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WEIPING LI AND QINGXUE WANG

We analyze a special smooth projective variety Y h arising from some one-
dimensional irreducible slices on the SL2(C)-character variety of a hyper-
bolic link in S3. We prove that a natural symbol obtained from these one-
dimensional slices is a torsion in K2(C(Y h)). By using the regulator map
from K2 to the corresponding Deligne cohomology, we get some variation
formulas on some Zariski open subset of Y h. From this we discuss a possible
parametrized volume conjecture for both hyperbolic links and knots.

1. Introduction

This is the sequel to [Li and Wang 2008] on the generalized volume conjecture for
a hyperbolic knot in S3. In this paper, we shall study a hyperbolic link in S3 and
extend several results from the knot case. The main idea is to apply the regulator
map in K-theory to the SL2(C)-character varieties of hyperbolic links.

For a link L in S3, Kashaev [1995] introduced a sequence of complex numbers
{KN | N is an odd integer > 1}, which were derived from a matrix version of the
quantum dilogarithms. Kashaev’s volume conjecture therein predicts that for any
hyperbolic link L in S3, the asymptotic behavior of his invariants {KN } regains
the hyperbolic volume of S3

\ L . Kashaev verified this for the figure eight knot.
The volume conjecture provides an intriguing relationship between the quantum
invariants and the hyperbolic volume, but we still do not fully understand it.

For the knot case, Murakami and Murakami [2001] showed that the Kashaev
invariants {KN } can be identified with the values of the normalized colored Jones
polynomial at the primitive N -th roots of unity. From this, they formulated a new
version of volume conjecture, stating that the asymptotic behavior of the colored
Jones invariants of any knot equals the Gromov simplicial volume of its comple-
ment in S3. This version of the volume conjecture bridges the quantum invariants of
the knot with its classical geometry and topology. However, this formulation does
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not fit well for links since it does not hold for many split links; see [Murakami
et al. 2002]. Hence it is a very interesting question to see what is really behind the
volume conjecture for links.

Following Witten’s SU(2) topological quantum field theory, Gukov [2005] pro-
posed a complex version of Chern–Simons theory and generalized the volume con-
jecture to a C∗-parametrized version with parameter lying on the zero locus of the
A-polynomial of the knot. In [Li and Wang 2008], we constructed a natural torsion
element in K2 of the function field of the curve defined by the A-polynomial. We
then showed that the part from the A-polynomial in Gukov’s generalized volume
conjecture can be interpreted in terms of the regulator map on this torsion element.
In particular, this implied the Bohr–Sommerfeld quantization condition posed by
Gukov [2005, page 597].

It is natural to ask if there exists a parametrized volume conjecture for links
in S3, as Gukov showed for the knot case. This is the motivation of this paper.
Now we have to deal with two problems for links with more than one component.
First, its SL2(C)-character variety has dimension greater than one, and it is not
clear how to define an A-polynomial for such a link that will contain geometric
information like volume and Chern–Simons as in the knot case. Second, it is not
clear how to relate the colored Jones polynomial to its SL2(C)-character variety. In
this paper, we shall focus on the first problem for hyperbolic links. We introduce
n curves on the geometric component of the character variety. From these curves,
we obtain an n-dimensional smooth projective variety Y h , where n is the number
of the components of the link. We construct a natural torsion element in K2 of
the function field of Y h . By applying the regulator map on this torsion element,
we get the variation formulas (Theorem 3.13) on some Zariski open subset of Y h .
When the link has one component, we recover the results for hyperbolic knots. This
suggests that there may exist a parametrized volume conjecture for hyperbolic links
and the Y h may provide a replacement for the zero locus of the A-polynomial of a
knot. We do not know how to deal with the second problem, and only give some
speculations at the end of Section 4.

On the other hand, Dupont [1987] used the dilogarithm to construct explicitly
the Cheeger–Chern–Simons class associated to the second Chern polynomial. This
result applied to a closed hyperbolic 3-manifold M gives a number in C/Z. Dupont
also showed that the imaginary part of this number is the hyperbolic volume of M ,
while the real part is the Chern–Simons invariant of M . In general, for an odd-
dimensional hyperbolic manifold of finite volume, Goncharov [1999] constructed
an element in Quillen’s algebraic K-group of C and proved that after applying the
Borel regulator, we get the volume of the manifold. Here, we use the regulator map
for the function field of Y h ; it can be regarded as an analogue of a family version
of Dupont and Goncharov’s for the SL2(C)-character variety of a hyperbolic link.
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The paper is organized as follows. In Section 2, we review the basics of the
SL2(C)-character variety of a hyperbolic link. We then study the properties of
a smooth projective variety Y h coming from the one-dimensional slices of the
character variety. In Section 3, we recall the definitions and basic properties of K2

of a commutative ring. We then state and prove our main results. In Section 4, we
discuss a parametrized volume conjecture for hyperbolic links.

2. Character variety of a hyperbolic link

2a. Let L be a hyperbolic link in S3 with n components K1, . . . , Kn . This means
that the complement S3

\ L carries a complete hyperbolic structure of finite volume.
Let N (L) be an open tubular neighborhood of L in S3. Then ML = S3

\ N (L) is a
compact 3-manifold with boundary ∂ML a disjoint union of n tori T1, . . . , Tn , and
is called the link exterior. Note that π1(S3

\ L) and π1(ML) are isomorphic. In the
following, we shall identify them.

Let R(ML) = Hom(π1(ML),SL2(C)) and R(Ti ) = Hom(π1(Ti ),SL2(C)) for
i = 1, . . . , n be the SL2(C)-representation spaces. We have the natural action of
SL2(C) on them by conjugation. According to [Culler and Shalen 1983], they
are affine algebraic sets and so are the corresponding character varieties X (ML)

and X (Ti ), which are the algebro-geometric quotients of R(ML) and R(Ti ) by
SL2(C). We then have the canonical surjective morphisms t : R(ML)→ X (ML)

and ti : R(Ti )→ X (Ti ) that map a representation to its character. The inclusions
of π1(Ti ) into π1(ML) induce the restriction map

r : X (ML)→ X (T1)× · · ·× X (Tn).

