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Let ϕ(z)∈ K (z) be a rational function of degree d≥2 defined over a number
field whose second iterate ϕ2(z) is not a polynomial, and let α ∈ K . The
second author previously proved that the forward orbit Oϕ(α) contains only
finitely many quasi-S-integral points. We give an explicit upper bound for
the number of such points.

Introduction

Let K/Q be a number field, let S be a finite set of places of K , and let 1≥ ε > 0.
An element x ∈ K is said to be quasi-(S, ε)-integral if

(1)
∑
v∈S

[Kv :Qv]

[K :Q]
log+|x |v ≥ εh(x).

We observe that x is in the ring of S-integers of K if and only if it is quasi-(S, 1)-
integral, in which case (1) is an equality by definition of the height.

Let ϕ(z) ∈ K (z) be a rational function of degree d ≥ 2, let α ∈ K be a point,
and let

Oϕ(α)= {α, ϕ(α), ϕ
2(α), . . . }

denote the forward orbit of α under iteration of ϕ. Silverman [1993] proved that
if ϕ2(z) is not a polynomial, then the orbit Oϕ(α) contains only finitely many quasi-
(S, ε)-integral points. More generally, if #Oϕ(α)=∞ and if β is not an exceptional
point for ϕ, then there are only finitely many n ≥ 1 such that

1
ϕn(α)−β

is quasi-(S, ε)-integral. In this note we give an upper bound for the number of
such n, making explicit the dependence on S, ϕ, α, and β. More precisely, we
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prove that the number of elements in the set

(2) {n ≥ 0 : (ϕn(α)−β)−1 is quasi-(S, ε)-integral}

is smaller than

(3) 4#Sγ + log+d

(h(ϕ)+ ĥϕ(β)

ĥϕ(α)

)
,

where γ depends only on d, ε, and [K : Q]. (See Section 2 for the definitions
of the height h(ϕ) of the map ϕ and the canonical height ĥϕ .) Our main result,
Theorem 11 in Section 5, is a strengthened version of this statement.

The specific form of the upper bound in (3) is interesting, especially the depen-
dence on the wandering point α and the target point β. For example, if ĥϕ(α) is
sufficiently large (depending on β and ϕ), then the bound is independent of α, β,
and ϕ. It is also interesting to ask whether it is possible, for a given ϕ and α, to
make the set (2) arbitrarily large by varying β. We discuss this question further in
Remark 14.

We briefly describe the organization of the paper. We start in Section 1 by setting
notation and proving an elementary estimate for the chordal metric. Section 2 is
devoted to height functions, both the canonical height associated to a rational map
and various results relating heights and polynomials. In Section 3, we prove a
uniform version of the inverse function theorem for rational maps of degree d .
Section 4 states an estimate for the ramification of the iterate of a rational function,
taken from [Silverman 1993; 2007], and a quantitative version of Roth’s theorem,
taken from [Silverman 1987b]. In Section 5 we combine the preliminary material
to prove our main theorem. Finally, in Section 6, we use the main theorem to give
an explicit upper bound for the number of S-integral points in an orbit.

Remark 1. Silverman’s paper [1993] on finiteness of quasi-S-integral points in
orbits has been used by Patrick Ingram and Silverman [2009] to prove a dynami-
cal version of the classical Bang–Zsigmondy theorem on primitive divisors [Bang
1886; Zsigmondy 1892]. It has also been used by Felipe Voloch and Silverman
[2009] to prove a local-global criterion for dynamics on P1. The quantitative results
proved here should enable one to prove quantitative versions of the papers with
Ingram and Voloch, but we have not included these applications in this paper in
order to keep it to a manageable length.

Remark 2. Quantitative estimates similar to those in this paper have been proved
for the number of integral points on elliptic curves and on certain other types of
curves. See for example [Gross and Silverman 1995] and [Silverman 1987b].
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1. Preliminary material and notation

We set the following notation:

K a number field.

MK the set of places of K .

M∞K the set of archimedean (infinite) places of K .

M0
K the set of nonarchimedean (finite) places of K .

log+(x) the maximum of log(x) and 0. We write log+d for log base d .

For each v ∈ MK , we let | · |v denote the corresponding normalized absolute
value on K whose restriction to Q gives the usual v-adic absolute value on Q. That
is, if v ∈ M∞K , then |x |v is the usual archimedean absolute value, and if v ∈ M0

K ,
then |x |v = |x |p is the usual p-adic absolute value for a unique prime p. We also
write Kv for the completion of K with respect to | · |v, and we let Cv denote the
completion of an algebraic closure of Kv.

For each v ∈MK , we let ρv denote the chordal metric defined on P1(Cv), where
we recall that for [x1, y1], [x2, y2] ∈ P1(Cv),

ρv([x1, y1], [x2, y2])=


|x1 y2− x2 y1|v√

|x1|2v + |y1|2v

√
|x2|2v + |y2|2v

if v ∈ M∞K ,

|x1 y2− x2 y1|v

max{|x1|v, |y1|v}max{|x2|v, |y2|v}
if v ∈ M0

K .

In this paper, we use the logarithmic version of the chordal metric to measure
the distance between points in P1(Cv).

Definition. The logarithmic chordal metric function

λv : P
1(Cv)×P1(Cv)→ R∪ {∞}

is defined by

λv([x1, y1], [x2, y2])=− log ρv([x1, y1], [x2, y2]).

Note that λv(P, Q)≥0 for all P, Q∈P1(Cv), and that two points P, Q∈P1(Cv)

are close if and only if λv(P, Q) is large. We also note that λv is a particular choice
of an arithmetic distance function as defined in [Silverman 1987a, Section 3], that
is, it is a local height function λP1×P1,1, where 1 is the diagonal of P1

×P1.
The next lemma relates the logarithmic chordal metric λv(x, y) to the usual

metric |x − y|v arising from the absolute value v.

