can assume that A has this property.

We are interested in the smooth one-parameter family

h(�0(s)) ∈ 0(E⊗E∗|A)∼= 0(End(E|A)) for s ∈ I .

Since �0 intersects the zero section of E→ E transversally at S, so does �0(s)
for arbitrary s ∈ I . This implies first that the evaluation of �0(s) at S is zero,
and second that h(�0(s))|S ∈ 0(E⊗ E∗|S) is fiberwise invertible; that is, it is an
element of 0(GL(E|S)).

For any s ∈ I , we have δ(�0(s))= [�0, �0(s)]G = 0 since both �0 and �0(s)
are sections of E|A and G is the Poisson bivector given by contraction between E

and E∗. Moreover, (i ◦ pr)(�0(s)) = 0 since the projection pr involves evaluation
of the section at S, where �0(s) vanishes. Consequently, equation (2) reduces
to δ(h(�0(s))) = �0(s) for all s ∈ I . However, this means that if we interpret
h(�0(s)) as a fiberwise endomorphism of E|A, the image of �0 under −h(�0(s))
is �0(s).

We define Ms := −h(�0(s)). As already observed, (Mt)t∈I is a smooth one-
parameter family of sections of End(E|A), and the restriction to S is a smooth
one-parameter family of GL(E|S). By smoothness of the one-parameter family,
it is possible to find an open neighborhood B of S in E such that the restriction
of (Mt)t∈I to B is always fiberwise invertible. Since M0 = id |A, we know that
(Mt |B)t∈I is a smooth one-parameter family of sections in GL+(E|B), that is,
fiberwise invertible automorphisms of E |B with positive determinant. In particular
M1 ∈ 0(GL+(E|B)).
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Consider the smooth one-parameter family (mt)t∈I of sections of End(E|B)
given by

mt := −M−1
t ◦

( d
dt

Mt

)
.

It integrates to a smooth one-parameter family of sections of GL+(E|B) that co-
incides with (Mt)t∈[0,1]. The adjoint action of mt on (BFVB(E), [ · , · ]1,BBFV) can
be integrated to an automorphism of (BFVB(E), [ · , · ]1,BBFV), and this automor-
phism maps the restriction of �0(1) to B to the restriction of �0 to B. Hence
exp(m)◦(ϕ1)∗ maps the restricted BFV charge � to another restricted BFV charge
of (BFVB(E), [ · , · ]1,BBFV). �

Definition 4.5. Let (BFV(E), DBFV, [ · , · ]BFV) be a BFV complex associated to
a coisotropic submanifold S of a smooth Poisson manifold (M,5). We define a
differential graded Poisson algebra (BFVg(E), Dg

BFV, [ · , · ]
g
BFV) as follows:

(a) BFVg(E) is the algebra of equivalence classes of elements of BFV(E) under
the equivalence relation f ∼ g if and only if there is a open neighborhood U
of S in E such that f |U = g|U ;

(b) Dg
BFV([ · ]) := [DBFV( · )], where [ · ] denotes the class of · under ∼ ;

(c) [[ · ], [ · ]]gBFV := [[ · , · ]BFV].

Given a differential graded Poisson algebra with unit (A,∧, d, [ · , · ]), we define
the corresponding abstract differential graded Poisson algebra [(A,∧, d, [ · , · ])]
with unit to be the isomorphism class of (A,∧, d, [ · , · ]) in the category of dif-
ferential graded Poisson algebras with unit. In particular, [(A,∧, d, [ · , · ])] is
an object in the category of differential graded Poisson algebras with unit, up to
isomorphisms.

Theorem 4.4 has an immediate corollary:

Corollary 4.6. Consider a coisotropic submanifold S of a smooth, finite-dimen-
sional Poisson manifold (M,5), and let (BFV(E), DBFV, [ · , · ]BFV) be a BFV
complex associated to S inside (M,5).

The abstract differential graded Poisson algebra

[(BFVg(E), Dg
BFV, [ · , · ]

g
BFV)]

is independent of the specific choice of a BFV complex and hence is an invariant
of S as a coisotropic submanifold of (M,5).

Acknowledgments

I thank Alberto Cattaneo for remarks on a draft of this work. Moreover I thank the
referee for helpful comments.



474 FLORIAN SCHÄTZ

References

[Batalin and Fradkin 1983] I. A. Batalin and E. S. Fradkin, “A generalized canonical formalism and
quantization of reducible gauge theories”, Phys. Lett. B 122:2 (1983), 157–164. MR 85b:81080
Zbl 0967.81508

[Batalin and Vilkovisky 1977] I. A. Batalin and G. S. Vilkovisky, “Relativistic S-matrix of dynamical
systems with bosons and fermion constraints”, Phys. Lett. 69B (1977), 309–312.

