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YANG LIU, ZHANG WEIGUO, LIU XIPING, SHEN CHUNFANG AND CHEN HUA

By using the Avery–Peterson fixed point theorem, we obtain the existence of
three positive solutions for a third order multipoint boundary value prob-
lem. An example illustrates the main results.

1. Introduction

We study the existence of positive solutions for the third order m-point boundary
value problem

(1-1)

x ′′′(t)+ f (t, x(t), x ′(t), x ′′(t))= 0 for t ∈ [0, 1],

x(1)=
m−2∑
i=1

βi x(ξi ), x ′(0)=
m−2∑
i=1

αi x ′(ξi ),

x ′′(0)= 0,

where 0< ξ1 < ξ2 < · · ·< ξm−2 < 1,

0≤ αi < 1 and 0≤ βi < 1 for i = 1, 2, . . . ,m− 2,
m−2∑
i=1

αi < 1 and
m−2∑
i=1

βi < 1

and f ∈ C([0, 1]× [0,+∞)× R2, [0,+∞)).
Third order differential equations arise in various areas of applied mathematics

and physics, such as the deflection of a curved beam having a constant or varying
cross section, three layer beams, electromagnetic waves, gravity driven flows, and
so on [Greguš 1987]. In recent years, much attention has focused on positive
solutions of boundary value problems (BVPs for short) for third order ordinary
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differential equations. For example, Anderson [1998] established the existence of
at least three positive solutions to the problem

−x ′′′(t)+ f (x(t))= 0 for t ∈ (0, 1),

x(0)= x ′(t2)= x ′′(1)= 0 for t2 ∈ (0, 1),

where f : R→ [0,+∞) is continuous and 1/2 ≤ t2 < 1. Palamides and Smyrlis
[2008] proved that there exists at least one positive solution for the third order
three-point BVP

x ′′′(t)= a(t) f (t, x(t)) for t ∈ (0, 1),

x(0)= x(1)= 0,

x ′′(η)= 0 for η ∈ (0, 1).

The results are based on the well-known Guo–Krasnoselskiı̆ fixed point theorem
[Guo and Lakshmikantham 1988]. Guo, Sun and Zhao [Guo et al. 2008] studied
the positive solutions of the third order three-point problem

x ′′′(t)= a(t) f (x(t)) for t ∈ (0, 1),

x(0)= x ′(0)= 0,

x ′(1)= x ′(η) for η ∈ (0, 1),

and obtained the existence of such solutions by using the Guo–Krasnoselskiı̆ fixed
point theorem. For more existence results for third order boundary value problems,
see [Hopkins and Kosmatov 2007; Chu and Zhou 2006; Graef and Kong 2009; Lin
et al. 2008; Pei and Chang 2007; Li 2006; Yao 2004] and references therein.

In these works they concentrate on the two- or three-point BVPs. Few papers
deal with the existence of positive solutions to m-point BVPs for third order dif-
ferential equations, and in those that do, first and second order derivatives are not
involved in the nonlinear term.

We do allow first and second order derivatives to appear explicitly in the non-
linear term of multipoint third order boundary value problems (1-1), and consider
the positive solutions of these problems. By using the Avery–Peterson fixed point
theorem [2001] and analysis techniques, we prove that there exist at least three
concave positive solutions of problem (1-1). The results so established are more
general those of previous papers. We illustrate our results with an example.

2. Background

In this section, we present the necessary definitions from cone theory in Banach
spaces and a fixed point theorem due to Avery and Peterson.
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Definition 2.1. Let E be a real Banach space over R. A nonempty convex closed
set P ⊂ E is said to be a cone if

(1) au ∈ P for all u ∈ P and a ≥ 0, and

(2) u,−u ∈ P implies u = 0.

Definition 2.2. An operator is called completely continuous if it is continuous and
maps bounded sets into precompact sets.

Definition 2.3. A map α is said to be a nonnegative continuous convex functional
on a cone P of a real Banach space E if α : P→ [0,+∞) is continuous and

α(t x + (1− t)y)≤ tα(x)+ (1− t)α(y) for all x, y ∈ P, t ∈ [0, 1].

Definition 2.4. A map β is said to be a nonnegative continuous concave functional
on a cone P of a real Banach space E if β : P→ [0,+∞) is continuous and

β(t x + (1− t)y)≥ tβ(x)+ (1− t)β(y) for all x, y ∈ P, t ∈ [0, 1].