Lemma 3. Let v ∈ MK and let λv be the logarithmic chordal metric on P1(Cv).
Define `v = 2 if v is archimedean, and `v = 1 if v is nonarchimedean. Then for
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x, y ∈ Cv the inequality λv(x, y) > λv(y,∞)+ log `v implies

λv(y,∞)≤ λv(x, y)+ log|x − y|v ≤ 2λv(y,∞)+ log `v.

Proof. Notice that by the definition of chordal metric,

λv(x, y)= λv(x,∞)+ λv(y,∞)− log|x − y|v.

Therefore

λv(x, y)+ log|x − y|v = λv(x,∞)+ λv(y,∞)≥ λv(y,∞).

This gives the lower bound for the sum λv(x, y)+ log|x − y|v.
For the upper bound, if v is an archimedean place, then the assertion is the same

as [Silverman 2007, Lemma 3.53]. We will not repeat the proof here. For the case
where v is nonarchimedean, notice that λv satisfies the strong triangle inequality,

λv(x, y)≥min (λv(x, z), λv(y, z)) ,

and that this inequality is an equality if λv(x, z) 6= λv(y, z). Suppose that x and y
satisfy the condition required in the lemma, that is, λv(x, y) > λv(y,∞). (In this
case, `v = 1.) We claim that λv(x,∞) ≤ λv(y,∞). Assume to the contrary that
λv(x,∞) > λv(y,∞). Then by the strong triangle inequality for λv, we have

λv(x, y)=min (λv(x,∞), λv(y,∞))= λv(y,∞).

But this contradicts the assumption that λv(x, y) > λv(y,∞). Now

λv(x, y)+ log|x − y|v = λv(x,∞)+ λv(y,∞)

≤ 2λv(y,∞) by the claim,

which completes the proof of the lemma. �

2. Dynamics and height functions

Let ϕ :P1
→P1 be a rational map on P1 of degree d ≥ 2 defined over the number

field K . We identify K ∪ {∞} ' P1(K ) by fixing an affine coordinate z on P1, so
α ∈ K equals [α, 1] ∈P1(K ), and the point at infinity is [1, 0]. With respect to this
affine coordinate, we identity rational maps ϕ : P1

→ P1 with rational functions
ϕ(z) ∈ K (z).

Let P ∈ P1. Then the (forward) orbit of P under iteration of ϕ is the set

Oϕ(P)= {ϕn(P) : n = 0, 1, 2, . . . }.

The point P is called a wandering point of ϕ if Oϕ(P) is an infinite set; otherwise
P is called a preperiodic point of ϕ. The set of preperiodic points of ϕ is denoted
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by PrePer(ϕ). We say that a point A ∈ P1 is an exceptional point if it is prepe-
riodic and ϕ−1(Oϕ(A)) = Oϕ(A), which is equivalent to the assumption that the
complete (forward and backward) ϕ-orbit of A is a finite set. It is a standard fact
that A is an exceptional point for ϕ if and only if A a totally ramified fixed point
of ϕ2. (One direction is clear, and the other follows from the fact [Silverman 2007,
Theorem 1.6] that if A is an exceptional point, then Oϕ(A) consists of at most two
points.)

For a point P = [x0, x1] ∈ P1(K ), the height of P is

h(P)=
∑
v∈MK

[Kv :Qv]

[K :Q]
log max(|x0|v, |x1|v).

Then the canonical height of P relative to the rational map ϕ is given by the limit

ĥϕ(P)= lim
n→∞

h(ϕn P)/dn.

To simplify notation, we let dv = [Kv :Qv]/[K :Q].
Using the definition of λv, we see that

h(P)=
∑
v∈MK

dvλv(P,∞)+ O(1).

More precisely, writing P = [x0, x1] and∞= [1, 0], we have

h(P)=
∑
v∈M0

K

dvλv(P,∞)+
∑
v∈M∞K

dv log
(

max{|x0|v, |x1|v}√
|x0|2v + |x1|2v

)
.

The quantity max{a, b}/
√

a2+ b2 is between 1/
√

2 and 1 for all nonnegative
a, b ∈ R, so

−
1
2 log 2≤ h(P)−

∑
v∈MK

dvλv(P,∞)≤ 0.

For further material and basic properties of height functions, see [Silverman 2007,
Sections 3.1–3.5].

For a polynomial f =
∑

ai zi
∈ K [z] and absolute value v ∈ MK , we define

| f |v =max{|ai |v} and h( f )= h([ . . . , ai , . . . ])=
∑
v∈MK

dv log| f |v.

We say that a rational function ϕ(z)= f (z)/g(z) ∈ K (z) of degree d is written in
normalized form if

f (z)=
d∑

i=0

ai zi and g(z)=
d∑

i=0

bi zi with ai , bi ∈ K ,
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if ad and bd are not both zero, and if f and g are relatively prime in K [z]. For
v ∈ MK , we set |ϕ|v =max{| f |v, |g|v}, and then the height of ϕ is defined by

h(ϕ)= h([a0, . . . , ad , b0, . . . , bd ])=
∑
v∈MK

dv log|ϕ|v.

Directly from the definitions, we have

(4) max(h( f ), h(g))≤ h(ϕ).

The following basic properties of absolute values of polynomials will be useful.

Lemma 4. Let v ∈ MK and let f, g ∈ K [x] be polynomials with coefficients in K .

(a) | f + g|v ≤
{
| f |v + |g|v if v is archimedean,
max{| f |v, |g|v} if v is nonarchimedean.

(b) Gauss’s lemma. If v is nonarchimedean, then | f g|v = | f |v|g|v.

(c) If v is archimedean and deg f + deg g < d , then

4−d
| f g|v ≤ | f |v|g|v ≤ 4d

| f g|v.

Proof. (a) follows from the definition. For (b) and (c), see for example [Lang 1983,
Chapter 3, Propositions 2.1 and 2.3]. �

Proposition 5. Let { f1, . . . , fr } be a collection of polynomials in the ring K [x].

(a) h( f1 f2 · · · fr )≤

r∑
i=1

(h( fi )+ (deg fi + 1) log 2)

≤ r max
1≤i≤r

{h( fi )+ (deg fi + 1) log 2}.

(b) h( f1+ f2+ · · ·+ fr )≤

r∑
i=1

h( fi )+ log r.

