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ANALOGUES OF THE WIENER TAUBERIAN AND SCHWARTZ
THEOREMS FOR RADIAL FUNCTIONS ON SYMMETRIC

SPACES

E. K. NARAYANAN AND ALLADI SITARAM

We prove a Wiener Tauberian theorem for the L1 spherical functions on a
semisimple Lie group of arbitrary real rank. We also establish a Schwartz-
type theorem for complex groups. As a corollary we obtain a Wiener Taube-
rian type result for compactly supported distributions.

Introduction

Two celebrated theorems from classical analysis dealing with translation invari-
ant subspaces are the Wiener Tauberian theorem and the Schwartz theorem. Let
f ∈ L1(R) and f̃ be its Fourier transform. Then the Wiener Tauberian theorem
says that the ideal generated by f is dense in L1(R) if and only if f̃ is a nowhere
vanishing function on the real line.

The result due to L. Schwartz says that every closed translation invariant sub-
space V of C∞(R) is generated by the exponential polynomials in V . In particular,
such a V contains the function x→ eiλx for some λ ∈ C. Interestingly, this result
fails for Rn if n ≥ 2. Even though the exact analogue of the Schwartz theorem
fails in this case, it follows from the well-known theorem of Brown, Schreiber
and Taylor [Brown et al. 1973] that if V ⊂ C∞(Rn) is a closed subspace that is
translation and rotation invariant, then V contains ψs for some s ∈ C, where

ψs(x)= C Jn/2−1(s|x |)/(s|x |)n/2−1
=

∫
Sn−1

eisx .wdσ(w).

Here Jn/2−1 is the Bessel function of the first kind and of order n/2−1 and σ is the
unique, normalized rotation invariant measure on the sphere Sn−1. The constant C
is such that ψs(0) = 1. It also follows from the work in [Brown et al. 1973] that
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V contains all the exponentials ez.x if z = (z1, z2, . . . , zn) ∈ Cn satisfies z2
1+ z2

2+

· · ·+ z2
n = s2 for nonzero s. For s vanishing, ψs is just the constant function one.

Our aim in this paper is to prove analogues of these results in the context of
noncompact semisimple Lie groups.

1. Notation and preliminaries

For any unexplained terminology we refer to [Helgason 1994]. Let G be a con-
nected noncompact semisimple Lie group with finite center and K a fixed maximal
compact subgroup of G. Fix an Iwasawa decomposition G = K AN and let a be
the Lie algebra of A. Let a∗ be the real dual of a and a∗

C
its complexification. Let

ρ be the half sum of positive roots for the adjoint action of a on g, the Lie algebra
of G. The Killing form induces a positive definite form 〈 · , · 〉 on a∗× a∗. Extend
this form to a bilinear form on a∗

C
. We will use the same notation for the extension

as well. Let W be the Weyl group of the symmetric space G/K . Then there is a
natural action of W on a, a∗ and a∗

C
, and 〈 · , · 〉 is invariant under this action.

For each λ ∈ a∗
C

, let ϕλ be the elementary spherical function associated with λ.
Recall that ϕλ is given by the formula

ϕλ(x)=
∫

K
e(iλ−ρ)(H(xk))dk for x ∈ G.

See [Helgason 1994] for more details. It is known that ϕλ = ϕλ′ if and only if
λ′ = τλ for some τ ∈W . Let ` be the dimension of a and F denote the set (in C`)

F = a∗+ iCρ where Cρ = convex hull of {sρ : s ∈W }.

Then it is a well-known theorem of Helgason and Johnson that ϕλ is bounded if
and only if λ ∈ F .

Let I (G) be the set of all complex valued spherical functions on G, that is,

I (G)= { f : f (k1xk2)= f (x) for k1, k2 ∈ K , x ∈ G}.

Fix a Haar measure dx on G, and let I1(G) = I (G) ∩ L1(G). Then it is well
known that I1(G) is a commutative Banach algebra under convolution and that the
maximal ideal space of I1(G) can be identified with F/W .

