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Using the method of moving frames and the algebraic techniques of T. E.
Cecil and G. R. Jensen that were developed while they classified the Dupin
hypersurfaces with three principal curvatures, we extend Hu and Li’s main
theorem in Pacific J. Math. 232:2 (2007), 289-311 by giving a complete
classification for all Mobius isoparametric hypersurfaces in S"*! with three
distinct principal curvatures.

1. Introduction

Let x : M" — S"*! be a connected smooth hypersurface in the (14 1)-dimensional
unit sphere $"*! without umbilic point. We choose a local orthonormal basis
{e1, ..., e,} with respect to the induced metric I =dx -dx, and let {6y, ..., 6,} be
the dual basis. Let h = Zi’ j hij0; ® 0; be the second fundamental form of x, with
squared length || % = Zi,j(h,-j)2 and mean curvature H = (1/n) ), hj;. Define
p>=n/(n—1)-(|h]|> —nH?). Then the positive definite form g = p’dx -dx is
Mobius invariant and is called the Mdbius metric of x : M" — S"*!. The Mobius
second fundamental form B, another basic Mobius invariant of x, together with
g determine completely a hypersurface of S"*! up to Mobius equivalence; see
Theorem 2.2 below.

An important class of hypersurfaces for Mobius differential geometry is the so-
called Maobius isoparametric hypersurfaces in $"*!. According to [Li et al. 2002],
a Mobius isoparametric hypersurface of S"*! is an umbilic-free hypersurface of
S"™*! such whose Mébius-invariant 1-form

©=—p~ %, (e (H) + X0, (hiy — Hoij)e;log )6,

vanishes and whose Mobius principal curvatures are all constant. These curvatures
are the eigenvalues of the Mdbius shape operator W := p~! (S — H id) with respect
to g, where S denotes the shape operator of x : M" — S"*!. This definition
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of Mobius isoparametric hypersurfaces is meaningful. Indeed, comparing it with
that of (Euclidean) isoparametric hypersurfaces in $"*!, we see that the images of
all hypersurfaces of the sphere with constant mean curvature and constant scalar
curvature under the Mdbius transformation satisfy & =0, and the Mébius-invariant
operator W plays the role in Mobius geometry that S does in Euclidean geometry;
see Theorem 2.2 below. The two conditions of a Mdbius isoparametric hyper-
surface, namely, that it has vanishing Mobius form and has constant Mobius prin-
cipal curvatures, are independent and also closely related; for detailed discussion,
see [Hu and Tian 2009]. Standard examples of Mobius isoparametric hypersurfaces
are the images of (Euclidean) isoparametric hypersurfaces in $"*! under Mébius
transformations. But there are other examples which cannot be obtained by this
way; for example, one occurs in our classification for hypersurfaces of st with
parallel Mobius second fundamental form, that is, those whose Mobius second fun-
damental form is parallel with respect to the Levi-Civita connection of the Mobius
metric g; see [Hu and Li 2004; Li et al. 2002] for details. On the other hand, it
was proved in [Li et al. 2002] that any Mobius isoparametric hypersurface is in
particular a Dupin hypersurface, which implies from [Thorbergsson 1983] that for
a compact Mébius isoparametric hypersurface embedded in S"*!, the number y of
distinct principal curvatures can only take the values y =2, 3, 4, 6. A characteriza-
tion of Mobius isoparametric hypersurfaces in terms of Dupin hypersurfaces was
given in [Li et al. 2002] and was obtained very recently also by L. A. Rodriques
and K. Tenenblat [2009]; this characterization states that a Mobius isoparametric
hypersurface is either a cyclide of Dupin or a Dupin hypersurface whose Mobius
curvatures are constant. Hence the problem of investigating Mobius isoparametric
hypersurfaces reduces to that of investigating Dupin hypersurfaces with constant
Mobius curvatures.

In [Li et al. 2002], the authors classified locally all Mobius isoparametric hy-
persurfaces of S"*! with y = 2. By relaxing the restriction that y = 2, local
classifications for all M6bius isoparametric hypersurfaces in S*, S° and S° were
established in [Hu and Li 2005], [Hu et al. 2007] and [Hu and Zhai 2008], respec-
tively. It was shown that a Mdbius isoparametric hypersurface in S* is either of
parallel Mobius second fundamental form or Mobius equivalent to the Euclidean
isoparametric hypersurface in S* with three distinct principal curvatures, that is,
a tube of constant radius over a standard Veronese embedding of RP? into S*.
Similarly, a hypersurface in S’ is Mdbius isoparametric if and only if either it
has parallel Mobius second fundamental form; or it is Mobius equivalent to the
preimage of the stereographic projection of the cone ¥ : N3 x R — R’ defined
by %(x, r) = tx, where € RT and x : N> — S* — R’ is the Cartan isoparametric
immersion in $* with three principal curvatures; or it is Mobius equivalent to the
Euclidean isoparametric hypersurfaces in S° with four distinct principal curvatures.
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All these results remind us of their counterparts in Dupin hypersurfaces; see [Cecil
and Jensen 1998; 2000; Cecil et al. 2007; Miyaoka and Ozawa 1989; Niebergall
1991; Pinkall 1985; Pinkall and Thorbergsson 1989].

Hence, the classification of Mdobius isoparametric hypersurfaces by Mobius
transformation group equivalence can be compared with that of the Dupin hyper-
surfaces by Lie sphere transformation group equivalence. Note that the Lie sphere
transformation group contains the Mobius transformation group in $"*! as a sub-
group and the dimension difference is n + 3. Thus, Mobius differential geometry
for hypersurfaces in sphere should, in some sense, be very different from Lie sphere
geometry in many respects, and therefore is worthwhile to pay more attention.

Inspired by the close similarity between Dupin hypersurfaces under the Lie
sphere transformation group and Mobius isoparametric hypersurfaces under the
Mbobius transformation group, and by T. E. Cecil and G. R. Jensen’s result [1998]
that any locally irreducible Dupin hypersurface in §" with three distinct prin-
cipal curvatures is equivalent by Lie sphere transformation to an isoparametric
hypersurface in S", we started in [Hu and Li 2007] a program of classifying all
Mobius isoparametric hypersurfaces in S"*! with three distinct Mobius principal
curvatures. There, we were able to obtain the classification under the additional
condition that one of the Mdbius principal curvatures is of multiplicity one. The
purpose of this paper is to extend that result to the general case:

Classification theorem. Let x : M" — S"T! be a Mébius isoparametric hyper-
surface with three distinct Mobius principal curvatures. Then x is Mobius equiva-
lent to an open part of one of the following hypersurfaces in S":

(1) The preimage of the stereographic projection of the warped product embed-
ding
F:S7(a) x S1(V1—a?) x Rt x Rr—r—a~1 5 grt!
withp>1,g>1, p+q<n—1and0 <a < 1, defined by

" "

Y= (tu',tu”", u
where ' € SP(a), ' € S1(VT—a), 1 € RY andu” € R4,

(ii) The Euclidean isoparametric hypersurfaces in S"*' with three distinct prin-

X', u’, t, u

cipal curvatures. Thus all the principal curvatures must have the same mul-
tiplicity m € {1, 2, 4, 8}, and the isoparametric hypersurface must be a tube
of constant radius over a standard Veronese embedding of a projective plane
FP? into St where F is the division algebra R, C, H (the quaternions), O
(the Cayley numbers) form =1, 2, 4, 8, respectively.