Let γ and θ be nonnegative continuous convex functionals on P , let α be a
nonnegative continuous concave functional on P and let ψ be a nonnegative con-
tinuous functional on P . Then for positive numbers a, b, c and d , we define the
convex sets

P(γ, d)= {x ∈ P | γ (x) < d},

P(γ, α, b, d)= {x ∈ P | b ≤ α(x), γ (x)≤ d},

P(γ, θ, α, b, c, d)= {x ∈ P | b ≤ α(x), θ(x)≤ c, γ (x)≤ d},

and a closed set

R(γ, ψ, a, d)= {x ∈ P | a ≤ ψ(x), γ (x)≤ d}.

Lemma 2.5. Let P be a cone in a Banach space E. Let γ and θ be nonnegative
continuous convex functionals on P , let α be a nonnegative continuous concave
functional on P , and let ψ be a nonnegative continuous functional on P satisfying

(2-1) ψ(λx)≤ λψ(x) for 0≤ λ≤ 1,

such that for some positive numbers l and d,

(2-2) α(x)≤ ψ(x) and ‖x‖ ≤ lγ (x) for all x ∈ P(γ, d).

Suppose T : P(γ, d)→ P(γ, d) is completely continuous and there exist positive
numbers a, b, c with a < b such that

(S1) {x ∈ P(γ, θ, α, b, c, d) | α(x) > b} 6=∅ and α(T x) > b
for x ∈ P(γ, θ, α, b, c, d),

(S2) α(T x) > b for x ∈ P(γ, α, b, d) with θ(T x) > c,
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(S3) 0 6∈ R(γ, ψ, a, d) and ψ(T x) < a for x ∈ R(γ, ψ, a, d) with ψ(x)= a.

Then T has at least three fixed points x1, x2, x3 ∈ P(γ, d) such that

(2-3)
γ (xi )≤ d for i = 1, 2, 3,

b < α(x1), a <ψ(x2), α(x2) < b, ψ(x3) < a.

3. Main results

Consider the problem

x ′′′(t)+ y(t)= 0 for t ∈ [0, 1],(3-1a)

x ′′(0)= 0, x ′(0)=
m−2∑
i=1

αi x ′(ξi ), x(1)=
m−2∑
i=1

βi x(ξi )(3-1b)

Lemma 3.1. Let

ξ0 = 0, ξm−1 = 1, α0 = αm−1 = β0 = βm−1 = 0,

ρ = (1−
∑m−1

i=0 αi )(1−
∑m−1

i=0 βi ) > 0.

For y(t) ∈ C[0, 1], the problem (3-1) has the unique solution

x(t)=
∫ 1

0
G(t, s)

∫ s

0
y(τ )dτds,

where

G(t, s)=
1
ρ


∑m−1

k=i αk
(
(s− t)+

∑m−1
k=i βk(t − s)+

∑i−1
k=0 βk(t − ξk)

)
+ (1−

∑i−1
k=0 αk)

(
(1− s)+

∑m−1
k=i βk(s− ξk)

)
if t ≤ s,

(1−
∑i−1

k=0 αk)
(
(1− t)+

∑i−1
k=0 βk(t − s)+

∑m−1
k=i βk(t − ξk)

)
+
∑m−1

k=i αk
∑i−1

k=0 βk(s− ξk) if t ≥ s,

for ξi−1 < s < ξi and i = 1, 2, . . . ,m− 1.

Proof. Integrating both sides of (3-1a) and considering the boundary condition
x ′′(0)= 0, we have

(3-2) −x ′′(t)=
∫ t

0
y(s)ds.

Let G(t, s) be the Green function for the problem

−x ′′(t)= 0,(3-3a)

x ′(0)=
m−1∑
i=0

αi x ′(ξi ), x(1)=
m−1∑
i=0

βi x(ξi ),(3-3b)
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Then for ξi−1 < s < ξi with i = 1, 2 . . . ,m− 1, we can assume

G(t, s)=
{

A+ Bt if t ≤ s,
C + Dt if t ≥ s.