For f ∈ I1(G), define its spherical Fourier transform f̂ on F by

f̂ (λ)=
∫

G
f (x)ϕ−λ(x)dx .

Then f̂ is a W -invariant bounded function on F that is holomorphic in the interior
F0 of F and is continuous on F . Also f̂ ∗ g = f̂ ĝ, where the convolution of f
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and g is defined by

( f ∗ g)(x)=
∫

G
f (xy−1)g(y)dy.

Next, we define the L1-Schwartz space of K -biinvariant functions on G, which
will be denoted by S(G). Let x ∈G. Then x = k exp X for k ∈ K and X ∈ p, where
g= k+p is the Cartan decomposition of the Lie algebra g of G. Put σ(x)= ‖X‖,
where ‖ · ‖ is the norm on p induced by the Killing form. For any left-invariant
differential operator D on G and any integer r ≥ 0, we define for a smooth K -
biinvariant function f

pD,r ( f )= sup
x∈G

(1+ σ(x))r |ϕ0(x)|−2
|D f (x)|,

where ϕ0 is the elementary spherical function corresponding to λ= 0. Define

S(G)= { f : pD,r ( f ) <∞ for all D, r}.

Then S(G) becomes a Fréchet space when equipped with the topology induced by
the family of seminorms pD,r .

Let P = P(a∗
C
) be the symmetric algebra over a∗

C
. Then each u ∈ P gives rise

to a differential operator ∂(u) on a∗
C

. Let Z(F) be the space of functions f on F
such that

(i) f is holomorphic in F0 (the interior of F) and continuous on F ;

(ii) if u ∈ P and m ≥ 0 is any integer, then

qu,m( f )= sup
λ∈F0

(1+‖λ‖2)m |∂(u) f (λ)|<∞;

(iii) f is W -invariant.

Then Z(F) is an algebra under pointwise multiplication and a Fréchet space
when equipped with the topology induced by the seminorms qu,m .

If a ∈ Z(F), we define the “wave packet” ψa on G by

ψa(x)=
1
|W |

∫
a∗

a(λ)ϕλ(x)|c(λ)|−2dλ,

where c(λ) is the well-known Harish-Chandra c-function. By the Plancherel the-
orem of Harish-Chandra, we also know that the map f → f̂ extends to a unitary
map from L2(K\G/K ) onto L2(a∗, |c(λ)|−2dλ). We can now state a result of
Trombi and Varadarajan [1971].

Theorem 1.1. (i) If f ∈ S(G), then f̂ ∈ Z(F).

(ii) If a ∈ Z(F), then the integral defining the “wave packet” ψa converges abso-
lutely, and ψa ∈ S(G). Moreover, ψ̂a = a.
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(iii) The map f → f̂ is a topological linear isomorphism of S(g) onto Z(F).

The plan of this paper is as follows. In Section 2, we prove a Wiener Tauberian
theorem for L1(K\G/K ) assuming more symmetry on the generating family of
functions. In Section 3, we establish a Schwartz-type theorem for complex semi-
simple Lie groups. As a corollary we also obtain a Wiener Tauberian-type theorem
for compactly supported distributions on G/K .

2. A Wiener Tauberian theorem for L1(K\G/K )

Ehrenpreis and Mautner [1955] observed that an exact analogue of the Wiener
Tauberian theorem is not true for the commutative algebra of K -biinvariant func-
tions on the semisimple Lie group SL(2,R). Here K is the maximal compact
subgroup SO(2). However, they did prove an analogue of the Wiener Tauberian
theorem under an additional “not too rapidly decreasing condition” on the spherical
Fourier transform: If f is a K -biinvariant integrable function on G = SL(2,R)

whose spherical Fourier transform f̂ does not vanish anywhere on the maximal
ideal space (which can be identified with a certain strip on the complex plane),
then f generates a dense subalgebra of L1(K\G/K ) provided f̂ does not vanish
too fast at∞.