(iii) The minimal hypersurfaces defined by

F= (1. 5 M" = N3 s HP—3m (—%) o st
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with
- ~ + 3m42 -3
Xi=yi/yo, X2=y/y0, YR, y»eR™™, yeR"™",

where y; : N> — S¥*1( /6mn/(n — 1)) — R>*2 is Cartan’s minimal
isoparametric hypersurface with scalar curvature Ry =3(m — 1)(n — 1)/2n
and principal curvatures

n—1 n—1
a-b V 2mn’ 0, “V 2mn

which have the same multiplicity m, where m = 1,2, 4 or 8, and

()’0, yz) : Hn73m (—%) N [|_n73m+1

is the standard embedding of the hyperbolic space of sectional curvature
—(n —1)/(6mn) into the (n — 3m + 1)-dimensional Lorentz space with

6mn
n—1°

V¥ =

Remark 1.1. All hypersurfaces in (i) are of parallel Mobius second fundamental
form and have three distinct Mobius principal curvatures with arbitrary multiplic-
ities p, ¢ and n — p — g, respectively. The hypersurfaces in (ii) and (iii) are
of nonparallel Mobius second fundamental form. For hypersurfaces in (iii), the
multiplicities of the three Mobius principal curvatures are m, m and n —2m > m.

Remark 1.2. Inthe cases that n =3, 4 and 5, the classification theorem was proved
in [Hu and Li 2005; Hu et al. 2007; Hu and Li 2007], respectively. The theorem
extends the main theorem of [Hu and Li 2007], where it was assumed that the
Mobius isoparametric hypersurface M"” for n > 5 has three distinct Mobius princi-
pal curvatures and one of which is simple. The extension is successfully achieved
by using the wonderful techniques developed by T. E. Cecil and G. R. Jensen [1998]
in their classification of Dupin hypersurfaces with three principal curvatures.

Remark 1.3. As a counterpart to the Cecil-Ryan conjecture for Dupin hypersur-
faces, which states that a compact embedded Dupin hypersurface in a space form is
Lie equivalent to an Euclidean isoparametric hypersurface, C. P. Wang conjectured
that any compact embedded Mobius isoparametric hypersurface in S is Mébius
equivalent to an Euclidean isoparametric hypersurface. Pinkall and Thorbergsson
[1989] and Miyaoka and Ozawa [1989], have constructed counterexamples to the
Cecil-Ryan conjecture, but we point out that the classifications of Mobius iso-
parametric hypersurfaces in [Hu and Li 2007; 2005; Hu et al. 2007; Hu and Zhai
2008; Li et al. 2002] and this paper strengthen Wang’s conjecture.
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This paper consists of six sections. In Section 2, we first review the elemen-
tary facts of Mobius geometry for hypersurfaces in $"*!, and then we recall the
classification for hypersurfaces of S"*! with parallel Mobius second fundamental
form [Hu and Li 2004] and the classification for hypersurfaces of S"*! with two
distinct constant Blaschke eigenvalues [Li and Zhang 2007]. In Section 3, we treat
the Mobius isoparametric hypersurfaces of $"*! with nonparallel Mébius second
fundamental form and three distinct M&bius principal curvatures. We first present
several important properties of the Mobius second fundamental form, and then
we divide the discussion into two cases and state the main results, Theorem 3.1
and Theorem 3.2. We prove Theorem 3.1 in Section 4. In Section 5, we prove
Theorem 5.1, which gives a preliminary classification for Mobius isoparametric
hypersurfaces with three distinct Mobius principal curvatures whose multiplicities
are not equal. By the analysis of the Mobius invariants of the hypersurfaces that
appear in Theorem 5.1 we obtain Propositions 5.3 — 5.5, from which Theorem 3.2
follows. In Section 6, we complete the proof of the classification theorem.

2. Mébius invariants for hypersurfaces in S"+!

In this section we define the Mobius invariants and recall the structure equations for
hypersurfaces in the unit sphere S"*!. We refer to [Wang 1998] for more details.
Let 1”13 be the Lorentz space, namely R"*3 with inner product (-, - ); defined by

(x, w); = —xowo +X1W1 + - + X2 Wy42

for'x = (X(), -xl’ AR xn+2)a w = (u)o, w17 AR ] wn+2) € RV!+3
Let x : M" — S"T! < R"*?2 be an immersed hypersurface of S"*! without
umbilics. We define the Mdbius position vector Y : M — "3 of x by

n
n—1

(2-1) Y=p(,x) and p’= (Ih1?> = nH?) > 0.

Theorem 2.1 [Wang 1998]. Two hypersurfaces x, X% : M" — S"™' are Mobius
equivalent if and only if there exists T in the Lorentz group O(n + 2, 1) such that
Y=YT on M".

It follows immediately that g = (dY, dY); = p>dx - dx is a Mobius invariant,
which is defined as the Mobius metric of x : M" — S"*!. Let A be the Beltrami—
Laplace operator of g. Define N = — AY/n — (AY, AY)1Y/(2n?). Then one can
show that

(22)  (AY.Y), = —n, (AY,dY); =0, (AY, AY), = 1+n’R,
(2-3) <Y9 Y>1=07 (Na Y>1=1$ <N7N>1=Oa

where R is the normalized scalar curvature of g and is called the normalized
Mobius scalar curvature of x : M" — S"*1,
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Let{Ey, ..., E,} be alocal orthonormal basis for (M", g), and let {wy, ..., ®,}
be the dual basis. Write Y; = E;(Y), then it follows from (2-1), (2-2) and (2-3) that

(Yi,Y)1 =(Yi, N)1 =0, (Y;,Y;)1=6;; forl=<i,j=<n.

Let V be the orthogonal complement to the subspace Span{Y, N, Y1, ..., Y,}
in L"*3. Then along M we have the orthogonal decomposition

L"*3 = Span{Y, N} @ Span{Y;, ..., Y} ® V.

V is called the Mdbius normal bundle of x : M" — S"t1. A local unit vector basis
E = E, for V can be written as

E=E,y:=(H,Hx +eyq1).

Then, {Y, N, Yy, ..., Y,, E} forms a moving frame along M" in L3,
In the rest of this paper, we will use the range 1 <i, j, k, [, ¢t <n of indices.
We can write the structure equations as

(2-4) dY = ZY@, dY; = — ZA,Jw]Y w,N-l—Za),JY +ZB,Jw,

(2-5) dN = ZA,,w,Y+ZCw, ZCw,Y ZB,]w] g

i.J
where w;; is the connection form of the Mobius metric g and is defined by the struc-
ture equations dw; = Z wjjAwjand w;j+w;; =0. The tensors A = Z A jo; ®
wj, =) ,Cuw and B = Z :Bjj w;i ® w; are called the Blaschke tensor,
the Mobius form and the Mdbius second fundamental form of x : M"* — S"H1,
respectively. The relations between ©, B, A and the Euclidean invariants of x are
given by [Wang 1998]
Ci= —,072(61'(1‘1) + 2 (hij — Hd;j)ej(log ),
2-6)  Bij=p(hij — H8;)),
2-7)  Aij=—p *(Hess;j(log p) — e;(log p)e,- (log p) — Hhij)
—3p2(IViog pl> — 1+ H?)8y;,
where Hess;; and V are the Hessian matrix and the gradient with respect to the
orthonormal basis {e;} of dx - dx.
The covariant derivatives of C;, A;;, B;; are defined by
(2-8) chi,ja)j =dCi+Zj Cja)j,-,
(2-9) Yo Aijkox =dAij + Y Aigwrj + D Arjwki,
(2-10) Y« Bijxwr =dBij + > Bixwyj + Yy Bijwii.
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The integrability conditions for the structure equations (2-4) and (2-5) are

