
Pacific
Journal of
Mathematics

REGULARITY OF CANONICAL AND DEFICIENCY MODULES
FOR MONOMIAL IDEALS

MANOJ KUMMINI AND SATOSHI MURAI

Volume 249 No. 2 February 2011



PACIFIC JOURNAL OF MATHEMATICS
Vol. 249, No. 2, 2011

REGULARITY OF CANONICAL AND DEFICIENCY MODULES
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MANOJ KUMMINI AND SATOSHI MURAI

We show that the Castelnuovo–Mumford regularity of the canonical or a
deficiency module of the quotient of a polynomial ring by a monomial ideal
is bounded by its dimension.

1. Introduction

Let R = k[x1, . . . , xn] be a standard graded polynomial ring over a field k, and
let m = (x1, . . . , xn) be the homogeneous maximal ideal of R. We study the
Castelnuovo–Mumford regularity of the modules ExtiR(R/I, ωR) when I ⊂ R is
a monomial ideal; here ωR = R(−n) denotes the canonical module of R. The
modules

ExtiR(R/I, ωR) for i > n− dim R/I

are called the deficiency modules of R/I , while

Extn−dim R/I
R (R/I, ωR)

is called the canonical module of R/I .
For any homogeneous ideal I ⊆ R, the local cohomology modules Hi

m(R/I ) are
important in commutative algebra and algebraic geometry. One is often interested
in the vanishing of homogeneous components of Hi

m(R/I ). While one cannot ex-
pect the vanishing of Hi

m(R/I ) in negative degrees (unless it has finite length), one
can, using the local duality theorem of Grothendieck, obtain some information from
Extn−i

R (R/I, ωR). For a finitely generated graded R-module M , its (Castelnuovo–
Mumford) regularity reg(M) is an invariant that contains information about the
stability of homogeneous components in sufficiently large degrees. In light of
these, it is desirable to get bounds on reg(ExtiR(R/I, ωR)). Such bounds were
studied by L. T. Hoa and E. Hyry [2006] and by M. Chardin, D. T. Ha and Hoa
[2009]; see also the references in those papers.

Unfortunately, canonical and deficiency modules can have large regularity. For
a finitely generated graded R-module M , known bounds for reg(ExtiR(M, ωR))
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are large; see, for example, [Hoa and Hyry 2006, Theorems 9 and 14]. On the
other hand, more optimal bounds for reg(ExtiR(R/I, ωR)) are known to exist for
certain classes of graded ideals I ; see [Hoa and Hyry 2006, Section 4]. It is an
interesting problem to find a class of graded ideals I ⊂ R with optimal bounds for
reg(ExtiR(R/I, ωR)). In this paper, we focus on monomial ideals. It follows from
the theory of square-free modules, introduced by K. Yanagawa [2000], that if I is a
square-free monomial ideal, then reg(ExtiR(R/I, ωR))≤ dim ExtiR(R/I, ωR). This
bound is small, since dim ExtiR(R/I, ωR) ≤ n − i ; see [Bruns and Herzog 1993,
Corollary 3.5.11].

While one cannot apply the theory of square-free modules to all monomial
ideals, there are results that show that reg(ExtiR(R/I, ωR)) is not large when I
is a monomial ideal. For example, we see from [Takayama 2005, Proposition
1, page 333] that if ExtiR(R/I, ωR) has finite length, then its regularity is nega-
tive or equal to zero. Again, Hoa and Hyry [2006, Proposition 21] showed that
if Hi

m(R/I ) has finite length for i = 0, 1, . . . , d−1, where d = dim R/I , then
reg(Extn−d

R (R/I, ωR))≤ d . We generalize these results in the next theorem:

Theorem 1.1. Let I ⊆ R be a monomial ideal. Then

reg(ExtiR(R/I, ωR))≤ dim ExtiR(R/I, ωR) for all 0≤ i ≤ n.

Since dim ExtiR(R/I, ωR)≤ n− i , we immediately get this:

Corollary 1.2. Let I ⊆ R be a monomial ideal. Then

reg(ExtiR(R/I, ωR))≤ n− i for all 0≤ i ≤ n.

In general, this conclusion need not hold without the assumption that I is a mono-
mial ideal; see [Chardin and D’Cruz 2003, Example 3.5].

Our approach to bounding the regularity of canonical and deficiency modules
differs from that of Hoa and Hyry. We show that if I is a monomial ideal, then
ExtiR(R/I, ωR) has a multigraded filtration, called the Stanley filtration and intro-
duced by D. Maclagan and G. G. Smith [2005]; the bound on regularity follows
from this filtration.

In the next section, we discuss some preliminaries on Stanley filtrations and
local cohomology. In Section 3, we prove our main result.

