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Let V be the 7-dimensional irreducible representation of the quantum group
Uq(g2). For each n, there is a map from the braid group Bn to the en-
domorphism algebra of the n-th tensor power of V , given by R matrices.
Extending linearly to the braid group algebra, we get a map

ABn→ EndUq (g2)(V⊗n).

Lehrer and Zhang have proved that map is surjective, as a special case of a
more general result.

Using Kuperberg’s spider for G2, we give an elementary diagrammatic
proof of this result.

1. Kuperberg’s spider for G2

We recall just enough from [Kuperberg 1994; 1996] for our purposes.
We fix the ground ring A = C(q). Kuperberg’s q is q2 here, which brings our

conventions into agreement with those for quantum groups as presented in [Chari
and Pressley 1995; Jantzen 1996; Sawin 2006].

First consider the braided tensor category Rep′(G2), with objects tensor powers
of the 7-dimensional representation of Uq(g2) and morphisms linear maps com-
muting with the actions of Uq(g2). (The prime in the notation indicates this is just
a full subcategory of the actual representation category; we don’t allow arbitrary
representations, although every representation does appears as a subobject of some
tensor power.)

Second consider the category T(G2), with objects natural numbers and mor-
phisms planar trivalent graphs embedded in a rectangle, modulo certain relations.
A morphism from n to m should be a graph with n boundary points along the
bottom edge of the rectangle, and m boundary points along the top edge. Note that
we allow embedded circles in the interior of the rectangle, called loops. The edges
of the graph break the rectangle into faces; those that do not meet the boundary
of the rectangle are called internal faces. Composition of morphisms is vertical
stacking. The category becomes a tensor category by adding natural numbers at
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= q10
+ q8
+ q2
+ 1+ q−2

+ q−8
+ q−10

= 0

=−(q6
+ q4
+ q2
+ q−2

+ q−4
+ q−6)

= (q4
+ 1+ q−4)

=−(q2
+ q−2)

(
+

)
+ (q2

+ 1+ q−2)
(

+

)
= + + + +

− − − − −

Figure 1. Kuperberg’s [1994; 1996] relations for the G2 spider,
omitting relations involving double edges that we don’t use. Note
also that there is a sign error in [1996] but not in [1994].

the level of objects, and juxtaposing graphs side by side at the level of morphisms.
The relations from [Kuperberg 1996] are shown in Figure 1; the category T(G2)

becomes a braided tensor category with Kuperberg’s formulas for a crossing:

(1) =
1

1+q−2 +
1

1+q2 +
1

q2+q4 +
1

q−2+q−4

We now need two theorems from [Kuperberg 1996], one easy, one hard.

Theorem 1.1 (web bases for T(G2)). Each Hom space in T(G2) has a basis given
by diagrams with no loops, in which each internal face has at least 6 edges.

Theorem 1.2 (isomorphism). The categories Rep′(G2) and T(G2) are equivalent
as braided tensor categories.

2. Diagrammatic proof

Our goal is now to prove that an arbitrary trivalent graph in the rectangle (with
equal numbers of boundary points along the top and bottom edges) can be written,
modulo the relations above, as a A-linear combination of diagrams coming from
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braids via equation (1). Using Kuperberg’s Theorems 1.1 and 1.2, this would then
give a combinatorial proof of Lehrer and Zhang’s theorem:

Theorem 2.1 (surjectivity). The map from the braid group algebra to endomor-
phisms of tensor powers of the 7-dimensional irreducible representation of Uq(g2),

ABn→ EndUq (g2)(V
⊗n),

is surjective.

Remark. In fact, their result holds for any “strong multiplicity free” representation
of a quantum group.

Beginning over-optimistically, we might guess that any such diagram can in fact
be written as a composition of factors

, and

and then make use of the (presumably easy) special case of Theorem 2.1 for n= 2.
Even though this is false, it’s the right direction and contains the essential idea.
Small counterexamples to this guess are provided by

and in EndUq (g2)(V
⊗3).

The correct argument will involve three steps. First, we’ll prove a little lemma
allowing us to rearrange connected components of a graph. Second, we’ll prove
that the image of the braid group does hit a certain finite list of small graphs (in-
cluding the examples above). Third, we’ll use Euler measure to inductively rewrite
a graph in terms of linear combinations of braids and a graph with fewer vertices,
eventually getting down to graphs in our list.

Lemma 2.2. Suppose a graph D1⊗ D2 is a tensor product of two diagrams. Then
D1⊗ D2 is in the image of the braid group if and only if D2⊗ D1 is.

Proof. If
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is in the image of the braid group, so is

.

Since the G2 spider is a braided tensor category, this is exactly the same as

. �

Lemma 2.3. The graphs

, , and

are in the image of AB2.

