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MÖBIUS ISOPARAMETRIC HYPERSURFACES WITH THREE
DISTINCT PRINCIPAL CURVATURES, II

ZEJUN HU AND SHUJIE ZHAI

Using the method of moving frames and the algebraic techniques of T. E.
Cecil and G. R. Jensen that were developed while they classified the Dupin
hypersurfaces with three principal curvatures, we extend Hu and Li’s main
theorem in Pacific J. Math. 232:2 (2007), 289–311 by giving a complete
classification for all Möbius isoparametric hypersurfaces in Sn+1 with three
distinct principal curvatures.

1. Introduction

Let x :Mn
→Sn+1 be a connected smooth hypersurface in the (n+1)-dimensional

unit sphere Sn+1 without umbilic point. We choose a local orthonormal basis
{e1, . . . , en} with respect to the induced metric I = dx ·dx , and let {θ1, . . . , θn} be
the dual basis. Let h =

∑
i, j hi jθi ⊗ θ j be the second fundamental form of x , with

squared length ‖h‖2 =
∑

i, j (hi j )
2 and mean curvature H = (1/n)

∑
i hi i . Define

ρ2
= n/(n− 1) · (‖h‖2− nH 2). Then the positive definite form g = ρ2dx · dx is

Möbius invariant and is called the Möbius metric of x : Mn
→ Sn+1. The Möbius

second fundamental form B, another basic Möbius invariant of x , together with
g determine completely a hypersurface of Sn+1 up to Möbius equivalence; see
Theorem 2.2 below.

An important class of hypersurfaces for Möbius differential geometry is the so-
called Möbius isoparametric hypersurfaces in Sn+1. According to [Li et al. 2002],
a Möbius isoparametric hypersurface of Sn+1 is an umbilic-free hypersurface of
Sn+1 such whose Möbius-invariant 1-form

8=−ρ−1∑
i

(
ei (H)+

∑
j (hi j − Hδi j )e j (log ρ)

)
θi

vanishes and whose Möbius principal curvatures are all constant. These curvatures
are the eigenvalues of the Möbius shape operator 9 := ρ−1(S−H id) with respect
to g, where S denotes the shape operator of x : Mn

→ Sn+1. This definition
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of Möbius isoparametric hypersurfaces is meaningful. Indeed, comparing it with
that of (Euclidean) isoparametric hypersurfaces in Sn+1, we see that the images of
all hypersurfaces of the sphere with constant mean curvature and constant scalar
curvature under the Möbius transformation satisfy8≡0, and the Möbius-invariant
operator 9 plays the role in Möbius geometry that S does in Euclidean geometry;
see Theorem 2.2 below. The two conditions of a Möbius isoparametric hyper-
surface, namely, that it has vanishing Möbius form and has constant Möbius prin-
cipal curvatures, are independent and also closely related; for detailed discussion,
see [Hu and Tian 2009]. Standard examples of Möbius isoparametric hypersurfaces
are the images of (Euclidean) isoparametric hypersurfaces in Sn+1 under Möbius
transformations. But there are other examples which cannot be obtained by this
way; for example, one occurs in our classification for hypersurfaces of Sn+1 with
parallel Möbius second fundamental form, that is, those whose Möbius second fun-
damental form is parallel with respect to the Levi-Civita connection of the Möbius
metric g; see [Hu and Li 2004; Li et al. 2002] for details. On the other hand, it
was proved in [Li et al. 2002] that any Möbius isoparametric hypersurface is in
particular a Dupin hypersurface, which implies from [Thorbergsson 1983] that for
a compact Möbius isoparametric hypersurface embedded in Sn+1, the number γ of
distinct principal curvatures can only take the values γ = 2, 3, 4, 6. A characteriza-
tion of Möbius isoparametric hypersurfaces in terms of Dupin hypersurfaces was
given in [Li et al. 2002] and was obtained very recently also by L. A. Rodriques
and K. Tenenblat [2009]; this characterization states that a Möbius isoparametric
hypersurface is either a cyclide of Dupin or a Dupin hypersurface whose Möbius
curvatures are constant. Hence the problem of investigating Möbius isoparametric
hypersurfaces reduces to that of investigating Dupin hypersurfaces with constant
Möbius curvatures.

In [Li et al. 2002], the authors classified locally all Möbius isoparametric hy-
persurfaces of Sn+1 with γ = 2. By relaxing the restriction that γ = 2, local
classifications for all Möbius isoparametric hypersurfaces in S4, S5 and S6 were
established in [Hu and Li 2005], [Hu et al. 2007] and [Hu and Zhai 2008], respec-
tively. It was shown that a Möbius isoparametric hypersurface in S4 is either of
parallel Möbius second fundamental form or Möbius equivalent to the Euclidean
isoparametric hypersurface in S4 with three distinct principal curvatures, that is,
a tube of constant radius over a standard Veronese embedding of RP2 into S4.
Similarly, a hypersurface in S5 is Möbius isoparametric if and only if either it
has parallel Möbius second fundamental form; or it is Möbius equivalent to the
preimage of the stereographic projection of the cone x̃ : N 3

×R+→ R5 defined
by x̃(x, t)= t x , where t ∈R+ and x : N 3

→S4 ↪→R5 is the Cartan isoparametric
immersion in S4 with three principal curvatures; or it is Möbius equivalent to the
Euclidean isoparametric hypersurfaces in S5 with four distinct principal curvatures.
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All these results remind us of their counterparts in Dupin hypersurfaces; see [Cecil
and Jensen 1998; 2000; Cecil et al. 2007; Miyaoka and Ozawa 1989; Niebergall
1991; Pinkall 1985; Pinkall and Thorbergsson 1989].

Hence, the classification of Möbius isoparametric hypersurfaces by Möbius
transformation group equivalence can be compared with that of the Dupin hyper-
surfaces by Lie sphere transformation group equivalence. Note that the Lie sphere
transformation group contains the Möbius transformation group in Sn+1 as a sub-
group and the dimension difference is n+ 3. Thus, Möbius differential geometry
for hypersurfaces in sphere should, in some sense, be very different from Lie sphere
geometry in many respects, and therefore is worthwhile to pay more attention.

Inspired by the close similarity between Dupin hypersurfaces under the Lie
sphere transformation group and Möbius isoparametric hypersurfaces under the
Möbius transformation group, and by T. E. Cecil and G. R. Jensen’s result [1998]
that any locally irreducible Dupin hypersurface in Sn with three distinct prin-
cipal curvatures is equivalent by Lie sphere transformation to an isoparametric
hypersurface in Sn , we started in [Hu and Li 2007] a program of classifying all
Möbius isoparametric hypersurfaces in Sn+1 with three distinct Möbius principal
curvatures. There, we were able to obtain the classification under the additional
condition that one of the Möbius principal curvatures is of multiplicity one. The
purpose of this paper is to extend that result to the general case:

Classification theorem. Let x : Mn
→ Sn+1 be a Möbius isoparametric hyper-

surface with three distinct Möbius principal curvatures. Then x is Möbius equiva-
lent to an open part of one of the following hypersurfaces in Sn+1:

(i) The preimage of the stereographic projection of the warped product embed-
ding

x̃ : Sp(a)×Sq(
√

1− a2)×R+×Rn−p−q−1
→ Rn+1

with p ≥ 1, q ≥ 1, p+ q ≤ n− 1 and 0< a < 1, defined by

x̃(u′, u′′, t, u′′′)= (tu′, tu′′, u′′′),

where u′ ∈ Sp(a), u′′ ∈ Sq(
√

1− a2), t ∈ R+ and u′′′ ∈ Rn−p−q−1.

(ii) The Euclidean isoparametric hypersurfaces in Sn+1 with three distinct prin-
cipal curvatures. Thus all the principal curvatures must have the same mul-
tiplicity m ∈ {1, 2, 4, 8}, and the isoparametric hypersurface must be a tube
of constant radius over a standard Veronese embedding of a projective plane
FP2 into S3m+1, where F is the division algebra R, C, H (the quaternions), O

(the Cayley numbers) for m = 1, 2, 4, 8, respectively.

(iii) The minimal hypersurfaces defined by

x̃ = (x̃1, x̃2) : M̃n
= N 3m

×Hn−3m
(
−

n−1
6mn

)
→ Sn+1,
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with

x̃1 = y1/y0, x̃2 = y2/y0, y0 ∈ R+, y1 ∈ R3m+2, y2 ∈ Rn−3m,

where y1 : N 3m
→ S3m+1(

√
6mn/(n− 1)) ↪→ R3m+2 is Cartan’s minimal

isoparametric hypersurface with scalar curvature R̃1 = 3(m − 1)(n − 1)/2n
and principal curvatures

(1-1)

√
n−1
2mn

, 0, −

√
n−1
2mn

which have the same multiplicity m, where m = 1, 2, 4 or 8, and

(y0, y2) : H
n−3m

(
−

n−1
6mn

)
↪→ Ln−3m+1

is the standard embedding of the hyperbolic space of sectional curvature
−(n− 1)/(6mn) into the (n− 3m+ 1)-dimensional Lorentz space with

−y2
0 + y2

2 =−
6mn
n−1

.