(2-11) Aijx — Aik,j = BixCj — B;; Cy,

(2-12) Cij—Cji=) 1 (BikArj — Aix By;j),
(2-13) Bijx — Bix,j = 6ijCr — 8ix C},

and

(2-14) Rijii = BixBji — BiyBji +0ik Aji + 81 Aix — 8i1 A jk — 8k Air,

(2-15) Zi B;; =0, Zi,j(Bij)z =

n—1

A=Y A= o (4n7R),

Here R;ji; denote the components of the curvature tensor of g, which are defined
by the structure equations

(2-16) dwij — Y wik Ao =—% Y Rijuwk Aor, Riji = —Rijix.
The normalized Mobius scalar curvature of x : M" — S"*! is
R = n(n—l_l) 2.ij Rijij-
The second covariant derivative of B;; is defined by
(2-17) Y Bijrwr=dBiji+ Y Bk wi+ Y Bikwy+ Y Bijwik.
From exterior differentiation of (2-10), we have the Ricci identity
(2-18) Bij ki — Bijik =Y, BijRiiri + Y, Bit Rijui-

From (2-6), we see that the Mbius shape operator of x : M" — S"*! takes the
form ¥ = p~1(S— Hid) = Zi’jBija),v E;, which implies that for an umbilic-free
hypersurface in S"*!, the number of distinct M&bius principal curvatures is the
same as that of its distinct Euclidean principal curvatures.

One can easily show that all coefficients in (2-4) and (2-5) are determined
by {g, ¥}. Thus:

Theorem 2.2 [Wang 1998; Akivis and Goldberg 1997]. For n > 3, two hyper-
surfaces x : M" — S"! and % : M" — S"™' are Mobius equivalent if and only if
there exists a diffeomorphism F : M"™ — M" that preserves the Mébius metric and
the Mobius shape operator.

An umbilic-free hypersurface x : M" — S"*! is said to have parallel Mdbius
second fundamental form if B;; = 0 for all 7, j, k. Hypersurfaces of S"*+! with
parallel Mobius second fundamental form have now been completely classified. A
special case of the classification can be stated as follows.
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Theorem 2.3 [Hu and Li 2004]. For n > 2, let x : M"* — S"*! be an immersed
umbilic-free hypersurface with parallel Mobius second fundamental form and with
three distinct Mobius principal curvatures. Then x is Mobius equivalent to an open
part of the image of o of the warped product embedding

F:S7(a) x SY(vV1—a?) x Rt x R*—p—4—1 5 gl

withp>1, g>1, p+q<n—1and0 < a < 1, defined by

///) — (tul’ tu”, u///)’

X', u”, t, u
for
W eSPa), u' eS!V1-a?), teRt, u”ecRPI-l
where the conformal diffeomorphism o : R"T! — S"1\ {(—1,0,...,0)} is the
inverse of the stereographic projection and is defined by

1—|ul> 2u
= , e R
o= (T i)
To prove our main theorem, we also need the following partial classification for
umbilic-free hypersurfaces in S$"*! with two distinct Blaschke eigenvalues, due to
Li and Zhang [2007]; see also [Hu and Li 2007]

Theorem 2.4. Forn >3, let x : M" — S"*! be an immersed umbilic-free hyper-
surface with two distinct constant Blaschke eigenvalues and vanishing Mobius
Jorm. If x has three distinct Mobius principal curvatures, then it is locally Mobius
equivalent to either of the following two families of hypersurfaces in S"*!:

(1) Minimal hypersurfaces defined by
¥=(F, %) : M"= NP xH" P (=r %) — §"*!
withr > 0 and

X1 =y1/Y0, X2=Y2/Y0s
YoeRY,  yeRPE 3y eR"P for2<p<n-—1,

where yi : NP — SPT(r) < RPT2 is an umbilic-free minimal hypersurface
immersed into the (p+1)-dimensional sphere of radius r and constant scalar
curvature

PR R Ut Vi

’

2
nr
and (yg, y2) : H* =P (—=r~2) — 1"~ P*1 is the standard embedding of hyperbolic
space of sectional curvature —r~? into the (n— p+ 1)-dimensional Lorentz

space with —yg + y% =—r2
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(2) Nonminimal hypersurfaces defined by
F= (X1, %) M"=NP xS"P(r) > S"*!
withr > 0 and
X1 =y1/yo, *2=y2/Yo,
yo € RT, yeRPH yeRTPHY for2<p<n—1,
where (yo, y1) : NP — HPH (—r72) — LP*2, with —yg + yl2 = —r2, is an

umbilic free minimal hypersurface immersed into (p+ 1)-dimensional hyper-
bolic space of sectional curvature —r =% and constant scalar curvature

< np(p—1)+ (n—1)r?
Ry =— 3 :

nr

and yy : S""P(r) — R" P! is the standard embedding of the (n — p)-sphere
of radius r.

3. Mobius isoparametric hypersurfaces with y =3

Let x : M" — S"*! be a Mobius isoparametric hypersurface with three distinct
principal curvatures By, By, B3 of multiplicities m, m,, m3, respectively. Without
loss of generality, we assume that m| > my > m3 > 1.

Since x has constant Mobius principal curvatures, we can choose, around each
point of M, a local frame field {E;};<;<, orthonormal with respect to the Mobius
metric g such that the matrix (B;;) is diagonalized. Let us write

(3-1) (Bij) = diag(by, ..., by),

where {b;} are all constants. From the assumption, we can assume without loss of
generality that

b1="'=bl’l’l]=Bl$ bm|+1="'=bm1+m2=82’ bm1+m2+1==bn=B3
Here By, B, and Bs; are distinct and, by (2-15), they satisfy the conditions

(3-2) miBy +myBy +m3B3 =0, mlBlz+m2B22+m3B32=”;1_

From now on, unless stated otherwise we impose the additional index conventions
1<a,b,c,d <my,
(3-3) m+1< p,qg =m+my,
mi+m+1=< o f =m+my+m3z=n.

With respect to the local frame field {E;}, we write the Blaschke tensor as A =
Zi’ i A;j w; ® w;. Since the Mobius form @ vanishes, we see from (2-12) that A
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and B commute, which implies that A,, = A,y = A, = 0. Moreover, for any
fixed point £ € M, we can choose the local frame field {E;} to guarantee that, in
addition to (3-1) around &, we have at the pont &

(3-4) (A;j) =diag(Ay, ..., Ay).

Here {A;}1<i<, are the eigenvalues of the Blaschke tensor A. Obviously, we can
further arrange the local frame field {E;} around £ so that, in addition to (3-1)
around &, these eigenvalues are ordered at & as

A1(§) = Ax(€) = < Ap, (6),
(3’5) AmH—l(S)S"'SAmH-mQ(S)’
Am1+m2+l($) <---= An(é)

In this way, we see that Ay, ..., A, are well-defined continuous functions on
M. Denote by M* the set of all such points & € M: Around £ there exists an
orthonormal frame field { E;} with respect to which (3-1) and (3-4) hold. Obviously,
M* is an open subset of M. In the computation that follows, we will fix a point
& € M* and then take an open set U C M* containing & such that over U there
exists an orthonormal frame field {E;} for which (3-1) and (3-4) hold.