2. Preliminaries

Hereafter we take R-modules to be graded by Zn , giving deg xi = ei , the i-th unit
vector of Zn . We call this the multigrading of R and R-modules.
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Notation 2.1. Let a = (a1, . . . , an) ∈ Zn . Write

xa
=

n∏
i=1

xai
i ∈ k[x

±1
1 , . . . , x±1

n ].

We say that a is the degree of xa and write deg xa
=a. Define Supp(a)={i :ai 6=0},

and define a+, a− ∈ Nn by the conditions

a = a+− a− and Supp(a+)∩Supp(a−)=∅.

Write ‖a‖ for
∑n

i=1 ai , the total degree of a (and of the monomial xa). We will say
that a (or equivalently xa) is square-free if ai ∈{0, 1} for all i . Let [n]= {1, . . . , n}.
For 3⊆ [n], we set e3 =

∑
i∈3 ei and abbreviate the (square-free) monomial xe3

as x3. The canonical module of R is ωR = R(−e[n]).

Let M be a finitely generated multigraded R-module. Let m ∈ M be a homo-
geneous element, and let G ⊂ {x1, . . . , xn} be a subset such that um 6= 0 for all
monomials u ∈k[G]. The k-subspace k[G]m of M generated by all the um, where
u is a monomial in k[G], is called a Stanley space. A Stanley decomposition of M is
a finite set S of pairs (m, G) of homogeneous elements m∈M and G⊆{x1, . . . , xn}

such that k[G]m is a Stanley space for all (m, G) ∈ S and

(1) M =k
⊕

(m,G)∈S

k[G]m.

(We used “=k” to emphasize that the decomposition is only as vector spaces.)
Properties of such decompositions have been widely studied; we follow the ap-
proach of [Maclagan and Smith 2005, Section 3], where Stanley decompositions
were used to get bounds for multigraded regularity. Following [Maclagan and
Smith 2005, Definition 3.7], we define a Stanley filtration to be a Stanley decom-
position with an ordering of pairs {(mi , Gi ) : 1≤ i ≤ p} such that( j∑

i=1

R mi

) / ( j−1∑
i=1

R mi

)
= k[G j ](− deg mj ) for j = 1, 2, . . . , p

as R-modules. Note, in this case, that

0⊆ R m1 ⊆ · · · ⊆

j∑
i=1

R mi ⊆ · · · ⊆

p∑
i=1

R mi = M

is a prime filtration of M , as in [Eisenbud 1995, Proposition 3.7, page 93].

Proposition 2.2. Let M be a multigraded R-module with a Stanley decomposition
S such that (deg m)+ is square-free and G = Supp((deg m)+) for all (m, G) ∈ S.
Then, S gives a Stanley filtration. Moreover, reg M ≤max{‖deg m‖ : (m, G)∈S}.
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Proof. We order S={(m1,G1), . . . , (m p,G p)} so that ‖deg m1‖≥ · · ·≥‖deg m p‖.
It follows from our hypothesis that

(2) spank{m1, . . . , m p} = spank{m ∈ M : Supp((deg m)+) is square-free},

where span
k
(V ) denotes the k-vector space spanned by the elements in V . We

write M ( j) for
∑ j

i=1 R mi . We will now show, inductively on j , that

(a) M ( j−1)
:R mj = (xk; xk 6∈ G j ), and

(b) the set
⋃ j

i=1{umi : u is a monomial in k[Gi ]} is a k-basis for M ( j).

These imply that S is a Stanley filtration of M .
Let j = 1. We will show that (0 :R m1) = (xk; xk 6∈ G1). We have um1 6= 0

for all monomials u ∈ k[G1] from the definition of the decomposition. Therefore
we must show that xl m1 = 0 for any xl 6∈ G1. Let xl 6∈ G1. Then (deg xl m1)

+

is square-free, and xl m1 ∈ spank{m1, . . . , m p} by (2). However, from the choice
of m1, we see that xl m1= 0. Therefore (0 :R m1)= (xk; k 6∈G1), proving (a). Then
(b) follows immediately.

Now, assume that j > 1 and that the assertion is known for all i < j . We first
show (a). Let u be a monomial in k[G j ]. By statement (b) for j − 1, the set⋃ j−1

i=1 {vmi : v is a monomial in k[Gi ]} is a k-basis for M ( j−1). Since umj is an
element of the basis of M coming from the Stanley decomposition, umj is not in
the k-linear span of

⋃ j−1
i=1 {vmi : v is a monomial in k[Gi ]}, that is, umj 6∈ M ( j−1).

It remains to prove that xl mj ∈ M ( j−1) for any xl 6∈ G j . Let xl 6∈ G j . Since
(deg xl mj )

+ is square-free, it follows from (2) and the ordering of the (mi , Gi )

that

xlmj ∈ spank{mi : 1≤ i ≤ p, deg mi > deg mj } ⊆ spank{m1, . . . , m j−1}.