Remark 1.1. All hypersurfaces in (i) are of parallel Möbius second fundamental
form and have three distinct Möbius principal curvatures with arbitrary multiplic-
ities p, q and n − p − q , respectively. The hypersurfaces in (ii) and (iii) are
of nonparallel Möbius second fundamental form. For hypersurfaces in (iii), the
multiplicities of the three Möbius principal curvatures are m, m and n−2m >m.

Remark 1.2. In the cases that n=3, 4 and 5, the classification theorem was proved
in [Hu and Li 2005; Hu et al. 2007; Hu and Li 2007], respectively. The theorem
extends the main theorem of [Hu and Li 2007], where it was assumed that the
Möbius isoparametric hypersurface Mn for n ≥ 5 has three distinct Möbius princi-
pal curvatures and one of which is simple. The extension is successfully achieved
by using the wonderful techniques developed by T. E. Cecil and G. R. Jensen [1998]
in their classification of Dupin hypersurfaces with three principal curvatures.

Remark 1.3. As a counterpart to the Cecil–Ryan conjecture for Dupin hypersur-
faces, which states that a compact embedded Dupin hypersurface in a space form is
Lie equivalent to an Euclidean isoparametric hypersurface, C. P. Wang conjectured
that any compact embedded Möbius isoparametric hypersurface in Sn+1 is Möbius
equivalent to an Euclidean isoparametric hypersurface. Pinkall and Thorbergsson
[1989] and Miyaoka and Ozawa [1989], have constructed counterexamples to the
Cecil–Ryan conjecture, but we point out that the classifications of Möbius iso-
parametric hypersurfaces in [Hu and Li 2007; 2005; Hu et al. 2007; Hu and Zhai
2008; Li et al. 2002] and this paper strengthen Wang’s conjecture.
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This paper consists of six sections. In Section 2, we first review the elemen-
tary facts of Möbius geometry for hypersurfaces in Sn+1, and then we recall the
classification for hypersurfaces of Sn+1 with parallel Möbius second fundamental
form [Hu and Li 2004] and the classification for hypersurfaces of Sn+1 with two
distinct constant Blaschke eigenvalues [Li and Zhang 2007]. In Section 3, we treat
the Möbius isoparametric hypersurfaces of Sn+1 with nonparallel Möbius second
fundamental form and three distinct Möbius principal curvatures. We first present
several important properties of the Möbius second fundamental form, and then
we divide the discussion into two cases and state the main results, Theorem 3.1
and Theorem 3.2. We prove Theorem 3.1 in Section 4. In Section 5, we prove
Theorem 5.1, which gives a preliminary classification for Möbius isoparametric
hypersurfaces with three distinct Möbius principal curvatures whose multiplicities
are not equal. By the analysis of the Möbius invariants of the hypersurfaces that
appear in Theorem 5.1 we obtain Propositions 5.3 — 5.5, from which Theorem 3.2
follows. In Section 6, we complete the proof of the classification theorem.

2. Möbius invariants for hypersurfaces in Sn+1

In this section we define the Möbius invariants and recall the structure equations for
hypersurfaces in the unit sphere Sn+1. We refer to [Wang 1998] for more details.
Let Ln+3 be the Lorentz space, namely Rn+3 with inner product 〈 · , · 〉1 defined by

〈x, w〉1 =−x0w0+ x1w1+ · · ·+ xn+2wn+2

for x = (x0, x1, . . . , xn+2), w = (w0, w1, . . . , wn+2) ∈ Rn+3.
Let x : Mn

→ Sn+1 ↪→ Rn+2 be an immersed hypersurface of Sn+1 without
umbilics. We define the Möbius position vector Y : Mn

→ Ln+3 of x by

(2-1) Y = ρ(1, x) and ρ2
=

n
n−1

(‖h‖2− nH 2) > 0.

Theorem 2.1 [Wang 1998]. Two hypersurfaces x, x̃ : Mn
→ Sn+1 are Möbius

equivalent if and only if there exists T in the Lorentz group O(n+ 2, 1) such that
Y = Ỹ T on Mn .

It follows immediately that g = 〈dY, dY 〉1 = ρ2dx · dx is a Möbius invariant,
which is defined as the Möbius metric of x : Mn

→ Sn+1. Let 1 be the Beltrami–
Laplace operator of g. Define N =−4Y/n−〈1Y,1Y 〉1Y/(2n2). Then one can
show that

〈1Y, Y 〉1 =−n, 〈1Y, dY 〉1 = 0, 〈1Y,1Y 〉1 = 1+ n2 R,(2-2)

〈Y, Y 〉1 = 0, 〈N , Y 〉1 = 1, 〈N , N 〉1 = 0,(2-3)

where R is the normalized scalar curvature of g and is called the normalized
Möbius scalar curvature of x : Mn

→ Sn+1.
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Let {E1, . . . , En} be a local orthonormal basis for (Mn, g), and let {ω1, . . . , ωn}

be the dual basis. Write Yi = Ei (Y ), then it follows from (2-1), (2-2) and (2-3) that

〈Yi , Y 〉1 = 〈Yi , N 〉1 = 0, 〈Yi , Y j 〉1 = δi j for 1≤ i, j ≤ n.

Let V be the orthogonal complement to the subspace Span{Y, N , Y1, . . . , Yn}

in Ln+3. Then along M we have the orthogonal decomposition

Ln+3
= Span{Y, N }⊕Span{Y1, . . . , Yn}⊕ V .

V is called the Möbius normal bundle of x : Mn
→Sn+1. A local unit vector basis

E = En+1 for V can be written as

E = En+1 := (H, H x + en+1).

Then, {Y, N , Y1, . . . , Yn, E} forms a moving frame along Mn in Ln+3.
In the rest of this paper, we will use the range 1≤ i, j, k, l, t ≤ n of indices.
We can write the structure equations as

dY =
∑

i

Yiωi , dYi =−
∑

j

Ai jω j Y −ωi N +
∑

j

ωi j Y j +
∑

i

Bi jω j E,(2-4)

d N =
∑
i, j

Ai jω j Yi +
∑

i

Ciωi E, d E =−
∑

i

Ciωi Y −
∑
i, j

Bi jω j Yi ,(2-5)

whereωi j is the connection form of the Möbius metric g and is defined by the struc-
ture equations dωi =

∑
j ωi j∧ω j and ωi j+ω j i =0. The tensors A=

∑
i, j Ai jωi⊗

ω j , 8 =
∑

i Ciωi and B =
∑

i, j Bi j ωi ⊗ ω j are called the Blaschke tensor,
the Möbius form and the Möbius second fundamental form of x : Mn

→ Sn+1,
respectively. The relations between 8, B, A and the Euclidean invariants of x are
given by [Wang 1998]

Ci =−ρ
−2(ei (H)+

∑
j (hi j − Hδi j )e j (log ρ)

)
,

Bi j = ρ
−1(hi j − Hδi j ),(2-6)

Ai j =−ρ
−2(Hessi j (log ρ)− ei (log ρ)e j (log ρ)− Hhi j

)
(2-7)

−
1
2ρ
−2(|∇ log ρ|2− 1+ H 2)δi j ,

where Hessi j and ∇ are the Hessian matrix and the gradient with respect to the
orthonormal basis {ei } of dx · dx .

The covariant derivatives of Ci , Ai j , Bi j are defined by∑
j Ci, jω j = dCi +

∑
j C jω j i ,(2-8) ∑

k Ai j,kωk = d Ai j +
∑

k Aikωk j +
∑

k Ak jωki ,(2-9) ∑
k Bi j,kωk = d Bi j +

∑
k Bikωk j +

∑
k Bk jωki .(2-10)
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The integrability conditions for the structure equations (2-4) and (2-5) are

Ai j,k − Aik, j = BikC j − Bi j Ck,(2-11)

Ci, j −C j,i =
∑

k(Bik Ak j − Aik Bk j ),(2-12)

Bi j,k − Bik, j = δi j Ck − δikC j ,(2-13)

and

Ri jkl = Bik B jl − Bil B jk + δik A jl + δ jl Aik − δil A jk − δ jk Ail,(2-14) ∑
i Bi i = 0,

∑
i, j (Bi j )

2
=

n−1
n
, tr A=

∑
i Ai i =

1
2n
(1+ n2 R).(2-15)

Here Ri jkl denote the components of the curvature tensor of g, which are defined
by the structure equations

(2-16) dωi j −
∑

k ωik ∧ωk j =−
1
2

∑
k,l Ri jklωk ∧ωl, Ri jkl =−Ri jlk .