Applying the condition to (2-11) and (2-13), we see that both A;; x and B;; ; are
totally symmetric tensors. As usual we define

(3-6) wj=» Thox and T} =-TY.
k
From (2-10), (3-1) and (3-6) and that {;},<;<, consists of constants, we get

1

(3-7) By =(bi —b))Ty; = (b; — b)T}, = (b —b)T%, forall i, j, k.
Hence we see that
(3—8) B,’i,]’ = Bij,i = Bab,j = qu,j = Baﬁ,j =0 forall i, j, a, b, p,q,x, ,3,

and the only possible nonzero elements in {B;; s} are of the form B, .
For the rest of this section, we assume that B;; ; # 0. We define the nonnegative
smooth function f by

1 2 1 Z 2 Z 2
f:6|VB| :6 Bij,k: Bpa,ol’
ij.k p.a,a

Moreover, we define three arrays of vectors, an my X m3 array (ﬁpa) of vectors
in R™, an m; x m3 array (U,,) of vectors in R™2, and an m, x m array (T)pa) of
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vectors in R, by

Upa = (Bpoz,l’ Bpa,Z» s Bpa,ml),
Vaa = (Baa,ml-‘rl’ Baa,m1+2v B Baoz,ml-i-mz)’
Upa = (Bpa,ml—',-mz—',-lv Bpa,m1+m2+2a ceey Bpa,n)-

Lemma 3.1. Let U be an open set of M* as stated above. Then at each point of U,
the arrays (Upqo), (Vae) and (V,q) satisfy

-

Upa " Upg =0 =Vya - Uap forall p,a and any o # B,
(3-9)  Upa " Uga =0="1p4Vga foralla,a and any p #q,
Vaa " Ubg =0="10pq - Vpp forall p, o and a # b;

Upa " Ugp + Vga " Upp =0 ifa # Band p #q,
(3-10) Vaa - Upg + Upa - Vap =0 if % B and a # b,

Upa " Ugb + Vga - Upp =0 ifa #band p #q;

Upal® + 1Ugp > = 1gal® +10psl>  if ot # B and p #4q.
(3-11) Vaa | + Ups 1> = Upa|” +10ap]”  ifa # B and a #b,
1Bpal’ + [Tgp 1> = [0gal® + 101> ifa #band p #q,

where the dot denotes the standard product in R™', R™2 and R™3, respectively.

Proof. From (2-10) and (3-8), we have

(3-12) Za Bpot,aa)a =(By— B3)wpav
(3-13) Zp Ba(x,pwp = (Bl — B3)wqyq,
(3-14) Za Bpa,ocwa =(By— Bl)wpw

Differentiating (3-12) and then using (3-6) and (3-7), we get

> a.q.8 Bra.aBgp.a(Bs — B2)

(3-15)
(B1 — B2)(B1 — B3)

Wy A wg
+ 2 ab Bpaa®@ab Awp + Y, dBpg.a AW,

Za,q,ﬂ Bp,B,ana,a
(B1 — By)(B1 — B3)

=(B2—B3)( Wy N\ wg
+ 22y ©pg AN Wgat+ D5 0pp AWy — Rpapawp A wa)'

Comparing the coefficients of w, A wg on both sides of (3-15), we obtain

(3'16) Za Bpoz,anﬂ,a + Za Bp,B,anoz,a = (Bl - BZ)(BI - BS)Rpapaapqaaﬁ-
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Similarly, by differentiating (3-13) and (3-14), we get
(3‘17) Zp Baa,pBb,B,p + Zp Baﬂ,pBba,p = (BZ - Bl)(BZ - B3)Raaaa5ab3aﬁa
(3'18) Zoz Bpa,ochb,oz + Za pr,oqua,oc = (B3 - BZ)(B?a - Bl)Rpapaapqaab-

From (3-16), (3-17) and (3-18), the relations in (3-9) and (3-10) immediately fol-
low.
Moreover, from (3-16)—(3-18) and (2-14), we get

(3-19) 2[Vp|® = (Bi — By)(By — B3)(B2Bs + Ay + Ag),
(3-20) 2[V4q|* = (By — B1)(By — B3)(B1 B3 + Ay + Ay),
(3-21) 2[3pal’> = (B3 — B2)(Bs — B1)(B1By+ Ay + Ay).
Then the relations in (3-11) also immediately follow. O

Lemma 3.2. If, on some open set, the array (V,q) contains a zero vector, then all
the vectors in either the whole row or in the whole column where the zero vector is
located must be zero.

Proof. For simplicity of notation, in this proof we denote the m, x m; array (V,q)
by (v;;) for 1 <i <mj and 1 < j < m, where v;; € R™. By Lemma 3.1, the
array has the following properties:

(P1) The vectors of any row form an orthogonal set.

(P2) The vectors of any column form an orthogonal set.
. Vik Ui
For any 2 x 2 minor (Jk JZ),
Vjk Vji

(P3) i - Vji + Vi - vk =0, and
(P ikl + [00* = [T | + 19/,

Obviously, all these four properties will remain unchanged if either the rows or
the columns of the array are permuted.

Suppose that a vector in the array is zero on an open set U C M*. Permuting

rows and columns, if necessary, we may assume that v;; = 0 on U. Then (P1),
(P2) and (P3) imply that at each point of U, the remaining vectors

V12, ««« s Uimy and V21y -« o5 Uyl

in the first row and the first column form a mutually orthogonal set of m +my —2
vectors in R™3, and at most m3 vectors of which can be nonzero at any point. Let &y
be a point where a maximal number of these vectors is nonzero. By continuity, the
nonzero vectors at £y will remain nonzero in some open subset V C U containing &p.
By maximality, the vectors that are zero at £y must remain zero on V.
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By permuting rows and columns if necessary, we may assume that

1_511 =---=l_5]j=0 and 1711 ='--=5i1 =0
for some i € {1,...,my} and j € {1, ..., m}. The remaining vectors of the first
column and the first row are all nonzero at each point of V, so the array has first
row (0,0, ...,0,V1¢j+1), - -, Uim,) and first column (0, ..., 0, Uit1)1, - -, Umy1)
and (P4) implies that vy; =0 for 1 <k <i and 1 <[ < j. Hence all elements in
the upper left i x j block of the array should be zero vectors on V,

If the first row of the array is zero on V, then we are done. If otherwise, we have
j <myand vy; # 0 foralll > j+ 1. Let us fix an arbitrary k € {i + 1, ..., my}
and/ € {j+1,...,m}. Then property (P4) easily implies that

(3-22) Uil =+ =0kl and || =---= vyl #0.

Also by using (P4) with the minor <40 lj”), we get

Ukj Vil
(3-23) B> = [0k 1” + 190> # 0.
On the other hand, the properties (P1), (P2) and (P3) imply that
(3-24) Ukls s Ukjs Olls---s Uity Uk

form an orthogonal set of i + j 4 1 vectors in R™3. But, the nonzero vectors in the
first column and the first row together form an orthogonal set of (m|— j)+ (my—1i)
nonzero vectors. Hence, m|+my—i—j <mjandthusi+j+1>m;+mo—m3+1>
m1 + 1 > ms3, so some of the vectors in (3-24) must be zero. By (3-22) and (3-23),
it must be the case that Ux; = --- = U; =0. As thisis true for k =i +1, ..., ma,
it follows that the first j columns of the array are all zero on the open set V. [

Lemma 3.3. If VB # 0, then for any one of the three arrays (Vpqa), (Vaa), (Vpa),
it cannot happen that there exists both a row and a column whose elements are all
zero vectors on some open set U C M*.

Proof.  Suppose to the contrary that we have such an array (v;;) for which each
element of the i-th row and the j-th column is zero on an open set U C M*. Then
for any k i and [ # J, the property (P4) gives that

O |* = [071% + [9,;1% — 1551 = 0.
Thus all elements of (v;;) are zero vectors on U, which contradicts VB #0. [
Now we can divide our discussions into two cases:
Case 1. mip =myp = ms.

