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We apply some hypergeometric evaluation identities, including a strange
valuation of Gosper, to prove several supercongruences related to special
valuations of truncated hypergeometric series. In particular, we prove a
conjecture of van Hamme.

1. Introduction

In this article, we use p to denote an odd prime. Zudilin [2009] proved several
Ramanujan-type supercongruences using the Wilf–Zeilberger (WZ) method. One
of them, conjectured by van Hamme, says that

(1)
(p−1)/2∑

k=0

(4k+ 1)
(
(1

2)k

k!

)3

(−1)k ≡ (−1)(p−1)/2 p mod p3,

where (a)k = a(a+ 1) · · · (a+ k− 1) is the rising factorial for a ∈ C and k ∈ N.
The first proof of (1) was given by Mortenson [2008]. It is said to be of

Ramanujan-type because it is a p-adic version of Ramanujan’s formula
∞∑

k=0

(4k+ 1)
(
(1

2)k

k!

)3

(−1)k = 2
π
.

See [Zudilin 2009] for more Ramanujan-type supercongruences.
In this short note, we will present a new proof of (1), which summarizes our

strategy in proving similar types of supercongruences.
McCarthy and Osburn [2008] proved van Hamme’s conjecture [1997] that

(p−1)/2∑
k=0

(4k+ 1)
(
(1

2)k

k!

)5

≡

{
−

p
0p(3/4)4

mod p3 if p ≡ 1 mod 4,

0 mod p3 if p ≡ 3 mod 4,

where 0p( · ) denotes the p-adic Gamma function.
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Similarly, van Hamme has conjectured that for any prime p > 3,

(2)
(p−1)/2∑

k=0

(6k+ 1)
(
(1

2)k

k!

)3

4−k
≡ (−1)(p−1)/2 p mod p4.

This formula is supported by numerical evidence, but as van Hamme said, “we
have no real explanation for our observations”. In our exploration, it will become
clear that such supercongruences are a result of extra symmetries, which we are
able to interpret using hypergeometric evaluation identities. Of course, they can
also be seen from other perspectives, such as the WZ method.

Meanwhile, it is known that some of the truncated hypergeometric series are
related to the number of rational points on certain algebraic varieties over finite
fields and further to coefficients of modular forms. For instance, based on the
result of Ahlgren and Ono [2000], Kilbourn [2006] proved that

(3)
(p−1)/2∑

k=0

(
( 1

2)k

k!

)4

≡ ap mod p3,

where ap is the p-th coefficient of a weight 4 modular form

(4) η(2z)4η(4z)4 := q
∏
n≥1

(1− q2n)4(1− q4n)4, where q = e2π i z.

This is one instance of the supercongruences conjectured by Rodriguez-Villegas
[2003], which relate special truncated hypergeometric series values and coefficients
of Heck eigenforms. McCarthy [2009] proved another supercongruence of this
type and his approach provides a general combinatorial framework for all these
congruences.

We will establish a few supercongruences mainly via hypergeometric evalua-
tion identities and combinatorics. Since there exist many amazing hypergeometric
evaluation identities in the literature, we expect that our approach can be used to
prove other interesting congruences.

Here is a summary of our results.

Theorem 1.1. Let p > 3 be a prime and r be a positive integer. Then

(pr
−1)/2∑

k=0

(4k+ 1)
(
( 1

2)k

k!

)4

≡ pr mod p3+r .

Theorem 1.2. Let p > 3 be a prime. Then

(p−1)/2∑
k=0

(4k+ 1)
(
(1

2)k

k!

)6

≡ p · ap mod p4.
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Conjecture 1.3. Let p > 3 be a prime and r be a positive integer. Then

(pr
−1)/2∑

k=0

(4k+ 1)
(
(1

2)k

k!

)6

≡ pr
· apr mod p3+r ,

where apr is the pr -th coefficient of (4).

Theorem 1.4. Van Hamme’s conjecture (2) is true.

Theorem 1.5. Let p > 3 be a prime. Then

(5)
(p−1)/2∑

k=0

(6k+ 1)
(
(1

2)k

k!

)3
(−1)k

8k ≡ (−1)(p
2
−1)/8+(p−1)/2 p mod p2.