For details on character varieties, see [Culler and Shalen 1983; Culler et al.
1987; Cooper et al. 1994; Shalen 2002].

2b. Let ρ0 : π1(ML) → SL2(C) be a representation associated to the complete
hyperbolic structure on S3

\ L . This representation is irreducible. Denote by χ0 its
character. Fix an irreducible component R0 of R(ML) containing ρ0. Then X0 =

t (R0) is an affine variety of dimension n [Culler and Shalen 1983; Shalen 2002].
We call X0 a geometric component of the character variety. We define Y0 := r(X0),
where the bar means the Zariski closure of the image r(X0) in X (T1)×· · ·×X (Tn).

For g ∈π1(ML), there is a regular function Ig : X0→C defined by Ig(χ)=χ(g)
for all χ ∈ X0.

Proposition 2.1 [Culler and Shalen 1984, Proposition 2, page 539]. Let γi be a
noncontractible simple closed curve in the boundary torus Ti for 1 ≤ i ≤ n. Let
gi ∈ π1(ML) be an element whose conjugacy class corresponds to the free homo-
topy class of γi . Let k be an integer with 0 ≤ k ≤ n, and let V be the algebraic
subset of X0 defined by the equations I 2

gi
(χ)= 4, with k < i ≤ n. Let V0 denote an
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irreducible component of V containing χρ0 . If χ is a point of V0, i is an integer
with k< i ≤ n, and g is an element of the subgroup Im(π1(Ti )→π1(ML)) (defined
up to conjugacy), then we have Ig(χ)=±2. If also k = 0, then V0 = {χρ0}.

The following generalizes the knot case; see [Culler and Shalen 1983; 1984].

Proposition 2.2. Y0 is an n-dimensional affine variety.

Proof. It is clear that Y0 is an affine variety. We need to show that dim Y0=n. Since
dim X0=n, we have dim Y0≤n. Assume that dim Y0=m<n. Then for y ∈ r(X0),
every component of the fiber r−1(y) has dimension ≥ n−m ≥ 1. Take y = r(χ0);
then there is an irreducible component C of the fiber r−1(y) containing χ0 and
dim C ≥1. For each boundary torus Ti and a nontrivial gi ∈ Im(π1(Ti )→π1(ML)),
consider the regular function Igi : X0→C. For all χ ∈C , we have Igi (χ)= Igi (χ0).
Since χ0 is the character of the complete hyperbolic structure on ML , we have
I 2
gi
(χ)− 4 = I 2

gi
(χ0)− 4 = 0 for all χ ∈ C and all gi ∈ Im(π1(Ti )→ π1(ML))

with 1≤ i ≤ n. Now we fix n nontrivial gi ∈ Im(π1(Ti )→ π1(ML)) for 1≤ i ≤ n.
Consider the algebraic subset V of X0 defined by the equations I 2

gi
− 4 = 0 for

1≤ i ≤ n. By its construction, C is contained in an irreducible component V0 of V
containing χ0. Hence dim V0≥ 1. On the other hand, V0={χ0} by Proposition 2.1,
a contradiction. Therefore, dim Y0 = n. �

For every boundary torus Ti , we fix a meridian-longitude basis {µi , λi } for
π1(Ti )= H1(Ti ;Z). Given 1≤ i ≤ n, we define X i

0 as the subvariety of X0 defined
by the equations I 2

µ j
− 4 = 0 for j 6= i and 1 ≤ j ≤ n. Let Vi be an irreducible

component of X i
0 containing χ0.

Proposition 2.3. Vi has dimension one for each i = 1, . . . , n.

Proof. Since X i
0 is defined by n−1 equations and dim X0= n, every component of

X i
0 has dimension at least 1. Now assume that dim Vi ≥ 2. Let U be the subvariety

of Vi defined by the equation I 2
µi
−4= 0, and let U0 be the irreducible component

of U containing χ0. Then dim Vi ≥ 2 implies that dim U0 ≥ 1. But this contradicts
the last part of Proposition 2.1. Hence, dim Vi = 1. �

Lemma 2.4. Fix a nontrivial gi ∈ Im(π1(Ti )→ π1(ML)), with 1≤ i ≤ n.

(1) Igi =±2 is a constant on every V j with j 6= i .

(2) Igi is not a constant on Vi ; hence it is not a constant on X0 either.

Proof. (1) follows from the definition of V j and Proposition 2.1.
For (2), suppose Igi were a constant on Vi . Then Igi = Igi (χ0)=±2. Consider

the algebraic subset V of X0 defined by the n equations I 2
µ j
= 4 with j 6= i ,

and I 2
gi
= 4. Then Vi is contained in some irreducible component V0 of V that

contains χρ0 . Hence dim V0 ≥ 1, contradicting Proposition 2.1. �
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For each i = 1, . . . , n, let pi be the projection map from X (T1)× · · · × X (Tn)

to the i-th factor X (Ti ). Denote by ri : X0→ X (Ti ) the composition of r and pi .

Proposition 2.5. For every i = 1, . . . , n, the Zariski closure Wi of the image ri (Vi )

in X (Ti ) has dimension 1.

Proof. It suffices to consider the case i = 1. Since dim V1 = 1 and r1 is regular,
dim W1 ≤ 1. Assume that dim W1 = 0. This means that r1(V1) consists of a single
point. Therefore, Ig1 is a constant on V1 for any g1 ∈ Im(π1(T1)→ π1(ML)). This
contradicts Lemma 2.4(2). �

2c. For 1 ≤ i ≤ n, denote by RD(Ti ) the subvariety of R(Ti ) that consists of the
diagonal representations. For such a representation ρ, it is clear by taking the
eigenvalues of ρ(µi ) and ρ(λi ) that RD(Ti ) is isomorphic to C∗×C∗. We denote
the coordinates by (li ,mi ). Let ti |D be the restriction of ti to RD(Ti ) = C∗ ×C∗.
Set Di = t−1

i |D(Wi ). By the proof of [Li and Wang 2006, Proposition 3.3], Di is
either irreducible or has two isomorphic irreducible components. Let yi

∈ Di be
the point corresponding to the character of the representation of the hyperbolic
structure on S3

\ L . Let Yi be an irreducible component of Di containing yi . Then
Yi is an algebraic curve. Denote by Y i the smooth projective model of Yi . Denote
by C(Y i ) the function field of Y i that is isomorphic to the function field C(Yi )

of Yi . Note that when L is a hyperbolic knot (n = 1), Y1 is the locus of the factor
of the A-polynomial corresponding to the geometric component.