There have been a number of attempts to generalize these results to L1(K\G/K )
or L1(G/K ), where G is a noncompact connected semisimple Lie group with
finite center. Almost complete results have been obtained when G is a real rank
one group. See [Benyamini and Weit 1992; Ben Natan et al. 1996; Sarkar 1998;
Sitaram 1988] for results on rank one case. See also [Sarkar 1997] for a result on
the whole group SL(2,R).

Sitaram [1980] proved that under suitable conditions on the spherical Fourier
transform of a single function f , an analogue of the Wiener Tauberian theorem
holds for L1(K\G/K )with no assumptions on the rank of G. Recently, Narayanan
[2009] improved this result to include the case of a family of functions rather
than just a single function. One difference between rank one results and those of
higher rank has been the precise form of the “not too rapid decay condition”. In
[Sitaram 1980; Narayanan 2009], this condition on the spherical Fourier transform
of a function is assumed to be true on the whole maximal domain, while for rank
one groups it suffices impose this condition on a∗; see [Benyamini and Weit 1992;
Sarkar 1998]. (An important corollary of this is that in the rank one case one can
get a Wiener Tauberian-type theorem for a wide class of functions purely in terms
of the nonvanishing of the spherical Fourier transform in a certain domain, without
having to check any decay conditions; see [Mohanty et al. 2004, Theorem 5.5].) In
the first part of this paper we show that such a stronger result is true for the higher
rank case as well, provided we assume more symmetry on the generating family
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of functions, and again as a corollary we get a result of the type alluded to in the
parenthesis above.

If dim a∗ = `, then a∗
C

may be identified with C` and a point λ ∈ a∗
C

will be
denoted λ= (λ1, λ2, . . . λ`). Denote by r(λ) its radius (λ2

1+λ
2
2+· · ·+λ

2
`)

1/2. Let
BR denote the ball of radius R centered at the origin in a∗, and let FR denote the
domain in a∗

C
defined by

FR = {λ ∈ a∗C : ‖Im(λ)‖< R}.

For a > 0, let Ia denote the strip in the complex plane defined by

Ia = {z ∈ C : |Im z|< a}.

Now, suppose that f is a holomorphic function on FR and that f depends only on
r(λ). Then it is easy to see that g(s)= f (λ1, λ2, . . . λ`), where s2

= r(λ)2 defines
an even holomorphic function on IR and vice versa.

We will need some lemmas. Let A(Ia) denote the collection of functions g such
that

(i) g is even, bounded and holomorphic on Ia ,

(ii) g is continuous on Īa , and

(iii) lim|s|→∞ g(s)= 0.

Then A(Ia) with the supremum norm is a Banach algebra under pointwise mul-
tiplication.

Lemma 2.1. Let {gα : α ∈ 3} be a collection of functions in A(Ia). Assume that
there is no s ∈ Īa such that gα(s)= 0 for all α ∈ I . Further assume that there exists
α0 ∈ I such that gα0 does not decay very rapidly on R, that is,

lim sup
|s|→∞

|gα0(s)|e
ke|s| > 0 for all k > 0.

Then the closed ideal generated by {gα : α ∈ I } is the whole of A(Ia).

Proof. Let ψ be a suitable biholomorphic map that maps the strip Ia onto the unit
disc; see [Benyamini and Weit 1992]. Let hα(z) = gα(ψ(z)). Then hα ∈ A0(D),
where A0(D) is the collection of even holomorphic functions h on the unit disc
that are continuous up to the boundary and satisfy h(i) = h(−i) = 0. The not
too rapid decay condition on R is precisely what is needed to apply the Beurling–
Rudin theorem to complete the proof. See the proofs of [Benyamini and Weit 1992,
Theorem 1.1 and Lemma 1.2] for the details. �

Let pt denote the K -biinvariant function defined by p̂t(λ)= e−t〈λ,λ〉. It is easy
to see that pt ∈ S(G).
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Lemma 2.2. Let J ⊂ L1(K\G/K ) be a closed ideal. If pt ∈ J for some t > 0,
then J = L1(K\G/K ).