From the definition and properties of the Green function together with (3-3b), we
have

A+ Bs = C + Ds, B =
i−1∑
k=0

αk B+
m−1∑
k=i

αk D,

B− D = 1, C + D =
i−1∑
k=0

βk(A+ Bξk)+

m−1∑
k=i

βk(C + Dξk),

Hence,

A = 1
ρ

(
1−

m−1∑
k=i

αk

( m∑
k=0

βkξk − 1
)
+

(
1−

m−1∑
k=0

αk

)(
1− s+

m−1∑
k=i

βk(s− ξk)
))
,

B =−
m−1∑
k=i

αk

/ (
1−

m−1∑
k=0

αk

)
,

C = 1
ρ

(
−

(
1−

i−1∑
k=0

αk

)( i−1∑
k=0

βks+
m−1∑
k=i

βkξk − 1
)
+

m−1∑
k=i

αk

i−1∑
k=0

βk(s− ξk)
)
,

D =
( i−1∑

k=0

αk − 1
) / (

1−
m−1∑
k=0

αk

)
.

This gives the Green function explicitly. Considering (3-2) together, we obtain that
(3-1) has the unique solution stated. �

Lemma 3.2. The Green function above satisfies G(t, s)≥ 0 for t, s ∈ [0, 1].

Proof. For ξi−1 ≤ s ≤ ξi , with i = 1, 2, . . . ,m− 1, and t ≤ s,

(s− t)+
i−1∑
k=0

βk(t − ξk)+

m−1∑
k=i

βk(t − s)

≥

m−1∑
k=0

βk(s− t)+
i−1∑
k=0

βk(t − ξk)+

m−1∑
k=i

βk(t − s)=
i−1∑
k=0

βk(s− ξk)≥ 0,

and

(1− s)+
m−1∑
k=i

βk(s− ξk)≥

m−1∑
k=i

βk(1− ξk)≥ 0.
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For ξi−1 ≤ s ≤ ξi , with i = 1, 2, . . . ,m− 1, and t ≥ s,

(1− t)+
i−1∑
k=0

βk(t − s)+
m−1∑
k=i

βk(t − ξk)≥

i−1∑
k=0

βk(1− s)+
m−1∑
k=i

βk(1− ξk)≥ 0.

These give that G(t, s)≥ 0 for t, s ∈ [0, 1]. �

Lemma 3.3. If y(t)≥ 0 for t ∈ [0, 1] and u(t) is the solution of (3-1), then

(1) min0≤t≤1|x(t)| ≥ δmax0≤t≤1|x(t)| and

(2) max0≤t≤1|x(t)| ≤ γ1 max0≤t≤1|x ′(t)|, where

δ=
(m−2∑

i=1

βi (1−ξi )
)/(

1−
m−2∑
i=1

βiξi

)
and γ1=

(
1−

m−2∑
i=1

βiξi

)/(
1−

m−2∑
i=1

βi

)
are constants.

Proof. (1) For x ′′′(t) = −y(t) ≤ 0 with t ∈ [0, 1], we see that x ′′(t) is decreasing
on [0, 1]. Considering x ′′(0)= 0, we have x ′′(t)≤ 0 for t ∈ (0, 1). Next we claim
that x ′(0)≤ 0. Otherwise, if x ′(0) > 0, we have the contradiction

0= x ′(0)− x ′(0)= x ′(0)−
m−2∑
i=1

αi x ′(ξi ) >

m−2∑
i=1

αi (x ′(0)− x ′(ξi ))≥ 0.

Thus, max0≤t≤1 x(t) = x(0) and min0≤t≤1 x(t) = x(1). From the concavity
of x(t), we have

ξi (x(1)− x(0))≤ x(ξi )− x(0).

Multiplying both sides by βi and considering x(1)=
∑m−2

i=1 βi x(ξi ), we have

(3-4)
(

1−
m−2∑
i=1

βiξi

)
x(1)≥

m−2∑
i=1

βi (1− ξi )x(0).

(2) By the mean value theorem, we obtain

x(1)− x(ξi )= (1− ξi )x ′(ηi ) for η ∈ (ξi , 1).

From the concavity of x , similar to what we did above, we see that

(3-5)
(

1−
m−2∑
i=1

βi

)
x(1) <

m−2∑
i=1

βi (1− ξi )|x ′(1)|.

Considering (3-4) together with (3-5) we have x(0) ≤ γ1|x ′(1)|. This completes
the proof of Lemma 3.3. �

Lemma 3.4. If y ∈ C[0, 1] for y ≥ 0 and γ2 = 1+ (
∑m−1

i=0 αiξi )/(1−
∑m−1

i=0 αi ) is
a positive constant, then max0≤t≤1|x ′(t)| ≤ γ2 max0≤t≤1|x ′′(t)|.
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Proof. Since x ′(t)= x ′(0)+
∫ t

0 x ′′(s)ds, we have

(
1−

m−1∑
i=0

αi

)
x ′(0)=

m−1∑
i=0

αi

∫ ξi

0
x ′′(s)ds ≥

m−1∑
i=0

αiξi x ′′(1).

