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A GLUING CONSTRUCTION
FOR PRESCRIBED MEAN CURVATURE

ADRIAN BUTSCHER

The gluing technique is used to construct hypersurfaces in Euclidean space
having approximately constant prescribed mean curvature. These surfaces
are perturbations of unions of finitely many spheres of the same radius as-
sembled end-to-end along a line segment. The condition on the existence of
these hypersurfaces is the vanishing of the sum of certain integral moments
of the spheres with respect to the prescribed mean curvature function.

1. Introduction

In [Butscher and Mazzeo 2008] we have constructed examples of constant mean
curvature (CMC) hypersurfaces in a Riemannian manifold M with axial symmetry
by gluing together small spheres positioned end-to-end along a geodesic γ. These
examples have very large mean curvature 2/r and lie within a distance O(r) of
either a segment or a ray of γ; hence we say that these surfaces condense to the
appropriate subset of γ. Such surfaces cannot exist in Euclidean space, and their
existence relies on the fact that the gradient of the ambient scalar curvature of M
acts as a “friction term” that permits the usual analytic gluing construction (akin
to the classical gluing constructions pioneered by Kapouleas [1990a; 1991]) to
be carried out. The purpose of this paper is to show the same techniques used
in [Butscher and Mazzeo 2008] can be adapted in a straightforward manner to
show that a similar construction is possible in a much simpler yet fairly general
context: that of hypersurfaces having prescribed near-constant mean curvature in
Euclidean space, in a certain sense to be explained forthwith. The essence of the
gluing construction carried out herein therefore lies in identifying and appropriately
exploiting the analogous friction term appearing in this setting.

Let F :Rn+1
×T Rn+1

→R be a given, fixed smooth function. For simplicity and
to maintain the parallel with the earlier paper, we will assume that F has cylindrical
symmetry in the following sense. Endow Rn+1 with coordinates (x0, x1, . . . , xn)

and let G ⊆ O(n+1) be the set of orthogonal transformations that fix the x0-axis.
Each rotation R ∈G acts on T Rn+1 via the differential R∗ : T Rn+1

→ T Rn+1. We

MSC2000: 53A10, 58J05.
Keywords: gluing constructions, prescribed mean curvature.
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258 ADRIAN BUTSCHER

will now demand that F(R(p), R∗Vp)= F(p, Vp) for all (p, Vp)∈Rn+1
×T Rn+1.

The prescribed mean curvature problem that will be solved in this paper is to find,
for every sufficiently small r ∈R+, a G-invariant hypersurface 6r which satisfies

(1-1) H [6r ](p)= 2+ r2 F(p, N6r (p)) for all p ∈6r ,

where H [6r ] is the mean curvature of 6r and N6r is the unit normal vector field
of 6r . Note that we are not “prescribing” mean curvature in the usual sense;
i.e., we don’t have an a priori curvature function in mind that should equal the
mean curvature of the hypersurfaces we construct. Instead, we should understand
“prescribed mean curvature” to mean that a fixed external quantity (the function F)
imposes an extra condition on the geometry of the hypersurface, which must adjust
itself in R3 in order to satisfy this condition. Consequently, we won’t know exactly
the value of the mean curvature function, but we will know that it is near-constant
and that the external condition is satisfied.

The prescribed mean curvature hypersurfaces of this paper will be built by gluing
together a finite number K of spheres of radius one (and thus of mean curvature
exactly equal to two) whose centers lie on the x0-axis using small catenoidal necks
having the x0-axis as their axes of symmetry. In order to properly state the Main
Theorem, we must make the following definition, which is meant to capture the
most important effect of the prescribed mean curvature function F on the surface
whose construction is accomplished in this paper.

Definition 1.1. Let S be a compact surface in Rn+1. The F-moment of S is the
quantity

µF (S) :=
∫

S
F(x, NS(x)) J dVolS

where NS is the unit normal vector field of S and dVolS is the induced volume form
of S, while J : S→ R is defined by J (x) := 〈∂/∂x0, NS(x)〉 for x ∈ S.

Now let p0
k (s) := (s + 2(k−1), 0, . . . , 0) and consider the spheres Sk(s) :=

∂B1(p0
k (s)). These spheres are positioned along the x0-axis in such a way that

each Sk(s) makes tangential contact with Sk±1(s). The following theorem will be
proved in this paper.

Main Theorem. Suppose that there is s0 ∈ R such that

• the F-moments of the spheres Sk(s0) satisfy
∑K

k=1 µF (Sk(s0))= 0, and

• the function s 7→
∑K

k=1 µF (Sk(s)) has nonvanishing derivative at s = s0,

then for all sufficiently small r > 0, there is a smooth, embedded hypersurface 6r

which is a small perturbation of
⋃K

k=1 Sk(s0) that satisfies the prescribed mean
curvature equation (1-1).
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It is easy to find a situation in which the conditions of the Main Theorem hold.
For example: if F( · , · ) is such thatµF (∂B1(x0, x1, . . . , xn)) is negative whenever
x0 is sufficiently negative and positive whenever x0 is sufficiently positive, the
mean value theorem asserts that the function s 7→

∑K
k=1 µF (Sk(s)) has a zero.

And if also F(x, · ) is monotone as a function of x0, this function will have nonzero
derivative.

An application of the Main Theorem, and indeed an inspiration for it, is the
earlier work by Kapouleas [1990b] on slowly rotating assemblies of water droplets.
In this case, the prescribed mean curvature function F : Rn+1

×T Rn+1
→ R takes

the form F(p, N6r (p)) := C(ω)(p0)2 where p := (p0, p1, . . . pn) and C(ω) de-
pends on the angular velocity ω. The prescribed mean curvature equation now
approximates the effect of centrifugal force on the surface 6r when ω is small.
One of the assemblies of water droplets that Kapouleas constructs is exactly as
described in the Main Theorem. (He constructs many other, more complex, and
less symmetrical assemblies as well.)

Another application of the Main Theorem is for understanding the possible
shapes an electrically charged soap film can adopt in the presence of a weak, axially
symmetric electric field. In this case, the equation satisfied by the surface adopted
by the soap film is exactly (1-1), where the prescribed mean curvature function
F : Rn+1

× T Rn+1
→ R takes the form F(p, N6r (p)) := −C〈∇φ(p), N6r (p)〉

and φ : Rn+1
→ R is the electric potential and C is a constant. We can see why

this is so by writing the total energy of the soap film as the sum of a surface area
term and a term proportional to the surface integral of φ, and then computing the
Euler-Lagrange equation for the variation of this energy subject to the constraint
that the volume enclosed by the surface remains constant. If we now assume that
φ is such that the existence conditions of the Main Theorem hold, then the Main
Theorem asserts that K spherical, electrically charged soap films connected by
small catenoidal necks can be held in equilibrium at special points in space by the
electric field.

2. The approximate solution

To construct an approximate solution for the Main Theorem, we use essentially
exactly the same procedure as in [Butscher and Mazzeo 2008, §3.1]. This will be
outlined here very briefly for the convenience of the reader. The presentation is
given for the dimension n = 2 for simplicity; everything that follows can be easily
adapted to the (n+ 1)-dimensional setting.

Endow R3 with coordinates (x0, x1, x2), and let γ be the x0-axis and γ(t) be the
arc-length parametrization of the x0-axis with γ(0) = (0, 0, 0). We will construct
an approximate solution for the Main Theorem out of K spheres of radius one as
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follows. Choose a localization parameter s ∈ R and small separation parameters
σ1, . . . , σK−1∈R+. Define s1 := s and sk := s+2(k−1)+

∑k−1
l=1 σl for k=2, . . . , K

and set pk := γ(sk) and p±k := γ(sk±1). Define the spheres Sk := ∂B1(pk). These
spheres will now be joined together according to the following three steps.

Step 1. The first step is to replace each Sk with the surface S̃k obtained by taking
the normal graph of a specially chosen function Gk over Sk \[Bρk (p

+

k )∪ Bρk (p
−

k )]

where ρk ∈ (0, 1) is a small radius as yet to be determined. The functions we use
for this purpose can be defined as follows. Let LS2 := 1S2 + 2 be the linearized
mean curvature operator of the unit sphere, let ε±k be yet-to-be-determined small
scale parameters and let Jk := 〈∂/∂x0, NSk 〉 be the sole G-invariant function in the
kernel of LS2 normalized to have unit L2-norm. Then the functions Gk should
satisfy the equations

LS2(Gk)= ε
+

k δ(p
+

k )+ ε
−

k δ(p
−

k )+ Ak Jk if k = 2, . . . K − 1,

LS2(G1)= ε
+

1 δ(p
+

1 )+ A1 J1 if k = 1,

LS2(GK)= ε
−

K δ(p
−

K )+ AK JK if k = K ,

where δ(q) is the Dirac δ-function centered at q and Ak is chosen to ensure L2-
orthogonality to Jk . (Of course Jk = x0

|Sk , the restriction of the x0 coordinate
function to Sk). Furthermore, Gk should be chosen L2-orthogonal to Jk , normal-
ized to have unit L2-norm, and to be positive in a neighborhood of p+k .

Step 2. Let 4 be the catenoid, i.e., the unique complete minimal surface of rev-
olution whose axis of symmetry is γ and whose waist lies in the (x1, x2)-plane.
The next step is to find the truncated and rescaled catenoidal neck of the form
4k := Bρ′k (p

[
k) ∩ [εk4+ p[k + (δk, 0, 0)] that fits optimally in the space between

S̃k and S̃k+1 for k = 2, . . . , K − 1. Here εk > 0 is a small scale parameter and
p[k is a point between p+k and p−k+1 that are determined by the optimal fitting
procedure while δk is a small vertical displacement parameter that takes 4k away
from its optimal location and ρ ′k is a small radius as yet to be determined. The
optimal fit is obtained by matching the asymptotic expansions of the functions
giving S̃k ∩ Bρ′k (p

[
k) and S̃k+1∩ Bρ′k (p

[
k) and 4k as graphs over the translate of the

(x1, x2)-plane passing through p[k exactly as in [Butscher and Mazzeo 2008, §3.1].
One particularly important outcome of the matching is that εk from the previous
step, as well as ε±k and p[k are all uniquely determined by σk . In fact, an invertible
relationship of the form σk :=3k(εk) holds, with3k(εk)=O(εk |log(εk)|). Finally,
we find that we must choose ρk, ρ

′

k = O(ε
3/4
k ) to ensure the optimal fit between the

necks and the perturbed spheres.

Step 3. The final step is to use cut-off functions to smoothly glue the neck 4k

into the space between S̃k and S̃k+1. In this way we obtain a family of surfaces
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depending on the σ , δ and s parameters. Denote the neck modified by the cut-off
functions by 4̃k . The interpolating region is the annulus Bρ′k (p

[
k) \ Bρ′k/2(p

[
k).

Definition 2.1. Let K be given. The approximate solution with parameters σ :=
{σ1, . . . , σK−1} and δ := {δ1, . . . , δK−1} and s is the surface given by

6̃(σ, δ, s) :=
K⋃

k=1
S̃k ∪

K−1⋃
k=1

4̃k .

3. Solving the projected problem

We now proceed to solve (1-1) up to a finite-dimensional error term by perturb-
ing the approximate solution constructed in the previous section. The required
analysis is in most respects identical to or less involved than the analysis found
in [Butscher and Mazzeo 2008, SS4–6] and will thus again only be abbreviated
here for the sake of the reader. The outcome will be a surface 6]r (σ, δ, s) sat-
isfying H [6]r (σ, δ, s)] − 2− r2 F |

6
]
r (σ,δ,s)

∈ W̃, where W̃ is a finite-dimensional
space of functions that will be defined precisely below. It arises because the lin-
earized mean curvature operator, which governs the solvability of (3-1), possesses a
finite-dimensional approximate kernel consisting of eigenfunctions corresponding
to small eigenvalues. These small eigenvalues make it impossible to implement a
convergent algorithm for prescribing the components of the mean curvature of the
approximate solution lying in W̃.

Function spaces. We first define the weighted Hölder spaces in which the analysis
will be carried out. These are essentially the same weighted spaces as in [Butscher
and Mazzeo 2008, §4], namely the spaces Ck,α

ν (6̃(σ, δ, s)) consisting of all Ck,α
loc

functions on 6̃(σ, δ, s) where the rate of growth in the neck regions of 6̃(σ, δ, s)
is controlled by the parameter ν. Choose some fixed, small 0< R� 1 and define
a weight function ζ : 6̃(σ, δ, s)→ R as

ζ(p) :=


‖x‖ for p = (x0, x) ∈ B̄R/2(p[k) for some k,
interpolation for p ∈ B̄R(p[k) \ BR/2(p[k) for some k,
1 elsewhere,

where the interpolation is such that ζ is smooth and monotone in the region of
interpolation, has appropriately bounded derivatives, and is G-invariant. Now, for
any open set U⊆ 6̃(σ, δ, s), define

| f |Ck,α
ν (U) :=

k∑
i=0

|ζ i−ν
∇

i f |0,U+ [ζ
k+α−ν

∇
k f ]α,U,

where | · |0,U is the supremum norm on U and [ · ]α,U is the α-Hölder coefficient
on U. This is the norm that will be used in the Ck,α

ν (6̃(σ, δ, s)) spaces.
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The equation to solve. Let µ : C2,α
ν (6̃(σ, δ, s))→ Emb(6̃(σ, δ, s),Rn+1) be the

exponential map of 6̃(σ, δ, s) in the direction of the unit normal vector field of
6̃(σ, δ, s). Hence µ f (6̃(σ, δ, s)) is the normal deformation of 6̃(σ, δ, s) gener-
ated by f ∈ C2,α

ν (6̃(σ, δ, s)). The equation

(3-1) H
[
µ f (6̃(σ, δ, s))

]
= 2+ r2 F ◦

(
µ f × Nµ f (6̃(σ,δ,s))

)
selects f ∈ C2,α

ν (6̃(σ, δ, s)) so that µ f (6̃(σ, δ, s)) satisfies (1-1). In addition, the
function f will be assumed G-invariant. Define the operator

8r,σ,δ,s : C2,α
ν (6̃(σ, δ, s))→ C0,α

ν−2(6̃(σ, δ, s))

by
8r,σ,δ,s( f ) := H

[
µ f (6̃(σ, δ, s))

]
− 2− r2 F( f ),

where F( f ) := F ◦ (µ f × Nµ f (6̃(σ,δ,s))). The linearization of 8r,σ,δ,s at zero is
given by

L := D8r,σ,δ,s(0)

=1+‖B‖2+ r2(D1 F(µ0, N6̃(σ,δ,s)) · f N6̃(σ,δ,s)−D2 F(µ0, N6̃(σ,δ,s)) · ∇ f
)
,

where D1 F and D2 F are the derivatives of F in its first and second slots and
B := B[6̃(σ, δ, s)] is the second fundamental form of 6̃(σ, δ, s).

The space W̃ is defined as follows. On the k-th spherical part of 6̃(σ, δ, s), the
operator L is a small perturbation of Lk :=1Sk + 2 which is the linearized mean
curvature operator of the sphere Sk . Let Jk once again be the G-invariant function
in its kernel. Now let 5ext,k : S̃k→ Sk \[Bρk (p+k )∪ Bρk (p−k )] for k = 1, . . . , K −1
and also5ext,1 : S̃1→ S1\Bρk (p+k ) and5ext,K : S̃K→ SK \Bρk (p−K ) be the nearest-
point projection mappings and define J̃k := Jk◦5ext,k . Finally, let χext,k be a smooth
cut-off function supported on S̃k and let ηk be a smooth cut-off function supported
on the transition region between the k-th neck and S̃k with the property that the
support of ∇ηk and ∇χext,k do not overlap (this technical assumption is needed in
the fine details of the analysis carried out in [Butscher and Mazzeo 2008]).

Definition 3.1. The space W̃ is defined as

W̃ := span{χext,k J̃k : k = 1, . . . , K } ∪ {χext,kLk(ηk) : k = 1, . . . , K − 1} .

We now prove the following theorem. Let ε := max{ε1, . . . , εK−1} and δ :=
max{δ1, . . . , δK−1} and we will assume that ε= O(r2) and δ= O(r), which will be
justified a posteriori.

Theorem 3.2. If r > 0 is sufficiently small, then there exists f := fr (σ, δ, s) ∈
C2,α
ν (6̃(σ, δ, s)) with ν ∈ (1, 2) so that

(3-2) 8r,σ,δ,s( f ) ∈ W̃ .
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The estimate | f |C2,α
ν
≤ Cr2 holds for the function f , where the constant C is inde-

pendent of r . Finally, the mapping (σ, δ, s) 7→ fr (σ, δ, s) is smooth in the sense of
Banach spaces.

Proof. As in [Butscher and Mazzeo 2008], we will use a fixed-point argument
to solve the equation 8r,σ,δ,s( f ) ∈ W̃ for a function f ∈ C2,α

ν (6̃(σ, δ, s)) with
ν ∈ (1, 2). The fixed-point argument follows from three steps: an estimate of
the size of 8r,s,σ,δ,s(0); the construction of a bounded parametrix R satisfying
L◦R= id+E where E :C0,α

ν−2(6̃(σ, δ, s))→ W̃; and an estimate of the nonlinear
part of the operator8r,σ,δ,s . Each of these steps is given in great detail in the paper
cited, so we just point out how the analysis there applies to the present situation.

Step 1. We begin with the estimate of |8r,σ,δ,s(0)|C0,α
ν−2

, the amount that the approx-
imate solution 6̃(σ, δ, s) deviates from being an actual solution of (3-1). This is
done by adapting [Butscher and Mazzeo 2008, Proposition 13]. In fact, by using
that proposition’s steps 1, 2 and 4 in the estimate of H [6̃(σ, δ, s)]−2 in the C0,α

ν−2
norm for ν ∈ (1, 2), together with a straightforward estimate for the C0,α

ν−2 norm of
the r2F term, we find that∣∣8r,σ,δ,s(0)

∣∣
C0,α
ν−2
≤ C max{r2, ε3/2−3ν/4, δε1−3ν/4

} ≤ Cr2

for some constant C independent of r .

Step 2. We now find a parametrix

R : C0,α
ν−2(6̃(σ, δ, s))→ C2,α

ν (6̃(σ, δ, s))

satisfying L ◦R= id+E, where E : C0,α
ν−2(6̃(σ, δ, s))→ W̃. As in [Butscher and

Mazzeo 2008, Proposition 15], this is done by first constructing an approximate
parametrix by patching together parametrices for the linearized mean curvature op-
erator of each sphere with parametrices for the linearized mean curvature operator
of each neck; and then iterating to produce an exact parametrix plus an error term
in W̃ in the limit. The difference here is that the terms coming from the noneuclid-
ean background metric in the result just cited must be replaced by the r2F term.
The same result holds because this term can easily be shown to satisfy the right
estimates. In fact, R and E satisfy the estimate |R(w)|C2,α

ν
+|E(w)|C2,α

0
≤C |w|C0,α

ν−2
for all w ∈ C0,α

ν−2(6̃(σ, δ, s)), where C is a constant independent of r .

Step 3. We define

Q : C2,α
ν (6̃(σ, δ, s))→ C0,α

ν−2(6̃(σ, δ, s)),

the quadratic (and higher) remainder term of the operator 8r,σ,δ,s , by

Q( f ) :=8r,σ,δ,s( f )−8r,σ,δ,s(0)−L( f ).
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The estimates for the C0,α
ν norm of Q can be found exactly as in [Butscher and

Mazzeo 2008, Proposition 18] with the terms coming from the noneuclidean back-
ground metric replaced by the r2F term. Then there exists C0 > 0 so that if
f1, f2 ∈ C2,α

ν (6̃(σ, δ, s)) for ν ∈ (1, 2) and satisfying | f1|C2,α
ν
+ | f2|C2,α

ν
≤ C0,

then
|Q( f1)−Q( f2)|C0,α

ν−2
≤ C | f1− f2|C2,α

ν
max

{
| f1|C2,α

ν
, | f2|C2,α

ν

}
,

where C is a constant independent of r . Once again, this works because the r2F

term can easily be shown to satisfy the right estimates.

Step 4. We can now solve the CMC equation up to a finite-dimensional error term
by implementing a fixed-point argument based on the parametrix constructed in
Step 2 as well as the estimates we have computed so far. Let E :=8r,σ,δ,s(0) and
use the Ansatz f := R(w − E) to convert the equation 8r,σ,δ,s( f ) ∈ W̃ into the
fixed point problem w−Nr,σ,δ,s(w) ∈ W̃, where

Nr,σ,δ,s : C
0,α
ν−2(6̃(σ, δ, s))→ C0,α

ν−2(6̃(σ, δ, s))

is defined by
Nr,σ,δ,s(w) := −Q ◦R(w− E).

The estimates established up to now give us

|Nr (w1)−Nr (w2)|C0,α
ν−2
≤ Cr2

|w1−w2|C0,α
ν−2

for w in a ball of radius O(r2) about zero in C0,α
ν−2(6̃(σ, δ, s)), where C is inde-

pendent of r . Hence Nr is a contraction mapping on this ball if r is sufficiently
small, and a solution of (3-2) satisfying the desired estimate can be found. The
smooth dependence of this solution on the parameters (σ, δ, s) is a consequence of
the fixed-point process. �

4. Force balancing arguments and the proof of the Main Theorem

When r is sufficiently small, we have now found a function

fr (σ, δ) ∈ C2,α
∗
(6̃(σ, δ, s))

for each (σ, δ, s) such that

H
[
µ fr (σ,δ)(6̃(σ, δ, s))

]
− 2− r2F( fr (σ, δ, s))= Er (σ, δ, s),

where Er (σ, δ, s) is an error term belonging to the finite-dimensional space W̃

depending on the free parameters (σ, δ, s). The corresponding surface that sat-
isfies the prescribed mean curvature condition up to finite-dimensional error is
6
]
r (σ, δ, s) := µ fr (σ,δ,s)(6̃(σ, δ, s)).
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To complete the proof of the Main Theorem, we must show that it is possible
to find a value of (σ, δ, s) for which these error terms vanish identically. As in
[Butscher and Mazzeo 2008, §7.2], we take cut-off functions χ ′ext,k and χ ′neck,k
supported on the k-th spherical region and the k-th neck and transition region,
respectively, and consider the balancing map Br : R

2K−1
→ R2K−1 defined by

(4-1) Br (σ, δ, s) :=
(
π1(Er (σ, δ, s)), . . . , π2K−1(Er (σ, δ, s))

)
,

where π2k+1 : W̃→ R and π2k : W̃→ R are the L2-projection operators given by

π2k(e) :=
∫
6̃(σ,δ,s)

e ·χ ′neck,k Ĩk , π2k+1(e) :=
∫
6̃(σ,δ,s)

e ·χ ′ext,k J̃k .

Here Ĩk := Ik ◦5neck,k where 5neck,k is the nearest-point projection mapping of
the perturbed k-th neck region onto the unperturbed k-th neck, and Ik is the Jacobi
field of the k-th neck coming from translation along the neck axis. This is an
odd, bounded function with respect to the center of the neck. Note that Br is a
smooth map between finite-dimensional vector spaces by virtue of the fact that
the dependence of the solution fr (σ, δ, s) on (σ, δ, s) is smooth and the mean
curvature operator is a smooth map of the Banach spaces upon which it is defined.
The following lemma proves that π(e)= 0 implies that e = 0.

Lemma 4.1. Choose e ∈ W̃ as e=
∑K

k=1 akχext,k J̃k+
∑K−1

k=1 bkLk(ηk) for ak, bk ∈

R. Then
π2k(e)= C1bk −C ′1ε

3/2
k ak, π2k+1(e)= C2ak,

where C1,C ′1,C2 are positive constants independent of r and (σ, δ, s).

Proof. In the integral∫
e ·χ ′ext,k J̃k = ak

∫
χext,kχ

′

ext,k J̃ 2
k +

k∑
`=k−1

b`

∫
χ ′ext,kχext,`L`(η`) J̃k,

the second two terms can be made to vanish by choosing the supports of χext,
χ ′ext and ηk appropriately. The remaining term has large integral because J̃k =

Jk ◦5ext,k and Jk has unit L2 norm as a function of the sphere. In the integral∫
e · χ ′neck,k Ĩk =

∑k+1
`=k a`

∫
χext,`χ

′

neck,k J̃` Ĩk + bk
∫
χ ′neck,kχext,kLk(ηk) Ĩk the first

two terms contribute quantities proportional to the volume of the transition regions
surrounding the k-th neck where χext,kχ

′

neck,k is supported. The remaining term
can be made to have large, positive and negative values (depending on the sign
of Ĩk) by choosing the supports of χext, χ

′
ext to fall where the quantity Lk(ηk) is

largest. �

We must now show that Br (σ, δ, s) can be controlled by the initial geometry
of 6̃(σ, δ, s), at least to lowest order in r . The calculations are similar to those
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found in [Butscher and Mazzeo 2008, §7.2] except with the contributions from
the ambient background geometry replaced by a contribution from the prescribed
mean curvature in the form of the F-moments of the spheres making up 6̃(σ, δ, s).

The highest-order part of Er (σ, δ, s) involves the F-moments of the spherical
constituents Sk of 6̃(σ, δ, s) as follows. Set µk(σ, s) := µF (Sk) — this depends
on s and σ1, . . . , σk because the location of the center of Sk is determined by these
parameters. Let us continue to assume that εk = O(r2) and δk = O(r) for each k.
This will be justified shortly.

Lemma 4.2. The quantity Er (σ, δ, s) satisfies

(4-2) π2k
(
Er (σ, δ, s)

)
= C1δkε

3/2
k +O(r2+2ν)

and

(4-3) π2k+1
(
Er (σ, δ, s)

)
=


C2ε1− r2µ1(σ, s)+O(r4) if k = 0,
C2(εk+1− εk)− r2µk+1(σ, s)+O(r4) if 0< k < K − 1,
−C2εK − r2µK (σ, s)+O(r4) if k = K − 1,

where C1,C2 are constants independent of r, σ, δ, s.

Proof. Set 6]r := 6
]
r (σ, δ, s) and 6 := 6̃(σ, δ, s) for convenience. Consider first

(4-3) with 0< k < K − 1. By the first variation formula and estimates of the size
of the perturbation generating 6]r from 6̃(σ, δ, s), and calculating as in [Butscher
and Mazzeo 2008, Proposition 27], we have

π2k+1
(
Er (σ, δ, s)

)
=

∫
6
]
r

(
H [6]r ] − 2− r2F( fr (σ, δ, s))

)
χext,k Jk

=

∫
∂6]∩suppχext,k

〈
∂

∂x0 , νk

〉
− r2

∫
Sk

F(x, NSk (x))Jk +O(r4)

= C2
(
εk+1− εk

)
− r2µk(s, σ )+O(r4),

where νk is the unit normal vector field of ∂6] ∩ suppχext,k in 6].
Now consider (4-2). In the neck we have H [6̃(σ, δ, s)] = 0. Using similar

estimates, we get

π2k
(
Er (σ, δ, s)

)
=

∫
6
]
r

(
H [6]r ] − 2− r2F( fr (σ, δ, s))

)
χneck,k Ik

=−2
∫
6∩suppχneck,k

χneck,k Ik +O(r2+2ν)= C1δkε
3/2
k + O(r2+2ν),

where δk is the displacement parameter of the k-th neck. This is because Ik is
an odd function with respect to the neck having δk = 0, whereas the integral is
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being taken over the neck with δk 6= 0. Hence the integral
∫
6∩suppχneck,k

χneck,k Ik

picks up the displacement of the k-th neck from its position at δk = 0. This same
phenomenon arises in [Butscher and Mazzeo 2008, Proposition 27]. �

4.1. Proof of the Main Theorem. It remains to find a value of the parameters
(σ, δ, s) so that Er (σ, δ, s) = 0. As shown in Lemma 4.1, this is equivalent to
find a solution of the equation Br (σ, δ, s) = 0. In what follows, we will continue
to assume that ε = O(r2) and δ = O(r) and this will be justified shortly. As a
consequence of Lemma 4.2, the equations that we must solve are as follows:

C1δ1 = E1(σ, δ, s),
...

C1δK−1 = EK−1(σ, δ, s),

C2ε1 = r2µ1(σ, s)+ E ′1(σ, δ, s),

C2(ε2− ε1)= r2µ2(σ, s)+ E ′2(σ, δ, s),
...

C2(εK−1− εK−2)= r2µK−1(σ, s)+ E ′K−1(σ, δ, s),

−C2εK−1 = r2µK (σ, s)+ E ′K (σ, δ, s),

where εk depends on σk in an invertible manner as indicated in Step 2 of the con-
struction of the approximate solution, and Ek , E ′k are error quantities satisfying
the bounds |Ek | = O(r−1+2ν) and |E ′k | = O(r4). We can abbreviate these equations
by introducing the matrix M :=

(
I 0
0 J

)
, where I is the (K − 1)× (K − 1) identity

matrix and J is the K × (K − 1) matrix

J :=


1
−1 1

. . .

−1 1
−1

.

The equations become

(4-4) M(C1δ,C2ε)
t
= (E, r2µ+ E ′)t ,

where δ := (δ1, . . . , δK−1), ε := (ε1, . . . , εK−1) and so on for E, E ′ and µ.
We will solve these equations in two steps as follows. Note first that the matrix

M is injective but not surjective, with vectors in the image of M satisfying the
relation (0, e) ·M(v,w)= 0 for all (v,w)∈R2K−2, where e := (1, 1, . . . , 1)∈RK .
Let ρ : R2K−1

→ R2K−2 be the orthogonal projection onto the image of M . The
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equation

(4-5) ρM(ε, δ)− ρ(E, r2µ+ E ′)= 0

can now be solved using the implicit function theorem when r > 0 is sufficiently
small if the derivative matrix in (ε, δ) of the mapping on the left hand side of (4-5)
above is nonsingular when r = 0. But this holds because the matrix ρM :R2K−2

→

R2K−2 is nonsingular and the contribution to the derivative matrix coming from the
error term ρ(E, r2µ+ E ′) vanishes when r = 0.

We thus now have a solution ε :=εr (s) and δr (s) of (4-4) for all sufficiently small
r and depending implicitly on the one remaining free parameter s. Moreover, we
see that ε = O(r2) and δ = O(r−1+2ν) = O(r) since ν ∈ (1, 2). It remains to solve
(4-5) and we proceed as follows. Once (ε, δ) satisfy (4-5), then (4-4) becomes
equivalent to 0= (0, e) ·M(ε, δ)= r2e ·µ+ e · E ′, or simply

(4-6)
K∑

k=1

µk(σr (s), s)+ E ′′(σr (s), δr (s), s)= 0,

where the error quantity satisfies the estimate |E ′′| = O(r2).
Equation (4-6) may or may not have a solution, depending on the nature of the

function
∑

k µk , which in turn depends on the specific nature of the prescribed
mean curvature function F . However, if the following two conditions are met,
then the implicit function theorem guarantees the existence of a solution. First, it
must be the case that the equation at r = 0 has a solution, in other words if the
F-moments of the spheres S1, . . . , SK satisfy

K∑
k=1

µF (∂B1(p0
k (s)))= 0

for some s, where p0
k (s) := (s + 2(k − 1), 0, . . . , 0). Second, if s0 is the solution

of this equation, then it must also be the case that the mapping

s 7→
K∑

k=1

µF (∂B1(p0
k (s)))

has nonvanishing derivative at s = s0. If these conditions are satisfied, then the
implicit function theorem implies that for r sufficiently small, there is a solution
s(r) of (4-6). This completes the proof. �
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LARGE EIGENVALUES AND CONCENTRATION

BRUNO COLBOIS AND ALESSANDRO SAVO

Let Mn = (M, g) be a compact, connected, Riemannian manifold of dimen-
sion n. Letµ be the measureµ=σdvolg , where σ ∈C∞(M) is a nonnegative
density. We first show that, under some mild metric conditions that do not
involve the curvature, the presence of a large eigenvalue (or more precisely
of a large gap in the spectrum) for the Laplacian associated to the density
σ on M implies a strong concentration phenomenon for the measure µ.
When the density is positive, we show that our result is optimal. Then we
investigate the case of a Laplace-type operator D = ∇∗∇ + T on a vector
bundle E over M, and show that the presence of a large gap between the
(k+1)-st eigenvalue λk+1 and the k-th eigenvalue λk implies a concentration
phenomenon for the eigensections associated to the eigenvalues λ1, . . . , λk

of the operator D.

1. Introduction

The goal of this paper is to show that, under some mild metric conditions, the pres-
ence of a large eigenvalue of the Laplacian 1 on a compact Riemannian manifold
M implies that the Riemannian volume concentrates around a finite set of points.
Actually, we show that a similar phenomenon holds for any Laplace-type operator
D acting on sections of a vector bundle on M , if one replaces the Riemannian
volume by the squared norm of a first eigensection of D.

Let us recall briefly the main known facts about concentration and the spectrum
of the Laplace operator. In what follows, we number the eigenvalues of 1 so that
λ1(M)= 0 and λ2(M) is the first positive eigenvalue.

For a closed Riemannian manifold of dimension n whose Ricci curvature is
bounded below, that is, Ric ≥ −(n − 1)a2, we have the following well-known
inequality due to Cheng [1975]:

λk+1(M)≤
(n− 1)2a2

4
+

c(n)k2

diam(M)2
,

MSC2000: primary 58J50; secondary 35P15.
Keywords: eigenvalues, upper bounds, Laplace-type operators, concentration.
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where c(n) is a constant depending only on n. This shows that when the k-th
eigenvalue is very large, the whole manifold is contained in a small neighborhood
of any of its points and so we have a strong concentration phenomenon.

At the other extreme, if we make no assumption other than compactness we still
have a concentration phenomenon, first observed by Gromov and Milman [1983,
Theorem 4.1]. It says that if A is a closed subset with positive normalized measure
µ(A)= α and r > 0, then

(1) µ(Ar )≥ 1− (1−α2) exp(−r
√
λ2(M) ln(1+α)),

where Ar
= {x ∈ M : d(A, x) < r}.

So, when the first (positive) eigenvalue is large, almost all relative volume of M
lies in a small neighborhood of any set of fixed positive measure.

However, we stress that µ(A) being positive is essential in the estimate; the sole
assumption that λ2(M) is large does not guarantee that the volume concentrates
around, say, a finite set of points. For example, take Mn to be the n-dimensional
unit sphere. Then λ2(Mn) (which is equal to n) tends to infinity with n; we have
concentration in the sense of Gromov and Milman, and yet the volume of Mn is
uniformly distributed and cannot concentrate around any finite set. In Section A.4
we will give another counterexample in which the dimension is fixed.

Inequality (1) can be generalized to the other eigenvalues using an interesting
upper bound of λk(M) due to Chung, Grigor’yan and Yau; the upper bound is given
in terms of the least distance between k mutually disjoint subsets of fixed positive
measure; see [Chung et al. 1997] and also [Friedman and Tillich 2000] for a sharp
estimate.

This paper deals with concentration around a finite number of points, and with
a simple metric condition that will imply this phenomenon. Namely, we require
that the number of balls of radius r needed to cover a ball of radius 4r is uniformly
bounded above by a constant C for r ≤ 1. We then prove the following fact:

If the (k+1)-st eigenvalue of the Laplacian of M is large, then most of
the volume of M concentrates near (at most) k points of the manifold.

However, we will prove a result (Theorem 4) that is much more general; in
particular, it will imply the following fact. Consider a Laplace-type operator D
acting on the sections of a smooth vector bundle on M (for example, the Laplacian
on forms, the square of the Dirac operator or the Schroedinger operator). Then:

If the gap between the (k+1)-st and the k-th eigenvalue of D is large,
then any eigensection associated to the first k eigenvalues concentrates
its L2-norm near (at most) k points of the manifold.

Both the above estimates depend explicitly on the constant C .
In the rest of the introduction we state the precise results: Theorems 1, 2 and 3.
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1.1. Some definitions. We will consider metric measure spaces (M, µ, d) of the
following type:

• M = (Mn, g) is a compact, connected Riemannian manifold of dimension n,
possibly with nonempty boundary.

• µ is the measureµ=σ dvolg, where σ ∈C∞(M) is a nonnegative density. We
will also assume, without loss of generality, that µ is a probability measure,
that is,

∫
M σ dvolg = 1.

• d is a distance function that is assumed to be Lipschitz, that is, |∇d| ≤ 1
almost everywhere with respect to µ.

For r > 0, define Cd(M, r) to be the minimal number of balls of radius r in
(M, d) needed to cover a ball of radius 4r . Then Cd(M, r) is finite for all r .

We will set

(2) Cd(M)= sup
r∈(0,1]

Cd(M, r),

and call it the packing constant of the pair (M, d). It is a metric invariant (it does
not depend on the measure µ).

The packing constant is often used in similar contexts (it is used extensively in
the survey [Grigor’yan et al. 2004]). By the compactness of M , Cd(M) is well-
defined.

Note that d is not necessarily the Riemannian distance. In fact, here are three
typical situations in which it is easy to control the packing constant:

(I) (Mn, g) is a closed Riemannian manifold and d is the intrinsic distance on M
associated to the Riemannian metric g.

(II) Mn is an immersed submanifold of another manifold X (for example, hyper-
bolic or Euclidean space) and d = dext is the extrinsic distance, that is, the
restriction to M of the Riemannian distance on X .

(III) Mn is a bounded domain with smooth boundary in a complete Riemannian
manifold X and again d = dext is the extrinsic distance.

In the first case we can easily estimate the packing constant in terms of a lower
bound of the Ricci curvature and the dimension, using the Bishop–Gromov in-
equality; see [Colbois and Maerten 2008, Example 2.1]. In cases (II) and (III),
a simple argument shows that Cd(M) ≤ Cd(X)2, and so the packing constant of
an immersed submanifold of Euclidean space (or of a manifold with nonnegative
Ricci curvature) is bounded above by an absolute constant depending only on the
dimension of X ; in particular, it is independent on the Ricci curvature of M . For
example, if M is any submanifold of Rm then Cd(M) ≤ (1+ 32m)2. Here d is the
extrinsic distance; for the intrinsic distance this is no longer true in general.
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1.2. Estimates for the Laplacian on functions. When the density σ is positive,
we can consider the following operator L acting on any u ∈ C∞(M):

(3) Lu =1u− 1
σ
〈∇u,∇σ 〉.

If ∂M 6= ∅, we assume Neumann boundary conditions. L is self-adjoint when
acting on L2(M, µ), where µ= σ dvolg, and is associated to the quadratic form

u 7→
∫

M
|∇u|2σ dvolg .

The spectrum of L is discrete and will be denoted by {λk(L)}∞k=1. Note that
λ1(L) = 0 and λ2(L) > 0. If σ is constant (that is, µ is just a multiple of the
Riemannian measure) one recovers the eigenvalues of the ordinary Laplacian on M .
However, the generalization to Laplace-type operators will force us to consider
nonconstant densities.

Theorem 1. Suppose M = (M, µ, d) is a metric measured space as defined in
Section 1.1 and assume that µ = σ dvolg, with σ > 0 everywhere on M. Let L
be the operator defined in (3). Then, for all k ≥ 1, there exists a set S of k points
x1, . . . , xk ∈ M such that

r = 8(k+ 1)Cd(M)2 ·
log λk+1(L)√
λk+1(L)

implies µ(Sr )≥ 1− r,

provided that λk+1(L)≥ e. Here Cd(M) is the packing constant defined in (2).

Remarks. The estimate is sharp, in the sense that the decay log λ/
√
λ is optimal

as λ= λk+1(L) tends to infinity, and cannot be replaced by a function with a faster
rate of decrease. We refer to Section A.2 for an explicit example.

If the eigenvalue λk+1(L) is large (so that r is small), then almost all of the
measure µ is in the r -neighborhhood of k suitable points: This is the concentration
property that we want to emphasize.

There is an equivalent formulation of our estimate in terms of the so-called
Lévy–Prokhorov distance between probability measures. If (X, d) is a metric
space, B(X) the borelian σ -algebra and P(X) the set of the probability measures
on X , the Lévy–Prokhorov distance dP between two elements ν1 and ν2 of P(X)
is defined as

dP(ν1, ν2)

= inf{r > 0 : ν1(C)≤ ν2(Cr )+ r and ν2(C)≤ ν1(Cr )+ r for all C ∈B(X)}.

See for example [Villani 2009, (6.5), page 97].

The following result is an equivalent formulation of Theorem 1.
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Theorem 2. In the hypothesis of Theorem 1, there exist k points x1, . . . , xk ∈ M
and weights p1, . . . , pk ∈ [0, 1) such that

∑
p j = 1 and

dP(µ, δS)≤ 8(k+ 1)Cd(M)2 ·
log λk+1(L)√
λk+1(L)

,

where δS =
∑k

i=1 piδxi and δxi is the Dirac measure concentrated at the point xi .
In particular, for k = 1 there exists a point x1 ∈ M such that

dP(µ, δx1)≤ 16Cd(M)2 ·
log λ2(L)
√
λ2(L)

.

The estimate is sharp: see Section A.2.

In other words, when the eigenvalue is large, the measure µ is close, in the
Lévy–Prokhorov sense, to a weighted linear combination of the Dirac measures at
the points x1, . . . , xk .

The equivalence between the formulations in Theorem 1 and Theorem 2 will be
proved in Section A.1.

Note that Theorems 1 and 2 apply obviously to the Laplacian acting on func-
tions: it suffices to choose σ = 1/Vol(M). In that case the concentration is relative
to the (normalized) Riemannian volume.

1.3. Estimates for vector bundle Laplacians. The next task will be to general-
ize Theorem 1 when the density σ is only assumed to be nonnegative. For that
purpose we introduce, in Section 2, a weaker notion of spectrum and prove the
relevant Theorem 4. Besides being interesting in itself, Theorem 4 will lead to a
concentration phenomenon of eigensections in the context of Laplacians acting on
sections of a vector bundle.

So, consider a vector bundle E over a compact Riemannian manifold (Mn, g)
with empty boundary, and denote by ∇ a connection on E that is compatible with
the metric g (see [Bérard 1988] for details). An operator D acting on sections of
the bundle is said to be of Laplace-type if it can be written D = ∇∗∇ + T , where
T is a symmetric endomorphism of the fiber. Then, D is self-adjoint and elliptic.
We list its eigenvalues as

λ1(D)≤ λ2(D)≤ · · · ≤ λk(D)≤ · · ·

and denote by {ψ1, ψ2, . . . } a corresponding orthonormal basis of eigensections.
Important examples of Laplace-type operators are given by the Laplacian acting

on differential forms, by the square of the Dirac operator and by a Schrödinger
operator acting on functions. In the first case, T is the curvature term in the classical
Bochner–Weitzenböck formula, in the second case it is multiplication by a constant
multiple of the scalar curvature, and in the third case T is just the potential.
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In the second main theorem we assume a large gap in the spectrum of D and
prove that eigensections concentrate their norms near a finite set of points.

Theorem 3. For each positive integer k there is a set S of k points x1, . . . , xk ∈ M
with the following property. Let ψ be any unit L2-norm linear combination of the
first k eigensections of D, and µ= |ψ |2 dvolg. Then

r = 25k
(

k2(k+ 1)Cd(M)2

λk+1(D)− λk(D)

)1/3

implies µ(Sr )≥ 1− r.

Equivalently, the Lévy–Prokhorov distance between µ and a suitable linear com-
bination of the Dirac measures at x1, . . . , xk is bounded above by r.

Example. We take D to be the ordinary Laplacian on functions and assume that
λk+1 tends to infinity while λk is uniformly bounded. Then by Theorem 1 the
Riemannian volume concentrates around k suitable points x1, . . . , xk . Theorem 3
then says that any eigenfunction associated to eigenvalues less than λk+1 will also
concentrate its L2-norm around x1, . . . , xk .

Example. We take D to be the Laplacian acting on p-forms and assume that
the p-th Betti number of M is positive, say bp(M)= k > 0. Then λk(D)= 0 and
λ=λk+1(D) is the first positive eigenvalue of D. Assume that λ is very large. Then
the theorem gives the existence of bp(M) points such that all harmonic p-forms
must concentrate their L2-norms in a small neighborhood of the union of these
points.

We also observe that, in general, a large gap in the spectrum of D does not
necessarily imply concentration of the Riemannian volume unless, of course, D is
the ordinary Laplacian, or there exist parallel sections (so that the density σ = |ψ |2

is constant). We refer to Section A.3 for an explicit example.
The paper is structured as follows: In Section 2 we will prove Theorem 1 and

a more general version of it, Theorem 4. In Section 3 we will establish the results
for vector bundle Laplacians and prove Theorem 3. The appendix is devoted to the
examples, in particular, the sharpness of the estimate given in Theorem 1 and 2.

2. Estimates for functions

2.1. A general estimate when the density is only nonnegative. We consider a
compact manifold M (with or without boundary) endowed with a distance function
d and a measure µ= σ dvolg as in Section 1.1. We first consider the general case
in which σ ≥ 0. This will be needed to treat Laplace-type operators, where the
density σ will be the squared norm of an eigensection, which can vanish at some
points of M . However it is well known from elliptic theory that eigensections can
vanish only on sets of measure zero.
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Let us then introduce the weak spectrum of the metric measured space M =

(M, µ, d) as follows. First, define the following Rayleigh quotient of the Lipschitz
function f (such that

∫
M f 2µ > 0):

R( f )=
∫

M
|∇ f |2µ

/ ∫
M

f 2µ.

Denote by Wk a vector space of Lipschitz functions on M of finite dimension k.
Then, for all integers k ≥ 0 we define

λk+1(M)
.
= sup

Wk

inf{R( f ) : f ⊥Wk}.

It is clear that λ1(M) = 0. It is easy to check that the sequence λ j (M) is non-
decreasing.

Having said that, we state the main theorem of this section.

Theorem 4. Let M = (M, µ, d) be as above, with µ = σ dvolg and σ ≥ 0. Then,
for each k = 1, 2, . . . we can find a set S of k points x1, . . . , xk ∈ M such that

r = 5
(
(k+ 1)Cd(M)2

λk+1(M)

)1/3

implies µ(Sr )≥ 1− r.

Remark. If the density σ is strictly positive on M , then it is clear by the max-min
principle that the weak spectrum of M is equal to the spectrum of the self-adjoint
elliptic operator L acting on L2(M, σ · dvolg) and already defined in (3). That is,
λk(M)= λk(L) for all k. In this case, using an upper bound of [Chung et al. 1997]
and an additional measure theoretic lemma proved in [Colbois and Maerten 2008]
we can prove Theorem 1, which is an improvement of Theorem 4 for large λ=λk+1

because log λ/
√
λ decays faster than λ−1/3.

2.2. Preparatory results. In the next lemma we estimate the eigenvalues of M as
defined in the previous section. The first part follows from a standard argument in-
volving plateau functions, which applies to our case. The second part is an estimate
due to Chung, Grigor’yan and Yau.

Lemma 5. (a) Let M = (M, µ, d) and assume that µ = σ · dvolg with σ ≥ 0.
Assume that there exist k + 1 subsets of M , each of measure at least α > 0,
which are 2r-separated (meaning that the distance between any two of the
given sets is at least 2r ). Then λk+1(M)≤ 1/αr2.

(b) If the density σ is strictly positive on M , then

λk+1(M)= λk+1(L)≤ log2(2/α)/r2,

where L is the operator Lu =1u−〈∇u,∇σ 〉/σ defined in (3).
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Proof. (a) Fix a subspace W of the space of Lipschitz functions on M , of finite
dimension k. Let A1, . . . , Ak+1 be the subsets satisfying the assumptions, that is,∫

A j
µ=

∫
A j
σ dvolg ≥ α and d(Ai , A j ) ≥ 2r if i 6= j . For each j = 1, . . . , k+ 1,

let φ j be the plateau function

φ j (x)=


1 on A j ,
1− d(x, A j )/r on � j = Ar

j \ A j ,
0 on the complement of Ar

j .

Note that the φ j are disjointly supported. Linear algebra shows that we can find
numbers a1, . . . , ak+1 such that the function φ =

∑k+1
j=1 a jφ j is Lipschitz, L2(µ)-

orthogonal to W and nonzero. We can also assume that
∑

a2
j = 1. The gradient

of φ is supported on the union of the � j , and on � j one has |∇φ| ≤ |a j |/r almost
everywhere. Then ∫

M
|∇φ|2µ≤

1
r2

∫
M
µ=

1
r2

On the other hand, ∫
M
φ2µ≥

∑
j

a2
j

∫
A j

µ≥ α.

Therefore R(φ)≤ 1/(αr2). Since φ was orthogonal to W , we get

inf{R( f ) : f ⊥W } ≤ 1/(αr2).

The right side is independent of the subspace W ; hence taking the supremum over
all k-dimensional subspaces W does not change the upper bound. Recalling the
definition of λk+1, one obtains the first part of the lemma.

(b) If the density σ is positive, we can use an estimate of Chung, Grigor’yan
and Yau [1996]. It says that, if the subsets A1, . . . , Ak+1 are at distance at least s
from each other, then

λk+1(L)≤
4
s2 ·max

i 6= j

(
log 2√

µ(Ai )µ(A j )

)2
.

The second inequality is now immediate by taking s = 2r . �

We will use [Colbois and Maerten 2008, Corollary 2.3], which we state in a way
more convenient to our purposes. Consider our metric space (M, d) and recall the
packing constant Cd(M). Let ν be any measure on M .

Proposition 6. Let N be a positive integer. Suppose that for a given s> 0, we have
for each x ∈ M

ν(B(x, s))≤
ν(M)

4Cd(M)2 N
.

Then, there exist N subsets A1, . . . , AN of M such that ν(Ai )≥ν(M)/(2Cd(M)N )
for each i and d(Ai , A j )≥ 3s for each i 6= j .
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We will use the proposition in the proof of Theorem 4 for ν given by the restric-
tion of µ to a closed subset.

Proof of Theorem 4. Let λk+1(M)= λ and assume that it is positive. Let

r = 5
(
(k+ 1)Cd(M)2

λ

)1/3
.

We will prove that there exist a set S of suitably chosen points x1, . . . , xk (not
necessarily distinct) such that

µ(Sr )≥ 1− r.(4)

We can suppose r < 1.
Let α = r/(4(k+ 1)Cd(M)2). By the definitions of r and α one has

(5) λ=
125
4αr2 .

Step 1 (construction of the points). Choose x1 so that µ(B(x1,
1
4r))≥µ(B(x, 1

4r))
for all x ∈ M , and set

X1 = B(x1, r)c.

Next, choose x2 ∈ X1 so that µ(B(x2,
1
4r))≥ µ(B(x, 1

4r)) for all x ∈ X1, and set

X2 = (B(x1, r)∪ B(x2, r))c .

We continue in this way until we obtain k points x1, . . . , xk : To construct the j-th
point x j ∈ X j−1, we demand that µ(B(x j ,

1
4r)) ≥ µ(B(x, 1

4r)) for all x ∈ X j−1

and define
X j = (B(x1, r)∪ · · · ∪ B(x j , r))c.

Note that if X j is empty for some j≤k, thenµ(B(x1, r)∪· · ·∪B(x j , r))=1>1−r ,
so we can take S = {x1, . . . , x j−1}. We have µ(Sr ) ≥ 1− r and the theorem is
proved. So we can assume that

Xk = (B(x1, r)∪ · · · ∪ B(xk, r))c

is nonempty. Inequality (4) (and the theorem) follows if we show that µ(Xk)≤ r.

Step 2 (proof that µ(Xk) ≤ r ). We argue by contradiction and show that the in-
equality

(6) µ(Xk) > r

cannot occur. Let us then assume (6) and denote by Bi the ball B(xi ,
1
4r). By

construction, the sets B1, . . . , Bk and Xk are 1
2r -separated and

µ(B1)≥ µ(B2)≥ · · · ≥ µ(Bk).
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First case. Assume µ(Bk)≥ α. Then µ(B j )≥ α for all j ; moreover

µ(Xk)≥ r > r
4(k+1)Cd(M)2

= α

simply because Cd(M) ≥ 1. Therefore the sets B1, . . . , Bk, Xk are 1
2r -separated

and each of them has measure at least α. By Lemma 5,

(7) λ= λk+1(M)≤ 16/(αr2),

which contradicts (5). Then the first case does not occur.

Second case. Assume µ(Bk) < α. Consider the closed subset X = Xk−1. By the
definition of xk , one has

µ(B(x, 1
4r))≤ µ(Bk)≤ α for all x ∈ X .

Recall that Xk ⊆ Xk−1 = X .
We now consider the metric space (M, d) with the measure ν given by the

restriction of µ to the closed subspace X , that is, ν(A) = µ(A ∩ X). By (6) we
have r < µ(Xk)≤ µ(X)= ν(M) and therefore

ν(B(x, 1
4r)≤ µ(B(x, 1

4r)≤ α =
r

4(k+ 1)Cd(M)2
≤

ν(M)
4(k+ 1)Cd(M)2

.

By Proposition 6 applied for s = 1
4r and N = k+ 1, we conclude there exist k+ 1

subsets A1, . . . , Ak that are 3
4r -separated and satisfy

ν(Ai )≥
ν(M)

2Cd(M)(k+ 1)
>

r
2Cd(M)(k+ 1)

≥ 2Cd(M)α ≥ 2α for all i .

Then µ(Ai )≥ 2α for all i . Applying Lemma 5, one would obtain

(8) λ= λk+1(M)≤
32

9αr2 ,

which again contradicts (5). The proof of Theorem 4 is now complete. �

Proof of Theorem 1. Set λk+1(M)= λ and assume λ≥ e. Let

(9) r =
β log λ
√
λ
,

where β = 8(k+ 1)Cd(M)2. We will find a set S of k points x1, . . . , xk such that

(10) µ(Sr )≥ 1− r,

which is the statement of the theorem.
Set α = r/(4(k+ 1)Cd(M)2). We first observe that

(11) λ >
256
r2 log2(2/α).
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In fact (9) gives λ= β2 log2 λ2/r2
≥ β2/r2, and substituting inside log λ we get

(11) because β/r = 2/α by the definitions of α and β and the fact that β ≥ 8.
To show (10) we follow Step 1 and Step 2 exactly as in the proof of the previous

theorem: We construct the points x1, . . . , xk as before and show that the inequality
µ(Xk) > r leads to a contradiction with the inequality (11). The only change is
to use the second inequality of Lemma 5 instead of the first, so that (7) and (8)
respectively become

λ≤
16
r2 log2(2/α) and λ≤

64
9r2 log2(2/α),

both of which contradict (11). �

Remark. It is not possible to replace the constant β in (9) by β(λ) for a function
β(λ)→ 0 as λ→∞. In fact, taking β = constant is the optimal choice for the
radius r ; see Section A.2.

3. The estimate for Laplace-type operators

In this section we prove Theorem 3.

Theorem 7. Let Mn be a compact Riemannian manifold without boundary and D
any Laplace-type operator on M. Fix integers i and k with i ≤ k and consider the
m-m-space (M, µi , d), where µi = |ψi |

2
·dvolg and ψi is a unit norm eigensection

associated to λi (D). Then there exists a set Si of k points x i
1, . . . , x i

k ∈M such that

r = 5
( k(k+ 1)Cd(M)2

λk+1(D)− λi (D)

)1/3
implies µi (S

r
i )≥ 1− r.

Of course, the result is significant only when the gap λk+1(D)− λi (D) is large
enough. As the gap λk+1(D)−λk(D) increases to∞, we see that any eigensection
associated to λi (D), with i ≤ k, tends to concentrate its norm around at most k
points x i

1, . . . , x i
k , a priori depending on i . It is natural to ask if there is a relation

between all these points for different eigenvalues. We can in fact show that, as the
gap tends to infinity, all squared norms |ψ1|

2, . . . , |ψk |
2 will concentrate around

a common set of k points. Actually, we will show that this also happens for the
squared norm of any section in the direct sum of the first k eigenspaces; this is the
statement of Theorem 3.

Proof of Theorem 7. The proof depends on the following two lemmas, in which
we bound the gaps in the spectrum of D by the weak spectrum of the m-m-spaces
M corresponding to the densities σ = |ψ |2, where ψ is an eigensection of D. We
then apply Theorem 4 to conclude.

Recall that D =∇∗∇ + T , where T is a symmetric endomorphism of the fiber.
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So the quadratic form associated to D is

Q(ψ)=

∫
M
|∇ψ |2+〈Tψ,ψ〉,

which is defined on the space of H 1-sections of the bundle (here integration is
with respect to the Riemannian measure dvolg). We fix an orthonormal basis of
eigensections of D and denote it by (ψ1, ψ2, . . . ).

Lemma 8. Let f be a Lipschitz function on M and ψ a smooth section of the
bundle. Then

Q( fψ)=
∫

M
f 2
〈Dψ,ψ〉+ |∇ f |2|ψ |2.

Lemma 9. Fix a positive integer k and let i ≤ k. Let ψi be an eigensection as-
sociated to λi (D), of unit L2-norm, and consider the m-m-space Mi = (M, µi , d)
where µi = |ψi |

2 dvolg. Then

λk+1(D)− λi (D)≤ kλk+1(Mi ).

Theorem 7 now follows immediately from Lemma 9 and Theorem 4 applied
with the density σ = |ψi |

2. �

Proof of Lemma 8. On the subset where ∇ f exists (hence almost everywhere
on M), one has

|∇( fψ)|2 = |∇ f |2|ψ |2+ f 2
|∇ψ |2+ 2 f 〈∇∇ fψ,ψ〉.

Now ∫
M

2 f 〈∇∇ fψ,ψ〉 =

∫
M

1
2〈∇ f 2,∇|ψ |2〉 =

∫
M

1
2 f 21|ψ |2,

and hence

Q( fψ)=
∫

M
|∇( fψ)|2+〈T ( fψ), fψ〉

=

∫
M

f 2(|∇ψ |2+ 1
21|ψ |

2
+〈Tψ,ψ〉)+ |∇ f |2|ψ |2.

Now recall the identity (Bochner formula) 〈Dψ,ψ〉= |∇ψ |2+ 1
21|ψ |

2
+〈Tψ,ψ〉.

The lemma follows. �

Proof of Lemma 9. Given the metric-measure space M = (M, µ, d), recall the
definition of weak spectrum:

λh+1(M)= sup
Wh

inf{R( f ) : f ⊥Wh}, where R( f )=
∫

M
|∇ f |2µ

/ ∫
M

f 2µ,

and Wh denotes a vector subspace of Lipschitz functions having dimension h. We
will write for brevity λi (M)= λi .
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Fix ε > 0. Then, for all integers k ∈ N we construct a (k+1)-dimensional
subspace Wk+1 of the space of Lipschitz functions on M such that, for all f ∈Wk+1,

(12) R( f )≤ k(λk+1+ ε).

Set W1 = span( f1), where f1 is the constant function 1. By definition, there exists
a nonvanishing smooth function f2 that is orthogonal to W1 and satisfies

R( f2)≤ λ2+ ε.

Set W2 = span( f1, f2). We can assume that f2 has unit L2-norm. Continuing
this process, we get Wk+1= span( f1, . . . , fk+1), where ( f1, . . . , fk+1) is an ortho-
normal set and, for all j = 1, . . . , k+ 1,

(13) R( f j )≤ λ j + ε ≤ λk+1+ ε.

Let us prove (12). Let f =
∑k+1

i=1 ai fi be a function in Wk+1. We can assume
that it has unit norm, so that

∑
i a2

i = 1. By the triangle inequality, since ∇ f1 = 0,
one has |∇ f | ≤

∑k+1
i=2 |ai ||∇ fi |. By the Schwarz inequality, |∇ f |2 ≤

∑k+1
i=2 |∇ fi |

2

and therefore, by (13),

R( f )≤
k+1∑
i=2

R( fi )≤ k(λk+1+ ε).

We can now prove the lemma. Fix ε > 0 and consider the m-m-space Mi with
measure µi = |ψi |

2 dvolg, as in the statement of the lemma. Let Wk+1 be the
subspace satisfying (12). By linear algebra, we can find a nonvanishing f ∈Wk+1

such that the section fψi has unit norm and is orthogonal to the first k eigensections
ψ1, . . . , ψk of the spectrum of D. Using fψi as test-section for the eigenvalue
λk+1(D), we obtain by Lemma 8

λk+1(D)≤ Q( fψi )=

∫
M

f 2
〈Dψi , ψi 〉+ |∇ f |2|ψi |

2.

Since 〈Dψi , ψi 〉 = λi (D)|ψi |
2, this becomes

λk+1(D)− λi (D)≤ R( f )≤ k(λk+1(Mi )+ ε),

by (12). Letting ε→ 0 we obtain the assertion. �

Proof of Theorem 3. Let us start with the formal proof by considering an ortho-
normal basis (ψ1, . . . , ψk) of the direct sum of the first k eigenspaces of D. Given
µ j = |ψ j |

2
· dvolg, let us introduce the following auxiliary measure, which is just

the average of the µ j :

µ̃=
1
k

k∑
j=1

µ j .
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We also fix the radius

(14) r = 5
( k2(k+ 1)Cd(M)2

λk+1(D)− λk(D)

)1/3
.

The theorem follows from two claims.

Claim 1. There exists a set of points Q = {y1, . . . , yl} with the property that

µ̃(B(y j , r))≥ r/k2 for all j and µ̃(Qr )≥ 1− 2r .

Claim 2. There exists a subset T = {x1, . . . , xm} of Q, with m ≤ k, such that

µ̃(T 5r )≥ 1− 5r.

(This gives a concentration result for the averaged measure µ̃).
Thanks to Claims 1 and 2, we can conclude as follows. Let ψ =

∑k
i=1 aiψi

be any unit norm section in the direct sum of the first k eigenspaces of D (so that∑
i a2

i = 1), and let µ = |ψ |2 dvolg. By the Schwarz inequality we have, at any
point,

|ψ |2 ≤
(∑

i |ai ||ψi |
)2
≤
∑

i |ψi |
2,

that is, µ≤kµ̃. We deduceµ((T 5kr )c)≤µ((T 5r )c)≤kµ̃((T 5r )c≤5kr by Claim 2.
We now take S = T . Then µ(S5kr )≥ 1− 5kr and the theorem follows. �

For the proof of the two claims we need a lemma. We can assume r < 1/5.

Lemma 10. Assume there exist k + 1 subsets A1, . . . , Ak+1 that are 2r-separated
and have µ̃-measure at least β. Then

λk+1(D)− λk(D)≤
k
βr2 .

Proof. As in the proof of Lemma 5, we can construct k + 1 disjointly supported,
plateau functions f1, . . . , fk+1 with Rµ̃( f j ) ≤ 1/(βr2) for each j , where Rµ̃ is
the Rayleigh quotient relative to the measure µ̃. Since µ̃ is the average of the µ j ,
we see that for any nonnegative function f there is an index i (depending on f )
such that

∫
M f µ̃≤

∫
M f µi . Therefore, for each j = 1, . . . , k+1 there is an index

α( j)= 1, . . . , k such that

Rµ̃( f j )=

∫
M |∇ f j |

2µ̃∫
M f 2

j µ̃
≥

1
k

∫
M |∇ f j |

2µα( j)∫
M f 2

j µα( j)
≥

1
k

Rµα( j)( f j )

and then Rµα( j)( f j )≤ k/(βr2) for all j . We consider the sections s j = f jψα( j) for
j = 1, . . . , k+1; they are disjointly supported and we can use them as test-sections
for the eigenvalue λk+1(D). Using Lemma 8 one sees that

λk+1(D)− λk(D)≤ sup
j
{Rµα( j)( f j )} ≤ k/(βr2). �
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Proof of Claim 1. For all j ≤ k we observe from (14) that

r ≥ 5
( k(k+ 1)Cd(M)2

λk+1(D)− λ j (D)

)1/3
.

So, by Theorem 7, there exist finite subsets S1, . . . , Sk ⊆M of cardinality less than
or equal to k such that µ j (Sr

j ) ≥ 1− r for all j . We set P = S1 ∪ · · · ∪ Sk and
observe that, by the definition of µ̃,

(15) µ̃(Pr )≥ 1− r.

We now consider the subset Q = {y1, . . . , yl} formed by all points y j ∈ P such
that µ̃(B(y j , r))≥ r/k2. Let Q′ = P \ Q. Then by definition µ̃((Q′)r )≤ r . Since
µ̃((Q′)r )+ µ̃(Qr )≥ 1− r by (15), we obtain

(16) µ̃(Qr )≥ 1− 2r

as claimed. Note that Q is not empty because r < 1/5 by assumption. �

Proof of Claim 2. We construct the subset T = {x1, . . . , xm} of Q as follows. Set
x1 = y1. If there exists some point y j ∈ Q in the complement of B(x1, 4r), we
select it and denote it by x2. Next, if there exists a point of Q in the complement
of B(x1, 4r)∪ B(x2, 4r), we select it and denote it by x3, and so on. We iterate the
process until it is possible, and obtain after m ≤ l steps the required subset T .

Assume that m ≥ k+1. Then the balls A j = B(x j , r) with j = 1, . . . , k+1 are
2r -separated by construction, and have µ̃-measure at least equal to β = r/k2. By
Lemma 10 we see that

(17) λk+1(D)− λk(D)≤ k3/r3.

However, the definition (14) of r gives λk+1(D)−λk(D)= c/r3 with the constant
c = 125k2(k+ 1)Cd(M)2 > k3 and we get a contradiction with (17).

Therefore m ≤ k.
By the construction of T , every point y j ∈ Q is at distance not greater than 4r

to some point of T , that is, Q ⊆ T 4r . By the triangle inequality Qr
⊆ T 5r and

therefore, by (16)
µ̃(T 5r )≥ µ̃(Qr )≥ 1− 2r > 1− 5r,

and Claim 2 follows. �

Appendix

A.1. Facts about the Lévy–Prokhorov distance. Recall that the Lévy–Prokhorov
distance dP between two probability measures defined on the same metric space
(M, d) is

dP(ν1, ν2)= inf{r > 0 : ν1(C)≤ ν2(Cr )+ r and ν2(C)≤ ν1(Cr )+ r for all C}.
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Proposition 11. Let (M, µ, d) be an m-m-space, and let S = {x1, . . . , xk} be a set
of k points in M and r > 0. Then µ(Sr ) ≥ 1− r if and only if there exist weights
p1, . . . , pk ∈ [0, 1) such that

∑
p j = 1 and dP(µ, δ) ≤ r , where δ =

∑k
i=1 piδxi

and δxi is the Dirac measure concentrated at the point xi .

Proof. Suppose first that dP(µ, δ) ≤ r . Then, choosing C = S in the definition
of dP , we have 1= δ(S)≤ µ(Sr )+ r and therefore µ(Sr )≥ 1− r .

To prove the converse, we assume µ(Sr )≥ 1−r . We first define the weights pi .
Denote by Bi the ball B(xi , r) and consider the sets {Ai }

k
i=1 defined by{

A1 = B1,

Ai = Bi ∩ (B1 ∪ · · · ∪ Bi−1)
c for i ≥ 2.

Then Ai ⊆ Bi and Ai ∩ A j = ∅ if i 6= j . Set A = A1 ∪ · · · ∪ Ak . Then A =
B1 ∪ · · · ∪ Bk = Sr , so that µ(A)= µ(Sr )≥ 1− r .

We now choose the weights pi = µ(Ai )/µ(A).
The proof is complete if we show that, for each Borel subset C , we have

(18)
{
δ(C)≤ µ(Cr )+ r,
µ(C)≤ δ(Cr )+ r.

We can order the points so that x1, . . . , xt ∈ C and x j /∈ C for j = t + 1, . . . , k.
Then δ(C)= p1+· · ·+ pt . Now B1∪· · ·∪ Bt ⊆Cr ; since Ai ⊆ Bi and the Ai are
pairwise disjoint, we have

µ(A1)+ · · ·+µ(At)≤ µ(B1 ∪ · · · ∪ Bt)≤ µ(Cr ).

Then

δ(C)= p1+ · · ·+ pt =
µ(A1)+ · · ·+µ(At)

µ(A)

= µ(A1)+ · · ·+µ(At)+
µ(A1)+ · · ·+µ(At)

µ(A)
(1−µ(A))

≤ µ(Cr )+ 1−µ(A)

≤ µ(Cr )+ r,

which proves the first inequality in (18).
For the second, write

µ(C)= µ(C ∩ A1)+ · · ·+µ(C ∩ Ak)+µ(C ∩ Ac)

and note that xi ∈ Cr if C ∩ Ai 6= ∅. Since µ(C ∩ Ai ) ≤ µ(Ai ) = piµ(A) ≤ pi

and µ(C ∩ Ac)≤ µ(Ac)≤ r , we have

µ(C)≤
∑

i :xi∈Cr

pi + r ≤ δ(Cr )+ r. �
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A.2. Theorem 1 is sharp. For R > 0, let MR be the surface of revolution in R3:

MR = {(x, y, z) ∈ R3
: y2
+ z2
= e−2Rx/R2, x ∈ [0, 1]},

and consider the metric measure space (MR, µ, d), where µ is the normalized Rie-
mannian measure and d is the extrinsic distance inherited from R3. By a calculation
in [Friedman and Tillich 2000], one knows that

(19) λ2(MR)≥
1
8 R2

(we take the Neumann boundary conditions). By the equivalent formulation of
Theorem 1, given in Theorem 2, for each R there exists a point p ∈ MR such that

dP(µ, δp)≤ γR
log λR
√
λR

for the constant γR = 16Cd(MR)
2, where we set λR = λ2(MR). However, since

we use the extrinsic distance, the constant γR admits a uniform upper bound by the
packing constant of R3 (see Section 1.1); hence

(20) dP(µ, δp)≤ γ
log λR
√
λR

for some p ∈MR and an absolute constant γ (we can take in fact γ = 16(1+36)2).
Now, when R goes to ∞ the first positive eigenvalue λR goes to ∞ by (19).