Proof. Since p̂t has no zeros and does not decay too rapidly, this immediately
follows from the main result in [Narayanan 2009] or [Sitaram 1980]. �

We say a function f ∈ L1(K\G/K ) is radial if the spherical Fourier transform
f̂ (λ) is a function of r(λ). Notice that, if the group G is of real rank one, then the
class of radial functions is precisely the class of K -biinvariant functions in L1(G).
When the group G is complex, it is possible to describe the class of radial functions
(see the next section). The following is our main theorem in this section:

Theorem 2.3. Let { fα : α ∈ I } be a collection of radial functions in L1(K\G/K ).
Assume that the spherical transform f̂α extends as a bounded holomorphic function
to the bigger domain FR , where R > ‖ρ‖ with lim|λ|→∞ f̂α(λ) = 0 for all α and
that there exists no λ∈ FR such that f̂α(λ)= 0 for all α. Further assume that there
exists an α0 such that f̂α0 does not decay too rapidly on a∗, that is,

lim sup
|λ|→∞

| f̂α0(λ)| exp(ke|λ|) > 0 for all k > 0.

Then the closed ideal generated by { fα : α ∈ I } is all of L1(K\G/K ).

Proof. Since fα is radial, each f̂α gives rise to an even bounded holomorphic
function gα(s) on the strip IR . If |ρ| < a < R, then the collection {gα(s) : α ∈ I }
satisfies the hypotheses in Lemma 2.1 on the domain Ia . It follows that the family
{gα} generates A(Ia). In particular, we have a sequence

hn
1(s)gα1(n)(s)+ hn

2(s)gα2(n)(s)+ · · ·+ hn
k (s)gαk(n)(s)→ e−s2/2

uniformly on Īa , where gα j (n) are in the given family and hn
j (s) ∈ A(Ia).

Each hn
j can be viewed as a holomorphic function on the domain Fa contained

in a∗
C

that depends only on r(λ). Since the hn
j are bounded and |ρ| < a it can be

easily checked that e−〈λ,λ〉/2hn
j (λ) ∈ Z(F). Again, an application of the Cauchy

integral formula says that

e−〈λ,λ〉/2hn
1(λ) f̂α1(n)(λ)+ e−〈λ,λ〉/2hn

2(λ) f̂α2(n)(λ)+ · · · e
−〈λ,λ〉/2hn

k (λ) f̂αk(n)(λ)

converges to e−〈λ,λ〉 in the topology of Z(F); see the proof of [Benyamini and Weit
1992, Theorem 1.1]. By Theorem 1.1, this simply means that the ideal generated
by { fα : α ∈ I } in L1(K\G/K ) contains the function p , where p̂(λ)= e−〈λ,λ〉. We
finish the proof by appealing to Lemma 2.2. �

Corollary 2.4. Let { fα : α ∈ I } be a family of radial functions satisfying the
hypotheses of Theorem 2.3. Then the closed subspace spanned by the left G-
translates of the this family is all of L1(G/K ).
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Proof. Let J be the closed subspace generated by the left translates of the given
family. By Theorem 2.3, L1(K\G/K )⊂ J . Now, it is easy to see that J has to be
equal to L1(G/K ). �

Corollary 2.5. Let { fα : α ∈ I } be a family of L1-radial functions. Assume that
each f̂α extends to a bounded holomorphic function on the bigger domain FR for
some R > ‖ρ‖. Assume further that lim‖λ‖→∞ f̂α(λ)→ 0. If there exists an α0

such that fα0 is not equal to a real analytic function almost everywhere, then the
left G-translates of the family above span a dense subset of L1(G/K ).

Proof. This follows exactly as in [Mohanty et al. 2004, Theorem 5.5]. �

3. Schwartz theorem for complex groups

When G is a connected noncompact semisimple Lie group of real rank one with
finite center, a Schwartz-type theorem was proved by Bagchi and Sitaram [1979].
Let K be a maximal compact subgroup of G. Then their result states the following:
Let V be a closed subspace of C∞(K\G/K ) with the property that f ∈ V implies
w ∗ f ∈ V for every compactly supported K -biinvariant distribution w on G/K .
Then V contains an elementary spherical function ϕλ for some λ ∈ a∗

C
. This was

proved by establishing a one-one correspondence between ideals in C∞(K\G/K )
and those of C∞(R)even. This also proves that a similar result cannot hold for
higher rank groups.