Therefore xl mj ∈ M ( j−1), proving the statement (a) for j .
From (a), we see that the sequence

(3) 0→ M ( j−1)
→ M ( j)

→ k[G j ]mj → 0

is exact. Now, statement (b) for j follows from the induction hypothesis.
Theorem 4.1 of [Maclagan and Smith 2005] essentially gives the assertion about

regularity, but we give a quick proof here by showing that

reg M ( j)
≤max{‖deg mi‖ : 1≤ i ≤ j} for all 1≤ j ≤ p.

It holds for j = 1. For j > 1, it follows from [Eisenbud 1995, Corollary 20.19]
and the exact sequence (3) that

reg M ( j)
≤max{reg M ( j−1), ‖deg mj‖}.

Then induction completes the proof. �
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Finally, we recall some basics of local cohomology. We follow [Bruns and
Herzog 1993, Sections 3.5 and 3.6]. Let Č• be the Čech complex on x1, . . . , xn;
the term at the i-th cohomological degree is

Č i
=

⊕
3⊆[n], |3|=i

Rx3,

where Rx3 denotes inverting the monomial x3. Note that Č• is a complex of
Zn-graded R-modules, with differentials of degree 0. For a finitely generated R-
module M , we set Č•(M)= Č•⊗R (M). Then Hi

m(M)= Hi (Č•(M)).

Definition 2.3. Let F ⊆ [n]. We define Č•F to be the subcomplex of Č• obtained
by setting

Č i
F =


0 if i < |F |,⊕

F⊆3⊆[n]
|3|=i

Rx3 otherwise.

Lemma 2.4. Let I be a monomial ideal and F ⊆ [n]. If a ∈ Zn is such that
Supp(a−)= F , then Hi

m(R/I )a = Hi (Č•F ⊗R (R/I ))a.

Proof. The proof of [Takayama 2005, Theorem 1] uses this argument implicitly.
Since Hi

m(R/I )a = Hi ((Č•(R/I ))a, it suffices to show that

(Č•(R/I ))a = (Č•F ⊗R (R/I ))a.

This, in turn, stems from the fact that Č j
F ⊗R (R/I ) consists precisely of the direct

summands of Č j (R/I ) that are nonzero in multidegree a for all 1≤ j ≤ n. �

3. Proof of the main theorem

Lemma 3.1. Let I ⊂ R be a monomial ideal. Let a ∈ Zn and j ∈ Supp(a+). The
multiplication map

xj : ExtiR(R/I, ωR)a→ ExtiR(R/I, ωR)a+ej

is bijective.

Proof. We first claim that the multiplication map

xj : Hn−i
m (R/I )−a−ej → Hn−i

m (R/I )−a

is bijective. By local duality [Bruns and Herzog 1993, Theorem 3.6.19], this map
is the Matlis dual of the multiplication by xj on ExtiR(R/I, ωR)a; hence, it suffices
to prove the claim above.

Set F = Supp(a+). Note that Supp(a++ ej )= F . For all i , the map xj acts as
a unit on Č i

F . Therefore the homomorphism of complexes

Č•F ⊗R (R/I )→ Č•F ⊗R (R/I )
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induced by the multiplication map xj : Č i
F⊗R (R/I )→ Č i

F⊗R (R/I ) is an isomor-
phism. The claim now follows from Lemma 2.4, which implies that

Hi
m(R/I )−a−ej = Hi (Č•F ⊗R (R/I ))−a−ej ,

Hi
m(R/I )−a = Hi (Č•F ⊗R (R/I ))−a. �

The previous lemma says that, if I is a monomial ideal, then ExtiR(R/I, ωR) is
a (1, 1, . . . , 1)-determined module in the sense of [Miller 2000, Definition 2.1].

Proof of Theorem 1.1. For F ⊆ [n], let Mi
F be a multigraded k-basis for⊕

a∈Nn, Supp(a)∩F=∅
ExtiR(R/I, ωR)eF−a.

Let Si = {(m, F) : F ⊆ [n] and m ∈Mi
F }. It follows from Lemma 3.1 that Si is a

Stanley decomposition of ExtiR(R/I, ωR). In particular,

dim Exti (R/I, ωR)=max{|F | :Mi
F 6=∅}.

By the construction of Mi
F , this Stanley decomposition satisfies the assumption of

Proposition 2.2. Therefore

reg(ExtiR(R/I, ωR))≤ max
F⊆[n]
{max{‖deg m‖ : m ∈Mi

F }}

≤ max
F⊆[n]
{|F | :Mi

F 6=∅}

= dim ExtiR(R/I, ωR),

as desired. (The second inequality follows since ‖deg u‖ = |F | − ‖(deg u)−‖ for
any u ∈Mi

F .) �

We remark that, by using [Takayama 2005, Theorem 1] and local duality, one
can determine whether Mi

F 6=∅ from certain subcomplexes of the Stanley–Reisner
complex of the radical

√
I of I .
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