Therefore, by (20), the normalized Riemannian measure µ concentrates at some
point of MR: This is quite evident and can be verified directly from the definition
of MR , because the limit metric measure space as R → ∞ (in any reasonable
sense) is the unit interval [0, 1] endowed with its canonical distance and the Dirac
measure supported at 0. In fact, one can check that the relative measure of a set at
positive distance α from the circle {x = 0} decreases to zero like e−αR .

In this section we show that, apart from the constant γ , the inequality (20) is
actually sharp.

Theorem 12. Let MR and λR be as above. Then there exists R0 such that, for all
R ≥ R0 and for all q ∈ MR , one has

dP(µ, δq)≥
1
48

log λR
√
λR

.

Lemma 13. Assume that there exist two subsets A and B with relative volume at
least s, and such that d(A, B)≥ 2s. Then dP(µ, δq)≥ s for all q ∈ MR .

Proof. Assume that there exists q ∈ MR such that dP(µ, δq) < s. One sees from
the definition of dP that µ(B(q, s)) > 1− s and therefore µ(B(q, s))+µ(A) > 1.
So A must intersect B(q, s) and there exists a ∈ A such that d(a, q)< s. Similarly,
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there exists b ∈ B with d(b, q) < s. Applying the triangle inequality we get a
contradiction with the assumption d(A, B)≥ 2s. �

Proof of Theorem 12. By (19) one has λR >
1
9 R2; hence, for R large,

1
48

log λR
√
λR
≤

1
8

log R
R

.

So, it is enough to show that

dP(µ, δq)≥
1
8

log R
R

for R large and for all q ∈ MR .

For L < L ′ in the interval [0, 1], consider the strip

M[L ,L ′] = {(x, y, z) ∈ MR : L ≤ x ≤ L ′}.

We will apply the lemma, taking

A = M[0,1/R], B = M[(1/2)(log R)/R,1], s = 1
8(log R)/R.

We need the simple volume estimate

(21) µ(M[L ,L ′])≥
e−L R
−e−L ′R

2(1−e−R)
.

In fact, observe that MR is obtained by rotating the curve y = e−Rx/R around
the x-axis. Then

Vol(M[L ,L ′])=
2π
R

∫ L ′

L
e−Rx ds, with ds =

√
1+ e−2Rx dx .

Inequality (21) now follows from observing that dx ≤ ds < 2dx and recalling that
µ(M[L ,L ′])= Vol(M[L ,L ′])/Vol(M[0,1]).

By the volume estimate in (21),

µ(A)≥
1− e−1

2(1− e−R)
, µ(B)≥

R−1/2
− e−R

2(1− e−R)
, d(A, B)≥

1
2

log R
R
−

1
R
.

It is now clear that, for R ≥ R0 sufficiently large, one has µ(A)≥ s, µ(B)≥ s and
d(A, B) ≥ 2s. The lemma gives dP(µ, δq) ≥ s = 1

8(log R)/R and the theorem is
proved. �

A.3. Example for differential forms. We will now construct an example with a
large gap on the spectrum of the Laplacian on p-forms, but in which there is no
concentration of the Riemannian volume.

Indeed, the construction of large eigenvalues for p-forms is well known; see
[Gentile and Pagliara 1995; Guerini 2004; Colbois and El Soufi 2006]. We can
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easily adapt the construction of Gentile and Pagliara for an hypersurface in Rn+1,
and we will only briefly sketch it.

We begin with a hypersurface M0 ⊂ Rn+1, with p-th De Rham cohomology
space of a given positive dimension. Then we deform M0 by adding a long cylinder
[0, L]× Sn−1 closed by a hemisphere. We denote by ML this family of manifolds,
whose volume is of the order of L as L→∞. Gentile and Pagliara showed that,
for 2 ≤ p ≤ n − 2, the nonzero p-forms spectrum of ML is bounded below by a
positive constant C not depending on L .

After renormalisation by a factor of order L−1/n , we get a family of constant
volume 1, with first nonzero eigenvalue for p-forms going to ∞ with L . Using
the extrinsic Euclidean distance, we see that the packing constant is uniformly
bounded, and we can conclude that the L2-norms of the harmonic forms have to
concentrate, indeed on the part corresponding to M0.

However, there is no concentration of the volume; the part M0 concentrates
to a point and the cylinder looks like a homogeneous 1-dimensional cylinder of
length L1−1/n .

A.4. Expanders. In this section we construct a family of manifolds M i of fixed
dimension n such that λ2(M i )→∞ but for which there is no concentration of the
volume around any point.

We start from an n-dimensional compact, hyperbolic manifold Mi such that
Vol(Mi )→∞ as i →∞ and λ2(Mi ) ≥ C(n) > 0, where C(n) is a constant not
depending on i . Such examples do exist (see for example [Brooks 1986]), even if
their construction, related to the concept of expanders, is not easy. The Mi can be
realized as coverings of a fixed manifold. The diameter of Mi is proportional to
ln Vol(Mi ), and hence tends to infinity as i→∞.

So, if we multiply the metric of Mi by (diam(Mi ))
−1, and denote by M i the new

family of Riemannian manifolds, it is clear that λ2(M i )→∞ but diam M i = 1.
Since M i is a covering, the distribution of the volume is uniform, and we see that
it cannot concentrate in a neighborhood of a single point. It concentrates however
in the sense described in [Chung et al. 1996]: Two sets Ai , Bi ⊂ M i of volume no
less than κ Vol(M i ) (with a fixed κ > 0) have to be very close to each other, even
if κ is small.
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SUR LES CONDITIONS D’EXISTENCE DES FAISCEAUX
SEMI-STABLES SUR LES COURBES MULTIPLES PRIMITIVES

JEAN-MARC DRÉZET

On donne des conditions suffisantes pour la (semi-)stabilité des faisceaux
sans torsion sur une curve multiple primitive. Ces conditions sont utilisées
pour démontrer que certaines variétés de modules de faisceaux stables sont
non vides. On étudie surtout les faisceaux quasi localement libres de type
générique, y inclus les faisceaux localement libres. Ces faisceaux sont géné-
riques, c’est-à-dire pour chaque variété de modules de faisceaux sans tor-
sion, les faisceaux de ce type correspondent à un ouvert de la variété.

We give sufficient conditions for the (semi-)stability of torsion free sheaves
on a primitive multiple curve. These conditions are used to prove that some
moduli spaces of stable sheaves are not empty. We study mainly the quasi
locally free sheaves of generic type (this includes the locally free sheaves).
These sheaves are generic, i.e. for every moduli space of torsion free sheaves,
the sheaves of this type correspond to an open subset of the moduli space.

1. Introduction 291
2. Préliminaires 297
3. Faisceaux quasi localement libres de type rigide 302
4. Dualité et torsion 306
5. Conditions d’existence des faisceaux (semi-)stables 312
Bibliographie 318

1. Introduction

Une courbe multiple primitive est une variété algébrique complexe de Cohen–
Macaulay qui peut localement être plongée dans une surface lisse, et dont la sous-
variété réduite associée est une courbe lisse. Les courbes projectives multiples
primitives ont été définies et étudiées pour la première fois par C. Bănică et O.
Forster [1986]. Leur classification a été faite dans [Bayer et Eisenbud 1995] pour

MSC2000: primary 14D20; secondary 14H60.
Mots-clefs: multiple curves, moduli spaces, semi-stable sheaves.
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les courbes doubles, et dans [Drézet 2007] dans le cas général. Les faisceaux semi-
stables sur des variétés non lisses ont déjà été étudiés [Seshadri 1982; Bhosle 1992;
1999; Teixidor i Bigas 1991; 1995; 1998; Inaba 2004; 2002].

On peut espérer en trouver des applications concernant les fibrés vectoriels ou
leurs variétés de modules sur les courbes lisses [Eisenbud et Green 1995; Sun 2000;
2002] en faisant dégénérer des courbes lisses vers une courbe multiple primitive.
Le problème de la dégénération des courbes lisses en courbes primitives doubles
est évoqué dans [González 2006].

Les articles [Drézet 2006; 2009] sont consacrés à l’étude des faisceaux cohérents
et de leurs variétés de modules sur les courbes multiples primitives. On donne ici
des critères de (semi-)stabilité et des conditions suffisantes d’existence des fais-
ceaux semi-stables sur ces courbes. On appliquera ensuite ces critères à des fais-
ceaux sans torsion génériques. Les conditions d’existence des faisceaux (semi-)
stables s’expriment en fonction d’invariants de ces faisceaux, parmi lesquels se
trouvent le rang et le degré généralisés.

Le cas des faisceaux localement libres est traité. Dans ce cas les seuls inva-
riants sont le rang et le degré généralisés. Les variétés de modules obtenues sont
irréductibles.

On considère aussi des faisceaux plus compliqués, les faisceaux quasi locale-
ment libres de type rigide non localement libres, où il y a deux invariants supplé-
mentaires. Dans ce cas les variétés de modules de faisceaux de rang et degré géné-
ralisés fixés peuvent avoir de multiples composantes.

Pour finir on traitera des exemples simples de faisceaux sans torsion non quasi
localement libres.

1.1. Faisceaux cohérents sur les courbes multiples primitives. Soit C une courbe
projective lisse irréductible. Soient n un entier tel que n ≥ 2 et Y une courbe
multiple primitive de multiplicité n et de courbe réduite associée C . Si IC est le
faisceau d’idéaux de C dans Y ,

L = IC/I
2
C

est un fibré en droites sur C , dit associé à Y . Dans cet article on supposera que
deg(L) < 0. Le cas où deg(L) ≥ 0 est moins intéressant car les seuls faisceaux
stables sont alors les fibrés vectoriels stables sur C .

Pour 1 ≤ i ≤ n on note Ci le sous-schéma de Y défini par le faisceau d’idéaux
Ii

C . C’est une courbe multiple primitive de multiplicité i et on a une filtration

C = C1 ⊂ · · · ⊂ Cn = Y.

On notera Oi = OCi .
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Le faisceau IC est localement libre de rang 1 sur Cn−1. Il existe un fibré en
droites L sur Cn tel que L|Cn−1 = IC . Pour tout faisceau cohérent E sur Cn on a
donc un morphisme canonique

E⊗ L−→ E

dont le noyau et le conoyau sont indépendants du choix de L.
Si F est un faisceau cohérent sur Y on note Fi le noyau de la restriction F→

F|Ci , F(i) celui du morphisme canonique F→ F⊗ L−i . On a des suites exactes
canoniques

0−→ Fi −→ F−→ F|Ci −→ 0,

0−→ F(i)
−→ F−→ Fi ⊗ L−i

−→ 0.

Les quotients Gi (F) = Fi/Fi+1, 0 ≤ i < n, sont des faisceaux sur C . Ils per-
mettent de définir le rang généralisé et le degré généralisé de F :

R(F)=
n−1∑
i=0

rg Gi (F), Deg(F)=
n−1∑
i=0

deg(Gi (F)).

Ce sont des invariants par déformation ; voir le section 2.3 et [Drézet 2006; 2009].
Si R(F) > 0, le nombre rationnel

µ(F)=
Deg(F)

R(F)

s’appelle la pente de F.
Pour 1≤ i < n, on note F[i] le noyau du morphisme canonique surjectif

F // // F|Ci
// // (F|Ci )

∨∨.

1.1.1. Faisceaux quasi localement libres. On dit qu’un faisceau cohérent E sur Y
est quasi localement libre s’il existe des entiers m1, . . . ,mn non négatifs tels que
E soit localement isomorphe à

n⊕
i=1

mi Oi .

Les entiers mi sont alors uniquement déterminés.

1.1.2. Faisceaux quasi localement libres de type rigide. On renvoie le lecteur à
[Drézet 2009]. Si E est quasi localement libre on dit qu’il est de type rigide s’il
est localement libre, ou s’il existe un entier k, 1 ≤ k ≤ n − 1, tel que mk = 1 et
m j = 0 pour j 6= k. Donc un faisceau quasi localement libre de type rigide non
localement libre est localement isomorphe à un faisceau du type aOn ⊕ Ok , avec
1≤ k≤ n−1. L’intérêt de ces faisceaux est que la propriété pour un faisceau d’être
quasi localement libre de type rigide est une propriété ouverte. En particulier les
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faisceaux stables localement libres de type rigide de rang généralisé R et de degré
généralisé d constituent un ouvert de la variété de modules des faisceaux stables
de rang généralisé R et de degré généralisé d sur Cn .

Soit E un faisceau quasi localement libre de type rigide localement isomorphe
à aOn ⊕ Ok , avec a ≥ 1, 1 ≤ k < n. Alors les faisceaux Ek et E(k) sont localement
libres sur Cn−k et Ck respectivement. On pose

EE = E|C , FE = Ek|C , VE = (E
(k))|C .

Ce sont des fibrés vectoriels sur C de rang a + 1, a, a + 1 respectivement. On
montre en 3.1 qu’on a une suite exacte canonique

(∗)E 0−→ FE⊗ Ln−k
−→ VE⊗ Ln−k

−→ EE −→ FE −→ 0.

Les rangs et degrés des fibrés EE et FE (et donc aussi VE) sont invariants par
déformation.

1.1.3. Construction des faisceaux quasi localement libres de type rigide. Elle est
faite par récurrence sur n dans 3.1.2, 3.2, 3.3 et 3.4. On construit le faisceau E sur
Cn connaissant E1, dont le support est Cn−1, et E|C . A priori il semble plus naturel
de construire E connaissant E|Cn−1 . On montre dans 3.5 que cela est impossible
car les faisceaux sur Cn−1 qui sont des restrictions de faisceaux quasi localement
libres de type rigide sur Cn sont spéciaux.

Cette méthode de construction devrait rendre possible la description précise
d’ouverts des variétés de modules de faisceaux stables qui contiennent de tels
faisceaux.

1.2. Variétés de modules de faisceaux stables. La stabilité ou semi-stabilité, au
sens de [Simpson 1994], des faisceaux sans torsion sur Cn ne dépend pas du choix
d’un fibré en droites très ample sur Cn . Elle est analogue à celle des fibrés (semi-)
stables sur les courbes projectives lisses (cf. [Drézet 2006; 2009]) : un faisceau
sans torsion E sur Cn est semi-stable si pour tout sous-faisceau propre F de E on
a µ(F)≤ µ(E). Si l’on a µ(F) < µ(E), on dit que E est stable.

L’hypothèse deg(L)< 0 est justifiée par le fait que dans le cas contraire les seuls
faisceaux sans torsion stables sur Cn sont les fibrés vectoriels stables sur C .

Soient R, d des entiers, avec R ≥ 1. On note M(R, d) la variété de modules des
faisceaux stables de rang généralisé R et de degré généralisé d sur Cn .

Soient a, k, ε, δ des entiers, avec a ≥ 1 et 1≤ k < n. Soient

R = an+ k,d = kε+ (n− k)δ+ 1
2

(
n(n− 1)a+ k(k− 1)

)
deg(L).

Les faisceaux quasi localement libres E de type générique stables localement iso-
morphes à aOn⊕ Ok et tels que EE et FE soient de rang a+1 et a (respectivement)
et de degré ε et δ constituent un ouvert irréductible de M(R, d), dont la sous-variété
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réduite sous-jacente est notée N(a, k, δ, ε) [Drézet 2009]. A priori M(R, d) a donc
plusieurs composantes irréductibles.

1.3. Principaux résultats. On démontre dans 5.1 le résultat suivant :

Théorème 5.1.2. Soient E un faisceau cohérent sans torsion sur Cn et k un entier
tel que 1≤ k < n et que Ek 6= 0. On suppose que

(1-1) µ(E(k))≤ µ(E), µ((E∨)(k))≤ µ(E∨).

Si E[k], (E|Ck )
∨∨, (E∨)[k] et ((E∨)|Ck )

∨∨ sont semi-stables il en est de même de E.
Si de plus les inégalités de (1-1) sont strictes, et si E[k] ou (E|Ck )

∨∨, ainsi que
(E∨)[k] ou ((E∨)|Ck )

∨∨, sont stables, alors E est stable.

Même si on se limitait aux faisceaux quasi localement libres il serait nécessaire
de faire intervenir des sous-faisceaux non quasi localement libres : on donne en 2.6
des exemples de fibrés vectoriels sur C2 dont la filtration de Harder–Narasimhan
comporte des faisceaux non quasi localement libres.

Dans tout ce qui suit on suppose que C est de genre g≥ 2. On applique d’abord
le théorème précédent aux fibrés vectoriels :

Théorème 5.2.1. Soit E un fibré vectoriel sur Cn . Alors, si E|C est semi-stable (ou
stable), il en est de même de E.

On en déduit que les variétés de modules de fibrés vectoriels stables sur Cn sont
non vides, pourvu qu’il n’y ait pas d’incompatibilité au niveau du rang et du degré
généralisés. Soient r, δ des entiers avec r ≥ 1. Alors le rang généralisé R et le degré
généralisé d d’un fibré vectoriel E sur Cn tel que E|C soit de rang r et de degré δ
sont

R = nr, d = nδ+ 1
2 n(n− 1)r deg(L).

L’ouvert U (R, d) de M(R, d) correspondant aux fibrés vectoriels stables est non
vide, lisse et irréductible, de dimension

1+ nr2(g− 1)− 1
2 n(n− 1)r2 deg(L).

On s’intéresse ensuite aux faisceaux quasi localement libres de type rigide non
localement libres :

Théorème 5.3.1. Soient a, k des entiers tels que a > 0 et 1 ≤ k < n. Soit E un
faisceau quasi localement libre de type rigide, localement isomorphe à aOn ⊕ Ok

et tel que
µ(VE)+

1
2 n deg(L)≤ µ(FE)≤ µ(EE)−

1
2 n deg(L).

Alors si EE, FE et VE sont semi-stables, il en est de même de E.
Si les inégalités précédentes sont strictes, et si EE, FE et VE sont stables, il en

est de même de E.
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Le problème de l’existence des faisceaux quasi localement libres de type ri-
gide (semi-)stables est plus compliqué que celui de l’existence des fibrés vectoriels
(semi-)stables, car si E en est un, la (semi-)stabilité de EE, FE et VE impose des
conditions supplémentaires sur les invariants de ces faisceaux, à cause de la suite
exacte (∗)E.

Avec les notations de 1.2, on a :

Théorème 5.3.3. Si on a
ε

a+ 1
<
δ

a
<
ε− (n− k) deg(L)

a+ 1
,

alors N(a, k, δ, ε) est non vide.

Ce résultat généralise la proposition 9.2.1 de [Drézet 2006], où le cas des fais-
ceaux de rang généralisé 3 sur C2 localement isomorphes à O2 ⊕ OC était traité.
La démonstration du théorème précédent utilise la résolution de la conjecture de
Lange [Russo et Teixidor i Bigas 1999].

D’après [Drézet 2009, proposition 6.12], la variété N(a, k, δ, ε) est irréductible
et lisse, et on a

dim N(a, k, δ, ε)

= 1−
(n(n− 1)

2
a2
+ k(n− 1)a+

k(k− 1)
2

)
deg(L)+ (g− 1)

(
na2
+ k(2a+ 1)

)
.

On termine par donner des applications du premier des théorèmes précédents à
des faisceaux non quasi localement libres.

Soient E un fibré vectoriel sur Cn , E = E|C et Z un ensemble fini de points de
C . On pose z = h0(OZ ). Soient φ : E→ OZ un morphisme surjectif, Eφ = kerφ et
Eφ le noyau du morphisme induit E→ OZ .

Théorème 5.4.2. Si on a z ≤ − rg E deg(L) et si E et Eφ sont semi-stables, alors
Eφ est semi-stable. Si l’inégalité est stricte et si E et Eφ sont stables, il en est de
même de Eφ .

1.4. Plan des sections suivantes. La section 2 contient des rappels sur les courbes
multiples primitives et les propriétés élémentaires des faisceaux cohérents sur ces
courbes. On décrit dans 2.5 la méthode de construction d’un faisceau cohérent
E sur Cn connaissant le faisceau E1 sur Cn−1 et E|C . Elle sera employée aussi
bien pour les faisceaux localement libres que pour les faisceaux quasi localement
libres de type rigide. On donne dans 2.6 des exemples de fibrés vectoriels instables
sur une courbe double primitive dont la filtration de Harder–Narasimhan n’est pas
constituée de faisceaux quasi localement libres. Cela rend nécessaire, dans l’étude
de la (semi-)stabilité d’un faisceau, la considération de sous-faisceaux sans torsion
généraux dont les filtrations canoniques peuvent comporter des faisceaux ayant de
la torsion.
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La section 3 est une étude des faisceaux quasi localement libres de type rigide
et de leur construction.

La section 4 traite de la dualité des faisceaux cohérents sur Cn et des faisceaux
de torsion.

Dans la section 5 sont démontrés les résultats énoncés dans 1.3.

2. Préliminaires

2.1. Définition des courbes multiples primitives et notations. Une courbe primi-
tive est une variété lisse Y de Cohen–Macaulay telle que la sous-variété réduite
associée C = Yred soit une courbe lisse irréductible, et que tout point fermé de Y
possède un voisinage pouvant être plongé dans une surface lisse.

Soient P un point fermé de Y , et U un voisinage de P pouvant être plongé dans
une surface lisse S. Soit z un élément de l’idéal maximal de l’anneau local OS,P de
S en P engendrant l’idéal de C dans cet anneau. Il existe alors un unique entier n,
indépendant de P , tel que l’idéal de Y dans OS,P soit engendré par (zn). Cet entier n
s’appelle la multiplicité de Y . Si n= 2 on dit que Y est une courbe double. D’après
[Drézet 2007, théorème 5.2.1], l’anneau OYP est isomorphe à OCP ⊗ (C[t]/(tn)).

Soit IC le faisceau d’idéaux de C dans Y . Alors le faisceau conormal de C ,
L = IC/I

2
C , est un fibré en droites sur C , dit associé à Y . Il existe une filtration

canonique

C = C1 ⊂ · · · ⊂ Cn = Y,

où au voisinage de chaque point P l’idéal de Ci dans OS,P est (zi ). On notera
Oi = OCi pour 1≤ i ≤ n.

Le faisceau IC est un fibré en droites sur Cn−1. Il existe d’après [Drézet 2006,
théorème 3.1.1], un fibré en droites L sur Cn dont la restriction à Cn−1 est IC . On
a alors, pour tout faisceau de On-modules E, un morphisme canonique

E⊗ L−→ E

qui en chaque point fermé P de C est la multiplication par z.

2.2. Filtrations canoniques. Dans toute la suite de la section 2 on considère une
courbe multiple primitive Cn de courbe réduite associée C . On utilise les notations
de 2.1.

Soient P un point fermé de C , M un On P -module de type fini. Soit E un faisceau
cohérent sur Cn .

Définition 2.2.1. La première filtration canonique de M est la filtration

Mn = {0} ⊂ Mn−1 ⊂ · · · ⊂ M1 ⊂ M0 = M
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telle que pour 0≤ i < n, Mi+1 soit le noyau du morphisme canonique surjectif
Mi → Mi ⊗On,P OC,P . On a donc

Mi/Mi+1 = Mi ⊗On,P OC,P , M/Mi ' M ⊗On,P Oi,P , Mi = zi M.

On pose, si i > 0, Gi (M)= Mi/Mi+1. Le gradué

Gr M =
n−1⊕
i=0

Gi (M)=
n−1⊕
i=0

zi M/zi+1 M

est un OC,P -module.
On définit de même la première filtration canonique de E : c’est la filtration

En = 0⊂ En−1 ⊂ · · · ⊂ E1 ⊂ E0 = E

telle que pour 0 ≤ i < n, Ei+1 soit le noyau du morphisme canonique surjectif
Ei → Ei |C . On a donc Ei/Ei+1 = Ei |C , E/Ei = E|Ci . On pose, si i ≥ 0,

Gi (E)= Ei/Ei+1.

Le gradué Gr E est un OC -module.

Définition 2.2.2. La seconde filtration canonique de M est la filtration

M (0)
= {0} ⊂ M (1)

⊂ · · · ⊂ M (n−1)
⊂ M (n)

= M

avec M (i)
= {u ∈ M; zi u = 0}. Si Mn = {0} ⊂ Mn−1 ⊂ · · · ⊂ M1 ⊂ M0 = M

est la (première) filtration canonique de M on a Mi ⊂ M (n−i) pour 0 ≤ i ≤ n. On
pose, si i > 0, G(i)(M)= M (i)/M (i−1). Le gradué Gr2 M =

⊕n
i=1 G(i)(M) est un

OC,P -module.
On définit de même la seconde filtration canonique de E :

E(0) = {0} ⊂ E(1) ⊂ · · · ⊂ E(n−1)
⊂ E(n) = E.

On pose, si i > 0,
G(i)(E)= E(i)/E(i−1).

Le gradué Gr2 E est un OC -module.

2.3. Invariants.

Définition 2.3.1. L’entier R(M) = rg(Gr M) s’appelle le rang généralisé de M .
L’entier R(E) = rg(Gr E) s’appelle le rang généralisé de E. On a donc R(E) =
R(EP) pour tout P ∈ C .

Définition 2.3.2. L’entier Deg(E)= deg(Gr E) s’appelle le degré généralisé de E.
Si R(E) > 0 on pose

µ(E)=
Deg(E)

R(E)
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et on appelle ce nombre la pente de E.

Le rang et le degré généralisés sont additifs, c’est-à-dire que si 0→ E′→ E→

E′′→ 0 est une suite exacte de faisceaux cohérents sur Cn alors on a

R(E)= R(E′)+ R(E′′), Deg(E)= Deg(E′)+Deg(E′′).

Il sont également invariants par déformation.

2.4. Faisceaux quasi localement libres. Soit P un point fermé de C . Soit M un
On,P -module de type fini. On dit que M est quasi libre s’il existe des entiers
m1, . . . ,mn non négatifs et un isomorphisme M '

⊕n
i=1 mi Oi,P . Les entiers m1,

. . . ,mn sont uniquement déterminés. On dit que M est de type (m1, . . . ,mn). On
a R(M)=

∑n
i=1 i.mi .

Soit E un faisceau cohérent sur Cn . On dit que E est quasi localement libre en
un point P de C s’il existe un ouvert U de Cn contenant P et des entiers non
négatifs m1, . . . ,mn tels que pour tout point Q de U , En,Q soit quasi localement
libre de type m1, . . . ,mn . Les entiers m1, . . . ,mn sont uniquement déterminés et ne
dépendent que de E, et on dit que (m1, . . . ,mn) est le type de E. Sur un voisinage
de P , E est alors isomorphe à

⊕n
i=1 mi Oi .

On dit que E est quasi localement libre s’il l’est en tout point de Cn .
D’après [Drézet 2006, théorème 5.1.3] E est quasi localement libre en P si et

seulement si pour 0≤ i < n, Gi (E) est libre en P .
Il en découle que E est quasi localement libre si et seulement si pour 0≤ i < n,

Gi (E) est localement libre sur C .

2.5. Construction des faisceaux cohérents.

2.5.1. On décrit ici le moyen de construire un faisceau cohérent E sur Cn , connais-
sant E|C et E1, qui sont des faisceaux sur C et Cn−1 respectivement.

Soient F un faisceau cohérent sur Cn−1 et E un fibré vectoriel sur C . On
s’intéresse aux faisceaux cohérents E sur Cn tels que E|C = E et E1 = F. Soit
0→ F→ E→ E → 0 une suite exacte, associée à σ ∈ Ext1On

(E,F). On voit
aisément que le morphisme canonique πE : E⊗IC → E induit un morphisme

8F,E(σ ) : E ⊗ L −→ F|C .

On a E|C = E et E1 = F si et seulement si 8F,E(σ ) est surjectif [Drézet 2009,
lemme 3.13].

D’après la proposition 3.14 de [Drézet 2009], on a une suite exacte canonique

(2-1) 0 // Ext1OC
(E,F(1)) // Ext1On

(E,F)
8F,E // Hom(E ⊗ L ,F|C) // 0.
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2.5.2. On suppose que n ≥ 3. On s’intéresse maintenant aux extensions 0→F→

E → E → 0 associées aux éléments σ ∈ Ext1On
(E,F) tels que 8F,E(σ ) = 0(

donc σ ∈ Ext1OC
(E,F(1))

)
. Dans ce cas E est localement isomorphe à F ⊕ E ,

d’après [Drézet 2009, 2.4]. Plus précisément dans la suite exacte (2-1) le terme
Ext1OC

(E,F(1)) est en fait H 1(Hom(E,F)). On peut donc représenter σ par un
cocycle ( fi j ) relativement à un recouvrement ouvert (Ui ) de Cn , fi j étant un mor-
phisme E|Ui j → F|Ui j . D’après la proposition 2.2 de [Drézet 2009], le faisceau E

est obtenu en recollant les (F⊕ E)|Ui au moyen des morphismes(
IF fi j

0 IE

)
.

On suppose maintenant que F est localement libre sur Cn−1. Soit F=F|C⊗L−1,
on a donc F(1)

= F⊗ Ln−1. En utilisant la construction précédente de E au moyen
d’un cocycle on voit aisément que E|C ' (F⊗ L)⊕ E , et qu’on a une suite exacte

0−→ F ⊗ Ln−1
−→ E(1) −→ E −→ 0,

qui est associée à σ .

2.5.3. Construction des fibrés vectoriels. On suppose que F est un fibré vectoriel
sur Cn−1. On veut construire et paramétrer les fibrés vectoriels E sur Cn tels que
E1=F. Il convient donc de prendre E =F|C⊗ L−1 et de considérer les extensions
0 → F → E → E → 0 telles que l’élément associé σ de Ext1On

(E,F) soit tel
que 8F,E(σ ) : E ⊗ L → E ⊗ L soit l’identité de E ⊗ L . Si E est simple on
montre aisément, en utilisant le fait que deg(L) < 0, que deux éléments σ, σ ′

de 8−1
F,E(IE⊗L) définissent des fibrés vectoriels E isomorphes si et seulement si

σ = σ ′. Dans ce cas les fibrés vectoriels recherchés sont donc paramétrés par
l’espace affine 8−1

F,E(IE⊗L)' Ext1OC
(E, E ⊗ Ln−1).

2.6. Filtration de Harder–Narasimhan. Nous supposons encore que deg(L)< 0.
On montre ici que la filtration de Harder–Narasimhan d’un fibré vectoriel sur C2

n’est pas nécessairement constituée de faisceaux quasi localement libres. Cela en-
traine que dans l’étude de la (semi-)stabilité des faisceaux localement libres (ou
a fortiori quasi localement libres) il faut aussi considérer des sous-faisceaux sans
torsion non nécessairement quasi localement libres.

Soient P un point fermé de C2 et IP son faisceau d’idéaux. Soient z ∈ O2,P un
générateur de l’idéal de C et x ∈ O2,P au dessus d’un générateur de l’idéal de P
dans OC,P . On a donc IP,P = (x, z). On a une suite exacte de O2,P -modules

(2-2) 0 // (x, z) α // 2O2,P
β // (x, z) // 0,
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où pour tous a, b ∈ O2,P

α(ax + bz)= (−az, ax + bz),

β(a, b)= ax + bz.

On va globaliser cette suite exacte afin d’obtenir des suites exactes

(2-3) 0−→ IP ⊗D−→ E−→ IP −→ 0,

où D est fibré en droites sur C2 et E un fibré vectoriel de rang 2 sur C2. Le faisceau
Ext1

O2
(IP ,IP⊗D) est concentré au point P . On en déduit qu’il existe une section

s de Ext1
O2
(IP ,IP ⊗D) dont la valeur en P correspond à l’extension (2-2).

On a un morphisme surjectif canonique

9 : Ext1O2
(IP ,IP ⊗D)−→ H 0(Ext1

O2
(IP ,IP ⊗D)).

Donc 9−1(s) est non vide. Si 0→ IP ⊗ D→ E→ IP → 0 est une extension
associée à un élément de 9−1(s), le faisceau E est localement libre. L’existence
des extensions (2-3) est donc prouvée.

Proposition 2.6.1. Soit 0→IP⊗D→E→IP→0 une extension, où D est un fibré
en droites sur C2 et E un fibré vectoriel de rang 2 sur C2. Alors si deg(D|C) > 0,
le faisceau IP ⊗D est le sous-faisceau semi-stable maximal de E.

Démonstration. Soit H⊂E le sous-faisceau semi-stable maximal de E. On a R(H)=
1, 2 ou 3.

On note Lx le faisceau d’idéaux égal à O2 sur C2\P et à (x) au point P . C’est
un fibré en droites sur C2 et on a I∨P ' IP ⊗ L−1

x . On a donc une suite exacte

0−→ IP ⊗D−→ E∨⊗ Lx ⊗D−→ IP −→ 0

En considérant cette suite exacte on se ramène au cas où R(H)= 1 ou 2.
On montre d’abord que IP est semi-stable. Soit F⊂IP un sous-faisceau propre

tel que IP/F soit sans torsion. On a alors R(F)= 1, donc F est concentré sur C ,
et est donc contenu dans (IP)

(1)
= L . Donc

µ(F)≤ deg(L)≤ µ(IP)=
1
2(deg(L)− 1),

car deg(L) < 0.
Supposons d’abord que R(H)= 1. Si H⊂ IP⊗D on a µ(H)≤µ(IP⊗D) (car

IP ⊗D est semi-stable), ce qui contredit la maximalité de H. Si H 6⊂ IP ⊗D, on
peut voir H comme un sous-faisceau de IP , donc µ(H) ≤ µ(IP), donc µ(H) <
µ(IP ⊗D), ce qui est absurde.

On a donc R(H) = 2. Soit r le rang généralisé de l’image U de H dans IP . Si
r = 0 on a H= IP ⊗D, ce qu’il fallait démontrer. Si r = 2 on peut voir H comme
un sous-faisceau de IP et on a alors encore µ(H)≤ µ(IP), ce qui est impossible.
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Il reste à traiter le cas où r = 1 en montrant qu’il est impossible. Soit d le degré
de U (qui est concentré sur C). On a, puisque H ∩ (IP ⊗ D) est aussi de rang
généralisé 1,

deg(U)≤ deg(L) et deg(H∩ (IP ⊗D))≤ deg(L)+ deg(D|C).

Donc

µ(H)≤ deg(L)+ 1
2 deg(D|C) < 1

2(deg(L)− 1)+ deg(D|C)= µ(IP ⊗D),

ce qui contredit la définition de H. �

Remarque 2.6.2. Si on suppose que deg(D|C)= 0 on obtient des fibrés vectoriels
E semi-stables de rang 2 sur C2 dont la filtration de Jordan–Hölder n’est pas cons-
tituée de faisceaux quasi localement libres.

3. Faisceaux quasi localement libres de type rigide

Dans toute la suite de cette section on considère une courbe multiple primitive
Cn de courbe réduite associée C . On utilise les notations de 2.1, et on suppose que
deg(L) < 0.

3.1. Définitions. Soit E un faisceau cohérent quasi localement libre sur Cn . Soient
a = [R(E)/n] et k = R(E)− an. On a donc R(E) = an+ k. On dit que E est de
type rigide s’il est localement libre si k = 0, et localement isomorphe à aOn ⊕ Ok

si k > 0. Si k > 0 cela revient à dire que E est de type (m1, . . . ,mn), avec mi = 0
si i 6= k, n et mk = 0 ou 1.

Le fait d’être quasi localement libre de type rigide est une propriété ouverte :
autrement dit si Y une variété algébrique intègre et F une famille plate de faisceaux
cohérents sur Cn paramétrée par Y , alors l’ensemble des points y ∈ Y tels que
Ey soit quasi localement libre de type rigide est un ouvert de Y [Drézet 2009,
proposition 6.9].

Supposons que E soit quasi localement libre de type rigide et que k > 0. Alors
E= E|Ck est un fibré vectoriel de rang a+1 sur Ck , et F= Ek est un fibré vectoriel
de rang a sur Cn−k . Donc E est une extension

0−→ F−→ E−→ E−→ 0

d’un fibré vectoriel de rang a+1 sur Ck par un fibré vectoriel de rang a sur Cn−k .
De même V= E(k) est un fibré vectoriel sur Ck et on a une suite exacte

0−→ V−→ E−→ F⊗ L−k
−→ 0.
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Posons E =E|C = E|C , F =Gk(E)⊗ L−k
= F|C⊗ L−k . Alors on a rg E = a+1,

rg F = a, et(
G0(E),G1(E), . . . ,Gn−1(E)

)
= (E, E⊗L , . . . , E⊗Lk−1, F⊗Lk, . . . , F⊗Ln−1).

Donc

Deg(E)= k deg(E)+ (n− k) deg(F)+ 1
2

(
n(n− 1)a+ k(k− 1)

)
deg(L).

On a
G(n)(E)= E/E(n−1)

= En−1⊗ L1−n
= Gn−1(E)⊗ L1−n

= F .

Posons V = G(k)(E) ⊗ Lk−n
= V|C ⊗ Lk−n . On a rg V = a + 1, deg(V ) =

deg(E)− (n− k) deg(L), et(
G(n)(E),G(n−1)(E), . . . ,G(1)(E)

)
= (F, F ⊗ L , . . . , F ⊗ Ln−k−1, V ⊗ Ln−k, . . . , V ⊗ Ln−1).

Les morphismes canoniques

Gi (E)⊗ L � � // Gi+1(E), G(i+1)
⊗ L // // G(i)(E)

définissent un morphisme surjectif φ : E→ F et un morphisme injectif ψ : F→ V .
D’après [Drézet 2009, corollaire 3.4], on a un isomorphisme canonique

kerφ ' (cokerψ)⊗ Ln−k .

Posons D = kerφ. C’est un fibré en droites sur C . On a des suites exactes

0 // D // E
φ // F // 0,

0 // F
ψ // V // D⊗ Lk−n // 0.

3.1.1. Notations. On pose EE = E , FE = F , VE = V , DE = D,

φE = φ : EE −→ FE et ψE = φ : FE −→ VE.

On a une suite exacte canonique

(∗)E 0−→ FE⊗ Ln−k
−→ VE⊗ Ln−k

−→ EE −→ FE −→ 0.

3.1.2. Construction et paramétrisation. On cherche ici à décrire comment on peut
obtenir les faisceaux quasi localement libres de type rigide E précédents. On part
d’abord d’un fibré vectoriel F sur Cn−k de rang a ≥ 1 (voir 2.5.3 pour la construc-
tion et la paramétrisation des fibrés vectoriels) qui sera Ek . On construira ensuite
successivement Ek−1, . . . ,E1,E. Il y a deux cas différents : le passage de F à Ek−1,
et celui de Ei à Ei−1 si 1 ≤ i < k. On va donc étudier dans les sections suivantes
les deux étapes suivantes :
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La première étape consiste à étudier les extensions

0−→ F−→ E−→ H −→ 0

sur Cn−k+1, où H est un fibré vectoriel de rang a+1 sur C , telles que le morphisme
induit8F,H : H→ F|C soit surjectif (voir 2.5). Le faisceau E est alors quasi locale-
ment libre de type rigide, et localement isomorphe à aOn−k+1⊕ OC . On a E|C = H
et E1 = F.

Dans la seconde étape on part d’un faisceau quasi localement libre de type rigide
G sur Cn−k+i , 1≤ i < k, localement isomorphe à aOn−k+i⊕Oi . Soit H =GC⊗ L−1.
On s’intéresse alors aux extensions

0−→ G−→ E−→ H −→ 0

sur Cn−k+i+1 telles que le morphisme induit 8G,H : H ⊗ L→ H ⊗ L soit l’iden-
tité de H ⊗ L . Le faisceau E est alors quasi localement libre de type rigide, et
localement isomorphe à aOn−k+i+1⊕ Oi+1. On a E|C = H et E1 = G.

3.2. Construction et paramétrisation – première étape. On décrit ici la première
étape évoquée dans 3.1.2, dont on conserve les notations.

On pose F = F|C ⊗ L−1. Soient σ ∈ Ext1On−k
(H, F) et

0−→ F−→ Eσ −→ H −→ 0

l’extension correspondante. On suppose que φ = 8F,H (σ )⊗ IL−1 : H → F est
surjectif. Soit D = kerφ. On a EEσ = H , FEσ = F , et une suite exacte

(3-1) 0−→ F ⊗ Ln−k
−→ VEσ ⊗ Ln−k

−→ D −→ 0.

On a d’après 2.5.1 une suite exacte

0 // Ext1OC
(H, F ⊗ Ln−k) // Ext1On−k+1

(H, F)
8F,H // Hom(H, F) // 0.

Lemme 3.2.1. L’image de σ dans Ext1On−k+1
(D, F) est contenue dans

Ext1OC
(D, F ⊗ Ln−k),

et c’est l’élément associé à la suite exacte (3-1).

Démonstration. Soit σ ′ l’image de σ dans Ext1On−k+1
(D, F). La fonctorialité de φF,H

par rapport à F et H entraine que 8F,D(σ
′)= 0. On a donc bien d’après 2.5.2 σ ′ ∈

Ext1OC
(D, F⊗ Ln−k). D’après [Drézet 2005, proposition 4.3.1] on a un diagramme
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commutatif avec lignes exactes

0 // F // H //
� _

��

D //
� _

��

0

0 // F // Eσ // H // 0

l’extension du haut étant associée à σ ′. On a H(1)
⊂ E(1)σ , et d’après 2.5.2 on a une

suite exacte

0−→ F ⊗ Ln−k
−→H(1)

⊗ Ln−k
−→ D −→ 0.

Il en découle que H(1)
=E(1)σ =VEσ . D’après 2.5.2 σ ′ correspond bien à l’extension

(3-1). �

Proposition 3.2.2. Pour toute extension

0−→ F ⊗ Ln−k
−→W ⊗ Ln−k

−→ D −→ 0

sur C il existe σ0 ∈ 8
−1
H,F(φ⊗ IL) tel que l’extension précédente soit isomorphe à

l’extension

0−→ F ⊗ Ln−k
−→ VEσ0

⊗ Ln−k
−→ D −→ 0.

Démonstration. Cela découle du lemme 3.2.1, du carré commutatif

Ext1OC
(H, F ⊗ Ln−k)

� � //

��

Ext1On−k+1
(H, F)

��
Ext1OC

(D, F ⊗ Ln−k)
� � // Ext1On−k+1

(D, F)

et de la surjectivité du morphisme de gauche. �

Soient φ : H → F|C un morphisme surjectif et η ∈ Ext1On−k+1
(D, F). Alors on a

8F,H (σ )= φ⊗ IL et la suite exacte

0−→ F ⊗ Ln−k
−→ VEσ0

⊗ Ln−k
−→ D −→ 0

est associée à η si et seulement si η appartient au sous-espace affine

8−1
F,H (φ⊗ IL)∩ψ

−1(η)

de Ext1On−k+1
(H, F). Dans cette expression ψ désigne l’application canonique

Ext1On−k+1
(H, F)→ Ext1On−k+1

(D, F).
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3.3. Construction et paramétrisation – seconde étape. On décrit ici la seconde
étape évoquée dans 3.1.2, dont on conserve les notations.

On suppose que H = G|C⊗ L−1. Soient σ ∈ Ext1On−k+i+1
(H,G) tel que 8G,H (σ )

soit l’identité de H ⊗ L et 0→ G→ Eσ → H → 0 l’extension correspondante.

Proposition 3.3.1. On a EEσ = EG⊗ L−1, FEσ = FG⊗ L−1, VEσ = VG⊗ L−1 et
(∗)Eσ = (∗)G⊗ L−1.

Démonstration. Il suffit de le faire avec aOn−k+i+1 ⊕ Oi+1 à la place de Eσ en
utilisant les isomorphismes locaux Eσ ' aOn−k+i+1 ⊕ Oi+1 et la fonctorialité de
(∗)Eσ , ce qui est immédiat. �

On a d’après 2.5.1 une suite exacte

0 // Ext1OC
(H,G(1)) // Ext1On−k+i+1

(H,G)
8G,H // Hom(H ⊗ L ,G|C) // 0.

Les faisceaux Eσ considérés ici sont donc indexés par le sous-espace affine
8−1

G,H (IH⊗L) de Ext1On−k+i+1
(H,G).

3.4. Construction et paramétrisation – conclusion.

Proposition 3.4.1. Soient k, a des entiers tels que 1 ≤ k < n, a > 0. Soient E , F ,
V des fibrés vectoriels sur C de rangs a+ 1, a, a+ 1 respectivement, et

(3-2) 0−→ F ⊗ Ln−k
−→ V ⊗ Ln−k

−→ E −→ F −→ 0

une suite exacte. Alors il existe un faisceau quasi localement libre de type rigide E,
localement isomorphe à aOn ⊕ Ok et tel que (∗)E soit isomorphe à (3-2).

Cela signifie qu’il existe un diagramme commutatif reliant les suite exactes (∗)E
et (3-2) :

F ⊗ Ln−k //

'

��

V ⊗ Ln−k //

'

��

E //

'

��

F

'

��
FE⊗ Ln−k // VE⊗ Ln−k // EE

// FE

3.5. Restrictions des faisceaux quasi localement libres de type rigide. Les mé-
thodes précédentes de construction de faisceaux quasi localement libres de type
rigide se font sur le principe suivant : on part d’un tel faisceau F sur Cn−1 et on en
construit un E sur Cn tel que E1 = F.

A priori il semblerait plus naturel de chercher un faisceau E tel que E|Cn−1 =F.
Mais c’est impossible car un faisceau quasi localement libre de type rigide sur
Cn−1, non localement libre, n’est pas nécessairement la restriction d’un faisceau
du même type sur Cn :
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Proposition 3.5.1. Soit E un faisceau quasi localement libre de type rigide non lo-
calement libre sur Cn localement isomorphe à aOn⊕Ok , avec a≥1 et 1≤k<n−1.
Alors (E|Cn−1)

(1) est scindé.

Démonstration. Soient P un point fermé de Cn et z ∈ On,P un générateur de l’idéal
de C . On fixe un isomorphisme EP ' aOn,P ⊕ Ok,P . On a alors (E|Cn−1)P =

aOn−1,P ⊕ Ok,P , et

(E(1))P = a(zn−1)⊕ (zk−1), ((E|Cn−1)
(1))P = a

(
(zn−2)/(zn−1)

)
⊕ (zk−1).

L’image du morphisme canonique λ : E(1) → (E|Cn−1)
(1) au point P est (zk−1).

L’autre facteur a(zn−2)/(zn−1) est ((E|Cn−1)n−2)P . On a donc

(E|Cn−1)
(1)
= (im λ)⊕ (E|Cn−1)n−2. �

4. Dualité et torsion

On considère dans cette section une courbe multiple primitive Cn de courbe
réduite associée C . On utilise les notations de 2.1.

4.1. Généralités sur la dualité des faisceaux cohérents sur Cn. Soient P ∈ C et
M un On,P -module de type fini. On note M∨n le dual de M :

M∨n = Hom(M,On,P).

Si aucune confusion n’est à craindre on notera M∨ = M∨n . Si N est un OC,P -
module, on note N ∗ le dual de N : N ∗ = Hom(N ,OC,P).

Soit E un faisceau cohérent sur Cn . On note E∨n le dual de E :

E∨n =Hom(E,On).

Si aucune confusion n’est à craindre on notera E∨ = E∨n . Si E est un faisceau
cohérent sur C , on note E∗ le dual de E : E∗ = Hom(E,OC). Ces notations sont
justifiées par le fait que E∨ 6= E∗. Plus généralement on a, si i un entier tel que
1≤ i ≤ n et E un faisceau cohérent sur Ci , un isomorphisme canonique

E∨n ' E∨i ⊗In−i
C ,

(IC désignant le faisceau d’idéaux de C , qui est un fibré en droites sur Cn−1). En
particulier, pour tout faisceau cohérent E sur C , on a E∨n ' E∗ ⊗ Ln−1 [Drézet
2009, lemme 4.1].

Pour tout entier i tel que 1 ≤ i < n, on a (E∨)(i) = (E|Ci )
∨ [Drézet 2009,

proposition 4.2].
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4.1.1. Sous-faisceau de torsion d’un faisceau cohérent sur Cn . Soient P un point
fermé de C et x ∈ On P un élément au dessus d’un générateur de l’idéal maximal
de OCP . Soit M un On P -module de type fini. Le sous-module de torsion T (M) de
M est constitué des éléments annulés par une puissance de x . On dit que M est
sans torsion si ce sous-module est nul. C’est donc le cas si et seulement si pour
tout m ∈ M non nul et tout entier p > 0 on a x pm 6= 0.

Soit E un faisceau cohérent sur Cn . Le sous-faisceau de torsion T (E) de E est
le sous-faisceau maximal de E dont le support est fini. Pour tout point fermé P de
C on a T (E)P = T (EP). On a donc une suite exacte canonique

0−→ T (E)−→ E−→ E∨∨ −→ 0.

4.1.2. Faisceaux réflexifs. Un faisceau cohérent E sur Cn est réflexif si et seule-
ment si il est sans torsion [Drézet 2009, théorème 4.4], si et seulement si E(1) est
localement libre sur C [Drézet 2009, proposition 3.8].

4.2. Dualité des faisceaux de torsion. Soit T un faisceau de torsion sur Cn . Alors
on a évidemment T∨ = 0. On appelle dual de T le faisceau

Dn(T)= Ext1
On
(T,On).

S’il n’y a pas d’ambiguïté sur n, on notera plus simplement T̃= Dn(T). Rappelons
que Ext i

On
(T,On)= 0 pour tout i ≥ 2, d’après le corollaire 4.6 de [Drézet 2009].

Proposition 4.2.1. Soit T un faisceau de torsion sur Ci , 1 ≤ i < n. Alors on a un
isomorphisme canonique

Dn(T)' Di (T)⊗ Ln−i .

Bien sûr on a Di (T)⊗ Ln−i
' Di (T).

Démonstration. D’après la proposition 2.1 de [Drézet 2009] on a un isomorphisme
Di (T)' Ext1

On
(T,Oi ). On considère la suite exacte

0 // Oi ⊗ Ln−i // On
r // On−i // 0.

Il suffit de montrer que le morphisme induit par r

8 : Ext1
On
(T,On)−→ Ext1

On
(T,On−i )

est nul.
On considère une résolution localement libre de T :

· · · E2
f2 // E1

f1 // E0 // T // 0.
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Soient P un point fermé de C et z ∈ On P une équation de C . Alors Ext1
On
(T,On)

est isomorphe à la cohomologie de degré 1 du complexe dual

E∨0

t f1 // E∨1

t f2 // E∨2 · · ·

et Ext1
On
(T,On−i ) est isomorphe à la cohomologie de degré 1 du complexe obtenu

en restreignant le précédent à Cn−i . Le morphisme 8 provient du morphisme de
complexes

E∨0

t f1 //

π0
����

E∨1

t f2 //

π1
����

E∨2 · · ·

π2
����

(E∨0 )|Cn−i

t f1 // (E∨1 )|Cn−i

t f2 // (E∨2 )|Cn−i · · ·

(les flèches verticales étant les restrictions).
Soient P un point du support de T et z ∈ On P une équation de C . Soient α ∈

Ext1
On
(T,On)P et u ∈ ker t f2 au dessus de α. Puisque T est concentré sur Ci , la

multiplication par zi : Ext1
On
(T,On)P→Ext1

On
(T,On)P est nulle. Donc zi u∈ im t f1,

et on peut écrire zi u= t f1(θ), avec θ ∈ (E∨0 )P . On va montrer que θ est multiple de
zi . Pour cela on suppose que ce n’est pas le cas, et on va aboutir à une contradiction.
On a donc θ = zkθ ′, avec 0 ≤ k < i et θ ′ non multiple de z. On a t f1(zn−i+kθ ′) =

znu = 0, et puisque t f1 est injectif, on a zn−i+kθ ′ = 0. Puisque n − i + k < n, il
en découle que θ ′ est multiple de z, ce qui est la contradiction recherchée. On peut
donc écrire θ = ziθ ′, d’où zi (u − t f1(θ

′)) = 0, et il en découle qu’on peut écrire
u sous la forme u = t f1(θ

′)+ zn−iρ. Il en découle que π1(u) = t f1(π0(θ
′)). On a

donc 8P(α)= 0. �

Corollaire 4.2.2. Soit T un faisceau de torsion sur Cn . Alors on a h0(T)= h0(T̃).

Démonstration. D’après la proposition 4.2.1, on a, pour tout faisceau de torsion T
sur C , Dn(T ) ' T . Le corollaire en découle, en utilisant par exemple la première
filtration canonique de T. �

Les faisceaux de torsion sur Cn et les morphismes entre eux constituent une ca-
tégorie abélienne et noethérienne Tn(Cn), qui est évidemment une sous-catégorie
pleine de celle des faisceaux cohérents sur Cn . La dualité définit un foncteur contra-
variant exact

Dn : Tn(Cn)−→ Tn(Cn).

Proposition 4.2.3. Le foncteur Dn est une involution. Donc si T est un faisceau de
torsion sur Cn , il existe un isomorphisme canonique

˜̃
T ' T.
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Démonstration. Il existe un fibré vectoriel E et un morphisme surjectif f : E→ T.
Alors E = ker f est un faisceau sans torsion, donc réflexif. On obtient donc en
dualisant la suite exacte 0→ E→ E→ T→ 0 les suivantes :

0−→ E∨ −→ E∨ −→ T̃ −→ 0, 0−→ E−→ E−→
˜̃
T −→ 0.

Le résultat en découle aisément. �

Si T est un faisceau de torsion sur Cn , l’entier h0(T) s’appelle la longueur de
T . On a

h0(T)=
∑
P∈C

dimC(TP).

Lemme 4.2.4. Soit T un faisceau de torsion sur Cn . Alors on a h0(Gi (T)) =

h0(G(i+1)(T)) pour 0≤ i < n.

Démonstration. Découle aisément du [Drézet 2009, corollaire 3.4]. �

Corollaire 4.2.5. Soit T un faisceau de torsion sur Cn . Alors on a, pour 1≤ i ≤ n,
des isomorphismes canoniques

[T̃]i ' [̃Ti ]⊗ Li , (T̃)(i) ' T̃/Ti , G(i+1)(T̃)' G̃i (T).

Démonstration. De la suite exacte 0→Ti→T→T/Ti→ 0 on déduit la suivante :

0−→ T̃/Ti −→ T̃ −→ [̃Ti ] −→ 0.

D’après la proposition 4.2.1, T̃/Ti est concentré sur Ci . On a donc T̃/Ti ⊂ (T̃)
(i).

Mais le lemme 4.2.4 entraine que h0(T̃/Ti )=h0((T̃)(i)), donc on a en fait l’égalité.
Il en découle que [̃Ti ] ' [T̃]i ⊗ L−i .

Le dernier isomorphisme découle de la suite exacte

0−→ G(i+1)(T̃)−→ [T̃]i ⊗ L−→ [T̃]i+1 −→ 0

(voir [Drézet 2009, lemme 3.2]), du fait que par définition on a Gi (T)= Ti/Ti+1,
et du premier isomorphisme. �

4.3. Dualité des faisceaux sans torsion. Soit E un faisceau cohérent sans torsion
sur Cn . Il est donc réflexif (voir 4.1.2). Les faisceaux Ei , E(i) le sont donc aussi,
étant des sous-faisceaux de E. Mais les faisceaux E/Ei ne le sont pas en général.
On note 6i (E) le sous-faisceau de torsion de E/Ei , et Ti (E) celui de Gi (E).

Pour 1≤ i < n, on note E[i] le noyau du morphisme canonique surjectif

E // // E|Ci
// // (E|Ci )

∨∨.

Proposition 4.3.1. Soit E un faisceau cohérent sans torsion sur Cn . Alors, pour
1≤ i < n :
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(i) On a un isomorphisme 6i (E
∨)' 6̃i (E)⊗ Li , et une suite exacte

0−→ (E∨)i −→ (Ei )
∨
⊗ Li
−→6i (E

∨)−→ 0

canoniques.

(ii) On a un isomorphisme canonique E[i]∨ ' (E∨)i ⊗ L−i .

(iii) Il existe un morphisme canonique φi (E) :6i+1(E)→6i (E) tel que kerφi (E)'

Ti (E), et que cokerφi (E)= Ri (E) soit concentré sur C.

(iv) Il existe une inclusion canonique

G(i+1)(E∨)
� � // Gi (E)

∗
⊗ Ln−1

telle que le quotient soit isomorphe à Ri (E).

Démonstration. En dualisant la suite exacte 0→ Ei → E→ E/Ei → 0, on obtient
la suite exacte

0−→ (E/Ei )
∨
−→ E∨ −→ (Ei )

∨
−→ Ext1

On
(E/Ei ,On)= 6̃i (E)−→ 0.

D’après la proposition 4.2 de [Drézet 2009] on a (E/Ei )
∨
= (E∨)(i). On en déduit

la suite exacte

(4-1) 0−→ (E∨)i ⊗ L−i
−→ (Ei )

∨
−→ 6̃i (E)−→ 0.

En la dualisant et tensorisant par L−i , et en utilisant la proposition 4.2.3 on obtient
la suite exacte

(4-2) 0−→ Ei ⊗ L−i
−→ ((E∨)i )

∨
−→6i (E)⊗ L−i

−→ 0,

qui est (4-1) avec E∨ à la place de E. On obtient donc l’isomorphisme canonique
de (i). On en déduit (ii) en dualisant la suite exacte 0→ Ei→ E[i]→6i (E)→ 0.

On a un diagramme commutatif avec lignes et colonnes exactes

0

��

0

��
0 // Ei+1 //

��

((E∨)i+1)
∨
⊗ Li+1 //

��

6i+1(E) // 0

0 // Ei //

��

((E∨)i )
∨
⊗ Li //

��

6i (E) // 0

Gi (E)

��

G(i+1)(E∨)∨

��
0 0
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où les suites horizontales proviennent de (4-2) et la suite verticale du milieu du
[Drézet 2009, lemme 3.2]. On en déduit aisément (iii) et (iv). �

4.4. Invariants du dual d’un faisceau cohérent.

Proposition 4.4.1. Soit E un faisceau cohérent. Alors on a

R(E∨)= R(E), Deg(E∨)=−Deg(E)+ R(E)(n− 1) deg(L)+ h0(T (E)).

Démonstration. La première assertion concernant les rangs est immédiate, par
exemple en se plaçant sur l’ouvert où E est quasi localement libre. Démontrons
la seconde. Soit F = E/T (E), qui est un faisceau sans torsion. On a Deg(E) =
Deg(F)+h0(T (E)), R(E)= R(F) et E∨=F∨, donc la seconde assertion équivaut à

Deg(F∨)=−Deg(F)+ R(F)(n− 1) deg(L).

On peut donc supposer que E est sans torsion. On va montrer que

(4-3) Deg(E∨)=−Deg(E)+ R(E)(n− 1) deg(L)

par récurrence sur n. Si n = 1 c’est évident. Supposons que n > 1 et que (4-3) soit
vraie pour n− 1. On a donc

Deg((E1)
∨n−1)=−Deg(E1)+ R(E1)(n− 2) deg(L).

Mais d’après 4.1 on a (E1)
∨
= (E1)

∨n−1 ⊗IC , donc

Deg((E1)
∨)= Deg((E1)

∨n−1)+ R(E1) deg(L),

d’où

(4-4) Deg((E1)
∨)=−Deg(E1)+ R(E1)(n− 1) deg(L)

(c’est-à-dire que (4-3) est vraie pour E1). D’après la suite exacte

0−→ E1 −→ E−→ E|C −→ 0

on a Deg(E)= Deg(E1)+Deg(E|C). Soit T = T (E|C). On a une suite exacte

0−→ (E|C)
∨
−→ E∨ −→ (E1)

∨
−→ T̃ −→ 0,

donc
Deg(E∨)= Deg((E|C)∨)+Deg((E1)

∨)− h0(T ).

Mais

Deg((E|C)∨)− h0(T )=−Deg(E|C)+ (n− 1)R(E|C) deg(L),



CONDITIONS D’EXISTENCE DES FAISCEAUX SEMI-STABLES 313

car (E|C)∨ = (E|C)∗⊗ Ln−1. Donc

deg(E∨)= Deg((E1)
∨)−Deg(E|C)+ (n− 1)R(E|C) deg(L)

=−Deg(E)+ R(E)(n− 1) deg(L)

d’après (4-4). �

Corollaire 4.4.2. Soit E un faisceau cohérent réflexif sur Cn . Alors, pour 1≤ i < n,
on a

R((E∨)i )= R(Ei ), R((E∨)(i))= R(E(i)), R((E∨)|Ci )= R(E|Ci ),

Deg((E∨)i )=−Deg(Ei )+ (n+ i − 1)R(Ei ) deg(L)− h0(6i (E)),

Deg((E∨)|Ci )= Deg((E|Ci )
∨)− i R(Ei ) deg(L).

Démonstration. Découle aisément des propositions 4.3.1 et 4.4.1. �

Corollaire 4.4.3. Soient E un faisceau cohérent réflexif sur Cn et i un entier tel
que 1≤ i < n et R(Ei ) > 0. Alors on a

µ((E∨)|Ci )−µ((E
∨)i )= µ(Ei ⊗L−i )−µ(E(i))+ h0(6i (E))

( 1
R(E(i))

+
1

R(Ei )

)
.

5. Conditions d’existence des faisceaux (semi-)stables

Dans toute la suite de l’article on considère une courbe multiple primitive Cn

de courbe réduite associée C . On utilise les notations de 2.1, et on suppose que
deg(L) < 0.

5.1. Critères de (semi-)stabilité.

Lemme 5.1.1. Soient A, A′′, B, B ′′, E , E ′′ des faisceaux cohérents de rang positif
sur Cn , tels que

R(E)= R(A)+ R(B), R(E ′′)= R(A′′)+ R(B ′′),

Deg(E)= Deg(A)+Deg(B), Deg(E ′′)= Deg(A′′)+Deg(B ′′).

On suppose qu’on a µ(B)≥ µ(A), µ(A′′)≥ µ(A), µ(B ′′)≥ µ(B), et que

R(E ′′)
R(E)

≥
R(A′′)
R(A)

.

Alors on a µ(E ′′) ≥ µ(E). Si de plus µ(A′′) > µ(A) ou µ(B ′′) > µ(B), alors on
a µ(E ′′) > µ(E).

Démonstration. D’après les hypothèses, R(E ′′)/R(E) ≥ R(A′′)/R(A) équivaut à
R(B ′′)/R(B)≥ R(A′′)/R(A), et µ(E ′′)−µ(E)=1/R(E)R(E ′′), avec

1= (Deg(A′′)+Deg(B ′′))(R(A)+R(B))−(Deg(A)+Deg(B))(R(A′′)+R(B ′′)).
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On a

Deg(A′′)≥ Deg(A)
R(A′′)
R(A)

, Deg(B ′′)≥ Deg(B)
R(B ′′)
R(B)

,

Donc 1≥1′, avec

1′ =
(

Deg(A)
R(A′′)
R(A)

+Deg(B)
R(B ′′)
R(B)

)
(R(A)+ R(B))

− (Deg(A)+Deg(B))(R(A′′)+ R(B ′′))

= (µ(B)−µ(A))(R(B ′′)R(A)− R(A′′)R(B)).

Le résultat en découle immédiatement. �

Théorème 5.1.2. Soient E un faisceau cohérent sans torsion sur Cn et k un entier
tel que 1≤ k < n et que Ek 6= 0. On suppose que

(5-1) µ(E(k))≤ µ(E), µ((E∨)(k))≤ µ(E∨).

Alors, si E[k], (E|Ck )
∨∨, (E∨)[k] et ((E∨)|Ck )

∨∨ sont semi-stables il en est de même
de E.

Si de plus les inégalités de (5-1) sont strictes, et si E[k] ou (E|Ck )
∨∨, ainsi que

(E∨)[k] ou ((E∨)|Ck )
∨∨, sont stables, alors E est stable.

Démonstration. Supposons que les hypothèses du théorème soient vérifiées. Soit

E // // E′′

un quotient de E. Il faut montrer que µ(E′′)≥ µ(E). On peut supposer que E′′ est
sans torsion. On a un diagramme commutatif avec lignes exactes

0 // E[k] //

��

E //

����

(E|Ck )
∨∨ //

����

0

0 // E′′[k] // E′′ // (E′′
|Ck
)∨∨ // 0

où les deux flèches verticales de droite sont surjectives. Le cas où E′′[k] = 0 est
évident. On supposera donc que E′′[k] 6= 0. Remarquons que les inégalités (5-1)
équivalent à

µ((E|Ck )
∨∨)≥ µ(E[k]), µ(((E∨)|Ck )

∨∨)≥ µ(E∨[k]),

car (E∨)(k) = (E|Ck )
∨. Le morphisme vertical de droite du diagramme précédent

est surjectif, donc on a µ((E′′
|Ck
)∨∨) ≥ µ((E|Ck )

∨∨) d’après la semi-stabilité de
(E|Ck )

∨∨. Le conoyau du morphisme vertical de gauche est de torsion, donc on a
µ(E′′[k]) ≥ µ(E[k]) d’après la semi-stabilité de E[k]. D’après le lemme 5.1.1 on
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a µ(E′′)≥ µ(E) si
R(E′′)
R(E)

≥
R(E′′[k])
R(E[k])

.

On peut donc supposer que

(5-2)
R(E′′)
R(E)

<
R(E′′[k])
R(E[k])

.

On utilise maintenant la suite exacte

0−→ E′′∨ −→ E∨ −→ E′∨ −→ 0

obtenue en utilisant le fait que E′′ est réflexif. D’après la proposition 4.4.1,µ(E′′)≥
µ(E) équivaut à µ(E′∨) ≥ µ(E∨), et d’après le lemme 5.1.1, cette inégalité est
vérifiée si

(5-3)
R(E′)
R(E)

=
R(E′∨)
R(E∨)

≥
R(E′∨[k])
R(E∨[k])

.

D’après 4.1.1, on a R(E′∨[k]) = R(E′[k]) et R(E∨[k]) = R(E[k]). Donc (5-3)
équivaut à

(5-4)
R(E′)
R(E)

≥
R(E′[k])
R(E[k])

.

Puisque E′k est contenu dans le noyau du morphisme canonique surjectif Ek→E′′k ,
on a

R(E′[k])= R(E′k)≤ R(Ek)− R(E′′k )= R(E[k])− R(E′′[k]),

donc on peut écrire

R(E′[k])= R(E[k])− R(E′′[k])− η,

avec η ≥ 0. Donc (5-4) s’écrit

R(E′′)
R(E)

≤
R(E′′[k])+ η

R(E[k])
.

L’inégalité précédente est vraie d’après (5-2). On a donc bien µ(E′′)≥ µ(E).
L’assertion concernant la stabilité se démontre de manière analogue. �

5.2. Le cas des fibrés vectoriels. On suppose que le genre de C est g ≥ 2.

Théorème 5.2.1. Soit E un fibré vectoriel sur Cn . Alors, si E|C est semi-stable (ou
stable), il en est de même de E.

Démonstration. Posons E = E|C . Les filtrations canoniques de E sont identiques,
et leurs gradués sont(

G0(E),G1(E), . . . ,Gn−1(E)
)
= (E, E ⊗ L , . . . , E ⊗ Ln−1).



316 JEAN-MARC DRÉZET

Les inégalités (5-1) sont trivialement vérifiées (car deg(L) < 0) pour tout entier k
tel que 1≤ k < n.

Le théorème 5.2.1 se démontre par récurrence sur n : pour n = 1 c’est évident.
Supposons que ce soit vrai pour n−1≥ 1. Alors E1 est semi-stable (ou stable). Le
théorème 5.1.2 permet alors de conclure qu’il en est de même de E. �

5.2.2. Variétés de modules. Soient r , δ des entiers tels que r ≥ 1. Posons

R = nr, d = nδ+ 1
2 n(n− 1)r deg(L).

Pour tout fibré vectoriel E sur Cn tel que E|C soit de rang r et de degré δ, on a
R(E) = R et Deg(E) = d . Il découle de 2.5.3 que la variété de modules M(R, d)
des fibrés vectoriels stables de rang généralisé R et de degré généralisé d sur Cn

est non vide. C’est un ouvert irréductible et lisse de la variété de modules M(R, d)
des faisceaux stables de rang généralisé R et de degré généralisé d. Pour calculer
sa dimension on considère un fibré stable E tel que R(E)= R et Deg(E)= d . On a

dim(M(R, d))= 1−χ(E∨⊗ E)= 1+ nr2(g− 1)− 1
2 n(n− 1)r2 deg(L).

5.3. Le cas des faisceaux quasi localement libres de type générique. On suppose
que le genre de C est g ≥ 2.

Théorème 5.3.1. Soient a, k des entiers tels que a > 0 et 1 ≤ k < n. Soit E un
faisceau quasi localement libre de type rigide, localement isomorphe à aOn ⊕ Ok

et tel que

(5-5) µ(VE)+
1
2 n deg(L)≤ µ(FE)≤ µ(EE)−

1
2 n deg(L).

Alors si EE, FE et VE sont semi-stables, il en est de même de E.
Si les inégalités précédentes sont strictes, et si EE, FE et VE sont stables, il en

est de même de E.