(c) Let ϕ(z), ψ(z) ∈ K (z) be rational functions. Then

h(ϕ ◦ψ)≤ h(ϕ)+ (degϕ)h(ψ)+ (degϕ)(degψ) log 8.

(d) Let ϕ(z) ∈ K (z) be a rational function of degree d ≥ 2. Then for all n ≥ 1, we
have

h(ϕn)≤

(dn
− 1

d − 1

)
h(ϕ)+ d2

(dn−1
− 1

d − 1

)
log 8.

Proof. The proofs of (a) and (b) can be found in [Hindry and Silverman 2000,
Proposition B.7.2], where the proposition is stated for multivariable polynomials.
Since we’ll use the arguments in (a) for the proof of (c), we repeat the proof of
(a) for the one-variable case. (Also, our situation is slightly different from that in
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[Hindry and Silverman 2000], since we are using a projective height instead of an
affine height.) Writing fi =

∑
E ai E X E , we have

f1 · · · fr =
∑

E

( ∑
e1+···+er=E

a1e1 · · · arer

)
X E ,

and hence for v ∈ MK ,

(5) | f1 · · · fr |v =max
E

∣∣∣ ∑
e1+···+er=E

a1e1 · · · arer

∣∣∣
v

and h( f1 · · · fr ) =
∑

v∈MK
dv log| f1 · · · fr |v. If v is nonarchimedean, then by

Gauss’s lemma, Lemma 4(b), we have

| f1 · · · fr |v =

r∏
i=1

| fi |v.

It remains to deal with an archimedean place v. We note that the number of
terms in the sum appearing in the right side of (5) is

(E+r−1
E

)
. Hence

| f1 · · · fr |v ≤max
E

((E+r−1
E

)
max

e1+···+er=E
|a1e1 · · · arer |v

)
≤max

E

(
2E+r−1 max

e1+···+er=E
|a1e1 · · · arer |v

)
.

Further, if E > deg( f1 . . . fr ), then the product a1e1 · · · arer is zero, since in that
case at least one of the ai j is zero. Hence

(6) | f1 · · · fr |v ≤ 2deg( f1··· fr )+r−1
r∏

i=1

| fi |v.

Let Nv = 2
∑

i (deg fi+1) if v is archimedean, and Nv = 1 if v is nonarchimedean.
Then we compute

h( f1 · · · fr )=
∑
v∈MK

dv log| f1 · · · fr |v

≤

∑
v∈MK

dv
(

log Nv + log
r∏

i=1

| fi |v

)

≤

r∑
i=1

(h( fi )+ (deg fi + 1) log 2)

≤ r max
1≤i≤r

{h( fi )+ (deg fi + 1) log 2},

which completes the proof of (a).
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Next we give a proof of (c). Write ψ = ψ0/ψ1 ∈ K (z) in normalized form, so
in particular ψ0 and ψ1 are relatively prime polynomials. Then

(ϕ ◦ψ)(z)=
∑

aiψ
i
0ψ

d−i
1∑

biψ
i
0ψ

d−i
1

,

so by definition of the height of a rational function, we have

h(ϕ ◦ψ)≤
∑
v∈MK

dv log max
{∣∣∣∑ aiψ

i
0ψ

d−i
1

∣∣∣
v
,

∣∣∣∑ biψ
i
0ψ

d−i
1

∣∣∣
v

}
.

For the right side of this inequality, if v is nonarchimedean, then by Gauss’s lemma
again we have∣∣∣∑ aiψ

i
0ψ

d−i
1

∣∣∣
v
≤max

(
| f |v|ψ0|

i
v|ψ1|

d−i
v

)
≤ |ϕ|v|ψ |

d
v .

Similarly, ∣∣∣∑ biψ
i
0ψ

d−i
∣∣∣
v
≤ |ϕ|v|ψ |

d
v .

Hence for v nonarchimedean, |ϕ ◦ψ |v ≤ |ϕ|v|ψ |dv .
Next let v be an archimedean place of K . Then the triangle inequality gives∣∣∣∑ aiψ

i
0ψ

d−i
1

∣∣∣
v
≤ (d + 1)| f |v max

i

{
|ψ i

0ψ
d−i
1 |v

}
.

Applying the estimate (6) to the product ψ i
0ψ

d−i
1 yields

|ψ i
0ψ

d−i
1 |v ≤ 2d(degψ+1)

|ψ0|
i
v|ψ1|

d−i
v ≤ 2d(degψ+1)

|ψ |dv .

Therefore,∣∣∣∑ aiψ
i
0ψ

d−1
1

∣∣∣
v
≤ (d + 1)2d(degψ+1)

| f |v|ψ |dv ≤ (d + 1)2d(degψ+1)
|ϕ|v|ψ |

d
v .

Similarly, ∣∣∣∑ biψ
i
0ψ

d−1
1

∣∣∣
v
≤ (d + 1)2d(degψ+1)

|ϕ|v|ψ |
d
v .

We combine these estimates. To ease notation, we let Nv = 1 for v non-
archimedean and Nv = (d + 1)22d degψ

= (d + 1)4degϕ degψ for v archimedean.
Then

h(ϕ ◦ψ)≤
∑
v∈MK

dv log max
{∣∣∣∑ aiψ

i
0ψ

d−1
1

∣∣∣
v
,

∣∣∣∑ biψ
i
0ψ

d−1
1

∣∣∣
v

}
≤

∑
v∈MK

dv(log|ϕ|v + d log|ψ |v + log Nv)

≤ h(ϕ)+ dh(ψ)+ (degϕ)(degψ) log 4+ log(d + 1)

≤ h(ϕ)+ dh(ψ)+ (degϕ)(degψ) log 8,
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since d + 1≤ 2d
≤ 2d degψ . This completes the proof of (c).