[Bordemann 2000] M. Bordemann, “The deformation quantization of certain super-Poisson brackets
and BRST cohomology”, preprint, 2000. arXiv math.QA/0003218

[Costello 2007] K. J. Costello, “Renormalisation and the Batalin–Vilkovisky formalism”, preprint,
2007. arXiv 0706.1533

[Gugenheim and Lambe 1989] V. K. A. M. Gugenheim and L. A. Lambe, “Perturbation theory
in differential homological algebra, I”, Illinois J. Math. 33:4 (1989), 566–582. MR 91e:55023
Zbl 0661.55018

[Herbig 2006] H.-C. Herbig, Variations on homological reduction, Ph.D. thesis, Goethe Universität
Frankfurt am Main, 2006. Zbl 1196.81149 arXiv 0708.3598

[Hirsch 1994] M. W. Hirsch, Differential topology, Graduate Texts in Mathematics 33, Springer,
New York, 1994. MR 96c:57001 Zbl 0356.57001

[Markl et al. 2002] M. Markl, S. Shnider, and J. Stasheff, Operads in algebra, topology and physics,
Mathematical Surveys and Monographs 96, American Mathematical Society, Providence, RI, 2002.
MR 2003f:18011 Zbl 1017.18001

[Schätz 2009a] F. Schätz, “BFV-complex and higher homotopy structures”, Comm. Math. Phys.
286:2 (2009), 399–443. MR 2010h:53127

[Schätz 2009b] F. Schätz, “Moduli of coisotropic sections and the BFV-complex”, preprint, 2009.
arXiv 0903.4074

[Stasheff 1997] J. Stasheff, “Homological reduction of constrained Poisson algebras”, J. Differential
Geom. 45:1 (1997), 221–240. MR 98i:17026 Zbl 0874.58020

[Weinstein 1988] A. Weinstein, “Coisotropic calculus and Poisson groupoids”, J. Math. Soc. Japan
40:4 (1988), 705–727. MR 90b:58091 Zbl 0642.58025

Received July 14, 2009. Revised September 12, 2010.

FLORIAN SCHÄTZ

CENTER FOR MATHEMATICAL ANALYSIS, GEOMETRY AND DYNAMICAL SYSTEMS

DEPARTAMENTO DE MATEMATICA

AV. ROVISCO PAIS

1049-001 LISBON

PORTUGAL

florian.schaetz@gmail.com



PACIFIC JOURNAL OF MATHEMATICS
http://www.pjmath.org

Founded in 1951 by
E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

V. S. Varadarajan (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

pacific@math.ucla.edu

Darren Long
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

long@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Alexander Merkurjev
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

merkurev@math.ucla.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

Jonathan Rogawski
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

jonr@math.ucla.edu

PRODUCTION
pacific@math.berkeley.edu

Silvio Levy, Scientific Editor Matthew Cargo, Senior Production Editor

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or www.pjmath.org for submission instructions.

The subscription price for 2010 is US $420/year for the electronic version, and $485/year for print and electronic.
Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Pacific Journal of
Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. Prior back issues are obtainable from Periodicals Service Company,
11 Main Street, Germantown, NY 12526-5635. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt
MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and the Science Citation Index.

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 969 Evans
Hall, Berkeley, CA 94720-3840, is published monthly except July and August. Periodical rate postage paid at Berkeley, CA 94704,
and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA
94704-0163.

PJM peer review and production are managed by EditFLOW™ from Mathematical Sciences Publishers.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS
at the University of California, Berkeley 94720-3840

A NON-PROFIT CORPORATION
Typeset in LATEX

Copyright ©2010 by Pacific Journal of Mathematics

http://www.pjmath.org
mailto:chari@math.ucr.edu
mailto:finn@math.stanford.edu
mailto:liu@math.ucla.edu
mailto:pacific@math.ucla.edu
mailto:long@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:merkurev@math.ucla.edu
mailto:popa@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:jonr@math.ucla.edu
mailto:pacific@math.berkeley.edu
http://www.pjmath.org
http://www.periodicals.com/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.emis.de/ZMATH/
http://www.inist.fr/PRODUITS/pascal.php
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/


PACIFIC JOURNAL OF MATHEMATICS

Volume 248 No. 2 December 2010

257Topological description of Riemannian foliations with dense leaves
JESÚS A. ÁLVAREZ LÓPEZ and ALBERTO CANDEL

277The nonexistence of quasi-Einstein metrics
JEFFREY S. CASE

285Twisted symmetric group actions
AKINARI HOSHI and MING-CHANG KANG

305Optimal transportation and monotonic quantities on evolving manifolds
HONG HUANG

317Hopf structures on the Hopf quiver Q(〈g〉, g)

HUA-LIN HUANG, YU YE and QING ZHAO

335Minimal surfaces in S3 foliated by circles
NIKOLAI KUTEV and VELICHKA MILOUSHEVA

355Prealternative algebras and prealternative bialgebras
XIANG NI and CHENGMING BAI

393Some remarks about closed convex curves
KE OU and SHENGLIANG PAN

403Orbit correspondences for real reductive dual pairs
SHU-YEN PAN

429Graphs of bounded degree and the p-harmonic boundary
MICHAEL J. PULS

453Invariance of the BFV complex
FLORIAN SCHÄTZ

475Some elliptic PDEs on Riemannian manifolds with boundary
YANNICK SIRE and ENRICO VALDINOCI

493Representations of Lie superalgebras in prime characteristic, III
LEI ZHAO

0030-8730(201012)248:2;1-A

Pacific
JournalofM

athem
atics

2010
Vol.248,N

o.2


	
	
	