Case II. m > my > m3 and m| > m3.
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Each case corresponds to a main result of this paper:

Theorem 3.1. Let x : M" — S"t! be a Mobius isoparametric hypersurface with
three distinct Mobius principal curvatures of multiplicities m; = my = ms. If
the Mobius second fundamental form is not parallel, then x is locally Mobius
equivalent to the Euclidean isoparametric hypersurfaces in S"*! with three distinct
principal curvatures.

Theorem 3.2. Let x : M" — S"*! be a Mobius isoparametric hypersurface with
three distinct Mobius principal curvatures of multiplicities m, my and m3 satisfy-
ing mi > my > ms and m| > ms. If the Mobius second fundamental form is not
parallel, then my =ms :=m and x is locally Mobius equivalent one of the minimal
hypersurfaces as given by part (iii) of the classification theorem.

The proofs of these two theorems are quite involved and will be given separately
in the next two sections.

4. Mobius isoparametric hypersurfaces with my; = m; = m3

This section is devoted to Case I and giving a proof of Theorem 3.1. Assume that
m;=my=m3:=mand VB # 0.

Proposition 4.1. Let x : M" — S"! be a Mobius isoparametric hypersurface
with three distinct Mobius principal curvatures of the same multiplicity m. If the
Mobius second fundamental form B is not parallel, then every vector in each of
the three m x m arrays (Vpq), (Vaa) and (Vpq) has length equal to \/f /m, where
f= Zp,a,a Blzmﬂ is a constant function.

To prove the proposition, we first establish two lemmas whose proofs can be
given by the crucial algebraic techniques that were essentially discovered by Cecil
and Jensen [1998]; we present the proofs here for the reader’s convenience.

Lemma 4.1. There is an open subset U C M™ on which every vector is nonzero in
each of the three m x m arrays (Vpg), (Vga) and (Upq).

Proof. Suppose to the contrary and without loss of generality that U,+1y1 = 0 on
some open set U. Then by Lemma 3.2, one of two cases must occur:

* Ugmt1)e =0for 1 <a <m,or

e Uy =0form+1<p=<2m.

In the first case, the first component of each vector of (V,4) is zero. Hence Ugq
can be looked at as if it were in R”~!. By using (P1) and (P2), we see that at least
one element both in each row and in each column of the array (V,y) is zero. Then

by using (P4), Lemma 3.2 and Lemma 3.3, we easily get (V,,) = 0 on U. This
contradicts that VB # 0, so this case does not occur.
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In the second case, we can show as above that (v pa) = 0, also a contradiction.
Hence this case cannot occur either. U

Lemma 4.2. Suppose that every vector in the arrays (v pa)s (Vo) and (ﬁpa) is
nonzero on U C M*. Then, for each array, all vectors either in each row or in
each column have the same length.

Proof. Consider one of the arrays and denote its first row by vy, ..., U,. By
property (P1) and the assumption that none of these vectors is zero, it follows that
this is an orthogonal basis of R™. Thus, there exist linear operators 7; of R™ for
j=2,...,m, such that the j-th row of the array is given by 71, ..., T;U,. For
each of these operators, the properties (P1)—(P4) imply also that

(O1) Tj is skew-symmetric for j =2, ..., m,
(02) each of the vectors vy, ..., U, is an eigenvector of Tj2 for j=2,...,m,and

(03) the relation |7;9;|* + |U¢|* = |;|* + |T;Ux|? holds for any j =2, ..., m and
i #k,where 1 <i, k <m.

In fact, from (P2) we can see that T;v; - U; = 0 holds for all i = 1, ..., m and
j=2,...,m. Similarly, T;v; - v + v; - Tjvx = O follows from (P3). Thus, (P2)
and (P3) imply (O1). In addition, (P1) implies that T;v; - Tjvx = 0 whenever i # k,
and thus szﬁ,- -vx = 0 by (O1). It follows that v; must be an eigenvector of sz.
Property (O3) follows immediately from (P4).

Having seen that each v; is an eigenvector of sz, the correspondent eigenvalue
is easily seen to be given by

=2
2o ATjuil” o
4-1) Tj v = — e V;.
This follows from the fact that a|;|* = avj - v; = T}v; - v; = =T;v; - T;v; if
szﬁi = av;.
Fix any j € {2,...,m}. Let T = T; and denote by aj, ..., a, the eigenvalues

of T2. Then property (O3) implies the relation
(4-2) A +a)|vi)? = A +ap)|e)® foralli, ke{l,..., m}.

Consequently, if some eigenvalue a; is equal to —1, then so are all the others, and
thus 72 = —1.
If none of the eigenvalues equals —1, then a; = a; if and only if |v;| = |vg|.
Suppose that, for some row of the array, the vectors do not have the same length,
and suppose likewise for some column. Relabeling if necessary, we may suppose
that vy, ..., U, do not have the same length. Then there must be some vector v;
such that |v;| is not equal to |vi| for at least m — |m/2] vectors v, where |z]
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denotes the greatest integer less than or equal to z. Permute the columns so that
(4-3) lv1] # [vk|  for [m/2]+1 <k <m.

From (3-19), (3-20) and (3-21), we have

Bpal® = V81> = 3(B1 — B2)(B1 — B3)(Ay — Ap),

|Bpal® — Vgal® = 3(B1 — B2)(B1 — B3)(A, — Ay),

|Vaal? = |Uapl® = 3 (B2 — B1)(Ba — B3)(Aq — Ap),

|Daa|” — [0pa|” = 3(B2 — B1)(B2 — B3)(Ay — Ap),

Bpal® = [Upp|* = 5 (Bs — B2) (B3 — B1)(Aq — Ap),

|Bpal® = 1Ugal* = 5(B3 — B2)(Bs — B1)(A, — A,).

(4-4)

Consequently, if (v;;) denotes any one of the arrays, then there exist numbers
Cij = —Cji and d,'j = —dj,‘ such that

(4-5) |0:j 1% — |0k = cjx forall i,
(4-6) [Uik|* — [0 = d;j for all k.

Now (4-5) implies that (4-3) must hold for every row in our array. Thus (4-3)
continues to hold after permuting the rows. We may thus assume that for some i,

“-7) Vil # |Tjv;| for [m/2]+1<j<m.

Then (4-6) implies that (4-7) holds for every column of the array, and in particular
for the first column.
In summary, we can conclude that

[0l # 191 and [v1] # |Tj01] for [m/2]+1<j<m.

Now we fix j, k € {lm/2] +1,...,m}. Then we claim that ¥; and v; must
be in different eigenspaces of Tk2. In fact, by (4-1) and (4-4), we see that none
of the eigenvalues of Tk2 is —1. But then by (4-2) and the first part of (4-4), the
eigenvalues of Tk2 associated to the eigenvectors vy and v ; must be different.

On the other hand, v, and T;v; are in the same eigenspace of Tkz. In fact, if
Tsz)] = av, then Tszan = TkaZT)l = aTyv;. Thus, v; and T;v; are in different
eigenspaces of Tkz. Since Tk2 is symmetric, we have

vj-Trvy =0 for [m/2]+1<j,k<m.

By (P1), we also have vy -v; =0 for [m/2]+1 < j, k <m. Thus, the m — [m/2]
nonzero orthogonal vectors v /2] 415+ s Uy, lie in the orthogonal complement of
the (m— | m /2] +1)-dimensional space spanned by vy, T\ /2)+101, - - ., Tn V1. This
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is impossible, which implies the impossibility of the assumption above that some
row and some column of the array have vectors of unequal length. U

Proof of Proposition 4.1. According to Lemmas 4.1 and 4.2, we may assume that
all vectors in each row of array (v,,) have the same length, that is,

(4-8) [Up1> =0p> = = Upm|* forall pefm+1,...,2m}.