Proof. Since all four diagrams have no loops or internal faces, they are basis
diagrams. Thus by Theorem 1.1 they are linearly independent. Also, it is easy
to see that they are the only basis diagrams with 4 boundary points, and so they
span EndUq (g2)(V

⊗2). Moreover, the braiding (hereafter written as σ in formulas)
lives in the same space, and has four distinct eigenvalues (see [Morrison, Peters
and Snyder 2010]), and so its powers also span EndUq (g2)(V

⊗2).
Purely for reference, we’ll give the characteristic equation for the braiding:

σ 4
=−q−16σ 0

+ (q−18
− q−16

− q−10
+ q−4)σ 1

+ (q−18
+ q−12

− q−10
− q−6

+ q−4
+ q2)σ 2

+ (q−12
− q−6

− 1+ q2)σ 3.

Explicit formulas for these four diagrams as polynomials in σ appear in the appen-
dix, along with instructions for using the short computer program that produces
them. (However, these formulas are not actually needed anywhere here.) �

Remark. Note that corresponds to q10
+q8
+q2
+1+q−2

+q−8
+q−10 (this is

the value of a loop, from Figure 1) times the idempotent projecting V ⊗V onto its
trivial submodule. Similiarly, corresponds to−(q6

+q4
+q2
+q−2

+q−4
+q−6)

times the idempotent projecting onto V .
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Lemma 2.4. The graphs

and

are in the image of AB3.

Proof. We just do the computations directly, with the help of a computer, obtaining
the formulas that appear in the appendix. In particular, we find 35 braids that
provide a basis for EndUq (g2)(V

⊗3). �

Remark. See also [Lehrer and Zhang 2006, 5.2.2(2) and 5.2.2(4)].

Corollary 2.5. The graphs

, , , and

are in the image of the appropriate braid groups.

Proof. We’ll show that each of these graphs is actually in the braided tensor sub-
category generated by the graphs appearing in the two previous lemmas. (In fact,
without even needing to take linear combinations.)

= =

= =

= �

Proposition 2.6 (base case for the induction). Any T(G2) basis diagram in which
every connected component contains at most one vertex is in the image of the braid
group.

Proof. Any such diagram is just a tensor product of factors, each of which is one
of the graphs

, , , , or .

By Lemma 2.2, we can take this tensor product in any order we like. We claim that
any such tensor product is actually a tensor product of the graphs in Lemmas 2.3
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and 2.4 and Corollary 2.5, and so the entire diagram is in the image of the braid
group. The argument is a tedious but straightforward case-bash. Suppose we have
the diagram

⊗a ⊗b ⊗c ⊗d
⊗e ⊗ f

.

Note that 2a + 3c + e = 2b + 3d + f , by counting boundary points at top and
bottom. By splitting off factors of , we can assume that at most one of a and
b is nonzero. Similarly, by splitting off or , we see that at most one of
c and d and at most one of e and f are nonzero. Let’s assume without loss of
generality that b = 0.

If a> 0, then either we can split off copies of , or f < 2. If f = 1, e must
be zero, and we have 2a+ 3c = 3d + 1, and so a ∼= 2 (mod 3). Thus d ≥ 1, and
we can split off a copy of . Otherwise, if f = 0, we have 2a+3c+ e= 3d,
so d ≥ 1 and c= 0. Now, since 2a+e= 3d ≥ 3, either a ≥ 3, e≥ 3, or a, e≥ 1. In
each of these cases, we can split something off, either , or ,
respectively.

On the other hand, if a = 0, let’s further assume without loss of generality that
c = 0. We thus have e = 3d + f ; since e = 0 would imply we have the empty
diagram, we have f = 0 instead, and the entire diagram is just a tensor power of

. �

Proof of Theorem 2.1. Suppose now we have an arbitrary basis diagram. We will
show that a connected component with at least two vertices has either a or a

attached along its top or bottom edge. Since these two diagrams are Laurent
polynomials in the positive crossing, we can rewrite the basis diagram as the prod-
uct of something in the image of the braid group and another basis diagram with
fewer vertices. Repeating this, we reduce to the case that no connected component
contains more than one vertex, at which point we’re done by Proposition 2.6.