Finally, we prove (d) by induction on n. The stated inequality is clearly true
for n = 1. Assume now it is true for n. Then

h(ϕn+1)≤ h(ϕn)+ dnh(ϕ)+ dn+1 log 8 from (c) applied to ϕn and ϕ

≤

(dn
−1

d−1
h(ϕ)+ d2 dn−1

−1
d−1

log 8
)
+ dnh(ϕ)+ dn+1 log 8

from the induction hypothesis

=

(dn+1
−1

d−1

)
h(ϕ)+ d2

(dn
−1

d−1

)
log 8. �

The following facts about height functions are well known.

Proposition 6. Let ϕ :P1
→P1 be a rational map of degree d ≥ 2 defined over K .

There are constants c1, c2, c3, and c4, depending only on d, such that the following
estimates hold for all P ∈ P1(K ).

(a) |h(ϕ(P))− dh(P)| ≤ c1h(ϕ)+ c2.

(b) |ĥϕ(P)− h(P)| ≤ c3h(ϕ)+ c4.

(c) ĥϕ(ϕ(P))= dĥϕ(P).

(d) P ∈ PrePer(ϕ) if and only if ĥϕ(P)= 0.

Proof. See, for example, [Hindry and Silverman 2000, Sections B.2 and B.4] or
[Silverman 2007, Section 3.4]. �

3. A distance estimate

Our goal in this section is a version of the inverse function theorem that gives
explicit estimates for the dependence on the (local) heights of both the points and
the function. It is undoubtedly possible to give a direct, albeit long and messy,
proof of the desired result. We instead give a proof using universal families of
maps and arithmetic distance functions. Before stating our result, we set notation
for the universal family of degree d rational maps on P1.

We write Ratd ⊂ P2d+1 for the space of rational maps of degree d , where we
identify a rational map ϕ = f/g =

∑
ai zi

/∑
bi zi with the point

[ϕ] = [ f, g] = [a0, . . . , ad , b0, . . . , bd ] ∈ P2d+1.

If ϕ ∈ Ratd(Q) is defined over Q, we define the height of ϕ as in Section 2 to be
the height of the associated point in P2d+1(Q):

h(ϕ)= h([a0, . . . , ad , b0, . . . , bd ]).

Over Ratd , there is a universal family of degree d maps, which we denote by

9 : P1
×Ratd → P1

×Ratd , (P, ψ) 7→ (ψ(P), ψ).
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We note that Ratd is the complement in P2d+1 of a hypersurface, which we denote
by ∂Ratd . (The set ∂Ratd is given by the resultant Res( f, g) = 0, so ∂Ratd is a
hypersurface of degree 2d .) Since P1 is complete, we have

∂(P1
×Ratd)= P1

× ∂Ratd .

The map 9 is a finite map of degree d . Let R(9) denote its ramification locus.
Looking at the behavior of 9 in a neighborhood of a point (P, ψ), it is easy to see
that the restriction of R(9) to a fiber P1

ψ = P1
× {ψ} is the ramification divisor

R(9)|P1
ψ
= R(ψ) of ψ . So the ramification indices of the universal map 9 and a

particular map ψ are related by

(7) e(P,ψ)(9)= eP(ψ).

Proposition 7. Let ψ ∈ K (z) be a nontrivial rational function, let S ⊂ MK be
a finite set of absolute values on K , each extended in some way to K , and let
A, P ∈ P1(K ). Then∑
v∈S

max
A′∈ψ−1(A)

eA′(ψ)dvλv(P, A′)≥
∑
v∈S

dvλv(ψ(P), A)+ O(h(A)+ h(ψ)+ 1),

where the implied constant depends only on the degree of the map ψ .

Proof. The statement and proof of Proposition 7 use the machinery of arith-
metic distance functions and local height functions on quasiprojective varieties,
as described in [Silverman 1987a], to which we refer for definitions, notation,
and basic properties. We begin with the distribution relation for finite maps of
smooth quasiprojective varieties [Silverman 1987a, Proposition 6.2(b)]. Applying
this relation to the map 9 and points x, y ∈ P1

×Ratd yields

(8) δ
(
9(x), y; v

)
=

∑
y′∈9−1(y)

ey′(9)δ(x, y′; v)+ O(λ∂(P1×Ratd )2(x, y; v)),

where δ( · , · ; v) is a v-adic arithmetic distance function on P1
×Ratd , and where

λ∂(P1×Ratd )2 is a local height function for the indicated divisor. In particular, if we
take x = (P, ψ) and y = (A, ψ), then the arithmetic distance function δ and the
chordal metric λv defined in Section 1 satisfy

(9)

δ(9(x), y; v)= δ(9(P, ψ), (A, ψ); v)= δ((ψ(P), ψ), (A, ψ); v)

= λv(ψ(P), A).

Similarly, if y′ = (A′, ψ) ∈9−1(y), then

δ(x, y′; v)= δ((P, ψ), (A′, ψ); v)= λv(P, A′).



A QUANTITATIVE ESTIMATE FOR QUASIINTEGRAL POINTS IN ORBITS 331

Further, since ∂(P1
×Ratd)=P1

×∂Ratd is the pull-back of a divisor on Ratd and

∂(P1
×Ratd)2 = (P1

× ∂Ratd)× (P1
×Ratd)+ (P1

×Ratd)× (P1
× ∂Ratd),

applying [Silverman 1987a, Proposition 5.3(a)] gives

(10)

λ∂(P1×Ratd )2(x, y; v)�� λP1×∂Ratd ((P, ψ); v)+ λP1×∂Ratd ((A, ψ); v)

�� λ∂Ratd (ψ; v).

Substituting (7), (9), and (10) into the distribution relation (8) yields

(11) λv(ψ(P), A)=
∑

A′∈ψ−1(A)

eA′(ψ)λv(P, A′)+ O(λ∂Ratd (ψ; v)).

To ease notation, let A′v ∈ ψ
−1(A) be a point satisfying

eA′v (ψ)λv(P, A′v)= max
A′∈ψ−1(A)

eA′λv(P, A′).

Then for any A′ ∈ ψ−1(A) we have
(12)

eA′(ψ)λv(P, A′)=min{eA′v (ψ)λv(P, A′v), eA′(ψ)λv(P, A′)}

from the choice of A′v
≤ d min{λv(P, A′v), λv(P, A′)} since ψ has degree d

≤ dλv(A′v, A′)+ O(1) from the triangle inequality.