Consider the m x m matrix

Bpl,Zm-‘rl Bp2,2m+l e Bpm,2m+l
Bpiom+2 Bp2om+2 *+ Bpmom+2
F= ) ) ) ) ;
Bpl,n Bp2,n e Bpm,n

whose i-th row is exactly the components of v p@m+i)» and whose j-th column is
exactly the components of v,,;, where 1 <i, j <m. Using properties (P1) and (P2),
we have

(4-9) 'FF = 0p1|* I,
19 p@m+1)? 0 e 0
(4-10) pro| O el 0
0 0 e |ﬁpn|2

From (4-9), we see that F' F ='F F. Then we compare (4-9) with (4-10) to obtain
@10 [Bpeninl = =0pul* = 0,1> forall pefm+1,...,2m}.
Now, from (3-21) and (4-8), we get A, = A for all a # b. Similarly, from (3-19)
and (4-11) we get A, = Ag for all @ # B. These facts together with (3-20) give

- 1 1
|vaa|2:W E Biﬂ,pzﬁf for all a, «.
b.B,p

Proceeding as in the proof of (4-11), we get

(4-12)  Bmanal® == [Damal* = [Va@man)? = - - = |Vanl?
foralla € {1, ..., m},
4-13)  [Tmrnyal? = = Bamel* = [B1a* = = [Unal?

forale € 2m+1,...,n}.

Then (4-11)—(4-13) imply that every vector in each of the three arrays (v pa)> (Vg
and (U,,) has length equal to \/f/m.
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Next, we will show that f is constant. Using (2-17), (3-6) and (3-8), we get
Z Bab,pia)i = Z Baa,pwab+z Bab,pa)aa = Z Baa,p ngwq +Z Bab,p Fgawq-
i o o o,q o,q

Comparing two sides of this, we obtain By pe = 0. A similar argument gives
Bpy.aa = 0 and Byg qp = 0. By (2-14), (2-18), (3-1) and (3-4), we easily see that
the four indices in B, o; for 1 <i <n are totally symmetric. Hence we get

0= Z Bpa,otia)i = dBpa,a + Z pr,aa)ba + Z Bqa,aa)qp + Z Bpa,ﬁwﬁa-
i b q B
Multiplying this equation by B, , and summing, we get

0= BpaadBpaw+ Y BpaaBpsaws

p.a,a p.a,b,a

+ Z Bpa,ana,aa)qp+ Z Bpa,aBpa,ﬂa)ﬁa,
or, equivalently, p.a.q. p.a,a.p

(4-14) 0= %df'i‘ Z (ﬁpa : 6pb) Wpa + Z (5pa : ﬁqa) Wgp + Z (Bpoz : 1_5[7;3) WLy -
pvavb p’q’a p,a,ﬁ

Lemma 3.1 and (4-14) imply that df = 0, showing that f is constant. ([

Lemma 4.3. The eigenvalues of the Blaschke tensor A are all constant on M.

Proof. By (2-14) and (3-19)-(3-21), we get

(4-15) Rapap = 2|5Pa|2 =B 1B, +A,+A,,
(B3 — B1)(B3 — Ba)
(4'16) Raaaa = 2|I_jaa|2 = Bl B3 + Aa + Aou
(B2 — B1)(B2 — B3)
2|Vp0l?
4-17) Rp(xpa = =BQB3+AP+AO[.

(B1 — B2)(B1 — B3)
Using Proposition 4.1 and adding (4-15), (4-16) and (4-17), we have

(4-18) B]Bz—I-BlB3—|-BzB3+2(Aa+Ap+Aa)=0.

From (4-15) up to (4-18) we get

2f
Ay = X(ByB3; — BB, — B|B3) — ,
¢ m2(B; — By)(B; — B3)
2f
(4-19) A, =3(B1B3s— BBy — ByB3) — :
P2 m2(By — B1)(By — B3)
2f

Ay = 5(B1By — BB — B, B3) —

m?(Bs — B1)(Bs — By)
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Therefore all the eigenvalues of A are constant on M*. On the other hand, the well-
defined continuous functions Ay, A», ..., A, satisfy (3-5). Thus we can indeed
choose a frame field {E;} around each point of M so that (3-1) and (3-4) hold
identically. This fact and the argument above show that the open set M* is also
closed in M. By connectedness, we know that M* = M. ([

Remark 4.1. Now that the Blaschke eigenvalues A;, A,, ..., A, are constant, we
can find everywhere local frame fields {E;} such that (3-1) and (3-4) hold at the
same time.

Proof of Theorem 3.1. From Proposition 4.1 and (4-19), we get
(4-20) A= =Ap, Apy1="---=Aop, Aopy1="---=A,.

From Lemma 4.1 we know that v, # 0; thus there exist & such that B, o # 0.
From (3-6), (3-7), (2-9) and that both A;; x and B;; i are totally symmetric, we get

(4’21) Apa,ot = (Ap - Aa)Fga = (Aa - Aa)F;a = (Aa - Ap)ng»

(4-22) Bpgo = (Bo— BNy, = (B1 — B3)I'}, = (B3 — By)Ty,.
From (4-21) and (4-22), we derive

Apae  Ap—Aq  Ai—Ay  Ag—A,

Bpaw B>—Bi Bi—B3y B3—B;’

which together with (4-20) implies the existence of constant functions A and u
with the property

Al+AB = =A+AB1=Apt1 +ABy=---= Ay +AB)
=Aypt1+AB3=---=A, +AB3 = pu.
Hence we have A+ AB — g =0, and by it we can apply the result of Li and Wang

[2003] to conclude that x : M — S"*! is locally M&bius equivalent to one of the
following hypersurfaces:

e a hypersurface ¥ : M — S"*! with constant mean curvature and constant
scalar curvature;

« the image under o of a hypersurface ¥ : M — R"*! with constant mean
curvature and constant scalar curvature;
« the image under t of a hypersurface ¥ : M — H"*! with constant mean cur-

vature and constant scalar curvature. Here, we recall that we have defined the
conformal diffeomorphism 7 : H**! — S’f], y+— (1, y")/yo, where

H™™ = (3o, Y1» -+ Yar) €L [ (y, y)1 = =1, y0 = D},

§1+1 ={(x1, ..., %u42) € S"T x> 0)},
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and y' = (y1, ..., Ynt1)-

For each of these possibilities, from [Hu et al. 2007, Propositions 3.1 and 3.2],
and because the B; are all constant, we see that x : M — s*™t! orx: M — R+
or ¥ : M — H"*!, respectively, are all Euclidean isoparametric hypersurfaces with
three distinct principal curvatures. From the classical result that isoparametric
hypersurfaces in R"*! and H"*! can have at most two distinct principal curvatures,
we finally see that x is Mobius equivalent to an open part of some isoparametric
hypersurface in $"*! with three distinct principal curvatures. (]

5. Mobius isoparametric hypersurfaces with m; > m3
This section is devoted to Case II and proving Theorem 3.2. Assume that
(5-1) VB #0 and m; > my > ms such that m; > m3.
To add to the index conventions (3-3), we introduce the notation
$1={1,2,...,m},
Jo={m+1,m +2,...,m +ms},
$s={mi+mry+1,m+my+2,...,n}

In follows, we will concentrate on the m, x m array (v pa) Of vectors in R™3.