The normalized Möbius scalar curvature of x : Mn
→ Sn+1 is

R = 1
n(n−1)

∑
i, j Ri j i j .

The second covariant derivative of Bi j is defined by

(2-17)
∑

l Bi j,kl ωl = d Bi j,k +
∑

l Bl j,k ωli +
∑

l Bil,k ωl j +
∑

l Bi j,l ωlk .

From exterior differentiation of (2-10), we have the Ricci identity

(2-18) Bi j,kl − Bi j,lk =
∑

t Bt j Rtikl +
∑

t Bi t Rt jkl .

From (2-6), we see that the Möbius shape operator of x : Mn
→ Sn+1 takes the

form 9 = ρ−1(S− H id) =
∑

i, j Bi jωi E j , which implies that for an umbilic-free
hypersurface in Sn+1, the number of distinct Möbius principal curvatures is the
same as that of its distinct Euclidean principal curvatures.

One can easily show that all coefficients in (2-4) and (2-5) are determined
by {g, 9}. Thus:

Theorem 2.2 [Wang 1998; Akivis and Goldberg 1997]. For n ≥ 3, two hyper-
surfaces x : Mn

→ Sn+1 and x̃ : M̃n
→ Sn+1 are Möbius equivalent if and only if

there exists a diffeomorphism F : Mn
→ M̃n that preserves the Möbius metric and

the Möbius shape operator.

An umbilic-free hypersurface x : Mn
→ Sn+1 is said to have parallel Möbius

second fundamental form if Bi j,k = 0 for all i, j, k. Hypersurfaces of Sn+1 with
parallel Möbius second fundamental form have now been completely classified. A
special case of the classification can be stated as follows.
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Theorem 2.3 [Hu and Li 2004]. For n ≥ 2, let x : Mn
→ Sn+1 be an immersed

umbilic-free hypersurface with parallel Möbius second fundamental form and with
three distinct Möbius principal curvatures. Then x is Möbius equivalent to an open
part of the image of σ of the warped product embedding

x̃ : Sp(a)×Sq(
√

1− a2)×R+×Rn−p−q−1
→ Rn+1

with p ≥ 1, q ≥ 1, p+ q ≤ n− 1 and 0< a < 1, defined by

x̃(u′, u′′, t, u′′′)= (tu′, tu′′, u′′′),

for

u′ ∈ Sp(a), u′′ ∈ Sq(
√

1− a2), t ∈ R+, u′′′ ∈ Rn−p−q−1,

where the conformal diffeomorphism σ : Rn+1
→ Sn+1

\ {(−1, 0, . . . , 0)} is the
inverse of the stereographic projection and is defined by

σ(u)=
(1− |u|2

1+ |u|2
,

2u
1+ |u|2

)
for u ∈ Rn+1.

To prove our main theorem, we also need the following partial classification for
umbilic-free hypersurfaces in Sn+1 with two distinct Blaschke eigenvalues, due to
Li and Zhang [2007]; see also [Hu and Li 2007]

Theorem 2.4. For n ≥ 3, let x : Mn
→ Sn+1 be an immersed umbilic-free hyper-

surface with two distinct constant Blaschke eigenvalues and vanishing Möbius
form. If x has three distinct Möbius principal curvatures, then it is locally Möbius
equivalent to either of the following two families of hypersurfaces in Sn+1:

(1) Minimal hypersurfaces defined by

x̃ = (x̃1, x̃2) : M̃n
= N p

×Hn−p(−r−2)→ Sn+1

with r > 0 and

x̃1 = y1/y0, x̃2 = y2/y0,

y0 ∈ R+, y1 ∈ Rp+2, y2 ∈ Rn−p for 2≤ p ≤ n− 1,

where y1 : N p
→ Sp+1(r) ↪→ Rp+2 is an umbilic-free minimal hypersurface

immersed into the (p+1)-dimensional sphere of radius r and constant scalar
curvature

R̃1 =
np(p− 1)− (n− 1)r2

nr2 ,

and (y0, y2) :H
n−p(−r−2)→Ln−p+1 is the standard embedding of hyperbolic

space of sectional curvature −r−2 into the (n− p+1)-dimensional Lorentz
space with −y2

0 + y2
2 =−r2.
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(2) Nonminimal hypersurfaces defined by

x̃ = (x̃1, x̃2) : M̃n
= N p

×Sn−p(r)→ Sn+1

with r > 0 and

x̃1 = y1/y0, x̃2 = y2/y0,

y0 ∈ R+, y1 ∈ Rp+1, y2 ∈ Rn−p+1 for 2≤ p ≤ n− 1,

where (y0, y1) : N p
→ Hp+1(−r−2) ↪→ Lp+2, with −y2

0 + y2
1 = −r2, is an

umbilic free minimal hypersurface immersed into (p+1)-dimensional hyper-
bolic space of sectional curvature −r−2 and constant scalar curvature

R̃1 =−
np(p− 1)+ (n− 1)r2

nr2 ,

and y2 : S
n−p(r)→ Rn−p+1 is the standard embedding of the (n− p)-sphere

of radius r .

3. Möbius isoparametric hypersurfaces with γ = 3

Let x : Mn
→ Sn+1 be a Möbius isoparametric hypersurface with three distinct

principal curvatures B1, B2, B3 of multiplicities m1, m2, m3, respectively. Without
loss of generality, we assume that m1 ≥ m2 ≥ m3 ≥ 1.

Since x has constant Möbius principal curvatures, we can choose, around each
point of M , a local frame field {Ei }1≤i≤n orthonormal with respect to the Möbius
metric g such that the matrix (Bi j ) is diagonalized. Let us write

(3-1) (Bi j )= diag(b1, . . . , bn),

where {bi } are all constants. From the assumption, we can assume without loss of
generality that

b1 = · · · = bm1 = B1, bm1+1 = · · · = bm1+m2 = B2, bm1+m2+1 = · · · = bn = B3.

Here B1, B2 and B3 are distinct and, by (2-15), they satisfy the conditions

(3-2) m1 B1+m2 B2+m3 B3 = 0, m1 B2
1 +m2 B2

2 +m3 B2
3 =

n−1
n
.

From now on, unless stated otherwise we impose the additional index conventions

(3-3)

1≤ a, b, c, d ≤ m1,

m1+ 1≤ p, q ≤ m1+m2,

m1+m2+ 1≤ α, β ≤ m1+m2+m3 = n.

With respect to the local frame field {Ei }, we write the Blaschke tensor as A=∑
i, j Ai j ωi ⊗ω j . Since the Möbius form 8 vanishes, we see from (2-12) that A
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and B commute, which implies that Apa = Aaα = Apα = 0. Moreover, for any
fixed point ξ ∈ M , we can choose the local frame field {Ei } to guarantee that, in
addition to (3-1) around ξ , we have at the pont ξ

(3-4) (Ai j )= diag(A1, . . . , An).

Here {Ai }1≤i≤n are the eigenvalues of the Blaschke tensor A. Obviously, we can
further arrange the local frame field {Ei } around ξ so that, in addition to (3-1)
around ξ , these eigenvalues are ordered at ξ as

(3-5)

A1(ξ)≤ A2(ξ)≤ · · · ≤ Am1(ξ),

Am1+1(ξ)≤ · · · ≤ Am1+m2(ξ),

Am1+m2+1(ξ)≤ · · · ≤ An(ξ).

In this way, we see that A1, . . . , An are well-defined continuous functions on
M . Denote by M∗ the set of all such points ξ ∈ M : Around ξ there exists an
orthonormal frame field {Ei }with respect to which (3-1) and (3-4) hold. Obviously,
M∗ is an open subset of M . In the computation that follows, we will fix a point
ξ ∈ M∗ and then take an open set U ⊂ M∗ containing ξ such that over U there
exists an orthonormal frame field {Ei } for which (3-1) and (3-4) hold.

Applying the condition to (2-11) and (2-13), we see that both Ai j,k and Bi j,k are
totally symmetric tensors. As usual we define

(3-6) ωi j =
∑

k

0i
k jωk and 0i

k j =−0
j
ki .

From (2-10), (3-1) and (3-6) and that {bi }1≤i≤n consists of constants, we get

(3-7) Bi j,k = (bi − b j )0
i
k j = (b j − bk)0

j
ik = (bk − bi )0

k
ji for all i, j, k.