We define Y h
= Y 1× Y 2× · · · × Y n . Note that Y h is an n-dimensional smooth

projective variety. Let C(Y h) be the function field of Y h . For each i , we have
the injective morphism ji : C(Yi ) = C(Y i )→ C(Y h) that is induced by the i-th
projection from Y h to Y i . In this way we take the C(Yi ) as subfields of C(Y h).
This also induces the map j on the K-groups:

j :
n⊕

i=1

K2(C(Yi ))→ K2(C(Y h)).

For fi , gi ∈ C(Yi ) with i = 1, . . . , n, we have j (
∑n

i=1{ fi , gi }) =
∏n

i=1{ fi , gi },
where we identify fi and gi as rational functions on Y h via the injection ji . Note
that in this paper we use the multiplication in K2 instead of addition.

Proposition 2.6. There exists a finite field extension F of C(Y h) with the property
that for every i = 1, . . . , n, there is a representation Pi : π1(ML)→ SL2(F) such
that for 1 ≤ j ≤ n, if j 6= i , the traces of Pi (λ j ) and Pi (µ j ) are either 2 or −2. If
j = i , then

Pi (λi )=

[
li 0
0 l−1

i

]
and Pi (µi )=

[
mi 0
0 m−1

i

]
.
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Proof. By definition, Wi for each i is the Zariski closure of ri (Vi ) in X (Ti ) and Yi

is mapped dominatingly to Wi . The canonical morphism t : R0→ X0 is surjective,
so we can choose a curve Ei ⊂ R0 such that t (Ei ) is dense in Vi . Hence the
composition ri ◦ t : Ei → Wi is dominating. Then the function fields C(Ei ) and
C(Yi ) are finite extensions of C(Wi ). By [Culler and Shalen 1983, page 115], there
is a tautological representation pi : π1(ML)→ SL2(C(Ei )), and the trace of pi (g)
equals Ig for any g ∈ π1(ML). The composite field Fi of C(Ei ) and C(Yi ) is finite
over both C(Ei ) and C(Yi ). We shall view pi as a representation in SL2(Fi ). Since
t (Ei ) is dense in Vi , by Lemma 2.4 we have that the traces of pi (λ j ) and pi (µ j )

are ±2 if j 6= i , and the traces of pi (λi ) and pi (µi ) are nonconstant functions on
Ei if j = i . Since pi (λi ) and pi (µi ) are commuting and their eigenvalues li and mi

are in Fi , the representation pi is conjugate in GL2(Fi ) to a representation

Pi : π1(ML)→ SL2(Fi )

such that if j 6= i , the traces of Pi (λ j ) and Pi (µ j ) are either 2 or −2. If j = i , then

Pi (λi )=

[
li 0
0 l−1

i

]
and Pi (µi )=

[
mi 0
0 m−1

i

]
.

Fix an algebraic closure C(Y h) of C(Y h). As above, by viewing C(Yi ) as a
subfield of C(Y h), we can identify the finite field extension Fi as a subfield of
C(Y h). In C(Y h), take the composition Ki of Fi and C(Y h) over C(Yi ). Then
Fi ⊂ Ki , and Ki is a finite extension of C(Y h) because the extension Fi/C(Yi ) is
finite. Now let F be the composition of the fields K1, . . . , Kn in C(Y h). Then F
is a finite extension of C(Y h) since each Ki is. Now compose each Pi with the
embedding SL2(Fi ) ↪→ SL2(F); the proposition follows. �

3. K-theory and Deligne cohomology

First we recall the definitions of K2 of a commutative ring A; see [Milnor 1971].
Let GL(A) be the direct limit of the groups GLn(A), and let E(A) be the direct
limit of the groups En(A) generated by all n× n elementary matrices.

Definition 3.1. For n ≥ 3, the Steinberg group St(n, A) is the group defined by
generators xλi j for 1≤ i 6= j ≤ n, with λ ∈ A, subject to the relations

(i) xλi j · x
µ
i j = xλ+µi j ,

(ii) [xλi j , xµjl] = xλµil for i 6= l, and

(iii) [xλi j , xµkl] = 1 for j 6= k and i 6= l.

We have the canonical homomorphism φn :St(n, A)→GLn(A) by φ(xλi j )= eλi j ,
where eλi j ∈GLn(A) is the elementary matrix with entry λ in the (i, j) place. Taking
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the direct limit as n→∞, we get φ : St(A)→GL(A). Its image φ(St(A)) is equal
to E(A), the commutator subgroup of GL(A).

Definition 3.2. K2(A)= Kerφ.

It is well known that K2(A) is the center of the Steinberg group St(A) and
there is a canonical isomorphism α : H2(E(A);Z)→ K2(A); see [Milnor 1971,
Theorems 5.1 and 5.10], respectively.

3a. The symbol. Let U and V be two commuting elements of E(A). Choose
u, v ∈ St(A) such that U = φ(u) and V = φ(v). Then the commutator [u, v] =
uvu−1v−1 is in the kernel of φ. Hence [u, v] ∈ K2(A). We can check that [u, v] is
independent of the choices of u and v, and we denote it by U ? V .

Lemma 3.3. (1) The product is skew-symmetric: U ? V = (V ?U )−1.

(2) It is bimultiplicative: (U1 ·U2) ? V = (U1 ? V ) · (U2 ? V ).

(3) It is conjugation invariant: (PU P−1) ? (PV P−1)=U ? V for P ∈ GL(A).