Lemma 5.1. There exists an integer m’l, where 0 <m; —m3 < m/1 < mjy, such that
exactly m columns of the mo x my array (V) are identically zero on an open set
U C M*. Explicitly, there exists a subset Doy C $1 of m'| elements, with complement
94 in $q, such that

(5-2) Upa =0 foralla € % and p € 97,
(5-3) Upe 70 forallc € Dy and p € 9.

Proof. By Lemma 3.1, for each p € $,, the vectors in row p of the array (V)
constitute a set of m; mutually orthogonal vectors in R™3. Thus, at least m; —
m3 vectors in row p must be zero at any point of M*. On the other hand, by
Lemmas 3.2 and 3.3 we know that it is impossible that a whole row is zero in the
array (U pa)- Permute the columns of (v pa)» S0 that row p has all its nonzero vectors
occurring first (left to right). Let v sm, denote the last nonzero vector in this row.
Then 1 < m <ms3 < m;. Thus we have

17[30#0 ifl<c<m; and 17,—,a=0 ifm+1<a<m.

Since at least one vector is nonzero in row p, by Lemma 3.2 the last m; — m
columns of array (Bpa) are all zero on an open set U C M™. That is,

if mi+1<a<m, thenv,, =0 forallpeJ,.
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Now we apply property (P4) to the minor

Use Vs } .

_pe _pe with 1 <c <my, m;+1<a <m; and any p € $,,
Upe Upa

to obtain

(5-4) |1_5(m|+1)c| == |6(m1+m2)c| = |6[3c| #0 foralll<c=<m.

Let m| =my —m;. Then 0 < m; —m3 < m| < m, and the assertion follows by
setting

Qbo={n~11+1,n~11+2,...,m1} and @1={1,2,...,n~1]}. O
Lemma 5.2. Assume that VB #0 and m| > my > ms. If m| > ms, then my = ms.

Proof. By (5-3) and Lemma 3.1, for each ¢ € %; the vectors in column ¢ of the
array constitute a set of m, mutually orthogonal nonzero vectors in R”3; hence we
have m;, < m3. By the assumption m, > m3, we get my = ms. O

Lemma 5.3. Foralla,b € %y, c € Dy, p,q € $pand «, B € $3, we have
A=Ay #FA., Ap,=A4,, Ay=Ag.
Proof. From (5-2) and (5-3), we get that, for all a, b € 99, c € @ and p, g € $,

|6pa| = |6pb| = |6qa| =0 5’é |1_5pc|-

This combined with (3-21) gives A, = Ay # Ac and A, = A,.
From (5-2) we have

(5-5) Bpuo =0 foralla €%y, peIr, ac 3.

The fact that B;; ; is totally symmetric and (5-5) implies that Vae =0 for all a € %
and @ € $3. Combining this with (3-20), we get A, = Ag. O

Lemma 5.4. n| =m3 =m,.

Proof. By Lemma 5.3, we get A, = A, and A, = Ag. Combining (3-19) with (5-1),
we obtain

> 1 1
(5'6) |vpoz|2 = Z B;ﬁ,c = —2f 75 0 forall p, .
M3 4 Be m;

From (5-5) we know that the last m; — m; components of each vector v pa are
zero on the open set U as we stated in Lemma 5.1; thus v, can be regarded as
an element of R”'. By Lemma 3.1, for each p the vectors in row p of the array
(v pa) constitute a set of m3 mutually orthogonal nonzero vectors in R, Hence
ms3 < mj, while Lemma 5.1 tells that m; < ms3. Hence m; = m3 = my. O
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Next, by using (5-4), (5-6) and Lemma 3.1, we get the following by adapting
the proof of Proposition 4.1.

Proposition 5.1. All the nonzero vectors of the arrays (Vpq), (Vag) and (V,q) have
constant length equal to \/ f /m». That is, we have

= 27 23 2 2._ g2
(5-7) [Vepl” = [Vau|” = [vgp|” = f/m5 := L~ = const
foranyc,d €9y, p,q € Iyanda, B € .
Now, we are ready to prove one of the main results in this section.

Proposition 5.2. Let x : M" — S"*! be a Mobius isoparametric hypersurface
with three distinct Mdbius principal curvatures of multiplicities my > my > m3 and
my > ms. If the Mobius second fundamental form is not parallel, then it must be
the case that my = ms :=m and that the Mobius principal curvatures satisfy By =0

and By = —B3z = £+/(n —1)/(2mn).

Proof. By Lemma 5.2 we may assume that m, = m3 := m. Let us take a € 9,
c €%y, p€ F,and a € $3. Then by the proof of Lemma 5.3, we have v,, = 0.
By using (2-14), (3-19)—(3-21) and Lemma 5.1, we obtain

(5-8) Rupap = BiBa+Aq+ A, = 210l =0,
(B3 — B1)(B3 — B)
(5-9) Ruqaa = BiB3+ Ay + Aq = 2lea =0,
(B2 — B1)(B2 — B3)
(5-10) Repep = BiBa+ Ac+ A, = A0pel”
(B3 — B1)(B3 — B»)
(5-11) Reocw = B1 B3+ Ac+ Ay = 2{Beal” ,
(B2 — B1)(B2 — B3)
2|00l
(5-12) Rpupa = BaB3+ A, + Ay =

~ (Bi—By)(Bi — By)
With the summation (5-9) + (5-10) — (5-8) — (5-11), we get

2[Vpel? B 2|Veq|? .
(B3 — B1)(B3 —By) (By— By)(B2— B3)

This equation and (5-7) imply that B, + B3 —2B; = 0. Combining this with (3-2),
we obtain By =0and B = —B3; =+ (n—1)/2mn). U

Without loss of generality, in what follows we may assume that

(5-13) B, =0, Bzz,/”_l, By=— /2=L
2mn 2mn




MOBIUS ISOPARAMETRIC HYPERSURFACES WITH THREE CURVATURES 365

Lemma 5.5. Foralla € %y, c € D1, p € $, and o € $3, we have

1
Wace = Wap = Wga = 0, Wep = mza BC]),O[COOH
1 1
Weq = B,—B; Zp Bcp,awpv Wpa = mzc Bcp,ozwc’
2 - 2
Rapap = Runaa = 0, chcp = (33—31)(33—32) |vcp| s
2 - 2 2 - 2
Rogea = , R = .
¢ (By—B1)(Ba—B3) [Ves] PePe ™ (B1—By)(B1— B3) Vol

Proof. The formulas follow directly from (2-14), (3-6)—(3-8) and (3-19)—(3-21).
First of all, from (5-5) we get w,, = wue =0. The remaining formulas in Lemma 5.5
except w,. = 0 can be easily obtained.