Going back to Rn , we notice that if f ∈ C∞(Rn) is radial, then the translation
invariant subspace V f generated by f is also rotation invariant. It follows from
[Brown et al. 1973] that V f contains ψs for some s ∈ C, where ψs is the Bessel
function defined in the introduction. Our aim in this section is to prove a similar
result for the complex semisimple Lie groups. Our definition of radiality, taken
from [Volchkov and Volchkov 2008], coincides with the definition in the previous
section when the function is in L1(K\G/K ).

Throughout this section we assume that G is a complex semisimple Lie group.
Let Exp :p→G/K denote the map P→ (exp P)K . Then Exp is a diffeomorphism.
If dx denotes the G-invariant measure on G/K , then

(1)
∫

G/K
f (x)dx =

∫
p

f (Exp P)J (P)d P,

where
J (P)= det

(sinh ad P
ad P

)
.

Since G is a complex group, the elementary spherical functions are given by a
simple formula:

(2) ϕλ(Exp P)= J (P)−1/2
∫

K
ei〈Aλ,Ad(k)P〉dk for P ∈ p.
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Here Aλ is the unique element in aC such that λ(H)= 〈A, Aλ〉 for all H ∈ aC.
Let E(K\G/K ) be the strong dual of C∞(K\G/K ). Then E(K\G/K ) can

be identified with the space of compactly supported K -biinvariant distributions
on G/K . If w is such a distribution, then ŵ(λ) = w(ϕλ) is well defined and
is called the spherical Fourier transform of w. By the Paley–Wiener theorem, we
know that λ→ ŵ(λ) is an entire function of exponential type. Similarly, E(R`)will
denote the space of compactly supported distribution on R` and E W (R`) consists
of the Weyl group invariant ones. From the work of Gangolli and others, as noted
in [Bagchi and Sitaram 1979], we know that the Abel transform

S : E(K\G/K )→ E W (R`)

is an isomorphism and S̃(w)(λ) = ŵ(λ) for w ∈ E(K\G/K ), where S̃(w)(λ) is
the Euclidean Fourier transform of the distribution S(w).

Proposition 3.1 [Bagchi and Sitaram 1979]. There exists a linear topological iso-
morphism T from C∞(K\G/K ) onto C∞(R`)W such that

S(w)(T ( f ))= w( f )

for all w ∈ E(K\G/K ) and f ∈ C∞(K\G/K ). We also have

S(w′) ∗ T (w ∗ f )= T (w′ ∗w ∗ f )

for all w,w′ ∈ E(K\G/K ) and f ∈ C∞(K\G/K ). Moreover,

T (ϕλ)(x)=
1
|W |

∑
τ∈W

exp(i〈τ.λ, x〉).

A K -biinvariant function f is called radial if it is of the form

f (x)= J (Exp−1 x)−1/2u(d(0, x)),

where d is the Riemannian distance induced by the Killing form on G/K and u is
a function on [0,∞). Then [Volchkov and Volchkov 2008, Theorem 4.6] shows
that this definition of radiality coincides with the one in the previous section if the
function is integrable. That is, f ∈ L1(K\G/K ) has the above form if and only
if the spherical Fourier transform f̂ (λ) depends only on r(λ). We denote the class
of smooth radial functions by C∞(K\G/K )rad, and C∞c (K\G/K )rad will consist
of compactly supported functions in C∞(K\G/K )rad.

For f ∈ C∞(K\G/K ) define

f #(Exp P)= J (P)−1/2
∫

SO(p)
J (σ.P)1/2 f (σ.P)dσ,
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where SO(p) is the special orthogonal group on p and dσ is the Haar measure
on SO(p). Here, by f (P) we mean f (Exp P). Clearly, f → f # is the projection
from C∞(K\G/K ) onto C∞(K\G/K )rad.