Proof. This is [Milnor 1971, Lemma 8.1]. For (3), we remark that since E(A) is
a normal subgroup of GL(A), the left side of the formula makes sense. If P , U
and V are in GL(n, A), then choose p ∈ St(A) such that

φ(p)=
[

P 0
0 P−1

]
∈ E(A).

Now we have φ(pup−1)= PU P−1 and φ(pvp−1)= PV P−1. Hence

[pup−1, pvp−1
] = p[u, v]p−1

= [u, v]. �

Given two units f and g of A, consider the matrices

D f =

 f 0 0
0 f −1 0
0 0 1

 and D′g =

g 0 0
0 1 0
0 0 g−1

 .
They are in E(A) and commute. Define the symbol { f, g} := D f ? D′g.

Lemma 3.4 [Milnor 1971, Lemmas 8.2 and 8.3]. (1) The symbol { f, g} is skew-
symmetric: { f, g} = {g, f }−1.

(2) It is bimultiplicative: { f1 f2, g} = { f1, g}{ f2, g}.

(3) Denote by diag( f1, . . . , fn) a diagonal matrix with diagonal entries the fi . If
f1 · · · fn = g1 · · · gn = 1, then

diag( f1, . . . , fn) ? diag(g1, . . . , gn)= { f1, g1}{ f2, g2} · · · { fn, gn}.

where the right side means the product of the symbols { fi , gi } for 1≤ i ≤ n.



392 WEIPING LI AND QINGXUE WANG

Let F be a field. Let SL(F) be the direct limit of the groups SLn(F). We
know that SL(F)= E(F) and any element of SLn(F) is also naturally an element
of E(F).

Lemma 3.5. Let u, t ∈ F.

(1)
[

1 t
0 1

]
?

[
1 u
0 1

]
= 1.

(2)
[
−1 t
0 −1

]
?

[
1 u
0 1

]
,

[
1 t
0 1

]
?

[
−1 u
0 −1

]
and

[
−1 t
0 −1

]
?

[
−1 u
0 −1

]
are 2-torsion in K2(F).

(3) If U and V are two commuting matrices in SL2(F) and their traces are 2
or −2, then U ? V is 2-torsion in K2(F). In particular, if both have trace 2,
then U ? V = 1.

Proof. For s ∈ F , let

M(1, s)=
[

1 s
0 1

]
and M(−1, s)=

[
−1 s
0 −1

]
.

In particular, M(1, 0) is the 2×2 identity matrix and M(−1, 0) is the 2×2 diagonal
matrix with diagonal entries −1.

For (1), M(1, t) ?M(1, u)= [x t
12, xu

12] = 1 by the definition of St(A).
For (2), notice that by the definition, M(1, 0) ? A = 1 and A ? A = 1 for any

A ∈ E(F). By Lemma 3.3,

1= (M(−1, 0) ·M(−1, 0)) ?M(1, s)= (M(−1, 0) ?M(1, s))2,

so M(−1, 0) ?M(1, s) is a 2-torsion in K2(F). Since

M(−1, t)= M(−1, 0) ·M(1,−t) and M(−1, u)= M(−1, 0) ·M(1,−u),

by Lemma 3.3 and the first part, we have

M(−1, t) ?M(1, u)= (M(−1, 0) ?M(1, u))(M(1,−t) ?M(1, u))

= M(−1, 0) ?M(1, u),

M(−1, t) ?M(−1, u)= (M(−1, 0) ?M(1,−u))(M(1,−t) ?M(−1, 0));

hence they are 2-torsion.
For (3), we can find P ∈ GL2(F) such that

PU P−1
=

[
±1 t
0 ±1

]
and PV P−1

=

[
±1 u
0 ±1

]
.

Then it follows from the first two parts and Lemma 3.3(3). �
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The following proposition slightly generalizes [Cooper et al. 1994, Lemma 4.1].
The proof is the same.

Proposition 3.6. Let π be a free abelian group of rank two with {e1, e2} its ba-
sis. Let f : π → E(A) be a group homomorphism defined by f (e1) = U and
f (e2) = V . Then there is a generator t of H2(π;Z) such that α( f∗(t)) = U ? V .
Here α :H2(E(A);Z)→K2(A) is the canonical isomorphism and f∗ :H2(π;Z)→

H2(E(A);Z) is the homomorphism induced by f .

Proof. Since π is abelian, U and V commute. U ?V is well-defined. Let F be the
free group on {e1, e2}. The homomorphism f gives rise to a commutative diagram
of short exact sequences of groups:

0 //

��

[F, F] //

f2
��

F //

f1

��

π //

f
��

0

��
0 // K2(A) // St(A)

φ // E(A) // 0,

where f2([e1, e2]) = U ? V . Applying the homology spectral sequence to this
diagram, we obtain the diagram

H2(π;Z) //

f∗
��

H0(π; H1([F, F];Z))

g
��

H2(E(A);Z)
α // K2(A).

The top horizontal arrow is an isomorphism. The class of [e1, e2] is the generator
of H0(π; H1([F, F];Z)). It is mapped to U ?V by g, which is induced by f2. Let
t be the generator of H2(π;Z) mapped to the class of [e1, e2]. Then we have
α( f∗(t))=U ? V by the commutative diagram. �

Corollary 3.7. (1) If U=diag(u, u−1) and V =diag(v, v−1), where u, v are units
of A, then there is a generator t of H2(π;Z) such that α( f∗(t))= {u, v}2.

(2) Suppose A is a field. If U and V are two commuting matrices in SL2(A)
and their traces are 2 or −2, then the image of any generator of H2(π;Z) is
2-torsion in K2(A).

Proof. For (1), we have U ? V = {u, v}{u−1, v−1
} = {u, v}2 by Lemma 3.4.

For (2), U ? V is 2-torsion in K2(F) by Lemma 3.5(3). �

Theorem 3.8. For each i = 1, . . . , n, there is an integer ε(i) = 1 or −1 such that
the symbol

∏n
i=1{li ,mi }

ε(i) is a torsion element in K2(C(Y h)).