This is a nontrivial estimate for A′ 6= A′v, so in (11) we pull off the A′v term and
use (12) for the other terms to obtain

(13) λv(ψ(P), A)≤ eA′v (ψ)λv(P, A′v)+ d
∑

A′∈ψ−1(A)
A′ 6=A′v

λv(A′v, A′)+ O(λ∂Ratd (ψ; v)).

The next lemma gives an upper bound for λv(A′v, A′).

Lemma 8. There is a constant C = C(d) such that the following holds. Let
ψ ∈ Ratd(Q), let A ∈ P1(Q), and let A′, A′′ ∈ ψ−1(A) be distinct points. Then∑

v∈MK

dvλv(A′, A′′)≤ C(h(A)+ h(ψ)+ 1).

Proof. In the notation of [Silverman 1987a], we have

λv(A′, A′′)= δP1×Ratd ((A
′, ψ), (A′′, ψ); v)

= λ(P1×Ratd )2,1((A
′, ψ), (A′′, ψ); v),
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where 1 is the diagonal of (P1
×Ratd)2. Summing over v gives height functions∑

v∈MK

λv(A′, A′′)= h(P1×Ratd )2,1((A
′, ψ), (A′′, ψ))

+ O
(
h∂(P1×Ratd )2((A

′, ψ), (A′′, ψ))
)
+ 1.

Choosing an ample divisor H on P1
× Ratd , we use the fact that heights with

respect to a subscheme are dominated by ample heights away from the support
of the subscheme [Silverman 1987a, Proposition 4.2]. (This is where we use the
assumption that A′ 6= A′′, which ensures that the point ((A′, ψ), (A′′, ψ)) is not on
the diagonal.) This yields

(14)

∑
v∈MK

λv(A′, A′′)� hP1×Ratd ,H (A
′, ψ)+ hP1×Ratd ,H (A

′′, ψ)+ 1

� h(A′)+ h(A′′)+ h(ψ)+ 1.

We now use [Silverman 2009, Theorem 2], which says that there are positive
constants C1,C2,C3, depending only on the degree of ψ , such that

(15) h(ψ(P))≥ C1h(P)−C2h(ψ)−C3.

(The paper [Silverman 2009] deals with general rational maps Pn 99K Pn . In our
case with n = 1, it would be a tedious, but not difficult, calculation to give explicit
values for the Ci , including of course C1 = degψ .) Applying (15) with P = A′

and P = A′′, we substitute into (14) to obtain∑
v∈MK

λv(A′, A′′)� h(A)+ h(ψ)+ 1,

which completes the proof of Lemma 8. �

We use Lemma 8 to bound the sum in the right side of the inequality (13).
We note that λv(A′, A′′) ≥ 0 for all points, so the lemma implies in particular
that

∑
v∈S dvλv(A′, A′′)� h(A)+ h(ψ)+ 1 for any set of places S. Further, the

sum in (13) has at most d − 1 terms. Hence we obtain∑
v∈S

dvλv(ψ(P), A)≤
∑
v∈S

eA′v (ψ)dvλv(P, A′v)+ O(h(A)+ h(ψ)+ 1).

In this inequality, the O(h(ψ)) term comes from two places, Lemma 8 and∑
v∈S

dvλ∂Ratd (ψ; v)≤
∑
v∈MK

dvλ∂Ratd (ψ; v)= h∂Ratd (ψ)= O(h(ψ)+ 1),

where the last equality comes from the fact that ∂Ratd is a hypersurface of degree
2d in P2d+1. This completes the proof of Proposition 7. �
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4. A ramification estimate and a quantitative version of Roth’s theorem

In this section we state two known results that will be needed to prove our main
theorem. The first says that away from exceptional points, the ramification of ϕm

tends to spread out as m increases.

Lemma 9. Fix an integer d ≥ 2. There exist constants κ1 and κ2 < 1, depending
only on d , such that for all degree d rational maps ϕ : P1

→ P1, all points Q ∈ P1

that are not exceptional for ϕ, all integers m ≥ 1, and all P ∈ ϕ−m(Q), we have

eP(ϕ
m)≤ κ1(κ2d)m .

Proof. This is [Silverman 2007, Lemma 3.52]; see in particular the last paragraph
of the proof. It is not difficult to give explicit values for the constants. If Q is not
preperiodic, then the stronger estimate eP(ϕ

m)≤ e2d−2 is true for all m. �

The second result is the following quantitative version of Roth’s theorem.

Theorem 10. Let S be a finite subset of MK that contains all infinite places. We
assume that each place in S is extended to K in some fashion. Set the following
notation.

s the cardinality of S.
ϒ a finite, G K/K -invariant subset of K .
β a map S→ ϒ .
µ > 2 a constant.
M ≥ 0 a constant.

There are constants r1 and r2, depending only on [K : Q], #ϒ , and µ, such that
there are at most 4sr1 elements x ∈ K satisfying both of the following conditions:∑

v∈S

dv log+ |x −βv|−1
v ≥ µh(x)−M.(16)

h(x)≥ r2 max
v∈S
{h(βv),M, 1}.(17)

Proof. This is [Silverman 1987b, Theorem 2.1], with a small change of notation.
For explicit values of the constants, see [Gross 1990]. �

5. A bound for the number of quasiintegral points in an orbit

In this section we prove our main result, which is an explicit upper bound for the
number of iterates ϕn(P) that are close to a given base point A in any one of a
fixed finite number of v-adic topologies. Here is the precise statement.

Theorem 11. Let ϕ ∈ K (z) be a rational map of degree d ≥ 2. Fix a point
A∈P1(K ) that is not an exceptional point for ϕ, and let P ∈P1(K ) be a wandering
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point for ϕ. For any finite set of places S ⊂ MK and any constant 1≥ ε > 0, define
a set of nonnegative integers by

0ϕ,S(A, P, ε)=
{
n ≥ 0 :

∑
v∈S dvλv(ϕn P, A)≥ εĥϕ(ϕn P)

}
.