Démonstration. On ne démontrera que la première assertion, la seconde étant ana-
logue. On utilise les notations de 3.1. Supposons les inégalités (5-5) vérifiées et
EE, FE et VE semi-stables. Alors on a

E[k] = Ek = F, E|Ck = E, E∨[k] = (E∨)k = F⊗ Lk, (E∨)|Ck = V∨.

Donc d’après le théorème 5.2.1, E[k], E|Ck , E∨[k] et (E∨)|Ck sont semi-stables. Un
calcul simple montre que les inégalités (5-5) équivalent aux inégalités (5-1). La
semi-stabilité de E découle donc du théorème 5.1.2. �

La semi-stabilité de EE, FE et VE entraine d’autres inégalités :

µ(EE)≤ µ(FE), µ(FE)≤ µ(VE)
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(car il existe un morphisme surjectif EE→ FE et un morphisme injectif FE→ VE).
Les inégalités précédentes et (5-5) équivalent aux inégalités

µ(EE)≤ µ(FE)≤ µ(EE)−
n− k
a+ 1

deg(L).

5.3.2. Variétés de modules de faisceaux stables. Soient a, k, ε, δ des entiers, avec
a ≥ 1 et 1≤ k < n. Soient

R = an+ k, d = kε+ (n− k)δ+ 1
2

(
n(n− 1)a+ k(k− 1)

)
deg(L).

On note M(R, d) la variété de modules des faisceaux stables de rang généralisé R
et de degré généralisé d sur Cn . Les faisceaux quasi localement libres E de type
générique stables localement isomorphes à aOn⊕ Ok et tels que EE et FE soient de
rang a+1 et a (respectivement) et de degré ε et δ constituent un ouvert irréductible
de M(R, d), dont la sous-variété réduite associée est notée N(a, k, δ, ε).

Théorème 5.3.3. Si on a
ε

a+ 1
<
δ

a
<
ε− (n− k) deg(L)

a+ 1

N(a, k, δ, ε) est non vide.

Démonstration. Les hypothèses et les résultats de [Russo et Teixidor i Bigas 1999]
impliquent qu’il existe des fibrés stables E , F , V sur C , tels que

rg E = a+ 1, deg(E)= ε, rg F = a, deg(F)= δ,

rg V = a+ 1, deg(V )= ε− (n− k) deg(L),

et tels qu’il existe une suite exacte

0−→ F ⊗ Ln−k
−→ V ⊗ Ln−k

−→ E −→ F −→ 0.

D’après la proposition 3.4.1 il existe un faisceau quasi localement libre de type
rigide E, localement isomorphe à aOn⊕ Ok et tel que (∗)E soit isomorphe à la suite
exacte précédente. D’après le théorème 5.3.1, E est stable, et définit donc un point
de N(a, k, δ, ε). �

5.4. Exemple d’application à des faisceaux non quasi localement libres. Soient
E un fibré vectoriel sur Cn , E = E|C et Z un ensemble fini de points de C . On pose
z = h0(OZ ). Soient φ : E→ OZ un morphisme surjectif, et Eφ = kerφ. On a deux
suites exactes

0−→ Eφ −→ E−→ OZ −→ 0, 0−→ E∨ −→ E∨φ −→ OZ −→ 0.

Le morphisme φ se factorise par E . On note Eφ le noyau du morphisme induit
E→ OZ . On note E′φ le noyau du morphisme induit E|Cn−1 → OZ .
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Lemme 5.4.1. On a Eφ[1] = E1,

(Eφ|C)
∨∨
= Eφ, E∨φ [1] = (E

′

φ)
∨,

(
((Eφ)

∨)|C
)∨∨
= E∗.

Démonstration. Il suffit de le démontrer en un point P de Z . Soit z∈On,P une équa-
tion de C et x ∈On,P au dessus d’un générateur de l’idéal maximal de P dans OC . Si
r = rg E|C , on a Eφ,P ' rOn,P ⊕ (x, z). On peut donc supposer que Eφ,P = (x, z).
Il faut montrer que Eφ[1]P = (z). On a (x, z)|C = (x)/(xz) ⊕ (z)/(xz, z2). Le
premier facteur est isomorphe à OC,P et le second à C. Donc Eφ[1]P est le noyau
du morphisme

(x, z)→ OC,P , ax + bz 7→ a

(a désignant l’image de a dans OC,P ). On a donc Eφ[1]P = (z) = E1,P . On a
Eφ|C = Eφ ⊕ OZ , donc (Eφ|C)∨∨ = Eφ .

On a E∨φ [1] = ((Eφ)1)
∨
⊗L d’après la proposition 4.3.1(ii). On a un diagramme

commutatif avec lignes exactes

0 // E ⊗ Ln−1
= (Eφ)

(1) // Eφ //
� _

��

(Eφ)1⊗ L−1 //
� _

��

0

0 // E ⊗ Ln−1
= E(1) // E // E|Cn−1

// 0

On en déduit immédiatement la troisième égalité. On a enfin

((E∨)|C)
∨∨
= (E(1))∨ = (E ⊗ Ln−1)∨ = E∗. �

Théorème 5.4.2. Si on a z ≤ − rg E deg(L) et si E et Eφ sont semi-stables, alors
Eφ est semi-stable. Si l’inégalité est stricte et si E et Eφ sont stables, il en est de
même de Eφ .

Démonstration. Cela se démontre aisément par récurrence sur n, en utilisant le
lemme 5.4.1 et les théorèmes 5.1.2 et 5.2.1. �
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A QUANTITATIVE ESTIMATE
FOR QUASIINTEGRAL POINTS IN ORBITS

LIANG-CHUNG HSIA AND JOSEPH H. SILVERMAN

Let ϕ(z)∈ K (z) be a rational function of degree d≥2 defined over a number
field whose second iterate ϕ2(z) is not a polynomial, and let α ∈ K . The
second author previously proved that the forward orbit Oϕ(α) contains only
finitely many quasi-S-integral points. We give an explicit upper bound for
the number of such points.

Introduction

Let K/Q be a number field, let S be a finite set of places of K , and let 1≥ ε > 0.
An element x ∈ K is said to be quasi-(S, ε)-integral if

(1)
∑
v∈S

[Kv :Qv]

[K :Q]
log+|x |v ≥ εh(x).

We observe that x is in the ring of S-integers of K if and only if it is quasi-(S, 1)-
integral, in which case (1) is an equality by definition of the height.

Let ϕ(z) ∈ K (z) be a rational function of degree d ≥ 2, let α ∈ K be a point,
and let

Oϕ(α)= {α, ϕ(α), ϕ
2(α), . . . }

denote the forward orbit of α under iteration of ϕ. Silverman [1993] proved that
if ϕ2(z) is not a polynomial, then the orbit Oϕ(α) contains only finitely many quasi-
(S, ε)-integral points. More generally, if #Oϕ(α)=∞ and if β is not an exceptional
point for ϕ, then there are only finitely many n ≥ 1 such that

1
ϕn(α)−β

is quasi-(S, ε)-integral. In this note we give an upper bound for the number of
such n, making explicit the dependence on S, ϕ, α, and β. More precisely, we

Hsia is supported by NSC-97-2918-I-008-005 and NSC-96-2115-008-012-MY3. Silverman is sup-
ported by NSF DMS-0650017 and DMS-0854755.
MSC2010: primary 37P15; secondary 11B37, 11G99, 14G99.
Keywords: arithmetic dynamics, integral points.
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prove that the number of elements in the set

(2) {n ≥ 0 : (ϕn(α)−β)−1 is quasi-(S, ε)-integral}

is smaller than

(3) 4#Sγ + log+d

(h(ϕ)+ ĥϕ(β)

ĥϕ(α)

)
,

where γ depends only on d , ε, and [K : Q]. (See Section 2 for the definitions
of the height h(ϕ) of the map ϕ and the canonical height ĥϕ .) Our main result,
Theorem 11 in Section 5, is a strengthened version of this statement.

The specific form of the upper bound in (3) is interesting, especially the depen-
dence on the wandering point α and the target point β. For example, if ĥϕ(α) is
sufficiently large (depending on β and ϕ), then the bound is independent of α, β,
and ϕ. It is also interesting to ask whether it is possible, for a given ϕ and α, to
make the set (2) arbitrarily large by varying β. We discuss this question further in
Remark 14.

We briefly describe the organization of the paper. We start in Section 1 by setting
notation and proving an elementary estimate for the chordal metric. Section 2 is
devoted to height functions, both the canonical height associated to a rational map
and various results relating heights and polynomials. In Section 3, we prove a
uniform version of the inverse function theorem for rational maps of degree d .
Section 4 states an estimate for the ramification of the iterate of a rational function,
taken from [Silverman 1993; 2007], and a quantitative version of Roth’s theorem,
taken from [Silverman 1987b]. In Section 5 we combine the preliminary material
to prove our main theorem. Finally, in Section 6, we use the main theorem to give
an explicit upper bound for the number of S-integral points in an orbit.

Remark 1. Silverman’s paper [1993] on finiteness of quasi-S-integral points in
orbits has been used by Patrick Ingram and Silverman [2009] to prove a dynami-
cal version of the classical Bang–Zsigmondy theorem on primitive divisors [Bang
1886; Zsigmondy 1892]. It has also been used by Felipe Voloch and Silverman
[2009] to prove a local-global criterion for dynamics on P1. The quantitative results
proved here should enable one to prove quantitative versions of the papers with
Ingram and Voloch, but we have not included these applications in this paper in
order to keep it to a manageable length.

Remark 2. Quantitative estimates similar to those in this paper have been proved
for the number of integral points on elliptic curves and on certain other types of
curves. See for example [Gross and Silverman 1995] and [Silverman 1987b].
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1. Preliminary material and notation

We set the following notation:

K a number field.

MK the set of places of K .

M∞K the set of archimedean (infinite) places of K .

M0
K the set of nonarchimedean (finite) places of K .

log+(x) the maximum of log(x) and 0. We write log+d for log base d .

For each v ∈ MK , we let | · |v denote the corresponding normalized absolute
value on K whose restriction to Q gives the usual v-adic absolute value on Q. That
is, if v ∈ M∞K , then |x |v is the usual archimedean absolute value, and if v ∈ M0

K ,
then |x |v = |x |p is the usual p-adic absolute value for a unique prime p. We also
write Kv for the completion of K with respect to | · |v, and we let Cv denote the
completion of an algebraic closure of Kv.

For each v ∈MK , we let ρv denote the chordal metric defined on P1(Cv), where
we recall that for [x1, y1], [x2, y2] ∈ P1(Cv),

ρv([x1, y1], [x2, y2])=


|x1 y2− x2 y1|v√

|x1|2v + |y1|2v

√
|x2|2v + |y2|2v

if v ∈ M∞K ,

|x1 y2− x2 y1|v

max{|x1|v, |y1|v}max{|x2|v, |y2|v}
if v ∈ M0

K .

In this paper, we use the logarithmic version of the chordal metric to measure
the distance between points in P1(Cv).

Definition. The logarithmic chordal metric function

λv : P
1(Cv)×P1(Cv)→ R∪ {∞}

is defined by

λv([x1, y1], [x2, y2])=− log ρv([x1, y1], [x2, y2]).

Note that λv(P, Q)≥0 for all P, Q∈P1(Cv), and that two points P, Q∈P1(Cv)

are close if and only if λv(P, Q) is large. We also note that λv is a particular choice
of an arithmetic distance function as defined in [Silverman 1987a, Section 3], that
is, it is a local height function λP1×P1,1, where 1 is the diagonal of P1

×P1.
The next lemma relates the logarithmic chordal metric λv(x, y) to the usual

metric |x − y|v arising from the absolute value v.

Lemma 3. Let v ∈ MK and let λv be the logarithmic chordal metric on P1(Cv).
Define `v = 2 if v is archimedean, and `v = 1 if v is nonarchimedean. Then for
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x, y ∈ Cv the inequality λv(x, y) > λv(y,∞)+ log `v implies

λv(y,∞)≤ λv(x, y)+ log|x − y|v ≤ 2λv(y,∞)+ log `v.

Proof. Notice that by the definition of chordal metric,

λv(x, y)= λv(x,∞)+ λv(y,∞)− log|x − y|v.

Therefore

λv(x, y)+ log|x − y|v = λv(x,∞)+ λv(y,∞)≥ λv(y,∞).

This gives the lower bound for the sum λv(x, y)+ log|x − y|v.
For the upper bound, if v is an archimedean place, then the assertion is the same

as [Silverman 2007, Lemma 3.53]. We will not repeat the proof here. For the case
where v is nonarchimedean, notice that λv satisfies the strong triangle inequality,

λv(x, y)≥min (λv(x, z), λv(y, z)) ,

and that this inequality is an equality if λv(x, z) 6= λv(y, z). Suppose that x and y
satisfy the condition required in the lemma, that is, λv(x, y) > λv(y,∞). (In this
case, `v = 1.) We claim that λv(x,∞) ≤ λv(y,∞). Assume to the contrary that
λv(x,∞) > λv(y,∞). Then by the strong triangle inequality for λv, we have

λv(x, y)=min (λv(x,∞), λv(y,∞))= λv(y,∞).

But this contradicts the assumption that λv(x, y) > λv(y,∞). Now

λv(x, y)+ log|x − y|v = λv(x,∞)+ λv(y,∞)

≤ 2λv(y,∞) by the claim,

which completes the proof of the lemma. �

2. Dynamics and height functions

Let ϕ :P1
→P1 be a rational map on P1 of degree d ≥ 2 defined over the number

field K . We identify K ∪ {∞} ' P1(K ) by fixing an affine coordinate z on P1, so
α ∈ K equals [α, 1] ∈P1(K ), and the point at infinity is [1, 0]. With respect to this
affine coordinate, we identity rational maps ϕ : P1

→ P1 with rational functions
ϕ(z) ∈ K (z).

Let P ∈ P1. Then the (forward) orbit of P under iteration of ϕ is the set

Oϕ(P)= {ϕn(P) : n = 0, 1, 2, . . . }.

The point P is called a wandering point of ϕ if Oϕ(P) is an infinite set; otherwise
P is called a preperiodic point of ϕ. The set of preperiodic points of ϕ is denoted
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by PrePer(ϕ). We say that a point A ∈ P1 is an exceptional point if it is prepe-
riodic and ϕ−1(Oϕ(A)) = Oϕ(A), which is equivalent to the assumption that the
complete (forward and backward) ϕ-orbit of A is a finite set. It is a standard fact
that A is an exceptional point for ϕ if and only if A a totally ramified fixed point
of ϕ2. (One direction is clear, and the other follows from the fact [Silverman 2007,
Theorem 1.6] that if A is an exceptional point, then Oϕ(A) consists of at most two
points.)

For a point P = [x0, x1] ∈ P1(K ), the height of P is

h(P)=
∑
v∈MK

[Kv :Qv]

[K :Q]
log max(|x0|v, |x1|v).

Then the canonical height of P relative to the rational map ϕ is given by the limit

ĥϕ(P)= lim
n→∞

h(ϕn P)/dn.

To simplify notation, we let dv = [Kv :Qv]/[K :Q].
Using the definition of λv, we see that

h(P)=
∑
v∈MK

dvλv(P,∞)+ O(1).

More precisely, writing P = [x0, x1] and∞= [1, 0], we have

h(P)=
∑
v∈M0

K

dvλv(P,∞)+
∑
v∈M∞K

dv log
(

max{|x0|v, |x1|v}√
|x0|2v + |x1|2v

)
.

The quantity max{a, b}/
√

a2+ b2 is between 1/
√

2 and 1 for all nonnegative
a, b ∈ R, so

−
1
2 log 2≤ h(P)−

∑
v∈MK

dvλv(P,∞)≤ 0.

For further material and basic properties of height functions, see [Silverman 2007,
Sections 3.1–3.5].

For a polynomial f =
∑

ai zi
∈ K [z] and absolute value v ∈ MK , we define

| f |v =max{|ai |v} and h( f )= h([ . . . , ai , . . . ])=
∑
v∈MK

dv log| f |v.

We say that a rational function ϕ(z)= f (z)/g(z) ∈ K (z) of degree d is written in
normalized form if

f (z)=
d∑

i=0

ai zi and g(z)=
d∑

i=0

bi zi with ai , bi ∈ K ,
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if ad and bd are not both zero, and if f and g are relatively prime in K [z]. For
v ∈ MK , we set |ϕ|v =max{| f |v, |g|v}, and then the height of ϕ is defined by

h(ϕ)= h([a0, . . . , ad , b0, . . . , bd ])=
∑
v∈MK

dv log|ϕ|v.

Directly from the definitions, we have

(4) max(h( f ), h(g))≤ h(ϕ).

The following basic properties of absolute values of polynomials will be useful.

Lemma 4. Let v ∈ MK and let f, g ∈ K [x] be polynomials with coefficients in K .

(a) | f + g|v ≤
{
| f |v + |g|v if v is archimedean,
max{| f |v, |g|v} if v is nonarchimedean.

(b) Gauss’s lemma. If v is nonarchimedean, then | f g|v = | f |v|g|v.

(c) If v is archimedean and deg f + deg g < d , then

4−d
| f g|v ≤ | f |v|g|v ≤ 4d

| f g|v.

Proof. (a) follows from the definition. For (b) and (c), see for example [Lang 1983,
Chapter 3, Propositions 2.1 and 2.3]. �

Proposition 5. Let { f1, . . . , fr } be a collection of polynomials in the ring K [x].

(a) h( f1 f2 · · · fr )≤

r∑
i=1

(h( fi )+ (deg fi + 1) log 2)

≤ r max
1≤i≤r

{h( fi )+ (deg fi + 1) log 2}.

(b) h( f1+ f2+ · · ·+ fr )≤

r∑
i=1

h( fi )+ log r.

(c) Let ϕ(z), ψ(z) ∈ K (z) be rational functions. Then

h(ϕ ◦ψ)≤ h(ϕ)+ (degϕ)h(ψ)+ (degϕ)(degψ) log 8.

(d) Let ϕ(z) ∈ K (z) be a rational function of degree d ≥ 2. Then for all n ≥ 1, we
have

h(ϕn)≤

(dn
− 1

d − 1

)
h(ϕ)+ d2

(dn−1
− 1

d − 1

)
log 8.

Proof. The proofs of (a) and (b) can be found in [Hindry and Silverman 2000,
Proposition B.7.2], where the proposition is stated for multivariable polynomials.
Since we’ll use the arguments in (a) for the proof of (c), we repeat the proof of
(a) for the one-variable case. (Also, our situation is slightly different from that in
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[Hindry and Silverman 2000], since we are using a projective height instead of an
affine height.) Writing fi =

∑
E ai E X E , we have

f1 · · · fr =
∑

E

( ∑
e1+···+er=E

a1e1 · · · arer

)
X E ,

and hence for v ∈ MK ,

(5) | f1 · · · fr |v =max
E

∣∣∣ ∑
e1+···+er=E

a1e1 · · · arer

∣∣∣
v

and h( f1 · · · fr ) =
∑

v∈MK
dv log| f1 · · · fr |v. If v is nonarchimedean, then by

Gauss’s lemma, Lemma 4(b), we have

| f1 · · · fr |v =

r∏
i=1

| fi |v.

It remains to deal with an archimedean place v. We note that the number of
terms in the sum appearing in the right side of (5) is

(E+r−1
E

)
. Hence

| f1 · · · fr |v ≤max
E

((E+r−1
E

)
max

e1+···+er=E
|a1e1 · · · arer |v

)
≤max

E

(
2E+r−1 max

e1+···+er=E
|a1e1 · · · arer |v

)
.

Further, if E > deg( f1 . . . fr ), then the product a1e1 · · · arer is zero, since in that
case at least one of the ai j is zero. Hence

(6) | f1 · · · fr |v ≤ 2deg( f1··· fr )+r−1
r∏

i=1

| fi |v.

Let Nv = 2
∑

i (deg fi+1) if v is archimedean, and Nv = 1 if v is nonarchimedean.
Then we compute

h( f1 · · · fr )=
∑
v∈MK

dv log| f1 · · · fr |v

≤

∑
v∈MK

dv
(

log Nv + log
r∏

i=1

| fi |v

)

≤

r∑
i=1

(h( fi )+ (deg fi + 1) log 2)

≤ r max
1≤i≤r

{h( fi )+ (deg fi + 1) log 2},

which completes the proof of (a).
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Next we give a proof of (c). Write ψ = ψ0/ψ1 ∈ K (z) in normalized form, so
in particular ψ0 and ψ1 are relatively prime polynomials. Then

(ϕ ◦ψ)(z)=
∑

aiψ
i
0ψ

d−i
1∑

biψ
i
0ψ

d−i
1

,

so by definition of the height of a rational function, we have

h(ϕ ◦ψ)≤
∑
v∈MK

dv log max
{∣∣∣∑ aiψ

i
0ψ

d−i
1

∣∣∣
v
,

∣∣∣∑ biψ
i
0ψ

d−i
1

∣∣∣
v

}
.

For the right side of this inequality, if v is nonarchimedean, then by Gauss’s lemma
again we have∣∣∣∑ aiψ

i
0ψ

d−i
1

∣∣∣
v
≤max

(
| f |v|ψ0|

i
v|ψ1|

d−i
v

)
≤ |ϕ|v|ψ |

d
v .

Similarly, ∣∣∣∑ biψ
i
0ψ

d−i
∣∣∣
v
≤ |ϕ|v|ψ |

d
v .

Hence for v nonarchimedean, |ϕ ◦ψ |v ≤ |ϕ|v|ψ |dv .
Next let v be an archimedean place of K . Then the triangle inequality gives∣∣∣∑ aiψ

i
0ψ

d−i
1

∣∣∣
v
≤ (d + 1)| f |v max

i

{
|ψ i

0ψ
d−i
1 |v

}
.

Applying the estimate (6) to the product ψ i
0ψ

d−i
1 yields

|ψ i
0ψ

d−i
1 |v ≤ 2d(degψ+1)

|ψ0|
i
v|ψ1|

d−i
v ≤ 2d(degψ+1)

|ψ |dv .

Therefore,∣∣∣∑ aiψ
i
0ψ

d−1
1

∣∣∣
v
≤ (d + 1)2d(degψ+1)

| f |v|ψ |dv ≤ (d + 1)2d(degψ+1)
|ϕ|v|ψ |

d
v .

Similarly, ∣∣∣∑ biψ
i
0ψ

d−1
1

∣∣∣
v
≤ (d + 1)2d(degψ+1)

|ϕ|v|ψ |
d
v .

We combine these estimates. To ease notation, we let Nv = 1 for v non-
archimedean and Nv = (d + 1)22d degψ

= (d + 1)4degϕ degψ for v archimedean.
Then

h(ϕ ◦ψ)≤
∑
v∈MK

dv log max
{∣∣∣∑ aiψ

i
0ψ

d−1
1

∣∣∣
v
,

∣∣∣∑ biψ
i
0ψ

d−1
1

∣∣∣
v

}
≤

∑
v∈MK

dv(log|ϕ|v + d log|ψ |v + log Nv)

≤ h(ϕ)+ dh(ψ)+ (degϕ)(degψ) log 4+ log(d + 1)

≤ h(ϕ)+ dh(ψ)+ (degϕ)(degψ) log 8,
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since d + 1≤ 2d
≤ 2d degψ . This completes the proof of (c).

Finally, we prove (d) by induction on n. The stated inequality is clearly true
for n = 1. Assume now it is true for n. Then

h(ϕn+1)≤ h(ϕn)+ dnh(ϕ)+ dn+1 log 8 from (c) applied to ϕn and ϕ

≤

(dn
−1

d−1
h(ϕ)+ d2 dn−1

−1
d−1

log 8
)
+ dnh(ϕ)+ dn+1 log 8

from the induction hypothesis

=

(dn+1
−1

d−1

)
h(ϕ)+ d2

(dn
−1

d−1

)
log 8. �

The following facts about height functions are well known.

Proposition 6. Let ϕ :P1
→P1 be a rational map of degree d ≥ 2 defined over K .

There are constants c1, c2, c3, and c4, depending only on d, such that the following
estimates hold for all P ∈ P1(K ).

(a) |h(ϕ(P))− dh(P)| ≤ c1h(ϕ)+ c2.

(b) |ĥϕ(P)− h(P)| ≤ c3h(ϕ)+ c4.

(c) ĥϕ(ϕ(P))= dĥϕ(P).

(d) P ∈ PrePer(ϕ) if and only if ĥϕ(P)= 0.

Proof. See, for example, [Hindry and Silverman 2000, Sections B.2 and B.4] or
[Silverman 2007, Section 3.4]. �

3. A distance estimate

Our goal in this section is a version of the inverse function theorem that gives
explicit estimates for the dependence on the (local) heights of both the points and
the function. It is undoubtedly possible to give a direct, albeit long and messy,
proof of the desired result. We instead give a proof using universal families of
maps and arithmetic distance functions. Before stating our result, we set notation
for the universal family of degree d rational maps on P1.

We write Ratd ⊂ P2d+1 for the space of rational maps of degree d, where we
identify a rational map ϕ = f/g =

∑
ai zi

/∑
bi zi with the point

[ϕ] = [ f, g] = [a0, . . . , ad , b0, . . . , bd ] ∈ P2d+1.

If ϕ ∈ Ratd(Q) is defined over Q, we define the height of ϕ as in Section 2 to be
the height of the associated point in P2d+1(Q):

h(ϕ)= h([a0, . . . , ad , b0, . . . , bd ]).

Over Ratd , there is a universal family of degree d maps, which we denote by

9 : P1
×Ratd → P1

×Ratd , (P, ψ) 7→ (ψ(P), ψ).
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We note that Ratd is the complement in P2d+1 of a hypersurface, which we denote
by ∂Ratd . (The set ∂Ratd is given by the resultant Res( f, g) = 0, so ∂Ratd is a
hypersurface of degree 2d .) Since P1 is complete, we have

∂(P1
×Ratd)= P1

× ∂Ratd .

The map 9 is a finite map of degree d. Let R(9) denote its ramification locus.
Looking at the behavior of 9 in a neighborhood of a point (P, ψ), it is easy to see
that the restriction of R(9) to a fiber P1

ψ = P1
× {ψ} is the ramification divisor

R(9)|P1
ψ
= R(ψ) of ψ . So the ramification indices of the universal map 9 and a

particular map ψ are related by

(7) e(P,ψ)(9)= eP(ψ).

Proposition 7. Let ψ ∈ K (z) be a nontrivial rational function, let S ⊂ MK be
a finite set of absolute values on K , each extended in some way to K , and let
A, P ∈ P1(K ). Then∑
v∈S

max
A′∈ψ−1(A)

eA′(ψ)dvλv(P, A′)≥
∑
v∈S

dvλv(ψ(P), A)+ O(h(A)+ h(ψ)+ 1),

where the implied constant depends only on the degree of the map ψ .

Proof. The statement and proof of Proposition 7 use the machinery of arith-
metic distance functions and local height functions on quasiprojective varieties,
as described in [Silverman 1987a], to which we refer for definitions, notation,
and basic properties. We begin with the distribution relation for finite maps of
smooth quasiprojective varieties [Silverman 1987a, Proposition 6.2(b)]. Applying
this relation to the map 9 and points x, y ∈ P1

×Ratd yields

(8) δ
(
9(x), y; v

)
=

∑
y′∈9−1(y)

ey′(9)δ(x, y′; v)+ O(λ∂(P1×Ratd )2(x, y; v)),

where δ( · , · ; v) is a v-adic arithmetic distance function on P1
×Ratd , and where

λ∂(P1×Ratd )2 is a local height function for the indicated divisor. In particular, if we
take x = (P, ψ) and y = (A, ψ), then the arithmetic distance function δ and the
chordal metric λv defined in Section 1 satisfy

(9)

δ(9(x), y; v)= δ(9(P, ψ), (A, ψ); v)= δ((ψ(P), ψ), (A, ψ); v)

= λv(ψ(P), A).

Similarly, if y′ = (A′, ψ) ∈9−1(y), then

δ(x, y′; v)= δ((P, ψ), (A′, ψ); v)= λv(P, A′).
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Further, since ∂(P1
×Ratd)=P1

×∂Ratd is the pull-back of a divisor on Ratd and

∂(P1
×Ratd)2 = (P1

× ∂Ratd)× (P1
×Ratd)+ (P1

×Ratd)× (P1
× ∂Ratd),

applying [Silverman 1987a, Proposition 5.3(a)] gives

(10)

λ∂(P1×Ratd )2(x, y; v)�� λP1×∂Ratd ((P, ψ); v)+ λP1×∂Ratd ((A, ψ); v)

�� λ∂Ratd (ψ; v).

Substituting (7), (9), and (10) into the distribution relation (8) yields

(11) λv(ψ(P), A)=
∑

A′∈ψ−1(A)

eA′(ψ)λv(P, A′)+ O(λ∂Ratd (ψ; v)).

To ease notation, let A′v ∈ ψ
−1(A) be a point satisfying

eA′v (ψ)λv(P, A′v)= max
A′∈ψ−1(A)

eA′λv(P, A′).

Then for any A′ ∈ ψ−1(A) we have
(12)

eA′(ψ)λv(P, A′)=min{eA′v (ψ)λv(P, A′v), eA′(ψ)λv(P, A′)}

from the choice of A′v
≤ d min{λv(P, A′v), λv(P, A′)} since ψ has degree d

≤ dλv(A′v, A′)+ O(1) from the triangle inequality.

This is a nontrivial estimate for A′ 6= A′v, so in (11) we pull off the A′v term and
use (12) for the other terms to obtain

(13) λv(ψ(P), A)≤ eA′v (ψ)λv(P, A′v)+ d
∑

A′∈ψ−1(A)
A′ 6=A′v

λv(A′v, A′)+ O(λ∂Ratd (ψ; v)).

The next lemma gives an upper bound for λv(A′v, A′).

Lemma 8. There is a constant C = C(d) such that the following holds. Let
ψ ∈ Ratd(Q), let A ∈ P1(Q), and let A′, A′′ ∈ ψ−1(A) be distinct points. Then∑

v∈MK

dvλv(A′, A′′)≤ C(h(A)+ h(ψ)+ 1).

Proof. In the notation of [Silverman 1987a], we have

λv(A′, A′′)= δP1×Ratd ((A
′, ψ), (A′′, ψ); v)

= λ(P1×Ratd )2,1((A
′, ψ), (A′′, ψ); v),
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where 1 is the diagonal of (P1
×Ratd)2. Summing over v gives height functions∑

v∈MK

λv(A′, A′′)= h(P1×Ratd )2,1((A
′, ψ), (A′′, ψ))

+ O
(
h∂(P1×Ratd )2((A

′, ψ), (A′′, ψ))
)
+ 1.

Choosing an ample divisor H on P1
× Ratd , we use the fact that heights with

respect to a subscheme are dominated by ample heights away from the support
of the subscheme [Silverman 1987a, Proposition 4.2]. (This is where we use the
assumption that A′ 6= A′′, which ensures that the point ((A′, ψ), (A′′, ψ)) is not on
the diagonal.) This yields

(14)

∑
v∈MK

λv(A′, A′′)� hP1×Ratd ,H (A
′, ψ)+ hP1×Ratd ,H (A

′′, ψ)+ 1

� h(A′)+ h(A′′)+ h(ψ)+ 1.

We now use [Silverman 2009, Theorem 2], which says that there are positive
constants C1,C2,C3, depending only on the degree of ψ , such that

(15) h(ψ(P))≥ C1h(P)−C2h(ψ)−C3.

(The paper [Silverman 2009] deals with general rational maps Pn 99K Pn . In our
case with n = 1, it would be a tedious, but not difficult, calculation to give explicit
values for the Ci , including of course C1 = degψ .) Applying (15) with P = A′

and P = A′′, we substitute into (14) to obtain∑
v∈MK

λv(A′, A′′)� h(A)+ h(ψ)+ 1,

which completes the proof of Lemma 8. �

We use Lemma 8 to bound the sum in the right side of the inequality (13).
We note that λv(A′, A′′) ≥ 0 for all points, so the lemma implies in particular
that

∑
v∈S dvλv(A′, A′′)� h(A)+ h(ψ)+ 1 for any set of places S. Further, the

sum in (13) has at most d − 1 terms. Hence we obtain∑
v∈S

dvλv(ψ(P), A)≤
∑
v∈S

eA′v (ψ)dvλv(P, A′v)+ O(h(A)+ h(ψ)+ 1).

In this inequality, the O(h(ψ)) term comes from two places, Lemma 8 and∑
v∈S

dvλ∂Ratd (ψ; v)≤
∑
v∈MK

dvλ∂Ratd (ψ; v)= h∂Ratd (ψ)= O(h(ψ)+ 1),

where the last equality comes from the fact that ∂Ratd is a hypersurface of degree
2d in P2d+1. This completes the proof of Proposition 7. �
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4. A ramification estimate and a quantitative version of Roth’s theorem

In this section we state two known results that will be needed to prove our main
theorem. The first says that away from exceptional points, the ramification of ϕm

tends to spread out as m increases.

Lemma 9. Fix an integer d ≥ 2. There exist constants κ1 and κ2 < 1, depending
only on d , such that for all degree d rational maps ϕ : P1

→ P1, all points Q ∈ P1

that are not exceptional for ϕ, all integers m ≥ 1, and all P ∈ ϕ−m(Q), we have

eP(ϕ
m)≤ κ1(κ2d)m .

Proof. This is [Silverman 2007, Lemma 3.52]; see in particular the last paragraph
of the proof. It is not difficult to give explicit values for the constants. If Q is not
preperiodic, then the stronger estimate eP(ϕ

m)≤ e2d−2 is true for all m. �

The second result is the following quantitative version of Roth’s theorem.

Theorem 10. Let S be a finite subset of MK that contains all infinite places. We
assume that each place in S is extended to K in some fashion. Set the following
notation.

s the cardinality of S.
ϒ a finite, G K/K -invariant subset of K .
β a map S→ ϒ .
µ > 2 a constant.
M ≥ 0 a constant.

There are constants r1 and r2, depending only on [K : Q], #ϒ , and µ, such that
there are at most 4sr1 elements x ∈ K satisfying both of the following conditions:∑

v∈S

dv log+ |x −βv|−1
v ≥ µh(x)−M.(16)

h(x)≥ r2 max
v∈S
{h(βv),M, 1}.(17)

Proof. This is [Silverman 1987b, Theorem 2.1], with a small change of notation.
For explicit values of the constants, see [Gross 1990]. �

5. A bound for the number of quasiintegral points in an orbit

In this section we prove our main result, which is an explicit upper bound for the
number of iterates ϕn(P) that are close to a given base point A in any one of a
fixed finite number of v-adic topologies. Here is the precise statement.

Theorem 11. Let ϕ ∈ K (z) be a rational map of degree d ≥ 2. Fix a point
A∈P1(K ) that is not an exceptional point for ϕ, and let P ∈P1(K ) be a wandering
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point for ϕ. For any finite set of places S ⊂ MK and any constant 1≥ ε > 0, define
a set of nonnegative integers by

0ϕ,S(A, P, ε)=
{
n ≥ 0 :

∑
v∈S dvλv(ϕn P, A)≥ εĥϕ(ϕn P)

}
.

(a) There exist constants

γ1 = γ1(d, ε, [K :Q]) and γ2 = γ2(d, ε, [K :Q])

such that

(18) #
{

n ∈ 0ϕ,S(A, P, ε) : n > γ1+ log+d

(
h(ϕ)+ ĥϕ(A)

ĥϕ(P)

)}
≤ 4#Sγ2.

(b) In particular, there is a constant γ3 = γ3(d, ε, [K :Q]) such that

(19) #0ϕ,S(A, P, ε)≤ 4#Sγ3+ log+d

(
h(ϕ)+ ĥϕ(A)

ĥϕ(P)

)
.

(c) There is a constant γ4 = γ4(K , S, ϕ, A, ε) that is independent of P such that

max0ϕ,S(A, P, ε)≤ γ4.

Before giving the proof of Theorem 11, we make a number of remarks.

Remark 12. Note that as a consequence of Proposition 6(d), we have ĥϕ(P) > 0
if P is wandering point for ϕ. Hence the right side of (19) is well-defined.

Remark 13. If we take ε = 1, then the set 0ϕ,S(A, P, ε) more or less coincides
with the set of points in the orbit Oϕ(P) that are S-integral with respect to A. We
say “more or less” because 0ϕ,S(A, P, ε) is defined using the canonical height
of ϕn(P), rather than the naive height. But using the inequality |ĥϕ(P)−h(P)|�
h(ϕ)+ 1 from Proposition 6 and adjusting the constants, it is not hard to see that
the estimate (19) remains true for the set

0naive
ϕ,S (A, P, ε)=

{
n ≥ 0 :

∑
v∈S dvλv(ϕn P, A)≥ εh(ϕn P)

}
.

(See the proof of Corollary 17.) For example, taking A=∞, the set 0naive
ϕ,S (A, P, ε)

consists of the points ϕn(P) such that z(ϕn(P)) is (S, ε0)-integral for some ε0. This
is the motivation for saying that the points in0ϕ,S(A, P, ε) are quasi-(S, ε)-integral
with respect to A, where ε measures the degree of S-integrality.

Remark 14. The dependence of the bounds (18) and (19) on h(ϕ), ĥϕ(A), and
ĥv(P) are quite interesting. A dynamical analogue of a conjecture of Lang asserts
that the ratio h(ϕ)/ĥϕ(P) is bounded, independently of ϕ and P , provided that ϕ
is suitably minimal with respect to PGL2(K )-conjugation. See [Silverman 2007,
Conjecture 4.98].
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On the other hand, there cannot be a uniform bound for the ratio ĥϕ(A)/ĥϕ(P),
since A and P may be chosen arbitrarily and independent of one another. This
raises the interesting question of whether the bound for #0ϕ,S(A, P, ε) actually
needs to depend on A. Even in very simple situations, it appears difficult to answer
this question. For example, consider the map ϕ(z) = z2, the initial point P = 2,
and the set of primes S = {∞, 3, 5}. As A ∈ Q∗ varies, is it possible for the
orbit Oϕ(P) to contain more and more points that are S-integral with respect to A?
Writing A = x/y, we are asking if

sup
x,y∈Z

#
{
(n, i, j) ∈ N3

: y · 22n
− x = 3i 5 j}

=∞.

Remark 15. We observe that #0ϕ,S(A, P, ε) can grow as fast as log(ε−1) as
ε → 0+. For example, consider the map ϕ(z) = zd

+ zd−1, the points A = 0
and P = p, and the set of primes S = {p}. Since ϕn(z) = z(d−1)n

+ higher order
terms, we have |ϕn(p)|p = p−(d−1)n , so

λp(ϕ
n P, A)= λp(ϕ

n(p), 0)=− log|ϕn(p)|p = (d − 1)n log p.

Thus 0ϕ,S(A, P, ε) consists of all n ≥ 0 satisfying

(d − 1)n log p ≥ εĥϕ(ϕn P)= εdn ĥϕ(P).

Hence

#0ϕ,S(A, P, ε)=
⌊

log
(

log p

εĥϕ(P)

)/
log
(

d
d − 1

)⌋
+ 1

=
log(ε−1)

log(d/(d − 1))
+ o(log ε−1) as ε→ 0+.

In particular, if ε is small and d is large, so log(d/(d − 1)) ≈ 1/(d − 1), then we
have

#0ϕ,S(A, P, ε)≈ (d − 1) log(ε−1).

Remark 16. See [Gross and Silverman 1995; Silverman 1987b] for a version of
Theorem 11 for elliptic curves. These papers deal with points on an elliptic curve E
that are quasi-(S, ε)-integral with respect to O , the zero point of E . It is also of
interest to study points that are integral with respect to some other point A, and
in particular to see how the bound depends on A. The distance function on E is
translation invariant up to O

(
h(E)

)
, so we want to estimate the size of the set

(20)
{

P ∈ E(K ) :
∑

v∈S dvλv(P − A)≥ εĥE(P)
}
.

Translating the points in (20) by A, we want to count points satisfying
∑

dvλv(P)≥
εĥE(P + A)+ O(h(E)). The canonical height on an elliptic curve is a quadratic
form, so ĥE(P+ A)≤ 2ĥE(P)+2ĥE(A). Using the results in [Silverman 1987b],
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this leads to a bound for the set (20) in which the dependence on A appears as the
ratio ĥE(A)/ĥE(Pmin), where Pmin is the point of smallest nonzero height in E(K ).
This is analogous to the dependence on A in (19).

Proof of Theorem 11. For brevity, we will write 0S(ε) in place of 0ϕ,S(A, P, ε).
For the given ε, we set m≥1 to be the smallest integer satisfying κm

2 ≤ε/5κ1, where
κ1 and κ2 are the positive constants appearing in Lemma 9. Since κ2 < 1, there
exists such an integer m. Notice that κ1 and κ2 depend only on d; consequently m
depends only on d and ε. More precisely, if we assume (without loss of generality)
that ε < 1/2, then m� log(ε−1), where the implied constant depends only on d .

Put
em = max

A′∈ϕ−m(A)
eA′(ϕ

m).

Then Lemma 9 and our choice of m imply that

(21) em ≤ κ1(κ2d)m ≤ εdm/5.

Further, Proposition 7 says that for all Q ∈ P1(K ) we have

(22) em

∑
v∈S

max
A′∈ϕ−m(A)

dvλv(Q, A′)≥
∑
v∈S

dvλv(ϕm Q, A)−O(h(A)+h(ϕm)+1),

where the implied constant depends on deg(ϕm).
Suppose first that n ≤ m for all n ∈ 0S(ε). Then clearly #0S(ε) ≤ m, and from

our choice of m we have

#0S(ε)≤ m ≤
log(5κ1)+ log(ε−1)

log(κ−1
2 )

+ 1.

This upper bound has the desired form, since κ1 > 0 and 1 > κ2 > 0 depend only
on d .

We may thus assume that there exists an n ∈ 0S(ε) such that n >m, and we fix
such an n. By the definition of 0S(ε) we have

εĥϕ(ϕn P)≤
∑
v∈S

dv λv(ϕn P, A).

Applying (22) to the point Q = ϕn−m(P) yields

(23) εĥϕ(ϕn P)≤ em

∑
v∈S

dv max
A′∈ϕ−m(A)

λv(ϕ
n−m P, A′)+ O(h(A)+ h(ϕm)+ 1),

where the big-O constant depends on degϕm
= dm , and so on d and ε.

For each v ∈ S we choose an A′v ∈ ϕ
−m(A) satisfying

λv(ϕ
n−m P, A′v)= max

A′∈ϕ−m A
λv(ϕ

n−m P, A′).
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(For ease of exposition, we will assume that z(A′) 6= ∞ for all A′ ∈ ϕ−m A. If this
is not the case, then we use z for some of the A′, and we use z−1 for the others.)

Let S′ ⊂ S be the set of places in S defined by

S′ = {v ∈ S : λv(ϕn−m(P), A′v) > λv(A
′

v,∞)+ log `v},

where we recall that `v = 2 if v is archimedean and `v = 1 otherwise. Set
S′′ = S r S′. Applying Lemma 3 to the places in S′ and using the definition
of S′′ for the places in S′′, we find that

εĥϕ(ϕn(P))

≤

(∑
v∈S′
+

∑
v∈S′′

)
dvλv(ϕn P, A) since n ∈ 0S(A, P, ε)

≤ em

(∑
v∈S′
+

∑
v∈S′′

)
dvλv(ϕn−m(P), A′v)+ O(h(A)+ h(ϕm)+ 1)

from the definition of A′v and (23)

≤ em

∑
v∈S′

dv
(
2λv(A′v,∞)− log

∣∣z(ϕn−m(P))− z(A′v)
∣∣+ log `v

)
+ em

∑
v∈S′′

dv
(
λv(A′v,∞)+ log `v

)
+ O(h(A)+ h(ϕm)+ 1)

from Lemma 3

≤ em

∑
v∈S′

dv log
∣∣z(ϕn−m(P))− z(A′v)

∣∣−1

+ em

∑
v∈S

dv(2λv(A′v,∞)+ log `v)+ O(h(A)+ h(ϕm)+ 1).

We now use (b) and (c) of Proposition 6 to observe that∑
v∈S

dvλv(A′v,∞)≤
∑

A′∈ϕ−m(A)

∑
v∈S

dvλv(A′,∞)≤
∑

A′∈ϕ−m(A)

h(A′)

≤

∑
A′∈ϕ−m(A)

(
ĥϕ(A′)+ O(h(ϕ)+ 1)

)
≤ ĥϕ(A)+ O(h(ϕ)+ 1),

Here the last line follows because there are at most dm terms in the sum, and
ĥϕ(A′) = d−m ĥϕ(A). The constants depend only on m and d , and so on ε and d .
Further, from the definition of `v, we have∑

v∈S

dv log `v ≤ log 2.
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We also note from Proposition 5(d) that h(ϕm)� h(ϕ)+ 1, with the implied con-
stant depending only on d and m. Hence

(24) εĥϕ(ϕn(P))≤ em

∑
v∈S′

dv log+
∣∣z(ϕn−m(P))− z(A′v)

∣∣−1

+ O(ĥϕ(A)+ h(ϕ)+ 1).

We are going to apply Roth’s theorem (Theorem 10) to the set

ϒ = {z(A′) : A′ ∈ ϕ−m(A)} ⊂ K ,

the map β : S′→ϒ given by βv = A′v, and the points x = ϕn−m(P) for n ∈ 0S(ε).
We note that ϒ is a G K/K -invariant set and that #ϒ ≤ dm . We apply Theorem 10
to the set of places S′, taking M = 0 and µ= 5/2. This gives constants r1 and r2,
depending only on [K :Q], d , and ε, such that the set of n ∈0S(ε) with n>m can
be written as a union

{n ∈ 0S(ε) : n > m} = T1 ∪ T2 ∪ T3,

whose three sets are characterized as follows:

#T1 ≤ 4#S′r1,

T2 =
{
n > m :

∑
v∈S′ dv log+|z

(
ϕn−m(P)

)
− z(A′v)|

−1
≤

5
2 h(ϕn−m(P))

}
,

T3 =
{
n > m : h(ϕn−m(P))≤ r2 maxv∈S′{h(A′v), 1}

}
.

We already have a bound for the size of T1, so we look at T2 and T3. We start
with T3 and use (b) and (c) of Proposition 6 to estimate

h(A′v)≤ ĥϕ(A′)+ c3h(ϕ)+ c4

= d−m ĥϕ(A)+ c3h(ϕ)+ c4,

h(ϕn−m(P))≥ ĥϕ(ϕn−m(P))− c3h(ϕ)− c4

= dn−m ĥϕ(P)− c3h(ϕ)− c4.

Hence

T3 ⊂
{
n > m : dn−m ĥϕ(P)≤ c5ĥϕ(A)+ c6h(ϕ)+ c7

}
,

so every n ∈ T3 satisfies

(25)

n ≤ m+ log+d

(
c5ĥϕ(A)+ c6h(ϕ)+ c7

ĥϕ(P)

)
≤ c8+ log+d

(
ĥϕ(A)+ h(ϕ)

ĥϕ(P)

)
.
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Finally, we consider the set T2. Again using (b) and (c) of Proposition 6 to
relate h(ϕn−m(P)) to dn−m ĥϕ(P), we find that every n ∈ T2 satisfies∑

v∈S′
dv log+

∣∣z(ϕn−m(P))− z(A′v)
∣∣−1
≤

5
2 dn−m ĥϕ(P)+ c3h(ϕ)+ c4.

We substitute this estimate into (24) to obtain

εĥϕ(ϕn(P))≤ em
5
2 dn−m ĥϕ(P)+ c9(ĥϕ(A)+ h(ϕ)+ 1).

We know from (21) that em ≤ εdm/5, and also ĥϕ(ϕn(P))=dn ĥϕ(P), which yields

εdn ĥϕ(P)≤
(
ε

5
dm
)5

2
dn−m ĥϕ(P)+ c9(ĥϕ(A)+ h(ϕ)+ 1).

A little bit of algebra gives the inequality

(26)

n ≤ logd

(
2c9

ĥϕ(A)+ h(ϕ)+ 1

εĥϕ(P)

)
≤ c10+ log+d

(
ĥϕ(A)+ h(ϕ)

ĥϕ(P)

)
.

Combining the estimate for #T1 with the bounds (25) and (26) for the largest ele-
ments in T2 and T3 completes the proof of (a).

We note that (b) follows immediately from (a).
Finally, we prove (c). Our first observation is that the set ϒ = z(ϕ−m(A))

used in the application of Roth’s theorem does not depend on the point P . So the
largest element in the finite set T1 is bounded independently of P . (Of course,
since Roth’s theorem is not effective, we do not have an explicit bound for maxϒ
in terms K , S, ε, ϕ and A, but that is not relevant.)

Our second observation is to note that the quantity

ĥmin
ϕ,K

def
= inf

{
ĥϕ(P) : P ∈ P1(K ) wandering for ϕ

}
is strictly positive. To see this, let P0 ∈ P1(K ) be any ϕ-wandering point. Then

ĥmin
ϕ,K = inf

{
ĥϕ(P) : P ∈ P1(K ) and 0< ĥϕ(P)≤ ĥϕ(P0)

}
.

This last set is finite, so the infimum is over a finite set of positive numbers, and
hence is strictly positive. Therefore in the upper bounds (25) and (26) for max T2

and max T3, we may replace ĥϕ(P) with ĥmin
ϕ,K to get upper bounds independent

of P . This proves that max(T1 ∪ T2 ∪ T3) may be bounded independently of P ,
which completes the proof of (c). �



340 LIANG-CHUNG HSIA AND JOSEPH H. SILVERMAN

6. A bound for the number of integral points in an orbit

In this section, we use Theorem 11 to give a uniform upper bound for the number
of S-integral points in an orbit.

Corollary 17. Let K be a number field, let S ⊂ MK be a finite set of places that
includes all archimedean places, let RS be the ring of S-integers of K , and let d≥2.
There is a constant γ = γ (d, [K : Q]) such that for all rational maps ϕ ∈ K (z)
of degree d satisfying ϕ2(z) /∈ K [z] and all ϕ-wandering points P ∈ P1(K ), the
number of S-integral points in the orbit of P is bounded by

#
{
n ≥ 1 : z(ϕn(P)) ∈ RS

}
≤ 4#Sγ + log+d

( h(ϕ)

ĥϕ(P)

)
.

Proof. By definition, an element α ∈ K is in RS if and only if |α|v ≤ 1 for all v /∈ S,
or equivalently, if and only if

h(α)=
∑
v∈S

dv log max{|α|v, 1}.

We note that for v ∈ M0
K we have

λv(α,∞)= λv([α, 1], [1, 0])= log max{|α|v, 1}.

The formula for λv when v is archimedean is slightly different, but the trivial
inequality max{t, 1} ≤

√
t2+ 1 shows that for v ∈ M∞K we have

log max{|α|v, 1} ≤ λv(α,∞).

Hence α ∈ RS implies h(α)≤
∑

v∈S dvλv(α,∞).
Let n ≥ 1 satisfy z(ϕn(P)) ∈ RS . Then

(27) h(ϕn(P))≤
∑
v∈S

dvλv(ϕn(P),∞).

Proposition 6 tells us that

(28) h(ϕn(P))≥ ĥϕ(ϕn(P))− c3h(ϕ)− c4 = dn ĥϕ(P)− c3h(ϕ)− c4,

where c3 and c4 depend only on d . Combining (27) and (28) gives

(29)
∑
v∈S

dvλv(ϕn(P),∞)≥ dn ĥϕ(P)− c3h(ϕ)− c4.

We consider two cases. First, if

dn ĥϕ(P)≤ 2c3h(ϕ)+ 2c4,
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then the number of possible values of n is at most

log+d

(2c3h(ϕ)+ 2c4

ĥϕ(P)

)
,

which has the desired form. Second, if

dn ĥϕ(P)≥ 2c3h(ϕ)+ 2c4,

then (29) implies that

(30)
∑
v∈S

dvλv(ϕn(P),∞)≥ 1
2 dn ĥϕ(P)= 1

2 ĥϕ(ϕn(P)).

Now Theorem 11(b) with ε = 1/2 and A = ∞ tells us that the number of n
satisfying (30) is at most

(31) 4#Sγ3+ log+d

(
h(ϕ)+ ĥϕ(∞)

ĥϕ(P)

)
,

where γ3 depends only on [K :Q] and d . (Note that our assumption that ϕ2(z) is
not a polynomial is equivalent to the assertion that∞ is not an exceptional point
for ϕ. This is needed in order to apply Theorem 11.) It only remains to observe
that

ĥϕ(∞)≤ h(∞)+ c3h(ϕ)+ c4 and h(∞)= h([0, 1])= 0

to see that the bound (31) has the desired form. �
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MÖBIUS ISOPARAMETRIC HYPERSURFACES WITH THREE
DISTINCT PRINCIPAL CURVATURES, II

ZEJUN HU AND SHUJIE ZHAI

Using the method of moving frames and the algebraic techniques of T. E.
Cecil and G. R. Jensen that were developed while they classified the Dupin
hypersurfaces with three principal curvatures, we extend Hu and Li’s main
theorem in Pacific J. Math. 232:2 (2007), 289–311 by giving a complete
classification for all Möbius isoparametric hypersurfaces in Sn+1 with three
distinct principal curvatures.

1. Introduction

Let x :Mn
→Sn+1 be a connected smooth hypersurface in the (n+1)-dimensional

unit sphere Sn+1 without umbilic point. We choose a local orthonormal basis
{e1, . . . , en} with respect to the induced metric I = dx ·dx , and let {θ1, . . . , θn} be
the dual basis. Let h =

∑
i, j hi jθi ⊗ θ j be the second fundamental form of x , with

squared length ‖h‖2 =
∑

i, j (hi j )
2 and mean curvature H = (1/n)

∑
i hi i . Define

ρ2
= n/(n− 1) · (‖h‖2− nH 2). Then the positive definite form g = ρ2dx · dx is

Möbius invariant and is called the Möbius metric of x : Mn
→ Sn+1. The Möbius

second fundamental form B, another basic Möbius invariant of x , together with
g determine completely a hypersurface of Sn+1 up to Möbius equivalence; see
Theorem 2.2 below.

An important class of hypersurfaces for Möbius differential geometry is the so-
called Möbius isoparametric hypersurfaces in Sn+1. According to [Li et al. 2002],
a Möbius isoparametric hypersurface of Sn+1 is an umbilic-free hypersurface of
Sn+1 such whose Möbius-invariant 1-form

8=−ρ−1∑
i

(
ei (H)+

∑
j (hi j − Hδi j )e j (log ρ)

)
θi

vanishes and whose Möbius principal curvatures are all constant. These curvatures
are the eigenvalues of the Möbius shape operator 9 := ρ−1(S−H id) with respect
to g, where S denotes the shape operator of x : Mn

→ Sn+1. This definition

Supported by the Natural Sciences Foundation of China, grant numbers 10671181 and 11071225.
MSC2000: primary 53A30; secondary 53B25.
Keywords: Möbius isoparametric hypersurfaces, Möbius second fundamental form, Möbius metric,

Möbius form, Möbius equivalence.
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of Möbius isoparametric hypersurfaces is meaningful. Indeed, comparing it with
that of (Euclidean) isoparametric hypersurfaces in Sn+1, we see that the images of
all hypersurfaces of the sphere with constant mean curvature and constant scalar
curvature under the Möbius transformation satisfy8≡0, and the Möbius-invariant
operator 9 plays the role in Möbius geometry that S does in Euclidean geometry;
see Theorem 2.2 below. The two conditions of a Möbius isoparametric hyper-
surface, namely, that it has vanishing Möbius form and has constant Möbius prin-
cipal curvatures, are independent and also closely related; for detailed discussion,
see [Hu and Tian 2009]. Standard examples of Möbius isoparametric hypersurfaces
are the images of (Euclidean) isoparametric hypersurfaces in Sn+1 under Möbius
transformations. But there are other examples which cannot be obtained by this
way; for example, one occurs in our classification for hypersurfaces of Sn+1 with
parallel Möbius second fundamental form, that is, those whose Möbius second fun-
damental form is parallel with respect to the Levi-Civita connection of the Möbius
metric g; see [Hu and Li 2004; Li et al. 2002] for details. On the other hand, it
was proved in [Li et al. 2002] that any Möbius isoparametric hypersurface is in
particular a Dupin hypersurface, which implies from [Thorbergsson 1983] that for
a compact Möbius isoparametric hypersurface embedded in Sn+1, the number γ of
distinct principal curvatures can only take the values γ = 2, 3, 4, 6. A characteriza-
tion of Möbius isoparametric hypersurfaces in terms of Dupin hypersurfaces was
given in [Li et al. 2002] and was obtained very recently also by L. A. Rodriques
and K. Tenenblat [2009]; this characterization states that a Möbius isoparametric
hypersurface is either a cyclide of Dupin or a Dupin hypersurface whose Möbius
curvatures are constant. Hence the problem of investigating Möbius isoparametric
hypersurfaces reduces to that of investigating Dupin hypersurfaces with constant
Möbius curvatures.

In [Li et al. 2002], the authors classified locally all Möbius isoparametric hy-
persurfaces of Sn+1 with γ = 2. By relaxing the restriction that γ = 2, local
classifications for all Möbius isoparametric hypersurfaces in S4, S5 and S6 were
established in [Hu and Li 2005], [Hu et al. 2007] and [Hu and Zhai 2008], respec-
tively. It was shown that a Möbius isoparametric hypersurface in S4 is either of
parallel Möbius second fundamental form or Möbius equivalent to the Euclidean
isoparametric hypersurface in S4 with three distinct principal curvatures, that is,
a tube of constant radius over a standard Veronese embedding of RP2 into S4.
Similarly, a hypersurface in S5 is Möbius isoparametric if and only if either it
has parallel Möbius second fundamental form; or it is Möbius equivalent to the
preimage of the stereographic projection of the cone x̃ : N 3

×R+→ R5 defined
by x̃(x, t)= t x , where t ∈R+ and x : N 3

→S4 ↪→R5 is the Cartan isoparametric
immersion in S4 with three principal curvatures; or it is Möbius equivalent to the
Euclidean isoparametric hypersurfaces in S5 with four distinct principal curvatures.
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All these results remind us of their counterparts in Dupin hypersurfaces; see [Cecil
and Jensen 1998; 2000; Cecil et al. 2007; Miyaoka and Ozawa 1989; Niebergall
1991; Pinkall 1985; Pinkall and Thorbergsson 1989].

Hence, the classification of Möbius isoparametric hypersurfaces by Möbius
transformation group equivalence can be compared with that of the Dupin hyper-
surfaces by Lie sphere transformation group equivalence. Note that the Lie sphere
transformation group contains the Möbius transformation group in Sn+1 as a sub-
group and the dimension difference is n+ 3. Thus, Möbius differential geometry
for hypersurfaces in sphere should, in some sense, be very different from Lie sphere
geometry in many respects, and therefore is worthwhile to pay more attention.

Inspired by the close similarity between Dupin hypersurfaces under the Lie
sphere transformation group and Möbius isoparametric hypersurfaces under the
Möbius transformation group, and by T. E. Cecil and G. R. Jensen’s result [1998]
that any locally irreducible Dupin hypersurface in Sn with three distinct prin-
cipal curvatures is equivalent by Lie sphere transformation to an isoparametric
hypersurface in Sn , we started in [Hu and Li 2007] a program of classifying all
Möbius isoparametric hypersurfaces in Sn+1 with three distinct Möbius principal
curvatures. There, we were able to obtain the classification under the additional
condition that one of the Möbius principal curvatures is of multiplicity one. The
purpose of this paper is to extend that result to the general case:

Classification theorem. Let x : Mn
→ Sn+1 be a Möbius isoparametric hyper-

surface with three distinct Möbius principal curvatures. Then x is Möbius equiva-
lent to an open part of one of the following hypersurfaces in Sn+1:

(i) The preimage of the stereographic projection of the warped product embed-
ding

x̃ : Sp(a)×Sq(
√

1− a2)×R+×Rn−p−q−1
→ Rn+1

with p ≥ 1, q ≥ 1, p+ q ≤ n− 1 and 0< a < 1, defined by

x̃(u′, u′′, t, u′′′)= (tu′, tu′′, u′′′),

where u′ ∈ Sp(a), u′′ ∈ Sq(
√

1− a2), t ∈ R+ and u′′′ ∈ Rn−p−q−1.

(ii) The Euclidean isoparametric hypersurfaces in Sn+1 with three distinct prin-
cipal curvatures. Thus all the principal curvatures must have the same mul-
tiplicity m ∈ {1, 2, 4, 8}, and the isoparametric hypersurface must be a tube
of constant radius over a standard Veronese embedding of a projective plane
FP2 into S3m+1, where F is the division algebra R, C, H (the quaternions), O

(the Cayley numbers) for m = 1, 2, 4, 8, respectively.

(iii) The minimal hypersurfaces defined by

x̃ = (x̃1, x̃2) : M̃n
= N 3m

×Hn−3m
(
−

n−1
6mn

)
→ Sn+1,
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with

x̃1 = y1/y0, x̃2 = y2/y0, y0 ∈ R+, y1 ∈ R3m+2, y2 ∈ Rn−3m,

where y1 : N 3m
→ S3m+1(

√
6mn/(n− 1)) ↪→ R3m+2 is Cartan’s minimal

isoparametric hypersurface with scalar curvature R̃1 = 3(m − 1)(n − 1)/2n
and principal curvatures

(1-1)

√
n−1
2mn

, 0, −

√
n−1
2mn

which have the same multiplicity m, where m = 1, 2, 4 or 8, and

(y0, y2) : H
n−3m

(
−

n−1
6mn

)
↪→ Ln−3m+1

is the standard embedding of the hyperbolic space of sectional curvature
−(n− 1)/(6mn) into the (n− 3m+ 1)-dimensional Lorentz space with

−y2
0 + y2

2 =−
6mn
n−1

.

Remark 1.1. All hypersurfaces in (i) are of parallel Möbius second fundamental
form and have three distinct Möbius principal curvatures with arbitrary multiplic-
ities p, q and n − p − q , respectively. The hypersurfaces in (ii) and (iii) are
of nonparallel Möbius second fundamental form. For hypersurfaces in (iii), the
multiplicities of the three Möbius principal curvatures are m, m and n−2m >m.

Remark 1.2. In the cases that n=3, 4 and 5, the classification theorem was proved
in [Hu and Li 2005; Hu et al. 2007; Hu and Li 2007], respectively. The theorem
extends the main theorem of [Hu and Li 2007], where it was assumed that the
Möbius isoparametric hypersurface Mn for n ≥ 5 has three distinct Möbius princi-
pal curvatures and one of which is simple. The extension is successfully achieved
by using the wonderful techniques developed by T. E. Cecil and G. R. Jensen [1998]
in their classification of Dupin hypersurfaces with three principal curvatures.

Remark 1.3. As a counterpart to the Cecil–Ryan conjecture for Dupin hypersur-
faces, which states that a compact embedded Dupin hypersurface in a space form is
Lie equivalent to an Euclidean isoparametric hypersurface, C. P. Wang conjectured
that any compact embedded Möbius isoparametric hypersurface in Sn+1 is Möbius
equivalent to an Euclidean isoparametric hypersurface. Pinkall and Thorbergsson
[1989] and Miyaoka and Ozawa [1989], have constructed counterexamples to the
Cecil–Ryan conjecture, but we point out that the classifications of Möbius iso-
parametric hypersurfaces in [Hu and Li 2007; 2005; Hu et al. 2007; Hu and Zhai
2008; Li et al. 2002] and this paper strengthen Wang’s conjecture.
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This paper consists of six sections. In Section 2, we first review the elemen-
tary facts of Möbius geometry for hypersurfaces in Sn+1, and then we recall the
classification for hypersurfaces of Sn+1 with parallel Möbius second fundamental
form [Hu and Li 2004] and the classification for hypersurfaces of Sn+1 with two
distinct constant Blaschke eigenvalues [Li and Zhang 2007]. In Section 3, we treat
the Möbius isoparametric hypersurfaces of Sn+1 with nonparallel Möbius second
fundamental form and three distinct Möbius principal curvatures. We first present
several important properties of the Möbius second fundamental form, and then
we divide the discussion into two cases and state the main results, Theorem 3.1
and Theorem 3.2. We prove Theorem 3.1 in Section 4. In Section 5, we prove
Theorem 5.1, which gives a preliminary classification for Möbius isoparametric
hypersurfaces with three distinct Möbius principal curvatures whose multiplicities
are not equal. By the analysis of the Möbius invariants of the hypersurfaces that
appear in Theorem 5.1 we obtain Propositions 5.3 — 5.5, from which Theorem 3.2
follows. In Section 6, we complete the proof of the classification theorem.

2. Möbius invariants for hypersurfaces in Sn+1

In this section we define the Möbius invariants and recall the structure equations for
hypersurfaces in the unit sphere Sn+1. We refer to [Wang 1998] for more details.
Let Ln+3 be the Lorentz space, namely Rn+3 with inner product 〈 · , · 〉1 defined by

〈x, w〉1 =−x0w0+ x1w1+ · · ·+ xn+2wn+2

for x = (x0, x1, . . . , xn+2), w = (w0, w1, . . . , wn+2) ∈ Rn+3.
Let x : Mn

→ Sn+1 ↪→ Rn+2 be an immersed hypersurface of Sn+1 without
umbilics. We define the Möbius position vector Y : Mn

→ Ln+3 of x by

(2-1) Y = ρ(1, x) and ρ2
=

n
n−1

(‖h‖2− nH 2) > 0.

Theorem 2.1 [Wang 1998]. Two hypersurfaces x, x̃ : Mn
→ Sn+1 are Möbius

equivalent if and only if there exists T in the Lorentz group O(n+ 2, 1) such that
Y = Ỹ T on Mn .

It follows immediately that g = 〈dY, dY 〉1 = ρ2dx · dx is a Möbius invariant,
which is defined as the Möbius metric of x : Mn

→ Sn+1. Let 1 be the Beltrami–
Laplace operator of g. Define N =−4Y/n−〈1Y,1Y 〉1Y/(2n2). Then one can
show that

〈1Y, Y 〉1 =−n, 〈1Y, dY 〉1 = 0, 〈1Y,1Y 〉1 = 1+ n2 R,(2-2)

〈Y, Y 〉1 = 0, 〈N , Y 〉1 = 1, 〈N , N 〉1 = 0,(2-3)

where R is the normalized scalar curvature of g and is called the normalized
Möbius scalar curvature of x : Mn

→ Sn+1.
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Let {E1, . . . , En} be a local orthonormal basis for (Mn, g), and let {ω1, . . . , ωn}

be the dual basis. Write Yi = Ei (Y ), then it follows from (2-1), (2-2) and (2-3) that

〈Yi , Y 〉1 = 〈Yi , N 〉1 = 0, 〈Yi , Y j 〉1 = δi j for 1≤ i, j ≤ n.

Let V be the orthogonal complement to the subspace Span{Y, N , Y1, . . . , Yn}

in Ln+3. Then along M we have the orthogonal decomposition

Ln+3
= Span{Y, N }⊕Span{Y1, . . . , Yn}⊕ V .

V is called the Möbius normal bundle of x : Mn
→Sn+1. A local unit vector basis

E = En+1 for V can be written as

E = En+1 := (H, H x + en+1).

Then, {Y, N , Y1, . . . , Yn, E} forms a moving frame along Mn in Ln+3.
In the rest of this paper, we will use the range 1≤ i, j, k, l, t ≤ n of indices.
We can write the structure equations as

dY =
∑

i

Yiωi , dYi =−
∑

j

Ai jω j Y −ωi N +
∑

j

ωi j Y j +
∑

i

Bi jω j E,(2-4)

d N =
∑
i, j

Ai jω j Yi +
∑

i

Ciωi E, d E =−
∑

i

Ciωi Y −
∑
i, j

Bi jω j Yi ,(2-5)

whereωi j is the connection form of the Möbius metric g and is defined by the struc-
ture equations dωi =

∑
j ωi j∧ω j and ωi j+ω j i =0. The tensors A=

∑
i, j Ai jωi⊗

ω j , 8 =
∑

i Ciωi and B =
∑

i, j Bi j ωi ⊗ ω j are called the Blaschke tensor,
the Möbius form and the Möbius second fundamental form of x : Mn

→ Sn+1,
respectively. The relations between 8, B, A and the Euclidean invariants of x are
given by [Wang 1998]

Ci =−ρ
−2(ei (H)+

∑
j (hi j − Hδi j )e j (log ρ)

)
,

Bi j = ρ
−1(hi j − Hδi j ),(2-6)

Ai j =−ρ
−2(Hessi j (log ρ)− ei (log ρ)e j (log ρ)− Hhi j

)
(2-7)

−
1
2ρ
−2(|∇ log ρ|2− 1+ H 2)δi j ,

where Hessi j and ∇ are the Hessian matrix and the gradient with respect to the
orthonormal basis {ei } of dx · dx .

The covariant derivatives of Ci , Ai j , Bi j are defined by∑
j Ci, jω j = dCi +

∑
j C jω j i ,(2-8) ∑

k Ai j,kωk = d Ai j +
∑

k Aikωk j +
∑

k Ak jωki ,(2-9) ∑
k Bi j,kωk = d Bi j +

∑
k Bikωk j +

∑
k Bk jωki .(2-10)
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The integrability conditions for the structure equations (2-4) and (2-5) are

Ai j,k − Aik, j = BikC j − Bi j Ck,(2-11)

Ci, j −C j,i =
∑

k(Bik Ak j − Aik Bk j ),(2-12)

Bi j,k − Bik, j = δi j Ck − δikC j ,(2-13)

and

Ri jkl = Bik B jl − Bil B jk + δik A jl + δ jl Aik − δil A jk − δ jk Ail,(2-14) ∑
i Bi i = 0,

∑
i, j (Bi j )

2
=

n−1
n
, tr A=

∑
i Ai i =

1
2n
(1+ n2 R).(2-15)

Here Ri jkl denote the components of the curvature tensor of g, which are defined
by the structure equations

(2-16) dωi j −
∑

k ωik ∧ωk j =−
1
2

∑
k,l Ri jklωk ∧ωl, Ri jkl =−Ri jlk .