Hence we see that

(3-8) Bi i, j = Bi j,i = Bab, j = Bpq, j = Bαβ, j = 0 for all i, j, a, b, p, q, α, β,

and the only possible nonzero elements in {Bi j,k} are of the form Bpa,α.
For the rest of this section, we assume that Bi j,k 6≡ 0. We define the nonnegative

smooth function f by

f = 1
6 |∇B|2 = 1

6

∑
i, j,k

B2
i j,k =

∑
p,a,α

B2
pa,α.

Moreover, we define three arrays of vectors, an m2 × m3 array (Evpα) of vectors
in Rm1 , an m1×m3 array (Evaα) of vectors in Rm2 , and an m2×m1 array (Evpa) of
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vectors in Rm3 , by

Evpα = (Bpα,1, Bpα,2, . . . , Bpα,m1),

Evaα = (Baα,m1+1, Baα,m1+2, . . . , Baα,m1+m2),

Evpa = (Bpa,m1+m2+1, Bpa,m1+m2+2, . . . , Bpa,n).

Lemma 3.1. Let U be an open set of M∗ as stated above. Then at each point of U ,
the arrays (Evpα), (Evaα) and (Evpa) satisfy

Evpα · Evpβ = 0= Evaα · Evaβ for all p, a and any α 6= β,

Evpα · Evqα = 0= Evpa · Evqa for all α, a and any p 6= q ,

Evaα · Evbα = 0= Evpa · Evpb for all p, α and a 6= b;

(3-9)


Evpα · Evqβ + Evqα · Evpβ = 0 if α 6= β and p 6= q ,

Evaα · Evbβ + Evbα · Evaβ = 0 if α 6= β and a 6= b,

Evpa · Evqb+ Evqa · Evpb = 0 if a 6= b and p 6= q;

(3-10)


|Evpα|

2
+ |Evqβ |

2
= |Evqα|

2
+ |Evpβ |

2 if α 6= β and p 6= q ,

|Evaα|
2
+ |Evbβ |

2
= |Evbα|

2
+ |Evaβ |

2 if α 6= β and a 6= b,

|Evpa|
2
+ |Evqb|

2
= |Evqa|

2
+ |Evpb|

2 if a 6= b and p 6= q ,

(3-11)

where the dot denotes the standard product in Rm1 , Rm2 and Rm3 , respectively.

Proof. From (2-10) and (3-8), we have∑
a Bpα,aωa = (B2− B3)ωpα,(3-12) ∑
p Baα,pωp = (B1− B3)ωaα,(3-13) ∑
α Bpa,αωα = (B2− B1)ωpa.(3-14)

Differentiating (3-12) and then using (3-6) and (3-7), we get

(3-15)

∑
a,q,β Bpα,a Bqβ,a(B3− B2)

(B1− B2)(B1− B3)
ωq ∧ωβ

+
∑

a,b Bpα,aωab ∧ωb+
∑

a d Bpα,a ∧ωa

= (B2− B3)

( ∑
a,q,β Bpβ,a Bqα,a

(B1− B2)(B1− B3)
ωq ∧ωβ

+
∑

q ωpq ∧ωqα +
∑

β ωpβ ∧ωβα − Rpαpαωp ∧ωα

)
.

Comparing the coefficients of ωq ∧ωβ on both sides of (3-15), we obtain

(3-16)
∑

a Bpα,a Bqβ,a +
∑

a Bpβ,a Bqα,a = (B1− B2)(B1− B3)Rpαpαδpqδαβ .
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Similarly, by differentiating (3-13) and (3-14), we get∑
p Baα,p Bbβ,p +

∑
p Baβ,p Bbα,p = (B2− B1)(B2− B3)Raαaαδabδαβ,(3-17) ∑

α Bpa,αBqb,α +
∑

α Bpb,αBqa,α = (B3− B2)(B3− B1)Rpapaδpqδab.(3-18)

From (3-16), (3-17) and (3-18), the relations in (3-9) and (3-10) immediately fol-
low.

Moreover, from (3-16)–(3-18) and (2-14), we get

2|Evpα|
2
= (B1− B2)(B1− B3)(B2 B3+ Ap + Aα),(3-19)

2|Evaα|
2
= (B2− B1)(B2− B3)(B1 B3+ Aa + Aα),(3-20)

2|Evpa|
2
= (B3− B2)(B3− B1)(B1 B2+ Ap + Aa).(3-21)

Then the relations in (3-11) also immediately follow. �

Lemma 3.2. If , on some open set, the array (Evpα) contains a zero vector, then all
the vectors in either the whole row or in the whole column where the zero vector is
located must be zero.

Proof. For simplicity of notation, in this proof we denote the m2×m1 array (Evpα)

by (Evi j ) for 1 ≤ i ≤ m2 and 1 ≤ j ≤ m1, where Evi j ∈ Rm3 . By Lemma 3.1, the
array has the following properties:

(P1) The vectors of any row form an orthogonal set.

(P2) The vectors of any column form an orthogonal set.

For any 2× 2 minor
(
Evik Evil

Ev jk Ev jl

)
,

(P3) Evik · Ev jl + Evil · Ev jk = 0, and

(P4) |Evik |
2
+ |Ev jl |

2
= |Evil |

2
+ |Ev jk |

2.

Obviously, all these four properties will remain unchanged if either the rows or
the columns of the array are permuted.

Suppose that a vector in the array is zero on an open set U ⊂ M∗. Permuting
rows and columns, if necessary, we may assume that Ev11 = 0 on U . Then (P1),
(P2) and (P3) imply that at each point of U , the remaining vectors

Ev12, . . . , Ev1m1 and Ev21, . . . , Evm21

in the first row and the first column form a mutually orthogonal set of m1+m2−2
vectors in Rm3 , and at most m3 vectors of which can be nonzero at any point. Let ξ0

be a point where a maximal number of these vectors is nonzero. By continuity, the
nonzero vectors at ξ0 will remain nonzero in some open subset V ⊂U containing ξ0.
By maximality, the vectors that are zero at ξ0 must remain zero on V .
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By permuting rows and columns if necessary, we may assume that

Ev11 = · · · = Ev1 j = 0 and Ev11 = · · · = Evi1 = 0

for some i ∈ {1, . . . ,m2} and j ∈ {1, . . . ,m1}. The remaining vectors of the first
column and the first row are all nonzero at each point of V , so the array has first
row (0, 0, . . . , 0, Ev1( j+1), . . . , Ev1m1) and first column (0, . . . , 0, Ev(i+1)1, . . . , Evm21)

and (P4) implies that Evkl = 0 for 1 ≤ k ≤ i and 1 ≤ l ≤ j . Hence all elements in
the upper left i × j block of the array should be zero vectors on V ,

If the first row of the array is zero on V , then we are done. If otherwise, we have
j < m1 and Ev1l 6= 0 for all l ≥ j + 1. Let us fix an arbitrary k ∈ {i + 1, . . . ,m2}

and l ∈ { j + 1, . . . ,m1}. Then property (P4) easily implies that

(3-22) |Evk1| = · · · = |Evk j | and |Ev1l | = · · · = |Evil | 6= 0.

Also by using (P4) with the minor
(

0 Ev1l

Evk j Evkl

)
, we get

(3-23) |Evkl |
2
= |Evk j |

2
+ |Ev1l |

2
6= 0.

On the other hand, the properties (P1), (P2) and (P3) imply that

(3-24) Evk1, . . . , Evk j , Ev1l, . . . , Evil, Evkl

form an orthogonal set of i+ j+1 vectors in Rm3 . But, the nonzero vectors in the
first column and the first row together form an orthogonal set of (m1− j)+(m2−i)
nonzero vectors. Hence, m1+m2−i− j≤m3 and thus i+ j+1≥m1+m2−m3+1≥
m1+1>m3, so some of the vectors in (3-24) must be zero. By (3-22) and (3-23),
it must be the case that Evk1 = · · · = Evk j = 0. As this is true for k = i + 1, . . . ,m2,
it follows that the first j columns of the array are all zero on the open set V . �

Lemma 3.3. If ∇B 6= 0, then for any one of the three arrays (Evpα), (Evaα), (Evpa),
it cannot happen that there exists both a row and a column whose elements are all
zero vectors on some open set U ⊂ M∗.

Proof. Suppose to the contrary that we have such an array (Evi j ) for which each
element of the ī-th row and the j̄-th column is zero on an open set U ⊂ M∗. Then
for any k 6= ī and l 6= j̄ , the property (P4) gives that

|Evkl |
2
= |Evī l |

2
+ |Evk j̄ |

2
− |Evī j̄ |

2
= 0.

Thus all elements of (Evi j ) are zero vectors on U , which contradicts ∇B 6= 0. �

Now we can divide our discussions into two cases:

Case I. m1 = m2 = m3.