To show that w,. = 0 holds for any a € %¢ and ¢ € %, we use the following
two equations for any p € $, and o € $3:

(5-14) 0= —Rupapwa Nwp =dwy, — Z Wai AN Wip = — Z nga)ac Awg,
i BeF3, ceD

(5-15) 0= —R,pua®Wa N Wy = dwyy — Zwai AWjg = — Z F;awac A wy.
i g€, c€D)

Let us write
Wge = Z Ip.wp + Z Lg.wq+ Z F;’Ca)q + Z Fgca)ﬁ.
be% ded, q€92 ﬁ€93

Then the two equations above give that

(5-16) > rgrg,=0 foralla,be%B, pe Iy, acds,
66@1
(5-17) Y rgre,=0 foralla€%, d €%, pes acds,
CE@]
(5-18) > Ters,=0 forallae%Dy, p.qe acds,
CEEZJ]
(5-19) > T4, =0 forallaedB, peds a.peds
CE@[

From (5-16), we get for any b € 9 a linear system of equations on {I'j }1<c<u:

Bpmi+m+10,1T51 + Bpomi+m+1),20 5 + - - + Bpony+m+1),m Ui =0,

5 Bpony+m+2).10 51 + Bpmi+m+2) .20 + -+ + Bpany+m+2).m Uy =0,
(5-20)

BP”JFZI + BP”»ZFZZ + o + Blmsmrzm = 0'
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By using (P1), (P2) and Proposition 5.1, we see that the coefficient matrix F of

(5-20) satisfies 'F F = diag(|Up1|%, |9,21%, - - -, [Upm|?) = [Up11* 1. Hence we have
|F| # 0, and then (5-20) implies that I'y; =T'y, =--- =T} =0 for all b € %,
that is,

Iy, =0 forall b e%y.
Analogously, from (5-17), (5-18) and (5-19), respectively, we can show that

[Ge=Tg.=Tj.=0 foralld €%, g € $and B € J3.
Hence I'. = 0 for all i, and w,. = 0 follows. O

Lemma 5.6. Forall p € $;, a € $3 and a € Dy, c € Dy,

_n—1

12mn’
Proof. Lemma 5.5 and (2-16) imply that R,.;; =0 and thus we have R,.,c =0. On
the other hand, (2-14) gives that R;cqc = 312 + A, + A.. It follows that A, = —A..
From (5-8), (5-9) and (5-13), we further get A, = —A, = —A, and hence

Ag=—Ac=—A,=—A, =

(5-21) Ag=—A=—A,=—A,.
These together with (5-10), (5-12) and (5-13) give that

_ L2 B B 322 L2

c =

2B> " 2 BY
It follows that L> = %B;L and A, = %Bzz. Then our conclusions follow immediately
from (5-13) and (5-21). O

Remark 5.1. Because all the Blaschke eigenvalues A, As, ..., A, are constant
on M*, the reasoning of the proof of Lemma 4.3 shows that M = M*. Hence
we can find everywhere local frame fields {E;}, such that (3-1) and (3-4) hold
simultaneously in Case II.

Lemma 5.6 shows that the Blaschke tensor has exactly two distinct constant
eigenvalues. Then applying Theorem 2.4 we immediately get the following result.

Theorem 5.1. Let x : M"* — S"T! be a Mobius isoparametric hypersurface with
nonparallel Mobius second fundamental form and three distinct Mobius principal
curvatures whose multiplicities are not equal. Then there isann with2 <n<n-—1,
and locally x is Mobius equivalent to one of the following two families of hyper-
surfaces in S" 1

(€1) Minimal hypersurfaces defined by

F=F, %) M'=N"x H" " (—r~%) - §"*1,
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with r > 0 and

fr=y1/y0, F2=y/y0, MeERT, y eR™  yeR"

where y; : N — S (r) — R"™2 s an umbilic-free minimal hypersurface
immersed into the (n+ 1)-dimensional sphere of radius r and constant scalar

curvature
- ni(i—1)—@m—Dr?
R =

El

2
nr
and (yo, y2) :H" " (—r=2) — 1"+ s the standard embedding of hyperbolic

space of sectional curvature —r~? into the (n—i+ 1)-dimensional Lorentz

space with —yg + y% =—r2.

(€2) Nonminimal hypersurfaces defined by
F=(F, %) M"=N"xS""(r) —» ",
withr > 0 and
fi=y1/y0. Ta=y/y. YeR", yeR™  yeR

where (yo, v1) : N* — H' T (—r=2) — "2 with —yg + y12 = —r2 isan
umbilic-free minimal hypersurface immersed into (n+ 1)-dimensional hyper-
bolic space of sectional curvature —r~? and constant scalar curvature

(i —1)+(n— 1)r?

nr?

Rl = 9
and y> : S"7"(r) — Rt js the standard embedding of the (n —it)-sphere
of radius r.

Determining which of the hypersurfaces (€1) and (€2) is M&bius isoparametric
requires knowing their Mobius invariants — but this was done in [Hu and Li 2007,
Section 4]. For simplicity we will not repeat this calculation here. With the omitted
calculations and Lemma 5.6, we immediately get the following results.

Proposition 5.3. A hypersurface x in (&) is Mdbius isoparametric if and only if

it satisfies

(1) n=3m,;

2) r=46mn/(n—1);

(3) yi: N3 — S3+( f6mn/(n — 1)) is a minimal isoparametric hypersurface
with constant scalar curvature Ry = 3(m — 1)(n — 1) /(2n); moreover, it has

three distinct principal curvatures with values given by (1-1), each of them
with the same multiplicity m.
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Remark 5.2. Cartan [1939] proved that minimal isoparametric hypersurfaces in
S3m+1(/6mn/(n — 1)) with three distinct principal curvatures do exist and are
unique with principal curvatures having the same multiplicities m € {1, 2, 4, 8}.
More precisely, it is the tube of constant radius over a standard Veronese embedding
of a projective plane FP? into S*"+!(\/6mn/(n — 1)) with principal curvatures of
(1-1) where m =1, 2,4 or 8, and [ is the division algebra R, C, H (quaternions)
or O (Cayley numbers), respectively.

Proposition 5.4. If a hypersurface x in (&,) is Mobius isoparametric, then it must
satisfy the following three conditions:

(1) n=n-—3m;

2) r=+6mn/(n—1);

3) y=0o, y1): N3 s Hr=3m+l(_(n—1 )/(6mn)) is a minimal isoparametric
hypersurface with the principal curvatures of (1-1).

On the other hand, by Cartan’s theorem [1938], an isoparametric hypersurface
M" in the hyperbolic space H"*! can have at most two distinct principal curvatures,
which can only be either totally umbilic or else an open subset of a standard product
S* x H* % in H"t!. Moreover, the latter must be nonminimal. From this fact and
Proposition 5.4, we immediately get the following:

Proposition 5.5. There is no Mobius isoparametric hypersurface in (€2) that has
three distinct Mobius principal curvatures.

Proof of Theorem 3.2. This is an immediate consequence of the Theorem 5.1,
Remark 5.1 and Propositions 5.3 and 5.5. (]

6. Completion of the proof of the classification theorem

Let x : M" — S"*! be a Mobius isoparametric hypersurface with three distinct
Mobius principal curvatures whose multiplicities satisfy m > my > ms.

If x has parallel Mobius second fundamental form, then we apply Theorem 2.3
to obtain that it is locally Mdbius equivalent to a hypersurface in part (i) of the
classification theorem.

If x has nonparallel Mobius second fundamental form, then we have exactly two
cases as we stated in section three:

For Case I, we apply Theorem 3.1 and Cartan’s theorem to obtain that it is
locally Mobius equivalent to a hypersurface in (ii). For Case II, we can apply
Theorem 3.2 and Cartan’s theorem to conclude that it is locally M&bius equivalent
to the hypersurface in (iii). (]
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Final remarks. For the general theory (see [Wang 1998]) of Mobius submani-
folds in S"*P, the Mobius form & is an important invariant. Closely related
to Mobius isoparametric hypersurfaces is the concept of Blaschke isoparametric
hypersurfaces in spheres. It is interesting to mention a conjecture by X. X. Li
[Li and Zhang 2009; Li and Peng 2010]: A Blaschke isoparametric hypersurfaces
with more than two distinct Blaschke eigenvalues is Mobius isoparametric. For
definitions and some recent progress on Blaschke isoparametric hypersurfaces, see
[Li and Peng 2010; Li and Zhang 2006; 2007; 2009].
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