The normalized Möbius scalar curvature of x : Mn
→ Sn+1 is

R = 1
n(n−1)

∑
i, j Ri j i j .

The second covariant derivative of Bi j is defined by

(2-17)
∑

l Bi j,kl ωl = d Bi j,k +
∑

l Bl j,k ωli +
∑

l Bil,k ωl j +
∑

l Bi j,l ωlk .

From exterior differentiation of (2-10), we have the Ricci identity

(2-18) Bi j,kl − Bi j,lk =
∑

t Bt j Rtikl +
∑

t Bi t Rt jkl .

From (2-6), we see that the Möbius shape operator of x : Mn
→ Sn+1 takes the

form 9 = ρ−1(S− H id) =
∑

i, j Bi jωi E j , which implies that for an umbilic-free
hypersurface in Sn+1, the number of distinct Möbius principal curvatures is the
same as that of its distinct Euclidean principal curvatures.

One can easily show that all coefficients in (2-4) and (2-5) are determined
by {g, 9}. Thus:

Theorem 2.2 [Wang 1998; Akivis and Goldberg 1997]. For n ≥ 3, two hyper-
surfaces x : Mn

→ Sn+1 and x̃ : M̃n
→ Sn+1 are Möbius equivalent if and only if

there exists a diffeomorphism F : Mn
→ M̃n that preserves the Möbius metric and

the Möbius shape operator.

An umbilic-free hypersurface x : Mn
→ Sn+1 is said to have parallel Möbius

second fundamental form if Bi j,k = 0 for all i, j, k. Hypersurfaces of Sn+1 with
parallel Möbius second fundamental form have now been completely classified. A
special case of the classification can be stated as follows.
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Theorem 2.3 [Hu and Li 2004]. For n ≥ 2, let x : Mn
→ Sn+1 be an immersed

umbilic-free hypersurface with parallel Möbius second fundamental form and with
three distinct Möbius principal curvatures. Then x is Möbius equivalent to an open
part of the image of σ of the warped product embedding

x̃ : Sp(a)×Sq(
√

1− a2)×R+×Rn−p−q−1
→ Rn+1

with p ≥ 1, q ≥ 1, p+ q ≤ n− 1 and 0< a < 1, defined by

x̃(u′, u′′, t, u′′′)= (tu′, tu′′, u′′′),

for

u′ ∈ Sp(a), u′′ ∈ Sq(
√

1− a2), t ∈ R+, u′′′ ∈ Rn−p−q−1,

where the conformal diffeomorphism σ : Rn+1
→ Sn+1

\ {(−1, 0, . . . , 0)} is the
inverse of the stereographic projection and is defined by

σ(u)=
(1− |u|2

1+ |u|2
,

2u
1+ |u|2

)
for u ∈ Rn+1.

To prove our main theorem, we also need the following partial classification for
umbilic-free hypersurfaces in Sn+1 with two distinct Blaschke eigenvalues, due to
Li and Zhang [2007]; see also [Hu and Li 2007]

Theorem 2.4. For n ≥ 3, let x : Mn
→ Sn+1 be an immersed umbilic-free hyper-

surface with two distinct constant Blaschke eigenvalues and vanishing Möbius
form. If x has three distinct Möbius principal curvatures, then it is locally Möbius
equivalent to either of the following two families of hypersurfaces in Sn+1:

(1) Minimal hypersurfaces defined by

x̃ = (x̃1, x̃2) : M̃n
= N p

×Hn−p(−r−2)→ Sn+1

with r > 0 and

x̃1 = y1/y0, x̃2 = y2/y0,

y0 ∈ R+, y1 ∈ Rp+2, y2 ∈ Rn−p for 2≤ p ≤ n− 1,

where y1 : N p
→ Sp+1(r) ↪→ Rp+2 is an umbilic-free minimal hypersurface

immersed into the (p+1)-dimensional sphere of radius r and constant scalar
curvature

R̃1 =
np(p− 1)− (n− 1)r2

nr2 ,

and (y0, y2) :H
n−p(−r−2)→Ln−p+1 is the standard embedding of hyperbolic

space of sectional curvature −r−2 into the (n− p+1)-dimensional Lorentz
space with −y2

0 + y2
2 =−r2.
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(2) Nonminimal hypersurfaces defined by

x̃ = (x̃1, x̃2) : M̃n
= N p

×Sn−p(r)→ Sn+1

with r > 0 and

x̃1 = y1/y0, x̃2 = y2/y0,

y0 ∈ R+, y1 ∈ Rp+1, y2 ∈ Rn−p+1 for 2≤ p ≤ n− 1,

where (y0, y1) : N p
→ Hp+1(−r−2) ↪→ Lp+2, with −y2

0 + y2
1 = −r2, is an

umbilic free minimal hypersurface immersed into (p+1)-dimensional hyper-
bolic space of sectional curvature −r−2 and constant scalar curvature

R̃1 =−
np(p− 1)+ (n− 1)r2

nr2 ,

and y2 : S
n−p(r)→ Rn−p+1 is the standard embedding of the (n− p)-sphere

of radius r .

3. Möbius isoparametric hypersurfaces with γ = 3

Let x : Mn
→ Sn+1 be a Möbius isoparametric hypersurface with three distinct

principal curvatures B1, B2, B3 of multiplicities m1, m2, m3, respectively. Without
loss of generality, we assume that m1 ≥ m2 ≥ m3 ≥ 1.

Since x has constant Möbius principal curvatures, we can choose, around each
point of M , a local frame field {Ei }1≤i≤n orthonormal with respect to the Möbius
metric g such that the matrix (Bi j ) is diagonalized. Let us write

(3-1) (Bi j )= diag(b1, . . . , bn),

where {bi } are all constants. From the assumption, we can assume without loss of
generality that

b1 = · · · = bm1 = B1, bm1+1 = · · · = bm1+m2 = B2, bm1+m2+1 = · · · = bn = B3.

Here B1, B2 and B3 are distinct and, by (2-15), they satisfy the conditions

(3-2) m1 B1+m2 B2+m3 B3 = 0, m1 B2
1 +m2 B2

2 +m3 B2
3 =

n−1
n
.

From now on, unless stated otherwise we impose the additional index conventions

(3-3)

1≤ a, b, c, d ≤ m1,

m1+ 1≤ p, q ≤ m1+m2,

m1+m2+ 1≤ α, β ≤ m1+m2+m3 = n.

With respect to the local frame field {Ei }, we write the Blaschke tensor as A=∑
i, j Ai j ωi ⊗ω j . Since the Möbius form 8 vanishes, we see from (2-12) that A
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and B commute, which implies that Apa = Aaα = Apα = 0. Moreover, for any
fixed point ξ ∈ M , we can choose the local frame field {Ei } to guarantee that, in
addition to (3-1) around ξ , we have at the pont ξ

(3-4) (Ai j )= diag(A1, . . . , An).

Here {Ai }1≤i≤n are the eigenvalues of the Blaschke tensor A. Obviously, we can
further arrange the local frame field {Ei } around ξ so that, in addition to (3-1)
around ξ , these eigenvalues are ordered at ξ as

(3-5)

A1(ξ)≤ A2(ξ)≤ · · · ≤ Am1(ξ),

Am1+1(ξ)≤ · · · ≤ Am1+m2(ξ),

Am1+m2+1(ξ)≤ · · · ≤ An(ξ).

In this way, we see that A1, . . . , An are well-defined continuous functions on
M . Denote by M∗ the set of all such points ξ ∈ M : Around ξ there exists an
orthonormal frame field {Ei }with respect to which (3-1) and (3-4) hold. Obviously,
M∗ is an open subset of M . In the computation that follows, we will fix a point
ξ ∈ M∗ and then take an open set U ⊂ M∗ containing ξ such that over U there
exists an orthonormal frame field {Ei } for which (3-1) and (3-4) hold.

Applying the condition to (2-11) and (2-13), we see that both Ai j,k and Bi j,k are
totally symmetric tensors. As usual we define

(3-6) ωi j =
∑

k

0i
k jωk and 0i

k j =−0
j
ki .

From (2-10), (3-1) and (3-6) and that {bi }1≤i≤n consists of constants, we get

(3-7) Bi j,k = (bi − b j )0
i
k j = (b j − bk)0

j
ik = (bk − bi )0

k
ji for all i, j, k.

Hence we see that

(3-8) Bi i, j = Bi j,i = Bab, j = Bpq, j = Bαβ, j = 0 for all i, j, a, b, p, q, α, β,

and the only possible nonzero elements in {Bi j,k} are of the form Bpa,α.
For the rest of this section, we assume that Bi j,k 6≡ 0. We define the nonnegative

smooth function f by

f = 1
6 |∇B|2 = 1

6

∑
i, j,k

B2
i j,k =

∑
p,a,α

B2
pa,α.

Moreover, we define three arrays of vectors, an m2 × m3 array (Evpα) of vectors
in Rm1 , an m1×m3 array (Evaα) of vectors in Rm2 , and an m2×m1 array (Evpa) of
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vectors in Rm3 , by

Evpα = (Bpα,1, Bpα,2, . . . , Bpα,m1),

Evaα = (Baα,m1+1, Baα,m1+2, . . . , Baα,m1+m2),

Evpa = (Bpa,m1+m2+1, Bpa,m1+m2+2, . . . , Bpa,n).

Lemma 3.1. Let U be an open set of M∗ as stated above. Then at each point of U ,
the arrays (Evpα), (Evaα) and (Evpa) satisfy

Evpα · Evpβ = 0= Evaα · Evaβ for all p, a and any α 6= β,

Evpα · Evqα = 0= Evpa · Evqa for all α, a and any p 6= q,

Evaα · Evbα = 0= Evpa · Evpb for all p, α and a 6= b;

(3-9)


Evpα · Evqβ + Evqα · Evpβ = 0 if α 6= β and p 6= q ,

Evaα · Evbβ + Evbα · Evaβ = 0 if α 6= β and a 6= b,

Evpa · Evqb+ Evqa · Evpb = 0 if a 6= b and p 6= q;

(3-10)


|Evpα|

2
+ |Evqβ |

2
= |Evqα|

2
+ |Evpβ |

2 if α 6= β and p 6= q ,

|Evaα|
2
+ |Evbβ |

2
= |Evbα|

2
+ |Evaβ |

2 if α 6= β and a 6= b,

|Evpa|
2
+ |Evqb|

2
= |Evqa|

2
+ |Evpb|

2 if a 6= b and p 6= q,

(3-11)

where the dot denotes the standard product in Rm1 , Rm2 and Rm3 , respectively.

Proof. From (2-10) and (3-8), we have∑
a Bpα,aωa = (B2− B3)ωpα,(3-12) ∑
p Baα,pωp = (B1− B3)ωaα,(3-13) ∑
α Bpa,αωα = (B2− B1)ωpa.(3-14)

Differentiating (3-12) and then using (3-6) and (3-7), we get

(3-15)

∑
a,q,β Bpα,a Bqβ,a(B3− B2)

(B1− B2)(B1− B3)
ωq ∧ωβ

+
∑

a,b Bpα,aωab ∧ωb+
∑

a d Bpα,a ∧ωa

= (B2− B3)

( ∑
a,q,β Bpβ,a Bqα,a

(B1− B2)(B1− B3)
ωq ∧ωβ

+
∑

q ωpq ∧ωqα +
∑

β ωpβ ∧ωβα − Rpαpαωp ∧ωα

)
.

Comparing the coefficients of ωq ∧ωβ on both sides of (3-15), we obtain

(3-16)
∑

a Bpα,a Bqβ,a +
∑

a Bpβ,a Bqα,a = (B1− B2)(B1− B3)Rpαpαδpqδαβ .
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Similarly, by differentiating (3-13) and (3-14), we get∑
p Baα,p Bbβ,p +

∑
p Baβ,p Bbα,p = (B2− B1)(B2− B3)Raαaαδabδαβ,(3-17) ∑

α Bpa,αBqb,α +
∑

α Bpb,αBqa,α = (B3− B2)(B3− B1)Rpapaδpqδab.(3-18)

From (3-16), (3-17) and (3-18), the relations in (3-9) and (3-10) immediately fol-
low.

Moreover, from (3-16)–(3-18) and (2-14), we get

2|Evpα|
2
= (B1− B2)(B1− B3)(B2 B3+ Ap + Aα),(3-19)

2|Evaα|
2
= (B2− B1)(B2− B3)(B1 B3+ Aa + Aα),(3-20)

2|Evpa|
2
= (B3− B2)(B3− B1)(B1 B2+ Ap + Aa).(3-21)

Then the relations in (3-11) also immediately follow. �

Lemma 3.2. If , on some open set, the array (Evpα) contains a zero vector, then all
the vectors in either the whole row or in the whole column where the zero vector is
located must be zero.

Proof. For simplicity of notation, in this proof we denote the m2×m1 array (Evpα)

by (Evi j ) for 1 ≤ i ≤ m2 and 1 ≤ j ≤ m1, where Evi j ∈ Rm3 . By Lemma 3.1, the
array has the following properties:

(P1) The vectors of any row form an orthogonal set.

(P2) The vectors of any column form an orthogonal set.

For any 2× 2 minor
(
Evik Evil

Ev jk Ev jl

)
,

(P3) Evik · Ev jl + Evil · Ev jk = 0, and

(P4) |Evik |
2
+ |Ev jl |

2
= |Evil |

2
+ |Ev jk |

2.

Obviously, all these four properties will remain unchanged if either the rows or
the columns of the array are permuted.

Suppose that a vector in the array is zero on an open set U ⊂ M∗. Permuting
rows and columns, if necessary, we may assume that Ev11 = 0 on U . Then (P1),
(P2) and (P3) imply that at each point of U , the remaining vectors

Ev12, . . . , Ev1m1 and Ev21, . . . , Evm21

in the first row and the first column form a mutually orthogonal set of m1+m2−2
vectors in Rm3 , and at most m3 vectors of which can be nonzero at any point. Let ξ0

be a point where a maximal number of these vectors is nonzero. By continuity, the
nonzero vectors at ξ0 will remain nonzero in some open subset V ⊂U containing ξ0.
By maximality, the vectors that are zero at ξ0 must remain zero on V .
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By permuting rows and columns if necessary, we may assume that

Ev11 = · · · = Ev1 j = 0 and Ev11 = · · · = Evi1 = 0

for some i ∈ {1, . . . ,m2} and j ∈ {1, . . . ,m1}. The remaining vectors of the first
column and the first row are all nonzero at each point of V , so the array has first
row (0, 0, . . . , 0, Ev1( j+1), . . . , Ev1m1) and first column (0, . . . , 0, Ev(i+1)1, . . . , Evm21)

and (P4) implies that Evkl = 0 for 1 ≤ k ≤ i and 1 ≤ l ≤ j . Hence all elements in
the upper left i × j block of the array should be zero vectors on V ,

If the first row of the array is zero on V , then we are done. If otherwise, we have
j < m1 and Ev1l 6= 0 for all l ≥ j + 1. Let us fix an arbitrary k ∈ {i + 1, . . . ,m2}

and l ∈ { j + 1, . . . ,m1}. Then property (P4) easily implies that

(3-22) |Evk1| = · · · = |Evk j | and |Ev1l | = · · · = |Evil | 6= 0.

Also by using (P4) with the minor
(

0 Ev1l

Evk j Evkl

)
, we get

(3-23) |Evkl |
2
= |Evk j |

2
+ |Ev1l |

2
6= 0.

On the other hand, the properties (P1), (P2) and (P3) imply that

(3-24) Evk1, . . . , Evk j , Ev1l, . . . , Evil, Evkl

form an orthogonal set of i+ j+1 vectors in Rm3 . But, the nonzero vectors in the
first column and the first row together form an orthogonal set of (m1− j)+(m2−i)
nonzero vectors. Hence, m1+m2−i− j≤m3 and thus i+ j+1≥m1+m2−m3+1≥
m1+1>m3, so some of the vectors in (3-24) must be zero. By (3-22) and (3-23),
it must be the case that Evk1 = · · · = Evk j = 0. As this is true for k = i + 1, . . . ,m2,
it follows that the first j columns of the array are all zero on the open set V . �

Lemma 3.3. If ∇B 6= 0, then for any one of the three arrays (Evpα), (Evaα), (Evpa),
it cannot happen that there exists both a row and a column whose elements are all
zero vectors on some open set U ⊂ M∗.

Proof. Suppose to the contrary that we have such an array (Evi j ) for which each
element of the ī-th row and the j̄-th column is zero on an open set U ⊂ M∗. Then
for any k 6= ī and l 6= j̄ , the property (P4) gives that

|Evkl |
2
= |Evī l |

2
+ |Evk j̄ |

2
− |Evī j̄ |

2
= 0.

Thus all elements of (Evi j ) are zero vectors on U , which contradicts ∇B 6= 0. �

Now we can divide our discussions into two cases:

Case I. m1 = m2 = m3.

Case II. m1 ≥ m2 ≥ m3 and m1 > m3.
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Each case corresponds to a main result of this paper:

Theorem 3.1. Let x : Mn
→ Sn+1 be a Möbius isoparametric hypersurface with

three distinct Möbius principal curvatures of multiplicities m1 = m2 = m3. If
the Möbius second fundamental form is not parallel, then x is locally Möbius
equivalent to the Euclidean isoparametric hypersurfaces in Sn+1 with three distinct
principal curvatures.

Theorem 3.2. Let x : Mn
→ Sn+1 be a Möbius isoparametric hypersurface with

three distinct Möbius principal curvatures of multiplicities m1, m2 and m3 satisfy-
ing m1 ≥ m2 ≥ m3 and m1 > m3. If the Möbius second fundamental form is not
parallel, then m2=m3 :=m and x is locally Möbius equivalent one of the minimal
hypersurfaces as given by part (iii) of the classification theorem.

The proofs of these two theorems are quite involved and will be given separately
in the next two sections.

4. Möbius isoparametric hypersurfaces with m1 = m2 = m3

This section is devoted to Case I and giving a proof of Theorem 3.1. Assume that
m1 = m2 = m3 := m and ∇B 6= 0.

Proposition 4.1. Let x : Mn
→ Sn+1 be a Möbius isoparametric hypersurface

with three distinct Möbius principal curvatures of the same multiplicity m. If the
Möbius second fundamental form B is not parallel, then every vector in each of
the three m ×m arrays (Evpα), (Evaα) and (Evpa) has length equal to

√
f /m, where

f =
∑

p,a,α B2
pa,α is a constant function.

To prove the proposition, we first establish two lemmas whose proofs can be
given by the crucial algebraic techniques that were essentially discovered by Cecil
and Jensen [1998]; we present the proofs here for the reader’s convenience.

Lemma 4.1. There is an open subset U ⊂ M∗ on which every vector is nonzero in
each of the three m×m arrays (Evpα), (Evaα) and (Evpa).

Proof. Suppose to the contrary and without loss of generality that Ev(m+1)1 = 0 on
some open set U . Then by Lemma 3.2, one of two cases must occur:

• Ev(m+1)a = 0 for 1≤ a ≤ m, or

• Evp1 = 0 for m+ 1≤ p ≤ 2m.

In the first case, the first component of each vector of (Evaα) is zero. Hence Evaα

can be looked at as if it were in Rm−1. By using (P1) and (P2), we see that at least
one element both in each row and in each column of the array (Evaα) is zero. Then
by using (P4), Lemma 3.2 and Lemma 3.3, we easily get (Evaα) = 0 on U . This
contradicts that ∇B 6= 0, so this case does not occur.
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In the second case, we can show as above that (Evpα) = 0, also a contradiction.
Hence this case cannot occur either. �

Lemma 4.2. Suppose that every vector in the arrays (Evpα), (Evaα) and (Evpa) is
nonzero on U ⊂ M∗. Then, for each array, all vectors either in each row or in
each column have the same length.

Proof. Consider one of the arrays and denote its first row by Ev1, . . . , Evm . By
property (P1) and the assumption that none of these vectors is zero, it follows that
this is an orthogonal basis of Rm . Thus, there exist linear operators T j of Rm for
j = 2, . . . ,m, such that the j-th row of the array is given by T j Ev1, . . . , T j Evm . For
each of these operators, the properties (P1)–(P4) imply also that

(O1) T j is skew-symmetric for j = 2, . . . ,m,

(O2) each of the vectors Ev1, . . . , Evm is an eigenvector of T 2
j for j = 2, . . . ,m, and

(O3) the relation |T j Evi |
2
+ |Evk |

2
= |Evi |

2
+ |T j Evk |

2 holds for any j = 2, . . . ,m and
i 6= k, where 1≤ i, k ≤ m.

In fact, from (P2) we can see that T j Evi · Evi = 0 holds for all i = 1, . . . ,m and
j = 2, . . . ,m. Similarly, T j Evi · Evk + Evi · T j Evk = 0 follows from (P3). Thus, (P2)
and (P3) imply (O1). In addition, (P1) implies that T j Evi ·T j Evk = 0 whenever i 6= k,
and thus T 2

j Evi · Evk = 0 by (O1). It follows that Evi must be an eigenvector of T 2
j .

Property (O3) follows immediately from (P4).
Having seen that each Evi is an eigenvector of T 2

j , the correspondent eigenvalue
is easily seen to be given by

(4-1) T 2
j Evi =−

|T j Evi |
2

|Evi |
2 Evi .

This follows from the fact that a| Evi |
2
= a Evi · Evi = T 2

j Evi · Evi = −T j Evi · T j Evi if
T 2

j Evi = a Evi .
Fix any j ∈ {2, . . . ,m}. Let T = T j and denote by a1, . . . , am the eigenvalues

of T 2. Then property (O3) implies the relation

(4-2) (1+ ai )|Evi |
2
= (1+ ak)|Evk |

2 for all i, k ∈ {1, . . . ,m}.

Consequently, if some eigenvalue ai is equal to −1, then so are all the others, and
thus T 2

=−I .
If none of the eigenvalues equals −1, then ai = ak if and only if | Evi | = | Evk |.
Suppose that, for some row of the array, the vectors do not have the same length,

and suppose likewise for some column. Relabeling if necessary, we may suppose
that Ev1, . . . , Evm do not have the same length. Then there must be some vector Evi

such that | Evi | is not equal to | Evk | for at least m − bm/2c vectors Evk , where bzc



358 ZEJUN HU AND SHUJIE ZHAI

denotes the greatest integer less than or equal to z. Permute the columns so that

(4-3) | Ev1| 6= | Evk | for bm/2c+ 1≤ k ≤ m.

From (3-19), (3-20) and (3-21), we have

(4-4)

|Evpα|
2
− |Evpβ |

2
=

1
2(B1− B2)(B1− B3)(Aα − Aβ),

|Evpα|
2
− |Evqα|

2
=

1
2(B1− B2)(B1− B3)(Ap − Aq),

|Evaα|
2
− |Evaβ |

2
=

1
2(B2− B1)(B2− B3)(Aα − Aβ),

|Evaα|
2
− |Evbα|

2
=

1
2(B2− B1)(B2− B3)(Aa − Ab),

|Evpa|
2
− |Evpb|

2
=

1
2(B3− B2)(B3− B1)(Aa − Ab),

|Evpa|
2
− |Evqa|

2
=

1
2(B3− B2)(B3− B1)(Ap − Aq).

Consequently, if (Evi j ) denotes any one of the arrays, then there exist numbers
ci j =−c j i and di j =−d j i such that

|Evi j |
2
− |Evik |

2
= c jk for all i,(4-5)

|Evik |
2
− |Ev jk |

2
= di j for all k.(4-6)

Now (4-5) implies that (4-3) must hold for every row in our array. Thus (4-3)
continues to hold after permuting the rows. We may thus assume that for some i ,

(4-7) |Evi | 6= |T j Evi | for bm/2c+ 1≤ j ≤ m.

Then (4-6) implies that (4-7) holds for every column of the array, and in particular
for the first column.

In summary, we can conclude that

|Ev1| 6= |Ev j | and |Ev1| 6= |T j Ev1| for bm/2c+ 1≤ j ≤ m.

Now we fix j, k ∈ {bm/2c + 1, . . . ,m}. Then we claim that Ev1 and Ev j must
be in different eigenspaces of T 2

k . In fact, by (4-1) and (4-4), we see that none
of the eigenvalues of T 2

k is −1. But then by (4-2) and the first part of (4-4), the
eigenvalues of T 2

k associated to the eigenvectors Ev1 and Ev j must be different.
On the other hand, Ev1 and Tk Ev1 are in the same eigenspace of T 2

k . In fact, if
T 2

k Ev1 = aEv1, then T 2
k Tk Ev1 = Tk T 2

k Ev1 = aTk Ev1. Thus, Ev j and Tk Ev1 are in different
eigenspaces of T 2

k . Since T 2
k is symmetric, we have

Ev j · Tk Ev1 = 0 for bm/2c+ 1≤ j, k ≤ m.

By (P1), we also have Ev1 · Ev j = 0 for bm/2c+1≤ j, k≤m. Thus, the m−bm/2c
nonzero orthogonal vectors Evbm/2c+1, . . . , Evm lie in the orthogonal complement of
the (m−bm/2c+1)-dimensional space spanned by Ev1, Tbm/2c+1Ev1, . . . , Tm Ev1. This
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is impossible, which implies the impossibility of the assumption above that some
row and some column of the array have vectors of unequal length. �

Proof of Proposition 4.1. According to Lemmas 4.1 and 4.2, we may assume that
all vectors in each row of array (Evpa) have the same length, that is,

(4-8) |Evp1|
2
= |Evp2|

2
= · · · = |Evpm |

2 for all p ∈ {m+ 1, . . . , 2m}.

Consider the m×m matrix

F =


Bp1,2m+1 Bp2,2m+1 · · · Bpm,2m+1

Bp1,2m+2 Bp2,2m+2 · · · Bpm,2m+2
...

...
. . .

...

Bp1,n Bp2,n · · · Bpm,n

 ,
whose i-th row is exactly the components of Evp(2m+i), and whose j-th column is
exactly the components of Evpj , where 1≤ i, j ≤m. Using properties (P1) and (P2),
we have

tF F = |Evp1|
2 Im,(4-9)

F t F =


|Evp(2m+1)|

2 0 · · · 0
0 |Evp(2m+2)|

2
· · · 0

...
...

. . .
...

0 0 · · · |Evpn|
2

 .(4-10)

From (4-9), we see that F t F = tF F . Then we compare (4-9) with (4-10) to obtain

(4-11) |Evp(2m+1)|
2
= · · · = |Evpn|

2
= |Evp1|

2 for all p ∈ {m+ 1, . . . , 2m}.

Now, from (3-21) and (4-8), we get Aa = Ab for all a 6= b. Similarly, from (3-19)
and (4-11) we get Aα = Aβ for all α 6= β. These facts together with (3-20) give

|Evaα|
2
=

1
m2

∑
b,β,p

B2
bβ,p =

1
m2 f for all a, α.

Proceeding as in the proof of (4-11), we get

|Ev(m+1)a|
2
= · · · = |Ev(2m)a|

2
= |Eva(2m+1)|

2
= · · · = |Evan|

2(4-12)
for all a ∈ {1, . . . ,m},

|Ev(m+1)α|
2
= · · · = |Ev(2m)α|

2
= |Ev1α|

2
= · · · = |Evmα|

2(4-13)

for all α ∈ {2m+ 1, . . . , n}.

Then (4-11)–(4-13) imply that every vector in each of the three arrays (Evpα), (Evaα)

and (Evpa) has length equal to
√

f /m.
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Next, we will show that f is constant. Using (2-17), (3-6) and (3-8), we get∑
i

Bab,piωi =
∑
α

Baα,pωαb+
∑
α

Bαb,pωαa=
∑
α,q

Baα,p0
α
qbωq+

∑
α,q

Bαb,p0
α
qaωq .

Comparing two sides of this, we obtain Bab,pα = 0. A similar argument gives
Bpq,aα = 0 and Bαβ,ap = 0. By (2-14), (2-18), (3-1) and (3-4), we easily see that
the four indices in Bpa,αi for 1≤ i ≤ n are totally symmetric. Hence we get

0=
∑

i

Bpa,αiωi = d Bpa,α +
∑

b

Bpb,αωba +
∑

q

Bqa,αωqp +
∑
β

Bpa,βωβα.

Multiplying this equation by Bpa,α and summing, we get

0=
∑
p,a,α

Bpa,αd Bpa,α +
∑

p,a,b,α

Bpa,αBpb,αωba

+

∑
p,a,q,α

Bpa,αBqa,αωqp +
∑

p,a,α,β

Bpa,αBpa,βωβα,

or, equivalently,

(4-14) 0= 1
2 d f +

∑
p,a,b

(Evpa · Evpb) ωba+
∑
p,q,a

(Evpa · Evqa) ωqp+
∑
p,α,β

(Evpα · Evpβ) ωβα.

Lemma 3.1 and (4-14) imply that d f = 0, showing that f is constant. �

Lemma 4.3. The eigenvalues of the Blaschke tensor A are all constant on M.

Proof. By (2-14) and (3-19)–(3-21), we get

Rapap =
2|Evpa|

2

(B3− B1)(B3− B2)
= B1 B2+ Aa + Ap,(4-15)

Raαaα =
2|Evaα|

2

(B2− B1)(B2− B3)
= B1 B3+ Aa + Aα,(4-16)

Rpαpα =
2|Evpα|

2

(B1− B2)(B1− B3)
= B2 B3+ Ap + Aα.(4-17)

Using Proposition 4.1 and adding (4-15), (4-16) and (4-17), we have

(4-18) B1 B2+ B1 B3+ B2 B3+ 2(Aa + Ap + Aα)= 0.

From (4-15) up to (4-18) we get

(4-19)

Aa =
1
2(B2 B3− B1 B2− B1 B3)−

2 f
m2(B1− B2)(B1− B3)

,

Ap =
1
2(B1 B3− B1 B2− B2 B3)−

2 f
m2(B2− B1)(B2− B3)

,

Aα = 1
2(B1 B2− B1 B3− B2 B3)−

2 f
m2(B3− B1)(B3− B2)

.
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Therefore all the eigenvalues of A are constant on M∗. On the other hand, the well-
defined continuous functions A1, A2, . . . , An satisfy (3-5). Thus we can indeed
choose a frame field {Ei } around each point of M so that (3-1) and (3-4) hold
identically. This fact and the argument above show that the open set M∗ is also
closed in M . By connectedness, we know that M∗ = M . �

Remark 4.1. Now that the Blaschke eigenvalues A1, A2, . . . , An are constant, we
can find everywhere local frame fields {Ei } such that (3-1) and (3-4) hold at the
same time.

Proof of Theorem 3.1. From Proposition 4.1 and (4-19), we get

(4-20) A1 = · · · = Am, Am+1 = · · · = A2m, A2m+1 = · · · = An.

From Lemma 4.1 we know that Evpa 6= 0; thus there exist α such that Bpa,α 6= 0.
From (3-6), (3-7), (2-9) and that both Ai j,k and Bi j,k are totally symmetric, we get

Apa,α = (Ap − Aa)0
p
αa = (Aa − Aα)0a

pα = (Aα − Ap)0
α
ap,(4-21)

Bpa,α = (B2− B1)0
p
αa = (B1− B3)0

a
pα = (B3− B2)0

α
ap.(4-22)

From (4-21) and (4-22), we derive

Apa,α

Bpa,α
=

Ap − Aa

B2− B1
=

Aa − Aα
B1− B3

=
Aα − Ap

B3− B2
,

which together with (4-20) implies the existence of constant functions λ and µ
with the property

A1+ λB1 = · · · = Am + λB1 = Am+1+ λB2 = · · · = A2m + λB2

= A2m+1+ λB3 = · · · = An + λB3 = µ.

Hence we have A+λB−µg= 0, and by it we can apply the result of Li and Wang
[2003] to conclude that x : M → Sn+1 is locally Möbius equivalent to one of the
following hypersurfaces:

• a hypersurface x̃ : M̃ → Sn+1 with constant mean curvature and constant
scalar curvature;

• the image under σ of a hypersurface x̃ : M̃ → Rn+1 with constant mean
curvature and constant scalar curvature;

• the image under τ of a hypersurface x̃ : M̃→ Hn+1 with constant mean cur-
vature and constant scalar curvature. Here, we recall that we have defined the
conformal diffeomorphism τ : Hn+1

→ Sn+1
+ , y 7→ (1, y′)/y0, where

Hn+1
= {(y0, y1, . . . , yn+1) ∈ Ln+2

| 〈y, y〉1 =−1, y0 ≥ 1)},

Sn+1
+
= {(x1, . . . , xn+2) ∈ Sn+1

| x1 > 0)},
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and y′ = (y1, . . . , yn+1).

For each of these possibilities, from [Hu et al. 2007, Propositions 3.1 and 3.2],
and because the Bi are all constant, we see that x̃ : M̃→ Sn+1, or x̃ : M̃→ Rn+1,
or x̃ : M̃→Hn+1, respectively, are all Euclidean isoparametric hypersurfaces with
three distinct principal curvatures. From the classical result that isoparametric
hypersurfaces in Rn+1 and Hn+1 can have at most two distinct principal curvatures,
we finally see that x is Möbius equivalent to an open part of some isoparametric
hypersurface in Sn+1 with three distinct principal curvatures. �

5. Möbius isoparametric hypersurfaces with m1 > m3

This section is devoted to Case II and proving Theorem 3.2. Assume that

(5-1) ∇B 6= 0 and m1 ≥ m2 ≥ m3 such that m1 > m3.

To add to the index conventions (3-3), we introduce the notation

I1 = {1, 2, . . . ,m1},

I2 = {m1+ 1,m1+ 2, . . . ,m1+m2},

I3 = {m1+m2+ 1,m1+m2+ 2, . . . , n}.

In follows, we will concentrate on the m2×m1 array (Evpa) of vectors in Rm3 .

Lemma 5.1. There exists an integer m ′1, where 0<m1−m3 ≤m′1 <m1, such that
exactly m′1 columns of the m2×m1 array (Evpa) are identically zero on an open set
U ⊂M∗. Explicitly, there exists a subset D0⊂I1 of m ′1 elements, with complement
D1 in I1, such that

Evpa = 0 for all a ∈ D0 and p ∈ I2,(5-2)

Evpc 6= 0 for all c ∈ D1 and p ∈ I2.(5-3)

Proof. By Lemma 3.1, for each p̄ ∈ I2, the vectors in row p̄ of the array (Evpa)

constitute a set of m1 mutually orthogonal vectors in Rm3 . Thus, at least m1 −

m3 vectors in row p̄ must be zero at any point of M∗. On the other hand, by
Lemmas 3.2 and 3.3 we know that it is impossible that a whole row is zero in the
array (Evpa). Permute the columns of (Evpa), so that row p̄ has all its nonzero vectors
occurring first (left to right). Let Ev p̄m̃1 denote the last nonzero vector in this row.
Then 1< m̃1 ≤ m3 < m1. Thus we have

Ev p̄c 6= 0 if 1≤ c ≤ m̃1 and Ev p̄a = 0 if m̃1+ 1≤ a ≤ m1.

Since at least one vector is nonzero in row p̄, by Lemma 3.2 the last m1 − m̃1

columns of array (Evpa) are all zero on an open set U ⊂ M∗. That is,

if m̃1+ 1≤ a ≤ m1, then Evpa = 0 for all p ∈ I2.
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Now we apply property (P4) to the minor(
Ev p̄c Ev p̄a

Evpc Evpa

)
with 1≤ c ≤ m̃1, m̃1+ 1≤ a ≤ m1 and any p ∈ I2,

to obtain

(5-4) |Ev(m1+1)c| = · · · = |Ev(m1+m2)c| = |Ev p̄c| 6= 0 for all 1≤ c ≤ m̃1.

Let m′1 = m1 − m̃1. Then 0 < m1 −m3 ≤ m′1 < m1 and the assertion follows by
setting

D0 = {m̃1+ 1, m̃1+ 2, . . . ,m1} and D1 = {1, 2, . . . , m̃1}. �

Lemma 5.2. Assume that ∇B 6= 0 and m1 ≥m2 ≥m3. If m1 >m3, then m2 =m3.

Proof. By (5-3) and Lemma 3.1, for each c ∈ D1 the vectors in column c of the
array constitute a set of m2 mutually orthogonal nonzero vectors in Rm3 ; hence we
have m2 ≤ m3. By the assumption m2 ≥ m3, we get m2 = m3. �

Lemma 5.3. For all a, b ∈ D0, c ∈ D1, p, q ∈ I2 and α, β ∈ I3, we have

Aa = Ab 6= Ac, Ap = Aq , Aα = Aβ .

Proof. From (5-2) and (5-3), we get that, for all a, b ∈ D0, c ∈ D1 and p, q ∈ I2,

|Evpa| = |Evpb| = |Evqa| = 0 6= |Evpc|.

This combined with (3-21) gives Aa = Ab 6= Ac and Ap = Aq .
From (5-2) we have

(5-5) Bpa,α = 0 for all a ∈ D0, p ∈ I2, α ∈ I3.

The fact that Bi j,k is totally symmetric and (5-5) implies that Evaα = 0 for all a ∈D0

and α ∈ I3. Combining this with (3-20), we get Aα = Aβ . �

Lemma 5.4. m̃1 = m3 = m2.

Proof. By Lemma 5.3, we get Ap= Aq and Aα= Aβ . Combining (3-19) with (5-1),
we obtain

(5-6) |Evpα|
2
=

1
m2

2

∑
q,β,c

B2
qβ,c =

1
m2

2
f 6= 0 for all p, α.

From (5-5) we know that the last m1 − m̃1 components of each vector Evpα are
zero on the open set U as we stated in Lemma 5.1; thus Evpα can be regarded as
an element of Rm̃1 . By Lemma 3.1, for each p the vectors in row p of the array
(Evpα) constitute a set of m3 mutually orthogonal nonzero vectors in Rm̃1 . Hence
m3 ≤ m̃1, while Lemma 5.1 tells that m̃1 ≤ m3. Hence m̃1 = m3 = m2. �
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Next, by using (5-4), (5-6) and Lemma 3.1, we get the following by adapting
the proof of Proposition 4.1.

Proposition 5.1. All the nonzero vectors of the arrays (Evpα), (Evaα) and (Evpa) have
constant length equal to

√
f /m2. That is, we have

(5-7) |Evcp|
2
= |Evdα|

2
= |Evqβ |

2
= f/m2

2 := L2
= const

for any c, d ∈ D1, p, q ∈ I2 and α, β ∈ I3.

Now, we are ready to prove one of the main results in this section.

Proposition 5.2. Let x : Mn
→ Sn+1 be a Möbius isoparametric hypersurface

with three distinct Möbius principal curvatures of multiplicities m1≥m2≥m3 and
m1 > m3. If the Möbius second fundamental form is not parallel, then it must be
the case that m2=m3 :=m and that the Möbius principal curvatures satisfy B1=0
and B2 =−B3 =±

√
(n− 1)/(2mn).

Proof. By Lemma 5.2 we may assume that m2 = m3 := m. Let us take a ∈ D0,
c ∈ D1, p ∈ I2 and α ∈ I3. Then by the proof of Lemma 5.3, we have Evaα = 0.
By using (2-14), (3-19)–(3-21) and Lemma 5.1, we obtain

Rapap = B1 B2+ Aa + Ap =
2|Evpa|

2

(B3− B1)(B3− B2)
= 0,(5-8)

Raαaα = B1 B3+ Aa + Aα =
2|Evaα|

2

(B2− B1)(B2− B3)
= 0,(5-9)

Rcpcp = B1 B2+ Ac+ Ap =
2|Evpc|

2

(B3− B1)(B3− B2)
,(5-10)

Rcαcα = B1 B3+ Ac+ Aα =
2|Evcα|

2

(B2− B1)(B2− B3)
,(5-11)

Rpαpα = B2 B3+ Ap + Aα =
2|Evpα|

2

(B1− B2)(B1− B3)
.(5-12)

With the summation (5-9)+ (5-10)− (5-8)− (5-11), we get

2|Evpc|
2

(B3− B1)(B3− B2)
−

2|Evcα|
2

(B2− B1)(B2− B3)
= 0.

This equation and (5-7) imply that B2+ B3−2B1 = 0. Combining this with (3-2),
we obtain B1 = 0 and B2 =−B3 =±

√
(n− 1)/(2mn). �

Without loss of generality, in what follows we may assume that

(5-13) B1 = 0, B2 =

√
n−1
2mn

, B3 =−

√
n−1
2mn

.
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Lemma 5.5. For all a ∈ D0, c ∈ D1, p ∈ I2 and α ∈ I3, we have

ωac = ωap = ωaα = 0, ωcp =
1

B1−B2

∑
α

Bcp,αωα,

ωcα =
1

B1−B3

∑
p

Bcp,αωp, ωpα =
1

B2−B3

∑
c

Bcp,αωc,

Rapap = Raαaα = 0, Rcpcp =
2

(B3−B1)(B3−B2)
|Evcp|

2,

Rcαcα =
2

(B2−B1)(B2−B3)
|Evcα|

2, Rpαpα =
2

(B1−B2)(B1−B3)
|Evpα|

2.

Proof. The formulas follow directly from (2-14), (3-6)–(3-8) and (3-19)–(3-21).
First of all, from (5-5) we getωap=ωaα=0. The remaining formulas in Lemma 5.5
except ωac = 0 can be easily obtained.

To show that ωac = 0 holds for any a ∈ D0 and c ∈ D1, we use the following
two equations for any p ∈ I2 and α ∈ I3:

0=−Rapapωa ∧ωp = dωap −
∑

i

ωai ∧ωi p =−
∑

β∈I3, c∈D1

0c
βpωac ∧ωβ,(5-14)

0=−Raαaαωa ∧ωα = dωaα −
∑

i

ωai ∧ωiα =−
∑

q∈I2, c∈D1

0c
qαωac ∧ωq .(5-15)

Let us write

ωac =
∑
b∈D0

0a
bcωb+

∑
d∈D1

0a
dcωd +

∑
q∈I2

0a
qcωq +

∑
β∈I3

0a
βcωβ .

Then the two equations above give that∑
c∈D1

0a
bc0

c
αp = 0 for all a, b ∈ D0, p ∈ I2, α ∈ I3,(5-16)

∑
c∈D1

0a
dc0

c
αp = 0 for all a ∈ D0, d ∈ D1, p ∈ I2, α ∈ I3,(5-17)

∑
c∈D1

0a
qc0

c
αp = 0 for all a ∈ D0, p, q ∈ I2, α ∈ I3,(5-18)

∑
c∈D1

0a
βc0

c
αp = 0 for all a ∈ D0, p ∈ I2, α, β ∈ I3.(5-19)

From (5-16), we get for any b ∈ D0 a linear system of equations on {0a
bc}1≤c≤m :

(5-20)



Bp(m1+m+1),10
a
b1+ Bp(m1+m+1),20

a
b2+ · · ·+ Bp(m1+m+1),m0

a
bm = 0,

Bp(m1+m+2),10
a
b1+ Bp(m1+m+2),20

a
b2+ · · ·+ Bp(m1+m+2),m0

a
bm = 0,

...

Bpn,10
a
b1 + Bpn,20

a
b2 + · · ·+ Bpn,m0

a
bm = 0.
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By using (P1), (P2) and Proposition 5.1, we see that the coefficient matrix F of
(5-20) satisfies tF F = diag(|Evp1|

2, |Evp2|
2, . . . , |Evpm |

2)= |Evp1|
2 Im . Hence we have

|F | 6= 0, and then (5-20) implies that 0a
b1 = 0

a
b2 = · · · = 0

a
bm = 0 for all b ∈ D0,

that is,
0a

bc = 0 for all b ∈ D0.

Analogously, from (5-17), (5-18) and (5-19), respectively, we can show that

0a
dc = 0

a
qc = 0

a
βc = 0 for all d ∈ D1, q ∈ I2 and β ∈ I3.

Hence 0a
ic = 0 for all i , and ωac = 0 follows. �

Lemma 5.6. For all p ∈ I2, α ∈ I3 and a ∈ D0, c ∈ D1,

Aa =−Ac =−Ap =−Aα = −
n−1
12mn

.

Proof. Lemma 5.5 and (2-16) imply that Raci j = 0 and thus we have Racac= 0. On
the other hand, (2-14) gives that Racac = B2

1 + Aa+ Ac. It follows that Aa =−Ac.
From (5-8), (5-9) and (5-13), we further get Aa =−Ap =−Aα and hence

(5-21) Aa =−Ac =−Ap =−Aα.

These together with (5-10), (5-12) and (5-13) give that

Ac =
L2

2B2
2 = Ap =

B2
2

2
−

L2

B2
2
.

It follows that L2
=

1
3 B4

2 and Ac =
1
6 B2

2 . Then our conclusions follow immediately
from (5-13) and (5-21). �

Remark 5.1. Because all the Blaschke eigenvalues A1, A2, . . . , An are constant
on M∗, the reasoning of the proof of Lemma 4.3 shows that M = M∗. Hence
we can find everywhere local frame fields {Ei }, such that (3-1) and (3-4) hold
simultaneously in Case II.

Lemma 5.6 shows that the Blaschke tensor has exactly two distinct constant
eigenvalues. Then applying Theorem 2.4 we immediately get the following result.

Theorem 5.1. Let x : Mn
→ Sn+1 be a Möbius isoparametric hypersurface with

nonparallel Möbius second fundamental form and three distinct Möbius principal
curvatures whose multiplicities are not equal. Then there is an ñ with 2≤ ñ≤n−1,
and locally x is Möbius equivalent to one of the following two families of hyper-
surfaces in Sn+1:

(C1) Minimal hypersurfaces defined by

x̃ = (x̃1, x̃2) : M̃n
= N ñ

×Hn−ñ(−r−2)→ Sn+1,
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with r > 0 and

x̃1 = y1/y0, x̃2 = y2/y0, y0 ∈ R+, y1 ∈ Rñ+2, y2 ∈ Rn−ñ,

where y1 : N ñ
→ Sñ+1(r) ↪→ Rñ+2 is an umbilic-free minimal hypersurface

immersed into the (ñ+1)-dimensional sphere of radius r and constant scalar
curvature

R̃1 =
nñ(ñ− 1)− (n− 1)r2

nr2 ,

and (y0, y2) :H
n−ñ(−r−2)→Ln−ñ+1 is the standard embedding of hyperbolic

space of sectional curvature −r−2 into the (n− ñ+1)-dimensional Lorentz
space with −y2

0 + y2
2 =−r2.

(C2) Nonminimal hypersurfaces defined by

x̃ = (x̃1, x̃2) : M̃n
= N ñ

×Sn−ñ(r)→ Sn+1,

with r > 0 and

x̃1 = y1/y0, x̃2 = y2/y0, y0 ∈ R+, y1 ∈ Rñ+1, y2 ∈ Rn−ñ+1,

where (y0, y1) : N ñ
→ Hñ+1(−r−2) ↪→ Lñ+2, with −y2

0 + y2
1 = −r2, is an

umbilic-free minimal hypersurface immersed into (ñ+1)-dimensional hyper-
bolic space of sectional curvature −r−2 and constant scalar curvature

R̃1 =−
nñ(ñ− 1)+ (n− 1)r2

nr2 ,

and y2 : S
n−ñ(r)→ Rn−ñ+1 is the standard embedding of the (n− ñ)-sphere

of radius r .

Determining which of the hypersurfaces (C1) and (C2) is Möbius isoparametric
requires knowing their Möbius invariants — but this was done in [Hu and Li 2007,
Section 4]. For simplicity we will not repeat this calculation here. With the omitted
calculations and Lemma 5.6, we immediately get the following results.

Proposition 5.3. A hypersurface x̃ in (C1) is Möbius isoparametric if and only if
it satisfies

(1) ñ = 3m;

(2) r =
√

6mn/(n− 1);

(3) y1 : N 3m
→ S3m+1(

√
6mn/(n− 1)) is a minimal isoparametric hypersurface

with constant scalar curvature R̃1 = 3(m − 1)(n− 1)/(2n); moreover, it has
three distinct principal curvatures with values given by (1-1), each of them
with the same multiplicity m.
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Remark 5.2. Cartan [1939] proved that minimal isoparametric hypersurfaces in
S3m+1(

√
6mn/(n− 1)) with three distinct principal curvatures do exist and are

unique with principal curvatures having the same multiplicities m ∈ {1, 2, 4, 8}.
More precisely, it is the tube of constant radius over a standard Veronese embedding
of a projective plane FP2 into S3m+1(

√
6mn/(n− 1)) with principal curvatures of

(1-1) where m = 1, 2, 4 or 8, and F is the division algebra R,C,H (quaternions)
or O (Cayley numbers), respectively.

Proposition 5.4. If a hypersurface x̃ in (C2) is Möbius isoparametric, then it must
satisfy the following three conditions:

(1) ñ = n− 3m;

(2) r =
√

6mn/(n− 1);

(3) ỹ= (y0, y1) :N n−3m
→Hn−3m+1(−(n−1)/(6mn)) is a minimal isoparametric

hypersurface with the principal curvatures of (1-1).

On the other hand, by Cartan’s theorem [1938], an isoparametric hypersurface
Mn in the hyperbolic space Hn+1 can have at most two distinct principal curvatures,
which can only be either totally umbilic or else an open subset of a standard product
Sk
×Hn−k in Hn+1. Moreover, the latter must be nonminimal. From this fact and

Proposition 5.4, we immediately get the following:

Proposition 5.5. There is no Möbius isoparametric hypersurface in (C2) that has
three distinct Möbius principal curvatures.

Proof of Theorem 3.2. This is an immediate consequence of the Theorem 5.1,
Remark 5.1 and Propositions 5.3 and 5.5. �

6. Completion of the proof of the classification theorem

Let x : Mn
→ Sn+1 be a Möbius isoparametric hypersurface with three distinct

Möbius principal curvatures whose multiplicities satisfy m1 ≥ m2 ≥ m3.
If x has parallel Möbius second fundamental form, then we apply Theorem 2.3

to obtain that it is locally Möbius equivalent to a hypersurface in part (i) of the
classification theorem.

If x has nonparallel Möbius second fundamental form, then we have exactly two
cases as we stated in section three:

For Case I, we apply Theorem 3.1 and Cartan’s theorem to obtain that it is
locally Möbius equivalent to a hypersurface in (ii). For Case II, we can apply
Theorem 3.2 and Cartan’s theorem to conclude that it is locally Möbius equivalent
to the hypersurface in (iii). �
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Final remarks. For the general theory (see [Wang 1998]) of Möbius submani-
folds in Sn+p, the Möbius form 8 is an important invariant. Closely related
to Möbius isoparametric hypersurfaces is the concept of Blaschke isoparametric
hypersurfaces in spheres. It is interesting to mention a conjecture by X. X. Li
[Li and Zhang 2009; Li and Peng 2010]: A Blaschke isoparametric hypersurfaces
with more than two distinct Blaschke eigenvalues is Möbius isoparametric. For
definitions and some recent progress on Blaschke isoparametric hypersurfaces, see
[Li and Peng 2010; Li and Zhang 2006; 2007; 2009].
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DISCRETE MORSE THEORY AND HOPF BUNDLES

DMITRY N. KOZLOV

We use Hopf bundles to give an example of a regular CW complex X and
an acyclic matching M on the face poset of X , such that there are no crit-
ical cells in neighboring dimensions but the complex X is not homotopy
equivalent to the corresponding wedge of spheres. The key fact here is
that the higher homotopy groups of spheres are nontrivial. We also give
a sufficient condition on an acyclic matching M for concluding that X is
homotopy equivalent to a wedge of spheres indexed by the critical cells.

1. Introduction

Discrete Morse theory, introduced by Robin Forman [1998], has become quite a
useful tool for doing specific computations in combinatorial algebraic topology;
see [Kozlov 2008] for the general framework, and [Clark and Ehrenborg ≥ 2011]
for an interesting recent application in case of the Frobenius complex.

Let us briefly describe how the computational model provided by discrete Morse
theory works. Given a regular CW complex X , let F(X) denote the poset of
all nonempty cells of X . This poset is ranked by the dimensions of the cells.
A partial matching on the Hasse diagram of F(X) is a bijection M : U → D,
where U and D are (possibly empty) disjoint sets of elements of F(X) such that
dim(σ ) = dim(M(σ ))+ 1, and M(σ ) lies on the boundary of σ for all σ ∈ U . A
partial matching M is called acyclic if there do not exist σ1, . . . , σt ∈ F(X) such
that σ1 6= · · · 6= σt , and σi+1 > M(σi ) for all i = 1, . . . , t , where as usual we set
σt+1 := σ1. We set CM := F(X) \ (U ∪ D) and call the elements of C critical.
For all i , let fi (CM) denote the number of critical cells of dimension i . The main
theorem in [Forman 1998] states that whenever M is an acyclic matching, there
exists a CW complex X̃ , called the critical Morse complex, with fi (CM) cells of
dimension i , for all i , such that X̃ is homotopy equivalent to X .

Frequently, the actual goal of applying discrete Morse theory is to prove that X
is in fact homotopy equivalent to a wedge of spheres, or at least to compute the

This research was supported by University of Bremen, as part of AG CALTOP.
MSC2000: primary 57Q05; secondary 54G20.
Keywords: homotopy group, fibrations, gluing map, acyclic matching, long exact sequence for

homotopy.
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homology groups of X . In a very fortunate situation, one might be able to produce
an acyclic matching M such that for all i we have fi (CM) fi+1(CM) = 0, that is,
there are no critical cells in neighboring dimensions. This would settle the question
of computing the homology groups of the space X . However, in order to determine
the homotopy type of X , one would want to conclude that the critical cells are
somehow independent of each other, and so we have the homotopy equivalence

(1-1) X '
∨

i

Si
∨ · · · ∨ Si︸ ︷︷ ︸

f̃i (CM )

,

where f̃i (CM) = fi (CM) for i ≥ 1 and f̃0(CM) = f0(CM)− 1, and we use the
convention that the empty wedge is a point.

We will use the fact that higher homotopy groups of spheres are nontrivial to give
an example showing that just assuming that there are no critical cells in neighboring
dimensions is not enough to conclude that the space is homotopy equivalent to a
wedge of spheres.

But first, on the positive side, we give a sufficient condition on acyclic matching
that lets us conclude that the space is homotopy equivalent to a wedge of spheres
indexed by the critical cells. In fact, for this result we will not need the condi-
tion that there are no critical cells in neighboring dimensions; see also [Clark and
Ehrenborg ≥ 2011, Theorem 2.5].

2. Acyclic matchings yielding a wedge of spheres

Here we are interested in acyclic matchings that allow us to conclude that the
considered complex is in fact homotopy equivalent to a wedge of spheres that are
enumerated by the critical cells. First we need some terminology.

Definition 2.1. Let P be a partially ordered set and M a partial matching on P .

(1) A generalized alternating path is a sequence x1 > x2 < x3 > · · ·< x2t+1 or a
sequence x1 > x2 < x3 > · · ·> x2t+2, where t ≥ 0, such that M(x2k+1)= x2k

for all k = 1, . . . , t .

(2) Let x be an element of P . We set F(x) to be the set of the endpoints of all
generalized alternating paths starting at x , and call F(x) the feasibility domain
of x .

Note that in a generalized alternating path, we require that x2k+1 covers x2k for all
k = 1, . . . , t , but we obviously do not require that x2k−1 covers x2k for all such k.

It is easy to see that F(x) shall always contain a critical cell of dimension 0.
Let A denote the set of 0-dimensional cells in F(x). If none of them is critical,
then there exists the set of 1-dimensional cells B ⊂ F(x) such that M : B→ A is
a bijection. Since every y ∈ B covers two elements, the graph with the vertex set
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A∪ B and the covering relations as edges cannot be a forest, so it contains cycles,
which contradicts the assumption that the matching M is acyclic.

The following theorem gives a sufficient condition on an acyclic matching for
the critical Morse complex to be homotopy equivalent to a wedge of spheres
enumerated by critical cells.

Theorem 2.2. Let X be a connected regular CW complex, and let M be an acyclic
partial matching on F(X). Assume that for every critical cell c of dimension larger
than 0, its feasibility domain F(c) contains precisely two critical cells: c itself and
one critical cell of dimension 0. Then X is homotopy equivalent to a wedge of
spheres enumerated by critical cells, that is, (1-1) is true.

Proof. For this argument, we adopt the point of view of [Kozlov 2008] and follow
the proof of its Theorem 11.13(b). There the main theorem of discrete Morse theory
for CW complexes is proved by a stepwise attachment of either a critical cell or
of a pair of cells matched by M , with a parallel explicit construction of a Morse
homotopy map. This stepwise attachment is done along a certain linear extension
of the face poset of X , which we denote by l. When a pair of matched cells is
attached, we simply have a strong deformation retraction of the obtained complex
to what we have had before that attachment, so we just need to understand the case
of attaching a critical cell.

Assume that a critical cell c of dimension at least 1 is being attached. The cells
in F(c) \ {c} form a subcomplex C of X . The assumption of the theorem implies
that C is collapsible along the matching M . It means that prior to the attachment
of c, the Morse homotopy has already shrunk the complex C to a point a, where
a is the critical 0-dimensional cell of F(c) \ {c}. Since the image of the attaching
map of the cell c lies inside C , we conclude that in the critical Morse complex,
the attaching map of c will simply map everything to the point a. Thus we can
conclude that all the attaching maps in the critical Morse complex are trivial.

Finally, we need to see that the matching M has exactly one 0-dimensional
critical cell, which will imply that all the critical cells will be attached to the same
vertex. Assume we have another critical 0-dimensional cell b, and assume that
b occurs after a in the linear extension l. Then, when b is added, it will form a
new connected component. So, since the total complex X is connected, at some
point in the inductive process of adding critical cells and pairs of matched cells
we will have to connect that connected component to the connected component
containing a. This can only be achieved by adding a critical 1-dimensional cell,
which we call e. The set F(e) cannot contain any critical 0-dimensional cells
other than b. Let v1 denote the vertex of e that does not lie in the same connected
component as b. The vertex v1 is not critical, and we set e1 := M−1(v1). Both
v1 and e1 were added before e. We now proceed, starting with k = 1 be letting
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v1 v3
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e4

e1
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e2

v1
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t4

v2

t3

e4
t1

t2
e5

e6

e1 e2
v1

e4

e3

e3

v2

Figure 2.1. Two presentations of the simplicial complex L .

Figure 2.2. The face poset of L . The vertices, edges, and triangles
are shown with the index increasing from left to right. The bold
edges indicate an acyclic matching.

vk+1 be the vertex of ek other than vk . Since vk+1 ∈ F(e), we see that vk+1 is
not critical, and set ek+1 := M−1(vk+1). Both vk+1 and ek+1 were added before
e. Eventually we will have to conclude that for some k ≥ 1 the vertex vk+1 lies in
the same connected component as b. But this means that b was connected to the
vertex v1 even before adding e, yielding a contradiction to the choice of e. �

The condition of Theorem 2.2 is not necessary for getting a wedge of spheres
enumerated by critical cells. For example, let L be the simplicial complex shown
on Figure 2.1. A direct examination yields that the matching shown on Figure 2.2 is
acyclic with one critical cell in each of the dimensions 0, 1, and 2. The condition
of Theorem 2.2 is not satisfied, but the space L is homotopy equivalent to S1

∨ S2.

3. Hopf fiber bundles

We now give an example that simply having an acyclic matching with no critical
cells in neighboring dimensions is not sufficient to conclude that the space X is
homotopy equivalent to a wedge of spheres. Our example exploits the fact that the
higher homotopy groups (unlike the homology groups) of spheres are nontrivial.
The first such nontrivial group is π3(S2) = Z, and it is this one which we use for
our construction.
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Consider the set A := {(z1, z2) | z1, z2 ∈ C, |z1|
2
+ |z2|

2
= 1}, and let the mul-

tiplicative group G = {z | |z| = 1} ⊆ C act on A diagonally by multiplication:
z : (z1, z2) 7→ (zz1, zz2). The quotient A/G can be viewed as a complex projective
line CP1, with the quotient map q : A→ A/G simply being q : (z1, z2) 7→ (z1 : z2).
Note that topologically A ∼= S3, G ∼= S1, and A/G ∼= S2. The obtained fiber
bundle S1

→ S3
→ S2 is the first example of a Hopf bundle; see [Hatcher 2002,

Example 4.45].
Consider the CW structure on A obtained by intersecting with the real coordinate

hyperplanes Re z1=0, Im z1=0, Re z2=0, and Im z2=0. Then A is a regular CW
complex with face vector (8, 24, 32, 16). Furthermore, consider the CW structure
on A/G consisting of the two vertices v1 = (1 : 0) and v2 = (0 : 1), four edges
e1 = {(1 : r) | r > 0}, e2 = {(1 : ir) | r > 0}, e3 = {(1 : −r) | r > 0}, and
e4= {(1 : −ir) | r > 0}, and four 2-cells denoted s1, s2, s3, s4, where si is bound by
ei and ei+1 for i = 1, 2, 3, and s4 is bound by e1 and e4. Again A/G is a regular
CW complex with the face vector (2, 4, 4), and one sees that q is a cellular map.

Set C := ((A× [0, 1])
∐
(A/G))/∼ to be the mapping cylinder of q, that is ∼

is given by (a, 1)∼ q(a), for all a ∈ A. We choose a CW structure on C by taking
all the cells of A/G ⊆ C , subdividing A × {0}, the top copy of A, as described
above, and taking the open cells σ̃ := int σ × (0, 1) for all cells σ of A. Here we
write int σ = σ \ ∂σ to denote the relative interiors of cells. Finally, let X be the
regular CW complex obtained from C by attaching a 4-cell k along A×{0} ∼= S3.

Consider the following acyclic matching: M(σ̃ ) = σ whenever σ is a cell of
A×{0}, M(si )= ei for i = 1, 2, 3, and M(e4)= v2. The partial matching M has
three critical cells: v1, k, and s4, in dimensions 0, 2, and 4. It is easily verified
directly that all the matched pairs are regular in the sense of [Cohen 1973] and
[Kozlov 2008, Definition 11.12]; in particular the main theorem of discrete Morse
theory (see [Forman 1998]) can be applied and we can conclude that X is homotopy
equivalent to a CW complex with one cell in each of the dimensions 0, 2, and 4.

However, the space X is not homotopy equivalent to S2
∨S4. For example, these

two spaces have different π3 groups.1 Namely π3(X)= 0, while π3(S2
∨ S4)= Z.

Both of these statements can be seen using the long exact sequence for relative
homotopy; see [Hatcher 2002, page 344]. Indeed, when a space Ỹ is obtained from
a space Y ∼= S2 by attaching a 4-cell along some continuous map ϕ : S3

→ S2, the
relevant part of the long exact sequence for homotopy of the pair (Ỹ , Y ) is

(3-1) · · · → π4(Ỹ , Y, y)
∂
−→ π3(Y, y)

i∗
−→ π3(Ỹ , y)→ π3(Ỹ , Y, y)→ · · · ,

1Serge Ochanine pointed out to the author in 2009 that the constructed space X is actually the
complex projective plane. We use the long exact sequence of the homotopy of a pair to show how
we came up with the example.
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where y∈Y is a base point, the map ∂ comes from restricting maps (Dn, Sn−1, s)→
(Ỹ , Y, y) to Sn−1, and i∗ is the map between homotopy groups induced by the
inclusion map i : Y ↪→ Ỹ . Since (Y, y) ∼= (S2, x2), and (Ỹ , Y, y) ' (D4, S3, x3),
where x2 ∈ S2 and x3 ∈ S3 are corresponding base points, the sequence (3-1)
translates to

(3-2) · · · → π3(S3, x3)
ϕ∗
−−→ π3(S2, x2)→ π3(Ỹ , y)→ 0→ · · · .

For the space S2
∨S4 the map ϕ∗ is trivial, and hence π3(Ỹ , y)=π3(S2, x2)=Z;

for the case of the Hopf bundle above, the map ϕ∗ is surjective, and so we get
π3(Ỹ , y)= 0. Clearly, this technique can be used to produce further examples that
might be needed to test various hypothesis.

Taking the barycentric subdivision of X will yield a simplicial complex with the
same property: It has an acyclic matching with one critical cell of dimensions 0, 2,
and 4 each, but is of course homeomorphic to the regular CW version; in particular,
it is not homotopy equivalent to S2

∨S4. We leave finding such an acyclic matching
to the reader.
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REGULARITY OF CANONICAL AND DEFICIENCY MODULES
FOR MONOMIAL IDEALS

MANOJ KUMMINI AND SATOSHI MURAI

We show that the Castelnuovo–Mumford regularity of the canonical or a
deficiency module of the quotient of a polynomial ring by a monomial ideal
is bounded by its dimension.

1. Introduction

Let R = k[x1, . . . , xn] be a standard graded polynomial ring over a field k, and
let m = (x1, . . . , xn) be the homogeneous maximal ideal of R. We study the
Castelnuovo–Mumford regularity of the modules ExtiR(R/I, ωR) when I ⊂ R is
a monomial ideal; here ωR = R(−n) denotes the canonical module of R. The
modules

ExtiR(R/I, ωR) for i > n− dim R/I

are called the deficiency modules of R/I , while

Extn−dim R/I
R (R/I, ωR)

is called the canonical module of R/I .
For any homogeneous ideal I ⊆ R, the local cohomology modules Hi

m(R/I ) are
important in commutative algebra and algebraic geometry. One is often interested
in the vanishing of homogeneous components of Hi

m(R/I ). While one cannot ex-
pect the vanishing of Hi

m(R/I ) in negative degrees (unless it has finite length), one
can, using the local duality theorem of Grothendieck, obtain some information from
Extn−i

R (R/I, ωR). For a finitely generated graded R-module M , its (Castelnuovo–
Mumford) regularity reg(M) is an invariant that contains information about the
stability of homogeneous components in sufficiently large degrees. In light of
these, it is desirable to get bounds on reg(ExtiR(R/I, ωR)). Such bounds were
studied by L. T. Hoa and E. Hyry [2006] and by M. Chardin, D. T. Ha and Hoa
[2009]; see also the references in those papers.

Unfortunately, canonical and deficiency modules can have large regularity. For
a finitely generated graded R-module M , known bounds for reg(ExtiR(M, ωR))

MSC2000: 13D07, 13D45.
Keywords: canonical modules, Castelnuovo–Mumford regularity.
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are large; see, for example, [Hoa and Hyry 2006, Theorems 9 and 14]. On the
other hand, more optimal bounds for reg(ExtiR(R/I, ωR)) are known to exist for
certain classes of graded ideals I ; see [Hoa and Hyry 2006, Section 4]. It is an
interesting problem to find a class of graded ideals I ⊂ R with optimal bounds for
reg(ExtiR(R/I, ωR)). In this paper, we focus on monomial ideals. It follows from
the theory of square-free modules, introduced by K. Yanagawa [2000], that if I is a
square-free monomial ideal, then reg(ExtiR(R/I, ωR))≤ dim ExtiR(R/I, ωR). This
bound is small, since dim ExtiR(R/I, ωR) ≤ n − i ; see [Bruns and Herzog 1993,
Corollary 3.5.11].

While one cannot apply the theory of square-free modules to all monomial
ideals, there are results that show that reg(ExtiR(R/I, ωR)) is not large when I
is a monomial ideal. For example, we see from [Takayama 2005, Proposition
1, page 333] that if ExtiR(R/I, ωR) has finite length, then its regularity is nega-
tive or equal to zero. Again, Hoa and Hyry [2006, Proposition 21] showed that
if Hi

m(R/I ) has finite length for i = 0, 1, . . . , d−1, where d = dim R/I , then
reg(Extn−d

R (R/I, ωR))≤ d . We generalize these results in the next theorem:

Theorem 1.1. Let I ⊆ R be a monomial ideal. Then

reg(ExtiR(R/I, ωR))≤ dim ExtiR(R/I, ωR) for all 0≤ i ≤ n.

Since dim ExtiR(R/I, ωR)≤ n− i , we immediately get this:

Corollary 1.2. Let I ⊆ R be a monomial ideal. Then

reg(ExtiR(R/I, ωR))≤ n− i for all 0≤ i ≤ n.

In general, this conclusion need not hold without the assumption that I is a mono-
mial ideal; see [Chardin and D’Cruz 2003, Example 3.5].

Our approach to bounding the regularity of canonical and deficiency modules
differs from that of Hoa and Hyry. We show that if I is a monomial ideal, then
ExtiR(R/I, ωR) has a multigraded filtration, called the Stanley filtration and intro-
duced by D. Maclagan and G. G. Smith [2005]; the bound on regularity follows
from this filtration.

In the next section, we discuss some preliminaries on Stanley filtrations and
local cohomology. In Section 3, we prove our main result.

2. Preliminaries

Hereafter we take R-modules to be graded by Zn , giving deg xi = ei , the i-th unit
vector of Zn . We call this the multigrading of R and R-modules.
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Notation 2.1. Let a = (a1, . . . , an) ∈ Zn . Write

xa
=

n∏
i=1

xai
i ∈ k[x

±1
1 , . . . , x±1

n ].