Thus (
1−

m−1∑
i=0

αi

)
|x ′(0)| ≤

m−1∑
i=0

αiξi |x ′′(1)|.

Considering the concavity of x(t) and x ′(t), we have

max
0≤t≤1
|x ′(t)| = |x ′(1)| and max

0≤t≤1
|x ′′(t)| = |x ′′(1)|,

and x ′(1)− x ′(0)= x ′′(η)≥ x ′′(1) which give that

|x ′(1)| ≤
(

1+
∑m−1

i=0 αiξi

1−
∑m−1

i=0 αi

)
|x ′′(1)|. �

Remark. Lemmas 3.3 and 3.4 ensure that

max{max
0≤t≤1
|x(t)|, max

0≤t≤1
|x ′(t)|, max

0≤t≤1
|x ′′(t)|} ≤ γ3 max

0≤t≤1
|x ′′(t)|,

where γ3 = γ1γ2 > 1.

Let the Banach space E = C2
[0, 1] be endowed with the norm

‖x‖ =max
{

max
0≤t≤1
|x(t)|, max

0≤t≤1
|x ′(t)|, max

0≤t≤1
|x ′′(t)|

}
for x ∈ E .

We define the cone P ⊂ E by

P =
{

x ∈ E
∣∣∣ x(t)≥ 0, x ′′(0)= 0, x ′(0)=

m−2∑
i=1

αi x ′(ξi ), x(1)=
m−2∑
i=1

βi x(ξi ),

x(t) is concave on [0, 1]
}
.

Let the nonnegative continuous concave functional α, the nonnegative continu-
ous convex functionals γ and θ , and the nonnegative continuous functional ψ be
defined on the cone by

γ (x)= max
0≤t≤1
|x ′′(t)|, θ(x)= ψ(x)= max

0≤t≤1
|x(t)|, α(x)= min

0≤t≤1
|x(t)|.

By Lemmas 3.3 and 3.4, the functionals defined above satisfy

δθ(x)≤ α(x)≤ θ(x)= ψ(x) for ‖x‖ ≤ γ3γ (x).
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Therefore condition (2-2) of Lemma 2.5 is satisfied. Let

m =
∫ 1

0
sG(1, s)ds, N =

∫ 1

0
sG(0, s)ds, λ=min{m, δγ3}.

Assume that there exist constants 0< a, b, d with a < b < λd such that

(A1) f (t, u, v, w)≤ d for (t, u, v) ∈ [0, 1]× [0, γ3d]× [−γ2d, 0]× [−d, 0];

(A2) f (t, u, v, w) > b/m for (t, u, v) ∈ [0, 1]× [b, b/δ]× [−γ2d, 0]× [−d, 0];

(A3) f (t, u, v, w) < a/N for (t, u, v) ∈ [0, 1]× [0, a]× [−γ2d, 0]× [−d, 0].

Theorem 3.5. Under assumptions (A1)–(A3), problem (1-1) has at least three pos-
itive solutions x1, x2, x3 satisfying max0≤t≤1|x ′′i (t)| ≤ d for i = 1, 2, 3, where

min
0≤t≤1
|x2(t)|< b < min

0≤t≤1
|x1(t)| and max

0≤t≤1
|x3(t)| ≤ a < max

0≤t≤1
|x2(t)|.

Proof. Problem (1-1) has a solution x = x(t) if and only if x solves the operator
equation

x(t)=
∫ 1

0
G(t, s)

∫ s

0
f (τ, x(τ ), x ′(τ ), x ′′(τ ))dτds = (T x)(t).

By a simple computation, we have

(T x)′′(t)=−
∫ t

0
f (s, x, x ′, x ′′)ds.

For x ∈ P(γ, d), we have γ (x)=max0≤t≤1|x ′′(t)| ≤ d . Considering Lemmas 3.3
and 3.4 and assumption (A1), we obtain

f (t, x(t), x ′(t), x ′′(τ ))≤ d,

γ (T x)= |(T x)′′(1)| =
∣∣∣− ∫ 1

0
f (s, x, x ′, x ′′)ds

∣∣∣≤ d.