2. Preliminaries

Hypergeometric series. For any positive integer r ,

r+1Fr

[
a1, a2, . . . , ar+1; z

b1, . . . , br

]
=

∑
k≥0

(a1)k · · · (ar+1)k

k!(b1)k · · · (br )k
zk,

where (a)k is the rising factorial and z ∈ C. A hypergeometric series terminates if
it is well-defined and at least one of the ai is a negative integer. We will make use
of this fact to produce various truncated hypergeometric series.

By the definition of the rising factorial,

(6)
(1

2)k

k!
= 2−2k

(2k
k

)
.

Gamma function. Let 0(x) denote the usual Gamma function, which is defined
for all x ∈ C except for the nonpositive integers. It satisfies some well known
properties, such as 0(x + 1)= x0(x). Thus, (a)k =0(a+k)/0(a) when 0(a) 6= 0
and 0(a+ k) are defined.

Another formula we need is Euler’s reflection formula

0(x)0(1− x)= π

sin(πx)
.

Some combinatorics. We gather here some results in combinatorics to be used
later. It is the author’s pleasure to acknowledge that the approaches used in (7)–
(10) are due to Zudilin. Here is a key idea of Zudilin for rising factorials; see also
[Chan et al. 2010, Lemma 1]:

(7)

( 1
2 + ε

)
k = (

1
2 + ε)(

1
2 + ε+ 1) · · · (1

2 + ε+ k− 1)

=
( 1

2

)
k

(
1+ 2ε

k∑
j=1

1
2 j−1

+ 4ε2
k∑

1≤i< j≤k

1
(2i−1)(2 j−1)

+ O(ε3)
)
.
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Hence,
( 1

2 + ε
)

k

( 1
2 − ε

)
k can be expanded as a power series of ε2 as

(8)
( 1

2 + ε
)

k

( 1
2 − ε

)
k =

(1
2

)2
k

(
1− 4ε2

k∑
j=1

1
(2 j−1)2

+ O(ε4)
)
.

Similarly,

(9) (1+ ε)k(1− ε)k = (1)2k
(

1− ε2
k∑

j=1

1
j2 + O(ε4)

)
.

Letting ε =−pr/2 and ε = pr/2 respectively in (7) and taking k to be an integer
between 1 and (pr

− 1)/2, we obtain

(−1)k
(
(pr
− 1)/2
k

)
≡
( 1

2)k

k!
mod p and

(
(pr
− 1)/2+ k

k

)
≡
( 1

2)k

k!
mod p.

Similarly, letting ε = pr/2 in (8) and k be an integer between 1 and (pr
− 1)/2,

we have

(−1)k
(
(pr
− 1)/2
k

)(
(pr
− 1)/2+ k

k

)
≡

(
( 1

2)k

k!

)2

mod p2.

Lemma 2.1. For any positive integer n > 1,

(10) (2n+ 1)
n∑

k=0

1
2k+1

(n
k

)(n+k
k

)
(−1)k = 1.

Proof. We use the partial fraction decomposition

(t − 1)(t − 2) · · · (t − n)
t (t + 1) · · · (t + n)

=

n∑
k=0

(−1)n−k
(n

k

)(n+k
k

) 1
t+k

.

Letting t = 1/2, this becomes

(−1)n 2
2n+1

= 2
n∑

k=0

(−1)n−k
(n

k

)(n+k
k

) 1
1+2k

,

which is equivalent to the claim of the lemma. �

Lemma 2.2. Let n be an odd positive integer. Then

(3
2 −

1
4 n)(n−1)/2(1− 1

2 n)(n−1)/2

(2− 1
2 n)(n−1)/2(1− 1

4 n)(n−1)/2
= (−1)(n−1)/2n.
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Proof. Using (a)k = 0(a+ k)/0(a), we have

(3
2 −

1
4 n)(n−1)/2(1− 1

2 n)(n−1)/2

(2− 1
2 n)(n−1)/2(1− 1

4 n)(n−1)/2

=
0(3

2 −
1
4 n+ 1

2(n− 1))0(1
2)0(2−

1
2 n)0(1− 1

4 n)

0(3
2 −

1
4 n)0(1− 1

2 n)0( 3
2)0(1−

1
4 n+ 1

2(n− 1))

=
(1− 1

2 n)
1
2

1
4 n ·0(1

4 n)0(1− 1
4 n)

( 1
2 −

1
4 n) ·0(1

2 +
n
4 )0(

1
2 −

1
4 n)

= n ·
sin(π/2−πn/4)

sin(πn/4)
= n · cot(πn/4)= (−1)(n−1)/2n. �

Lemma 2.3. Let n be an odd integer. Then

(3
2 −

1
4 n)(n−1)/2

(2− 1
2 n)(n−1)/2

2(n−1)/2
= (−1)(n

2
−1)/8+(n−1)/2n.