(a) There exist constants

γ1 = γ1(d, ε, [K :Q]) and γ2 = γ2(d, ε, [K :Q])

such that

(18) #
{

n ∈ 0ϕ,S(A, P, ε) : n > γ1+ log+d

(
h(ϕ)+ ĥϕ(A)

ĥϕ(P)

)}
≤ 4#Sγ2.

(b) In particular, there is a constant γ3 = γ3(d, ε, [K :Q]) such that

(19) #0ϕ,S(A, P, ε)≤ 4#Sγ3+ log+d

(
h(ϕ)+ ĥϕ(A)

ĥϕ(P)

)
.

(c) There is a constant γ4 = γ4(K , S, ϕ, A, ε) that is independent of P such that

max0ϕ,S(A, P, ε)≤ γ4.

Before giving the proof of Theorem 11, we make a number of remarks.

Remark 12. Note that as a consequence of Proposition 6(d), we have ĥϕ(P) > 0
if P is wandering point for ϕ. Hence the right side of (19) is well-defined.

Remark 13. If we take ε = 1, then the set 0ϕ,S(A, P, ε) more or less coincides
with the set of points in the orbit Oϕ(P) that are S-integral with respect to A. We
say “more or less” because 0ϕ,S(A, P, ε) is defined using the canonical height
of ϕn(P), rather than the naive height. But using the inequality |ĥϕ(P)−h(P)|�
h(ϕ)+ 1 from Proposition 6 and adjusting the constants, it is not hard to see that
the estimate (19) remains true for the set

0naive
ϕ,S (A, P, ε)=

{
n ≥ 0 :

∑
v∈S dvλv(ϕn P, A)≥ εh(ϕn P)

}
.

(See the proof of Corollary 17.) For example, taking A=∞, the set 0naive
ϕ,S (A, P, ε)

consists of the points ϕn(P) such that z(ϕn(P)) is (S, ε0)-integral for some ε0. This
is the motivation for saying that the points in0ϕ,S(A, P, ε) are quasi-(S, ε)-integral
with respect to A, where ε measures the degree of S-integrality.

Remark 14. The dependence of the bounds (18) and (19) on h(ϕ), ĥϕ(A), and
ĥv(P) are quite interesting. A dynamical analogue of a conjecture of Lang asserts
that the ratio h(ϕ)/ĥϕ(P) is bounded, independently of ϕ and P , provided that ϕ
is suitably minimal with respect to PGL2(K )-conjugation. See [Silverman 2007,
Conjecture 4.98].
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On the other hand, there cannot be a uniform bound for the ratio ĥϕ(A)/ĥϕ(P),
since A and P may be chosen arbitrarily and independent of one another. This
raises the interesting question of whether the bound for #0ϕ,S(A, P, ε) actually
needs to depend on A. Even in very simple situations, it appears difficult to answer
this question. For example, consider the map ϕ(z) = z2, the initial point P = 2,
and the set of primes S = {∞, 3, 5}. As A ∈ Q∗ varies, is it possible for the
orbit Oϕ(P) to contain more and more points that are S-integral with respect to A?
Writing A = x/y, we are asking if

sup
x,y∈Z

#
{
(n, i, j) ∈ N3

: y · 22n
− x = 3i 5 j}

=∞.

Remark 15. We observe that #0ϕ,S(A, P, ε) can grow as fast as log(ε−1) as
ε → 0+. For example, consider the map ϕ(z) = zd

+ zd−1, the points A = 0
and P = p, and the set of primes S = {p}. Since ϕn(z) = z(d−1)n

+ higher order
terms, we have |ϕn(p)|p = p−(d−1)n , so

λp(ϕ
n P, A)= λp(ϕ

n(p), 0)=− log|ϕn(p)|p = (d − 1)n log p.

Thus 0ϕ,S(A, P, ε) consists of all n ≥ 0 satisfying

(d − 1)n log p ≥ εĥϕ(ϕn P)= εdn ĥϕ(P).

Hence

#0ϕ,S(A, P, ε)=
⌊

log
(

log p

εĥϕ(P)

)/
log
(

d
d − 1

)⌋
+ 1

=
log(ε−1)

log(d/(d − 1))
+ o(log ε−1) as ε→ 0+.

In particular, if ε is small and d is large, so log(d/(d − 1)) ≈ 1/(d − 1), then we
have

#0ϕ,S(A, P, ε)≈ (d − 1) log(ε−1).

Remark 16. See [Gross and Silverman 1995; Silverman 1987b] for a version of
Theorem 11 for elliptic curves. These papers deal with points on an elliptic curve E
that are quasi-(S, ε)-integral with respect to O , the zero point of E . It is also of
interest to study points that are integral with respect to some other point A, and
in particular to see how the bound depends on A. The distance function on E is
translation invariant up to O

(
h(E)

)
, so we want to estimate the size of the set

(20)
{

P ∈ E(K ) :
∑

v∈S dvλv(P − A)≥ εĥE(P)
}
.

Translating the points in (20) by A, we want to count points satisfying
∑

dvλv(P)≥
εĥE(P + A)+ O(h(E)). The canonical height on an elliptic curve is a quadratic
form, so ĥE(P+ A)≤ 2ĥE(P)+2ĥE(A). Using the results in [Silverman 1987b],
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this leads to a bound for the set (20) in which the dependence on A appears as the
ratio ĥE(A)/ĥE(Pmin), where Pmin is the point of smallest nonzero height in E(K ).
This is analogous to the dependence on A in (19).

Proof of Theorem 11. For brevity, we will write 0S(ε) in place of 0ϕ,S(A, P, ε).
For the given ε, we set m≥1 to be the smallest integer satisfying κm

2 ≤ε/5κ1, where
κ1 and κ2 are the positive constants appearing in Lemma 9. Since κ2 < 1, there
exists such an integer m. Notice that κ1 and κ2 depend only on d; consequently m
depends only on d and ε. More precisely, if we assume (without loss of generality)
that ε < 1/2, then m� log(ε−1), where the implied constant depends only on d.