We say that a is the degree of xa and write deg xa
=a. Define Supp(a)={i :ai 6=0},

and define a+, a− ∈ Nn by the conditions

a = a+− a− and Supp(a+)∩Supp(a−)=∅.

Write ‖a‖ for
∑n

i=1 ai , the total degree of a (and of the monomial xa). We will say
that a (or equivalently xa) is square-free if ai ∈{0, 1} for all i . Let [n]= {1, . . . , n}.
For 3⊆ [n], we set e3 =

∑
i∈3 ei and abbreviate the (square-free) monomial xe3

as x3. The canonical module of R is ωR = R(−e[n]).

Let M be a finitely generated multigraded R-module. Let m ∈ M be a homo-
geneous element, and let G ⊂ {x1, . . . , xn} be a subset such that um 6= 0 for all
monomials u ∈k[G]. The k-subspace k[G]m of M generated by all the um, where
u is a monomial in k[G], is called a Stanley space. A Stanley decomposition of M is
a finite set S of pairs (m, G) of homogeneous elements m∈M and G⊆{x1, . . . , xn}

such that k[G]m is a Stanley space for all (m, G) ∈ S and

(1) M =k
⊕

(m,G)∈S

k[G]m.

(We used “=k” to emphasize that the decomposition is only as vector spaces.)
Properties of such decompositions have been widely studied; we follow the ap-
proach of [Maclagan and Smith 2005, Section 3], where Stanley decompositions
were used to get bounds for multigraded regularity. Following [Maclagan and
Smith 2005, Definition 3.7], we define a Stanley filtration to be a Stanley decom-
position with an ordering of pairs {(mi , Gi ) : 1≤ i ≤ p} such that( j∑

i=1

R mi

) / ( j−1∑
i=1

R mi

)
= k[G j ](− deg mj ) for j = 1, 2, . . . , p

as R-modules. Note, in this case, that

0⊆ R m1 ⊆ · · · ⊆

j∑
i=1

R mi ⊆ · · · ⊆

p∑
i=1

R mi = M

is a prime filtration of M , as in [Eisenbud 1995, Proposition 3.7, page 93].

Proposition 2.2. Let M be a multigraded R-module with a Stanley decomposition
S such that (deg m)+ is square-free and G = Supp((deg m)+) for all (m, G) ∈ S.
Then, S gives a Stanley filtration. Moreover, reg M ≤max{‖deg m‖ : (m, G)∈S}.
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Proof. We order S={(m1,G1), . . . , (m p,G p)} so that ‖deg m1‖≥ · · ·≥‖deg m p‖.
It follows from our hypothesis that

(2) spank{m1, . . . , m p} = spank{m ∈ M : Supp((deg m)+) is square-free},

where span
k
(V ) denotes the k-vector space spanned by the elements in V . We

write M ( j) for
∑ j

i=1 R mi . We will now show, inductively on j , that

(a) M ( j−1)
:R mj = (xk; xk 6∈ G j ), and

(b) the set
⋃ j

i=1{umi : u is a monomial in k[Gi ]} is a k-basis for M ( j).

These imply that S is a Stanley filtration of M .
Let j = 1. We will show that (0 :R m1) = (xk; xk 6∈ G1). We have um1 6= 0

for all monomials u ∈ k[G1] from the definition of the decomposition. Therefore
we must show that xl m1 = 0 for any xl 6∈ G1. Let xl 6∈ G1. Then (deg xl m1)

+

is square-free, and xl m1 ∈ spank{m1, . . . , m p} by (2). However, from the choice
of m1, we see that xl m1= 0. Therefore (0 :R m1)= (xk; k 6∈G1), proving (a). Then
(b) follows immediately.

Now, assume that j > 1 and that the assertion is known for all i < j . We first
show (a). Let u be a monomial in k[G j ]. By statement (b) for j − 1, the set⋃ j−1

i=1 {vmi : v is a monomial in k[Gi ]} is a k-basis for M ( j−1). Since umj is an
element of the basis of M coming from the Stanley decomposition, umj is not in
the k-linear span of

⋃ j−1
i=1 {vmi : v is a monomial in k[Gi ]}, that is, umj 6∈ M ( j−1).

It remains to prove that xl mj ∈ M ( j−1) for any xl 6∈ G j . Let xl 6∈ G j . Since
(deg xl mj )

+ is square-free, it follows from (2) and the ordering of the (mi , Gi )

that

xlmj ∈ spank{mi : 1≤ i ≤ p, deg mi > deg mj } ⊆ spank{m1, . . . , m j−1}.

Therefore xl mj ∈ M ( j−1), proving the statement (a) for j .
From (a), we see that the sequence

(3) 0→ M ( j−1)
→ M ( j)

→ k[G j ]mj → 0

is exact. Now, statement (b) for j follows from the induction hypothesis.
Theorem 4.1 of [Maclagan and Smith 2005] essentially gives the assertion about

regularity, but we give a quick proof here by showing that

reg M ( j)
≤max{‖deg mi‖ : 1≤ i ≤ j} for all 1≤ j ≤ p.

It holds for j = 1. For j > 1, it follows from [Eisenbud 1995, Corollary 20.19]
and the exact sequence (3) that

reg M ( j)
≤max{reg M ( j−1), ‖deg mj‖}.

Then induction completes the proof. �
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Finally, we recall some basics of local cohomology. We follow [Bruns and
Herzog 1993, Sections 3.5 and 3.6]. Let Č• be the Čech complex on x1, . . . , xn;
the term at the i-th cohomological degree is

Č i
=

⊕
3⊆[n], |3|=i

Rx3,

where Rx3 denotes inverting the monomial x3. Note that Č• is a complex of
Zn-graded R-modules, with differentials of degree 0. For a finitely generated R-
module M , we set Č•(M)= Č•⊗R (M). Then Hi

m(M)= Hi (Č•(M)).

Definition 2.3. Let F ⊆ [n]. We define Č•F to be the subcomplex of Č• obtained
by setting

Č i
F =


0 if i < |F |,⊕

F⊆3⊆[n]
|3|=i

Rx3 otherwise.

Lemma 2.4. Let I be a monomial ideal and F ⊆ [n]. If a ∈ Zn is such that
Supp(a−)= F , then Hi

m(R/I )a = Hi (Č•F ⊗R (R/I ))a.

Proof. The proof of [Takayama 2005, Theorem 1] uses this argument implicitly.
Since Hi

m(R/I )a = Hi ((Č•(R/I ))a, it suffices to show that

(Č•(R/I ))a = (Č•F ⊗R (R/I ))a.

This, in turn, stems from the fact that Č j
F ⊗R (R/I ) consists precisely of the direct

summands of Č j (R/I ) that are nonzero in multidegree a for all 1≤ j ≤ n. �

3. Proof of the main theorem

Lemma 3.1. Let I ⊂ R be a monomial ideal. Let a ∈ Zn and j ∈ Supp(a+). The
multiplication map

xj : ExtiR(R/I, ωR)a→ ExtiR(R/I, ωR)a+ej

is bijective.

Proof. We first claim that the multiplication map

xj : Hn−i
m (R/I )−a−ej → Hn−i

m (R/I )−a

is bijective. By local duality [Bruns and Herzog 1993, Theorem 3.6.19], this map
is the Matlis dual of the multiplication by xj on ExtiR(R/I, ωR)a; hence, it suffices
to prove the claim above.

Set F = Supp(a+). Note that Supp(a++ ej )= F . For all i , the map xj acts as
a unit on Č i

F . Therefore the homomorphism of complexes

Č•F ⊗R (R/I )→ Č•F ⊗R (R/I )
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induced by the multiplication map xj : Č i
F⊗R (R/I )→ Č i

F⊗R (R/I ) is an isomor-
phism. The claim now follows from Lemma 2.4, which implies that

Hi
m(R/I )−a−ej = Hi (Č•F ⊗R (R/I ))−a−ej ,

Hi
m(R/I )−a = Hi (Č•F ⊗R (R/I ))−a. �

The previous lemma says that, if I is a monomial ideal, then ExtiR(R/I, ωR) is
a (1, 1, . . . , 1)-determined module in the sense of [Miller 2000, Definition 2.1].

Proof of Theorem 1.1. For F ⊆ [n], let Mi
F be a multigraded k-basis for⊕

a∈Nn, Supp(a)∩F=∅
ExtiR(R/I, ωR)eF−a.

Let Si = {(m, F) : F ⊆ [n] and m ∈Mi
F }. It follows from Lemma 3.1 that Si is a

Stanley decomposition of ExtiR(R/I, ωR). In particular,

dim Exti (R/I, ωR)=max{|F | :Mi
F 6=∅}.

By the construction of Mi
F , this Stanley decomposition satisfies the assumption of

Proposition 2.2. Therefore

reg(ExtiR(R/I, ωR))≤ max
F⊆[n]
{max{‖deg m‖ : m ∈Mi

F }}

≤ max
F⊆[n]
{|F | :Mi

F 6=∅}

= dim ExtiR(R/I, ωR),

as desired. (The second inequality follows since ‖deg u‖ = |F | − ‖(deg u)−‖ for
any u ∈Mi

F .) �

We remark that, by using [Takayama 2005, Theorem 1] and local duality, one
can determine whether Mi

F 6=∅ from certain subcomplexes of the Stanley–Reisner
complex of the radical

√
I of I .
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SL2(C)-CHARACTER VARIETY
OF A HYPERBOLIC LINK AND REGULATOR

WEIPING LI AND QINGXUE WANG

We analyze a special smooth projective variety Y h arising from some one-
dimensional irreducible slices on the SL2(C)-character variety of a hyper-
bolic link in S3. We prove that a natural symbol obtained from these one-
dimensional slices is a torsion in K2(C(Y h)). By using the regulator map
from K2 to the corresponding Deligne cohomology, we get some variation
formulas on some Zariski open subset of Y h. From this we discuss a possible
parametrized volume conjecture for both hyperbolic links and knots.

1. Introduction

This is the sequel to [Li and Wang 2008] on the generalized volume conjecture for
a hyperbolic knot in S3. In this paper, we shall study a hyperbolic link in S3 and
extend several results from the knot case. The main idea is to apply the regulator
map in K-theory to the SL2(C)-character varieties of hyperbolic links.

For a link L in S3, Kashaev [1995] introduced a sequence of complex numbers
{KN | N is an odd integer > 1}, which were derived from a matrix version of the
quantum dilogarithms. Kashaev’s volume conjecture therein predicts that for any
hyperbolic link L in S3, the asymptotic behavior of his invariants {KN } regains
the hyperbolic volume of S3

\ L . Kashaev verified this for the figure eight knot.
The volume conjecture provides an intriguing relationship between the quantum
invariants and the hyperbolic volume, but we still do not fully understand it.

For the knot case, Murakami and Murakami [2001] showed that the Kashaev
invariants {KN } can be identified with the values of the normalized colored Jones
polynomial at the primitive N -th roots of unity. From this, they formulated a new
version of volume conjecture, stating that the asymptotic behavior of the colored
Jones invariants of any knot equals the Gromov simplicial volume of its comple-
ment in S3. This version of the volume conjecture bridges the quantum invariants of
the knot with its classical geometry and topology. However, this formulation does

Wang is supported by NSFC, grant number 10801034.
MSC2000: primary 57M25, 57M27; secondary 19F15, 14H50.
Keywords: Chern–Simons invariant, character variety, algebraic K-theory, hyperbolic links, volume

conjecture, regulator map.
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not fit well for links since it does not hold for many split links; see [Murakami
et al. 2002]. Hence it is a very interesting question to see what is really behind the
volume conjecture for links.

Following Witten’s SU(2) topological quantum field theory, Gukov [2005] pro-
posed a complex version of Chern–Simons theory and generalized the volume con-
jecture to a C∗-parametrized version with parameter lying on the zero locus of the
A-polynomial of the knot. In [Li and Wang 2008], we constructed a natural torsion
element in K2 of the function field of the curve defined by the A-polynomial. We
then showed that the part from the A-polynomial in Gukov’s generalized volume
conjecture can be interpreted in terms of the regulator map on this torsion element.
In particular, this implied the Bohr–Sommerfeld quantization condition posed by
Gukov [2005, page 597].

It is natural to ask if there exists a parametrized volume conjecture for links
in S3, as Gukov showed for the knot case. This is the motivation of this paper.
Now we have to deal with two problems for links with more than one component.
First, its SL2(C)-character variety has dimension greater than one, and it is not
clear how to define an A-polynomial for such a link that will contain geometric
information like volume and Chern–Simons as in the knot case. Second, it is not
clear how to relate the colored Jones polynomial to its SL2(C)-character variety. In
this paper, we shall focus on the first problem for hyperbolic links. We introduce
n curves on the geometric component of the character variety. From these curves,
we obtain an n-dimensional smooth projective variety Y h , where n is the number
of the components of the link. We construct a natural torsion element in K2 of
the function field of Y h . By applying the regulator map on this torsion element,
we get the variation formulas (Theorem 3.13) on some Zariski open subset of Y h .
When the link has one component, we recover the results for hyperbolic knots. This
suggests that there may exist a parametrized volume conjecture for hyperbolic links
and the Y h may provide a replacement for the zero locus of the A-polynomial of a
knot. We do not know how to deal with the second problem, and only give some
speculations at the end of Section 4.

On the other hand, Dupont [1987] used the dilogarithm to construct explicitly
the Cheeger–Chern–Simons class associated to the second Chern polynomial. This
result applied to a closed hyperbolic 3-manifold M gives a number in C/Z. Dupont
also showed that the imaginary part of this number is the hyperbolic volume of M ,
while the real part is the Chern–Simons invariant of M . In general, for an odd-
dimensional hyperbolic manifold of finite volume, Goncharov [1999] constructed
an element in Quillen’s algebraic K-group of C and proved that after applying the
Borel regulator, we get the volume of the manifold. Here, we use the regulator map
for the function field of Y h ; it can be regarded as an analogue of a family version
of Dupont and Goncharov’s for the SL2(C)-character variety of a hyperbolic link.
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The paper is organized as follows. In Section 2, we review the basics of the
SL2(C)-character variety of a hyperbolic link. We then study the properties of
a smooth projective variety Y h coming from the one-dimensional slices of the
character variety. In Section 3, we recall the definitions and basic properties of K2

of a commutative ring. We then state and prove our main results. In Section 4, we
discuss a parametrized volume conjecture for hyperbolic links.

2. Character variety of a hyperbolic link

2a. Let L be a hyperbolic link in S3 with n components K1, . . . , Kn . This means
that the complement S3

\ L carries a complete hyperbolic structure of finite volume.
Let N (L) be an open tubular neighborhood of L in S3. Then ML = S3

\ N (L) is a
compact 3-manifold with boundary ∂ML a disjoint union of n tori T1, . . . , Tn , and
is called the link exterior. Note that π1(S3

\ L) and π1(ML) are isomorphic. In the
following, we shall identify them.

Let R(ML) = Hom(π1(ML),SL2(C)) and R(Ti ) = Hom(π1(Ti ),SL2(C)) for
i = 1, . . . , n be the SL2(C)-representation spaces. We have the natural action of
SL2(C) on them by conjugation. According to [Culler and Shalen 1983], they
are affine algebraic sets and so are the corresponding character varieties X (ML)

and X (Ti ), which are the algebro-geometric quotients of R(ML) and R(Ti ) by
SL2(C). We then have the canonical surjective morphisms t : R(ML)→ X (ML)

and ti : R(Ti )→ X (Ti ) that map a representation to its character. The inclusions
of π1(Ti ) into π1(ML) induce the restriction map

r : X (ML)→ X (T1)× · · ·× X (Tn).

For details on character varieties, see [Culler and Shalen 1983; Culler et al.
1987; Cooper et al. 1994; Shalen 2002].

2b. Let ρ0 : π1(ML) → SL2(C) be a representation associated to the complete
hyperbolic structure on S3

\ L . This representation is irreducible. Denote by χ0 its
character. Fix an irreducible component R0 of R(ML) containing ρ0. Then X0 =

t (R0) is an affine variety of dimension n [Culler and Shalen 1983; Shalen 2002].
We call X0 a geometric component of the character variety. We define Y0 := r(X0),
where the bar means the Zariski closure of the image r(X0) in X (T1)×· · ·×X (Tn).

For g ∈π1(ML), there is a regular function Ig : X0→C defined by Ig(χ)=χ(g)
for all χ ∈ X0.

Proposition 2.1 [Culler and Shalen 1984, Proposition 2, page 539]. Let γi be a
noncontractible simple closed curve in the boundary torus Ti for 1 ≤ i ≤ n. Let
gi ∈ π1(ML) be an element whose conjugacy class corresponds to the free homo-
topy class of γi . Let k be an integer with 0 ≤ k ≤ n, and let V be the algebraic
subset of X0 defined by the equations I 2

gi
(χ)= 4, with k < i ≤ n. Let V0 denote an
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irreducible component of V containing χρ0 . If χ is a point of V0, i is an integer
with k< i ≤ n, and g is an element of the subgroup Im(π1(Ti )→π1(ML)) (defined
up to conjugacy), then we have Ig(χ)=±2. If also k = 0, then V0 = {χρ0}.

The following generalizes the knot case; see [Culler and Shalen 1983; 1984].

Proposition 2.2. Y0 is an n-dimensional affine variety.

Proof. It is clear that Y0 is an affine variety. We need to show that dim Y0=n. Since
dim X0=n, we have dim Y0≤n. Assume that dim Y0=m<n. Then for y ∈ r(X0),
every component of the fiber r−1(y) has dimension ≥ n−m ≥ 1. Take y = r(χ0);
then there is an irreducible component C of the fiber r−1(y) containing χ0 and
dim C ≥1. For each boundary torus Ti and a nontrivial gi ∈ Im(π1(Ti )→π1(ML)),
consider the regular function Igi : X0→C. For all χ ∈C , we have Igi (χ)= Igi (χ0).
Since χ0 is the character of the complete hyperbolic structure on ML , we have
I 2
gi
(χ)− 4 = I 2

gi
(χ0)− 4 = 0 for all χ ∈ C and all gi ∈ Im(π1(Ti )→ π1(ML))

with 1≤ i ≤ n. Now we fix n nontrivial gi ∈ Im(π1(Ti )→ π1(ML)) for 1≤ i ≤ n.
Consider the algebraic subset V of X0 defined by the equations I 2

gi
− 4 = 0 for

1≤ i ≤ n. By its construction, C is contained in an irreducible component V0 of V
containing χ0. Hence dim V0≥ 1. On the other hand, V0={χ0} by Proposition 2.1,
a contradiction. Therefore, dim Y0 = n. �

For every boundary torus Ti , we fix a meridian-longitude basis {µi , λi } for
π1(Ti )= H1(Ti ;Z). Given 1≤ i ≤ n, we define X i

0 as the subvariety of X0 defined
by the equations I 2

µ j
− 4 = 0 for j 6= i and 1 ≤ j ≤ n. Let Vi be an irreducible

component of X i
0 containing χ0.

Proposition 2.3. Vi has dimension one for each i = 1, . . . , n.

Proof. Since X i
0 is defined by n−1 equations and dim X0= n, every component of

X i
0 has dimension at least 1. Now assume that dim Vi ≥ 2. Let U be the subvariety

of Vi defined by the equation I 2
µi
−4= 0, and let U0 be the irreducible component

of U containing χ0. Then dim Vi ≥ 2 implies that dim U0 ≥ 1. But this contradicts
the last part of Proposition 2.1. Hence, dim Vi = 1. �

Lemma 2.4. Fix a nontrivial gi ∈ Im(π1(Ti )→ π1(ML)), with 1≤ i ≤ n.

(1) Igi =±2 is a constant on every V j with j 6= i .

(2) Igi is not a constant on Vi ; hence it is not a constant on X0 either.

Proof. (1) follows from the definition of V j and Proposition 2.1.
For (2), suppose Igi were a constant on Vi . Then Igi = Igi (χ0)=±2. Consider

the algebraic subset V of X0 defined by the n equations I 2
µ j
= 4 with j 6= i ,

and I 2
gi
= 4. Then Vi is contained in some irreducible component V0 of V that

contains χρ0 . Hence dim V0 ≥ 1, contradicting Proposition 2.1. �
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For each i = 1, . . . , n, let pi be the projection map from X (T1)× · · · × X (Tn)

to the i-th factor X (Ti ). Denote by ri : X0→ X (Ti ) the composition of r and pi .

Proposition 2.5. For every i = 1, . . . , n, the Zariski closure Wi of the image ri (Vi )

in X (Ti ) has dimension 1.

Proof. It suffices to consider the case i = 1. Since dim V1 = 1 and r1 is regular,
dim W1 ≤ 1. Assume that dim W1 = 0. This means that r1(V1) consists of a single
point. Therefore, Ig1 is a constant on V1 for any g1 ∈ Im(π1(T1)→ π1(ML)). This
contradicts Lemma 2.4(2). �

2c. For 1 ≤ i ≤ n, denote by RD(Ti ) the subvariety of R(Ti ) that consists of the
diagonal representations. For such a representation ρ, it is clear by taking the
eigenvalues of ρ(µi ) and ρ(λi ) that RD(Ti ) is isomorphic to C∗×C∗. We denote
the coordinates by (li ,mi ). Let ti |D be the restriction of ti to RD(Ti ) = C∗ ×C∗.
Set Di = t−1

i |D(Wi ). By the proof of [Li and Wang 2006, Proposition 3.3], Di is
either irreducible or has two isomorphic irreducible components. Let yi

∈ Di be
the point corresponding to the character of the representation of the hyperbolic
structure on S3

\ L . Let Yi be an irreducible component of Di containing yi . Then
Yi is an algebraic curve. Denote by Y i the smooth projective model of Yi . Denote
by C(Y i ) the function field of Y i that is isomorphic to the function field C(Yi )

of Yi . Note that when L is a hyperbolic knot (n = 1), Y1 is the locus of the factor
of the A-polynomial corresponding to the geometric component.

We define Y h
= Y 1× Y 2× · · · × Y n . Note that Y h is an n-dimensional smooth

projective variety. Let C(Y h) be the function field of Y h . For each i , we have
the injective morphism ji : C(Yi ) = C(Y i )→ C(Y h) that is induced by the i-th
projection from Y h to Y i . In this way we take the C(Yi ) as subfields of C(Y h).
This also induces the map j on the K-groups:

j :
n⊕

i=1

K2(C(Yi ))→ K2(C(Y h)).

For fi , gi ∈ C(Yi ) with i = 1, . . . , n, we have j (
∑n

i=1{ fi , gi }) =
∏n

i=1{ fi , gi },
where we identify fi and gi as rational functions on Y h via the injection ji . Note
that in this paper we use the multiplication in K2 instead of addition.

Proposition 2.6. There exists a finite field extension F of C(Y h) with the property
that for every i = 1, . . . , n, there is a representation Pi : π1(ML)→ SL2(F) such
that for 1 ≤ j ≤ n, if j 6= i , the traces of Pi (λ j ) and Pi (µ j ) are either 2 or −2. If
j = i , then

Pi (λi )=

[
li 0
0 l−1

i

]
and Pi (µi )=

[
mi 0
0 m−1

i

]
.
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Proof. By definition, Wi for each i is the Zariski closure of ri (Vi ) in X (Ti ) and Yi

is mapped dominatingly to Wi . The canonical morphism t : R0→ X0 is surjective,
so we can choose a curve Ei ⊂ R0 such that t (Ei ) is dense in Vi . Hence the
composition ri ◦ t : Ei → Wi is dominating. Then the function fields C(Ei ) and
C(Yi ) are finite extensions of C(Wi ). By [Culler and Shalen 1983, page 115], there
is a tautological representation pi : π1(ML)→ SL2(C(Ei )), and the trace of pi (g)
equals Ig for any g ∈ π1(ML). The composite field Fi of C(Ei ) and C(Yi ) is finite
over both C(Ei ) and C(Yi ). We shall view pi as a representation in SL2(Fi ). Since
t (Ei ) is dense in Vi , by Lemma 2.4 we have that the traces of pi (λ j ) and pi (µ j )

are ±2 if j 6= i , and the traces of pi (λi ) and pi (µi ) are nonconstant functions on
Ei if j = i . Since pi (λi ) and pi (µi ) are commuting and their eigenvalues li and mi

are in Fi , the representation pi is conjugate in GL2(Fi ) to a representation

Pi : π1(ML)→ SL2(Fi )

such that if j 6= i , the traces of Pi (λ j ) and Pi (µ j ) are either 2 or −2. If j = i , then

Pi (λi )=

[
li 0
0 l−1

i

]
and Pi (µi )=

[
mi 0
0 m−1

i

]
.

Fix an algebraic closure C(Y h) of C(Y h). As above, by viewing C(Yi ) as a
subfield of C(Y h), we can identify the finite field extension Fi as a subfield of
C(Y h). In C(Y h), take the composition Ki of Fi and C(Y h) over C(Yi ). Then
Fi ⊂ Ki , and Ki is a finite extension of C(Y h) because the extension Fi/C(Yi ) is
finite. Now let F be the composition of the fields K1, . . . , Kn in C(Y h). Then F
is a finite extension of C(Y h) since each Ki is. Now compose each Pi with the
embedding SL2(Fi ) ↪→ SL2(F); the proposition follows. �

3. K-theory and Deligne cohomology

First we recall the definitions of K2 of a commutative ring A; see [Milnor 1971].
Let GL(A) be the direct limit of the groups GLn(A), and let E(A) be the direct
limit of the groups En(A) generated by all n× n elementary matrices.

Definition 3.1. For n ≥ 3, the Steinberg group St(n, A) is the group defined by
generators xλi j for 1≤ i 6= j ≤ n, with λ ∈ A, subject to the relations

(i) xλi j · x
µ
i j = xλ+µi j ,

(ii) [xλi j , xµjl] = xλµil for i 6= l, and

(iii) [xλi j , xµkl] = 1 for j 6= k and i 6= l.

We have the canonical homomorphism φn :St(n, A)→GLn(A) by φ(xλi j )= eλi j ,
where eλi j ∈GLn(A) is the elementary matrix with entry λ in the (i, j) place. Taking
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the direct limit as n→∞, we get φ : St(A)→GL(A). Its image φ(St(A)) is equal
to E(A), the commutator subgroup of GL(A).

Definition 3.2. K2(A)= Kerφ.

It is well known that K2(A) is the center of the Steinberg group St(A) and
there is a canonical isomorphism α : H2(E(A);Z)→ K2(A); see [Milnor 1971,
Theorems 5.1 and 5.10], respectively.

3a. The symbol. Let U and V be two commuting elements of E(A). Choose
u, v ∈ St(A) such that U = φ(u) and V = φ(v). Then the commutator [u, v] =
uvu−1v−1 is in the kernel of φ. Hence [u, v] ∈ K2(A). We can check that [u, v] is
independent of the choices of u and v, and we denote it by U ? V .

Lemma 3.3. (1) The product is skew-symmetric: U ? V = (V ?U )−1.

(2) It is bimultiplicative: (U1 ·U2) ? V = (U1 ? V ) · (U2 ? V ).

(3) It is conjugation invariant: (PU P−1) ? (PV P−1)=U ? V for P ∈ GL(A).

Proof. This is [Milnor 1971, Lemma 8.1]. For (3), we remark that since E(A) is
a normal subgroup of GL(A), the left side of the formula makes sense. If P , U
and V are in GL(n, A), then choose p ∈ St(A) such that

φ(p)=
[

P 0
0 P−1

]
∈ E(A).

Now we have φ(pup−1)= PU P−1 and φ(pvp−1)= PV P−1. Hence

[pup−1, pvp−1
] = p[u, v]p−1

= [u, v]. �

Given two units f and g of A, consider the matrices

D f =

 f 0 0
0 f −1 0
0 0 1

 and D′g =

g 0 0
0 1 0
0 0 g−1

 .
They are in E(A) and commute. Define the symbol { f, g} := D f ? D′g.

Lemma 3.4 [Milnor 1971, Lemmas 8.2 and 8.3]. (1) The symbol { f, g} is skew-
symmetric: { f, g} = {g, f }−1.

(2) It is bimultiplicative: { f1 f2, g} = { f1, g}{ f2, g}.

(3) Denote by diag( f1, . . . , fn) a diagonal matrix with diagonal entries the fi . If
f1 · · · fn = g1 · · · gn = 1, then

diag( f1, . . . , fn) ? diag(g1, . . . , gn)= { f1, g1}{ f2, g2} · · · { fn, gn}.

where the right side means the product of the symbols { fi , gi } for 1≤ i ≤ n.
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Let F be a field. Let SL(F) be the direct limit of the groups SLn(F). We
know that SL(F)= E(F) and any element of SLn(F) is also naturally an element
of E(F).

Lemma 3.5. Let u, t ∈ F.

(1)
[

1 t
0 1

]
?

[
1 u
0 1

]
= 1.

(2)
[
−1 t
0 −1

]
?

[
1 u
0 1

]
,

[
1 t
0 1

]
?

[
−1 u
0 −1

]
and

[
−1 t
0 −1

]
?

[
−1 u
0 −1

]
are 2-torsion in K2(F).

(3) If U and V are two commuting matrices in SL2(F) and their traces are 2
or −2, then U ? V is 2-torsion in K2(F). In particular, if both have trace 2,
then U ? V = 1.

Proof. For s ∈ F , let

M(1, s)=
[

1 s
0 1

]
and M(−1, s)=

[
−1 s
0 −1

]
.

In particular, M(1, 0) is the 2×2 identity matrix and M(−1, 0) is the 2×2 diagonal
matrix with diagonal entries −1.

For (1), M(1, t) ?M(1, u)= [x t
12, xu

12] = 1 by the definition of St(A).
For (2), notice that by the definition, M(1, 0) ? A = 1 and A ? A = 1 for any

A ∈ E(F). By Lemma 3.3,

1= (M(−1, 0) ·M(−1, 0)) ?M(1, s)= (M(−1, 0) ?M(1, s))2,

so M(−1, 0) ?M(1, s) is a 2-torsion in K2(F). Since

M(−1, t)= M(−1, 0) ·M(1,−t) and M(−1, u)= M(−1, 0) ·M(1,−u),

by Lemma 3.3 and the first part, we have

M(−1, t) ?M(1, u)= (M(−1, 0) ?M(1, u))(M(1,−t) ?M(1, u))

= M(−1, 0) ?M(1, u),

M(−1, t) ?M(−1, u)= (M(−1, 0) ?M(1,−u))(M(1,−t) ?M(−1, 0));

hence they are 2-torsion.
For (3), we can find P ∈ GL2(F) such that

PU P−1
=

[
±1 t
0 ±1

]
and PV P−1

=

[
±1 u
0 ±1

]
.

Then it follows from the first two parts and Lemma 3.3(3). �
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The following proposition slightly generalizes [Cooper et al. 1994, Lemma 4.1].
The proof is the same.

Proposition 3.6. Let π be a free abelian group of rank two with {e1, e2} its ba-
sis. Let f : π → E(A) be a group homomorphism defined by f (e1) = U and
f (e2) = V . Then there is a generator t of H2(π;Z) such that α( f∗(t)) = U ? V .
Here α :H2(E(A);Z)→K2(A) is the canonical isomorphism and f∗ :H2(π;Z)→

H2(E(A);Z) is the homomorphism induced by f .

Proof. Since π is abelian, U and V commute. U ?V is well-defined. Let F be the
free group on {e1, e2}. The homomorphism f gives rise to a commutative diagram
of short exact sequences of groups:

0 //

��

[F, F] //

f2
��

F //

f1

��

π //

f
��

0

��
0 // K2(A) // St(A)

φ // E(A) // 0,

where f2([e1, e2]) = U ? V . Applying the homology spectral sequence to this
diagram, we obtain the diagram

H2(π;Z) //

f∗
��

H0(π; H1([F, F];Z))

g
��

H2(E(A);Z)
α // K2(A).

The top horizontal arrow is an isomorphism. The class of [e1, e2] is the generator
of H0(π; H1([F, F];Z)). It is mapped to U ?V by g, which is induced by f2. Let
t be the generator of H2(π;Z) mapped to the class of [e1, e2]. Then we have
α( f∗(t))=U ? V by the commutative diagram. �

Corollary 3.7. (1) If U=diag(u, u−1) and V =diag(v, v−1), where u, v are units
of A, then there is a generator t of H2(π;Z) such that α( f∗(t))= {u, v}2.

(2) Suppose A is a field. If U and V are two commuting matrices in SL2(A)
and their traces are 2 or −2, then the image of any generator of H2(π;Z) is
2-torsion in K2(A).

Proof. For (1), we have U ? V = {u, v}{u−1, v−1
} = {u, v}2 by Lemma 3.4.

For (2), U ? V is 2-torsion in K2(F) by Lemma 3.5(3). �

Theorem 3.8. For each i = 1, . . . , n, there is an integer ε(i) = 1 or −1 such that
the symbol

∏n
i=1{li ,mi }

ε(i) is a torsion element in K2(C(Y h)).

Proof. First, by Proposition 2.6, for each i = 1, . . . , n there exist a finite exten-
sion F of C(Y h) and a representation Pi :π1(ML)→SL2(F) such that for 1≤ j≤n,
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the traces of Pi (λ j ) and Pi (µ j ) are either 2 or −2 if j 6= i and, if j = i ,

Pi (λi )=

[
li 0
0 l−1

i

]
and Pi (µi )=

[
mi 0
0 m−1

i

]
.

The inclusions of π1(Ti ) into π1(ML) induce homomorphisms π1(Ti )→ E(F)
by composition with Pi . This gives rise to homomorphisms

(3-1)
n⊕

i=1

H2(π1(Ti );Z)
α
−→ H2(π1(ML);Z)

β
−→ H2(E(F);Z)= K2(F)

in group homology, where α= j1∗+· · ·+ jn∗, β = P1∗+· · ·+ Pn∗, the ji∗ are the
morphisms on the group homology induced by the inclusions ji :π1(Ti ) ↪→π1(ML),
and the Pi∗ are those induced by the Pi .

The orientation of ML induces an orientation on each boundary torus Ti . Let
[Ti ] be the orientation class of H2(Ti ;Z)=Z. By Corollary 3.7(1), for each i there
is a generator ξi of H2(π1(Ti )) such that Pi∗( ji∗(ξi )) = {li ,mi }

2. Since Ti is a
K (π1(Ti ), 1) space, H2(π1(Ti );Z) = H2(Ti ;Z). If ξi = [Ti ], define ε(i) = 1; if
ξi =−[Ti ], then define ε(i)=−1.

Since L is a hyperbolic link, ML is a K (π1(ML), 1) space. Hence we have
H2(π1(ML);Z)= H2(ML;Z). Under this identification, we have

α(ε(1)ξ1, . . . , ε(n)ξn)=

n∑
i=1

[Ti ] = [∂ML ] = 0 in H2(ML;Z).

Therefore,

(3-2) β(α(ε(1)ξ1, . . . , ε(n)ξn))= 1 in K2(F).

On the other hand, we have

β(α(ε(1)ξ1, . . . , ε(n)ξn))= β
( n∑

i=1

ji∗(ε(i)ξi )
)

=

n∑
k=1

Pk∗

( n∑
i=1

ji∗(ε(i)ξi )
)

=

n∑
i=1

Pi∗( ji∗(ε(i)ξi ))+
∑

1≤i 6=k≤n

Pk∗( ji∗(ε(i)ξi ))

=

n∏
i=1

{li ,mi }
2ε(i)
·

∏
1≤i 6=k≤n

Pk(µi ) ? Pk(λi ),

where the last step follows from Proposition 3.6 and Corollary 3.7. Note also that
we use multiplication in K2(F).
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Now
∏

1≤i 6=k≤n Pk(µi ) ? Pk(λi ) is 2-torsion by Corollary 3.7(2). Comparing
with (3-2), we see that

∏n
i=1{li ,mi }

2ε(i) is 2-torsion in K2(F). By the argument of
[Li and Wang 2008, Proposition 3.2],

∏n
i=1{li ,mi }

ε(i) is torsion in K2(C(Y h)). �

Remark 3.1. This theorem is a natural generalization of [Li and Wang 2008,
Proposition 3.2], which concerned the hyperbolic knot case.

Remark 3.2. The proof of Theorem 3.8 uses the condition that the geometric
component contains the character χ0 of the complete hyperbolic structure. For
a nongeometric component of the character variety, it is not clear whether we can
still have the analogous torsion property on it.

3b. Deligne cohomology. Here we recall the definition of Deligne cohomology,
give the construction of the regulator map, and apply it to our situation.

Let X be a nonsingular variety over C. First recall the definition of the (holo-
morphic) Deligne cohomology groups of X . For more details, see [Beı̆linson 1984;
Brylinski 2008; Esnault and Viehweg 1988]. We define the complex Z(p)D of
sheaves on X by

(3-3) Z(p)D : Z(p) // OX
d // �1

X
d // · · ·

d // �
p−1
X ,

where Z(p) is the constant sheaf (2π
√
−1)pZ and sits in degree zero, OX is the

sheaf of holomorphic functions on X , and �i
X is the sheaf of holomorphic i-forms

on X . The first map in (3-3) is the inclusion and d is the exterior differential.
The Deligne cohomology groups of X are defined as the hypercohomology of the
complex Z(p)D:

Hq
D(X;Z(p)) := Hq(X;Z(p)D).

For example, the exponential exact sequence of sheaves on X

0→ Z(1)→ OX → O∗X → 0

gives rise to a quasiisomorphism between Z(1)D and O∗X [−1], where O∗X is the
sheaf of nonvanishing holomorphic functions on X . Moreover there is a quasi-
isomorphism between Z(2)D and the complex [Esnault and Viehweg 1988, page 46]

(O∗X
d log
−−−→�1

X )[−1].

Therefore, we have for any integer q

Hq
D(X;Z(1))= Hq−1(X;O∗X ) and Hq

D(X;Z(2))= Hq−1(X;O∗X →�1
X ).

On the other hand, Deligne [1991] interprets H1(X;O∗X → �1
X ) = H 2

D(X;Z(2))
as the group of holomorphic line bundles with (holomorphic) connections over X .
For details, see [Brylinski 2008, Theorem 2.2.20].
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Let C(X) be the function field of X . Given two functions f, g ∈ C(X), let
D( f, g) be the divisors of the zeros and poles of f and g, and let |D( f, g)| denote
its support. Then we have the morphism

( f, g) : X − |D( f, g)| → C∗×C∗,

given by ( f, g)(x)= ( f (x), g(x)).
Let H be the Heisenberg line bundle with connection on C∗×C∗. For its con-

struction, see [Bloch 1981] and [Ramakrishnan 1989, Section 4]. Pull back H along
( f, g) to obtain a line bundle r( f, g) with connection on X − |D( f, g)|. Hence
r( f, g) ∈H1(V ;O∗V →�1

V )= H 2
D(V ;Z(2)), where V = X−|D( f, g)|. Moreover

we can represent r( f, g) in terms of Čech cocycles for H1(V ;O∗V →�1
V ). Indeed,

choose an open covering (Ui )i∈I of V such that the logarithm logi f of f is well-
defined on every Ui . Then r( f, g) is represented by the cocyle (ci j , ωi ), with

ci j = g(log j f−logi f )/(2π
√
−1) on Ui ∩U j ,(3-4)

ωi =
1

2π
√
−1

logi f
dg
g

on Ui .(3-5)

Its curvature is

(3-6) R = 1
2π
√
−1

d f
f
∧

dg
g
.

Remark 3.3. There is a cup product on the Deligne cohomology groups [Beı̆linson
1984; Esnault and Viehweg 1988]. For f, g∈H 0(X;O∗X )=H 1

D(X;Z(1)) as above,
the cup product f ∪ g is exactly the line bundle r( f, g) ∈ H 2

D(X;Z(2)).

Furthermore, we have the following properties of r( f, g):

Proposition 3.9. r( f1 f2, g) = r( f1, g)⊗ r( f2, g), r( f, g) = r(g, f )−1, and the
Steinberg relation r( f, 1− f )= 1 holds if f 6= 0 and f 6= 1.

Proof. See [Bloch 1981; Esnault and Viehweg 1988] and [Ramakrishnan 1989,
Section 4]. The proofs there assume that X is a curve. But they are valid for
arbitrary X without change. To prove the Steinberg relation, we need the ubiquitous
dilogarithm function. �

Corollary 3.10. We have the regulator map

r : K2(C(X))→ lim
−→

U⊂X :Zariski open

H 2
D(U ;Z(2)),

which maps the symbol { f, g} to the line bundle r( f, g).

This follows from the definition of K2 and Proposition 3.9.
When dim X = 1, the line bundle r( f, g) is always flat, but r( f, g) is not nec-

essarily flat if dim X > 1. Nevertheless:
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Proposition 3.11. If x ∈ K2(C(X)) is torsion, the corresponding line bundle r(x)
is flat.

Proof. Let U be the Zariski open subset over which the line bundle r(x) is defined.
Since x is torsion in K2(C(X)), r(x) is torsion in H1(U ;O∗U → �1

U ). Choose a
suitable open covering (Ui )i∈I of U such that r(x) is represented by a Čech cocyle
(ci j , ωi ) with ci j ∈O∗(Ui∩U j ) and ωi ∈�

1(Ui ). Then there exists an integer n> 0
such that the class represented by the cocycle ((ci j )

n, nωi ) is zero. Hence, there
exists ti ∈ O∗X (Ui ) (or by a refinement covering of {Ui }) , such that

cn
i j =

t j

ti
and ωi =

1
n

dti
ti
.

Therefore, dωi = 0 for all i and the curvature is 0. �

Let |D| be the support of the divisors of zeros and poles of the rational func-
tions mi and li on Y h for 1 ≤ i ≤ n. Define Y h

0 = Y h
− |D|. The line bundle

r(
∏n

i=1{li ,mi }
ε(i)) is well-defined over Y h

0 .

Corollary 3.12. The line bundle r(
∏n

i=1{li ,mi }
ε(i)) over Y h

0 is flat; therefore it is
an element of H 1(Y h

0 ;C
∗).

Proof. This follows from Theorem 3.8 and Proposition 3.11. �

Using the Čech cocycle for r( f, g) given in (3-4) and (3-5), we can represent
r(
∏n

i=1{li ,mi }
ε(i)) as follows. Choose an open covering {Uα}α∈3 of Y h

0 such that
on every Uα, the logarithms of li are well-defined and denoted by logα li . Then
r(
∏n

i=1{li ,mi }
ε(i)) is represented by the cocyle (cαβ, ωα):

cαβ =
n∏

i=1

m
ε(i)((logβ li−logα li ))/(2π

√
−1)

i on Uα ∩Uβ,(3-7)

ωα =

n∑
i=1

ε(i)

2π
√
−1
(logα li )

dmi

mi
on Uα.(3-8)

Let t0 = (l0
1,m0

1, . . . , l
0
n,m0

n) ∈ Y h
0 be a point corresponding to the hyperbolic

structure of the link complement S3
\L . Then the monodromy of the flat line bundle

r(
∏n

i=1{mi , li }
ε(i)) give rises to the representation M : π1(Y h

0 , t0)→ C∗. With its
explicit descriptions (3-7) and (3-8), we have the following formula for M . Let γ
be a loop based at t0. Let log li be a branch of logarithm of li over γ − {t0}, then
by a direct calculation we have

(3-9) M(γ )= exp
( n∑

i=1

(
−

ε(i)

2π
√
−1

)(∫
γ

log li
dmi

mi
− log mi (t0)

∫
γ

dli

li

))
;

see [Deligne 1991, (2.7.2)].
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Now we have the main theorem:

Theorem 3.13. (i) The real 1-form

η =

n∑
i=1

ε(i)(log |li | d arg mi − log |mi | d arg li )

is exact on Y h
0 . Hence there exists a smooth function V : Y h

0 → R such that

dV =
n∑

i=1

ε(i)(log|li | d arg mi − log|mi | d arg li ).

(ii) Suppose m0
i = 1 for 1≤ i ≤ n. For a loop γ with initial point t0 in Y h

0

1
4π2

n∑
i=1

ε(i)
∫
γ

(log |mi |d log |li | + arg li d arg mi )=
p
q
,

where q is the order of the symbol
∏n

i=1{li ,mi }
ε(i) in K2(C(Y h)), and p is

some integer depending on the loop γ ∈ π1(Y h
0 , t0) and the branches of arg li

for 1≤ i ≤ n.

Proof. First, by (3-8), the curvature of the flat line bundle is

R =
n∑

i=1

ε(i)

2π
√
−1

(dli

li
∧

dmi

mi

)
= 0.

On the other hand, we have dη = Im(
∑n

i=1 ε(i)(dli/li ∧ dmi/mi )); hence η is a
real closed 1-form.

Since the symbol
∏n

i=1{li ,mi }
ε(i) has order q in K2(C(Y h)), by (3-9) we have

for a loop γ ∈ π1(Y h
0 , t0) that

1= M(γ )q =
(

exp
( n∑

i=1

(
−

ε(i)

2π
√
−1

)(∫
γ

log li
dmi

mi
− log mi (t0)

∫
γ

dli

li

)))q
.

Decompose part of this into real and imaginary parts as

n∑
i=1

ε(i)
(∫

γ

log li
dmi

mi
− log mi (t0)

∫
γ

dli

li

)
= Re+i Im,

Then we have exp (q · Im /(2π)+ q ·Re /(2π
√
−1)) = 1. Therefore, Im = 0 and

q ·Re /(2π
√
−1) = 2π

√
−1p for some integer p. A straightforward calculation
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or [Li and Wang 2008, Lemma 3.4] shows that

(3-10)

Im=
∫
γ

η,

Re=−
n∑

i=1

ε(i)
∫
γ

(log|mi | d log|li | + arg li d arg mi )=

∫
γ

ξ.

These immediately imply both parts of the theorem. �

Remark 3.4. When n = 1, our V is (up to sign) the volume function of the repre-
sentation of the knot complement [Dunfield 1999]. For n ≥ 2, up to some constant
and signs related to the orientations on each boundary component of the hyperbolic
link exterior, the function V should be closely related to the volume function given
in [Hodgson 1986, Theorem 5.5].

Remark 3.5. From the proof of Theorem 3.8, the signs ε(i) for 1 ≤ i ≤ n are
determined by the orientation of ML on its n boundary tori. For knots, the sign can
be neglected since there is only one term in the 1-form η. For links (where n ≥ 2),
if they are not the same, they could have quite contributions different from those
in the knot case. On the other hand, it is not clear what are the exact geometric
meanings of these signs for the link L .

Remark 3.6. If there exists any representation ρ : π1(Y h)→ GLn(C) with n ≥ 2,
then Reznikov [1995, Theorem 1.1] proved that for all i ≥ 2, the Chern classes
ci ∈ H 2i

D (Y
h
;Z(i)) in the Deligne cohomology groups are torsion.

3c. On the Bohr–Sommerfeld quantization condition for hyperbolic links. We
now discuss the Theorem 3.13(ii) from a symplectic point of view. When n = 1,
this is the Bohr–Sommerfeld quantization condition proposed by Gukov for knots
in [Gukov 2005, page 597], and is proved in [Li and Wang 2008, Theorem 3.3(2)].

Let 6 be a closed surface with fundamental group π . Its SL2(C)-character
variety is the space of equivalence classes of representations from π into SL2(C).
This variety carries a natural complex-symplectic structure, where a complex-
symplectic structure is a nondegenerate closed holomorphic exterior 2-form; see
[Goldman 1984; 2004].

A homomorphism ρ : π → SL2(C) is irreducible if it has no proper linear
invariant subspace of C2, and irreducible representations are stable points, denoted
by Hom(π,SL2(C))

s . Now SL2(C) acts freely and properly on Hom(π,SL2(C))
s ,

and the quotient X s(6) = Hom(π,SL2(C))
s/SL2(C) is an embedding onto an

open subset in the geometric quotient Hom(π,SL2(C)) // SL2(C). Thus X s(6)

is a smooth irreducible complex quasiaffine variety that is dense in the geometric
quotient [Goldman 2004, Section 1]. Note that ρ is a nonsingular point if and only
if dim Z(ρ)/Z(SL2(C))= 0, and this corresponds to the top stratum X s(6), where
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Z(u) is the centralizer of u in SL2(C). If ρ ∈ Hom(π,SL2(C)) is a singular point
(that is, dim Z(ρ)/Z(SL2(C)) > 0), then all points of σ ∈Hom(π, Z(Z(ρ)))s with
stab(σ ) = Z(σ ) = Z(ρ) have the same orbit type and form a stratification of the
SL2(C)-character variety [Goldman 1984, Section 1].

We have the SL2(C)-character variety X (T 2) of the torus T 2 as a surface in C3

given by
x2
+ y2
+ z2
− xyz− 4= 0.

See [Li and Wang 2006, Proposition 3.2]. There is a natural symplectic structure
on the smooth top stratum X s(T 2) of X (T 2), and there exists a symplectic structure
ω on the character variety X s(∂ML)=

∏n
i=1 X s(T 2

i ) such that X (ML)∩ X s(∂ML)

(a subset of X (ML)) is a Lagrangian subvariety of X s(∂ML), where X s(∂ML) is
a smooth irreducible variety that is open and dense in X (∂ML).

The inclusion ∂ML → ML indeed induces a degree one map on the irreducible
components. Thus r(X0)

s (the smooth part of the image r(X0)) is a Lagrangian
submanifold of the symplectic manifold X s(∂ML). Note that the pullback of the
symplectic 2-form on the double covering of X s(T 2

i ) is again skew-symmetric and
nondegenerate. The symplectic form ω̃i induced by the map ti : r(X0)→ X (T 2

i )

gives the Lagrangian property for the corresponding pullback of the Lagrangian
part r(X i

0)
s . Hence we have the product Lagrangian smooth part of the pullback

of
∏n

i=1 r(X i
0)

s . Then we need to see that the smooth projective model preserves
the Lagrangian and symplectic property.

Let X̃(T 2
i ) be the symplectic blowup of the double covering of X (T 2

i ) as in
[McDuff and Salamon 1998]. The blowup in the complex category carries a natural
symplectic structure on X̃(T 2

i ); see [McDuff and Salamon 1998, Section 7.1]. On
the other hand, the corresponding part Y i of Yi (the irreducible component of Di

containing yi ) lies in the symplectic manifold X̃(T 2
i ).

Define a compatible Lagrangian blowup with respect to the complex blowup as
following. Define a real submanifold R̃n of Rn

×RPn−1 (a subset of Cn
×CPn−1)

as a subspace of pairs (x, l) with x = Re(z) ∈ l, where l ∈ RPn−1 is a real line
in Rn . If IC is complex conjugation on Cn and JCPn−1 is the complex involution
on CPn−1 given by complex conjugation on each component, then

R̃n
= Fix(IC× JCPn−1 |

C̃n )⊂ C̃n

= {(z1, . . . , zn; [w1 : · · · : wn]) | w j zk = wkz j , 1≤ j, k ≤ n}.

It is clear that R̃n is Lagrangian in C̃n . Hence the real Lagrangian blowup ˜Y i is
Lagrangian in X̃(T 2

i ), and the Lagrangian submanifold Ỹ h is Lagrangian in the
symplectic manifold

∏n
i=1 X̃(T 2

i ). In this way, the symplectic and Lagrangian
properties are preserved under the blowup, and we can treat the Lagrangian blowup
in a real blowup by looking at the complex one.
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Now we have a Lagrangian submanifold Ỹ h
0 in a symplectic manifold. Suppose

m0
i = 2 for 1 ≤ i ≤ n. For a loop γ with initial point t0 in Ỹ h

0 , Theorem 3.13(ii)
gives

1
4π2

n∑
i=1

ε(i)
∫
γ

(log|mi | d log|li | + arg li d arg mi )=
p
q
,

where p is some integer and q is the order of the symbol
∏n

i=1{li ,mi }
ε(i) in

K2(C(Y h)). We shall call this result the Bohr–Sommerfeld quantization condi-
tion for hyperbolic links. It would be interesting to give an interpretation from
mathematical physics, as what Gukov did for hyperbolic knots.

4. On a possible unified volume conjecture for both knots and links

By Corollary 3.12, the class r(
∏n

i=1{li ,mi )
εi ) corresponds to a flat line bundle

over Y h
0 ; therefore the curvature of the holomorphic connection is zero. Formally

this can be expressed as d(ξ +
√
−1η) = 0, where ξ and η are defined in (3-10).

Hence, (ξ +
√
−1η)/(2π

√
−1) can be viewed as the Chern–Simons 1-form of the

line bundle r(
∏n

i=1{li ,mi )
εi ).

Given a point p∈Y h
0 , choose a path γ : [0, 1]→Y h

0 with γ (1)= p and γ (0)= t0
a point corresponding to the complete hyperbolic structure. Write

γ (t)= (l(t),m(t))= (l1(t),m1(t), . . . , ln(t),mn(t)).

Recall that q is the order of the symbol
∏n

i=1{li ,mi }
εi in K2(C(Y h)). Let Vol(L)

and CS(L) be the volume and usual Chern–Simons invariant of the complete hyper-
bolic structure on S3

\ L , respectively. Now we define

V (p)= Vol(L)+ 2 ·
n∑

i=1

ε(i)
∫
γ

(log|li | d arg mi − log|mi | d arg li ).(4-1)

U (p)= 4π2 CS(L)+ q ·
n∑

i=1

ε(i)
∫
γ

(log|mi | d log|li | + arg li d arg mi ).(4-2)

According to Theorem 3.13, R(p) = (2π)−1(V (p)+
√
−1(2π)−1U (p)) is inde-

pendent of the choices of the path γ and takes values in C/Z. We call

1
4π2 U (p)

the special Chern–Simons invariant of the hyperbolic link L at p. When p= t0, it
equals CS(L).

Remark 4.1. For p 6= t0, U (p)/(4π2) is different from the usual Chern–Simons
invariant for a 3-dimensional manifold. The latter comes from the transgressive
3-form of the second Chern class of the 3-dimensional manifold.
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In order to formulate a parametrized conjecture parallel to the knot case as in
[Li and Wang 2008, Conjecture 3.9], we have to find a way to relate the quantum
invariants to the n-dimensional variety Y h

0 that comes from the SL2(C) character
variety. By the work of Kashaev [1995] and Baseilhac and Benedetti [2004], there
exists an SL2(C) quantum hyperbolic invariant for a hyperbolic link in S3, which is
conjectured to give the information of the volume and Chern–Simons at the point
for the complete hyperbolic structure.

Here is a conjectural description. Given a point p ∈ Y h
0 corresponding to an

SL2(C) representation of π1(ML), let’s assume that we can define certain quantum
invariants KN (L , p). Then we formulate the following:

Conjecture 4.1 (a possibly unified parametrized volume conjecture).

lim
N→∞

log KN (L , p)
N

=
1

2π

(
V (p)+

√
−1

2π
U (p)

)
.

Remark 4.2. When L is a hyperbolic knot (that is, n = 1), Y h is the smooth
projective model of an irreducible component of the locus of the A-polynomial that
contains the complete hyperbolic structure. Fix a number a. For p = (l,m) ∈ Y h

0
with m =− exp (

√
−1πa), we take KN (L , p)= JN (L , e2π

√
−1a/N ), the values of

the colored Jones polynomial of L evaluated at e2π
√
−1 a/N . Then Conjecture 4.1

reduces to the reformulated generalized volume conjecture (3.9) of [Li and Wang
2008] for hyperbolic knots. When γ is the constant path at t0, or equivalently
p = t0, it reduces to the complexification of Kashaev’s conjecture for hyperbolic
knots; see [Murakami et al. 2002, Conjeture 1.2].

Remark 4.3. When n≥2, we can take KN (L , t0) to be the Kashaev and Baseilhac–
Benedetti invariant that is based on the triangulations of the manifold and is con-
jectured to give the information of the volume and Chern–Simons at the complete
hyperbolic structure t0. See [Baseilhac and Benedetti 2004, Section 5]. For a
general p ∈ Y h

0 , we do not have a rigorous definition, although we expect that there
is a way of deforming KN (L , t0) to get KN (L , p).

Remark 4.4. If the point corresponding to the hyperbolic structure in Yi is not
smooth, then the point t0 in the definition of (4-1) and (4-2) is not unique. If
we make different choices of t0, then V (p) and U (p) will differ by a constant,
corresponding to choice made in the integrals in (4-1) and (4-2). We can modify
the left side of the Conjecture 4.1 by this constant accordingly. So the choice of t0
is not essential, and it seems that there is no canonical choice.

Remark 4.5. From the regulator point of view developed in this paper, we expect
there exists a parametrized version of the volume conjecture for both hyperbolic
links and knots.
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HYPERGEOMETRIC EVALUATION IDENTITIES AND
SUPERCONGRUENCES

LING LONG

We apply some hypergeometric evaluation identities, including a strange
valuation of Gosper, to prove several supercongruences related to special
valuations of truncated hypergeometric series. In particular, we prove a
conjecture of van Hamme.

1. Introduction

In this article, we use p to denote an odd prime. Zudilin [2009] proved several
Ramanujan-type supercongruences using the Wilf–Zeilberger (WZ) method. One
of them, conjectured by van Hamme, says that

(1)
(p−1)/2∑

k=0

(4k+ 1)
(
(1

2)k

k!

)3

(−1)k ≡ (−1)(p−1)/2 p mod p3,

where (a)k = a(a+ 1) · · · (a+ k− 1) is the rising factorial for a ∈ C and k ∈ N.
The first proof of (1) was given by Mortenson [2008]. It is said to be of

Ramanujan-type because it is a p-adic version of Ramanujan’s formula
∞∑

k=0

(4k+ 1)
(
( 1

2)k

k!

)3

(−1)k = 2
π
.

See [Zudilin 2009] for more Ramanujan-type supercongruences.
In this short note, we will present a new proof of (1), which summarizes our

strategy in proving similar types of supercongruences.
McCarthy and Osburn [2008] proved van Hamme’s conjecture [1997] that

(p−1)/2∑
k=0

(4k+ 1)
(
( 1

2)k

k!

)5

≡

{
−

p
0p(3/4)4

mod p3 if p ≡ 1 mod 4,

0 mod p3 if p ≡ 3 mod 4,

where 0p( · ) denotes the p-adic Gamma function.
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MSC2000: 33C20.
Keywords: Ramanujan supercongruences, hypergeometric identities.
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Similarly, van Hamme has conjectured that for any prime p > 3,

(2)
(p−1)/2∑

k=0

(6k+ 1)
(
( 1

2)k

k!

)3

4−k
≡ (−1)(p−1)/2 p mod p4.

This formula is supported by numerical evidence, but as van Hamme said, “we
have no real explanation for our observations”. In our exploration, it will become
clear that such supercongruences are a result of extra symmetries, which we are
able to interpret using hypergeometric evaluation identities. Of course, they can
also be seen from other perspectives, such as the WZ method.

Meanwhile, it is known that some of the truncated hypergeometric series are
related to the number of rational points on certain algebraic varieties over finite
fields and further to coefficients of modular forms. For instance, based on the
result of Ahlgren and Ono [2000], Kilbourn [2006] proved that

(3)
(p−1)/2∑

k=0

(
( 1

2)k

k!

)4

≡ ap mod p3,

where ap is the p-th coefficient of a weight 4 modular form

(4) η(2z)4η(4z)4 := q
∏
n≥1

(1− q2n)4(1− q4n)4, where q = e2π i z.

This is one instance of the supercongruences conjectured by Rodriguez-Villegas
[2003], which relate special truncated hypergeometric series values and coefficients
of Heck eigenforms. McCarthy [2009] proved another supercongruence of this
type and his approach provides a general combinatorial framework for all these
congruences.

We will establish a few supercongruences mainly via hypergeometric evalua-
tion identities and combinatorics. Since there exist many amazing hypergeometric
evaluation identities in the literature, we expect that our approach can be used to
prove other interesting congruences.

Here is a summary of our results.

Theorem 1.1. Let p > 3 be a prime and r be a positive integer. Then

(pr
−1)/2∑

k=0

(4k+ 1)
(
(1

2)k

k!

)4

≡ pr mod p3+r .

Theorem 1.2. Let p > 3 be a prime. Then

(p−1)/2∑
k=0

(4k+ 1)
(
(1

2)k

k!

)6

≡ p · ap mod p4.
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Conjecture 1.3. Let p > 3 be a prime and r be a positive integer. Then

(pr
−1)/2∑

k=0

(4k+ 1)
(
( 1

2)k

k!

)6

≡ pr
· apr mod p3+r ,

where apr is the pr -th coefficient of (4).

Theorem 1.4. Van Hamme’s conjecture (2) is true.

Theorem 1.5. Let p > 3 be a prime. Then

(5)
(p−1)/2∑

k=0

(6k+ 1)
(
( 1

2)k

k!

)3
(−1)k

8k ≡ (−1)(p
2
−1)/8+(p−1)/2 p mod p2.

2. Preliminaries

Hypergeometric series. For any positive integer r ,

r+1Fr

[
a1, a2, . . . , ar+1; z

b1, . . . , br

]
=

∑
k≥0

(a1)k · · · (ar+1)k

k!(b1)k · · · (br )k
zk,

where (a)k is the rising factorial and z ∈ C. A hypergeometric series terminates if
it is well-defined and at least one of the ai is a negative integer. We will make use
of this fact to produce various truncated hypergeometric series.

By the definition of the rising factorial,

(6)
( 1

2)k

k!
= 2−2k

(2k
k

)
.

Gamma function. Let 0(x) denote the usual Gamma function, which is defined
for all x ∈ C except for the nonpositive integers. It satisfies some well known
properties, such as 0(x + 1)= x0(x). Thus, (a)k =0(a+k)/0(a) when 0(a) 6= 0
and 0(a+ k) are defined.

Another formula we need is Euler’s reflection formula

0(x)0(1− x)= π

sin(πx)
.

Some combinatorics. We gather here some results in combinatorics to be used
later. It is the author’s pleasure to acknowledge that the approaches used in (7)–
(10) are due to Zudilin. Here is a key idea of Zudilin for rising factorials; see also
[Chan et al. 2010, Lemma 1]:

(7)

( 1
2 + ε

)
k = (

1
2 + ε)(

1
2 + ε+ 1) · · · ( 1

2 + ε+ k− 1)

=
( 1

2

)
k

(
1+ 2ε

k∑
j=1

1
2 j−1

+ 4ε2
k∑

1≤i< j≤k

1
(2i−1)(2 j−1)

+ O(ε3)
)
.
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Hence,
( 1

2 + ε
)

k

( 1
2 − ε

)
k can be expanded as a power series of ε2 as

(8)
( 1

2 + ε
)

k

( 1
2 − ε

)
k =

( 1
2

)2
k

(
1− 4ε2

k∑
j=1

1
(2 j−1)2

+ O(ε4)
)
.

Similarly,

(9) (1+ ε)k(1− ε)k = (1)2k
(

1− ε2
k∑

j=1

1
j2 + O(ε4)

)
.

Letting ε =−pr/2 and ε = pr/2 respectively in (7) and taking k to be an integer
between 1 and (pr

− 1)/2, we obtain

(−1)k
(
(pr
− 1)/2
k

)
≡
(1

2)k

k!
mod p and

(
(pr
− 1)/2+ k

k

)
≡
( 1

2)k

k!
mod p.

Similarly, letting ε = pr/2 in (8) and k be an integer between 1 and (pr
− 1)/2,

we have

(−1)k
(
(pr
− 1)/2
k

)(
(pr
− 1)/2+ k

k

)
≡

(
(1

2)k

k!

)2

mod p2.

Lemma 2.1. For any positive integer n > 1,

(10) (2n+ 1)
n∑

k=0

1
2k+1

(n
k

)(n+k
k

)
(−1)k = 1.

Proof. We use the partial fraction decomposition

(t − 1)(t − 2) · · · (t − n)
t (t + 1) · · · (t + n)

=

n∑
k=0

(−1)n−k
(n

k

)(n+k
k

) 1
t+k

.

Letting t = 1/2, this becomes

(−1)n 2
2n+1

= 2
n∑

k=0

(−1)n−k
(n

k

)(n+k
k

) 1
1+2k

,

which is equivalent to the claim of the lemma. �

Lemma 2.2. Let n be an odd positive integer. Then

( 3
2 −

1
4 n)(n−1)/2(1− 1

2 n)(n−1)/2

(2− 1
2 n)(n−1)/2(1− 1

4 n)(n−1)/2
= (−1)(n−1)/2n.
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Proof. Using (a)k = 0(a+ k)/0(a), we have

(3
2 −

1
4 n)(n−1)/2(1− 1

2 n)(n−1)/2

(2− 1
2 n)(n−1)/2(1− 1

4 n)(n−1)/2

=
0( 3

2 −
1
4 n+ 1

2(n− 1))0( 1
2)0(2−

1
2 n)0(1− 1

4 n)

0( 3
2 −

1
4 n)0(1− 1

2 n)0( 3
2)0(1−

1
4 n+ 1

2(n− 1))

=
(1− 1

2 n)
1
2

1
4 n ·0( 1

4 n)0(1− 1
4 n)

( 1
2 −

1
4 n) ·0( 1

2 +
n
4 )0(

1
2 −

1
4 n)

= n ·
sin(π/2−πn/4)

sin(πn/4)
= n · cot(πn/4)= (−1)(n−1)/2n. �

Lemma 2.3. Let n be an odd integer. Then

( 3
2 −

1
4 n)(n−1)/2

(2− 1
2 n)(n−1)/2

2(n−1)/2
= (−1)(n

2
−1)/8+(n−1)/2n.

Proof. We have

( 3
2 −

1
4 n)(n−1)/2

(2− 1
2 n)(n−1)/2

2(n−1)/2
=
(3− 1

2 n)(5− 1
2 n) · · · n

2

(2− 1
2 n)(3− 1

2 n) · · · 1
2

= sgn · n,

where sgn= (−1)# and # is the number of negative terms appearing in the fraction
above. It is easy to see that

#= b 1
2(

1
2 n+ 1)c+ b 1

2 nc− 2≡ 1
8(n

2
− 1)+ 1

2(n− 1) mod 2. �

Lemma 2.4 [Cai 2002]. For any prime p > 3 and positive integer r ,

(11) (−1)(p
r
−1)/2

(
pr
− 1

1
2(p

r − 1)

)
≡

(
( 1

2)(pr−1)/2

( 1
2(p

r − 1))!

)2

mod p3.

Using (6), the congruence (11) is equivalent to(
pr
− 1

1
2(p

r − 1)

)
≡ (−1)(p

r
−1)/222(pr

−1) mod p3.

When r = 1, this was proved in [Morley 1895].

A generalized harmonic sum. Let H (2)
k :=

k∑
j=1

1
j2 .

Lemma 2.5 [Morley 1895]. Let p > 3 be a prime. We have

H (2)
(p−1)/2 ≡ 0 mod p and

(p−1)/2∑
j=1

1
(2 j−1)2

≡ 0 mod p.
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Using arguments in [Morley 1895] or elementary congruence, it is easy to see
the following lemma holds.

Lemma 2.6. Let p > 3 be a prime. Then for every integer k between 1 and p− 2,

H (2)
k + H (2)

p−1−k ≡ 0 mod p.

Lemma 2.7. Let p > 3 be a prime and s be a positive integer. Then

(p−1)/2∑
k=0

(
( 1

2)k

k!

)2s

· H (2)
2k ≡ 0 mod p.

Proof. Using the fact that

(−1)k
(1

2(p− 1)
k

)
≡
( 1

2)k

k!
mod p,

we have
(p−1)/2∑

k=0

(
(1

2)k

k!

)2s

H (2)
2k ≡

(p−1)/2∑
k=0

(1
2(p− 1)

k

)2s

H (2)
2k mod p

=
1
2

( (p−1)/2∑
k=0

(1
2(p− 1)

k

)2s

H (2)
2k +

(p−1)/2∑
k=0

( 1
2(p− 1)

1
2(p− 1)− k

)2s

H (2)
p−1−2k

)

=
1
2

((p−1)/2∑
k=0

( 1
2(p− 1)

k

)2s

(H (2)
2k + H (2)

p−1−2k)

)
≡ 0 mod p. �

2.1. An elementary p-adic analysis. Let F(x1, . . . , xt ; z) be a (t + 1)-variable
formal power series. For instance, it could be a scalar multiple of a terminating
hypergeometric series as follows:

C · r+1Fr

[
a1, a2, . . . , ar , −n; z

b1, . . . , br−1, br

]
.

Assume that by specifying values xi = ai for i = 1, . . . , t and z = z0, we have

F(a1, . . . , at ; z0) ∈ Zp.

Now we fix z0 and deform the parameters ai into polynomials ai (x) ∈ Zp[x]
such that ai (0) = ai for all 1 ≤ i ≤ t , and assume that the resulting function
F(a1(x), . . . , at(x); z0) is a formal power series in x2 with coefficients in Zp,
that is, F(a1(x), . . . , at(x); z0) = A0 + A2x2

+ A4x4
+ · · · for Ai ∈ Zp, where

A0 = F(a1, . . . , at ; z0).
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Lemma 2.8. Under the setting above, if ps
|A2 for s = 1, 2, then

F(a1(p), . . . , at(p); z0)≡ A0 mod p2+s .

3. A new proof of (1)

We briefly outline our method for proving the next few supercongruences; we are
motivated by [McCarthy and Osburn 2008] and [Mortenson 2008]. To each congru-
ence, we first identify a corresponding hypergeometric evaluation identity, which
with specified parameters is congruent to a target truncated hypergeometric series
evaluation up to some power of p. Usually the power of p so obtained is weaker
than the conjectural exponent. In our cases, we reduce the optimal congruences to
some congruence combinatorial identities, which are established using additional
hypergeometric evaluation identities or combinatorics.