Proof. First, by Proposition 2.6, for each i = 1, . . . , n there exist a finite exten-
sion F of C(Y h) and a representation Pi :π1(ML)→SL2(F) such that for 1≤ j≤n,
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the traces of Pi (λ j ) and Pi (µ j ) are either 2 or −2 if j 6= i and, if j = i ,

Pi (λi )=

[
li 0
0 l−1

i

]
and Pi (µi )=

[
mi 0
0 m−1

i

]
.

The inclusions of π1(Ti ) into π1(ML) induce homomorphisms π1(Ti )→ E(F)
by composition with Pi . This gives rise to homomorphisms

(3-1)
n⊕

i=1

H2(π1(Ti );Z)
α
−→ H2(π1(ML);Z)

β
−→ H2(E(F);Z)= K2(F)

in group homology, where α= j1∗+· · ·+ jn∗, β = P1∗+· · ·+ Pn∗, the ji∗ are the
morphisms on the group homology induced by the inclusions ji :π1(Ti ) ↪→π1(ML),
and the Pi∗ are those induced by the Pi .

The orientation of ML induces an orientation on each boundary torus Ti . Let
[Ti ] be the orientation class of H2(Ti ;Z)=Z. By Corollary 3.7(1), for each i there
is a generator ξi of H2(π1(Ti )) such that Pi∗( ji∗(ξi )) = {li ,mi }

2. Since Ti is a
K (π1(Ti ), 1) space, H2(π1(Ti );Z) = H2(Ti ;Z). If ξi = [Ti ], define ε(i) = 1; if
ξi =−[Ti ], then define ε(i)=−1.

Since L is a hyperbolic link, ML is a K (π1(ML), 1) space. Hence we have
H2(π1(ML);Z)= H2(ML;Z). Under this identification, we have

α(ε(1)ξ1, . . . , ε(n)ξn)=

n∑
i=1

[Ti ] = [∂ML ] = 0 in H2(ML;Z).

Therefore,

(3-2) β(α(ε(1)ξ1, . . . , ε(n)ξn))= 1 in K2(F).

On the other hand, we have

β(α(ε(1)ξ1, . . . , ε(n)ξn))= β
( n∑

i=1

ji∗(ε(i)ξi )
)

=

n∑
k=1

Pk∗

( n∑
i=1

ji∗(ε(i)ξi )
)

=

n∑
i=1

Pi∗( ji∗(ε(i)ξi ))+
∑

1≤i 6=k≤n

Pk∗( ji∗(ε(i)ξi ))

=

n∏
i=1

{li ,mi }
2ε(i)
·

∏
1≤i 6=k≤n

Pk(µi ) ? Pk(λi ),

where the last step follows from Proposition 3.6 and Corollary 3.7. Note also that
we use multiplication in K2(F).
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Now
∏

1≤i 6=k≤n Pk(µi ) ? Pk(λi ) is 2-torsion by Corollary 3.7(2). Comparing
with (3-2), we see that

∏n
i=1{li ,mi }

2ε(i) is 2-torsion in K2(F). By the argument of
[Li and Wang 2008, Proposition 3.2],

∏n
i=1{li ,mi }

ε(i) is torsion in K2(C(Y h)). �

Remark 3.1. This theorem is a natural generalization of [Li and Wang 2008,
Proposition 3.2], which concerned the hyperbolic knot case.

Remark 3.2. The proof of Theorem 3.8 uses the condition that the geometric
component contains the character χ0 of the complete hyperbolic structure. For
a nongeometric component of the character variety, it is not clear whether we can
still have the analogous torsion property on it.

3b. Deligne cohomology. Here we recall the definition of Deligne cohomology,
give the construction of the regulator map, and apply it to our situation.

Let X be a nonsingular variety over C. First recall the definition of the (holo-
morphic) Deligne cohomology groups of X . For more details, see [Beı̆linson 1984;
Brylinski 2008; Esnault and Viehweg 1988]. We define the complex Z(p)D of
sheaves on X by

(3-3) Z(p)D : Z(p) // OX
d // �1

X
d // · · ·

d // �
p−1
X ,

where Z(p) is the constant sheaf (2π
√
−1)pZ and sits in degree zero, OX is the

sheaf of holomorphic functions on X , and �i
X is the sheaf of holomorphic i-forms

on X . The first map in (3-3) is the inclusion and d is the exterior differential.
The Deligne cohomology groups of X are defined as the hypercohomology of the
complex Z(p)D:

Hq
D(X;Z(p)) := Hq(X;Z(p)D).

For example, the exponential exact sequence of sheaves on X

0→ Z(1)→ OX → O∗X → 0

gives rise to a quasiisomorphism between Z(1)D and O∗X [−1], where O∗X is the
sheaf of nonvanishing holomorphic functions on X . Moreover there is a quasi-
isomorphism between Z(2)D and the complex [Esnault and Viehweg 1988, page 46]

(O∗X
d log
−−−→�1

X )[−1].

Therefore, we have for any integer q

Hq
D(X;Z(1))= Hq−1(X;O∗X ) and Hq

D(X;Z(2))= Hq−1(X;O∗X →�1
X ).

On the other hand, Deligne [1991] interprets H1(X;O∗X → �1
X ) = H 2

D(X;Z(2))
as the group of holomorphic line bundles with (holomorphic) connections over X .
For details, see [Brylinski 2008, Theorem 2.2.20].



396 WEIPING LI AND QINGXUE WANG

Let C(X) be the function field of X . Given two functions f, g ∈ C(X), let
D( f, g) be the divisors of the zeros and poles of f and g, and let |D( f, g)| denote
its support. Then we have the morphism

( f, g) : X − |D( f, g)| → C∗×C∗,

given by ( f, g)(x)= ( f (x), g(x)).
Let H be the Heisenberg line bundle with connection on C∗×C∗. For its con-

struction, see [Bloch 1981] and [Ramakrishnan 1989, Section 4]. Pull back H along
( f, g) to obtain a line bundle r( f, g) with connection on X − |D( f, g)|. Hence
r( f, g) ∈H1(V ;O∗V →�1

V )= H 2
D(V ;Z(2)), where V = X−|D( f, g)|. Moreover

we can represent r( f, g) in terms of Čech cocycles for H1(V ;O∗V →�1
V ). Indeed,

choose an open covering (Ui )i∈I of V such that the logarithm logi f of f is well-
defined on every Ui . Then r( f, g) is represented by the cocyle (ci j , ωi ), with

ci j = g(log j f−logi f )/(2π
√
−1) on Ui ∩U j ,(3-4)

ωi =
1

2π
√
−1

logi f
dg
g

on Ui .(3-5)

Its curvature is

(3-6) R = 1
2π
√
−1

d f
f
∧

dg
g
.