Proof. We have

(3
2 −

1
4 n)(n−1)/2

(2− 1
2 n)(n−1)/2

2(n−1)/2
=
(3− 1

2 n)(5− 1
2 n) · · · n

2

(2− 1
2 n)(3− 1

2 n) · · · 1
2

= sgn · n,

where sgn= (−1)# and # is the number of negative terms appearing in the fraction
above. It is easy to see that

#= b 1
2(

1
2 n+ 1)c+ b 1

2 nc− 2≡ 1
8(n

2
− 1)+ 1

2(n− 1) mod 2. �

Lemma 2.4 [Cai 2002]. For any prime p > 3 and positive integer r ,

(11) (−1)(p
r
−1)/2

(
pr
− 1

1
2(p

r − 1)

)
≡

(
(1

2)(pr−1)/2

(1
2(p

r − 1))!

)2

mod p3.

Using (6), the congruence (11) is equivalent to(
pr
− 1

1
2(p

r − 1)

)
≡ (−1)(p

r
−1)/222(pr

−1) mod p3.

When r = 1, this was proved in [Morley 1895].

A generalized harmonic sum. Let H (2)
k :=

k∑
j=1

1
j2 .

Lemma 2.5 [Morley 1895]. Let p > 3 be a prime. We have

H (2)
(p−1)/2 ≡ 0 mod p and

(p−1)/2∑
j=1

1
(2 j−1)2

≡ 0 mod p.
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Using arguments in [Morley 1895] or elementary congruence, it is easy to see
the following lemma holds.

Lemma 2.6. Let p > 3 be a prime. Then for every integer k between 1 and p− 2,

H (2)
k + H (2)

p−1−k ≡ 0 mod p.

Lemma 2.7. Let p > 3 be a prime and s be a positive integer. Then

(p−1)/2∑
k=0

(
( 1

2)k

k!

)2s

· H (2)
2k ≡ 0 mod p.

Proof. Using the fact that

(−1)k
(1

2(p− 1)
k

)
≡
(1

2)k

k!
mod p,

we have
(p−1)/2∑

k=0

(
( 1

2)k

k!

)2s

H (2)
2k ≡

(p−1)/2∑
k=0

(1
2(p− 1)

k

)2s

H (2)
2k mod p

=
1
2

( (p−1)/2∑
k=0

(1
2(p− 1)

k

)2s

H (2)
2k +

(p−1)/2∑
k=0

( 1
2(p− 1)

1
2(p− 1)− k

)2s

H (2)
p−1−2k

)

=
1
2

((p−1)/2∑
k=0

( 1
2(p− 1)

k

)2s

(H (2)
2k + H (2)

p−1−2k)

)
≡ 0 mod p. �

2.1. An elementary p-adic analysis. Let F(x1, . . . , xt ; z) be a (t + 1)-variable
formal power series. For instance, it could be a scalar multiple of a terminating
hypergeometric series as follows:

C · r+1Fr

[
a1, a2, . . . , ar , −n; z

b1, . . . , br−1, br

]
.

Assume that by specifying values xi = ai for i = 1, . . . , t and z = z0, we have

F(a1, . . . , at ; z0) ∈ Zp.

Now we fix z0 and deform the parameters ai into polynomials ai (x) ∈ Zp[x]
such that ai (0) = ai for all 1 ≤ i ≤ t , and assume that the resulting function
F(a1(x), . . . , at(x); z0) is a formal power series in x2 with coefficients in Zp,
that is, F(a1(x), . . . , at(x); z0) = A0 + A2x2

+ A4x4
+ · · · for Ai ∈ Zp, where

A0 = F(a1, . . . , at ; z0).
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Lemma 2.8. Under the setting above, if ps
|A2 for s = 1, 2, then

F(a1(p), . . . , at(p); z0)≡ A0 mod p2+s .