Our strategy can be best implemented in the following new proof of (1). An
identity of Whipple [1926, (5.1)] says

4F3

[
a, 1+ a/2, c, d; −1

a/2, 1+ a− c, 1+ a− d

]
=
0(1+ a− c)0(1+ a− d)
0(1+ a)0(1+ a− c− d)

.

Letting a = 1
2 , c = 1

2 +
1
2 p and d = 1

2 −
1
2 p, we conclude immediately that

(p−1)/2∑
k=0

(4k+ 1)
(
( 1

2)k

k!

)3

(−1)k ≡
0(1− 1

2 p)0(1+ 1
2 p)

0(1
2)0(

3
2)

= (−1)(p−1)/2 p mod p2.

To achieve the congruence modulo p3, we consider the expansion of the terminat-
ing hypergeometric series (it terminates since (1− p)/2 is a negative integer)

(12) 4F3

[
1
2(1− p), 5

4 ,
1
2(1− x), 1

2(1+ x);−1
1
4 , 1+ 1

2 x, 1− 1
2 x

]

=

(p−1)/2∑
k=0

(4k+ 1)
((1

2)k

k!

)3
(−1)k + A2x2

+ · · · for some A2 ∈ Zp.

By Lemma 2.8, if p | A2, we are done. Now we follow Mortenson [2008] by using
another hypergeometric evaluation identity, which is a specialization of Whipple’s

7F6 formula (see [Bailey 1935, page 28]):

6F5

[
a, 1+ 1

2a, b, c, d, e; −1
1
2a, 1+ a− b, 1+ a− c, 1+ a− d, 1+ a− e

]
=
0(1+ a− d)0(1+ a− e)
0(1+ a)0(1+ a− d − e) 3F2

[
1+ a− b− c, d, e; 1

1+ a− b, 1+ a− c

]
.
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Letting a = 1
2 , b = 1−x

2 , c = 1
2(1+ x), e = 1

2(1− p) and d = 1, we have

(13) 6F5

[
1
2 ,

5
4 ,

1
2(1− x), 1

2(1+ x), 1
2(1− p), 1; −1

1
4 , 1+ 1

2 x, 1− 1
2 x, 1

2 , 1+ 1
2 p

]

=
0(1

2)0(1+
1
2 p)

0(3
2)0(

1
2 p) 3F2

[
1
2 , 1, 1

2 −
1
2 p;1

1+ 1
2 x, 1− 1

2 x

]
.

Since 0( 1
2)0(1+

1
2 p)/((0(3

2)0(
1
2 p)) = p, every x-coefficient above is in pZp.

Moreover, modulo p the left side of (12) is congruent to that of (13). So when
we expand the left side of (12) in terms of x , the coefficients are all in pZp. In
particular, p |A2 and this concludes the proof of (1).

4. Proofs of Theorems 1.1, 1.2, 1.4, and 1.5

Whipple [1926, (7.7)] proved that

(14) 7F6

[
a, 1+ 1

2a, c, d, e, f, g; 1
1
2a, 1+ a− c, 1+ a− d, 1+ a− e, 1+ a− f 1+ a− g;

]
=
0(1+ a− e)0(1+ a− f )0(1+ a− g)0(1+ a− e− f − g)
0(1+ a)0(1+ a− f − g)0(1+ a− e− f )0(1+ a− e− f )

× 4F3

[
1+ a− c− d, e, f, g; 1

e+ f + g− a, 1+ a− c, 1+ a− d

]
,

provided the 4F3 is a terminating series.

Proof of Theorem 1.1. Let r be a positive integer and p > 3 a prime. In (14), we
let

a = 1
2 , c= 1

2+ i 1
2 pr , d = 1

2− i 1
2 pr , e= 1

2+
1
2 pr , f = 1

2−
1
2 pr , g= 1,

where i =
√
−1. Then following McCarthy and Osburn’s argument, we know the

left side of (14) is congruent to

(pr
−1)/2∑

k=0

(4k+ 1)
(
(1

2)k

k!

)4

mod p4r

and the right side of (14) equals

0(1− 1
2 pr )0(1+ 1

2 pr )0(− 1
2)

0( 3
2)0(−

1
2 pr )0(1

2 pr )
4F3

[
1
2 ,

1
2 +

1
2 pr , 1

2 −
1
2 pr , 1; 1

3
2 , 1− i 1

2 pr , 1+ i 1
2 pr

]
.

Since
0(1− 1

2 pr )0(1+ 1
2 pr )0(− 1

2)

0(3
2)0(−

1
2 pr )0(

pr

2 )
= p2r ,
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it suffices to prove

pr
·

(pr
−1)/2∑

k=0

1
2k+ 1

(
( 1

2)k

k!

)2

≡ 1 mod p3 for p > 3.

Recall that Lemma 2.1 says for any odd integer n > 1,

(2n+ 1)
n∑

k=0

(−1)k

2k+ 1

(n
k

)(n+k
k

)
= 1.

Therefore, combining this identity, congruence (8), and Lemma 2.4, we have

pr
·

(pr
−1)/2∑

k=0

1
2k+ 1

(
( 1

2)k

k!

)2

= pr
·

(pr
−1)/2−1∑
k=0

1
2k+1

(
(1

2)k

k!

)2

+

(
( 1

2)(pr−1)/2

(1
2(p

r − 1))!

)2

≡ pr
·

(pr
−1)/2−1∑
k=0

(−1)k

2k+ 1

(1
2(p

r
− 1)

k

)( 1
2(p

r
− 1)+ k
k

)
+ (−1)(p

r
−1)/2

(
pr
− 1

1
2(p

r − 1)

)
mod p3

≡ 1 mod p3. �

Proof of Theorem 1.2. In (14), take

a= 1
2 , c= 1

2+ i 1
2 p, d = 1

2− i 1
2 p, e= 1

2−
1
2 p, f = 1

2+
1
2 p, g= 1

2− p4.

Then the left side of (14) is congruent to

(p−1)/2∑
k=0

(4k+ 1)
(
( 1

2)k

k!

)6

mod p4.

Meanwhile, the right side of (14) is congruent to

0(1− 1
2 p)0(1+ 1

2 p)

0(1
2)0(

3
2)

0(1+ p4)0(p4)

0( 1
2 +

1
2 p+ p4)0( 1

2 −
1
2 p+ p4)

×

(p−1)/2∑
k=0

(1
2)

2
k(

1
2 +

1
2 p)k( 1

2 −
1
2 p)k

k!2(1− i 1
2 p)k(1+ i 1

2 p)k
mod p4,

where
0(1− 1

2 p)0(1+ 1
2 p)

0( 1
2)0(

3
2)

= (−1)(p−1)/2 p
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and

0(1+ p4)0(p4)

0( 1
2 +

1
2 p+ p4)0(1

2 −
1
2 p+ p4)

=
(p4
−

1
2(p− 1))(p−1)/2

(1+ p4)(p−1)/2

≡
(− 1

2(p− 1))(−1
2(p− 1)+ 1) · · · (−1)

1 · 2 · · · ( 1
2(p− 1))

mod p = (−1)(p−1)/2.

Therefore, Theorem 1.2 follows from the result of Kilbourn (see (3)) and the
next lemma. �

Lemma 4.1. Let p > 3 be a prime, then

(p−1)/2∑
k=0

(1
2)

2
k(

1
2 +

1
2 p)k( 1

2 −
1
2 p)k

k!2(1− i 1
2 p)k(1+ i 1

2 p)k
≡

(p−1)/2∑
k=0

(
( 1

2)k

k!

)4

mod p3.

Proof. Expand

(p−1)/2∑
k=0

( 1
2)

2
k(

1
2 +

1
2 x)k(1

2 −
1
2 x)k

k!2(1− i 1
2 x)k(1+ i 1

2 x)k
=

(p−1)/2∑
k=0

(
( 1

2)k

k!

)4

(1+ b2,k x2
+ b4,k x4

+ · · · ).

Using (8) and (9), we have

b2,k =−

k∑
j=1

1
(2 j−1)2

−
1
4

k∑
j=1

1
j2 =−

2k∑
j=1

1
j2 .

The claim is verified by using Lemma 2.8 and taking s = 2 in Lemma 2.7. �

Proof of Theorem 1.4. We start with the following combinatorial identity.

Lemma 4.2.
(p−1)/2∑

k=0

(6k+ 1)
( 1

2)k(
1
2 −

1
2 p)k( 1

2 +
1
2 p)k

(1)k(1+ 1
4 p)k(1− 1

4 p)k

1
4k = (−1)(p−1)/2 p.

Proof. Recall that [Gessel 1995, (31.1)] says

5F4

[
1
2 + a− c, −n, n+ 1, 2− 2c+ n, 5

3 −
2
3 c+ 1

3 n;14
2− c+ n, 2

3 −
2
3 c+ 1

3 n, n− 2a+ 2, 3
2 − c

]

=
(2− c)n(2− 2a)n
(3− 2c)n(3

2 − a)n
.

Letting a = 1
2 +

1
4 p, c = 1

2 +
1
4 p, and n = 1

2(p− 1) and using Lemma 2.2, we
have

5F4

[
1
2 ,

1
2 ,

7
6 ,

1
2 −

1
2 p, 1

2 +
1
2 p;14

1
2 ,

1
6 , 1− 1

4 p, 1+ 1
4 p

]
=
(3

2 −
1
4 p)(p−1)/2(1− 1

2 p)(p−1)/2

(2− 1
2 p)(p−1)/2(1− 1

4 p)(p−1)/2

= (−1)(p−1)/2 p. �



HYPERGEOMETRIC EVALUATION IDENTITIES AND SUPERCONGRUENCES 415

Lemma 4.3. The function( (p−1)/2∑
k=0

(6k+ 1)
( 1

2)k(
1
2 −

1
2 x)k( 1

2 +
1
2 x)k

(1)k(1+ 1
4 x)k(1− 1

4 x)k

1
4k

)/( (p−1)/2∑
k=0

6k+1
4k

(
( 1

2)k

k!

)3)

is a formal power series in x2 with coefficients in Zp. Its x2 coefficient is zero
modulo p.

Proof. We use the strange valuation of Gosper:

5F4

[
2a, 2b, 1−2b, 1+ 2

3a, −n; 1
4

a+b−1, a+b+ 1
2 ,

2
3a, 1+2a+2n

]
=

(a+ 1
2)n(a+1)n

(a+b+ 1
2)n(a−b+1)n

.

See [Gessel and Stanton 1982, (1.2)]. Let a = 1
4 , b = 1

4 −
1
4 x and n = 1

2(p− 1).
Then the left side of the above equals
(15)

5F4

[
1
2 ,

1
2 −

1
2 x, 1

2 +
1
2 x, 7

6 ,
1
2 −

1
2 p; 1

4
1
2 + p, 1

6 , 1− 1
4 x, 1+ 1

4 x

]
=

(3
4)(p−1)/2(

5
4)(p−1)/2

(1− 1
4 x)(p−1)/2(1+ 1

4 x)(p−1)/2
.

We remark that

(16) 5F4

[
1
2 ,

1
2 −

1
2 x, 1

2 +
1
2 x, 7

6 ,
1
2 −

1
2 p;14

1
2 + p, 1

6 , 1− 1
4 x, 1+ 1

4 x

]

≡

(p−1)/2∑
k=0

6k+ 1
4k

( 1
2)k(

1
2 −

1
2 x)k( 1

2 +
1
2 x)k

(1)k(1+ 1
4 x)k(1− 1

4 x)k
mod p.

When x = 0, the right hand side of (15) equals (3
4)(p−1)/2(

5
4)(p−1)/2/(1)2(p−1)/2,

which is in pZp. In fact, if p ≡ 1 mod 4 then 5
4 +

1
4(p− 1)− 1= 1

4 p, and if p ≡
3 mod 4, then 3

4+
1
4(p−3)= 1

4 p, while (1)(p−1)/2 is a p-adic unit. It is not difficult
to see that p divides ((3)/4)(p−1)/2(

5
4)(p−1)/2/(1)2(p−1)/2 exactly. Consequently, if

we expand

5F4

[
1
2 ,

1
2 −

1
2 x, 1

2 +
1
2 x, 7

6 ,
1
2 −

1
2 p;14

1
2 + p, 1

6 , 1− 1
4 x, 1+ 1

4 x

]
in terms of formal power series of x (in fact, x2), each coefficient is in pZp. Thus
the coefficients of the right side of (16), including the coefficient of x2, are all
divisible by p. By Lemmas 2.8 and 4.2,

(p−1)/2∑
k=0

6k+1
4k

(
(1

2)k

k!

)3

≡ (−1)(p−1)/2 p mod p3.
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Namely,

(p−1)/2∑
k=0

6k+1
4k

(
( 1

2)k

k!

)3

= (−1)(p−1)/2 p+ ap3 for some a ∈ Zp.

The statement of Theorem 1.4 is equivalent to a ∈ pZp.
The quotient

(17)
( (p−1)/2∑

k=0

6k+1
4k

( 1
2)k(

1
2 −

1
2 x)k( 1

2 +
1
2 x)k

(1)k(1+ 1
4 x)k(1− 1

4 x)k

)/( (p−1)/2∑
k=0

6k+1
4k

(1
2)k

(1)k

)

is a formal power series in x2 with p-integral coefficients, since the denominators
are divisible by p exactly. The same conclusion applies to

5F4

[
1
2 ,

1
2−

1
2 x, 1

2+
1
2 x, 7

6 ,
1
2−

1
2 p;14

1
2+p, 1

6 , 1− 1
4 x, 1+ 1

4 x

]/
5F4

[
1
2 ,

1
2 ,

1
2 ,

7
6 ,

1
2−

1
2 p;14

1
2+p, 1

6 , 1−1
4 x, 1+1

4 x

]

= 5F4

[
1
2 ,

1
2−

1
2 x, 1

2+
1
2 x, 7

6 ,
1
2−

1
2 p;14

1
2+p, 1

6 , 1− 1
4 x, 1+ 1

4 x

]/(
( 3

4)(p−1)/2(
5
4)(p−1)/2

(1)2(p−1)/2

)

=
(1)2(p−1)/2

(1−1
4 x)(p−1)/2(1+1

4 x)(p−1)/2
.

On the other hand, by (9), the x2 coefficient of

(1)2(p−1)/2

(1− 1
4 x)(p−1)/2(1+ 1

4 x)(p−1)/2

is a scalar multiple of H (2)
(p−1)/2, which is in pZp by Lemma 2.5; so is the x2

coefficient of (17). �

By Lemma 2.8 and the analysis above,

(−1)(p−1)/2 p
(−1)(p−1)/2 p+ ap3 =

(−1)(p−1)/2

(−1)(p−1)/2+ ap2 ≡ 1 mod p3
;

hence a ∈ pZp, which concludes the proof of Theorem 1.4. �

Lemma 4.4.

(p−1)/2∑
k=0

(6k+ 1)
(1

2)k(
1
2 −

1
2 p)k(1

2 +
1
2 p)k

(1)k(1+ 1
4 p)k(1− 1

4 p)k

(−1)k

8k = (−1)(p
2
−1)/8+(p−1)/2 p.
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Proof. This time, we use [Gessel 1995, last identity of page 544]

4F3

[
2a+ n+ 1, n+ 1, 2

3a+ 1
3 n+ 4

3 , −n; − 1
8

a+ 3
2 + n, 2

3a+ 1
3 n+ 1

3 , 1+ a

]
=
(a+ 3

2)n

(2a+ 2)n
2n.

Letting a =− 1
4 p and n = 1

2(p− 1) and using Lemma 2.3, we have

4F3

[
1
2 ,

7
6 ,

1
2 +

1
2 p, 1

2 −
1
2 p;−1

8
1
6 , 1− 1

4 p, 1+ 1
4 p

]
=
( 3

2 −
1
4 p)(p−1)/2

(2− 1
2 p)(p−1)/2

2(p−1)/2

= (−1)(p
2
−1)/8+(p−1)/2 p. �

Proof of Theorem 1.5. Equation (5) is a consequence of Lemma 4.4. �

Remark 1. Van Hamme’s conjecture that

(p−1)/2∑
k=0

(6k+ 1)
(
( 1

2)k

k!

)3
(−1)k

8k ≡ (−1)(p
2
−1)/8+(p−1)/2 p mod p3

holds if
(p−1)/2∑

k=0

(6k+ 1)
(
(1

2)k

k!

)3( k∑
j=1

1
(2 j−1)2

−
1

16

k∑
j=1

1
j2

)
(−1)k

8k ≡ 0 mod p.

The proof of the latter is left to the interested reader.

Remark 2. In [2009], Zudilin proved the congruence (2) modulo p2 and the con-
gruence (5) modulo p.
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NECESSARY AND SUFFICIENT CONDITIONS FOR UNIT
GRAPHS TO BE HAMILTONIAN

H. R. MAIMANI, M. R. POURNAKI AND S. YASSEMI

The unit graph corresponding to an associative ring R is the graph obtained
by setting all the elements of R to be the vertices and defining distinct
vertices x and y to be adjacent if and only if x + y is a unit of R. By a
constructive method, we derive necessary and sufficient conditions for unit
graphs to be Hamiltonian.

1. Introduction

A graph is Hamiltonian if it has a cycle that visits every vertex exactly once;
such a cycle is called a Hamiltonian cycle. In general, the problem of finding
a Hamiltonian cycle in a given graph is an NP-complete problem and a special
case of the traveling salesman problem. It is a problem in combinatorial optimiza-
tion studied in operations research and theoretical computer science; see [Garey
and Johnson 1979]. The only known way to determine whether a given graph
has a Hamiltonian cycle is to undertake an exhaustive search, and until now no
theorem giving a necessary and sufficient condition for a graph to be Hamiltonian
was known. The study of Hamiltonian graphs has long been an important topic.
See [Gould 2003] for a survey, updating earlier surveys in this area.

Let n be a positive integer, and let Zn be the ring of integers modulo n. Grimaldi
[1990] defined a graph G(Zn) based on the elements and units of Zn . The vertices
of G(Zn) are the elements of Zn , and distinct vertices x and y are defined to be
adjacent if and only if x + y is a unit of Zn . For a positive integer m, it follows
that G(Z2m) is a ϕ(2m)-regular graph, where ϕ is the Euler phi function. In case
m ≥ 2, the graph G(Z2m) can be expressed as the union of ϕ(2m)/2 Hamiltonian
cycles. The odd case is not quite so easy, but the structure is clear and the results
are similar to the even case. We recall that a cone over a graph is obtained by taking

The research of H. R. Maimani and S. Yassemi was in part supported by a grant from IPM (num-
bers 89050211 and 89130213). The research of M. R. Pournaki was in part supported by a grant
from the Academy of Sciences for the Developing World (TWAS–UNESCO Associateship — Ref.
FR3240126591).
MSC2000: primary 05C45; secondary 13M05.
Keywords: Hamiltonian cycle, Hamiltonian graph, finite ring.
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the categorical product of the graph and a path with a loop at one end, and then
identifying all the vertices whose second coordinate is the other end of the path.
When p is an odd prime, G(Zp) can be expressed as a cone over a complete partite
graph with (p− 1)/2 partitions of size two. This leads to an explicit formula for
the chromatic polynomial of G(Zp). Grimaldi [1990] also concludes with some
properties of the graphs G(Zpm ), where p is a prime number and m ≥ 2. Recently,
the authors of this paper generalized G(Zn) to G(R), the unit graph of R, where R
is an arbitrary associative ring with nonzero identity and studied the properties of
this graph; see [Ashrafi et al. 2010; Maimani et al. 2010].

By a constructive method, we derive necessary and sufficient conditions for unit
graphs to be Hamiltonian.

2. Preliminaries and the main result

Throughout the paper, by a graph we mean a finite undirected graph without loops
or multiple edges. Also all rings are finite commutative with nonzero identity. For
undefined terms and concepts, see [West 1996; Atiyah and Macdonald 1969].

We first start with recalling some notions from graph theory. For a graph G
and for any two vertices x and y of G, we recall that a walk between x and y is a
sequence x = v0, e1, v1, . . . , ek, vk = y of vertices and edges of G, denoted by

x = v0→ v1→ · · · → vk = y,

such that for every i with 1 ≤ i ≤ k, the edge ei has endpoints vi−1 and vi . Also
a path between x and y is a walk between x and y without repeated vertices. A
cycle of a graph is a path such that the start and end vertices are the same. Two
cycles are considered the same if they consist of the same vertices and edges. The
number of edges (counting repeats) in a walk, path or a cycle, is called its length.
A Hamiltonian path (cycle) in G is a path (cycle) in G that visits every vertex
exactly once. A graph is called Hamiltonian if it contains a Hamiltonian cycle.
Also a graph G is called connected if for any vertices x and y of G there is a path
between x and y.

We now define the unit graph corresponding to a ring. Let R be a ring and
U (R) be the set of unit elements of R. The unit graph of R, denoted by G(R), is
the graph obtained by setting all the elements of R to be the vertices and defining
distinct vertices x and y to be adjacent if and only if x + y ∈ U (R). The graphs
in Figure 1 are the unit graphs of the rings indicated. It is easy to see that, for
given rings R and S, if R ∼= S as rings, then G(R)∼=G(S) as graphs. This point is
illustrated in Figure 2.

We continue this section by collecting some notions from ring theory. First of all,
for a given ring R, the Jacobson radical J (R) of R is defined to the intersection
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Figure 1. Unit graphs of some specific rings.
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Figure 2. Unit graphs of two isomorphic rings.

of all maximal ideals of R. Let R be a ring and let k be a positive integer. An
element r ∈ R is said to be k-good if we may write r = u1 + · · · + uk , where
u1, . . . , uk ∈ U (R). The ring R is said to be k-good if every element of R is
k-good. Following [Goldsmith et al. 1998], we now define an invariant of a ring,
called the unit sum number, which expresses in a fairly precise way how the units
generate the ring. The unit sum number u(R) of R is given by

• min{k | R is k-good} if R is k-good for some k ≥ 1,

• ω if R is not k-good for every k, but every element of R is k-good for some k
(that is, when at least U (R) generates R additively), and

• ∞ otherwise (that is, when U (R) does not generate R additively).

For example, let D be a division ring. If |D| ≥ 3, then u(D) = 2; whereas if
|D| = 2, that is, D = Z2, the field of two elements, then u(Z2)= ω. We have also
u(Z2×Z2)=∞— see [Ashrafi and Vámos 2005] for unit sum numbers of some
other rings. The topic of unit sum numbers seems to have arisen with a paper by
Zelinsky [1954], in which he shows that if V is any finite- or infinite-dimensional
vector space over a division ring D, then every linear transformation is the sum of
two automorphisms unless dim V = 1 and D is the field of two elements. Interest
in this topic increased recently after Goldsmith, Pabst and Scott [1998] defined the
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unit sum number. For additional historical background, see [Vámos 2005], which
also contains references to recent work in this area.

We are now ready to state the main result of this paper. The proof is given in
Section 3 by a sequence of lemmas and propositions.

Theorem 2.1. Let R be a ring such that R � Z2 and R � Z3. Then the following
statements are equivalent:

(a) The unit graph G(R) is Hamiltonian.

(b) The ring R cannot have Z2×Z2 as a quotient.

(c) The ring R is generated by its units.

(d) The unit sum number of R is less than or equal to ω.

(e) The unit graph G(R) is connected.

3. The proofs

In this section we state and prove some lemmas that will be used in the proof
of Theorem 2.1. For the convenience of the reader we state without proof a few
known results in the form of propositions that will be used in the proofs. We also
recall some definitions and notations for later use.

A bipartite graph is one whose vertex-set is partitioned into two (not necessarily
nonempty) disjoint subsets so that the two end vertices for each edge lie in distinct
partitions. Among bipartite graphs, a complete bipartite graph is one in which
each vertex is joined to every vertex that is not in the same partition. The complete
bipartite graph with two partitions of size m and n is denoted by Km,n .

The following result characterizes the complete bipartite unit graphs of rings.

Proposition 3.1 [Ashrafi et al. 2010, Theorem 3.5]. Let R be a ring and m be a
maximal ideal of R such that |R/m| = 2. Then G(R) is a bipartite graph. The unit
graph G(R) is a complete bipartite graph if and only if R is a local ring.

The degrees of all vertices of a unit graph is given by the following result. For
a graph G and for a vertex x of G, the degree deg(x) of x is the number of edges
of G incident with x .

Proposition 3.2 [Ashrafi et al. 2010, Proposition 2.4]. Let R be a ring. Then the
following statements hold for the unit graph of R:

(1) If 2 /∈U (R), then deg(x)= |U (R)| for every x ∈ R.

(2) If 2∈U (R), then deg(x)=|U (R)|−1 for every x ∈U (R) and deg(x)=|U (R)|

for every x ∈ R \U (R).

We also need the following well known result due to Dirac, which initiated the
study of Hamiltonian graphs. This work was continued by Ore [1960].
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Proposition 3.3 [Dirac 1952, Theorem 3]. If G is a graph with n vertices, n ≥ 3,
and every vertex has degree at least n/2, then G is Hamiltonian.

Lemma 3.4. Let R be a local ring with |R| ≥ 4. Then the unit graph G(R) is
Hamiltonian.

Proof. Suppose m is the unique maximal ideal of R. There are two possibilities:
either |R/m| = 2 or |R/m|> 2.

First, suppose that |R/m| = 2. In this case, Proposition 3.1 implies that the unit
graph G(R) is a complete bipartite graph. Moreover, its proof shows that m and
R\m are the partite sets of G(R). Since |R/m| = 2, we conclude that |m| = |R\m|
and so G(R)∼= K|m|,|m|. The assumptions |R|≥4 and |R/m|=2 imply that |m|≥2
and thus G(R) is Hamiltonian.

Second, suppose that |R/m| > 2. In this case, Proposition 3.2 implies that
deg(x)≥|U (R)|−1 for all x ∈ R. We claim that |U (R)|−1≥|R|/2. To show this,
note that R is a local ring with |R| ≥ 4. If |R| = 4, then the assumption |R/m|> 2
implies that |m|< 2 and so m= 0. Therefore R is a field and so |U (R)| = 3. Thus
|U (R)|−1= 2= |R|/2. If |R| = 5, then R is again a field and so |U (R)| = 4. Thus
|U (R)|−1= 3 > 2.5= |R|/2. If |R| ≥ 6, then since R is local with |R/m|> 2, we
conclude that |U (R)|≥2|R|/3. Therefore |U (R)|−1≥ (2|R|/3)−1≥|R|/2. Thus
the claim holds and so deg(x)≥ |R|/2 for every x ∈ R. Therefore Proposition 3.3
implies that G(R) is Hamiltonian. �

The following result gives us information about the existence of a Hamiltonian
cycle in unit graphs of the direct product of a ring and a field.

Lemma 3.5. Let T be a ring with Hamiltonian unit graph and let F be a field.
If F � Z2, then the unit graph G(T × F) is Hamiltonian.

Proof. Since the unit graph G(T ) is Hamiltonian, there is a Hamiltonian cycle with
length n = |T | in G(T ), say

0= a1→ a2→ · · · → an−1→ an→ an+1 = 0.

Either the characteristic of F is equal to 2 or it is not.
First, suppose the latter. In this case we may assume that

F = {0, x1, . . . , x(|F |−1)/2,−x1, . . . ,−x(|F |−1)/2}.

If n is even and |F | ≥ 5, then x2 6= −x1 and so x1+ x2 is a unit element of F .
Now consider the following paths in the unit graph G(T × F):

P0 : (0, 0) → (a2, x1)→ (a3, 0) → (a4, x1)→ · · · → (an, x1),

P1 : (0, x2)→ (a2, 0) → (a3, x2)→ · · · → (an−1, x2)→ (an, 0),

P2 : (0, x1)→ (a2, x2)→ (a3, x1)→ · · · → (an, x2).
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Also for every i with 3≤ i ≤ (|F | − 1)/2, consider the path

Pi : (0, xi )→ (a2, xi )→ (a3, xi )→ · · · → (an, xi ),

and for every i with 1≤ i ≤ (|F | − 1)/2, consider the path

P ′i : (0,−xi )→ (a2,−xi )→ · · · → (an,−xi ).

It is easy to see that Pi−1 is adjacent to Pi for every i with 1≤ i ≤ (|F |−1)/2 and
P ′i−1 is adjacent to P ′i for every i with 2≤ i ≤ (|F |−1)/2, and P(|F |−1)/2 is adjacent
to P ′1. Therefore P0 P1 P2 P3 · · · P(|F |−1)/2 P ′1 · · · P

′

(|F |−1)/2(0, 0) is a Hamiltonian
cycle in the unit graph G(T × F), which shows that it is Hamiltonian. If n is even
and |F | = 3, then F ∼= Z3 and thus the cycle

(a1, 1)→ (a2, 0)→ (a3, 2)→ (a4, 2)→ (a3, 0)

→ (a2, 1)→ (a3, 1)→ · · · → (an−2, 1)→ (an−1, 1)

→ (a1, 2)→ (a2, 2)→ (a1, 0)→ (an, 1)→ (a1, 1),

is a Hamiltonian cycle in the unit graph G(T × F), and thus it is Hamiltonian.
If n is odd and |F | ≥ 5, consider the path

P0 : (a1, 0)→ (a2, x1)→ · · · → (an, 0)→ (a1, x1)→ (a2, 0)→ · · · → (an, x1),

and for 1≤ i ≤ (|F | − 1)/2 consider the paths

Pi : (a1, xi ) → (a2, xi ) → · · · → (an, xi ),

P ′i : (a1,−xi )→ (a2,−xi )→ · · · → (an,−xi ).

It is easy to see that P0 P1 · · · P(|F |−1)/2 P ′1 · · · P
′

(|F |−1)/2(a1, 0) is a Hamiltonian
cycle in the unit graph G(T×F) and thus it is Hamiltonian. If n is odd and |F |=3,
we may obtain a Hamiltonian cycle in the unit graph G(T × F) by replacing the
eleven end-vertices in the cycle above with

(an−3, 1)→ (an−2, 1)→ (an−1, 0)→ (an, 2)→ (an−1, 1)

→ (an, 1)→ (a1, 0)→ (a2, 2)→ (a1, 2)→ (an, 0)→ (a1, 1).

This shows that the unit graph G(T × F) is Hamiltonian.
Second, suppose that characteristic of F is equal to 2. Therefore we have |F |≥4.

In this case we may assume that

F = {x1, . . . , x2m } = {x2i−1, x2i | 1≤ i ≤ 2m−1
}.

If n is even, then for every i with 1≤ i ≤ 2m−1, consider the following paths in
the unit graph G(T × F):

Pi : (a1, x2i−1)→ (a2, x2i ) → · · · → (an, x2i ),

P ′i : (a1, x2i ) → (a2, x2i−1)→ · · · → (an, x2i−1).
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Since |F |≥4, it is clear that P1 P ′2m−1 P2 P ′2m−1−1 · · · P2m−1 P ′1(0, x1) is a Hamiltonian
cycle in the unit graph G(T × F) and thus it is Hamiltonian.

If n is odd, then consider the path

Pi : (a1, x2i−1)→ (a2, x2i )→· · ·→ (an−1, x2i )→ (an, x2i−1)→· · ·→ (an, x2i ).

Therefore P1 P2 · · · P2m−1(a1, x1) is a Hamiltonian cycle in the unit graph G(T×F)

and thus it is Hamiltonian. �

In the sequel we need Lemmas 3.7, 3.8 and 3.10. But first, we state the following
proposition, which is useful in the proof of Lemma 3.7. Recall that a clique of a
graph G is a complete subgraph of G. Also a coclique (also called an independent
set of vertices) in a graph G is a set of pairwise nonadjacent vertices.

Proposition 3.6 [Ashrafi et al. 2010, Lemma 2.7]. Let R be a ring and suppose
that J (R) denotes the Jacobson radical of R. Suppose x, y ∈ R.

(a) If x + J (R) and y + J (R) are adjacent in the unit graph G(R/J (R)), then
every element of x+ J (R) is adjacent to every element of y+ J (R) in the unit
graph G(R).

(b) If 2x ∈U (R), then x + J (R) is a clique in the unit graph G(R).

(c) If 2x /∈U (R), then x + J (R) is a coclique in the unit graph G(R).

Lemma 3.7. Let T be a ring and let R be a local ring with unique maximal ideal
m. If the unit graph G(T × R/m) is Hamiltonian, then the unit graph G(T × R) is
Hamiltonian.

Proof. Since the unit graph G(T × R/m) is Hamiltonian, there is a Hamiltonian
cycle in G(T × R/m), say

(a1, y1+m)→ · · · → (an, yn +m)→ (a1, y1+m),

where n = |T × R/m|. Let m= {x1, . . . , xt }. Therefore for every i with 1≤ i ≤ t ,
we have yi +m = {yi + x1, . . . , yi + xt } and so T × R =

⋃n
i=1 Mi , where Mi =

{(ai , yi + x j ) | 1 ≤ j ≤ t}. It is easy to see that for every r with 1 ≤ r ≤ n − 1,
every element of Mr is adjacent to every element of Mr+1. Also every element of
Mn is adjacent to every element of M1. Let Sr for 1≤ r ≤ n− 1 be a subgraph of
the unit graph G(T × R) with vertex-set Mr ∪Mr+1 and edge-set {(ar , yr + x j )→

(ar+1, yr+1+x`) |1≤ j, `≤ t}. Also let Sn be a subgraph of the unit graph G(T×R)

with vertex-set Mn∪M1 and edge-set {(an, yn+x j )→ (a1, y1+x`) | 1≤ j, `≤ t}.
It is easy to see that Sr for 1≤ r ≤ n is a Hamiltonian complete bipartite subgraph
of the unit graph G(T×R). For every r with 1≤ r ≤ n−1, let Pr be a Hamiltonian
path of Sr with initial vertex (ar , yr + x1) and end point (ar+1, yr+1 + x1). Also
let Pn be a Hamiltonian path of Sn with initial vertex (an, yn + x1) and end point
(a1, y1+ x1). Now we consider the following two cases:
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Case 1: n is even. In this case, the cycle

P1→ P3→ · · · → Pn−1→ (a1, y1+ x1)

is a Hamiltonian cycle in the unit graph G(T × R) and thus it is Hamiltonian.
Case 2: n is odd. In this case, since |T × R/m| is odd, |R/m| is odd. This

implies that |R| is odd and so 2 ∈ U (R). We may assume that y1 + m = m.
Therefore yn+m 6=m. Now Proposition 3.6 implies that the subgraph induced by
Mn is a clique. Therefore the cycle

P1→ P3→ · · · → Pn−2→ (an, yn + x1)→ · · · → (an, yn + xt)→ (a1, y1+ x1)

is a Hamiltonian cycle in the unit graph G(T × R) and thus it is Hamiltonian. �

Lemma 3.8. Let R ∼= R1× · · · × Rn , where every Ri is a local ring with maximal
ideal mi . Suppose that R � Z3 and for every i with 1≤ i ≤ n, we have Ri/mi � Z2.
Then the unit graph G(R) is Hamiltonian.

Proof. We prove the lemma by induction on n. If n = 1, then R is local and
assumptions imply that |R| ≥ 4. Therefore by using Lemma 3.4 we conclude that
the unit graph G(R) is Hamiltonian. Now suppose that the lemma holds true for
n−1. Consider T = R1×· · ·× Rn−1 and F = Rn/mn . There are two possibilities:
either T ∼= Z3 or T � Z3.

First, suppose that T ∼= Z3. If |Rn| ≥ 4, then by Lemma 3.5 the unit graph
G(R)∼=G(Z3×Rn) is Hamiltonian. If |Rn| = 3, then Rn ∼=Z3 and so R∼=Z3×Z3.
Therefore the cycle

(0, 0)→ (1, 1)→ (0, 1)→ (2, 1)→ (2, 0)→ (2, 2)

→ (0, 2)→ (1, 0)→ (1, 2)→ (0, 0),

is a Hamiltonian cycle in the unit graph G(R)∼= G(Z3×Z3) and thus it is Hamil-
tonian.

Second, suppose that T � Z3. In this case the induction hypothesis implies
that the unit graph G(T ) is Hamiltonian. On the other hand, F ∼= Rn/mn is a
field with |F | ≥ 3. Therefore Lemma 3.5 implies that the unit graph G(T × F) is
Hamiltonian. Therefore by applying Lemma 3.7, we conclude that the unit graph
G(R) is Hamiltonian. �

We need the following result to give a proof of Lemma 3.10.

Proposition 3.9 [Chartrand and Oellermann 1993, Theorem 8.6]. Let G be a bi-
partite graph with partite sets X and Y such that |X |= |Y |=n≥2. If deg(x)>n/2
for every vertex x of G, then G is Hamiltonian.

Lemma 3.10. Let R ∼= R1 × · · · × Rn × Z2, where every Ri is a local ring with
maximal ideal mi . If Ri/mi � Z2 for every i with 1 ≤ i ≤ n, then the unit graph
G(R) is Hamiltonian.
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Proof. We prove the lemma by induction on n. If n = 1, then R ∼= R1 × Z2. In
this case, it is easy to see that the unit graph G(R) is a bipartite graph with partite
sets X = R1×{0} and Y = R1×{1}. On the other hand, by Proposition 3.2(1), we
have deg(x)= |U (R)| = |U (R1)|> |U (R1)|/2≥ |R|/4 for every vertex x in G(R).
Therefore, by Proposition 3.9, the unit graph G(R) is Hamiltonian.

Now suppose that the lemma holds for n−1. The induction hypothesis implies
that the unit graph G(R1 × · · · × Rn−1 × Z2) is Hamiltonian. On the other hand,
F ∼= Rn/mn is a field with |F | ≥ 3. Therefore Lemma 3.5 implies that the unit
graph G(R1×· · ·×Rn−1×Z2×F) is Hamiltonian and so by applying Lemma 3.7
we conclude that the unit graph G(R) is Hamiltonian. �

A cycle graph is a graph that consists of a single cycle. The following result
characterizes the unit graphs of rings that are cycle graphs.

Proposition 3.11 [Ashrafi et al. 2010, Theorem 3.2]. Let R be a ring. Then the
unit graph G(R) is a cycle graph if and only if R is isomorphic to either

(a) Z4,

(b) Z6, or

(c)
{[

a b
0 a

]
| a, b ∈ Z2

}
.

The next result gives a sufficient condition for a unit graph to be Hamiltonian.

Lemma 3.12. Let R be a ring such that R � Z2 and R � Z3. If R cannot have
Z2×Z2 as a quotient, then the unit graph G(R) is Hamiltonian.

Proof. Every ring is isomorphic to a direct product of local rings; see [McDonald
1974, page 95]. Therefore we may write R ∼= R1× · · · × Rn , where every Ri is a
local ring with maximal ideal mi . We claim that |U (R)|≥ 2. To show this, suppose
to the contrary that |U (R)| = 1. This implies that |J (R)| = 1, where J (R) denotes
the Jacobson radical of R. Therefore |m1×· · ·×mn| = 1 and so |mi | = 1 for every
i with 1≤ i ≤ n. Therefore Ri for 1≤ i ≤ n is a field and thus R ∼= Z2× · · ·×Z2,
where Z2 occurs n times in the product. Now the assumption implies that R ∼= Z2,
a contradiction. Thus the claim holds and we have |U (R)| ≥ 2.

First, suppose |U (R)| = 2. In this case, by Proposition 3.2, the unit graph G(R)

is a 2-regular connected graph and so is a cycle graph. Hence by Proposition 3.11,
R is isomorphic to either Z4, Z6, or

{[
a b
0 a

]
| a, b ∈ Z2

}
. It is easy to see that the

unit graph of each of them is Hamiltonian and therefore so is the unit graph G(R).
Second, suppose that |U (R)| ≥ 3. By the assumption, Ri/mi � Z2 for every i ,

except for possibly at most one i . If Ri/mi � Z2 for every i , then by Lemma 3.8
the unit graph G(R) is Hamiltonian. If for one i , say n, we have Rn/mn ∼= Z2,
then by Lemma 3.10 the unit graph G(R1× · · · × Rn ×Z2) is Hamiltonian. Now
by applying Lemma 3.7 we conclude that the unit graph G(R) is Hamiltonian. �
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Proof of Theorem 2.1. (a) implies (b): By assumption, the unit graph G(R) is
Hamiltonian and so it is obviously connected. Therefore, by [Ashrafi et al. 2010,
Theorem 4.3], we have u(R) ≤ ω. This means that the ring R is generated by its
units and thus by [Raphael 1974, Corollary 7] it cannot have Z2×Z2 as a quotient.

(b) implies (a): This holds by Lemma 3.12.
(b) is equivalent to (c): This holds by [Raphael 1974, Corollary 7].
(c) is equivalent to (d): This is true by definition.
(d) is equivalent to (e): This holds by [Ashrafi et al. 2010, Theorem 4.3]. �
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INSTABILITY OF THE GEODESIC FLOW
FOR THE ENERGY FUNCTIONAL

DOMENICO PERRONE

Let .S n.r/;g0/ be the canonical sphere of radius r . Denote by zGs the
Sasaki metric on the unit tangent bundle T1S n.r/ induced from g0 and
by zGzs the Sasaki metric on T1T1S n.r/ induced from zGs . We resolve here,
for n � 7, a question raised by Boeckx, González–Dávila, and Vanhecke:
namely, we prove that the geodesic flow

� W .T1S n.r/; zGs/! .T1T1S n.r/; zGzs/

is an unstable harmonic vector field for any r > 0 and n � 7. In particular,
in the case rD1, � is an unstable harmonic map. We show that these results
are invariant under a four-parameter deformation of the Sasaki metric zGzs .

1. Introduction

Let .M;g/ be a compact Riemannian manifold and X1.M / the set of all smooth
unit vector fields on .M;g/, which we suppose to be nonempty, equivalently, the
Euler–Poincaré characteristic of M vanishes. Let .T1M; zGs/ be the unit tangent
sphere bundle equipped with the Sasaki metric zGs . A unit vector field U 2X1.M /

determines a map between .M;g/ and .T1M; zGs/ and the energy E zGs
.U / is de-

fined as the energy of the corresponding map

U W .M;g/! .T1M; zGs/:

A unit vector field U is said to be a harmonic vector field if it is a critical point
for the energy functional E zGs

restricted to X1.M / [Wiegmink 1995; Wood 1997].
Harmonic unit vector fields aren’t harmonic maps unless an additional curvature
condition is satisfied [Han and Yim 1998; Abbassi et al. 2009a].

For the unit sphere S2mC1, m> 1, the Hopf vector fields are unstable harmonic
unit vector fields [Wood 1997]. The unit vector fields of minimum energy on the
unit sphere S3 are precisely the Hopf vector fields, equivalently, the unit Killing

The author was supported by funds of the MIUR (PRIN 07) and of the Università del Salento.
MSC2000: 53C43, 53D25.
Keywords: geodesic flow, canonical sphere, stability, energy functional, harmonic maps, natural

Riemannian metrics.
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vector fields, and no others [Brito 2000]. Contact metric manifolds which Reeb
vector field is harmonic are called H -contact manifolds [Perrone 2004]. In [Per-
rone 2009a] we studied the stability of the Reeb vector field of a compact H -contact
three-manifold. If the unit tangent bundle itself is taken as the source manifold of
unit vector fields, then a distinguished unit vector field, namely, the geodesic flow
vector field �, appears in a natural way (it is collinear, with a constant factor, to the
Reeb vector field of the standard contact metric structure on T1M ).

Let .M;g/ be a Riemannian manifold locally isometric to a two-point homo-
geneous space, that is, locally flat or locally isometric to a rank-one symmetric
space. Boeckx and Vanhecke [2000] proved that � W .T1M; zGs/! .T1T1M; zGz s/

is a harmonic vector field (and a harmonic map), where zGz s is the corresponding
Sasaki metric on T1T1M .

Concerning the stability of the geodesic flow � we have few results. Boeckx
et al. [2002] studied the stability of � as harmonic vector field when such a M is
in addition compact (note that, by [Borel 1963], compact quotients always exist)
and satisfies some other conditions. More precisely, the authors proved that if
n � 3 and M is of nonpositive curvature with nonzero first Betti number, then
the geodesic flow � W .T1M; zGs/! .T1T1M; zGz s/ is an unstable harmonic vector
field. In the positive curvature case they considered a space of constant curvature
and proved a similar yet weaker result. Indeed, in such case, they proved that the
existence of nonzero Killing vector fields implies the instability of � for the energy
functional E QQG , in certain ranges of the dimension and the curvature. With these
results, the question of stability of � remains open, particularly in the case of a
compact quotient of a two-point homogeneous space of positive curvature. The
most intriguing one, according to Boeckx et al. [2002], concerns the unit spheres
Sn.1/ for n> 2. Their method does not give any answers in this case.

Recently, the papers [Abbassi et al. 2009a; 2009b; 2010a; Perrone 2009b; 2010]
examined the question of when a vector field V W .M;g/! .TM;G/ and a unit
vector field U W .M;g/! .T1M; zG/ are harmonic vector fields and define harmonic
maps, where G is a natural Riemannian metric on TM and zG is its restriction to the
unit tangent sphere bundle T1M . (Natural Riemannian metrics form a very large
family, which includes the Sasaki metric, the Cheeger–Gromoll metric, metrics
of Cheeger–Gromoll type [Benyounes et al. 2007] and the Kaluza–Klein metrics
[Wood 1990].) The restrictions zG of such metrics to T1M possess a simpler form
and globally depend on four real parameters a; b; c; d satisfying some inequalities
(the parameters aD 1, b D c D d D 0 define the Sasaki metric zGs). Suppose that
.M;g/ is a Riemannian manifold locally isometric to a two-point homogeneous
space and T1M , T�T1M are equipped with arbitrary natural Riemannian metrics
zG and zGz respectively. Then, Abbassi et al. [2010b] proved that the geodesic flow
� W .T1M; zGs/! .T�T1M; zGz / is always a harmonic vector field, and it also defines
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a harmonic map under some conditions on the coefficients determining the natural
Riemannian metrics.

The main purpose of this paper is to study the stability of the geodesic flow

� W .T1Sn.r/; zGs/! .T1T1Sn.r/; zGz /;

where Sn.r/ is the canonical sphere of radius r and zGz is an arbitrary natural Rie-
mannian metric on T1T1Sn.r/ induced from the Sasaki metric zGs on T1Sn.r/ (see
Theorem 4.2 and Theorem 5.3). In particular, we get that the geodesic flow

� W .T1Sn.r/; zGs/! .T1T1Sn.r/; zGz /

is an unstable harmonic vector field (and an unstable harmonic map) for any r > 0,
n � 7, and for any natural Riemannian metric zGz on T1T1Sn.r/ induced from the
Sasaki metric zGs . When zGz D zGz s , we resolve the question of posed in [Boeckx
et al. 2002, page 202] for any n � 7. In order to get all these results, we use the
Hessian form of the energy functional

E zG W X
1.M /! R;U 7!E zG.U /DE

�
U W .M;g/! .T1M; zG/

�
;

for an arbitrary natural Riemannian metric zG (see Theorem 3.2). It should be noted
that the instability of the Hopf vector fields on S2mC1, m > 1, and the stability
(instability) results given in [Perrone 2009a] are invariant under a four-parameter
deformation of the Sasaki metric zGs on T1M (see Corollary 3.4).

2. Natural Riemannian metrics on T1M

Let .M;g/ be an n-dimensional Riemannian manifold and r its Levi-Civita con-
nection. We denote by R the Riemannian curvature tensor of .M;g/ with the sign
convention R.X;Y /ZD�rXrY ZCrY rX ZCrŒX ;Y �Z:Moreover, we denote
by Ric the Ricci tensor of type .0; 2/, by Q the corresponding endomorphism field
and by � the scalar curvature.

At any point .x;u/ of the tangent bundle TM , the tangent space of TM splits
into the horizontal and vertical subspaces with respect to r:

.TM /.x;u/ DH.x;u/˚V.x;u/:

For any vector X 2Mx , there exists a unique vector X h 2 H.x;u/ (the horizon-
tal lift of X to .x;u/ 2 TM ), such that p�X

h D X , where p W TM ! M is
the natural projection. The vertical lift of a vector X 2 Mx to .x;u/ 2 TM is
a vector X v 2 V.x;u/ such that X v.df / D Xf , for all smooth functions f on
M . Here we consider 1-forms df on M as smooth functions on TM . The map
X !X h is an isomorphism between the vector spaces Mx and H.x;u/. Similarly,
the map X!X v is an isomorphism between Mx and V.x;u/. Each tangent vector
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zZ 2 .TM /.x;u/ can be written in the form zZ D X hCY v, where X;Y 2Mx are
uniquely determined vectors. The geodesic flow � on TM is a vector field given,
in terms of local coordinates, by

�.x;u/ D uh
.x;u/ D

X
i

ui.@=@xi/h.x;u/; where uD
X

i

ui.@=@xi/x 2Mx :

The natural Riemannian metrics form a wide family of Riemannian metrics on
TM . These metrics depend on several smooth functions from RCD Œ0;C1/ to R

and as their name suggests, they arise from a very “natural” construction starting
from a Riemannian metric g over M (see [Abbassi and Sarih 2005; Abbassi et al.
2010a] and the references in [Abbassi 2008]). Given an arbitrary g-natural metric
G on the tangent bundle TM of a Riemannian manifold .M;g/, there are six
smooth functions ˛i , ˇi W R

C! R, i D 1; 2; 3, such that for every u, X , Y 2Mx ,
we have

(2-1)

G.x;u/.X
h;Y h/D .˛1C˛3/.r

2/gx.X;Y /C .ˇ1Cˇ3/.r
2/gx.X;u/gx.Y;u/;

G.x;u/.X
h;Y v/D ˛2.r

2/gx.X;Y /Cˇ2.r
2/gx.X;u/gx.Y;u/;

G.x;u/.X
v;Y h/DG.x;u/.X

h;Y v/;

G.x;u/.X
v;Y v/D ˛1.r

2/gx.X;Y /Cˇ1.r
2/gx.X;u/gx.Y;u/;

where r2 D gx.u;u/. Put

�i.t/D ˛i.t/C tˇi.t/;

˛.t/D ˛1.t/.˛1C˛3/.t/�˛
2
2.t/;

�.t/D �1.t/.�1C�3/.t/��
2
2.t/;

for all t 2 RC. Then, a g-natural metric G on TM is Riemannian if and only if

(2-2) ˛1.t/ > 0; �1.t/ > 0; ˛.t/ > 0; �.t/ > 0 for all t 2 RC:

The Sasaki metric Gs , the Cheeger–Gromoll metric, metrics of Cheeger–Gromoll
type [Benyounes et al. 2007] and the Kaluza–Klein metrics, as commonly defined
on principal bundle [Wood 1990], belong to the subclass of g-natural Riemannian
metrics on TM for which horizontal and vertical distribution are mutually orthog-
onal (i.e., ˛2 D ˇ2 D 0). More generally, g-natural Riemannian metrics on TM

for which horizontal and vertical distribution are mutually orthogonal are called
metrics of Kaluza–Klein type [Perrone 2010].

Next, the tangent sphere bundle of radius r over a Riemannian manifold .M;g/,
is the hypersurface Tr M D f.x;u/ 2 TM W gx.u;u/D r2g. The tangent space of
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Tr M at a point .x;u/ 2 Tr M is given by

(2-3) .Tr M /.x;u/ D fX
h
CY v WX 2Mx;Y 2 fug

?
�Mxg:

We call g-natural metrics on Tr M the restrictions of g-natural metrics of TM to
its hypersurface Tr M . These metrics possess a simpler form. Precisely, taking in
account of (2-1) and (2-3), every natural Riemannian metric zG on Tr M is neces-
sarily induced by a natural Riemannian metric G on TM of the special form (see
also [Abbassi 2008; Abbassi et al. 2009a]):

(2-4)

G.x;u/.X
h;Y h/D .aC c/gx.X;Y /Cˇ gx.X;u/gx.Y;u/;

G.x;u/.X
h;Y v/DG.x;u/.X

v;Y h/D b gx.X;Y /;

G.x;u/.X
v;Y v/D a gx.X;Y /;

for three real constants a; b; c and a smooth function ˇ W Œ0;1/! R. It is easily
seen that G is obtained by the general expression (2-1) when

(2-5) ˛1 D a; ˛2 D b; ˛3 D c; ˇ1 D ˇ2 D 0; ˇ3 D ˇ;

Such a metric zG on Tr M only depends on the value d D ˇ.r2/ of ˇ at r2. From
(2-2) and (2-5) it follows that zG is Riemannian if and only if

(2-6) a> 0; ˛ WD a.aC c/� b2 > 0 and � D a.aC cC r2d/� b2 > 0:

By (2-4), horizontal and vertical lifts are orthogonal with respect to zG if and
only if b D 0. Moreover, metrics satisfying b D 0 are all and the ones induced
by natural Riemannian metrics of Kaluza–Klein type. For this reason, a natural
Riemannian metric zG on Tr M will be said to be of Kaluza–Klein type if and only
if horizontal and vertical lifts are zG-orthogonal, that is, bD 0 in (2-4). Notice that
the Sasaki metric, the Cheeger–Gromoll metric, metrics of Cheeger–Gromoll type
and the Kaluza–Klein metrics belong to the subclass of natural Riemannian metrics
on T1M of Kaluza–Klein type. Moreover, an arbitrary natural Riemannian metric
zG on Tr M can be considered as a deformation on four parameters (a; b; c; d ) of
the Sasaki metric zGs (which is defined by aD 1, b D c D d D 0/.

When r D 1, T1M is called unit tangent sphere bundle. Now, if zG is an arbitrary
g-natural Riemannian metric on T1M , then by (2-4) it follows that the geodesic
flow vector field � on T1M has constant length k�k zG D

p
aC cC d (not necessar-

ily equal to 1). Note that aCcCd > 0, since a> 0 and �D a.aCcCd/�b2> 0.
Hence, � defines a map � W T1M ! T�T1M where � WD

p
aC cC d ; if zG D zGs ,

then �D 1.
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3. The Hessian form for the energy E zG

Let .M;g/ be a compact Riemannian manifold of dimension n. Every unit vector
field U on M defines a map between .M;g/ and .T1M; zGs/ and we can define
E zGs

.U /, the energy of U , as the energy of the corresponding map:

E zGs
.U /D

1

2

Z
M

kdU k2 vg D
n

2
vol.M;g/C

1

2

Z
M

krU k2 dvg:

E.U / is equal, up to constants, to B.U /D
R

M krU k2 dvg which is known as the
total bending of U [Wiegmink 1995]. Here dvg denotes the canonical measure on
.M;g/. U is called a harmonic vector field if it is critical for the energy functional

E zGs
W X1.M /! R; U 7!E zGs

.U /DE
�
U W .M;g/! .T1M; zGs/

�
:

The corresponding critical point condition “ N�V is collinear to V ” has been de-
termined in [Wiegmink 1995] (see also [Wood 1997]), where N�U D �trr2U is
the rough Laplacian at U . This critical point condition has a tensorial character
and may also be considered on non compact manifolds.

Now, consider on T1M an arbitrary g-natural Riemannian metric zG. Then a unit
vector field U defines a mapping from .M;g/ to .T1M; zG/ and we can consider
the energy functional

E zG WX
1.M /!R; U 7!E zG.U /DE

�
U W .M;g/! .T1M; zG/

�
D

Z
M

e.U / dvg;

where e.U / is the energy density of U W .M;g/ ! .T1M; zG/ and is given by
[Abbassi et al. 2009a]

(3-1) 2e.U /D n.aC c/C d C a krU k2C 2b div U;

and so, integrating over M we get

(3-2) E zG.U /D
1

2
Œn.aC c/C d � vol.M;g/C

a

2

Z
M

krU k2dvg:

In [Abbassi et al. 2009a] we proved that the critical point condition for the
energy E zGs

is invariant under a four-parameter deformation of the Sasaki metric
zGs . More precisely:

Theorem 3.1 [Abbassi et al. 2009a]. Let (M,g) be a compact Riemannian manifold
of dimension n. Then, a unit vector field U 2X1.M / is a harmonic vector field for
the energy E zG if and only if U is a harmonic vector field for the energy E zGs

, that
is,�U DkrU k2U . Moreover, U W .M;g/! .T1M; zG/ is a harmonic map if and
only if U is a harmonic vector field and

(3-3) b QU C a tr ŒR.r�U;U / � �D .b krV k2� d div U /U C drU U:
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In the case of the Sasaki metric zGs , (3-3) gives a result of [Han and Yim 1998].
Wiegmink [1995] obtained the second variation formula for the energy E zGs

.
The second variation formula for the energy E zG could be deduced directly from
(3-1) by using Theorem 3.1. In the sequel, we include the proof for completeness.
Let U be a harmonic vector field for the energy E zG , and U.t/ a variation of U in
X1.M /. Then, by (3-1) we have

2e.t/ WD 2e.U.t//D n.aC c/C d C a krU.t/k2C 2b div U.t/;

and integrating over M , we find

(3-4) E zG.t/ WDE zG.U.t//D
n.aC c/C d

2
vol.M;g/C

a

2

Z
M

krU.t/k2dvg:

Differentiating (3-4) we obtain

E0
zG
.t/D a

Z
M

g
�
rU.t/;rU 0.t/

�
dvg;

and hence

E00
zG
.t/D a

Z
M

g
�
rU 0.t/;rU 0.t/

�
dvgC a

Z
M

g
�
rU.t/;rU 00.t/

�
dvg:

Therefore

E00
zG
.0/D a

Z
M

krW k2dvgC a

Z
M

g.rU;rA/ dvg;

where W D U 0.0/ is orthogonal to U and A D U 00.0/. On the other hand, for
any X;Y 2X.M /, by a direct calculation, one gets the Bochner-type formula (see
[Poor 1981, page 158] for X D Y ):

(3-5) �g.X;Y /D g. N�X;Y /Cg.X; N�Y /� 2g.rX;rY /;

where � is the Laplacian acting on functions. This formula impliesZ
M

g. N�U;A/ dvg D

Z
M

g.rU;rA/dvg;

where, using Theorem 3.1, N�U D krU k2U . Then

E00
zG
.0/D a

Z
M

.krW k2CkrU k2g.U;A// dvg:

Moreover, krU k2 D 1 implies

kW k2 D g
�
U 0.0/;U 0.0/

�
D�g

�
U.0/;U 00.0/

�
D�g.U;A/:

Thus, we get:
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Theorem 3.2. Let .M;g/ be a compact Riemannian manifold. If U 2X1.M / is a
critical point of the energy functional E zG . Then

(3-6) .HessE zG/U .W /D a

Z
M

�
krW k2�krU k2kW k2

�
dvg

for any W 2 U?.

When T1M is equipped with the Sasaki metric zGs , we get the Hessian form
given in [Wiegmink 1995].

Corollary 3.3. Let .M;g/ be a compact Riemannian manifold and U a unit vector
field on M . Then the property of U W .M;g/ ! .T1M; zGs/ being a stable (or
unstable) harmonic vector field is invariant under a four-parameter deformation
of the Sasaki metric zGs on T1M .

Wood [1997] showed that for the unit sphere S2mC1, m > 1, the Hopf vector
fields are unstable for the energy E zGs

. Contact metric manifolds which Reeb vector
field is harmonic are called H -contact manifolds [Perrone 2004]. Recently, in
[Perrone 2009a] we studied the stability of the Reeb vector field of a compact
H -contact three manifold for the energy E zGs

. From Corollary 3.3 we get:

Corollary 3.4. The instability of the Hopf vector fields on S2mC1, m > 1, and
the stability (or instability) results given in [Perrone 2009a] are invariant under a
four-parameter deformation of the Sasaki metric zGs on T1M .

4. Instability of the geodesic flow

Let .M;g/ be a Riemannian manifold locally isometric to a two-point homoge-
neous space, that is, locally flat or locally isometric to a rank-one symmetric space.
We denote by zGs the Sasaki metric on T1M , by zGz s the corresponding Sasaki metric
on T1T1M and by zGz an arbitrary natural Riemannian metric on T1T1M constructed
from zGs . Boeckx and Vanhecke [2000] proved that � W .T1M; zGs/! .T1T1M; zGz s/

is a harmonic map, in particular � is a harmonic vector field for the energy E QQG .
About the stability of �, we have:

Theorem 4.1 [Boeckx et al. 2002]. Let .M;g/ be a compact quotient of a two-
point homogeneous space of nonpositive curvature and with first Betti number
b1.M / ¤ 0, dim M D n � 3. Then the geodesic flow � on T1M is unstable
for the energy E QQG .

In the positive curvature case they proved a similar yet weaker result. Indeed,
in such case, the existence of nonzero Killing vector fields implies the instability
of � for the energy functional E zGs

, in certain ranges of the dimension n and of
curvature. With these results, the question of stability of � remains open. The
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most intriguing one (according to [Boeckx et al. 2002, page 202]) concerns the
unit spheres Sn.1/ for n> 2. Their method does not give any answers in this case.

Now, we consider on T1M the Sasaki metric zGs while on T1T1M consider an
arbitrary natural Riemannian metric zGz constructed from zGs , where .M;g/ is a
compact quotient of a two-point homogeneous space of dimension n. Abbassi et
al. [2010b, Theorem 5] proved that � W .T1M; zGs/! .T1T1M; zGz / is a harmonic
vector field for the energy E QQG . From Theorem 3.2 we have that the geodesic flow
� is stable (or unstable) with respect to E QQG if and only if it has the same property
with respect to E QQGs , that is, when � W .T1M; zGs/! .T1T1M; zGz s/. So we consider
Hess E QQGs ; from the general expression (3-6), we have

(4-1) .Hess E QQGs /�.W /D

Z
T1M

�
kzrW k2�kzr�k2kW k2

�
dv zGs

for any vector field W on T1M such that zGs.�;W /D0, where zr is the Levi-Civita
connection of .T1M; zGs/. If X is an arbitrary vector field on M , the tangential
lift X t

z D X v
z � gx.Xx;u/u

v, z D .x;u/, is a vector field on T1M orthogonal
to �, but the horizontal lift X h in general is not. For that reason, we define the
modified horizontal NX h

z DX h
z �g.Xp;u/�z , zD .p;u/. This vector field on T1M

is orthogonal to � and tangent to T1M . Moreover, we have, from [Boeckx et al.
2002, Lemma 1, page 206],

(4-2)
Z

T1M

�
kzrX t

k
2
�kzr�k2kX t

k
2
�

dv zGs
D an�1

Z
M

�
krXk2CAtkXk

2
�

dvg;

(4-3)
Z

T1M

�
kzr NX h

k
2
�kzr�k2k NX h

k
2
�

dv zGs
D an�1

Z
M

�
krXk2CAhkXk

2
�

dvg;

where n

n�1
an�1 is the volume of the unit sphere Sn�1, and

At D
5� 2n

4n.n� 1/.nC 2/
kRk2�

�2

2n2.nC 2/
C
�

n
� nC 2;

Ah D
4� n

4n.n� 1/.nC 2/
kRk2�

�2

2n.n� 1/.nC 2/
C
.n� 2/�

n.n� 1/
� nC 3:

Denote by �1 the Laplacian acting on 1-forms. Recall that �1 also acts on
vector fields via duality and it is related to the rough Laplacian N� and the Ricci
operator Q by the well-known Weitzenböck formula [Poor 1981, page 168]:

(4-4) �1 D
N�CQ:

Moreover, for any X 2 X.M /, from (3-5) we have

(4-5) �
1
2
�kXk2 D krXk2�g. N�X;X /:



440 DOMENICO PERRONE

Then (4-4) and (4-5) imply that

�
1
2
�kXk2 D krXk2�g.�1X;X /CRic.X;X /:

As M is locally isometric to a two-point homogeneous space, it is Einstein, that
is, RicD .�=n/g, the above equation gives

(4-6)
Z

M

krXk2dvg D

Z
M

.g.�1X;X /�
�

n
kXk2/ dvg:

Then, (4-1), (4-2), and (4-6) imply

.Hess E QQGs /�.X
t /D an�1

Z
M

�
g.�1X;X /C

�
At �

�

n

�
kXk2

�
dvg;(4-7)

.Hess E QQGs /�.
NX h/D an�1

Z
M

�
g.�1X;X /C

�
Ah�

�

n

�
kXk2

�
dvg:(4-8)

Let �1 the first eigenvalue of the Laplacian � acting on functions. Consider an
eigenfunction f related to the eigenvalue �1. Set ! D df , so that

�1! D .dıC ıd/ df D dıdf D d�f D �1df D �1!:

Hence, if X0 is the vector field defined by g.X0; �/D !, we obtain

�1X0 D �1X0:

Consequently, .Hess E QQGs /�.X
t
0
/ < 0 if and only if �1 satisfies

(4-9) �1 <
�

n
�At D

2n� 5

4n.n� 1/.nC 2/
kRk2C

�2

2n2.nC 2/
C n� 2;

and .Hess E QQGs /�.
NX h
0
/ < 0 if and only if �1 satisfies

(4-10) �1 <
�

n
�Ah

D
n�4

4n.n�1/.nC2/
kRk2C

�2

2n.n�1/.nC2/
C

�

n.n�1/
Cn�3:

Now, suppose that .M;g/ is a space of constant curvature � > 0. Then,

� D n.n� 1/�; kRk2 D 2n.n� 1/�2
D

2�2

n.n� 1/
and

At �
�

n
D
.5� 2n/2n.n� 1/�2

4n.n� 1/.nC 2/
�

n2.n� 1/2�2

2n2.nC 2/
� .n� 2/;

that is,
�

n
�At D .n� 2/

�
�2

2
C 1

�
> 0 for any n> 2:
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Moreover,

Ah�
�

n
D
.4�n/2n.n�1/�2

4n.n�1/.nC2/
�

n2.n�1/2�2

2n.n�1/.nC2/
C
.n�2/n.n�1/�

n.n�1/
�.n�3/�

�

n

D
.2�n/

2
�2
���.n�3/;

that is,
�

n
�Ah D

.n� 2/

2
�2
C �C n� 3:

Therefore, by (4-9), .Hess E QQGs /�.X
t
0
/ < 0 if and only if �1 satisfies

(4-11) �1 <
�

n
�At D .n� 2/

�
�2

2
C 1

�
and, by (4-10), .Hess E QQGs /�.

NX h
0
/ < 0 if and only if �1 satisfies

(4-12) �1 <
�

n
�Ah D

.n� 2/

2
�2
C �C n� 3:

Now, for a space of constant sectional curvature � >0, a result of Lichnerowicz and
Obata [Berger et al. 1971, pages 179–180] states that the eigenvalue �1 satisfies
�1 � n�, where the equality holds if and only if M is isometric to the canonical
sphere of radius r D

p
1=�. So, for the sphere Sn.r/ of radius r > 0, that is of

constant sectional curvature � D 1=r2, the conditions (4-11), (4-12) become

.�2
� 2�C 2/

�
n�

2.�2C 2/

�2� 2�C 2

�
> 0;(4-13)

.�2
� 2�C 2/

�
n�

2�2�2�C6

�2� 2�C 2

�
> 0:(4-14)

Examining these expressions, we conclude:
If n and � satisfy one of the following conditions, then (4-11) is satisfied:

� � > 0 and n� 7;

� � 2 �0; 1Œ [ �2;C1Œ and n� 6;

� � 2 �0; 1
3
.5�
p

7/Œ [ � 1
3
.5C
p

7/;C1Œ and n� 5;

� � 2 �0; 2�
p

2Œ [ �2C
p

2;C1Œ and n� 4;

� � 2 �0; 3�
p

7Œ [ �3C
p

7;C1Œ and n� 3:

If n and � satisfy one of the following conditions, then (4-12) is satisfied:

� � > 0 and n� 7;

� � 2 �0; 1Œ [ � 3
2
;C1Œ and n� 6;

� � 2 �0; 2
3
Œ [ �2;C1Œ and n� 5;

� � 2 �0; 3�2
p

2Œ [ �3C2
p

2;C1Œ and n� 4;

� � 2 �4;C1Œ and n� 3:
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Summarizing:

Theorem 4.2. Let Sn.r/ be the canonical sphere of radius r , and let � D 1=r2.
If one of the following conditions holds, then the geodesic flow � on T1Sn.r/ is
unstable for the energy E QQG :

� � > 0 and n� 7;

� � 2 �0; 1Œ [ � 3
2
;C1Œ and n� 6;

� � 2 �0; 2
3
Œ [ �2;C1Œ and n� 5;

� � 2 �0; 2�
p

2Œ [ �2C
p

2;C1Œ and n� 4;

� � 2 �0; 3�
p

7Œ [ �4;C1Œ and n� 3:

Corollary 4.3. The geodesic flow � on T1Sn.1/ is unstable for the energy E QQG ,
for n� 7.

The two-dimensional case. Let .M;g/ be a compact Riemannian surface of con-
stant curvature � > 0. If � < 1, Theorem 7 of [Boeckx et al. 2002] gives that the
geodesic flow � on T1M is an unstable harmonic vector field for the energy E QQGs .
If �D 1, .T1M;Gs/ is a compact Riemannian three-manifold of constant curvature
c D 1

4
and � is a unit Killing vector field. Brito [2000] proved that the unit vector

fields of minimum energy on the unit sphere S3 are precisely the unit Killing vector
fields, and no others. Recently, we proved an analogue of Brito’s theorem for a
compact Sasakian three-manifold [Perrone 2008, page 20]. A consequence of its
proof gives: the unit vector fields of minimum energy on a compact Riemannian
three-manifold of constant sectional curvature c � 0 are precisely the unit Killing
vector fields, and no others.