Put
em = max

A′∈ϕ−m(A)
eA′(ϕ

m).

Then Lemma 9 and our choice of m imply that

(21) em ≤ κ1(κ2d)m ≤ εdm/5.

Further, Proposition 7 says that for all Q ∈ P1(K ) we have

(22) em

∑
v∈S

max
A′∈ϕ−m(A)

dvλv(Q, A′)≥
∑
v∈S

dvλv(ϕm Q, A)−O(h(A)+h(ϕm)+1),

where the implied constant depends on deg(ϕm).
Suppose first that n ≤ m for all n ∈ 0S(ε). Then clearly #0S(ε) ≤ m, and from

our choice of m we have

#0S(ε)≤ m ≤
log(5κ1)+ log(ε−1)

log(κ−1
2 )

+ 1.

This upper bound has the desired form, since κ1 > 0 and 1 > κ2 > 0 depend only
on d .

We may thus assume that there exists an n ∈ 0S(ε) such that n >m, and we fix
such an n. By the definition of 0S(ε) we have

εĥϕ(ϕn P)≤
∑
v∈S

dv λv(ϕn P, A).

Applying (22) to the point Q = ϕn−m(P) yields

(23) εĥϕ(ϕn P)≤ em

∑
v∈S

dv max
A′∈ϕ−m(A)

λv(ϕ
n−m P, A′)+ O(h(A)+ h(ϕm)+ 1),

where the big-O constant depends on degϕm
= dm , and so on d and ε.

For each v ∈ S we choose an A′v ∈ ϕ
−m(A) satisfying

λv(ϕ
n−m P, A′v)= max

A′∈ϕ−m A
λv(ϕ

n−m P, A′).
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(For ease of exposition, we will assume that z(A′) 6= ∞ for all A′ ∈ ϕ−m A. If this
is not the case, then we use z for some of the A′, and we use z−1 for the others.)

Let S′ ⊂ S be the set of places in S defined by

S′ = {v ∈ S : λv(ϕn−m(P), A′v) > λv(A
′

v,∞)+ log `v},

where we recall that `v = 2 if v is archimedean and `v = 1 otherwise. Set
S′′ = S r S′. Applying Lemma 3 to the places in S′ and using the definition
of S′′ for the places in S′′, we find that

εĥϕ(ϕn(P))

≤

(∑
v∈S′
+

∑
v∈S′′

)
dvλv(ϕn P, A) since n ∈ 0S(A, P, ε)

≤ em

(∑
v∈S′
+

∑
v∈S′′

)
dvλv(ϕn−m(P), A′v)+ O(h(A)+ h(ϕm)+ 1)

from the definition of A′v and (23)

≤ em

∑
v∈S′

dv
(
2λv(A′v,∞)− log

∣∣z(ϕn−m(P))− z(A′v)
∣∣+ log `v

)
+ em

∑
v∈S′′

dv
(
λv(A′v,∞)+ log `v

)
+ O(h(A)+ h(ϕm)+ 1)

from Lemma 3

≤ em

∑
v∈S′

dv log
∣∣z(ϕn−m(P))− z(A′v)

∣∣−1

+ em

∑
v∈S

dv(2λv(A′v,∞)+ log `v)+ O(h(A)+ h(ϕm)+ 1).

We now use (b) and (c) of Proposition 6 to observe that∑
v∈S

dvλv(A′v,∞)≤
∑

A′∈ϕ−m(A)

∑
v∈S

dvλv(A′,∞)≤
∑

A′∈ϕ−m(A)

h(A′)

≤

∑
A′∈ϕ−m(A)

(
ĥϕ(A′)+ O(h(ϕ)+ 1)

)
≤ ĥϕ(A)+ O(h(ϕ)+ 1),

Here the last line follows because there are at most dm terms in the sum, and
ĥϕ(A′) = d−m ĥϕ(A). The constants depend only on m and d, and so on ε and d.
Further, from the definition of `v, we have∑

v∈S

dv log `v ≤ log 2.
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We also note from Proposition 5(d) that h(ϕm)� h(ϕ)+ 1, with the implied con-
stant depending only on d and m. Hence

(24) εĥϕ(ϕn(P))≤ em

∑
v∈S′

dv log+
∣∣z(ϕn−m(P))− z(A′v)

∣∣−1

+ O(ĥϕ(A)+ h(ϕ)+ 1).

We are going to apply Roth’s theorem (Theorem 10) to the set

ϒ = {z(A′) : A′ ∈ ϕ−m(A)} ⊂ K ,

the map β : S′→ϒ given by βv = A′v, and the points x = ϕn−m(P) for n ∈ 0S(ε).
We note that ϒ is a G K/K -invariant set and that #ϒ ≤ dm . We apply Theorem 10
to the set of places S′, taking M = 0 and µ= 5/2. This gives constants r1 and r2,
depending only on [K :Q], d , and ε, such that the set of n ∈0S(ε) with n>m can
be written as a union

{n ∈ 0S(ε) : n > m} = T1 ∪ T2 ∪ T3,

whose three sets are characterized as follows:

#T1 ≤ 4#S′r1,

T2 =
{
n > m :

∑
v∈S′ dv log+|z

(
ϕn−m(P)

)
− z(A′v)|

−1
≤

5
2 h(ϕn−m(P))

}
,

T3 =
{
n > m : h(ϕn−m(P))≤ r2 maxv∈S′{h(A′v), 1}

}
.

We already have a bound for the size of T1, so we look at T2 and T3. We start
with T3 and use (b) and (c) of Proposition 6 to estimate

h(A′v)≤ ĥϕ(A′)+ c3h(ϕ)+ c4

= d−m ĥϕ(A)+ c3h(ϕ)+ c4,

h(ϕn−m(P))≥ ĥϕ(ϕn−m(P))− c3h(ϕ)− c4

= dn−m ĥϕ(P)− c3h(ϕ)− c4.