The Euler measure argument is straightforward. Consider a connected compo-
nent of the basis diagram with at least two vertices. Assign formal angles of 2π/3
around trivalent vertices, and of π/2 on either side of an edge meeting the boundary.
(We don’t assign angles to the corners of the rectangle, so the total Euler measure
will be the Euler measure of the disc, +1.) Since internal faces of the component
have at least 6 edges, by Theorem 1.1, they have nonpositive Euler measure. Let bk

be the number of faces adjacent to the boundary, and meeting k edges of the graph.
These faces meet the boundary of the disc surrounding the component exactly once,
since the component is connected. Thus the Euler measure of a face counted by bk

is
1
4 +

1
4 +

1
3(k− 1)− 1

2(k+ 1)+ 1= 2
3 −

1
6 k.
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The number b1 is zero (this could only occur if the component were a single strand,
but it must have at least two vertices), and so we obtain∑

k≥2

bk(
2
3 −

1
6 k)≥ 1,

and so 1
3 b2+

1
6 b3 ≥ 1, which we soften to b2+b3 ≥ 3. There are thus at least three

faces touching either 2 or 3 edges of the component. At least one of these must
be attached to the top or bottom of the rectangle, avoiding the sides. If that face
touches 3 edges, we’re done, as there must be a adjacent to the boundary. If
it only touches 2 edges, the hypothesis that the component is connected and has at
least two vertices ensures that there’s a adjacent to the boundary. �

3. Questions

We end with two questions relating Kuperberg’s spider and the category of tilting
modules at a root of unity.

Question 3.1. We can specialize Kuperberg’s spider for G2 to any root q of unity.
The braiding is still defined as long as q+q−1

6=0, and the braiding is still surjective
as long as

t (q8
− 1)(q4

− q2
+ 1)(q6

+ q4
+ q2
+ 1) 6= 0.

(See the explicit formulas in the appendix.) We can form idempotent completion,
and quotient by negligibles to produce a semisimple category. Is this category
equivalent to the semisimple quotient of the category of tilting modules for the
integral form of Uq(G2)?

More optimistically, we might hope for an affirmative answer to this:

Question 3.2. Are these categories equivalent even before we quotient by negligi-
ble morphisms on either side?

Results in [Kuperberg 1994] and [Morrison, Peters and Snyder 2010] ensure
that there is a functor from the specialization of the spider to the category of tilting
modules. I’d hoped to be able to leverage the surjectivity of the braiding map into
a proof that this functor was an equivalence, but I still don’t see how to do this.

Appendix: Explicit formulas

The online supplement to this article is a Mathematica notebook. It relies on the
QuantumGroups package, which you can download as part of the KnotTheory
package from [The Knot Atlas 2007]. After setting the path in the first line to
point at your copy of the QuantumGroups package, you can run the remaining
lines to produce the formulas appearing below.
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Formulas for Lemma 2.3.

=
(
(q2
−1)(q4

−q2
+1)(q6

+q4
+q2
+1)

)−1

×
(
q22σ 0

+(−q20
+q22

+q28)σ 1
+(−q20

−q26
−q28)σ 2

−q26σ 3),
=
(
(q2
−1)(q4

−q2
+1)(q6

+q4
+q2
+1)

)−1

×
(
(−q8
−q12)σ 0

+(q6
−q8
+q10

−q12
+q20

+q24)σ 1

+(q6
+q10

−q18
+q20

−q22
+q24)σ 2

+(−q18
−q22)σ 3),

=
(
(q2
−1)(q4

−q2
+1)(q6

+q4
+q2
+1)

)−1

×
(
(q2
−q4
+2q6

+q12
−q14

−q18)σ 0

+(−q−2
−2q4

+2q6
−q8
+q10

+q12
+q16

−2q18
−q22

−q24)σ 1

+(−q4
−q8
+2q16

−q18
+q20

−q24)σ 2
+(q16

+q20
+q22)σ 3).