Case II. m1 ≥ m2 ≥ m3 and m1 > m3.
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Each case corresponds to a main result of this paper:

Theorem 3.1. Let x : Mn
→ Sn+1 be a Möbius isoparametric hypersurface with

three distinct Möbius principal curvatures of multiplicities m1 = m2 = m3. If
the Möbius second fundamental form is not parallel, then x is locally Möbius
equivalent to the Euclidean isoparametric hypersurfaces in Sn+1 with three distinct
principal curvatures.

Theorem 3.2. Let x : Mn
→ Sn+1 be a Möbius isoparametric hypersurface with

three distinct Möbius principal curvatures of multiplicities m1, m2 and m3 satisfy-
ing m1 ≥ m2 ≥ m3 and m1 > m3. If the Möbius second fundamental form is not
parallel, then m2=m3 :=m and x is locally Möbius equivalent one of the minimal
hypersurfaces as given by part (iii) of the classification theorem.

The proofs of these two theorems are quite involved and will be given separately
in the next two sections.

4. Möbius isoparametric hypersurfaces with m1 = m2 = m3

This section is devoted to Case I and giving a proof of Theorem 3.1. Assume that
m1 = m2 = m3 := m and ∇B 6= 0.

Proposition 4.1. Let x : Mn
→ Sn+1 be a Möbius isoparametric hypersurface

with three distinct Möbius principal curvatures of the same multiplicity m. If the
Möbius second fundamental form B is not parallel, then every vector in each of
the three m ×m arrays (Evpα), (Evaα) and (Evpa) has length equal to

√
f /m, where

f =
∑

p,a,α B2
pa,α is a constant function.

To prove the proposition, we first establish two lemmas whose proofs can be
given by the crucial algebraic techniques that were essentially discovered by Cecil
and Jensen [1998]; we present the proofs here for the reader’s convenience.

Lemma 4.1. There is an open subset U ⊂ M∗ on which every vector is nonzero in
each of the three m×m arrays (Evpα), (Evaα) and (Evpa).

Proof. Suppose to the contrary and without loss of generality that Ev(m+1)1 = 0 on
some open set U . Then by Lemma 3.2, one of two cases must occur:

• Ev(m+1)a = 0 for 1≤ a ≤ m, or

• Evp1 = 0 for m+ 1≤ p ≤ 2m.

In the first case, the first component of each vector of (Evaα) is zero. Hence Evaα

can be looked at as if it were in Rm−1. By using (P1) and (P2), we see that at least
one element both in each row and in each column of the array (Evaα) is zero. Then
by using (P4), Lemma 3.2 and Lemma 3.3, we easily get (Evaα) = 0 on U . This
contradicts that ∇B 6= 0, so this case does not occur.
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In the second case, we can show as above that (Evpα) = 0, also a contradiction.
Hence this case cannot occur either. �

Lemma 4.2. Suppose that every vector in the arrays (Evpα), (Evaα) and (Evpa) is
nonzero on U ⊂ M∗. Then, for each array, all vectors either in each row or in
each column have the same length.

Proof. Consider one of the arrays and denote its first row by Ev1, . . . , Evm . By
property (P1) and the assumption that none of these vectors is zero, it follows that
this is an orthogonal basis of Rm . Thus, there exist linear operators T j of Rm for
j = 2, . . . ,m, such that the j-th row of the array is given by T j Ev1, . . . , T j Evm . For
each of these operators, the properties (P1)–(P4) imply also that

(O1) T j is skew-symmetric for j = 2, . . . ,m,

(O2) each of the vectors Ev1, . . . , Evm is an eigenvector of T 2
j for j = 2, . . . ,m, and

(O3) the relation |T j Evi |
2
+ |Evk |

2
= |Evi |

2
+ |T j Evk |

2 holds for any j = 2, . . . ,m and
i 6= k, where 1≤ i, k ≤ m.

In fact, from (P2) we can see that T j Evi · Evi = 0 holds for all i = 1, . . . ,m and
j = 2, . . . ,m. Similarly, T j Evi · Evk + Evi · T j Evk = 0 follows from (P3). Thus, (P2)
and (P3) imply (O1). In addition, (P1) implies that T j Evi ·T j Evk = 0 whenever i 6= k,
and thus T 2

j Evi · Evk = 0 by (O1). It follows that Evi must be an eigenvector of T 2
j .

Property (O3) follows immediately from (P4).
Having seen that each Evi is an eigenvector of T 2

j , the correspondent eigenvalue
is easily seen to be given by

(4-1) T 2
j Evi =−

|T j Evi |
2

|Evi |
2 Evi .

This follows from the fact that a| Evi |
2
= a Evi · Evi = T 2

j Evi · Evi = −T j Evi · T j Evi if
T 2

j Evi = a Evi .
Fix any j ∈ {2, . . . ,m}. Let T = T j and denote by a1, . . . , am the eigenvalues

of T 2. Then property (O3) implies the relation

(4-2) (1+ ai )|Evi |
2
= (1+ ak)|Evk |

2 for all i, k ∈ {1, . . . ,m}.

Consequently, if some eigenvalue ai is equal to −1, then so are all the others, and
thus T 2

=−I .
If none of the eigenvalues equals −1, then ai = ak if and only if | Evi | = | Evk |.
Suppose that, for some row of the array, the vectors do not have the same length,

and suppose likewise for some column. Relabeling if necessary, we may suppose
that Ev1, . . . , Evm do not have the same length. Then there must be some vector Evi

such that | Evi | is not equal to | Evk | for at least m − bm/2c vectors Evk , where bzc
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denotes the greatest integer less than or equal to z. Permute the columns so that

(4-3) | Ev1| 6= | Evk | for bm/2c+ 1≤ k ≤ m.

From (3-19), (3-20) and (3-21), we have

(4-4)

|Evpα|
2
− |Evpβ |

2
=

1
2(B1− B2)(B1− B3)(Aα − Aβ),

|Evpα|
2
− |Evqα|

2
=

1
2(B1− B2)(B1− B3)(Ap − Aq),

|Evaα|
2
− |Evaβ |

2
=

1
2(B2− B1)(B2− B3)(Aα − Aβ),

|Evaα|
2
− |Evbα|

2
=

1
2(B2− B1)(B2− B3)(Aa − Ab),

|Evpa|
2
− |Evpb|

2
=

1
2(B3− B2)(B3− B1)(Aa − Ab),

|Evpa|
2
− |Evqa|

2
=

1
2(B3− B2)(B3− B1)(Ap − Aq).

Consequently, if (Evi j ) denotes any one of the arrays, then there exist numbers
ci j =−c j i and di j =−d j i such that

|Evi j |
2
− |Evik |

2
= c jk for all i,(4-5)

|Evik |
2
− |Ev jk |

2
= di j for all k.(4-6)

Now (4-5) implies that (4-3) must hold for every row in our array. Thus (4-3)
continues to hold after permuting the rows. We may thus assume that for some i ,

(4-7) |Evi | 6= |T j Evi | for bm/2c+ 1≤ j ≤ m.

Then (4-6) implies that (4-7) holds for every column of the array, and in particular
for the first column.

In summary, we can conclude that

|Ev1| 6= |Ev j | and |Ev1| 6= |T j Ev1| for bm/2c+ 1≤ j ≤ m.

Now we fix j, k ∈ {bm/2c + 1, . . . ,m}. Then we claim that Ev1 and Ev j must
be in different eigenspaces of T 2

k . In fact, by (4-1) and (4-4), we see that none
of the eigenvalues of T 2

k is −1. But then by (4-2) and the first part of (4-4), the
eigenvalues of T 2

k associated to the eigenvectors Ev1 and Ev j must be different.
On the other hand, Ev1 and Tk Ev1 are in the same eigenspace of T 2

k . In fact, if
T 2

k Ev1 = aEv1, then T 2
k Tk Ev1 = Tk T 2

k Ev1 = aTk Ev1. Thus, Ev j and Tk Ev1 are in different
eigenspaces of T 2

k . Since T 2
k is symmetric, we have

Ev j · Tk Ev1 = 0 for bm/2c+ 1≤ j, k ≤ m.

By (P1), we also have Ev1 · Ev j = 0 for bm/2c+1≤ j, k≤m. Thus, the m−bm/2c
nonzero orthogonal vectors Evbm/2c+1, . . . , Evm lie in the orthogonal complement of
the (m−bm/2c+1)-dimensional space spanned by Ev1, Tbm/2c+1Ev1, . . . , Tm Ev1. This
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is impossible, which implies the impossibility of the assumption above that some
row and some column of the array have vectors of unequal length. �

Proof of Proposition 4.1. According to Lemmas 4.1 and 4.2, we may assume that
all vectors in each row of array (Evpa) have the same length, that is,

(4-8) |Evp1|
2
= |Evp2|

2
= · · · = |Evpm |

2 for all p ∈ {m+ 1, . . . , 2m}.