Remark 3.3. There is a cup product on the Deligne cohomology groups [Beı̆linson
1984; Esnault and Viehweg 1988]. For f, g∈H 0(X;O∗X )=H 1

D(X;Z(1)) as above,
the cup product f ∪ g is exactly the line bundle r( f, g) ∈ H 2

D(X;Z(2)).

Furthermore, we have the following properties of r( f, g):

Proposition 3.9. r( f1 f2, g) = r( f1, g)⊗ r( f2, g), r( f, g) = r(g, f )−1, and the
Steinberg relation r( f, 1− f )= 1 holds if f 6= 0 and f 6= 1.

Proof. See [Bloch 1981; Esnault and Viehweg 1988] and [Ramakrishnan 1989,
Section 4]. The proofs there assume that X is a curve. But they are valid for
arbitrary X without change. To prove the Steinberg relation, we need the ubiquitous
dilogarithm function. �

Corollary 3.10. We have the regulator map

r : K2(C(X))→ lim
−→

U⊂X :Zariski open

H 2
D(U ;Z(2)),

which maps the symbol { f, g} to the line bundle r( f, g).

This follows from the definition of K2 and Proposition 3.9.
When dim X = 1, the line bundle r( f, g) is always flat, but r( f, g) is not nec-

essarily flat if dim X > 1. Nevertheless:
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Proposition 3.11. If x ∈ K2(C(X)) is torsion, the corresponding line bundle r(x)
is flat.

Proof. Let U be the Zariski open subset over which the line bundle r(x) is defined.
Since x is torsion in K2(C(X)), r(x) is torsion in H1(U ;O∗U → �1

U ). Choose a
suitable open covering (Ui )i∈I of U such that r(x) is represented by a Čech cocyle
(ci j , ωi ) with ci j ∈O∗(Ui∩U j ) and ωi ∈�

1(Ui ). Then there exists an integer n> 0
such that the class represented by the cocycle ((ci j )

n, nωi ) is zero. Hence, there
exists ti ∈ O∗X (Ui ) (or by a refinement covering of {Ui }) , such that

cn
i j =

t j

ti
and ωi =

1
n

dti
ti
.

Therefore, dωi = 0 for all i and the curvature is 0. �

Let |D| be the support of the divisors of zeros and poles of the rational func-
tions mi and li on Y h for 1 ≤ i ≤ n. Define Y h

0 = Y h
− |D|. The line bundle

r(
∏n

i=1{li ,mi }
ε(i)) is well-defined over Y h

0 .

Corollary 3.12. The line bundle r(
∏n

i=1{li ,mi }
ε(i)) over Y h

0 is flat; therefore it is
an element of H 1(Y h

0 ;C
∗).

Proof. This follows from Theorem 3.8 and Proposition 3.11. �

Using the Čech cocycle for r( f, g) given in (3-4) and (3-5), we can represent
r(
∏n

i=1{li ,mi }
ε(i)) as follows. Choose an open covering {Uα}α∈3 of Y h

0 such that
on every Uα, the logarithms of li are well-defined and denoted by logα li . Then
r(
∏n

i=1{li ,mi }
ε(i)) is represented by the cocyle (cαβ, ωα):

cαβ =
n∏

i=1

m
ε(i)((logβ li−logα li ))/(2π

√
−1)

i on Uα ∩Uβ,(3-7)

ωα =

n∑
i=1

ε(i)

2π
√
−1
(logα li )

dmi

mi
on Uα.(3-8)

Let t0 = (l0
1,m0

1, . . . , l
0
n,m0

n) ∈ Y h
0 be a point corresponding to the hyperbolic

structure of the link complement S3
\L . Then the monodromy of the flat line bundle

r(
∏n

i=1{mi , li }
ε(i)) give rises to the representation M : π1(Y h

0 , t0)→ C∗. With its
explicit descriptions (3-7) and (3-8), we have the following formula for M . Let γ
be a loop based at t0. Let log li be a branch of logarithm of li over γ − {t0}, then
by a direct calculation we have

(3-9) M(γ )= exp
( n∑

i=1

(
−

ε(i)

2π
√
−1

)(∫
γ

log li
dmi

mi
− log mi (t0)

∫
γ

dli

li

))
;

see [Deligne 1991, (2.7.2)].
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Now we have the main theorem:

Theorem 3.13. (i) The real 1-form

η =

n∑
i=1

ε(i)(log |li | d arg mi − log |mi | d arg li )

is exact on Y h
0 . Hence there exists a smooth function V : Y h

0 → R such that

dV =
n∑

i=1

ε(i)(log|li | d arg mi − log|mi | d arg li ).

(ii) Suppose m0
i = 1 for 1≤ i ≤ n. For a loop γ with initial point t0 in Y h

0

1
4π2

n∑
i=1

ε(i)
∫
γ

(log |mi |d log |li | + arg li d arg mi )=
p
q
,

where q is the order of the symbol
∏n

i=1{li ,mi }
ε(i) in K2(C(Y h)), and p is

some integer depending on the loop γ ∈ π1(Y h
0 , t0) and the branches of arg li

for 1≤ i ≤ n.

Proof. First, by (3-8), the curvature of the flat line bundle is

R =
n∑

i=1

ε(i)

2π
√
−1

(dli

li
∧

dmi

mi

)
= 0.

On the other hand, we have dη = Im(
∑n

i=1 ε(i)(dli/li ∧ dmi/mi )); hence η is a
real closed 1-form.