Formulas for Lemma 2.4.(
(q2
−1)2(q2

+1)(q4
−q2
+1)2

)
= −q2(q2

−1)(q26
−q24
+q22
+q20
−2q18

+4q16
−3q14

+2q10
−4q8

+q6
−q4
−1)1

+q8(−q22
+3q20

−5q18
+4q16

−3q12
+7q10

−6q8
+2q6

+q4
−4q2

+2)σ1

−q4(q2
−1)(q18

−q16
+2q14

+2q8
−q6
+q4
+1)σ−1

1

+q2(q2
−1)(q22

−q20
+q18
+3q12

−2q10
+3q8

+q6
−2q4

+2q2
−1)σ2

−q4(q2
−1)(2q14

+q10
+3q8

−q6
+q4
+1)σ−1

2

+q10(q2
−1)2(q2

+1)(q12
−q10
+3q8

−q6
+3q4

+1)σ1σ1

+(−q24
+3q22

−3q20
+q18
+q16
−5q14

+5q12
−4q10

+q8
+2q6

−2q4
+q2)σ1σ2

−q10(q10
−2q8

+q6
−q4
−q2
+1)σ1σ

−1
2 +q4(q4

−q2
+1)(q8

+q2
−1)σ−1

1 σ2

−q6(q8
−q6
+q4
−q2
+1)σ−1

1 σ−1
2

+(−q24
+3q22

−3q20
+q18
+q16
−5q14

+5q12
−4q10

+q8
+2q6

−2q4
+q2)σ2σ1

+q4(q4
−q2
+1)(q8

+q2
−1)σ2σ

−1
1 +(q

22
−q24)σ2σ2

−q10(q10
−2q8

+q6
−q4
−q2
+1)σ−1

2 σ1−q6(q8
−q6
+q4
−q2
+1)σ−1

2 σ−1
1

+0σ1σ1σ2+q16(q2
−1)σ1σ1σ

−1
2

+(3q22
−6q20

+4q18
−q16
−2q14

+5q12
−3q10

+3q8
−q4
+q2)σ1σ2σ1

+q4(q12
−2q10

+q8
−q6
−q4
+q2
−1)σ1σ2σ

−1
1

+q20(q2
−1)σ1σ2σ2−q12σ1σ

−1
2 σ1
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+0σ1σ
−1
2 σ−1

1 +q4(q12
−2q10

+q8
−q6
−q4
+q2
−1)σ−1

1 σ2σ1

+(q10
−q8
+q6)σ−1

1 σ2σ
−1
1 +0σ−1

1 σ2σ2+0σ−1
1 σ−1

2 σ1

+q8(q4
−q2
+1)σ−1

1 σ−1
2 σ−1

1 +0σ2σ1σ1+q20(q2
−1)σ2σ2σ1

+0σ2σ2σ
−1
1 +q16(q2

−1)σ−1
2 σ1σ1+(q18

−q20)σ1σ1σ2σ1

+(q18
−q20)σ1σ2σ1σ1+(q18

−q20)σ1σ2σ2σ1+0σ2σ1σ1σ2,(
(q2
−1)2(q2

+1)(q4
+1)(q4

−q2
+1)2

)
= −q2(q2

−1)(q4
+1)(q24

−q22
+2q18

−2q16
+q12
−2q10

−q4
+q2
−1)1

−q2(q30
−3q28

+5q26
−4q24

+2q20
−3q18

+q16

+2q14
−q12
+2q10

−2q6
+2q4

−2q2
+1)σ1

+(−q26
+2q24

−2q22
+q20
+q18
−q16
+q14
−q10
+q8
−q6
+q4)σ−1

1

+q2(q26
−2q24

+2q22
−4q18

+8q16
−9q14

+5q12
−5q8

+6q6
−5q4

+3q2
−1)σ2

−q4(q18
−q16
+q12
−2q10

+q6
−q4
+q2
−1)σ−1

2

+(q30
−2q28

+3q26
−2q24

−q18
+q12)σ1σ1

−q2(q24
−3q22

+3q20
+q18
−5q16

+9q14

−7q12
+3q10

−3q6
+3q4

−2q2
+1)σ1σ2

+(q18
−q10
+q8
−q6
+q4)σ1σ

−1
2

+q4(q4
−q2
+1)(q14

−q12
+q10
−q6
+q4
−q2
+1)σ−1

1 σ2−q6σ−1
1 σ−1

2

−q6(q20
−2q18

+2q16
−q12
+3q10

−2q8
+q4
−2q2

+1)σ2σ1

+q6(q4
−q2
+1)(q8

+q2
−1)σ2σ

−1
1 −q14(q2

−1)(q4
+1)(q6

−q2
+1)σ2σ2

−q12(q10
−2q8

+q6
−q4
−q2
+1)σ−1

2 σ1

−q2(q14
−q10
+q8
+q6
−2q4

+2q2
−1)σ−1

2 σ−1
1 +q14(q4

−q2
+1)σ1σ1σ2

−q16σ1σ1σ
−1
2 +q6(2q18

−4q16
+2q14

+q12
−3q10

+5q8
−2q6

+q4
−1)σ1σ2σ1

+q6(q4
+1)(q8

−2q6
+q2
−1)σ1σ2σ

−1
1 +q14(q10

−q8
+q4
−q2
+1)σ1σ2σ2

−q14σ1σ
−1
2 σ1+(q2

+1)(q5
−q3
+q)2σ1σ

−1
2 σ−1

1 −q8(q2
−1)(q4

+1)σ−1
1 σ2σ1

+q8(q4
−q2
+1)σ−1

1 σ2σ
−1
1 −q16(q4

−q2
+1)σ−1

1 σ2σ2+0σ−1
1 σ−1

2 σ1

+(−q8
+q6
−q4)σ−1

1 σ−1
2 σ−1

1 +0σ2σ1σ1+q22(q2
−1)σ2σ2σ1

+0σ2σ2σ
−1
1 +q18(q2

−1)σ−1
2 σ1σ1+q12(q2

−1)(q4
+1)σ1σ1σ2σ1

+(q20
−q22)σ1σ2σ1σ1+(q20

−q22)σ1σ2σ2σ1+0σ2σ1σ1σ2.
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