Consider the m×m matrix

F =


Bp1,2m+1 Bp2,2m+1 · · · Bpm,2m+1

Bp1,2m+2 Bp2,2m+2 · · · Bpm,2m+2
...

...
. . .

...

Bp1,n Bp2,n · · · Bpm,n

 ,
whose i-th row is exactly the components of Evp(2m+i), and whose j-th column is
exactly the components of Evpj , where 1≤ i, j ≤m. Using properties (P1) and (P2),
we have

tF F = |Evp1|
2 Im,(4-9)

F t F =


|Evp(2m+1)|

2 0 · · · 0
0 |Evp(2m+2)|

2
· · · 0

...
...

. . .
...

0 0 · · · |Evpn|
2

 .(4-10)

From (4-9), we see that F t F = tF F . Then we compare (4-9) with (4-10) to obtain

(4-11) |Evp(2m+1)|
2
= · · · = |Evpn|

2
= |Evp1|

2 for all p ∈ {m+ 1, . . . , 2m}.

Now, from (3-21) and (4-8), we get Aa = Ab for all a 6= b. Similarly, from (3-19)
and (4-11) we get Aα = Aβ for all α 6= β. These facts together with (3-20) give

|Evaα|
2
=

1
m2

∑
b,β,p

B2
bβ,p =

1
m2 f for all a, α.

Proceeding as in the proof of (4-11), we get

|Ev(m+1)a|
2
= · · · = |Ev(2m)a|

2
= |Eva(2m+1)|

2
= · · · = |Evan|

2(4-12)
for all a ∈ {1, . . . ,m},

|Ev(m+1)α|
2
= · · · = |Ev(2m)α|

2
= |Ev1α|

2
= · · · = |Evmα|

2(4-13)

for all α ∈ {2m+ 1, . . . , n}.

Then (4-11)–(4-13) imply that every vector in each of the three arrays (Evpα), (Evaα)

and (Evpa) has length equal to
√

f /m.
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Next, we will show that f is constant. Using (2-17), (3-6) and (3-8), we get∑
i

Bab,piωi =
∑
α

Baα,pωαb+
∑
α

Bαb,pωαa=
∑
α,q

Baα,p0
α
qbωq+

∑
α,q

Bαb,p0
α
qaωq .

Comparing two sides of this, we obtain Bab,pα = 0. A similar argument gives
Bpq,aα = 0 and Bαβ,ap = 0. By (2-14), (2-18), (3-1) and (3-4), we easily see that
the four indices in Bpa,αi for 1≤ i ≤ n are totally symmetric. Hence we get

0=
∑

i

Bpa,αiωi = d Bpa,α +
∑

b

Bpb,αωba +
∑

q

Bqa,αωqp +
∑
β

Bpa,βωβα.

Multiplying this equation by Bpa,α and summing, we get

0=
∑
p,a,α

Bpa,αd Bpa,α +
∑

p,a,b,α

Bpa,αBpb,αωba

+

∑
p,a,q,α

Bpa,αBqa,αωqp +
∑

p,a,α,β

Bpa,αBpa,βωβα,

or, equivalently,

(4-14) 0= 1
2 d f +

∑
p,a,b

(Evpa · Evpb) ωba+
∑
p,q,a

(Evpa · Evqa) ωqp+
∑
p,α,β

(Evpα · Evpβ) ωβα.

Lemma 3.1 and (4-14) imply that d f = 0, showing that f is constant. �

Lemma 4.3. The eigenvalues of the Blaschke tensor A are all constant on M.

Proof. By (2-14) and (3-19)–(3-21), we get

Rapap =
2|Evpa|

2

(B3− B1)(B3− B2)
= B1 B2+ Aa + Ap,(4-15)

Raαaα =
2|Evaα|

2

(B2− B1)(B2− B3)
= B1 B3+ Aa + Aα,(4-16)

Rpαpα =
2|Evpα|

2

(B1− B2)(B1− B3)
= B2 B3+ Ap + Aα.(4-17)

Using Proposition 4.1 and adding (4-15), (4-16) and (4-17), we have

(4-18) B1 B2+ B1 B3+ B2 B3+ 2(Aa + Ap + Aα)= 0.

From (4-15) up to (4-18) we get

(4-19)

Aa =
1
2(B2 B3− B1 B2− B1 B3)−

2 f
m2(B1− B2)(B1− B3)

,

Ap =
1
2(B1 B3− B1 B2− B2 B3)−

2 f
m2(B2− B1)(B2− B3)

,

Aα = 1
2(B1 B2− B1 B3− B2 B3)−

2 f
m2(B3− B1)(B3− B2)

.
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Therefore all the eigenvalues of A are constant on M∗. On the other hand, the well-
defined continuous functions A1, A2, . . . , An satisfy (3-5). Thus we can indeed
choose a frame field {Ei } around each point of M so that (3-1) and (3-4) hold
identically. This fact and the argument above show that the open set M∗ is also
closed in M . By connectedness, we know that M∗ = M . �

Remark 4.1. Now that the Blaschke eigenvalues A1, A2, . . . , An are constant, we
can find everywhere local frame fields {Ei } such that (3-1) and (3-4) hold at the
same time.

Proof of Theorem 3.1. From Proposition 4.1 and (4-19), we get

(4-20) A1 = · · · = Am, Am+1 = · · · = A2m, A2m+1 = · · · = An.

From Lemma 4.1 we know that Evpa 6= 0; thus there exist α such that Bpa,α 6= 0.
From (3-6), (3-7), (2-9) and that both Ai j,k and Bi j,k are totally symmetric, we get

Apa,α = (Ap − Aa)0
p
αa = (Aa − Aα)0a

pα = (Aα − Ap)0
α
ap,(4-21)

Bpa,α = (B2− B1)0
p
αa = (B1− B3)0

a
pα = (B3− B2)0

α
ap.(4-22)

From (4-21) and (4-22), we derive

Apa,α

Bpa,α
=

Ap − Aa

B2− B1
=

Aa − Aα
B1− B3

=
Aα − Ap

B3− B2
,

which together with (4-20) implies the existence of constant functions λ and µ
with the property

A1+ λB1 = · · · = Am + λB1 = Am+1+ λB2 = · · · = A2m + λB2

= A2m+1+ λB3 = · · · = An + λB3 = µ.

Hence we have A+λB−µg= 0, and by it we can apply the result of Li and Wang
[2003] to conclude that x : M → Sn+1 is locally Möbius equivalent to one of the
following hypersurfaces:

• a hypersurface x̃ : M̃ → Sn+1 with constant mean curvature and constant
scalar curvature;

• the image under σ of a hypersurface x̃ : M̃ → Rn+1 with constant mean
curvature and constant scalar curvature;

• the image under τ of a hypersurface x̃ : M̃→ Hn+1 with constant mean cur-
vature and constant scalar curvature. Here, we recall that we have defined the
conformal diffeomorphism τ : Hn+1

→ Sn+1
+ , y 7→ (1, y′)/y0, where

Hn+1
= {(y0, y1, . . . , yn+1) ∈ Ln+2

| 〈y, y〉1 =−1, y0 ≥ 1)},

Sn+1
+
= {(x1, . . . , xn+2) ∈ Sn+1

| x1 > 0)},
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and y′ = (y1, . . . , yn+1).

For each of these possibilities, from [Hu et al. 2007, Propositions 3.1 and 3.2],
and because the Bi are all constant, we see that x̃ : M̃→ Sn+1, or x̃ : M̃→ Rn+1,
or x̃ : M̃→Hn+1, respectively, are all Euclidean isoparametric hypersurfaces with
three distinct principal curvatures. From the classical result that isoparametric
hypersurfaces in Rn+1 and Hn+1 can have at most two distinct principal curvatures,
we finally see that x is Möbius equivalent to an open part of some isoparametric
hypersurface in Sn+1 with three distinct principal curvatures. �

5. Möbius isoparametric hypersurfaces with m1 > m3

This section is devoted to Case II and proving Theorem 3.2. Assume that

(5-1) ∇B 6= 0 and m1 ≥ m2 ≥ m3 such that m1 > m3.

To add to the index conventions (3-3), we introduce the notation

I1 = {1, 2, . . . ,m1},

I2 = {m1+ 1,m1+ 2, . . . ,m1+m2},

I3 = {m1+m2+ 1,m1+m2+ 2, . . . , n}.

In follows, we will concentrate on the m2×m1 array (Evpa) of vectors in Rm3 .