Hence, T : P(γ, d)→ P(γ, d) and clearly T is a completely continuous operator.
The fact that the constant function x(t) = b/δ is in P(γ, θ, α, b, c, d) and that

α(b/δ) > b implies that {x ∈ P(γ, θ, α, b, c, d | α(x) > b)} 6= ∅. This gives that
condition (S1) of Lemma 2.5 holds.

For x ∈ P(γ, θ, α, b, c, d), we have b≤ x(t)≤ b/δ and |x ′′(t)|< d for 0≤ t ≤ 1.
From assumption (A2), we have f (t, x, x ′, x ′′) > b/m. By definition of α and the
cone P , we have

α(T x)= (T x)(1)=
∫ 1

0
G(1, s)

∫ s

0
f (τ, x, x ′, x ′′)dτds

≥
b
m

∫ 1

0
sG(1, s)ds > b

m
m = b,
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which means α(T x) > b for all x ∈ P(γ, θ, α, b, b/δ, d). Second, with (3-4) and
b < λd , we have

α(T x)≥ δθ(T x) > δ(b/δ)= b

for all x ∈ P(γ, α, b, d) with θ(T x) > b/δ.
Thus, condition (S2) of Lemma 2.5 holds. Finally we show that (S3) also holds.

We see that ψ(0) = 0 < a and 0 6∈ R(γ, ψ, a, d). Suppose that x ∈ R(γ, ψ, a, d)
with ψ(x)= a. Then by assumption (A3),

ψ(T x)= max
0≤t≤1
|(T x)(t)| =

∫ 1

0
G(0, s)

∫ s

0
f (τ, x, x ′, x ′′)dτds

<
a
N

∫ 1

0
sG(0, s)ds = a.

Thus, all conditions of Lemma 2.5 are satisfied. Hence (1-1) has at least three
positive concave solutions x1, x2, x3 satisfying the conditions of the theorem. �

4. Example

Consider the third order four-point boundary value problem

(4-1)
x ′′′(t)+ f (t, x(t), x ′(t), x ′′(t))= 0 for t ∈ [0, 1],

x ′′(0)= 0, x ′(0)= 1
4 x ′( 1

3)+
1
2 x ′(2

3), x(1)= 1
3 x(1

3)+
1
2 x( 2

3),

where

f (t, u, v, w)= 1
60

et
+

1
60

(
w

1800

)4
+


u5

10π
if 0≤ u ≤ 10,

10000
π

if u ≥ 10,

By a simple computation, the function G(t, s) is given by

G(t, s)=



24(5/9− t/8− s/24) if 0≤ s ≤ 1/3, t ≤ s,

24(5/9− t/6) if 0≤ s ≤ 1/3, t ≥ s,

24(4/9− s/8− t/12) if 1/3≤ s ≤ 2/3, t ≤ s,

24(4/9− t/8− s/12) if 1/3≤ s ≤ 2/3, t ≥ s,

6(1− s) if 2/3≤ s ≤ 1, t ≤ s,

6(1− t/6− 5s/6) if 2/3≤ s ≤ 1, t ≥ s,

Choosing a = 1, b = 4 and d = 1800, we note that

γ =
80
9
, δ =

7
10
, m =

∫ 1

0
sG(1, s)ds = 35

108
, N =

∫ 1

0
sG(0, s)ds < 10.
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We can check that F = f (t, u, v, w) satisfies

F ≤ 1800 in the region [0, 1]× [0, 16000]× [−4800, 0]× [−1800, 0],

F ≥ 432/35 in the region [0, 1]× [4, 40/7]× [−4800, 0]× [−1800, 0],

F ≤ 1/10 in the region [0, 1]× [0, 1]× [−4800, 0]× [−1800, 0].

Then all assumptions of Theorem 3.5 are satisfied. Thus, problem (4-1) has at least
three positive solutions x1, x2, x3 such that

max
0≤t≤1
|x ′i (t)| ≤ 1800 for i = 1, 2, 3,

min
0≤t≤1

x1(t) > 4, max
0≤t≤1

x2(t) > 1,

min
0≤t≤1

x2(t) < 4, max
0≤t≤1

x3(t) < 1.

Remark. Problem (4-1) is a third order four-point BVP and the nonlinear term
is involved in the first and second order derivative explicitly. Earlier results for
positive solutions, to the authors’ knowledge, do not apply to problem (4-1).
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