Since the symbol
∏n

i=1{li ,mi }
ε(i) has order q in K2(C(Y h)), by (3-9) we have

for a loop γ ∈ π1(Y h
0 , t0) that

1= M(γ )q =
(

exp
( n∑

i=1

(
−

ε(i)

2π
√
−1

)(∫
γ

log li
dmi

mi
− log mi (t0)

∫
γ

dli

li

)))q
.

Decompose part of this into real and imaginary parts as

n∑
i=1

ε(i)
(∫

γ

log li
dmi

mi
− log mi (t0)

∫
γ

dli

li

)
= Re+i Im,

Then we have exp (q · Im /(2π)+ q ·Re /(2π
√
−1)) = 1. Therefore, Im = 0 and

q ·Re /(2π
√
−1) = 2π

√
−1p for some integer p. A straightforward calculation
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or [Li and Wang 2008, Lemma 3.4] shows that

(3-10)

Im=
∫
γ

η,

Re=−
n∑

i=1

ε(i)
∫
γ

(log|mi | d log|li | + arg li d arg mi )=

∫
γ

ξ.

These immediately imply both parts of the theorem. �

Remark 3.4. When n = 1, our V is (up to sign) the volume function of the repre-
sentation of the knot complement [Dunfield 1999]. For n ≥ 2, up to some constant
and signs related to the orientations on each boundary component of the hyperbolic
link exterior, the function V should be closely related to the volume function given
in [Hodgson 1986, Theorem 5.5].

Remark 3.5. From the proof of Theorem 3.8, the signs ε(i) for 1 ≤ i ≤ n are
determined by the orientation of ML on its n boundary tori. For knots, the sign can
be neglected since there is only one term in the 1-form η. For links (where n ≥ 2),
if they are not the same, they could have quite contributions different from those
in the knot case. On the other hand, it is not clear what are the exact geometric
meanings of these signs for the link L .

Remark 3.6. If there exists any representation ρ : π1(Y h)→ GLn(C) with n ≥ 2,
then Reznikov [1995, Theorem 1.1] proved that for all i ≥ 2, the Chern classes
ci ∈ H 2i

D (Y
h
;Z(i)) in the Deligne cohomology groups are torsion.

3c. On the Bohr–Sommerfeld quantization condition for hyperbolic links. We
now discuss the Theorem 3.13(ii) from a symplectic point of view. When n = 1,
this is the Bohr–Sommerfeld quantization condition proposed by Gukov for knots
in [Gukov 2005, page 597], and is proved in [Li and Wang 2008, Theorem 3.3(2)].

Let 6 be a closed surface with fundamental group π . Its SL2(C)-character
variety is the space of equivalence classes of representations from π into SL2(C).
This variety carries a natural complex-symplectic structure, where a complex-
symplectic structure is a nondegenerate closed holomorphic exterior 2-form; see
[Goldman 1984; 2004].

A homomorphism ρ : π → SL2(C) is irreducible if it has no proper linear
invariant subspace of C2, and irreducible representations are stable points, denoted
by Hom(π,SL2(C))

s . Now SL2(C) acts freely and properly on Hom(π,SL2(C))
s ,

and the quotient X s(6) = Hom(π,SL2(C))
s/SL2(C) is an embedding onto an

open subset in the geometric quotient Hom(π,SL2(C)) // SL2(C). Thus X s(6)

is a smooth irreducible complex quasiaffine variety that is dense in the geometric
quotient [Goldman 2004, Section 1]. Note that ρ is a nonsingular point if and only
if dim Z(ρ)/Z(SL2(C))= 0, and this corresponds to the top stratum X s(6), where
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Z(u) is the centralizer of u in SL2(C). If ρ ∈ Hom(π,SL2(C)) is a singular point
(that is, dim Z(ρ)/Z(SL2(C)) > 0), then all points of σ ∈Hom(π, Z(Z(ρ)))s with
stab(σ ) = Z(σ ) = Z(ρ) have the same orbit type and form a stratification of the
SL2(C)-character variety [Goldman 1984, Section 1].

We have the SL2(C)-character variety X (T 2) of the torus T 2 as a surface in C3

given by
x2
+ y2
+ z2
− xyz− 4= 0.

See [Li and Wang 2006, Proposition 3.2]. There is a natural symplectic structure
on the smooth top stratum X s(T 2) of X (T 2), and there exists a symplectic structure
ω on the character variety X s(∂ML)=

∏n
i=1 X s(T 2

i ) such that X (ML)∩ X s(∂ML)

(a subset of X (ML)) is a Lagrangian subvariety of X s(∂ML), where X s(∂ML) is
a smooth irreducible variety that is open and dense in X (∂ML).

The inclusion ∂ML → ML indeed induces a degree one map on the irreducible
components. Thus r(X0)

s (the smooth part of the image r(X0)) is a Lagrangian
submanifold of the symplectic manifold X s(∂ML). Note that the pullback of the
symplectic 2-form on the double covering of X s(T 2

i ) is again skew-symmetric and
nondegenerate. The symplectic form ω̃i induced by the map ti : r(X0)→ X (T 2

i )

gives the Lagrangian property for the corresponding pullback of the Lagrangian
part r(X i

0)
s . Hence we have the product Lagrangian smooth part of the pullback

of
∏n

i=1 r(X i
0)

s . Then we need to see that the smooth projective model preserves
the Lagrangian and symplectic property.

Let X̃(T 2
i ) be the symplectic blowup of the double covering of X (T 2

i ) as in
[McDuff and Salamon 1998]. The blowup in the complex category carries a natural
symplectic structure on X̃(T 2

i ); see [McDuff and Salamon 1998, Section 7.1]. On
the other hand, the corresponding part Y i of Yi (the irreducible component of Di

containing yi ) lies in the symplectic manifold X̃(T 2
i ).

Define a compatible Lagrangian blowup with respect to the complex blowup as
following. Define a real submanifold R̃n of Rn

×RPn−1 (a subset of Cn
×CPn−1)

as a subspace of pairs (x, l) with x = Re(z) ∈ l, where l ∈ RPn−1 is a real line
in Rn . If IC is complex conjugation on Cn and JCPn−1 is the complex involution
on CPn−1 given by complex conjugation on each component, then

R̃n
= Fix(IC× JCPn−1 |

C̃n )⊂ C̃n

= {(z1, . . . , zn; [w1 : · · · : wn]) | w j zk = wkz j , 1≤ j, k ≤ n}.