Other positively curved two-point homogeneous spaces. There are known ana-
logues of Theorem 4.2 for other compact positively curved two-point homogeneous
spaces, though with different conditions. We mention:

– For the real projective space RPn of constant sectional curvature � > 0, we know
from [Gallot 1980, page 38] that �1D 2.nC1/�. The conditions (4-11) and (4-12)
become

n.�2
� 4�C 2/� 2.�2

C 2�C 2/ > 0; n.�2
� 4�C 2/� 2.�2

C �C 3/ > 0:

Examining this inequality we find that if n� 3 and � 2 �0; 8�
p

62Œ [ �14;C1Œ,
the geodesic flow � on T1RPn is unstable for the energy E QQG .

– For the complex projective space CPm, n D 2m, of constant holomorphic sec-
tional curvature � > 0, we have, from [Gray and Vanhecke 1979, page 177] and
[Gallot 1980, page 38],

(4-15) � Dm.mC 1/�; kRk2 D 2m.mC 1/�2; �1 D .mC 1/�:
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Using this, we obtain conditions, like Theorem 4.2, which imply the instability of
the geodesic flow on the unit tangent sphere bundle of the corresponding space.
For m> 1, the condition �1CAt � �=n< 0 becomes

.m� 1/.2mC 11/�2
� 16.mC 1/.2m� 1/�C 32.m� 1/.2m� 1/ > 0:

The other condition, �1CAh� �=n< 0, becomes

.m� 1/.mC 4/�2
� 4.mC 1/.4m� 3/�C 8.2m� 3/.2m� 1/ > 0:

A similar remark applies to the next two examples. The references are also the
same.

– For the quaternionic projective space, nD 4m, of constant quaternionic sectional
curvature � > 0, we have

(4-16) � D 4m.mC 2/�; kRk2 D 4m.5mC 1/�2; �1 D 2.mC 1/�:

– For the Cayley projective plane, nD 16, of maximum sectional curvature � > 0,

(4-17) � D 144�; kRk2 D 576�2; �1 D 48�:

5. Instability of harmonic maps defined by the geodesic flow

In the theory of harmonic maps, a fundamental question concerns the existence of
harmonic maps between two given Riemannian manifolds .M;g/ and .M 0;g0/. If
.M;g/ is compact and .M 0;g0/ is of nonpositive sectional curvature, there exists a
harmonic map f W .M;g/! .M 0;g0/ in each homotopy class [Eells and Sampson
1964]. However, there is no general existence result when .M 0;g0/ does not satisfy
this condition. This fact makes it interesting to find examples of harmonic maps
having such a target manifold. Since the standard existence theory for harmonic
maps does not apply, examples have to be constructed ad hoc.

Now, let zG be an arbitrary Riemannian g-natural metric on T1M . By (2-4), the
geodesic flow vector field � on T1M has constant length k�k zG D �D

p
aC cC d

(not necessarily equal to 1). Hence, we can study the harmonicity of the geodesic
flow as a map � W T1M ! T�T1M . We equip T�T1M with an arbitrary g-natural
Riemannian metric zGz coming from zG. By (2-6), zGz will depend on four constants
a0; b0; c0; d 0, satisfying

a0 > 0; a0.a0C c0/� .b0/2 > 0; a0.a0C c0C �2d 0/� .b0/2 > 0:

The following result shows that in many cases, the geodesic flow also defines a
harmonic map.
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Theorem 5.1 [Abbassi et al. 2010b]. Let .M;g/ be a two-point homogeneous
space. The map � W .T1M; zG/! .T�T1M; zGz / is a harmonic map if and only if

(5-1) na˛b0
n�1P
iD1

�2
i D

�
a0b3d C 2b0˛.˛� b2/

�
� � n.n� 1/b0˛.aC c/2;

where ˛ D a.aC c/ � b2 and the �i are the eigenvalues of the Jacobi operator
Ru DR. � ;u/u.

In particular, if zG D zGs (i.e., aD 1; bD c D d D 0) and M has constant sectional
curvature �, then �i D �, � D n.n�1/� and (5-1) becomes n.n�1/b0.��1/2D 0.
Thus we get:

Theorem 5.2. Let .M;g/ be a space of constant sectional curvature �.

(i) If � D 1, the geodesic flow determines a harmonic map

� W .T1M; zGs/! .T1T1M; zGz /

for any natural Riemannian metric zGz on T1T1M induced from zGs .

(ii) If � ¤ 1, the geodesic flow determines a harmonic map

� W .T1M; zGs/! .T�T1M; zGz /

if and only if zGz is of Kaluza–Klein type, that is, b0 D 0.

Since instability for the energy restricted to X1.T1M / clearly implies instability
in the large sense, combining Theorem 4.2 and Theorem 5.2 we get:

Theorem 5.3. (i) The geodesic flow vector field on T1S
n.1/, n > 6, determines

an unstable harmonic map � W .T1S
n.1/; zGs/! .T1T1S

n.1/; zGz / for any nat-
ural Riemannian metric zGz on T1T1S

n.1/ induced from zGs .

(ii) Let Sn.�/ be the canonical sphere of constant curvature �, where

� 2 �0; 3�
p

7Œ [ �4;C1Œ;

and let n � 3. Then the geodesic flow on T1S
n.�/ determines an unstable

harmonic map

� W .T1S
n.�/; zGs/! .T1T1Sn.�/; zGz /

for any metric of Kaluza–Klein type zGz on T1T1S
n.�/ induced from zGs .
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STRING STRUCTURES AND CANONICAL 3-FORMS

CORBETT REDDEN

Using basic homotopy constructions, we show that isomorphism classes of
string structures on spin bundles are naturally given by certain degree 3
cohomology classes, which we call string classes, on the total space of the
bundle. Using a Hodge isomorphism, we then show that the harmonic repre-
sentative of a string class gives rise to a canonical 3-form on the base space,
refining the associated differential character. We explicitly calculate this
3-form for homogeneous metrics on 3-spheres, and we discuss how the co-
homology theory tmf could potentially encode obstructions to positive Ricci
curvature metrics.

1. Introduction

Degree four characteristic classes arise as obstructions in several ways in math and
theoretical physics. This is analogous to the way the Stiefel–Whitney classes w1

and w2 encode obstructions to orientations and spin structures on a manifold M .
One usually encounters the degree four classes when considering structures anal-
ogous to the spin structure, but on mapping spaces Map(6,M), where 6 is a 1-
or 2-dimensional manifold. It is common to say that 1

2 p1(M) = 0 ∈ H 4(M;Z) is
the obstruction to forming a string structure on a manifold M .

In this paper, we only deal with a homotopy-theoretic version of string struc-
tures. While geometric notions, such as [Coquereaux and Pilch 1989; Stolz and
Teichner 2004; Waldorf 2009], are necessary for applications, we show we can re-
cover some of this geometric information from the topological data for free. When
dealing with these degree 4 classes, one usually must also deal with the associated
differential characters. We naturally obtain globally defined forms representing
these characters. We also speculate on the possibility that the string orientation of
tmf may encode obstructions to positive Ricci curvature metrics. This would be
analogous to the obstructions for positive scalar curvature metrics encoded in the
spin orientation of KO.

This work was partially supported by the NSF RTG grant DMS-0739208.
MSC2000: primary 57R15, 58J28; secondary 58A14, 55N34, 53C05.
Keywords: string structure, differential characters, positive Ricci curvature, elliptic cohomology.
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Throughout, all manifolds will be compact, connected, oriented, smooth, and
without boundary. We now set up notation. Let G be a compact, simply connected,
simple Lie group and λ ∈ H 4(BG;Z) a universal characteristic class. Let P π

−→M
be a principal G-bundle with connection 2, and let

λ(P) ∈ H 4(M;Z), λ(2) ∈�4(M), λ̌(2) ∈ Ȟ 4(M),

respectively be the naturally induced characteristic class, Chern–Weil form, and
Cheeger–Simons differential character. The differential character is closely related
to the Chern–Simons form CSλ(2) ∈ �3(P). Finally, g will be a Riemannian
metric on M . (In Section 2, we also consider more general G and λ.)

To the characteristic class

λ ∈ H 4(BG;Z)∼= H 3(G;Z)∼= π3(G)∼= Z,

one can associate a topological group G̃λ and homomorphism G̃λ → G killing
off the corresponding element in π3(G) and inducing isomorphisms in all higher
homotopy groups [Stolz 1996; Stolz and Teichner 2004; Baez et al. 2007; Hen-
riques 2008; Schommer-Pries 2009]. When G=Spin(k) and λ= 1

2 p1, the resulting
group is commonly known as String(k). While the actual groups G̃λ are not easy
to describe, their homotopy type is clearly fixed. Therefore, we base our construc-
tions only on the homotopy type. While more concrete models of G̃λ lead to more
geometric definitions of G̃λ-structures, we only consider the problem of lifting the
classifying map from BG to B̃Gλ. We call a specific choice of lift a trivialization
of the cohomology class λ.

In Section 2, we show that, up to homotopy, such trivializations of λ are naturally
equivalent to cohomology classes S∈ H 3(P;Z) that restrict to �λ∈ H 3(G;Z) on
the fibers. Here, �λ is the class that universally transgresses to λ. These classes
S are referred to as λ-trivialization classes. In the case where G = Spin(k) and
λ = 1

2 p1, we see that the homotopy class of a string structure is equivalent to its
string class S. An important consequence is that one can describe an element in
string bordism by a spin manifold M and string class S ∈ H 3(Spin(T M);Z).

In fact, these statements hold in greater generality, and Section 2 considers the
more general case where G is a topological group and λ∈ H n(BG; H). Homotopy
classes of lifts to B̃Gλ still induce canonical classes in H n−1(P; H), and there is
an equivalence when H̃ i (BG; H)= 0 for i < n.

In Section 3, we analyze the harmonic representative of a λ-trivialization class
S on P π

−→ M . The metric on P is naturally induced by a connection 2 on P
and a Riemannian metric g on M . The harmonic 3-forms on P , in an adiabatic
limit, were previously analyzed in [Redden 2008]. In Theorem 3.7, we see that the
induced Hodge isomorphism H 3(P;R) ∼=−→�3(P) sends the string class S to the 3-
form CSλ(2)−π∗HS,g,2. We call the form HS,g,2 ∈�

3(M) the canonical 3-form
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associated to the λ-trivialization class, metric, and connection. Proposition 3.12
states

d∗HS,g,2 = 0 ∈�2(M) and ȞS,g,2 = λ̌(2) ∈ Ȟ 4(M),

where ȞS,g,2 is the induced differential character. Thus, the form HS,g,2 lifts
λ̌(2) to take values in R instead of R/Z. This lift is independent of the metric
on M ; the metric picks out the forms with smallest norm lifting λ̌(2).

We note that any time one encounters λ̌(2) and λ(P) = 0, the form HS,g,2 is
relevant because it gives a purely local version of λ̌(2). This situation arises in
theoretical physics under the guise of anomaly cancellation. It also arises when
constructing the loop group extension bundle L̂ P→ L P restricting to L̂G→ LG.

In Sections 4–6, we deal exclusively with string structures on the frame bundle
Spin(T M)→ M of a manifold with spin structure. Given a string class S and
Riemannian metric g, we use the Levi-Civita connection to produce the canonical
3-form HS,g.

Section 4 is largely motivational and provides background information on how
string structures arise and why they are important. In particular, we discuss the
string orientation

MString σ
−→ tmf

of the cohomology theory of topological modular forms [Hopkins 2002] and its
tentative relationship to index theory on loop spaces. This is analogous to the
well-understood relationship between KO-theory and index theory. A theorem of
Hitchin shows that the spin orientation of KO encodes obstructions to positive
scalar curvature metrics. In the hope of an analogous theorem, Question 4.3 asks,
If (M,S, g) is a closed Riemannian n-manifold with string class S satisfying both
Ric(g) > 0 and HS,g = 0, does this imply that σ [M,S] = 0 ∈ tmf−n(pt)?

In Section 5, we give an equivalent reformulation of Question 4.3. One can
use the canonical 3-form HS,g to modify the Levi-Civita connection, inducing a
metric connection ∇S,g with torsion. Since the metric is used to “raise an index”
of HS,g, the global rescaling of M determines a canonical 1-parameter family
of connections associated to HS,g. This converges to the Levi-Civita connection
in the large volume limit. Proposition 5.4 states that the simultaneous condition
(Ric(g) > 0, HS,g = 0) is equivalent to the modified connection having positive
Ricci curvature in a small volume limit. An interesting side note is the alternate
description of the Levi-Civita connection. For a fixed metric g, the Levi-Civita
connection is the unique metric connection maximizing the Ricci curvature.

In Section 6, we examine Question 4.3 in the case where M= S3 with a homoge-
neous metric (under the left or right action of S3∼=SU(2)). In this case, the answer
to Question 4.3 is yes, but not if either of the conditions (Ric(g) > 0, HS,g = 0)
are weakened in an obvious way. The only (S, g) satisfying both conditions is the
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string class and round metric induced from D4. In this case, the string bordism class
is obviously 0. However, there is a 1-parameter family of left-invariant metrics g
satisfying Ric(g) ≥ 0 and HR,g = 0, where R is induced by the right-invariant
framing. Since σ [S3,R] = 1/24 ∈ tmf−3(pt), we see that our question would have
a negative answer if one were to weaken the curvature condition. Also, one can find
Ricci positive metrics g such that HR,g is arbitrarily small, so one cannot easily
weaken the condition HS,g = 0 either.

We close by noting that Section 3 is part of a more general story. The results of
[Redden 2008] and Section 2 imply that the adiabatic-harmonic representative of a
spinc class gives a canonical 2-form refining the flat differential character W̌3(2).
Similarly, the harmonic representative of an SU-class on a U (n)-bundle canonically
gives a 1-form refining the character č1(2). It appears there is a very general
relationship between certain cohomology classes on a bundle P , their harmonic
representatives, and the associated differential characters. The author is currently
attempting to prove and properly understand these relations.

2. Trivializations of characteristic classes

In this section we make some observations on the general theory of trivializing a
characteristic class, and we apply it to the Pontrjagin class 1

2 p1 ∈ H 4(BSpin;Z) to
obtain results in subsequent sections. In the case of spin structures, or trivializations
ofw2, the results in this section are quite standard. In fact, this section is essentially
a rewriting of [Lawson and Michelsohn 1989, Chapter 2.1] so that it applies in
greater generality.

Since we will frequently use the notions of homotopy fibers and Eilenberg–
Mac Lane spaces, we recall a couple of key facts. If H is an abelian group,1 then
an Eilenberg–Mac Lane space of type K (H, n) is a space with the only nontriv-
ial homotopy group being πn K (H, n) ∼= H . The space K (H, n) is unique up to
homotopy and is the classifying space for ordinary cohomology; that is, for a CW-
complex X ,

H n(X; H)∼= [X, K (H, n)],

where the right side is homotopy classes of based maps X → K (H, n). Further-
more, the loopspace functor � induces a homotopy equivalence

�K (H, n)' K (H, n− 1) for n > 1.

The homotopy fiber of a map is defined as the pullback of the pathspace fibration.
Given a space Y with basepoint y1, we obtain the pathspace

PY = {γ : [0, 1] → Y | γ (1)= y1}.

1 H is unrelated to the canonical forms in subsequent sections.
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The natural map PY → Y given by γ (0) is a fibration whose fiber is homotopic
to �Y . In fact, �Y acts on the total space of this fibration. The homotopy fiber
X̃ f of a map X f

−→ Y is then the actual pullback of PY . If the homotopy fiber
construction is repeated, one obtains a sequence of fibrations homotopic to

· · ·�X̃ f →�X
� f
−→�Y → X̃ f → X

f
−→ Y.

Now, let G be a connected topological group (of CW type so that standard
classifying space constructions apply). Then, BG is the classifying space for G-
bundles, and H∗(BG; H) is the cohomology of BG with coefficients in H . The
examples we will be concerned with are when G is a classical Lie group such as
SO(n) or Spin(n), and H = Z or Z/2. Consider a universal characteristic class
λ ∈ H n(BG; H), equivalent to a homotopy class of maps

BG
λ
−→ K (H, n).

We fix a specific map λ and will not distinguish notationally between the map and
the cohomology class.

Let B̃Gλ be the homotopy fiber of BG λ
−→ K (H, n). This gives rise to the

sequence

· · · → G
�λ
−−→ K (H, n− 1)→ B̃Gλ→ BG λ

−→ K (H, n)

of fibrations up to homotopy. Let P π
−→ M be a principal G-bundle over the

space M ; that is, P has a free continuous (right) G-action with quotient map
π : P → P/G ∼= M . Any such bundle P can be obtained as the pullback of
the universal bundle

P

π

��

f ∗ // EG

π

��
M

f // BG.

Consequently, any G-bundle has a natural characteristic class

λ(P) := f ∗λ ∈ H n(M; H).

Definition 2.1. A trivialization of the characteristic class λ on P is a lift of the
classifying map to B̃Gλ, that is, a lift f̃

B̃Gλ

��
M

f̃
<<y

y
y

y f // BG.

We say two trivializations f̃0 and f̃1 are homotopic if they are homotopic through
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the space of lifts, that is, if there exists a homotopy F̃ : [0, 1] × M → B̃Gλ such
that F̃ |0 = f̃0, F̃ |1 = f̃1, and F̃ |t is a lift of f for all t ∈ [0, 1].

Proposition 2.2. Let P π
−→M be a G-bundle classified by the map f : M→ BG.

(1) There exists a trivialization of λ on P if and only if λ(P)= 0 ∈ H n(M; H).

(2) If λ(P) = 0, the set of trivializations of λ up to homotopy has a free and
transitive action of H n−1(M; H); that is, it is an H n−1(M; H)-torsor.

Proof. Part (1) follows from the definition of the homotopy fiber. A lift f̃ is
precisely the choice of a nullhomotopy of λ ◦ f : M → K (H, n), and λ ◦ f is
nullhomotopic precisely when the cohomology class λ(P)= 0.

For part (2), assume an initial trivialization f̃0. This is equivalent to a global
section f̃0 : M → f ∗ B̃Gλ, and B̃Gλ → BG is a fibration with fibers of type
�K (H, n)' K (H, n− 1). In fact the H-space �K (H, n) acts fiberwise on B̃Gλ,
so a global section f̃0 induces a fiber homotopy equivalence

M ×�K (H, n) ' //

$$

f ∗ B̃Gλ

~~
M.

Therefore, the homotopy class of any other section f̃1 :M→ f ∗ B̃Gλ is equivalent
to the homotopy class of a function M→�K (H, n)' K (H, n− 1). �

Note that the connectedness of G implies that BG is simply connected, so we
don’t have to use local coefficients when dealing with the cohomology of fibers.
The cohomology of any fiber is canonically isomorphic to H∗(G; H), and we have
a well-defined “restriction to fibers” map in cohomology, given by

i∗ : H∗(P; H)→ H∗(G; H).

Proposition 2.3. (1) A trivialization f̃ of λ(P) gives a canonical cohomology
class in H n−1(P; H) that restricts on fibers to the class �λ ∈ H n−1(G; H).

(2) The cohomology class in (1) only depends on the homotopy class of f̃ .

(3) Furthermore, H n−1(M; H) acts equivariantly on the homotopy classes of λ-
trivializations and H n−1(P; H) via π∗.

Proof. For part (1), consider the universal pullback bundle

EG

��

5∗EG5∗oo

��
BG B̃Gλ

5oo
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Then, a lift f̃ : M → B̃Gλ such that 5 ◦ f̃ = f is equivalent to a G-equivariant
map f̃ ∗ : P→5∗EG such that 5∗ ◦ f̃ ∗ = f ∗.

Since EG is contractible, 5∗EG is a K (H, n − 1) space, as evidenced by the
natural homotopy equivalence of fibrations given by

G //

'

��

5∗EG
**

'

��
B̃Gλ.

�BG �λ // �K (H, n)

44

Therefore, any lift f̃ is equivalent to f̃ ∗ : P → 5∗EG ' K (H, n − 1). When
restricted to a fiber, f̃ ∗ :G→5∗EG is equivalent to �λ :G→ K (H, n−1). This
is shown in the following commutative diagram:

K (H, n− 1)

5∗xx ��
P

��

f ∗ //

f̃ ∗
33

p
n

l
j h

EG

��

B̃Gλ

5xx
M

f //

f̃ 22

p
n

l
j h f e

BG

For part (2), a homotopy F̃ between any two trivializations f̃0 and f̃1 naturally
lifts to an equivariant homotopy F̃∗ between the bundle maps f̃ ∗0 and f̃ ∗1 . There-
fore, the cohomology class f̃ ∗ ∈ H n−1(P; H) of a trivialization only depends on
the homotopy class of f̃ .

For part (3), the fiberwise action of �K (H, n) on B̃Gλ
5
−→ BG naturally pulls

back via π∗ to an action on5∗EG. If f̃1= φ · f̃0, where φ :M→�K (H, n), then

f̃ ∗1 = π
∗φ · f̃ ∗0 .

Therefore, if two homotopy classes trivializations [ f̃0] and [ f̃1] differ by [φ] ∈
H n−1(M, H), their natural cohomology classes [ f̃ ∗0 ], [ f̃

∗

1 ] ∈ H n−1(P, H) differ
by π∗[φ]. �

The previous proposition gives a map

(2.4) {λ-trivializations}/∼ −→ {S ∈ H n−1(P; H) | i∗S=�λ ∈ H n−1(G; H)}

that is equivariant under the natural H n−1(M; H) action. Here, ∼ denotes equiv-
alence up to homotopy. In general, this map is neither injective nor surjective. We
will refer to such a cohomology class S as λ-trivialization class.

Proposition 2.5. Suppose H̃ i (G; H)= 0 for i < n− 1. Then (2.4) is a bijection.
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Proof. The connectedness of G implies the E2 term in the Leray–Serre cohomology
spectral sequence for EG→ BG is

Er,s
2
∼= H r (BG; H s(G; H)),

and the contractibility of EG implies that Er,s
∞
= 0 for (r, s) 6= (0, 0). This, com-

bined with the vanishing of H i (G; H) for i < n−1, implies that the transgression

dn : E0,n−1
n

∼= H n−1(G; H)→ En,0
n
∼= H n(BG; H)

is an isomorphism. In fact, Lemma 2.6 says that dn(�λ)= λ.
The Leray–Serre cohomology spectral sequence for P π

−→M is pulled back from
the sequence for the universal bundle. This results in the exact sequence

0→ H n−1(M; H)
π∗

−→ H n−1(P; H)
i∗
−→ H n−1(G; H)

dn
−→ H n(M; H)

�λ 7→ λ(P).

If λ(P) = 0, then the action of H n−1(M; H) is free and transitive on classes in
H n−1(P; H) restricting to �λ. Since (2.4) is an equivariant map, and both sides
are torsors for H n−1(M; H), it must be a bijection. �

Lemma 2.6. Suppose that H̃ i (X)= 0 for i < n. Then, the cohomology transgres-
sion for the pathspace fibration�X ↪→ P X→ X is the inverse of the loop functor;
that is, d−1

n =� in

H n−1(�X; H)
dn

∼=

--
H n(X; H).

�

nn

Proof. For the fibration �X ↪→ P X → X , the transgression and loop functor are
related by

H n(X; H)

��

� // H n−1(�X; H)

En,0
n E0,n−1

n .
dnoo

OO

This follows from the general relationship between the transgression and coho-
mology loop suspension [Serre 1951]. If H̃ i (X; H) = 0 for i < n, then there is
no room for any nontrivial differentials in the Serre spectral sequence until dn .
Therefore, En,0

n
∼= H n(X; H), E0,n−1

n
∼= H n−1(�X; H) and dn is an isomorphism

with inverse �. �

Finally, we wish to make a general note about stable cohomology classes. The
usual examples are Chern classes, Pontryagin classes, and Stiefel–Whitney classes,
and they correspond to the stable cohomology of classifying spaces for the groups
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U (k) and O(k). In general, assume one has a sequence of groups {G(k)} and
natural inclusions G(k) ↪→ G(k+ 1) inducing maps

· · · → BG(k)→ BG(k+ 1)→ BG(k+ 2)→ · · ·

such that the cohomology stabilizes. We then refer to the cohomology of BG =
limk→∞ BG(k). Any cohomology class λ ∈ H n(BG; H) is stable and defines a
sequence of cohomology classes λk ∈ H n(BG(k); H) for all k:

H n(BG; H)→ H n(BG(k); H), λ 7→ λk,

though the k-subscript is usually unnecessary and dropped. Given a G(k)-bundle
P(k) classified by f : M → BG(k), one can stably extend to a G(k+l)-bundle
P(k+ l) by M f

−→ BG(k)→ BG(k+ l). It is obvious that the characteristic class
is stable in that λk+l(P(k+ l))= λk(P(k)) ∈ H n(M; H).

Proposition 2.7. Consider λ ∈ H n(BG; H). A trivialization of λk on any G(k)-
bundle naturally induces a trivialization of λ on any stable extension of P.

Proof. This follows from the naturality of homotopy fibers. If we consider the
inclusion map ι : BG(k)→ BG(k+ 1), then

B̃G(k)λ = λ∗k P K (H, n)= (λk+1 ◦ ι)
∗P K (H, n)= ι∗ ˜BG(k+ 1)λ.

Drawing this bundle map, we have

B̃G(k)λ

��

// ˜BG(k+ 1)λ

��
M

f̃
;;

f // BG(k) // BG(k+ 1).

Any trivialization of B̃G(k)λ naturally extends to a trivialization of ˜BG(k+ 1)λ
by composition, and this process can be continued indefinitely. �

To the G(k1)-bundle P1
π1
−→M and G(k2)-bundle P2

π2
−→M we can associate the

G(k1)×G(k2)-bundle P1×M P2→ M . If there are inclusions

BG(k1)× BG(k2)
ι1×ι2
−−−→ BG(k1+ k2),

the bundle P1×M P2 is also naturally a G(k1+ k2)-bundle.
Suppose that H i (BG; H)= 0 for i < n. The Kunneth formula then implies the

additivity of λ ∈ H n(BG; H):

(2.8) λ(P1×M P2)= λ(P1)+ λ(P2) ∈ H n(M; H).
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The bottom square of the diagram below then commutes up to homotopy, implying
the existence of the dotted arrow map.

˜BG(k1)λ× ˜BG(k2)λ //___

��

˜BG(k1+ k2)λ

��
BG(k1)× BG(k2)

λ×λ

��

// BG(k1+ k2)

λ

��
K (H, n)× K (H, n) // K (H, n)

Therefore, a trivialization of λ on the bundles P1 and P2 induces a trivialization
of λ on P1×M P2 when viewed as a G(k1+ k2)-bundle (at least up to homotopy).
This can also be seen explicitly in terms of cohomology classes.

Proposition 2.9. For l = 1, 2, let Pl
πl
−→M be a G(kl)-bundle. Let P1×M P2→M

be the G(k1)×G(k2)-bundle and P→ M the induced G(k1+k2)-bundle. Assume
H i (BG(k); H)=0 for i<n (here k=k1, k2, k1+k2) and λ∈H n(BG; H). Then up
to homotopy, a λ-trivialization on any two of {P, P1, P2} induces a λ-trivialization
on the third.

Proof. Equation (2.8) implies the existence of a λ-trivialization on the third bundle
if the other two admit λ-trivializations. Proposition 2.5 states the choice of a trivial-
ization, up to homotopy, is equivalent to a λ-trivialization class Si ∈ H n−1(Pi ; H)
restricting to �λ on the fibers. We now show that the choice of λ-trivialization
class on any two bundles determines one on the third bundle.

Note that there are natural bundle maps

P1×M P2

π1yy π2 %%

ι1×ι2 // P

P1 P2.

We seek solutions to the equation

(ι1× ι2)
∗S= π∗S1+π

∗S2.

Just as in Proposition 2.5, the following commutative diagram is obtained from the
Serre spectral sequences for the bundles P and P1×M P2:

0→ H n−1(M) // H n−1(P) //

(ι1×ι2)
∗

��

H n−1(G(k1+ k2))

(ι1×ι2)
∗

��

// H n(M)

0→ H n−1(M) // H n−1(P1×M P2) // H n−1(G(k1))⊕ H n−1(G(k2)) // H n(M)

The cohomology coefficients are all H but suppressed for spacing purposes.
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We know that (ι1 × ι2)∗λk1+k2 = λk1 ⊕ λk2 . For any three classes S,S1,S2 in
the respective bundles, the exact sequence implies

(ι1× ι2)
∗S−π∗1 S1−π

∗

2 S2 = π
∗φ

for a unique φ ∈ H n−1(M; H). If we fix two of the classes S,S1,S2, modifying
the third by φ gives us a solution to our desired equation. �

The previous proposition is useful when dealing with cobordism theories. In
the Pontryagin–Thom construction, the relevant extra structure takes place on the
stable normal bundle. Suppose the m-manifold M already has a G-structure on
the stable normal bundle ν(M). A lift of the classifying map to B̃Gλ induces
maps on the Thom spaces, which in turn give an element in the G̃λ-bordism group
MG̃−m

λ (pt).
However, it is often easier or more desirable to describe structures on the tangent

bundle. For any manifold M , T M⊕ν(M) is canonically isomorphic to the trivial
bundle, so Proposition 2.9 often allows us to construct cobordism classes while
only dealing with T M , or G(T M).

Corollary 2.10. Let λ ∈ H n(BG; H) be a stable class and suppose H i (BG; H)
vanishes for i < n. Then, an m-manifold M with G-structure and λ-trivialization
class S ∈ H n−1(G(T M); H) canonically determines a G̃λ-bordism class [M,S]

in MG̃−m
λ (pt).

We now apply Propositions 2.2, 2.3, and 2.5 and Corollary 2.10 to recover stan-
dard information on spin and spinc structures as well as a convenient description
of string structures.

2a. Spin structures. For k> 2, π1(SO(k))∼=Z/2, and the nontrivial double cover
is known as Spin(k). The Hurewicz image of the generator of π1(SO(k)) is the
generator of H 1(SO(k);Z/2), which transgresses to w2 ∈ H 2(BSO(k);Z/2). It is
then clear that

B̃SO(k)w2 ' BSpin(k).

Moreover, there is a spin orientation of KO-theory α : MSpin→KO. Propositions
2.2, 2.3, 2.5, and Corollary 2.10 imply the following.

Proposition 2.11. Let P π
−→M be a principal SO(k)-bundle.

• P admits a spin structure if and only if w2(P)= 0 ∈ H 2(M;Z/2).

• The set of spin structures up to isomorphism is naturally equivalent to the
set of spin classes S ∈ H 1(P;Z/2) that restrict to the nontrivial class in
H 1(SO(k);Z/2).

• The set of spin structures up to isomorphism is a torsor for H 1(M;Z/2).
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• An oriented m-manifold M with spin class S ∈ H 1(SO(T M);Z/2) gives
rise to the bordism class [M,S] ∈ MSpin−m(pt) and the KO-theory class
α[M,S] ∈ KO−m(pt).

Geometrically, the statements can be understood by interpreting H 1( · ;Z/2) in
terms of double covers; see [Lawson and Michelsohn 1989, Chapter 2.1]. Then, a
spin structure on P is an equivariant double cover of P restricting fiberwise to the
nontrivial double cover of SO(k).

2b. Spinc structures. For k > 2,

H 1(SO(k);Z)= 0 and H 2(SO(k);Z)∼= H1(SO(k);Z)∼= π1(SO(k))∼= Z/2.

The group Spinc(k) = Spin(k)×Z/2 S1 is a nontrivial S1-bundle over SO(k) and
hence classified by the generator of H 2(SO(k);Z); this generator transgresses to
W3 ∈ H 3(BSO(k);Z)∼= Z/2. Therefore,

B̃SO(k)W3 ' BSpinc(k).

Furthermore, there is a spinc orientation MSpinc
→ K of K -theory. Propositions

2.2, 2.3, 2.5, and Corollary 2.10 imply the following.

Proposition 2.12. Let P π
−→M be a principal SO(k)-bundle.

• P admits a spinc structure if and only if W3(P)= 0 ∈ H 3(M;Z).

• The set of spinc structures up to homotopy is naturally equivalent to the set of
classes S ∈ H 2(P;Z) that restrict to the nontrivial class in H 2(SO(k);Z).

• The set of spinc structures up to homotopy is a torsor for H 2(M;Z).

• An oriented m-manifold M with spinc class S ∈ H 2(SO(T M);Z) gives rise
to the bordism class [M,S] ∈MSpinc −m(pt) and K -theory class ∈ K−m(pt).

Again, the statements above all have direct geometric interpretations based on
K (Z, 2) ' BS1. A spinc structure is an equivariant S1-extension of P restricting
to the nontrivial extension on fibers. One can always tensor an S1-bundle over P
with the pullback of an S1-bundle on M .

2c. String structures. Let G be any compact simple simply connected Lie group.
Then, π2(G)=0 and π3(G)∼=H 3(G;Z)∼=Z. What happens when you kill π3(G)?
The 3-connected cover G〈4〉→ G cannot be a finite-dimensional Lie group, since
any connected nonabelian Lie group has nontrivial π3. However, there do exist
topological groups G̃→ G that are 3-connected coverings. Various constructions
can be found in [Stolz 1996; Stolz and Teichner 2004; Baez et al. 2007; Henriques
2008; Schommer-Pries 2009]. The results of all these imply the following (and
usually one only needs G to be semisimple):
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Choose a “level” λ ∈ H 4(BG;Z)∼= H 3(G;Z). Then, there exists a topological
group and continuous homomorphism G〈λ〉→G such that G〈λ〉 has the homotopy
type of the fiber of G �λ

−−→ K (Z, 3). Applying the classifying space functor gives

BG〈λ〉 → BG λ
−→ K (Z, 4).

When this construction is applied to G=Spin(k)with λ= 1
2 p1∈H 4(BSpin(k);Z),

the resulting topological group is known as String(k). Trivializations of 1
2 p1 are

commonly referred to as string structures. Applying the classifying space functor
gives us BString(k), and it is clear that

BString(k)' ˜BSpin(k) 1
2 p1
.

Remark 2.13. While multiple models for G〈λ〉 exist, there is no “easy” model
like the one Clifford algebras provide for the Spin groups. One must deal with
some combination of higher categories, von Neumann algebras, or gerbes, each of
which have particular subtleties. In this paper, we avoid these subtleties by only
considering the homotopy type of G〈λ〉. While we lose some information, we
can characterize lifts of structure groups purely in terms of ordinary cohomology
classes.

Remark 2.14. One should be careful when talking about spin, spinc, and string
structures up to homotopy. In addition to ignoring geometric considerations, these
structures are naturally categories and have automorphisms; we only deal with
isomorphism classes. The automorphisms play an important role, especially if one
wishes to talk about structures locally or glue together manifolds with structures.
See [Stolz and Teichner 2004; Waldorf 2009] for more concrete and categorical
models of string structures.

For k ≥ 3, Spin(k) is simply connected and compact; thus H̃ i (Spin(k);Z) = 0
for i < 3. Also, there is a generalized cohomology theory tmf that has a string
orientation MString σ

−→ tmf, as discussed more in Section 4. Propositions 2.2, 2.3
and 2.5 and Corollary 2.10 then imply the following statements, which can obvi-
ously be rewritten for arbitrary λ ∈ H 4(BG;Z) (except for the string orientation).

Definition 2.15. Let P π
−→M be a principal Spin(k)-bundle for k ≥ 3.

• A string structure on a principal Spin(k)-bundle P→ M is a lift of the clas-
sifying map to BString(k), that is, a lift f̃

BString(k)

��
M

f̃
::u

u
u

u
u f // BSpin(k).
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• A string class S ∈ H 3(P;Z) is a cohomology class that restricts fiberwise to
the stable generator of H 3(Spin(k);Z).

Proposition 2.16. Let P π
−→M be a principal Spin(k)-bundle for k ≥ 3.

• P admits a string structure if and only if 1
2 p1(P)= 0 ∈ H 4(M;Z).

• Up to homotopy, the choice of a string structure is equivalent to the choice of
a string class S ∈ H 3(P;Z).

• If S is a string class, then so is S + π∗φ for φ ∈ H 3(M;Z). This natural
action of H 3(M;Z) on string classes is free and transitive; that is, the set of
string classes is a torsor for H 3(M;Z).

• A spin m-manifold M with string class S ∈ H 3(Spin(T M);Z) determines
canonical classes [M,S] ∈ MString−m(pt) and σ [M,S] ∈ tmf−m(pt).

Remark 2.17. The cohomology H 3(Spin(k);Z) does not stabilize until k = 5,
so we briefly describe the stable generator in dimensions 3 and 4. Under the
low-dimensional isomorphisms with the symplectic groups, the groups Spin(k)
for k = 3, 4, 5 are related through the diagram

Spin(3) � � //

∼=

��

Spin(4)

∼=

��

� � // Spin(5)

∼=

��
Sp(1) � � Id× Id //

� _

��

Sp(1)×Sp(1) � � //
� _

��

Sp(2)� _

��
H

� � Id× Id // H⊕H
� � // GL(H, 2).

The Spin(4) decomposition is induced by left and right multiplications of the unit
quaternions. The second inclusion Spin(4) ↪→ Spin(5) is isomorphic to the matrix
inclusion Sp(1)×Sp(1) ↪→Sp(2) along the diagonal. Since H 3(Sp(k);Z) stabilizes
at k = 1, we denote by 1 a generator of H 3(Sp(1);Z)∼= H 3(SU(2);Z). Then

H 3(Spin(5);Z) // H 3(Spin(4);Z) // H 3(Spin(3);Z)

1 � // (1, 1) � // 2.

We originally defined p1=−c2. Therefore, we see that� 1
2 p1 ∈ H 3(Spin(3);Z)

is twice a generator, and in fact � 1
2 p1 = −2�c2 ∈ H 3(S3

;Z), where �c2 is the
usual generator.

3. Harmonic representative of a string class

In Section 2 we showed that, up to homotopy, a string structure on a principal
Spin(k)-bundle P→M is equivalent to a string class S∈ H 3(P;Z). In this section
we consider the harmonic representative of a string class. This will depend on the
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choice of a metric on a closed manifold M , a connection on P , and it involves
taking an adiabatic limit. We also must pass from Z coefficients to R coefficients
and lose torsion information. The harmonic representative of S is the Chern–
Simons 3-form associated to the connection, minus a 3-form on M representing the
differential cohomology class ˇ12 p1(2). The corresponding result holds for arbitrary
λ ∈ H 4(BG;Z), where G is a compact, simple, simply connected Lie group.

3a. Background: Differential characters. The canonical 3-form of Theorem 3.7
is best understood in the language of differential characters, originally developed
in [Cheeger and Simons 1985]. See also [Freed 2002]. Let Ci (M) and Zi (M)
denote the group of smooth i-chains and cycles on M , respectively. Let �i

Z(M)
denote the closed differential i-forms with integral periods; that is, their image in
H i (M;R) lies in the image of H i (M;Z)→ H i (M;R). The group of differential
characters Ȟ i (M) is defined as certain homomorphisms satisfying a transgression
property:

Ȟ i (M) := {χ : Zi−1(M)→ R/Z | there exists ω ∈�i (M) satisfying∫
6

c∗ω = χ(∂c) mod Z for all c :6→ M ∈ Ci (M)}

The form ω associated to a character χ must be unique, and in fact ω ∈ �i
Z(M).

The character σ also determines a cohomology class in H i (M;Z) whose image in
H i (M;R) is the same as [ω]. These two maps induce the short exact sequences

0→
�i−1(M)

�i−1
Z (M)

→Ȟ i (M)→ H i (M;Z)→ 0,(3.1)

0→ H i−1(M;R/Z)→Ȟ i (M)→�i
Z(M)→ 0,(3.2)

0→
H i−1(M;R)
H i−1(M;Z)

→Ȟ i (M)→ H i (M;Z)×H i (M;R)�
i
Z(M)→ 0.(3.3)

In fact, these exact sequences uniquely characterize the groups Ȟ i (M) [Simons
and Sullivan 2008]; one can refer to Ȟ∗(M) as the differential cohomology of
M without specifying the exact model being used, just as one refers to ordinary
cohomology without specifying the model.

The importance of differential cohomology is due to the natural factoring of
the Chern–Weil homomorphism through Ȟ∗(M). Any compact Lie group G and
universal class λ∈ H 2i (BG;Z) determine the following for any G-bundle P→M
with connection 2:

Characteristic class λ(P) ∈ H 2i (M;Z)
Chern–Weil form λ(2) ∈�2i (M)
Chern–Simons form CSλ(2) ∈�2i−1(P)
Differential character λ̌(2) ∈ Ȟ 2i (M)
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The integral class and form associated to λ̌(2) are λ(P) and λ(2), respectively.
Suppose G is compact, semisimple and simply connected. Let λ ∈ H 4(BG;Z).

Then, as discussed in [Freed 1995], the associated Chern–Weil form is

λ(2)= 〈�∧�〉 ∈�4(M),

where � is the curvature of 2, and 〈 · , · 〉 is a suitably normalized Ad-invariant
inner product on g. In this case, the Chern–Simons form is

CSλ(2)= 〈2∧�〉− 1
6〈2∧ [2∧2]〉 ∈�

3(P),

and

(3.4) [i∗ CSλ(2)] =�λ ∈ H 3(G;R).

Suppose that c : X→ M is a 3-cycle. The assumptions on G imply that c∗P→ X
admits a global section p. Then

λ̌(2)(c)=
∫

X
p∗(c∗ CSλ(2)) mod Z.

Hence, the information contained in λ̌(2) ∈ Ȟ 4(M) is simply the R/Z-periods
of the Chern–Simons 3-form. One is forced to only consider the R/Z-periods
because different global sections will give different R-periods. Note that when M
is a connected oriented 3-manifold, (3.3) implies

Ȟ 4(M)∼= H 3(M;R)/H 3(M;Z)∼= R/Z,

and the isomorphism is given by evaluating on the fundamental cycle [M]. On a
3-manifold, the element λ̌(2) ∈ Ȟ 4(M)∼= R/Z is often called the Chern–Simons
[1974] invariant or number of the connection2. This invariant motivated the theory
of differential characters.

3b. Hodge isomorphism on P. A Riemannian metric g on an n-manifold M in-
duces the Hodge star ∗ :3i T M→3n−i T M , creating the codifferential

d∗ := (−1)n(i+1)+1
∗ d∗ :�i (M)→�i−1(M).

The Hodge Laplacian is the operator

1g = dd∗+ d∗d = (d + d∗)2 :�i (M)→�i (M).

When M is closed (compact with no boundary), classical Hodge theory states that
there is a canonical isomorphism

H i (M;R)
5Ker1g

'

// Ker1g ⊂�
i (M).
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We will later denote Ker1g by Hi (M), though the forms in H3(P) will only be
harmonic in a limit.

Let (M, g) be a closed Riemannian manifold, and let P π
−→ M be a principal

G-bundle with connection 2 (G a compact, simple, simply connected Lie group).
This naturally gives rise to a one-parameter family of right-invariant Riemannian
metrics on P:

gδ := δ−2π∗g⊕ gG for δ > 0,

where gG is any biinvariant metric on G. (The metric gG exists since G is compact,
and it is unique up to a scaling constant because G is simple.) Conceptually, gδ
is given by using the connection to decompose T P into horizontal and vertical
spaces; the metrics on M and G determine metrics on the horizontal and vertical
components, respectively.

For any δ > 0, we have the harmonic forms Ker13
gδ ⊂ �3(P). In general

this finite-dimensional subspace varies with δ, and we will not be concerned with
Ker1gδ for any particular δ. Instead, we analyze the adiabatic limit, the limit as
δ→ 0. Note that we had to choose the metric gG . For this reason, it seems natural
to introduce the scaling factor δ and take a limit, thus removing the dependence on
the initial choice of gG . Indeed, this is supported by concrete calculations, where
the adiabatic limit appears to be of most interest.

Theorem 3.5 [Mazzeo and Melrose 1990; Dai 1991; Forman 1995]. The 1-para-
meter space Ker1i

gδ ⊂ �i (P) smoothly extends to δ = 0. Furthermore, there
is a spectral sequence computing limδ→0 Ker1gδ that is isomorphic to the Serre
spectral sequence.

This theorem holds in greater generality, and the context of each cited paper
applies to the principal G-bundles with metric that we are considering. The spectral
sequence mentioned is a Hodge-theoretic sequence, the details of which are given
in [Forman 1995] and also summarized in [Redden 2008]. The fact that Ker1gδ
extends continuously to δ= 0 (as a path in Grassmannian space) implies that there
is still a Hodge isomorphism

H i (P;R)
5Ker10

'

// limδ→0 Ker1gδ ⊂�
i (P).

We now introduce the notation

Hi (M) := Ker1g ⊂�
i (M),

Hi (P) := lim
δ→0

Ker1gδ ⊂�
i (P),

Hi (G) := Ker1gG ⊂�
i (G).

In [Redden 2008], the spectral sequence interpretation of H3(P) was used to give
the following description of harmonic 3-forms on P in the adiabatic limit.
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Theorem 3.6 [Redden 2008, Proposition 4.5 and Theorem 4.6]. Consider the set
(P π
−→M, g,2), where G is a compact simple Lie group. If λ(P)= 0∈ H 4(M;R),

then
H3(P)= R[CSλ(2)−π∗h]⊕π∗H3(M),

where h ∈�3(M) is the unique coexact form satisfying dh = λ(2).

When G is also simply connected, the Serre spectral sequence gives the follow-
ing exact sequence, as seen in Proposition 2.5:

0 // H 3(M;Z) π∗ // H 3(P;Z) i∗ // H 3(G;Z)
d4 // H 4(M;Z)

S � ? //______ �λ
� // λ(P)

Theorem 3.7. Consider (P π
−→M, g,2) where G is a simply connected compact

simple Lie group. Suppose that λ(P)= 0 ∈ H 4(M;Z) and that S ∈ H 3(P;Z) is a
λ-trivialization class, that is, i∗S = �λ ∈ H 3(G;Z). Then, the image of S under
the Hodge isomorphism is of the form

H 3(P;Z)→ H 3(P;R)
5Ker10

'

// H3(P)⊂�3(P)

S 7→ CSλ(2)−π∗HS,g,2,

where HS,g,2 ∈�
3(M). Alternatively, 5Ker10S−CSλ(2) ∈ π∗�3(M).

Proof. The orthogonal decomposition of H3(P) in Theorem 3.6 corresponds to a
splitting H 3(P;R)∼= H 3(G;R)⊕ H 3(M;R). We know π∗H 3(M;R) restricts to
0⊂ H 3(G;R). As mentioned in (3.4), both CSλ(2)−π∗h and S cohomologically
restrict to �λ ∈ H 3(G;R), so

5Ker10S− (CSλ(2)−π∗h) ∈ π∗H3(M).

Therefore, the harmonic representative of S must be of the form

CSλ(2)−π∗h−π∗h′,

with h′ ∈H3(M), and we define HS,g,2 := h+ h′ ∈�3(M). �

Remark 3.8. The theorem does not hold without taking an adiabatic limit. For a
general δ > 0,

5Ker1gδ
S−CSλ(2) /∈ π∗�3(M),

but instead will contain forms with bidegree (2,1) and (1,2) in the (horizontal,
vertical) decomposition of �3(P) given by the connection.

Remark 3.9. When restricted to the fibers, the Chern–Simons form is the standard
harmonic (biinvariant) form representing �λ; that is, i∗ CSλ(2) ∈ H3(G). Just
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as S is a cohomological extension of �λ to all of P , we see that 5Ker10S =

CSλ(2)−π∗HS,g,2 is a harmonic extension of �λ to all of P .

3c. Properties of canonical 3-form. Theorem 3.7 gives a canonical construction

(3.10) {λ-triv classes}×Met(M)×A(P)→�3(M), S, g,2 7→ HS,g,2.

We call HS,g,2 the canonical 3-form associated to (S, g,2). While Theorem 3.7
only uses information about S as a class in H 3(P;R), the integrality becomes
necessary when understanding HS,g,2 in terms of differential characters. The exact
sequence (3.1) gives rise to

0→�3
Z(M)→�3(M)→ Ȟ 4(M)→ H 4(M;Z)→ 0(3.11)

HS,g,2 7→ ȞS,g,2,

where the character ȞS,g,2 obtained via �3(M)→ Ȟ 4(M) is given by simply by
integrating HS,g,2 on cycles and reducing mod Z. Also, note that H 3(M;Z) acts
naturally on {λ-triv classes}, and it also acts on �3(M) ×Met(M) by adding a
harmonic representative.

Proposition 3.12. The construction (3.10) is equivariant with respect to the natu-
ral action of H 3(M;Z); that is, HS+π∗φ,g,2 = HS,g,2+5Ker1gφ.

Furthermore, the forms HS,g,2 satisfy the following:

• d∗HS,g,2 = 0 ∈�2(M),

• d HS,g,2 = λ(2) ∈�
4(M),

• ȞS,g,2 = λ̌(2) ∈ Ȟ 4(M).

Proof. The action of H 3(M;Z) on λ-trivialization classes is given by addition
under π∗, and the action on �3(M) is given by adding the harmonic representative
(with respect to a fixed metric M). Theorem 3.6 implies that for φ ∈ H 3(M;Z)
with harmonic representative 5Ker1gφ ∈H3(M),

π∗(5Ker1gφ)=5Ker10(π
∗φ) ∈�3(P).

The property d∗HS,g,2 = 0 also follows directly from Theorem 3.6. That
5Ker10S is closed implies

d(CSλ(2)−π∗HS,g,2)= 0,

π∗λ(2)−π∗d HS,g,2 = 0,

d HS,g,2 = λ(2),

with the last equality following from π∗ being injective on forms.
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Finally, suppose that X c
−→M is a smooth 3-cycle on M . Then the value of λ̌(2)

on (X, c) is
λ̌(2)(c)= c∗λ̌(2) ∈ Ȟ 4(X)∼= R/Z.

Now, standard obstruction theory implies that c∗P → X admits a global section
p : X→ c∗P , and it is easy to see that

p∗c∗ ˇCSλ(2)= p∗ ˇCSλ(c∗2)= c∗λ̌(2) ∈ Ȟ 4(X).

Because CSλ(2)− π∗HS,g,2 ∈ �
3
Z(P), we have ˇCSλ(2) = π∗ ȞS,g,2 ∈ Ȟ 3(P)

and hence

c∗λ̌(2)= p∗c∗ ˇCSλ(2)= p∗c∗π∗ ȞS,g,2

= p∗π∗c∗ ȞS,g,2 = c∗ ȞS,g,2 ∈ Ȟ 4(X).

This implies that for all 3-cycles X c
−→M

ȞS,g,2(c)= λ̌(2)(c),

and hence λ̌(2)= ȞS,g,2 ∈ Ȟ 4(M). (This also implies d HS,g,2 = λ(2).) �

Integrating the form HS,g,2 naturally gives values in R, and Proposition 3.12
says that reducing mod Z gives the same values as λ̌(P). In other words, the choice
of a λ-trivialization class naturally gives a lift

(3.13)

R

��
Z3(M)

λ̌(2) //

HS,g,2
::

R/Z,

and the action of H 3(M;Z) modifies the lift by the induced map Z3(M)→ Z.
While the actual form HS,g,2 depends on the choice of a metric, this lift does not.

Proposition 3.14. The lift in (3.13) is independent of the choice of metric g.

Proof. If g0 and g1 are two different metrics, then (3.11) implies

HS,g1,2− HS,g0,2 ∈�
3
Z(M).

The space of Riemannian metrics is contractible, so

HS,g1,2− HS,g0,2 ∈ d�2(M). �

The role of the metric in (3.10) is to pick out the forms HS,g,2 with smallest
norm still satisfying ȞS,g,2= λ̌(2). We denote the lift by HS,2∈ Ȟ 4

R(M). Here we
use the nonstandard notation of Ȟ 4

R(M) to denote characters Z3(M)→R satisfying
the usual transgression assumption.
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In summary, the construction (3.10) induces lifts of the standard differential
character construction, which are encoded in the following diagram:

{λ-triv classes}×Met(M)×A(P)
HS,g,2 //

��

�3(M)

��

{λ-triv classes}×A(P)
HS,2 //

��

Ȟ 4
R(M)

��

A(P)
λ̌(2) // Ȟ 4(M).

Remark 3.15. Stolz and Teichner [2004] define a geometric trivialization of λ(P)
as a trivialization of the extended Chern–Simons field theory on P → M . This
includes defining a lift of the differential character λ̌(2) to take values in R, and
it aligns nicely with the construction above. In fact, if H 3(M;Z) has no torsion,
then the choice of a lift of λ̌(2) to Ȟ 4

R(M) is equivalent to the choice of a λ-
trivialization class. Waldorf [2009] gives an explicit model for string structures
in terms of trivializations of a Chern–Simons 2-gerbe, and shows that a string
structure produces a 3-form on M . The 3-forms obtained in our construction are
a proper subset of those he obtained, analogous to the relationship between forms
representing a de Rham class and harmonic forms.

Note that one can also directly define the lift HS,2 without using the Hodge
isomorphism. On a 3-cycle c : X→ M ,

(3.16) HS,2(c)=
∫

X
p∗(CSλ(c∗2)− c∗S),

where p is any global section, and S is any de Rham representative of S. This is
a simple consequence of S = CSλ(2)− HS,g,2+ dβ. It is also easy to verify that
the integral on the right side is independent of p. In cases like Lemma 3.18, this
allows us to calculate the form HS,g,2 without solving a differential equation.

Suppose the G-bundle P π
−→ M is topologically trivial. Then, the choice of a

global section p :M→ P is equivalent to a trivialization P∼=M×G. The canonical
λ-trivialization on M ×G induces one on P , and the corresponding cohomology
class is given by the Kunneth isomorphism

(3.17) H 3(P;Z)∼= H 3(M;Z)⊕ H 3(G;Z), S↔ (0, �λ).

Lemma 3.18. Suppose P π
−→ M is a trivial bundle with λ-trivialization class S

induced by the trivialization p : M→ P. Then,

HS,g,2− p∗ CSλ(2) ∈ d�2(M).
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In particular, p∗ CSλ(2) = HS,2 as elements of Ȟ 4
R(M). If d∗ p∗ CSλ(2) = 0,

then p∗ CSλ(2)= HS,g,2 ∈�
3(M).

Proof. As seen in (3.17), p∗S= 0 ∈ H 3(M;Z). Therefore, (3.16) simplifies to∫
X

c∗HS,g,2 =

∫
X

c∗ p∗ CSλ(2)

for all 3-cycles c : X→ M , so [HS,g,2− p∗ CSλ(2)] = 0 ∈ H 3(M;R). �

One usually chooses λ ∈ H 4(BG;Z) ∼= Z to be the generator. This is because
B̃Gλ is the universal extension. This universality is also reflected in the associated
canonical 3-forms.

Proposition 3.19. If S ∈ H 3(P;Z) is a λ-trivialization class and ` ∈ Z, then `S is
an `λ-trivialization class, and H`S,g,2 = `HS,g,2 ∈�

3(P).

Proof. The first statement is obvious, and the second follows from the linearity of
the Hodge isomorphism. �

We now apply the construction above to G = Spin(k) for k ≥ 3 with λ= 1
2 p1 ∈

H 4(BSpin(k);Z) to canonically produce 3-forms associated to string structures.
Since Spin(4) ∼= SU(2) × SU(2) is not simple, we define the canonical 3-form
when k = 4 to be the one obtained by stabilizing to Spin(5), a process that does
not affect ˇ12 p1(2).2

Theorem 3.20. Let P π
−→M be a principal Spin(k)-bundle (k≥ 3) with connection

2 over the Riemannian manifold (M, g). Under the Hodge isomorphism (in an
adiabatic limit), a string class S ∈ H 3(P;Z) is represented by

5Ker10S= CS 1
2 p1
(2)−π∗HS,g,2 ∈�

3(P).

The canonical form HS,g,2 ∈�
3(M) is such that

• d∗HS,g,2 = 0 ∈�2(M),

• ȞS,g,2 = ˇ
1
2 p1(2) ∈ Ȟ 4(M), and

• the construction of HS,g,2 is equivariant with respect to the natural action of
H 3(M;Z).

In particular, consider the case where (M, g) is a Riemannian manifold with spin
structure satisfying 1

2 p1(M) = 0 ∈ H 4(M;Z). Then, we can let P = Spin(T M),
and we call a string structure on Spin(T M) a string structure on M . Letting 2 be
the Levi-Civita connection, this gives a map

(3.21) {String classes on M}×Met(M)→�3(M), S, g 7→ HS,g.

2The arguments in [Redden 2008] can be extended to semisimple groups, and Theorem 3.20 also
holds for k = 4 without stabilizing.
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4. Canonical 3-forms and the string orientation of tmf

We now review how string structures arise and give a possible new application of
the canonical 3-forms HS,g from (3.21). First recall some classical results from
index theory; an excellent source is [Lawson and Michelsohn 1989]. Suppose
M is an oriented closed manifold. A priori, one cannot form a spinor bundle
SO(M)×SO(n) S±→ M , because the spinor representations SO(n)→GL(S±) are
only projective. The choice of a spin structure, discussed in Section 2a, allows
one to define the spinor bundle S±M := Spin(M) ×Spin(n) S± and Dirac operator
6DM : 0(S±)→ 0(S∓).

While the Fredholm operator 6DM depends on the spin structure, the Atiyah–
Singer index theorem states that its index does not, and in fact

index( 6DM)= Â(M) ∈ Z.

Here, Â(M) is a topological invariant determined by a manifold’s Pontryagin
classes and is defined for any oriented manifold. In general Â(M) ∈ Q, but
Â(M)∈Z when w2(M)= 0. There is also a refinement of Â(M) given by the spin
orientation α : MSpin→ KO. This refinement can be thought of as the Clifford-
linear index, and it does depend on the spin structure.

(4.1)

KO−n(pt)

��
MSpin−n(pt) Â //

α

77

Z.

The KO-invariants usually appear in family index theorems, but they also contain
interesting information for a single manifold due to the torsion in KO−∗(pt).

Index theory is now a central part of mathematics, and one of its powerful ap-
plications is to the problem of when a closed manifold admits positive scalar cur-
vature metrics. The Lichnerowicz–Weitzenböck formula 6D2

M = ∇
∗
∇ +

1
4 s, which

relates 6DM to a positive operator and the scalar curvature s, implies the following:
If a closed spin manifold M admits a metric of positive scalar curvature, then
index( 6DM)= Â(M)=0 [Lichnerowicz 1962]. Furthermore, α[M]=0∈KO−n(pt)
for all spin structures [Hitchin 1974]. In fact, for simply connected spin manifolds
of dimension ≥ 5, all the α-invariants vanish if and only if M admits a metric of
positive scalar curvature [Stolz 1992].

There is an analogous story, though not fully developed, involving the Witten
genus, index theory on loop spaces, and elliptic cohomology. Witten [1988] used
intuition from theoretical physics and defined a topological invariant ϕW (M) known
as the Witten genus. He claimed it should be the S1-equivariant index of the Dirac
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operator on the free loop space L M ; that is,

“indexS1
6DL M ”= ϕW (M).

We place the left side in quotes because of analytic difficulties in defining a good
theory of Fredholm operators on infinite-dimensional manifolds. However, the
Witten genus (and other elliptic genera) are well defined, and one can make formal
sense of index theory on L M by using localization formulas or the representation
theory of loop groups. For a good overview on these ideas, see [Liu 1996]. While
ϕW (M) ∈ Q[[q]][q−1

] for any oriented manifold, for a string manifold, ϕW (M) is
the q-expansion of a modular form (M F) with integer coefficients and weight n/2,
and we say ϕW (M) ∈ M Fn . The intuitive reason is that when 1

2 p1(M) = 0, one
can define the spinor bundle on L M [Coquereaux and Pilch 1989]. We wish to
form L Spin(M) ×L Spin(n) S → L M , where S is a positive energy representa-
tion of L Spin(n). However, these representations are all projective, so one must
pass to an S1-extension ̂L Spin(n)→ L Spin(n). Topologically, our string class
S ∈ H 3(Spin(M);Z) transgresses to a class in H 2(L Spin(M);Z) that defines an
isomorphism class of S1-extension ̂L Spin(M)→ L Spin(M)→ L M . We say that
a string structure on M transgresses to a spin structure on L M (though in this paper
we have only discussed isomorphism classes of such structures). This led to the
following conjecture.

Conjecture 4.2 (Höhn and Stolz [Stolz 1996]). Let M be a closed oriented n-
manifold admitting spin and string structures. If M admits a metric of positive
Ricci curvature, then the Witten genus ϕW (M) vanishes.

Stolz’s heuristic argument comes from the hope that there is some Weizenböck-
type formula such that positive Ricci curvature on M implies positive scalar curva-
ture on L M , which in turn implies Ker( 6DL M)= ϕW (M)= 0. Though this reason-
ing is far from rigorous, there are no known counterexamples, and the conjecture
holds true for homogeneous spaces and complete intersections. To the author’s
knowledge, there are no known examples of simply connected closed manifolds
admitting metrics of positive scalar curvature, but not metrics of positive Ricci
curvature. If the conjecture is true, it would provide examples of such manifolds.

Just as KO-theory refines the Â-genus, there is a cohomology theory tmf, or
topological modular forms, with string-orientation refining the Witten genus (see
[Hopkins 2002]):

tmf−n(pt)

��
MString−n(pt)

ϕW //

σ
77

M Fn



STRING STRUCTURES AND CANONICAL 3-FORMS 471

The map tmf−∗(pt)→ M F∗ is a rational isomorphism, but it is not integrally sur-
jective or injective. In particular, tmf−∗(pt) contains a great deal of torsion. While
defining tmf is a subtle process, informally tmf is the universal elliptic cohomology
theory, or the elliptic cohomology theory associated to the universal moduli stack
of elliptic curves. Despite several attempts [Baas et al. 2004; Hu and Kriz 2004;
Segal 1988; Stolz and Teichner 2004], there is still no geometric description of
tmf. However, it is believed that tmf should provide a natural home for family
index theorems on loop spaces.

One might hope that all the refined invariants in tmf also vanish for string man-
ifolds admitting positive Ricci curvature metrics, giving an analogy of Hitchin’s
theorem. However, there exist a fair number of compact nonabelian Lie groups
(thus admitting positive Ricci curvature metrics) that are sent to torsion elements
in tmf−∗(pt) via their left-invariant framing [Hopkins 2002]. In Section 6, we
investigate the case where M = S3.

Conceptually, this is still compatible with the analogy to classical index theory.
The group Spin(n) is a discrete cover of SO(n), so there are no local differ-
ences between the bundles Spin(M) and SO(M) and their connections. How-
ever, Spinc(n)→ SO(n) is an S1-extension, and one must choose a connection on
the S1-bundle Spinc(M) → SO(M). The curvature of this connection appears
in the Weizenböck formula for the spinc Dirac operator. Since String(M) →
Spin(M) has K (Z, 2)-fibers, string structures are more analogous to spinc struc-
tures. When constructing the S1-extension ̂L Spin(M)→ L Spin(M), one really
needs an S1-extension with connection [Coquereaux and Pilch 1989]. The form
CS 1

2 p1
(g) − π∗HS,g ∈ �

3(Spin(M)) representing S transgresses to the curva-
ture (minus a canonically defined term) of this connection on L Spin(M). One
would reasonably expect any Weizenböck-type formula for 6DL M to also involve the
form HS,g. We ask the following question in an attempt to formulate a connection
between tmf and obstructions for certain types of curvature.

Question 4.3. Let M be a closed n-dimensional manifold with spin structure such
that 1

2 p1(M)= 0 ∈ H 4(M;Z), and let S be a specified string class. Suppose there
exists a metric g such that

Ric(g) > 0 and HS,g = 0 ∈�3(M).

Does this imply that

σ [M,S] = 0 ∈ tmf−n(pt)?

Remark 4.4. The condition HS,g = 0 for some string class S is equivalent to
ˇ1

2 p1(g) = 0 ∈ Ȟ 4(M). This is a strong condition and is not usually satisfied for
generic metrics. While a great deal of information about the characters ˇ12 p1(g)
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is known for certain manifolds, the author is not aware of any general results
guaranteeing the existence or nonexistence of such metrics.

Remark 4.5. The condition HS,g = 0 is conformally invariant; if HS,g = 0, then
HS,e f g = 0 for any conformally related metric e f g. This follows from the confor-
mal invariance of ˇ12 p1(g) and the fact that 0 ∈H3(M) for all metrics.

We close this discussion by noting that 6DM and 6DL M can both be thought of
as partition functions of certain 1- and 2-dimensional supersymmetric nonlinear
sigma models [Witten 1999]. These sigma models require spin and string struc-
tures, respectively. In the 2-dimensional sigma models, the form HS,g is used to
trivialize the natural connection on a certain determinant line bundle [Witten 1999;
Alvarez and Singer 2002]. Sometimes, terms in the action of these sigma models
are combined and written as the connection ∇S,g discussed in Section 5.

Stolz and Teichner [2004] have shown that KO−n is homotopy equivalent to the
space of supersymmetric 1-dimensional Euclidean field theories of degree n, and
the spin orientation is (up to homotopy) given by the previously mentioned sigma
model. The hope is that the analogous statement should hold for 2-dimensional
field theories with the string orientation σ given by these sigma models. In this
context, Question 4.3 is essentially asking, If one does not have to add in the
terms HS,g, does positivity of the Ricci curvature imply that the corresponding
sigma model is qualitatively trivial?

5. Metric connections with torsion

Question 4.3 can be reformulated in terms of the Ricci curvature of a metric
connection with torsion. Given a string class and metric (S, g), we define the
torsion tensor T S,g by

T S,g
:= g−1 HS,g ∈�

1(M; gl(T M)),

where HS,g is the canonical 3-form from (3.21). This is simply a case of “raising
indices” and is equivalent to saying g(T S,g

X Y, Z)=HS,g(X, Y, Z), or in coordinates
T k

i j = grk Hi jr . Then

∇
S,g
:= ∇

g
+

1
2 T S,g

is a metric connection with torsion T S,g, where ∇g is the Levi-Civita connection.
In general, torsion tensor T of a connection is called totally skew-symmetric if

gT ∈ �3(M), that is, g(T ( · , · ), · ) is skew-symmetric in all three variables. By
construction, ∇S,g is a metric connection with totally skew-symmetric torsion. We
also note that the connection ∇S,g still preserves the geodesics of the Levi-Civita
connection. In general for a fixed metric g, we have the following equalities of



STRING STRUCTURES AND CANONICAL 3-FORMS 473

subsets of connections on T M :

{Metric connections} =
{

Metric connections
with ∇g-geodesics

}
=

{Metric connections with
totally skew-symmetric
torsion

}

One can easily prove this by writing any connection ∇ as ∇g
+A and plugging into

the geodesic equation ∇X X = 0 and metric equation g(∇X Y, Z)=−g(Y,∇X Z).
For a torsion connection ∇T

=∇
g
+

1
2 T , we can still define the curvature tensor

RT
X,Y Z := (∇T

X∇
T
Y −∇

T
Y ∇

T
X −∇

T
[X,Y ])Z ,

and Ricci tensor
RicT (X, Y ) :=

∑
i

g(RT
ei ,X Y, ei ),

where {ei } is any orthonormal basis. We let Ricg denote the Ricci tensor of the
Levi-Civita connection.

Lemma 5.1. Suppose that ∇T
=∇

g
+

1
2 T is a metric connection with totally skew-

symmetric torsion satisfying gT = H ∈�3(M). Then the Ricci tensor satisfies

RicT (X, Y )= Ricg(X, Y )− 1
4

∑
i g(Tei X, Tei Y )−

1
2 d∗H(X, Y ).

Proof. Let 〈 · , · 〉 denote g( · , · ). Simply expanding using ∇T
=∇

g
+

1
2 T , we get

〈RT
ei ,X Y, ei 〉 = 〈∇

T
ei
∇

T
X Y −∇T

X∇
T
ei

Y −∇T
[ei ,X ]Y, ei 〉

= 〈Rg
ei ,X Y, ei 〉−

1
4〈TX Tei Y, ei 〉+

1
2〈∇

g
ei

TX Y − TX∇
g
ei

Y − T∇g
ei X Y, ei 〉

+
1
2〈T∇g

ei X−∇g
X ei−[ei ,X ]Y, ei 〉

= 〈Rg
ei ,X Y, ei 〉−

1
4〈Tei X, Tei Y 〉+

1
2〈(∇

g
ei

T )(X, Y ), ei 〉.

The last term is easily seen to be a tensor. Using a normal orthonormal frame {ei }

at a point (that is, ∇ei e j = 0), one easily calculates that∑
i 〈(∇

g
ei T )(e j , ek), ei 〉 =

∑
i ∂i T i

jk =
∑

i ∂i Hi jk =−d∗H(e j , ek). �

The usual Ricci tensor Ricg is symmetric, and Lemma 5.1 shows that the skew-
symmetric part of RicT is −1

2 d∗H . Because the canonical form HS,g satisfies
d∗HS,g = 0, it gives rise to a metric connection ∇S,g with symmetric Ricci tensor.
For an arbitrary metric connection ∇T , we refer to the Ricci curvature RicT (X) :=
RicT (X, X) as the symmetric component of RicT , which satisfies

Ricg(X)−RicT (X)= 1
4

∑
i‖Tei X‖2 ≥ 0,

with equality for all X precisely when T = 0. This gives an alternative description
of the Levi-Civita connection.
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Corollary 5.2. For a fixed Riemannian metric g, the Levi-Civita connection is the
unique metric connection that maximizes the Ricci curvature.