Hence

T3 ⊂
{
n > m : dn−m ĥϕ(P)≤ c5ĥϕ(A)+ c6h(ϕ)+ c7

}
,

so every n ∈ T3 satisfies

(25)

n ≤ m+ log+d

(
c5ĥϕ(A)+ c6h(ϕ)+ c7

ĥϕ(P)

)
≤ c8+ log+d

(
ĥϕ(A)+ h(ϕ)

ĥϕ(P)

)
.
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Finally, we consider the set T2. Again using (b) and (c) of Proposition 6 to
relate h(ϕn−m(P)) to dn−m ĥϕ(P), we find that every n ∈ T2 satisfies∑

v∈S′
dv log+

∣∣z(ϕn−m(P))− z(A′v)
∣∣−1
≤

5
2 dn−m ĥϕ(P)+ c3h(ϕ)+ c4.

We substitute this estimate into (24) to obtain

εĥϕ(ϕn(P))≤ em
5
2 dn−m ĥϕ(P)+ c9(ĥϕ(A)+ h(ϕ)+ 1).

We know from (21) that em ≤ εdm/5, and also ĥϕ(ϕn(P))=dn ĥϕ(P), which yields

εdn ĥϕ(P)≤
(
ε

5
dm
)5

2
dn−m ĥϕ(P)+ c9(ĥϕ(A)+ h(ϕ)+ 1).

A little bit of algebra gives the inequality

(26)

n ≤ logd

(
2c9

ĥϕ(A)+ h(ϕ)+ 1

εĥϕ(P)

)
≤ c10+ log+d

(
ĥϕ(A)+ h(ϕ)

ĥϕ(P)

)
.

Combining the estimate for #T1 with the bounds (25) and (26) for the largest ele-
ments in T2 and T3 completes the proof of (a).

We note that (b) follows immediately from (a).
Finally, we prove (c). Our first observation is that the set ϒ = z(ϕ−m(A))

used in the application of Roth’s theorem does not depend on the point P . So the
largest element in the finite set T1 is bounded independently of P . (Of course,
since Roth’s theorem is not effective, we do not have an explicit bound for maxϒ
in terms K , S, ε, ϕ and A, but that is not relevant.)

Our second observation is to note that the quantity

ĥmin
ϕ,K

def
= inf

{
ĥϕ(P) : P ∈ P1(K ) wandering for ϕ

}
is strictly positive. To see this, let P0 ∈ P1(K ) be any ϕ-wandering point. Then

ĥmin
ϕ,K = inf

{
ĥϕ(P) : P ∈ P1(K ) and 0< ĥϕ(P)≤ ĥϕ(P0)

}
.

This last set is finite, so the infimum is over a finite set of positive numbers, and
hence is strictly positive. Therefore in the upper bounds (25) and (26) for max T2

and max T3, we may replace ĥϕ(P) with ĥmin
ϕ,K to get upper bounds independent

of P . This proves that max(T1 ∪ T2 ∪ T3) may be bounded independently of P ,
which completes the proof of (c). �
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6. A bound for the number of integral points in an orbit

In this section, we use Theorem 11 to give a uniform upper bound for the number
of S-integral points in an orbit.

Corollary 17. Let K be a number field, let S ⊂ MK be a finite set of places that
includes all archimedean places, let RS be the ring of S-integers of K , and let d≥2.
There is a constant γ = γ (d, [K : Q]) such that for all rational maps ϕ ∈ K (z)
of degree d satisfying ϕ2(z) /∈ K [z] and all ϕ-wandering points P ∈ P1(K ), the
number of S-integral points in the orbit of P is bounded by

#
{
n ≥ 1 : z(ϕn(P)) ∈ RS

}
≤ 4#Sγ + log+d

( h(ϕ)

ĥϕ(P)

)
.

Proof. By definition, an element α ∈ K is in RS if and only if |α|v ≤ 1 for all v /∈ S,
or equivalently, if and only if

h(α)=
∑
v∈S

dv log max{|α|v, 1}.

We note that for v ∈ M0
K we have

λv(α,∞)= λv([α, 1], [1, 0])= log max{|α|v, 1}.

The formula for λv when v is archimedean is slightly different, but the trivial
inequality max{t, 1} ≤

√
t2+ 1 shows that for v ∈ M∞K we have

log max{|α|v, 1} ≤ λv(α,∞).

Hence α ∈ RS implies h(α)≤
∑

v∈S dvλv(α,∞).
Let n ≥ 1 satisfy z(ϕn(P)) ∈ RS . Then

(27) h(ϕn(P))≤
∑
v∈S

dvλv(ϕn(P),∞).

Proposition 6 tells us that

(28) h(ϕn(P))≥ ĥϕ(ϕn(P))− c3h(ϕ)− c4 = dn ĥϕ(P)− c3h(ϕ)− c4,

where c3 and c4 depend only on d. Combining (27) and (28) gives

(29)
∑
v∈S

dvλv(ϕn(P),∞)≥ dn ĥϕ(P)− c3h(ϕ)− c4.

We consider two cases. First, if

dn ĥϕ(P)≤ 2c3h(ϕ)+ 2c4,
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then the number of possible values of n is at most

log+d

(2c3h(ϕ)+ 2c4

ĥϕ(P)

)
,

which has the desired form. Second, if

dn ĥϕ(P)≥ 2c3h(ϕ)+ 2c4,

then (29) implies that

(30)
∑
v∈S

dvλv(ϕn(P),∞)≥ 1
2 dn ĥϕ(P)= 1

2 ĥϕ(ϕn(P)).

Now Theorem 11(b) with ε = 1/2 and A = ∞ tells us that the number of n
satisfying (30) is at most

(31) 4#Sγ3+ log+d

(
h(ϕ)+ ĥϕ(∞)

ĥϕ(P)

)
,

where γ3 depends only on [K :Q] and d . (Note that our assumption that ϕ2(z) is
not a polynomial is equivalent to the assertion that∞ is not an exceptional point
for ϕ. This is needed in order to apply Theorem 11.) It only remains to observe
that

ĥϕ(∞)≤ h(∞)+ c3h(ϕ)+ c4 and h(∞)= h([0, 1])= 0

to see that the bound (31) has the desired form. �
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