Proposition 3.2. (a) The space C∞(K\G/K )rad is reflexive.

(b) The strong dual E(K\G/K )rad of C∞(K\G/K )rad is given by

{w ∈ E(K\G/K ) : ŵ(λ) is a function of r(λ)}.

(c) C∞(K\G/K )rad is invariant under convolution by w ∈ E(K\G/K )rad.

Proof. (a) The space C∞(K\G/K )rad is a closed subspace of C∞(K\G/K ), which
is a reflexive Fréchet space.

(b) Define Bλ = ϕ#
λ, the projection of ϕλ into C∞(K\G/K )rad. A simple compu-

tation shows that

Bλ(Exp P)= J (P)−1/2
∫

SO(p)
ei〈Aλ,σ.P〉dσ.

It is clear that Bλ as a function of λ depends only on r(λ). Now, letw∈E(K\G/K ).
Define a distributionw# byw#( f )=w( f #). It is easy to see thatw# is a compactly
supported K -biinvariant distribution. Clearly, if w ∈ E(K\G/K )rad, then w=w#.
It follows that ŵ(λ)= w(ϕλ)= w(Bλ). Consequently, ŵ(λ) is a function of r(λ).
It also follows that E(K\G/K )rad is reflexive.

(c) If w ∈ E(K\G/K )rad and g ∈C∞c (K\G/K )rad, then w∗g ∈C∞c (K\G/K )rad.
This follows from (b) above and [Volchkov and Volchkov 2008, Theorem 4.6].
Next, if g is arbitrary, we may approximate g with gn ∈ C∞c (K\G/K )rad. �

We can now state our main result in this section. Let V be a closed subspace
of C∞(K\G/K )rad. We say V is an ideal in C∞(K\G/K )rad if f ∈ V and
w ∈ E(K\G/K )rad implies that w ∗ f ∈ V .

Theorem 3.3. (a) If V is a nonzero ideal in C∞(K\G/K )rad, then there exists a
λ ∈ a∗

C
such that Bλ ∈ V .

(b) If f ∈ C∞(K\G/K )rad, then the closed left G-invariant subspace generated
by f in C∞(G/K ) contains ϕλ for some λ ∈ a∗

C
.

Proof. We closely follow the arguments in [Bagchi and Sitaram 1979].

(a) Notice that the map

S : E(K\G/K )rad→ E(R`)rad

is a linear topological isomorphism. Using the reflexivity of the spaces involved
and arguing as in [Bagchi and Sitaram 1979] we obtain that (as in Proposition 3.1)

T : C∞(K\G/K )rad→ C∞(R`)rad
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is a linear topological isomorphism, where C∞(R`)rad stands for the space of C∞

radial functions on R` and

S(w)(T ( f ))= w( f ) for all w ∈ E(K\G/K )rad, f ∈ C∞(K\G/K )rad.

Another application of Proposition 3.1 implies that we have a bijection between
the ideals in C∞(K\G/K )rad and C∞(R`)rad. Here, an ideal in C∞(R`)rad is a
closed subspace invariant under convolution by compactly supported radial distri-
butions on R`. From [Bagchi and Sitaram 1990] or [Brown et al. 1973], any ideal
in C∞(R`)rad contains ψs (Bessel function) for some s ∈C. To complete the proof
it suffices to show that under the topological isomorphism T the function Bλ is
mapped into ψs , where s2

= r(λ)2.
Now, we have S(w)(T (Bλ))=w(Bλ). Since w ∈ E(K\G/K )rad, we know that

w(Bλ) is nothing but w(ϕλ), which equals (̃Sw)(λ). Since S is onto, this implies
that T (Bλ)= ψs , where s2

= r(λ)2.

(b) From [Bagchi and Sitaram 1979] we know that T (ϕλ) = 8λ where 8λ(x) =
|W |−1∑

τ∈W exp(iτλ.x). Let V f denote the left G-invariant subspace generated
by f . Then T (V f ) surely contains the space

VT ( f ) = {S(w) ∗ T ( f ) : w ∈ E(K\G/K )}.