It is clear that R̃n is Lagrangian in C̃n . Hence the real Lagrangian blowup ˜Y i is
Lagrangian in X̃(T 2

i ), and the Lagrangian submanifold Ỹ h is Lagrangian in the
symplectic manifold

∏n
i=1 X̃(T 2

i ). In this way, the symplectic and Lagrangian
properties are preserved under the blowup, and we can treat the Lagrangian blowup
in a real blowup by looking at the complex one.
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Now we have a Lagrangian submanifold Ỹ h
0 in a symplectic manifold. Suppose

m0
i = 2 for 1 ≤ i ≤ n. For a loop γ with initial point t0 in Ỹ h

0 , Theorem 3.13(ii)
gives

1
4π2

n∑
i=1

ε(i)
∫
γ

(log|mi | d log|li | + arg li d arg mi )=
p
q
,

where p is some integer and q is the order of the symbol
∏n

i=1{li ,mi }
ε(i) in

K2(C(Y h)). We shall call this result the Bohr–Sommerfeld quantization condi-
tion for hyperbolic links. It would be interesting to give an interpretation from
mathematical physics, as what Gukov did for hyperbolic knots.

4. On a possible unified volume conjecture for both knots and links

By Corollary 3.12, the class r(
∏n

i=1{li ,mi )
εi ) corresponds to a flat line bundle

over Y h
0 ; therefore the curvature of the holomorphic connection is zero. Formally

this can be expressed as d(ξ +
√
−1η) = 0, where ξ and η are defined in (3-10).

Hence, (ξ +
√
−1η)/(2π

√
−1) can be viewed as the Chern–Simons 1-form of the

line bundle r(
∏n

i=1{li ,mi )
εi ).

Given a point p∈Y h
0 , choose a path γ : [0, 1]→Y h

0 with γ (1)= p and γ (0)= t0
a point corresponding to the complete hyperbolic structure. Write

γ (t)= (l(t),m(t))= (l1(t),m1(t), . . . , ln(t),mn(t)).

Recall that q is the order of the symbol
∏n

i=1{li ,mi }
εi in K2(C(Y h)). Let Vol(L)

and CS(L) be the volume and usual Chern–Simons invariant of the complete hyper-
bolic structure on S3

\ L , respectively. Now we define

V (p)= Vol(L)+ 2 ·
n∑

i=1

ε(i)
∫
γ

(log|li | d arg mi − log|mi | d arg li ).(4-1)

U (p)= 4π2 CS(L)+ q ·
n∑

i=1

ε(i)
∫
γ

(log|mi | d log|li | + arg li d arg mi ).(4-2)

According to Theorem 3.13, R(p) = (2π)−1(V (p)+
√
−1(2π)−1U (p)) is inde-

pendent of the choices of the path γ and takes values in C/Z. We call

1
4π2 U (p)

the special Chern–Simons invariant of the hyperbolic link L at p. When p= t0, it
equals CS(L).

Remark 4.1. For p 6= t0, U (p)/(4π2) is different from the usual Chern–Simons
invariant for a 3-dimensional manifold. The latter comes from the transgressive
3-form of the second Chern class of the 3-dimensional manifold.
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In order to formulate a parametrized conjecture parallel to the knot case as in
[Li and Wang 2008, Conjecture 3.9], we have to find a way to relate the quantum
invariants to the n-dimensional variety Y h

0 that comes from the SL2(C) character
variety. By the work of Kashaev [1995] and Baseilhac and Benedetti [2004], there
exists an SL2(C) quantum hyperbolic invariant for a hyperbolic link in S3, which is
conjectured to give the information of the volume and Chern–Simons at the point
for the complete hyperbolic structure.

Here is a conjectural description. Given a point p ∈ Y h
0 corresponding to an

SL2(C) representation of π1(ML), let’s assume that we can define certain quantum
invariants KN (L , p). Then we formulate the following:

Conjecture 4.1 (a possibly unified parametrized volume conjecture).

lim
N→∞

log KN (L , p)
N

=
1

2π

(
V (p)+

√
−1

2π
U (p)

)
.

Remark 4.2. When L is a hyperbolic knot (that is, n = 1), Y h is the smooth
projective model of an irreducible component of the locus of the A-polynomial that
contains the complete hyperbolic structure. Fix a number a. For p = (l,m) ∈ Y h

0
with m =− exp (

√
−1πa), we take KN (L , p)= JN (L , e2π

√
−1a/N ), the values of

the colored Jones polynomial of L evaluated at e2π
√
−1 a/N . Then Conjecture 4.1

reduces to the reformulated generalized volume conjecture (3.9) of [Li and Wang
2008] for hyperbolic knots. When γ is the constant path at t0, or equivalently
p = t0, it reduces to the complexification of Kashaev’s conjecture for hyperbolic
knots; see [Murakami et al. 2002, Conjeture 1.2].

Remark 4.3. When n≥2, we can take KN (L , t0) to be the Kashaev and Baseilhac–
Benedetti invariant that is based on the triangulations of the manifold and is con-
jectured to give the information of the volume and Chern–Simons at the complete
hyperbolic structure t0. See [Baseilhac and Benedetti 2004, Section 5]. For a
general p ∈ Y h

0 , we do not have a rigorous definition, although we expect that there
is a way of deforming KN (L , t0) to get KN (L , p).

Remark 4.4. If the point corresponding to the hyperbolic structure in Yi is not
smooth, then the point t0 in the definition of (4-1) and (4-2) is not unique. If
we make different choices of t0, then V (p) and U (p) will differ by a constant,
corresponding to choice made in the integrals in (4-1) and (4-2). We can modify
the left side of the Conjecture 4.1 by this constant accordingly. So the choice of t0
is not essential, and it seems that there is no canonical choice.

Remark 4.5. From the regulator point of view developed in this paper, we expect
there exists a parametrized version of the volume conjecture for both hyperbolic
links and knots.
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