One convenient property of both the Levi-Civita connection and the usual Ricci
tensor is the invariance under a global scaling. A quick check shows that for ε > 0,

Ricεg(X)=
∑

i

εg(Rεg
ε−1/2ei ,X

X, ε−1/2ei )=
∑

i

g(Rg
ei ,X X, ei )= Ricg(X).

The form HS,g was constructed using a Hodge isomorphism in an adiabatic limit,
giving us the scale invariance HS,εg = HS,g. However, we use the metric to change
HS,g into a torsion tensor. Therefore,

T S,εg
= (εg)−1 HS,εg = ε

−1T S,g.

It is more natural then to consider the 1-parameter family of connections∇S,εg than
any fixed ∇S,g. In the large volume limit, as ε →∞, this connection converges
to the Levi-Civita connection ∇g. In the small volume limit, as ε→ 0, the terms
T S,εg blow up and ∇S,εg does not converge to a connection unless HS,g = 0.

Question 5.3. Let (M, g,S) be an n-dimensional Riemannian manifold with string
class. Suppose that the Ricci tensor of the modified connection ∇S,g is strictly
positive in the small volume scaling limit; that is

lim
ε→0

Ric(∇S,εg) > 0.

Does this imply σ [M,S] = 0 ∈ tmf−n(pt)?

Proposition 5.4. Question 4.3 is equivalent to Question 5.3.

Proof. This follows directly from the description of the Ricci tensor in Lemma 5.1,
which implies

Ricεg,S(X)= Ricg(X)− 1
4ε
∑

i‖Tei X‖2.

Consequently, if HS,g 6= 0, then Ricεg,S(X)
ε→0
−−−→−∞ for some X . The simulta-

neous conditions Ric(g) > 0 and HS,g = 0 are equivalent to Ric(∇S,εg) > 0 for
arbitrarily small ε. �

6. Homogeneous metrics on S3

We now examine the canonical 3-forms obtained when M = S3 with a homo-
geneous metric, and we compare the results with Question 4.3. We see that it has
an affirmative answer in this special situation, but it would not if the conditions
were weakened. In particular, there exists a 1-dimensional family of left-invariant
metrics g with nonnegative Ricci curvature such that the right-invariant framing R

produces HR,g = 0 and σ [S3,R] 6= 0 ∈ tmf−3(pt). The previous sentence is also
true with left and right swapped.
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6a. String structures on S3. Using the isomorphism S3 ∼= SU(2) ∼= Sp(1), the
left- and right-invariant framings induce two string classes, which we denote L

and R. The disc D4 inherits a standard framing from its inclusion D4
⊂ R4, and

this restricts to a framing of the stable tangent bundle for ∂D4
= S3. We denote

the induced string class by ∂D4 and note that, by construction, the string bordism
class [S3, ∂D4

] = 0 ∈ MString−3(pt).
The set of string classes is a torsor for H 3(S3

;Z) ∼= Z, an affine copy of Z. In
other words, the difference between any two string classes is naturally an integer.
We now determine where the three previously defined string classes live on this
affine line, and we use �c2 ∈ H 3(S3

;Z) as our standard generator. The left and
right framings are related by

S3
×Spin(3)

L
−→ Spin(S3)

R
←− S3

×Spin(3),

and the composition R−1
◦ L is the Adjoint representation lifted to Spin:

S3 ∼= SU(2)
Ad
−−→ Spin(su(2))∼= Spin(3).

The difference L−R is equal to π∗(Ad∗� 1
2 p1). The Adjoint representation here

is an isomorphism of Lie groups and hence an isomorphism on cohomology. As
mentioned in Remark 2.17, there is a factor of 2 and minus sign at work: The class
� 1

2 p1 is twice a generator of H 3(S3
;Z), and stably p1 = −c2. Hence � 1

2 p1 is
mapped to −2�c2, or −2 ∈ Z∼= H 3(S3

;Z), and we use the shorthand L+2=R.
Similarly, we examine the difference between the left-framing and the bound-

ing string structure, and in doing so reference Remark 2.17. The string structure
induced from D4 is a framing of the stable tangent bundle. The normal bundle
ν→ S3 is trivial, and we have the standard isomorphisms of bundles over S3:

Spin(T S3
⊕R)∼= Spin(T S3

⊕ ν)∼= Spin(D4)∼= Spin(4).

The difference in framing of the two stable bundles differs by the left-multiplication
map S3

→ Spin(4) given by considering S3 as the unit quaternions. Under the
standard isomorphisms S3 ∼= SU(2) and Spin(4) ∼= SU(2) × SU(2), this left-
multiplication map is the inclusion into the first factor:

SU(2)
Id×{1}
−−−−→ SU(2)×SU(2)∼= Spin(4).

The induced map on cohomology sends � 1
2 p1 to −�c2, or −1 ∈ Z ∼= H 3(S3

;Z).
Therefore,

L+ 1= ∂D4 and L+ 2= ∂D4
+ 1=R.

The Adams e-invariant gives an isomorphism π s
3
∼=
−→Z/24 and sends the left and

right framings to the two generators [Atiyah and Smith 1974]. Our calculations also
verify this explicitly. On a framed (4k−1)-dimensional manifold M , the e-invariant
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can be computed as follows. Choose a spin manifold W such that ∂W =M as spin
manifolds; such a manifold exists because MSpin4k−1(pt)= 0. Using the framing
of T M , define the Pontryagin classes pi (W,M) as relative classes in H∗(W,M).
We then obtain Â(W,M) by evaluating Â(T W, T M) on the fundamental class
of W , where Â(T W, T M) is the Â-polynomial with relative Pontryagin classes.
Then,

e[M] =
{

Â(W,M) mod Z for k even,
1
2 Â(W,M) mod Z for k odd.

The e-invariant is well-defined as an element of Q/Z, since choosing a different
W ′ will give Â(W ′,M)− Â(W,M) = Â(W ′ ∪M (−W )), which is an integer (or
even integer) by the Atiyah–Singer index theorem.

If we include metrics so that (W, g̃) is a Riemannian spin manifold with bound-
ary (M, g), then we naturally have the Pontryagin forms pi (g̃) ∈�4k(W ).

Proposition 6.1. If (M, g,S) is a Riemannian spin 3-manifold with string class,
then

e(M,S)= −
1
48

∫
W

p1(g̃)+
1
24

∫
M

HS,g mod Z.

Proof.

e[M,S] =
1
2

∫
W

Â(W,M)= 1
2

∫
W
(1− 1

24 p1(W,M)+· · · )=− 1
48

∫
W

p1(W,M).

We now construct a de Rham representative of p1(W,M). If ∂W = M , then
consider the bordism W ∪M ([0, 1]×M) obtained by gluing ∂W to {0}×M . The
string class S gives a stable trivialization p of Spin(T M) up to homotopy, and we
let2p denote the induced flat connection. Denoting the Levi-Civita connection on
Spin(T M) by 2g, we have the connection 2(t) on [0, 1]×M , where

2(t)= t2p + (1− t)2g.

Finally, define 2̃ to be the connection on Spin(W ∪M ([0, 1]×M)) induced by 2g̃

and 2(t). The form p1(2̃) is a de Rham representative of p1(W,M), and∫
W̃

p1(2̃)=

∫
W

p1(g̃)+
∫

M3

∫
[0,1]

p1(2(t))

=

∫
W

p1(g̃)+
∫

M
CSp1(2p,2g)=

∫
W

p1(g̃)− 2
∫

M
CS 1

2 p1
(2g,2p),

where CSλ(2g,2p) is the general Chern–Simons transgression between two con-
nections. Lemmas 6.3 and 3.18 together imply∫

M
CS 1

2 p1
(2g,2p)=

∫
M

p∗C S(2g)=

∫
M

HS,g.
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Therefore,

−
1

48

∫
W̃

p1(2̃)= −
1
48

∫
W

p1(g̃)+
1
24

∫
M

CS 1
2 p1
(2g,2p)

= −
1
48

∫
W

p1(g̃)+
1
24

∫
M

HS,g. �

Corollary 6.2. When M = S3 and g is the standard round metric,

e(S3,S)=
1
24

∫
S3

HS,g mod Z.

In the next subsection, we calculate HS,g for all left-invariant metrics on S3.
Equation (6.8) and the corollary above imply that e[S3,L]=− 1

24 , e[S3, ∂D4
]= 0,

and e[S3,R] = 1
24 . Below is a pictorial description of the space of string classes

on S3 and their corresponding string bordism class under e : MString−3 ∼=
−→Z/24.

oo //• •_

��

• • • •_

��

•

L_
��

∂D4
_

��

R_
��

−
2
24 −

1
24 0 1

24
2
24

Lemma 6.3. If p : M→ P is a global section and2p the induced flat connection,
then

CSλ(2,2p)= p∗ CSλ(2) ∈�3(M).

Proof. This lemma is essentially a tautology. Using the notation of [Freed 2002],
in general CSλ(21,20) :=

∫
[0,1] λ(2t) ∈�

2i−1(M), where 2t := t21+ (1− t)20

is a connection on [0, 1]× P→ [0, 1]×M . Then,

CSλ(2) := CSλ(π∗2,2taut) ∈�
2i−1(P),

where 2taut is the trivial connection induced by the canonical section of π∗P .
Since one can compute these transgression forms via local frames, and by definition
p∗2p = 0, we easily see

CSλ(2,2p)=

∫
[0,1]

λ
(

p∗(t2+ (1− t)2p)
)
=

∫
[0,1]

λ
(

p∗t2
)

= p∗
∫
[0,1]

λ(t2)= p∗ CSλ(2). �

6b. Calculation of canonical 3-forms. We now investigate Question 4.3 by con-
sidering left-invariant metrics on S3∼= SU(2); that is, metrics g on SU(2) such that
left multiplication is an isometry. As noted in Proposition 6.11, the calculations for
right-invariant metrics only differ from those for left-invariant metrics by a sign.
Any such left-invariant metric is determined by its behavior on the tangent space at



478 CORBETT REDDEN

the identity, so we are considering metrics on the Lie algebra su(2) of left-invariant
vector fields. A global rescaling of g leaves the Ricci tensor and canonical form
HL,g invariant; hence it does not affect the outcome of Question 4.3. The space
of left-invariant metrics, up to change of oriented basis and global rescaling, is the
2-dimensional space Sym2

>0(R
3)/(SO(R3)×R+), where Sym2

>0(R
3) denotes the

6-dimensional space of positive-definite 3× 3-matrices.
We now give a more computationally explicit description of this space. Let
{e1, e2, e3} be the standard basis for su(2) satisfying

[e1, e2] = 2e3, [e2, e3] = 2e1, [e3, e1] = 2e2.

When {e1, e2, e3} is an orthonormal basis, the metric is biinvariant and equal to the
standard round metric on S3

⊂ D4. For any α1, α2 ∈ R>0, define the left-invariant
metric gα1,α2 by declaring {α1e1, α2e2, e3} to be an orthonormal basis. In the case
where α2 = 1, we recover the 1-parameter family of Berger metrics on S3. Based
on knowledge from [Milnor 1976], it suffices to consider the 2-parameter family
of metrics {gα1,α2}.

Lemma 6.4. If g is a left-invariant metric on SU(2), then there exists α1, α2 ∈R>0

such that gα1,α2 is isometric to a constant multiple of g.

Proof. Lemma 4.1 [Milnor 1976] implies that there exists an orthonormal basis
{E1, E2, E3} for g such that

[E1, E2] = λ3 E3, [E2, E3] = λ1 E1, [E3, E1] = λ2 E2,

where λi ∈R>0. (Milnor’s ei correspond to our Ei .) For any (λ1, λ2, λ3), it is clear
that the orthonormal basis{1

2

√
λ2λ3e1,

1
2

√
λ3λ1e2,

1
2

√
λ1λ2e3

}
defines a left-invariant metric isometric to the original g. Finally, we normalize so
that the coefficient of e3 is 1. Hence, there is a surjective map

R2
>0→ {Left-invariant metrics}/{Isom×Scale}, α1, α2 7→ gα1,α2 . �

We first calculate the Ricci curvature for gα1,α2 . A straightforward computation
gives the covariant derivative of the Levi-Civita connection in our invariant frame.
The nonzero components are

〈∇α1e1α2e2, e3〉 = α1α2+α1/α2−α2/α1,

〈∇α2e2α3e3, α1e1〉 = α1α2−α1/α2+α2/α1,

〈∇α3e3α1e1, α1e2〉 = −α1α2+α1/α2+α2/α1.
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The Ricci tensor is then diagonalized with eigenvalues

Ric(α1e1)= 2( α1α2−α1/α2+α2/α1)(−α1α2+α1/α2+α2/α1),

Ric(α1e2)= 2(−α1α2+α1/α2+α2/α1)( α1α2+α1/α2−α2/α1),

Ric(e3)= 2( α1α2+α1/α2−α2/α1)( α1α2−α1/α2+α2/α1).

Solving inequalities tells us that the Ricci curvature is strictly positive if and only
if (α1, α2) is in the interior of the region bounded by the three curves

(6.5) α2 =

√
α2

1

1+α2
1
, α2 =

√
α2

1

−1+α2
1
, α2 =

√
−α2

1

−1+α2
1
.

This region is shown in Figure 1, left. The Ricci curvature is nonnegative with one
zero eigenvalue on the three boundary curves.

Now we calculate the canonical 3-form HL,gα1,α2
∈ �3(S3). For dimensional

reasons, HL,gα1,α2
is harmonic and therefore

HL,gα1,α2
∈H3(S3)∼= H 3(S3

;R)∼= R

with its value in R determined by integrating over S3. Lemma 3.18 says that we can
calculate HL,gα1,α2

by simply calculating the Chern–Simons 3-form CS 1
2 p1(gα1,α2)

on the global frame {α1e1, α2e2, e3}. This is a straightforward, though lengthy,
calculation.

For the class 1
2 p1, the Chern–Simons form is

CS 1
2 p1(2)=−

1
16π2 Tr(�∧2− 1

62∧ [2∧2]),

with Tr being the ordinary matrix trace. The normalization constant can be seen
from 1

2 p1(2)=−
1
2 c2(2)=−

1
2

1
8π2 Tr(�∧�). The frame {ei } gives rise to the dual

frame {ei
} on su(2)∗. In our global frame, the Chern–Simons form is a constant

multiple of e1
∧ e2
∧ e3, the standard volume form for SU(2)∼= S3

⊂ D4. Using a
direct calculation along with

∫
S3 e1
∧ e2
∧ e3
= 2π2, we obtain

(6.6)
∫

S3
HL,gα1,α2

=−
1

16π2

∫
S3

Tr(2∧�− 1
62∧ [2∧2])

= −
α6

1α
6
2 −α

6
1α

4
2 −α

4
1α

6
2 −α

6
1α

2
2 −α

2
1α

6
2 −α

4
1α

2
2 −α

2
1α

4
2 + 4α4

1α
4
2 +α

6
1 +α

6
2

α4
1α

4
2

.

See Figure 1, right, for a graph of this function. If we set α2= 1 and only consider
the usual Berger metrics, we obtain

(6.7)
∫

S3
HL,gα1,1

=−2+
2α2

1 − 1
α4

1
.
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0 1 2 3
Α1

1

2

3

Α2

Figure 1. At left: Region with positive Ricci curvature. At right:
Values of

∫
S3 HL,gα1,α2

.

These values are graphed in Figure 2, left. Note that when reduced mod Z, (6.7)
coincides with the calculation performed in the original [Chern and Simons 1974].
If we set α1 = α2 = 1, we obtain the standard biinvariant metric and see that

(6.8)
∫

S3
HL,g1,1 =−1,

∫
S3

H∂D4,g1,1 = 0,
∫

S3
HR,g1,1 = 1.

We now analyze (6.6) on the region Ric ≥ 0. The only critical point occurs
at α1 = α2 = 1, where

∫
S3 HL,gα1,α2

= −1 is a maximal value. Furthermore,∫
S3 HL,gα1,α2

= −2 identically on the three curves bounding the region of positive
Ricci curvature. So, we have the range of values

{
∫

S3 HL,g | Ric(g) > 0, g left-invariant} = (−2,−1].

Figure 1, right, demonstrates this with the help of Mathematica; the level curves
for −2 are precisely the three functions from (6.5).

Due to the equivariance of the canonical 3-form under change of string class (see
Proposition 3.12), our calculation using L gives us HS,gα1,α2

for any other string
class S by∫

S3
HL+ j,gα1,α2

= j +
∫

S3
HL,gα1,α2

for any j ∈ Z∼= H 3(S3
;Z).

Therefore,

(6.9) {
∫

S3 HL+ j,g | Ric(g) > 0, g left-invariant} = (−2+ j,−1+ j].

To graphically demonstrate this, Figure 2, left, shows the canonical 3-forms for
various string classes on the 1-parameter family of left-invariant Berger metrics.

The entire previous discussion was based on left-invariant Riemannian metrics.
What if we had decided to use right-invariant metrics? Given an inner product ge
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-2

-1

1

2

3

Figure 2.
∫

S3 HS,gα1,α2
on Berger metrics, for left- and right-

invariant metrics, respectively.

on Te SU(2), we can form a left-invariant metric gL and a right-invariant metric gR

by left or right multiplying ge. The canonical 3-forms are related by the following
easy lemma, whose proof is at the end of this section.

Lemma 6.10. HL,gL =−HR,gR .

This fact is graphically demonstrated in Figure 2, right. In the case of the Berger
metrics, note that the Ricci curvature is positive for all α1 > 1/

√
2, and the Ricci

curvature is nonnegative with a 0 eigenvalue at α1 = 1/
√

2.

Proposition 6.11. Suppose the string class and (left or right)-invariant Riemann-
ian metric (S, g) on S3 satisfy

Ric(g) > 0 and HS,g = 0.

Then S= ∂D4 and g is the biinvariant round metric. Consequently,

σ [S3,S] = 0 ∈ tmf−3(pt)∼= Z/24.

Proof. If g is a left-invariant metric with positive Ricci curvature and HS,g = 0,
then (6.9) implies that S= L+ 1= ∂D4 with g the biinvariant metric g1,1.

If g is a right-invariant metric, Lemma 6.10 and (6.9) imply that

(6.12) {

∫
S3

HR+ j,g | Ric(g) > 0, g right-invariant} = [1+ j, 2+ j).

If HS,g = 0, then S = R − 1 = ∂D4 and g = g1,1. Finally, [S3, ∂D4
] = 0 ∈

MString−3, so σ [S3, ∂D4
] = 0 ∈ tmf−3. �

We conclude that in this case, Question 4.3 has a very nontrivial affirmative
answer. In particular, there are 1-dimensional families of left- and right-invariant
metrics that are Ricci nonnegative and satisfy HR,g = 0 and HL,g = 0, respectively.
Furthermore, as evidenced by Figure 2, one can find Ricci positive metrics with



482 CORBETT REDDEN

HL,g arbitrarily small but nonzero. Finally, we point out that for any string class S,
the lift of the Chern–Simons invariant

Met(S3)

∫
HS,g

−−−−→ R

is surjective. The 1-parameter families of left- and right-invariant Berger metrics
in Figure 2 show this.

Proof of Lemma 6.10. In a left- or right-invariant frame, the connection is computed
purely in terms of the Lie bracket on vector fields. On a Lie group G, one can
define two Lie algebra structures [ · , · ]L and [ · , · ]R corresponding to the usual
Lie bracket on left- or right-invariant vector fields. For X, Y ∈ TeG, these are
related by

[X, Y ]L =−[X, Y ]R.

If 2L ,2R denote the connections in the two frames, we have 2L = −2R and
�L =�R , so

Tr(2L ∧�L −
1
62L ∧ [2L ∧2L ])=−Tr(2R ∧�R −

1
62R ∧ [2R ∧2R]). �
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DUAL PAIRS AND CONTRAGREDIENTS
OF IRREDUCIBLE REPRESENTATIONS

BINYONG SUN

Let G be one of the classical groups GL(n), U(n), O(n) or Sp(2n), over a
nonarchimedean local field of characteristic zero. It is well known that the
contragredient of an irreducible admissible smooth representation of G is
isomorphic to a twist of it by an automorphism of G. We prove that similar
results hold for double covers of G that occur in the study of local theta
correspondences.

1. Introduction and the results

Fix a nonarchimedean local field k of characteristic zero. We introduce the notation
in order to treat the four classes of classical groups GL(n), U(n), O(n) and Sp(2n)
simultaneously. Let A be a k-algebra and τ be a k-algebra involution of A such
that

(A, τ )=


(k× k, the nontrivial automorphism),
(a quadratic field extension of k, the nontrivial automorphism), or
(k, the trivial automorphism).

Let ε =±1 and let E be an ε-Hermitian A-module; namely, E is a free A-module
of finite rank equipped with a nondegenerate k-bilinear map

〈 · , · 〉E : E × E→ A

satisfying 〈u, v〉E = ε〈v, u〉τE and 〈au, v〉E = a〈u, v〉E for a ∈ A and u, v ∈ E .
Denote by U(E) the group of all A-module automorphisms of E that preserve the
form 〈 · , · 〉E . Depending on the choice of A and ε, it is either a general linear
group, a unitary group, an orthogonal group or a symplectic group.

Following Mœglin, Vigneras and Waldspurger [1987, Proposition 4.I.2], we
extend U(E) to a larger group Ŭ(E) consisting of pairs (g, δ) ∈ GLk(E)× {±1}
such that either

δ = 1 and g ∈ U(E),

Supported by NSFC grants number 10801126 and 10931006.
MSC2000: 22E35, 22E46.
Keywords: contragredient representation, dual pair, irreducible representation.
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or
δ =−1,

g(au)= aτ g(u) for a ∈ A, u ∈ E, and

〈gu, gv〉E = 〈v, u〉E for u, v ∈ E .

Clearly Ŭ(E) contains U(E) as a subgroup of index two.
In general, if π is a representation of a group H and g is an element of a group

that acts on H as automorphisms, we define the twist π g to be the representation
of H that has the same underlying space as that of π , and whose action is given by
π g(h) := π(gh) for h ∈ H . If H̆ is a group containing H as a subgroup of index
two, we always let it act on H by conjugation:

Ad : H̆ × H → H, (ğ, x) 7→ Adğ(x) := ğx ğ−1.

It is a classical result in linear algebra that

(1) ğx ğ−1 is conjugate to x−1 inside U(E)

for all ğ ∈ Ŭ(E) \U(E) and all x ∈ U(E). For example, when U(E) is a general
linear group, this amounts to saying that every square matrix is conjugate to its
transpose. For orthogonal groups, this says that every element of an orthogonal
group is conjugate to its inverse. The following considerations (which lead to
Theorem 1.1 below) appear in [Mœglin et al. 1987]. By the localization principle
of Bernšteı̆n and Zelevinskiı̆ [1976, Theorem 6.9 and Theorem 6.15.A], result (1)
implies that

(2) f (ğx ğ−1)= f (x−1) (as generalized functions on U(E))

for all Ad-invariant generalized functions f on U(E) and all ğ ∈ Ŭ(E)\U(E). For
the usual notion of generalized functions, see [Sun 2009, Section 2]. We get the
following well known result by (2) and by considering characters of irreducible
admissible smooth representations (which are conjugation invariant generalized
functions).

Theorem 1.1 [Mœglin et al. 1987, Theorem 4.II.1]. Let ğ ∈ Ŭ(E) \ U(E), and
let π be an irreducible admissible smooth representation of U(E). Then π∨ is
isomorphic to π ğ.

Here and as usual, we use “∨” to indicate the contragredient of an admissible
smooth representation of a totally disconnected locally compact group.

If E is a symplectic space, that is, if ε =−1 and A= k, then S̆p(E) := Ŭ(E) is
equal to the subgroup of GSp(E) with similitudes ±1. Denote by

(3) 1→ {±1} → S̃p(E)→ Sp(E)→ 1
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the metaplectic cover of the symplectic group Sp(E). It is shown in [Mœglin et al.
1987, page 36] that there is a unique continuous action

(4) Ãd : S̆p(E)× S̃p(E)→ S̃p(E)

of S̆p(E) on S̃p(E) as group automorphisms that lifts the adjoint action

Ad : S̆p(E)×Sp(E)→ Sp(E)

and leaves the central element −1 ∈ S̃p(E) fixed.
We first extend Theorem 1.1 to the case of metaplectic groups:

Theorem 1.2. Assume that E is a symplectic space. Let ğ ∈ S̆p(E) \ Sp(E), and
let π be a genuine irreducible admissible smooth representation of S̃p(E). Then
π∨ is isomorphic to π ğ.

Here and henceforth, “genuine” means that the central element−1∈ S̃p(E) acts
via the scalar multiplication by −1.

Remark. In the case that the character of π is a locally integrable function,
Theorem 1.2 is proved in [Mœglin et al. 1987, Theorem 4.II.2].

Harish-Chandra [1999] proved locally integrability of irreducible characters for
p-adic linear reductive groups, but he did not treat metaplectic groups.

The proofs of Theorem 1.1 in [Mœglin et al. 1987] and Theorem 1.2 in Section 2
do not depend on locally integrability of irreducible characters.

Now we consider dual pairs. Write ε′ := −ε, and let (E ′, 〈 · , · 〉E ′) be an ε′-
Hermitian A-module. Then E := E ⊗A E ′ is a skew-Hermitian A-module under
the form 〈u ⊗ u′, v ⊗ v′〉E := 〈u, v〉E 〈u′, v′〉E ′ . Write Ek := E, viewed as a k-
symplectic space under the form 〈u, v〉Ek

:= trA/k(〈u, v〉E). Put

G := U(E), Ğ := Ŭ(E), G ′ := U(E ′), Ğ ′ := Ŭ(E ′).

The group G obviously maps to the symplectic group Sp(Ek). Define the fiber
product G̃ := S̃p(Ek)×Sp(Ek) G. This is a double cover of G that depends on both
E and E ′.

In what follows, we define an action

(5) Ãd : Ğ× G̃→ G̃

that lifts the adjoint action Ad : Ğ×G→G and fixes the central element −1 ∈ G̃.
Let ğ = (g, δ) ∈ Ğ. Choose an arbitrary element (g′, δ) ∈ Ğ ′. Then

ğ := (g⊗ g′, δ) ∈ S̆p(Ek),

and the automorphism

(6) Ãd ğ ×Adğ : S̃p(Ek)×G→ S̃p(Ek)×G
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leaves the subgroup G̃ stable. It restricts to an automorphism

(7) Ãdğ : G̃→ G̃

that is independent of the choice of g′. We obtain (5) by gluing (7) for all ğ ∈ Ğ.
The following is a generalization of Theorem 1.2 in the setting of dual pairs.

Theorem 1.3. Let ğ ∈ Ğ\G, and let π be a genuine irreducible admissible smooth
representation of G̃. Then π∨ is isomorphic to π ğ.

Remark. When E ′= A= k and ε=−1, Theorem 1.3 specializes to Theorem 1.2.
The statement for the general case reduces essentially to those of Theorem 1.1 and
Theorem 1.2. Theorem 1.3 is proved in Section 3.

Theorem 1.3 has the following consequence, which is known to experts (up to a
proof of Theorem 1.2). As far as the author knows, no proof of it in full generality
is found in the literature.

Theorem 1.4. Denote by ωψ the smooth oscillator representation of S̃p(Ek) cor-
responding to a nontrivial character ψ of k. Then for all genuine irreducible
admissible smooth representation π of G̃ and π ′ of G̃ ′, we have

dim HomG×G ′(ωψ ⊗π ⊗π
′,C)= dim HomG×G ′(ω

∨

ψ ⊗π
∨
⊗π ′∨,C).

Here G̃ ′ := S̃p(Ek)×Sp(Ek)G
′ is a double cover of G ′. Note that bothωψ⊗π⊗π ′

and ω∨ψ ⊗ π
∨
⊗ π ′∨, which are originally representations of G̃ × G̃ ′, descend to

representations of G×G ′.

Remark. In a follow-up paper [Li et al. 2009], Theorem 1.4 is used to prove
multiplicity preservations in theta correspondences (for all residue characteristics),
that is, the dimension in Theorem 1.4 is at most one. This is the main reason for
providing a detailed proof of Theorem 1.4 here.

In the archimedean case, the analog of Theorem 1.4 is proved by T. Przebinda
[1988, Theorem 5.5], while the analog of Theorem 1.3 is a consequence of [1988,
Theorem 2.6]. His method is different from ours in that he uses the Langlands
classification.

As shown in [Przebinda 1988], Theorem 1.4 together with the Howe duality
conjecture implies that theta lifting maps Hermitian representations to Hermitian
representations.

2. Theorem 1.2 and its analog

Throughout this section, we assume that ε =−1.
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2.1. Skew Hermitian modules and Jacobi groups. As in the last section, E is an
ε-Hermitian A-module, and Ek := E is a symplectic space under the form

〈u, v〉Ek := trA/k(〈u, v〉E).

Denote by H(E) := Ek× k the Heisenberg group associated to Ek, whose multi-
plication is given by (u, t)(u′, t ′) := (u + u′, t + t ′+ 〈u, u′〉Ek). The group Ŭ(E)
acts on H(E) as group automorphisms by

(8) (g, δ)(u, t) := (gu, δt).

It defines a semidirect product J̆(E) := Ŭ(E) n H(E), which contains J(E) :=
U(E)n H(E) as a subgroup of index two.

The results of this note depend heavily on the following.

Lemma 2.1 [Sun 2009, Theorem D]. Let f be a generalized function on J(E). If
f is invariant under conjugations by U(E), that is,

f (gxg−1)= f (x) for all g ∈ U(E),

then
f (ğx ğ−1)= f (x−1) for all ğ ∈ Ŭ(E) \U(E).

Actually, we only need the following lemma, which is much weaker.

Lemma 2.2. Let f be a conjugation-invariant generalized function on J(E). Then

f (ğx ğ−1)= f (x−1) for all ğ ∈ J̆(E) \ J(E).

A consequence of Lemma 2.2 is this:

Proposition 2.3. Let ğ∈ J̆(E)\J(E), and let π be an irreducible admissible smooth
representation of J(E). Then π∨ is isomorphic to π ğ.

Proof. Denote by f the character of π , which is thus a conjugation-invariant gen-
eralized function on J(E). Therefore

(9) f (ğx ğ−1)= f (x−1)

by Lemma 2.2. The left side of (9) is the character of π ğ, and the right side is the
character of π∨. Therefore π ğ and π∨ have the same character, and they are thus
isomorphic to each other. �

2.2. Proof of Theorem 1.2 and its analog. We reuse the notation of Section 2.1.
Denote by

Ũ(E) := S̃p(Ek)×Sp(Ek) U(E)

the double cover of U(E) induced by the metaplectic cover

(10) 1→ {±1} → S̃p(Ek)→ Sp(Ek)→ 1.
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As in (5), we have an action

(11) Ãd : Ŭ(E)× Ũ(E)→ Ũ(E).

The following theorem reduces to Theorem 1.2 when A = k.

Theorem 2.4. Assume that ε =−1. Let ğ ∈ Ŭ(E) \U(E), and let π be a genuine
irreducible admissible smooth representation of Ũ(E). Then π∨ is isomorphic
to π ğ.

Proof. Denote by ωψ the smooth oscillator representation of S̃p(Ek)n H(E) that
corresponds to a nontrivial character ψ of k. Up to isomorphism, this is the only
genuine smooth representation that, as a representation of H(E), is irreducible and
has central character ψ .

Both ωψ and π are viewed as smooth representations of J̃(E) := Ũ(E)nH(E),
via the restriction and the inflation, respectively. The tensor product ωψ ⊗ π
descends to an irreducible admissible smooth representation of J(E) [Sun 2009,
Lemma 5.3].

The actions of Ŭ(E) on Ũ(E), U(E) and H(E) induce its actions on the semi-
direct products J̃(E) and J(E). By Proposition 2.3,

(ωψ ⊗π)
ğ ∼= (ωψ ⊗π)

∨

as irreducible admissible smooth representations of J(E), or equivalently

ω
ğ
ψ ⊗π

ğ ∼= ω
∨

ψ ⊗π
∨.

Note that ωğ
ψ
∼= ω∨ψ as smooth representations of J̃(E). (This is a special case of

Lemma 3.3.) Therefore

(12) ω∨ψ ⊗π
ğ ∼= ω

∨

ψ ⊗π
∨.

As in the proof of [Sun 2009, Lemma 5.3], we have

(13) π ğ ∼= HomH(E)(ω
∨

ψ , ω
∨

ψ ⊗π
ğ).

Here the right side carries the action of Ũ(E) given by (g̃φ)(v) := g(φ(g̃−1v)),
where

g̃ ∈ Ũ(E), φ ∈ HomH(ω
∨

ψ , ω
∨

ψ ⊗π
ğ), v ∈ ω∨ψ ,

and g is the image of g̃ under the covering map Ũ(E)→ U(E). Similarly,

(14) π∨ ∼= HomH(ω
∨

ψ , ω
∨

ψ ⊗π
∨).

We finish the proof by combining (12), (13) and (14). �
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3. Proofs of Theorem 1.3 and Theorem 1.4

3.1. Proof of Theorem 1.3 for symplectic groups. Now we return to the notation
of Section 1. First assume that A = k and ε = −1. Then G is a symplectic group
and is thus perfect, that is, G equals its own commutator group. Consequently,
there is only one action of Ğ on G̃ that lifts the adjoint action and fixes the central
element −1 ∈ G̃. There are two cases.

Case 1. The covering map G̃→ G splits. Then G̃ = G×{±1}, and Theorem 1.3
is one case of Theorem 1.1.

Case 2. The covering map G̃→G does not split. Then G̃ = S̃p(E) [Moore 1968,
Theorem 10.4], and Theorem 1.3 is one case of Theorem 1.2.

3.2. Proof of Theorem 1.3 when A 6= k. Assume that A 6= k. Then U(E) is a
general linear group or a unitary group.

Lemma 3.1. There exists a genuine character on Ũ(E).

Proof. It is well known that the exact sequence

1→ C×→ (S̃p(Ek)×C×)/ diag({±1})→ Sp(Ek)→ 1

splits continuously over U(E) (this is trivial for general linear groups, and for
unitary groups, see [Kudla 1994, Proposition 4.1] or [Harris et al. 1996, Section 1]).
Write ι for such a splitting and write p : Ũ(E)→U(E) for the covering map. Then
x ∈ Ũ(E) 7→ x−1 ι(p(x)) ∈ C× is a genuine character. �

Lemma 3.2. There exists a genuine character χ of G̃ such that χ ğ
= χ−1 for all

ğ ∈ Ğ \G.

Proof. As in Section 1, let ğ = (g,−1) ∈ Ğ \G and (g′,−1) ∈ Ğ ′ \G ′, and write
ğ := (g⊗ g′,−1) ∈ Ŭ(E) \U(E). It is obvious that the diagram

(15)
Ũ(E)

Ãd ğ // Ũ(E)

G̃
Ãdğ //

OO

G̃

OO

commutes.
Take a character χE as in Lemma 3.1, and denote by χ its restriction to G̃. Then

χ ğ
= (χE|G̃)

ğ

= (χ
ğ
E)|G̃ by commutativity of (15)

= (χ−1
E )|G̃ by Theorem 2.4

= χ−1. �
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Fix χ as in Lemma 3.2. Let ğ ∈ Ğ \ G, and let π be a genuine irreducible
admissible smooth representation of G̃. Then π ⊗ χ descends to an irreducible
admissible smooth representation of G. By Theorem 1.1, (π ⊗ χ)ğ ∼= (π ⊗ χ)∨,
or equivalently, π ğ

⊗χ ğ ∼= π∨⊗χ−1. Therefore, π ğ ∼= π∨ since χ ğ
= χ−1. This

proves Theorem 1.3 when A 6= k.

3.3. Proof of Theorem 1.3 for orthogonal groups. Assume that A= k and ε = 1,
that is, G is an orthogonal group. In what follows, we show that Lemma 3.2 still
holds in this case. Fix a complete polarization E ′ = E ′

+
⊕ E ′

−
of the symplectic

space E ′. Then E= E+⊕E− is a complete polarization of the symplectic space E,
where E± := E⊗E ′

±
. Depending on this polarization, we define a skew-Hermitian

k×k-module E′ as follows. As an abelian group, E′= E. The scalar multiplication
is given by

(ae1+ be2)(u+ v) := au+ bv for a, b ∈ k, u ∈ E+, v ∈ E−,

where e1 := (1, 0) and e2 := (0, 1) are the two idempotent elements of k×k. The
skew-Hermitian form is given by

〈u++ u−, v++ v−〉E′ := 〈u+, v−〉E e1+〈u−, v+〉E e2,

where u+, v+ ∈ E+, u−, v− ∈ E−.
Let ğ = (g,−1) ∈ Ğ \ G. Choose an element (g′,−1) ∈ Ğ ′ \ G ′ such that

g′(E ′
+
)= E ′

−
and g′(E ′

−
)= E ′

+
. Then

ğ := (g⊗ g′,−1) ∈ Ŭ(E′) \U(E′),

and we have a commutative diagram

Ũ(E′)
Ãd ğ // Ũ(E′)

G̃
Ãdğ //

OO

G̃.

OO

Take a genuine character χE′ of Ũ(E′) as in Lemma 3.1, and denote by χ its
restriction to G̃. Then as in the proof of Lemma 3.2, we show that χ fulfills the
requirement of Lemma 3.2. Now we argue as in the end of the last subsection, and
prove Theorem 1.3 for orthogonal groups.

3.4. Proof of Theorem 1.4. The group

Ğ := Ğ×{±1} Ğ ′ = {(g, g′, δ) | (g, δ) ∈ Ğ, (g′, δ) ∈ Ğ ′}

contains G := G×G ′ as a subgroup of index two. Define a homomorphism

ξ : Ğ→ S̆p(Ek), (g, g′, δ) 7→ (g⊗ g′, δ).
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By using the covering map G̃×G̃ ′→G=G×G ′ and the map ξ |G :G→Sp(Ek),

we form the semidirect product (G̃ × G̃ ′)n H(E) as in Section 2.1. Let Ğ act on
(G̃× G̃ ′)n H(E) as group automorphisms by

(16) ğ(x, y, z) := (Ãdğ(x), Ãdğ′(y), ξ( ğ)z),

where
ğ = (g, g′, δ), ğ = (g, δ), ğ′ = (g′, δ),

and the last term of the right hand side of (16) is defined as in (8).
Let ωψ , π and π ′ be as in Theorem 1.4.

Lemma 3.3. View ωψ as an admissible smooth representation of (G̃× G̃ ′)nH(E)
(via the restriction). Then for every ğ ∈ Ğ \ G, we have

ω∨ψ
∼= ω

ğ
ψ .

Proof. Recall that the group S̆p(Ek) acts on S̃p(Ek)n H(E) diagonally through
its action on the two factors. We have

(17) ω∨ψ
∼= ω

ξ( ğ)
ψ

as smooth oscillator representations of S̃p(Ek)n H(E), since both correspond to
the character ψ−1. We prove the lemma by restricting both sides of (17) to the
group (G̃× G̃ ′)n H(E). �

Lemma 3.4. Via the inflations, view π and π ′ as admissible smooth representa-
tions of (G̃× G̃ ′)n H(E) . Then for every ğ ∈ Ğ \ G, we have

(18) π∨ ∼= π
ğ and π ′∨ ∼= π

′ ğ.

Proof. Write ğ= (g, g′,−1) and ğ= (g,−1). By Theorem 1.3, we have π∨ ∼= π ğ

as irreducible admissible smooth representations of G̃. By pulling back this iso-
morphism to the group (G̃× G̃ ′)nH(E), we obtain the first isomorphism of (18).
The second isomorphism follows similarly. �

Lemma 3.5. For every ğ ∈ Ğ \ G, we have

(19) ω∨ψ ⊗π
∨
⊗π ′∨ ∼= (ωψ ⊗π ⊗π

′) ğ

as smooth representations of (G̃× G̃ ′)n H(E).

Proof. This is a combination of Lemma 3.3 and Lemma 3.4. �

Fix an element ğ ∈ Ğ \G. Since the action of ğ stabilizes the subgroup G̃× G̃ ′

of (G̃× G̃ ′)n H(E), we have

(20) HomG̃×G̃ ′(ωψ ⊗π ⊗π
′,C)= HomG̃×G̃ ′((ωψ ⊗π ⊗π

′) ğ,C).

Now Theorem 1.4 is a consequence of (19) and (20).
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ON THE NUMBER OF PAIRS OF POSITIVE INTEGERS
x1, x2 ≤ H SUCH THAT x1x2 IS A k-TH POWER

DOYCHIN I. TOLEV

We find an asymptotic formula for the number of pairs of positive integers
x1, x2 ≤ H such that the product x1x2 is a k-th power.

1. Notation

Let H be a sufficiently large positive number and k ≥ 2 be a fixed integer. By the
letters j, l,m, n, u, v, x, y, z we denote positive integers. The letter p is reserved
for primes, and

∏
p denotes a product over all primes. By the letters s and w, we

denote complex numbers, and i =
√
−1. By ε we denote an arbitrary small positive

number. The constants in the Vinogradov and Landau symbols are absolute or
depend on ε and k. As usual, ζ(s) is the Riemann zeta function. By Vk we denote
the set of k-free numbers (that is, positive integers not divided by a k-th power of
a prime), and Nk is the set of k-th powers of natural numbers. We denote by µ(n)
the Möbius function and by τ(n) the number of positive divisors of n. Further, we
define η(n)=

∏
p|n p. We write (u, v) for the greatest common divisor of u and v.

We assume that min(1, 0−1)= 1.

2. Introduction and statement of the result

Let Sk(H) be the number of pairs of positive integers x1, x2 ≤ H whose product
x1x2 is in Nk . We will establish an asymptotic formula for Sk(H). This problem
is related to a result of Heath-Brown and Moroz [1999]. They considered the
diophantine equation x1x2x3= x3

0 and found an asymptotic formula for the number
of primitive solutions such that 1≤ x1, x2, x3 ≤ H .

It is easy to find an asymptotic formula for the quantity

S∗k (H)= #{x1, x2 | x1, x2 ≤ H, (x1, x2)= 1, x1x2 ∈ Nk}.

Supported by Sofia University grant 028/2009.
MSC2000: 11D45.
Keywords: counting solutions of Diophantine equations.
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Indeed, if (x1, x2)= 1, then x1x2 ∈ Nk exactly when x1 ∈ Nk and x2 ∈ Nk . Hence

S∗k (H)= #{x1, x2 | x1, x2 ≤ H, (x1, x2)= 1, x1 ∈ Nk, x2 ∈ Nk}

=

∑
z1,z2≤H1/k ,

(z1,z2)=1

1,

and using the well-known property of the Möbius function we get

S∗k (H)=
∑

z1,z2≤H1/k

∑
d|(z1,z2)

µ(d)=
∑

d≤H1/k

µ(d)
(H 1/k

d
+ O(1)

)2
.

Therefore

(1)
S∗k (H)= H 2/k

∑
d≤H1/k

µ(d)
d2 + O(H 1/k log H)

= ζ(2)−1 H 2/k
+ O(H 1/k log H).

It is also easy to evaluate S2(H). Indeed, we have

S2(H)=
∑
d≤H

∑
x1,x2≤H,
(x1,x2)=d,
x1x2∈N2

1=
∑
d≤H

∑
y1,y2≤H/d,
(y1,y2)=1,
y1 y2d2

∈N2

1=
∑
d≤H

S∗2 (H/d).

Now we apply (1) and after calculations that we leave to the reader, we find

S2(H)= ζ(2)−1 H log H + O (H) .

However it is not clear how to apply (1) in order to evaluate Sk(H) for k ≥ 3.
Another quantity related to Sk(H) is

Tk(H)= #{x1, x2 | x1x2 ≤ H 2, x1x2 ∈ Nk} =
∑

n≤H2/k

τ(nk).

Using well-known analytic methods, based on Perron’s formula and the simplest
properties of ζ(s), we are able to prove the asymptotic formula

Tk(H)∼ γk H 2/k (log H)k,

where γk > 0 depends only on k. In this paper we show that using the same
analytic tools, as well as an idea of Heath-Brown and Moroz [1999], we may find
an asymptotic formula for Sk(H) for any k ≥ 2:

Theorem. For any integer k ≥ 2, we have

(2) Sk(H)= ck H 2/k(log H)k−1
+ O(H 2/k(log H)k−2),
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where

ck =
Pk

((k− 1)!)2

(
1+ 1

kk−2

∑
k/2<m≤k−1

(−1)k−m(2m− k)k−1
(k−1

m

)
k−m

)
,(3)

Pk =
∏

p

(
1− 1

p

)k−1(
1+ k−1

p

)
.(4)

3. Some lemmas

Lemma 1. (i) Every positive integer x can be represented uniquely in the form
x = yz, where y ∈ Vk and z ∈ Nk .

(ii) Every integer y ∈ Vk can be written uniquely in the form y = u1u2
2u3

3 · · · u
k−1
k−1,

where u j ∈ V2 for 1≤ j ≤ k− 1 and (ui , u j )= 1 for 1≤ i, j ≤ k− 1, i 6= j .

(iii) If y1, y2 ∈ Vk and y1 y2 ∈ Nk , then η(y1)= η(y2)= (y1 y2)
1/k .

Proof. The proofs of (i) and (ii) can by obtained easily from the fundamental
theorem of arithmetic and we leave this to the reader. Let us prove (iii). By our
assumption, any prime in the factorization of y1 y2 occurs with exponent at most
2k−2, and hence with exponent exactly k. Since the exponent of each prime in y1

and y2 is ≤ k− 1, the integers y1 and y2 have the same prime factors. �

The next lemma is a version of the Perron formula. Denote

(5) E(γ )=
{

1 if γ ≥ 1,
0 if 0< γ < 1.

Lemma 2. If γ > 0, 0< c < c0 and T > 1, then

E(γ )= 1
2π i

∫ c+iT

c−iT

γ s

s
ds+ O(γ c min(1, T−1

|log γ |−1)).

The constant in the Landau symbol depends only on c0.

Proof. This is a slightly simplified version of a lemma from [Davenport 2000,
Section 17]. �

Some of the basic properties of Riemann’s zeta function are presented in the
next lemma.

Lemma 3. (i) ζ(s) is meromorphic in the complex plane and has a pole only at
s = 1. It is simple and with a residue equal to 1.

(ii) If Re(s) > 1, then ζ(s)=
∏

p(1− p−s)−1.

(iii) If Re(s)≥ σ > 1, then ζ(s)� (σ − 1)−1
+ 1.

(iv) If 1/2≤ σ0 ≤ 1, σ ≥ σ0 and |t | ≥ 2, then ζ(σ + i t)� |t |(1−σ0)/2+ε.
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(v) There exist λ0 > 0 such that if X ≥ 2, |t | ≤ X and σ ≥ 1− λ0/log X , then
ζ(σ + i t) 6= 0.

Proof. See [Titchmarsh 1986, Chapters 1–3 and 5]. �

4. Proof of the theorem

4.1. We already considered the case k = 2, so we may assume that k ≥ 3.
Working as in [Heath-Brown and Moroz 1999] we apply Lemma 1(i) and find

that Sk(H) is equal to the number of quadruples y1, y2, z1, z2 such that

y1, y2 ∈ Vk, z1, z2 ∈ Nk, y1z1 ≤ H, y2z2 ≤ H, y1z1 y2z2 ∈ Nk .

Obviously the last of the above conditions is equivalent to y1 y2 ∈ Nk because z1

and z2 are k-th powers. Hence

Sk(H)=
∑

y1,y2≤H,
y1,y2∈Vk ,

y1 y2∈Nk

∑
m j≤(H/y j )

1/k ,

j=1,2

1=
∑

y1,y2≤H,
y1,y2∈Vk ,

y1 y2∈Nk

((H/y1)
1/k
+O(1))((H/y2)

1/k
+O(1)).

Expanding brackets, we get

(6) Sk(H)= H 2/kUk(H)+ O(H 1/k Wk(H)),

where
Uk(H)=

∑
y1,y2≤H,
y1,y2∈Vk ,

y1 y2∈Nk

(y1 y2)
−1/k and Wk(H)=

∑
y1,y2≤H,
y1,y2∈Vk ,

y1 y2∈Nk

y−1/k
1 .

Using Lemma 1(iii), we see that for a given y1 the integer y2 is determined uniquely.
Therefore we have

(7) Uk(H)=
∑
y≤H,
y∈Vk ,

η(y)k≤H y

η(y)−1 and Wk(H)=
∑
y≤H,
y∈Vk ,

η(y)k≤H y

y1/kη(y)−1.

To prove the theorem we have to find an asymptotic formula for Uk(H) and to
estimate Wk(H).

4.2. Consider first Wk(H). Applying Lemma 1(ii), we get

Wk(H)≤
∑

u1u2
2···u

k−1
k−1≤H

(u1u2
2 · · · u

k−1
k−1)

1/k

u1u2 · · · uk−1

=

∑
u1u2

2···u
k−2
k−2≤H

u−1+1/k
1 u−1+2/k

2 · · · u−1+(k−2)/k
k−2

∑
uk−1≤

(
H

u1u2
2···u

k−2
k−2

)1/(k−1)

u−1/k
k−1 .
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The inner sum is� H 1/k(u1u2
2 . . . u

k−2
k−2)

−1/k ; hence

(8) Wk(H)� H 1/k
∑

u1u2
2···u

k−2
k−2≤H

(u1u2 . . . uk−2)
−1
� H 1/k(log H)k−2.

It remains to show that

(9) Uk(H)= ck(log H)k−1
+ O

(
(log H)k−2) .

Formula (2) is a consequence of (6), (8) and (9).

4.3. Using (5) and (7), we write Uk(H) in the form

Uk(H)=
∑
y≤H,
y∈Vk

η(y)−1 E(H yη(y)−k).

We put

(10) c = (log H)−1 and T = (log H)100k3

and applying Lemma 2 we find that

(11) Uk(H)=U (1)
+ O(1),

where

(12) U (1)
=

1
2π i

∫ c+iT

c−iT

H s

s
8(s)ds, and 8(s)=

∑
y≤H,
y∈Vk

ysη(y)−ks−1

and 1=
∑
y≤H,
y∈Vk

η(y)−1 min(1, T−1
|log(H yη(y)−k)|−1).

4.4. Consider first the sum 1. We put

(13) ~ = T−1/2

and write

(14) 1=11+12,

where in 11 the summation is taken over y satisfying |log(H y η(y)−k)| ≥ ~ and
in 12 over the other y. To estimate 11 we apply Lemma 1(iii), (10) and (13) to
find

(15)

11� T−1/2
∑
y≤H,
y∈Vk

η(y)−1
� T−1/2

∑
u1u2

2···u
k−1
k−1≤H

(u1u2 · · · uk−1)
−1

�
(log H)k−1

T 1/2 � 1.
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Consider 12. Using its definition and Lemma 1(iii), we find

12�
∑

u1,u2,...,uk−1:

|log(H/(uk−1
1 uk−2

2 ···u
2
k−2uk−1))|<~

(u1u2 · · · uk−1)
−1

�

∑
He−~<uk−1

1 uk−2
2 ···u

2
k−2uk−1<He~

(u1u2 · · · uk−1)
−1

�

∑
uk−1

1 uk−2
2 ···u

2
k−2<2H

(u1u2 · · · uk−2)
−1

∑
He−~

uk−1
1 uk−2

2 ···u2
k−2

<uk−1<
He~

uk−1
1 uk−2

2 ···u2
k−2

u−1
k−1.

To estimate the inner sum we apply the obvious inequality

(16)
∑

a<n≤b

n−1
≤ a−1

+ log(b/a) for 0< a < b

and find that

(17) 12�
∑

uk−1
1 uk−2

2 ···u
2
k−2<2H

H−1uk−1
1 uk−2

2 · · · u2
k−2+ ~

u1u2 · · · uk−2
�H−113+~(log H)k−2,

where

(18) 13 =
∑

uk−1
1 uk−2

2 ···u
2
k−2<2H

uk−2
1 uk−3

2 · · · uk−2.

If k > 3, then

(19)

13�
∑

uk−1
1 uk−2

2 ···u
3
k−3<2H

uk−2
1 uk−3

2 · · · u2
k−3

∑
uk−2<(2H/(uk−1

1 uk−2
2 ···u

3
k−3))

1/2

uk−2

� H
∑

uk−1
1 uk−2

2 ···u
3
k−3<2H

(u1u2 · · · uk−3)
−1
� H(log H)k−3.

The last estimate for 13 is obviously true also for k = 3. From (10), (13)–(15),
(17) and (19), we get

(20) 1� (log H)k−3.

4.5. Consider the expression 8(s) defined by (12). Let c and T be specified by
(10) and

(21) T1 = 2kT .
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We apply Lemma 2 again and show that if Re(s)= c, then

(22) 8(s)= 1
2π i

∫ c+iT1

c−iT1

Hw

w
M(s, w) dw+ O(1∗),

where

M(s, w)=
∞∑

y=1,y∈Vk

ys−w η(y)−ks−1,(23)

1∗ =

∞∑
y=1,y∈Vk

η(y)−kc−1 min(1, T−1
1 |log(H/y)|−1).(24)

To justify (22) we note from Euler’s identity, (10) and parts (ii) and (iii) of Lemma 3
it follows that

(25)
∞∑

y=1,
y∈Vk

η(y)−kc−1
=

∏
p

(
1+ k−1

pkc+1

)
� ζ k−1(kc+ 1)� c−k+1

� (log H)k−1.

Hence M(s, w) is absolutely and uniformly convergent in Re(s) = Re(w) = c
because under this assumption we have M(s, w) �

∑
∞

y=1,y∈Vk
η(y)−kc−1. This

completes the verification of (22).

4.6. Consider the expression 1∗ defined by (24). We write it in the form

(26) 1∗ =1∗1+1
∗

2,

where the summation in 1∗1 is taken over y such that |log(H/y)| ≥ ~ and in 1∗2
over the other y. Using (10), (13), (21) and (25), we find

(27) 1∗1� T−1/2
∞∑

y=1,y∈Vk

η(y)−kc−1
� (log H)k−1−50k3

� 1.

To estimate 1∗2 we apply Lemma 1(iii) and (10), (13), (16) to get

1∗2�
∑

He−~<y<He~ ,
y∈Vk

η(y)−1
�

∑
He−~<u1u2

2···u
k−1
k−1<He~

(u1u2 · · · uk−1)
−1

�

∑
u2

2u3
3···u

k−1
k−1<2H

(u2u3 · · · uk−1)
−1

∑
He−~

u2
2u3

3···u
k−1
k−1

<u1<
He~

u2
2u3

3···u
k−1
k−1

u−1
1

�

∑
u2

2u3
3···u

k−1
k−1<2H

H−1u2
2u3

3 · · · u
k−1
k−1+ ~

u2u3 · · · uk−1

� H−113+ 1,(28)



502 DOYCHIN I. TOLEV

where 13 is given by (18). Applying (19), (26)–(28) we find

(29) 1∗� (log H)k−3.

We substitute in formula (12) the expression for 8(s) given by (22) and find a
new form of U (1). Using (10) and (29) we see that the contribution to U (1) coming
from 1∗ is

� (log H)k−3
∫ T

−T

dt
√

c2+t2
� (log H)k−2.

Therefore, taking also into account (11) and (20), we find

(30) Uk(H)=
1

(2π i)2

∫ c+iT

c−iT

H s

s

∫ c+iT1

c−iT1

Hw

w
M(s, w) dw ds+ O((log H)k−2).

4.7. For a fixed s satisfying Re(s)= c the infinite series M(s, w) defined by (23) is
absolutely and uniformly convergent for Re(w)≥ c and represents a holomorphic
function in Re(w) > c. Applying Euler’s identity we find

M(s, w)=
∏

p

(1+ p−ks−1(ps−w
+ p2(s−w)

+ · · ·+ p(k−1)(s−w)))

=

∏
p

(
1+

k−1∑
j=1

p−(k− j)s− jw−1
)
.

Using Lemma 3(ii), we conclude that for Re(s)= c and Re(w)≥ c, we have

(31) M(s, w)= K(s, w)
k−1∏
j=1

ζ((k− j)s+ jw+ 1),

where

K(s, w)=
∏

p

((
1+

k−1∑
j=1

p−(k− j)s− jw−1
) k−1∏

j=1

(1− p−(k− j)s− jw−1)
)
.

It is clear that there exists δ = δ(k) ∈ (0, 1/100) such that in the region

(32) Re(s) >−δ and Re(w) >−δ

the function K(s, w) is holomorphic with respect to s as well as to w and satisfies

(33) 0< |K(s, w)| � 1.

We have also

(34) K(0, 0)= Pk,

where Pk is given by (4).
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Suppose that we have a fixed s = c+ i t with −T ≤ t ≤ T . From (31), (33) and
Lemma 3(i), we conclude that the function Hww−1M(s, w) has a meromorphic
continuation to Re(w) >−δ and that poles may occur only at the points

(35) w = 0 and w = (1− k/m)s for 1≤ m ≤ k− 1.

All these points are actually simple poles. Indeed, for w = 0 this follows imme-
diately from (33) and parts (i) and (v) of Lemma 3. In the case 1 ≤ m ≤ k − 1,
the point w = (1 − k/m)s is a simple pole of ζ((k − m)s + mw + 1) and, due
to Lemma 3(v) and (10), it cannot be a pole or zero of ζ((k − j)s + jw+ 1) for
1≤ j ≤ k− 1 with j 6= m.

For 1 ≤ m ≤ k − 1, we denote by Rm(s) the residue of Hww−1M(s, w) at
w= (1−k/m)s and let R0(s) be the residue atw=0. A straightforward calculation,
based on the arguments above, (33) and Lemma 3(i), leads to

(36)

R0(s)= K(s, 0)
k−1∏
j=1

ζ( js+ 1),

Rm(s)=
H (1−k/m)s

(m− k)s
K
(

s,
(

1− k
m

)
s
) k−1∏

j=1,
j 6=m

ζ
(

k
(

1−
j

m

)
s+ 1

)
for 1≤ m ≤ k− 1.

4.8. Let us define

(37) θ =
δ

2k3 .

By (10) and (21) and since s = c+ i t , where −T ≤ t ≤ T , we see that all points
(35) are inside the rectangle with vertices c− iT1, −θ − iT1, −θ + iT1, c+ iT1.
Applying the residue theorem we find that∫ c+iT1

c−iT1

Hw

w
M(s, w) dw = 2π i

k−1∑
m=0

Rm(s)+ I1+ I2+ I3,

where

I1 =

∫
−θ−iT1

c−iT1

Hw

w
M(s, w) dw, I2 =

∫
−θ+iT1

−θ−iT1

Hw

w
M(s, w) dw,

I3 =

∫ c+iT1

−θ+iT1

Hw

w
M(s, w) dw.

From the formula above and (30) we get

(38) Uk(H)=
1

2π i

∫ c+iT

c−iT

H s

s

k−1∑
m=0

Rm(s) ds + J1+ J2+ J3+ O((log H)k−2).
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Here Jµ are the contributions coming from Iµ for µ= 1, 2, 3 and we will see that
we may neglect them.

To estimate Jµ we will first show that if s = c + i t , where |t | ≤ T , and if w
belongs to some of the sets of integration of I1, I2 or I3, then

(39) M(s, w)� T k2θ .

Having in mind (31) and (33), we see that in order to verify this it is enough to
establish that for s and w satisfying the conditions above, we have

(40) ζ(λ)� T kθ , where λ= (k− j)s+ jw+ 1 for 1≤ j ≤ k− 1.

If w = β + iT1 (or w = β − iT1), where −θ ≤ β ≤ c, then from (10), (21),
(37) it follows that for the number λ given by (40), we have Re(λ) ≥ 1− kθ and
T � |Im(λ)| � T . Hence the estimate (40) is a consequence of Lemma 3(iv).
Suppose now that w = −θ + i t1, where |t1| ≤ T1. From (10), (21) and (37),
we get Re(λ) ≥ 1− kθ and |Im(λ)| � T . If |Im(λ)| ≥ 2, then the estimate (40)
follows again from Lemma 3(iv). In the case |Im(λ)|< 2 we use also the inequality
Re(λ)≤ 1− θ/2 to conclude that ζ(λ)� 1, so the estimate (40) is true again.

From the definitions of Jµ and (10), (21), (37) and (39), we find

J1, J3�

∫ T

−T

1
√

c2+t2

∫ c

−θ

T k2θ

√

β2
+T 2

1

dβ dt � c−1
+log T � log H,

J2�

∫ T

−T

1
√

c2+t2

∫ T1

−T1

H−θT k2θ

√

θ2
+t2

1

dt1 dt � H−θ (c−1
+log T )T k2θ log T � 1.

This means that the terms Jµ in formula (38) can be omitted. Then using (36), we
get

(41) Uk(H)=
1

2π i

(
N0+

k−1∑
m=1

1
m−k

Nm

)
+ O((log H)k−2),

where

(42) Nm =

∫ c+iT

c−iT
4m(s) ds

and

40(s)= s−1 H sK(s, 0)
k−1∏
j=1

ζ( js+ 1),(43)

4m(s)= s−2 H (2−k/m)sK
(

s,
(

1− k
m

)
s
) k−1∏

j=1,
j 6=m

ζ
(

k
(

1−
j

m

)
s+ 1

)
(44)

for 1≤ m ≤ k− 1.
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4.9. Consider first Nm for 1 ≤ m ≤ k/2. Since 4m(s) is a holomorphic function
in the rectangle with vertices c− iT , θ − iT , θ + iT and c+ iT , we have

(45)
Nm =

∫ θ−iT

c−iT
4m(s) ds+

∫ θ+iT

θ−iT
4m(s) ds+

∫ c+iT

θ+iT
4m(s) ds

=N(1)
m +N(2)

m +N(3)
m ,

say. If s belongs to the sets of integration of N
(1)
m or N

(3)
m and if 1 ≤ j ≤ k − 1,

j 6= m, then from Lemma 3(iv), it follows that

ζ(k(1− j/m)s+ 1)� T k2θ .

Hence, using (33), (37) and our assumption 1≤ m ≤ k/2, we find

(46) N(1)
m ,N(3)

m �

∫ θ

c

H (2−k/m)β

β2+ T 2 T k3θ dβ� T k3θ−2
� 1.

Suppose now that s belongs to the set of integration of N
(2)
m (that is, s = θ + i t for

|t | ≤ T ) and consider the number λ̃ = k(1− j/m)s + 1. It is easy to see that for
each j that occurs in (44), we have

Re(λ̃)≥ 1− k2θ, |Re(λ̃)− 1| ≥ θ, |Im(λ̃)| ≤ k2
|t |.

Hence an application of Lemma 3(iv) gives

ζ(λ̃)� (1+ |t |)k
2θ .

Therefore

(47) N(2)
m �

∫ T

−T

H (2−k/m)θ

θ2+ t2 (1+ |t |)k
3θ dt � 1.

From (45)–(47), we get Nm � 1 for 1≤ m ≤ k/2 and using (41) we find

(48) Uk(H)=
1

2π i

(
N0+

∑
k/2<m≤k−1

1
m−k

Nm

)
+ O((log H)k−2).

4.10. Consider now Nm for k/2<m ≤ k−1. The function 4m(s) has a pole only
at s = 0 and it is not difficult to compute that the corresponding residue is equal to

Lm(log H)k−1
+ O((log H)k−2),

where

(49) Lm =
(2m− k)k−1(−1)k−m−1

(k−1
m

)
Pk

((k− 1)!)2kk−2 .
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We leave the standard verification to the reader. From (42) and the residue theorem
we get

(50) Nm = 2π iLm(log H)k−1
+N′m +N′′m +N′′′m + O((log H)k−2),

where

N′m =

∫
−θ−iT

c−iT
4m(s) ds, N′′m =

∫
−θ+iT

−θ−iT
4m(s) ds, N′′′m =

∫ c+iT

−θ+iT
4m(s) ds.

Using Lemma 3(iv), we find that if s belongs to the set of integration of some of the
integrals above, then the product of the values of the zeta-function in the definition
(44) is� T k3θ . Hence from (10), (33), (37) and our assumption k/2<m ≤ k−1,
it follows that

(51)
N′m,N

′′′

m �

∫ c

−θ

T k3θ

β2+T 2 dβ� 1

N′′m �

∫ T

−T

H−(2−k/m)θ

θ2+t2 T k3θ dt � H−(2−k/m)θ T k3θ
� 1.

From (50) and (51), we find

(52) Nm = 2π iLm(log H)k−1
+ O((log H)k−2) for k/2< m ≤ k− 1.

4.11. It remains to consider N0. It is not difficult to see that the function 40(s)
specified by (43) has a pole only at s = 0, with residue equal to

L0(log H)k−1
+ O((log H)k−2),

where

(53) L0 =
Pk

((k− 1)!)2
.

From (42) and the residue theorem we find

N0 = 2π iL0(log H)k−1
+N′0+N′′0 +N′′′0 + O((log H)k−2),

where

N′0 =

∫
−θ−iT

c−iT
40(s) ds, N′′0 =

∫
−θ+iT

−θ−iT
40(s) ds, N′′′0 =

∫ c+iT

−θ+iT
40(s) ds.

Arguing as above, we conclude that N′0, N′′0, N′′′0 � 1 (we leave the verification to
the reader). Hence

(54) N0 = 2π iL0(log H)k−1
+ ((log H)k−2).

From (3), (34), (48), (49), and (52)–(54), we obtain (9), and the proof of the
theorem is complete. �
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CORRECTION TO THE ARTICLE
A FLOER HOMOLOGY FOR EXACT CONTACT EMBEDDINGS

KAI CIELIEBAK AND URS ADRIAN FRAUENFELDER

Volume 239:2 (2009), 251–316

The paper in question included an appendix, titled “A Wasserman-type
theorem for the Rabinowitz action functional”, where we showed that the
Rabinowitz action functional is generically Morse–Bott and the Morse–Bott
manifold is the disjoint union of the energy hypersurface itself, representing
the constant Reeb orbits, and a circle for each Reeb orbit. The treatment of
multiple covered Reeb orbits contained a gap, which is filled in this note.

Appendix B of s devoted to showing that the Rabinowitz action functional is
generically Morse–Bott and the corresponding Morse–Bott manifold is the disjoint
union of the energy hypersurface itself, representing the constant Reeb orbits, and
a circle for each Reeb orbit. Here we fix a gap in the proof, pointed out to us by
Will Merry and Gabriel Paternain.

In the Claim in Step 2 of the proof of Theorem B.1 we asserted that DS(H, w)

is surjective for every (H, w) ∈ S−1(0) whenever w is not a fixed point of the S1-
action. This assertion is incorrect as stated; it is only true if the underlying Reeb
orbit v is simple. The trouble is inequality (70), which a priori only holds in a
neighborhood of t0, and might fail to hold globally on the circle if the Reeb orbit is
multiply covered and hence comes back to v(t0). Therefore the proof of Theorem
B.1 as it stands only proves that the Rabinowitz action functional is generically
Morse–Bott on the constant and simple Reeb orbits.

To prove the full assertion of Theorem B.1 we need to show in addition that
generically no root of unity arises as an eigenvalue of the linearized Reeb flow at a
simple periodic orbit. But this fact follows from a classical theorem of C. Robinson
[1970, Lemma 19].

Here is how this works. For T > 0 and k ∈N, denote by U(T, k)⊂ C∞c (V ) the
subset of Hamiltonians H with the following properties. If k = 1, then U(T, 1)

consists of all Hamiltonians such that the Rabinowitz action functional AH is
Morse–Bott at the constant Reeb orbits and all simple Reeb orbits of period less

MSC2000: 53D10, 53D40.
Keywords: contact manifolds, Floer homology, Rabinowitz action functional.
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than or equal to T (since the Reeb orbit is allowed to traverse backwards we here
actually mean the absolute value of the period). If k ≥ 2 then U(T, k) ⊂ U(T, 1)

consists of all H ∈ U(T, 1) with the additional property that the linearized Reeb
flow at each simple Reeb orbit of period less than or equal to T has no eigenvalues
equal to roots of unity of order less than or equal to k. As it follows from our
arguments in the proof of Theorem B.1, for each T > 0 the subset U(T, 1) is open
and dense in C∞c (V ). If H ∈U(T, 1), we deduce from the Arzelà–Ascoli Theorem
that there are only finitely many simple Reeb orbits of period at most T . Hence by
Robinson’s result for each k ∈N the subset U(T, k) is dense in U(T, 1). Again by
Arzelà–Ascoli U(T, k) is also open in U(T, 1). Hence we conclude that for each
T > 0 and for each k ∈ N the set U (T, k) is open and dense in C∞c (V ). Now set

U=
⋂
N∈N
k∈N

U(N , k).

The subset U is obviously of second category in C∞c (V ) and if H ∈ U then the
Rabinowitz action functional AH is Morse–Bott at the constants and at all simple
Reeb orbits. Moreover, the linearized Reeb flow at each simple Reeb orbit has no
root of unity as eigenvalue. Hence AH is Morse–Bott at all Reeb orbits and its
critical manifold consists of the disjoint union of a copy of the hypersurface and
circles for each nontrivial Reeb orbit. This fills up the gap in Appendix B.
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