Lemma 5.1. There exists an integer m ′1, where 0<m1−m3 ≤m′1 <m1, such that
exactly m′1 columns of the m2×m1 array (Evpa) are identically zero on an open set
U ⊂M∗. Explicitly, there exists a subset D0⊂I1 of m ′1 elements, with complement
D1 in I1, such that

Evpa = 0 for all a ∈ D0 and p ∈ I2,(5-2)

Evpc 6= 0 for all c ∈ D1 and p ∈ I2.(5-3)

Proof. By Lemma 3.1, for each p̄ ∈ I2, the vectors in row p̄ of the array (Evpa)

constitute a set of m1 mutually orthogonal vectors in Rm3 . Thus, at least m1 −

m3 vectors in row p̄ must be zero at any point of M∗. On the other hand, by
Lemmas 3.2 and 3.3 we know that it is impossible that a whole row is zero in the
array (Evpa). Permute the columns of (Evpa), so that row p̄ has all its nonzero vectors
occurring first (left to right). Let Ev p̄m̃1 denote the last nonzero vector in this row.
Then 1< m̃1 ≤ m3 < m1. Thus we have

Ev p̄c 6= 0 if 1≤ c ≤ m̃1 and Ev p̄a = 0 if m̃1+ 1≤ a ≤ m1.

Since at least one vector is nonzero in row p̄, by Lemma 3.2 the last m1 − m̃1

columns of array (Evpa) are all zero on an open set U ⊂ M∗. That is,

if m̃1+ 1≤ a ≤ m1, then Evpa = 0 for all p ∈ I2.
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Now we apply property (P4) to the minor(
Ev p̄c Ev p̄a

Evpc Evpa

)
with 1≤ c ≤ m̃1, m̃1+ 1≤ a ≤ m1 and any p ∈ I2,

to obtain

(5-4) |Ev(m1+1)c| = · · · = |Ev(m1+m2)c| = |Ev p̄c| 6= 0 for all 1≤ c ≤ m̃1.

Let m′1 = m1 − m̃1. Then 0 < m1 −m3 ≤ m′1 < m1 and the assertion follows by
setting

D0 = {m̃1+ 1, m̃1+ 2, . . . ,m1} and D1 = {1, 2, . . . , m̃1}. �

Lemma 5.2. Assume that ∇B 6= 0 and m1 ≥m2 ≥m3. If m1 >m3, then m2 =m3.

Proof. By (5-3) and Lemma 3.1, for each c ∈ D1 the vectors in column c of the
array constitute a set of m2 mutually orthogonal nonzero vectors in Rm3 ; hence we
have m2 ≤ m3. By the assumption m2 ≥ m3, we get m2 = m3. �

Lemma 5.3. For all a, b ∈ D0, c ∈ D1, p, q ∈ I2 and α, β ∈ I3, we have

Aa = Ab 6= Ac, Ap = Aq , Aα = Aβ .

Proof. From (5-2) and (5-3), we get that, for all a, b ∈ D0, c ∈ D1 and p, q ∈ I2,

|Evpa| = |Evpb| = |Evqa| = 0 6= |Evpc|.

This combined with (3-21) gives Aa = Ab 6= Ac and Ap = Aq .
From (5-2) we have

(5-5) Bpa,α = 0 for all a ∈ D0, p ∈ I2, α ∈ I3.

The fact that Bi j,k is totally symmetric and (5-5) implies that Evaα = 0 for all a ∈D0

and α ∈ I3. Combining this with (3-20), we get Aα = Aβ . �

Lemma 5.4. m̃1 = m3 = m2.

Proof. By Lemma 5.3, we get Ap= Aq and Aα= Aβ . Combining (3-19) with (5-1),
we obtain

(5-6) |Evpα|
2
=

1
m2

2

∑
q,β,c

B2
qβ,c =

1
m2

2
f 6= 0 for all p, α.

From (5-5) we know that the last m1 − m̃1 components of each vector Evpα are
zero on the open set U as we stated in Lemma 5.1; thus Evpα can be regarded as
an element of Rm̃1 . By Lemma 3.1, for each p the vectors in row p of the array
(Evpα) constitute a set of m3 mutually orthogonal nonzero vectors in Rm̃1 . Hence
m3 ≤ m̃1, while Lemma 5.1 tells that m̃1 ≤ m3. Hence m̃1 = m3 = m2. �
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Next, by using (5-4), (5-6) and Lemma 3.1, we get the following by adapting
the proof of Proposition 4.1.

Proposition 5.1. All the nonzero vectors of the arrays (Evpα), (Evaα) and (Evpa) have
constant length equal to

√
f /m2. That is, we have

(5-7) |Evcp|
2
= |Evdα|

2
= |Evqβ |

2
= f/m2

2 := L2
= const

for any c, d ∈ D1, p, q ∈ I2 and α, β ∈ I3.

Now, we are ready to prove one of the main results in this section.

Proposition 5.2. Let x : Mn
→ Sn+1 be a Möbius isoparametric hypersurface

with three distinct Möbius principal curvatures of multiplicities m1≥m2≥m3 and
m1 > m3. If the Möbius second fundamental form is not parallel, then it must be
the case that m2=m3 :=m and that the Möbius principal curvatures satisfy B1=0
and B2 =−B3 =±

√
(n− 1)/(2mn).

Proof. By Lemma 5.2 we may assume that m2 = m3 := m. Let us take a ∈ D0,
c ∈ D1, p ∈ I2 and α ∈ I3. Then by the proof of Lemma 5.3, we have Evaα = 0.
By using (2-14), (3-19)–(3-21) and Lemma 5.1, we obtain

Rapap = B1 B2+ Aa + Ap =
2|Evpa|

2

(B3− B1)(B3− B2)
= 0,(5-8)

Raαaα = B1 B3+ Aa + Aα =
2|Evaα|

2

(B2− B1)(B2− B3)
= 0,(5-9)

Rcpcp = B1 B2+ Ac+ Ap =
2|Evpc|

2

(B3− B1)(B3− B2)
,(5-10)

Rcαcα = B1 B3+ Ac+ Aα =
2|Evcα|

2

(B2− B1)(B2− B3)
,(5-11)

Rpαpα = B2 B3+ Ap + Aα =
2|Evpα|

2

(B1− B2)(B1− B3)
.(5-12)

With the summation (5-9)+ (5-10)− (5-8)− (5-11), we get

2|Evpc|
2

(B3− B1)(B3− B2)
−

2|Evcα|
2

(B2− B1)(B2− B3)
= 0.

This equation and (5-7) imply that B2+ B3−2B1 = 0. Combining this with (3-2),
we obtain B1 = 0 and B2 =−B3 =±

√
(n− 1)/(2mn). �

Without loss of generality, in what follows we may assume that

(5-13) B1 = 0, B2 =

√
n−1
2mn

, B3 =−

√
n−1
2mn

.
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Lemma 5.5. For all a ∈ D0, c ∈ D1, p ∈ I2 and α ∈ I3, we have

ωac = ωap = ωaα = 0, ωcp =
1

B1−B2

∑
α

Bcp,αωα,

ωcα =
1

B1−B3

∑
p

Bcp,αωp, ωpα =
1

B2−B3

∑
c

Bcp,αωc,

Rapap = Raαaα = 0, Rcpcp =
2

(B3−B1)(B3−B2)
|Evcp|

2,

Rcαcα =
2

(B2−B1)(B2−B3)
|Evcα|

2, Rpαpα =
2

(B1−B2)(B1−B3)
|Evpα|

2.

Proof. The formulas follow directly from (2-14), (3-6)–(3-8) and (3-19)–(3-21).
First of all, from (5-5) we getωap=ωaα=0. The remaining formulas in Lemma 5.5
except ωac = 0 can be easily obtained.

To show that ωac = 0 holds for any a ∈ D0 and c ∈ D1, we use the following
two equations for any p ∈ I2 and α ∈ I3:

0=−Rapapωa ∧ωp = dωap −
∑

i

ωai ∧ωi p =−
∑

β∈I3, c∈D1

0c
βpωac ∧ωβ,(5-14)

0=−Raαaαωa ∧ωα = dωaα −
∑

i

ωai ∧ωiα =−
∑

q∈I2, c∈D1

0c
qαωac ∧ωq .(5-15)

Let us write

ωac =
∑
b∈D0

0a
bcωb+

∑
d∈D1

0a
dcωd +

∑
q∈I2

0a
qcωq +

∑
β∈I3

0a
βcωβ .