From Proposition 3.2, T ( f ) is a radial C∞ function on R`. Hence, from [Brown
et al. 1973], the translation invariant subspace XT ( f ) generated by T ( f ) in C∞(R`)
contains ψs for some s ∈ C. Consequently, if s 6= 0, the space XT ( f ) will contain
all the exponentials ei z.x , where z = (z1, z2, . . . , z`) satisfies r(z)2 = s2. If s = 0,
then XT ( f ) contains the constant functions. Now, it is easy to see that the map
XT ( f ) → VT ( f ), x 7→ |W |−1∑

τ∈W g(τ.x) is surjective. Hence, there exists a
λ ∈ Cl such that 8λ ∈ VT ( f ). Since T (ϕλ)=8λ, this finishes the proof. �

Our next result is a Wiener Tauberian-type theorem for compactly supported
distributions. Let E(G/K ) denote the space of compactly supported distributions
on G/K . If g ∈G and w ∈ E(G/K ), then the left g-translate of w is the compactly
supported distribution gw defined by

gw( f )= w(g
−1

f ) for f ∈ C∞(G/K ),

where x f (y)= f (x−1 y).

Theorem 3.4. Suppose {wα : α ∈ I } is a family of distributions contained in
E(K\G/K )rad. Then the left G-translates of this family span a dense subset of
E(G/K ) if and only if there is no λ ∈ a∗

C
such that ŵα(λ)= 0 for all α ∈ I .

Proof. We start with the “if” part of the theorem. Let J stand for the closed span
of the left G-translates of the distributions wα in E(G/K ). It suffices to show
that E(K\G/K ) ⊂ J . To see this, let f ∈ C∞(G/K ) be such that w( f ) = 0 for
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all w ∈ E(K\G/K ). Since J is left G-invariant, we also have w( fg) = 0 for all
g ∈ G, where fg is the K -biinvariant function defined by fg(x) =

∫
K f (gkx)dk.

It follows that fg ≡ 0 for all g ∈ G and consequently f ≡ 0.
Next, we claim that E(K\G/K )⊂ J if E(K\G/K )rad ⊂ J . To prove this it is

enough to show that

{g ∗w : w ∈ E(K\G/K )rad, g ∈ C∞c (K\G/K )}

is dense in E(K\G/K ). By Proposition 3.2, the map S from E(K\G/K ) onto
E(R`)W is a linear topological isomorphism mapping E(K\G/K )rad onto E(R`)rad

isomorphically. Hence, it suffices to prove a similar statement for E(R`)rad and
E(R`)W — an easy exercise in distribution theory.

So, to complete the proof of Theorem 3.4 we only need to show that

{g ∗wα : α ∈ I, g ∈ C∞c (K\G/K )rad}

is dense in E(K\G/K )rad. If not, consider

Jrad = { f ∈ C∞(K\G/K )rad : (g ∗wα)( f )= 0 for all g ∈ C∞c (K\G/K ), α ∈ I }.

This set is clearly a closed subspace of C∞(K\G/K )rad that is invariant under
convolution by C∞c (K\G/K )rad. By Theorem 3.3 we have Bλ ∈ Jrad for some
λ ∈ a∗

C
. It follows that ŵα(λ) = 0 for all α ∈ I , which is a contradiction. This

finishes the proof.
For the “only if” part, it suffices to observe that if g ∈ C∞c (G/K ) then

g ∗wα(ϕλ)= ĝ#(λ)ŵα(λ), where g#(x)=
∫

K g(kx)dk. �

Remark. A single distribution w ∈ E(K\G/K )rad cannot generate the whole of
E(G/K ) unless w is the measure supported at the identity coset. This is because
ŵ cannot have zeroes, and so by the Hadamard factorization theorem it has to be
an exponential function, which in turn has to be a constant due to the Weyl group
invariance.

Remark. A similar theorem for all rank one groups (not necessarily complex) may
be derived from the results in [Bagchi and Sitaram 1990].
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