Vol. 249, No. 1, 2011

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Geometric formality of homogeneous spaces and of biquotients

D. Kotschick and S. Terzić

Vol. 249 (2011), No. 1, 157–176
Abstract

We provide examples of homogeneous spaces that are neither symmetric spaces nor real cohomology spheres, yet have the property that every invariant metric is geometrically formal. We also extend the known obstructions to geometric formality to some new classes of homogeneous spaces and of biquotients, and to certain sphere bundles.

Keywords
formality, harmonic forms, homogeneous space, Stiefel manifold, biquotient
Mathematical Subject Classification 2000
Primary: 53C25, 53C30
Secondary: 57T15, 57T20, 58A10
Milestones
Received: 17 September 2009
Accepted: 4 January 2010
Published: 3 January 2011
Authors
D. Kotschick
Mathematisches Institut
LMU München
Theresienstr. 39
80333 München
Germany
S. Terzić
Faculty of Science
University of Montenegro
Džordža Vašingtona bb
81000 Podgorica
Montenegro