Then the two equations above give that∑
c∈D1

0a
bc0

c
αp = 0 for all a, b ∈ D0, p ∈ I2, α ∈ I3,(5-16)

∑
c∈D1

0a
dc0

c
αp = 0 for all a ∈ D0, d ∈ D1, p ∈ I2, α ∈ I3,(5-17)

∑
c∈D1

0a
qc0

c
αp = 0 for all a ∈ D0, p, q ∈ I2, α ∈ I3,(5-18)

∑
c∈D1

0a
βc0

c
αp = 0 for all a ∈ D0, p ∈ I2, α, β ∈ I3.(5-19)

From (5-16), we get for any b ∈ D0 a linear system of equations on {0a
bc}1≤c≤m :

(5-20)



Bp(m1+m+1),10
a
b1+ Bp(m1+m+1),20

a
b2+ · · ·+ Bp(m1+m+1),m0

a
bm = 0,

Bp(m1+m+2),10
a
b1+ Bp(m1+m+2),20

a
b2+ · · ·+ Bp(m1+m+2),m0

a
bm = 0,

...

Bpn,10
a
b1 + Bpn,20

a
b2 + · · ·+ Bpn,m0

a
bm = 0.
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By using (P1), (P2) and Proposition 5.1, we see that the coefficient matrix F of
(5-20) satisfies tF F = diag(|Evp1|

2, |Evp2|
2, . . . , |Evpm |

2)= |Evp1|
2 Im . Hence we have

|F | 6= 0, and then (5-20) implies that 0a
b1 = 0

a
b2 = · · · = 0

a
bm = 0 for all b ∈ D0,

that is,
0a

bc = 0 for all b ∈ D0.

Analogously, from (5-17), (5-18) and (5-19), respectively, we can show that

0a
dc = 0

a
qc = 0

a
βc = 0 for all d ∈ D1, q ∈ I2 and β ∈ I3.

Hence 0a
ic = 0 for all i , and ωac = 0 follows. �

Lemma 5.6. For all p ∈ I2, α ∈ I3 and a ∈ D0, c ∈ D1,

Aa =−Ac =−Ap =−Aα = −
n−1
12mn

.

Proof. Lemma 5.5 and (2-16) imply that Raci j = 0 and thus we have Racac= 0. On
the other hand, (2-14) gives that Racac = B2

1 + Aa+ Ac. It follows that Aa =−Ac.
From (5-8), (5-9) and (5-13), we further get Aa =−Ap =−Aα and hence

(5-21) Aa =−Ac =−Ap =−Aα.

These together with (5-10), (5-12) and (5-13) give that

Ac =
L2

2B2
2 = Ap =

B2
2

2
−

L2

B2
2
.

It follows that L2
=

1
3 B4

2 and Ac =
1
6 B2

2 . Then our conclusions follow immediately
from (5-13) and (5-21). �

Remark 5.1. Because all the Blaschke eigenvalues A1, A2, . . . , An are constant
on M∗, the reasoning of the proof of Lemma 4.3 shows that M = M∗. Hence
we can find everywhere local frame fields {Ei }, such that (3-1) and (3-4) hold
simultaneously in Case II.

Lemma 5.6 shows that the Blaschke tensor has exactly two distinct constant
eigenvalues. Then applying Theorem 2.4 we immediately get the following result.

Theorem 5.1. Let x : Mn
→ Sn+1 be a Möbius isoparametric hypersurface with

nonparallel Möbius second fundamental form and three distinct Möbius principal
curvatures whose multiplicities are not equal. Then there is an ñ with 2≤ ñ≤n−1,
and locally x is Möbius equivalent to one of the following two families of hyper-
surfaces in Sn+1:

(C1) Minimal hypersurfaces defined by

x̃ = (x̃1, x̃2) : M̃n
= N ñ

×Hn−ñ(−r−2)→ Sn+1,
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with r > 0 and

x̃1 = y1/y0, x̃2 = y2/y0, y0 ∈ R+, y1 ∈ Rñ+2, y2 ∈ Rn−ñ,

where y1 : N ñ
→ Sñ+1(r) ↪→ Rñ+2 is an umbilic-free minimal hypersurface

immersed into the (ñ+1)-dimensional sphere of radius r and constant scalar
curvature

R̃1 =
nñ(ñ− 1)− (n− 1)r2

nr2 ,

and (y0, y2) :H
n−ñ(−r−2)→Ln−ñ+1 is the standard embedding of hyperbolic

space of sectional curvature −r−2 into the (n− ñ+1)-dimensional Lorentz
space with −y2

0 + y2
2 =−r2.

(C2) Nonminimal hypersurfaces defined by

x̃ = (x̃1, x̃2) : M̃n
= N ñ

×Sn−ñ(r)→ Sn+1,

with r > 0 and

x̃1 = y1/y0, x̃2 = y2/y0, y0 ∈ R+, y1 ∈ Rñ+1, y2 ∈ Rn−ñ+1,

where (y0, y1) : N ñ
→ Hñ+1(−r−2) ↪→ Lñ+2, with −y2

0 + y2
1 = −r2, is an

umbilic-free minimal hypersurface immersed into (ñ+1)-dimensional hyper-
bolic space of sectional curvature −r−2 and constant scalar curvature

R̃1 =−
nñ(ñ− 1)+ (n− 1)r2

nr2 ,

and y2 : S
n−ñ(r)→ Rn−ñ+1 is the standard embedding of the (n− ñ)-sphere

of radius r .

Determining which of the hypersurfaces (C1) and (C2) is Möbius isoparametric
requires knowing their Möbius invariants — but this was done in [Hu and Li 2007,
Section 4]. For simplicity we will not repeat this calculation here. With the omitted
calculations and Lemma 5.6, we immediately get the following results.

Proposition 5.3. A hypersurface x̃ in (C1) is Möbius isoparametric if and only if
it satisfies

(1) ñ = 3m;

(2) r =
√

6mn/(n− 1);

(3) y1 : N 3m
→ S3m+1(

√
6mn/(n− 1)) is a minimal isoparametric hypersurface

with constant scalar curvature R̃1 = 3(m − 1)(n− 1)/(2n); moreover, it has
three distinct principal curvatures with values given by (1-1), each of them
with the same multiplicity m.
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Remark 5.2. Cartan [1939] proved that minimal isoparametric hypersurfaces in
S3m+1(

√
6mn/(n− 1)) with three distinct principal curvatures do exist and are

unique with principal curvatures having the same multiplicities m ∈ {1, 2, 4, 8}.
More precisely, it is the tube of constant radius over a standard Veronese embedding
of a projective plane FP2 into S3m+1(

√
6mn/(n− 1)) with principal curvatures of

(1-1) where m = 1, 2, 4 or 8, and F is the division algebra R,C,H (quaternions)
or O (Cayley numbers), respectively.

Proposition 5.4. If a hypersurface x̃ in (C2) is Möbius isoparametric, then it must
satisfy the following three conditions:

(1) ñ = n− 3m;

(2) r =
√

6mn/(n− 1);

(3) ỹ= (y0, y1) :N n−3m
→Hn−3m+1(−(n−1)/(6mn)) is a minimal isoparametric

hypersurface with the principal curvatures of (1-1).

On the other hand, by Cartan’s theorem [1938], an isoparametric hypersurface
Mn in the hyperbolic space Hn+1 can have at most two distinct principal curvatures,
which can only be either totally umbilic or else an open subset of a standard product
Sk
×Hn−k in Hn+1. Moreover, the latter must be nonminimal. From this fact and

Proposition 5.4, we immediately get the following:

Proposition 5.5. There is no Möbius isoparametric hypersurface in (C2) that has
three distinct Möbius principal curvatures.

Proof of Theorem 3.2. This is an immediate consequence of the Theorem 5.1,
Remark 5.1 and Propositions 5.3 and 5.5. �

6. Completion of the proof of the classification theorem

Let x : Mn
→ Sn+1 be a Möbius isoparametric hypersurface with three distinct

Möbius principal curvatures whose multiplicities satisfy m1 ≥ m2 ≥ m3.
If x has parallel Möbius second fundamental form, then we apply Theorem 2.3

to obtain that it is locally Möbius equivalent to a hypersurface in part (i) of the
classification theorem.

If x has nonparallel Möbius second fundamental form, then we have exactly two
cases as we stated in section three:

For Case I, we apply Theorem 3.1 and Cartan’s theorem to obtain that it is
locally Möbius equivalent to a hypersurface in (ii). For Case II, we can apply
Theorem 3.2 and Cartan’s theorem to conclude that it is locally Möbius equivalent
to the hypersurface in (iii). �
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Final remarks. For the general theory (see [Wang 1998]) of Möbius submani-
folds in Sn+p, the Möbius form 8 is an important invariant. Closely related
to Möbius isoparametric hypersurfaces is the concept of Blaschke isoparametric
hypersurfaces in spheres. It is interesting to mention a conjecture by X. X. Li
[Li and Zhang 2009; Li and Peng 2010]: A Blaschke isoparametric hypersurfaces
with more than two distinct Blaschke eigenvalues is Möbius isoparametric. For
definitions and some recent progress on Blaschke isoparametric hypersurfaces, see
[Li and Peng 2010; Li and Zhang 2006; 2007; 2009].
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