3. A new proof of (1)

We briefly outline our method for proving the next few supercongruences; we are
motivated by [McCarthy and Osburn 2008] and [Mortenson 2008]. To each congru-
ence, we first identify a corresponding hypergeometric evaluation identity, which
with specified parameters is congruent to a target truncated hypergeometric series
evaluation up to some power of p. Usually the power of p so obtained is weaker
than the conjectural exponent. In our cases, we reduce the optimal congruences to
some congruence combinatorial identities, which are established using additional
hypergeometric evaluation identities or combinatorics.

Our strategy can be best implemented in the following new proof of (1). An
identity of Whipple [1926, (5.1)] says

4F3

[
a, 1+ a/2, c, d; −1

a/2, 1+ a− c, 1+ a− d

]
=
0(1+ a− c)0(1+ a− d)
0(1+ a)0(1+ a− c− d)

.

Letting a = 1
2 , c = 1

2 +
1
2 p and d = 1

2 −
1
2 p, we conclude immediately that

(p−1)/2∑
k=0

(4k+ 1)
(
(1

2)k

k!

)3

(−1)k ≡
0(1− 1

2 p)0(1+ 1
2 p)

0( 1
2)0(

3
2)

= (−1)(p−1)/2 p mod p2.

To achieve the congruence modulo p3, we consider the expansion of the terminat-
ing hypergeometric series (it terminates since (1− p)/2 is a negative integer)

(12) 4F3

[
1
2(1− p), 5

4 ,
1
2(1− x), 1

2(1+ x);−1
1
4 , 1+ 1

2 x, 1− 1
2 x

]

=

(p−1)/2∑
k=0

(4k+ 1)
((1

2)k

k!

)3
(−1)k + A2x2

+ · · · for some A2 ∈ Zp.

By Lemma 2.8, if p | A2, we are done. Now we follow Mortenson [2008] by using
another hypergeometric evaluation identity, which is a specialization of Whipple’s

7F6 formula (see [Bailey 1935, page 28]):

6F5

[
a, 1+ 1

2a, b, c, d, e; −1
1
2a, 1+ a− b, 1+ a− c, 1+ a− d, 1+ a− e

]
=
0(1+ a− d)0(1+ a− e)
0(1+ a)0(1+ a− d − e) 3F2

[
1+ a− b− c, d, e; 1

1+ a− b, 1+ a− c

]
.
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Letting a = 1
2 , b = 1−x

2 , c = 1
2(1+ x), e = 1

2(1− p) and d = 1, we have

(13) 6F5

[
1
2 ,

5
4 ,

1
2(1− x), 1

2(1+ x), 1
2(1− p), 1; −1

1
4 , 1+ 1

2 x, 1− 1
2 x, 1

2 , 1+ 1
2 p

]

=
0( 1

2)0(1+
1
2 p)

0( 3
2)0(

1
2 p) 3F2

[
1
2 , 1, 1

2 −
1
2 p;1

1+ 1
2 x, 1− 1

2 x

]
.

Since 0(1
2)0(1+

1
2 p)/((0(3

2)0(
1
2 p)) = p, every x-coefficient above is in pZp.

Moreover, modulo p the left side of (12) is congruent to that of (13). So when
we expand the left side of (12) in terms of x , the coefficients are all in pZp. In
particular, p |A2 and this concludes the proof of (1).

4. Proofs of Theorems 1.1, 1.2, 1.4, and 1.5

Whipple [1926, (7.7)] proved that

(14) 7F6

[
a, 1+ 1

2a, c, d, e, f, g; 1
1
2a, 1+ a− c, 1+ a− d, 1+ a− e, 1+ a− f 1+ a− g;

]
=
0(1+ a− e)0(1+ a− f )0(1+ a− g)0(1+ a− e− f − g)
0(1+ a)0(1+ a− f − g)0(1+ a− e− f )0(1+ a− e− f )

× 4F3

[
1+ a− c− d, e, f, g; 1

e+ f + g− a, 1+ a− c, 1+ a− d

]
,

provided the 4F3 is a terminating series.

Proof of Theorem 1.1. Let r be a positive integer and p > 3 a prime. In (14), we
let

a = 1
2 , c= 1

2+ i 1
2 pr , d = 1

2− i 1
2 pr , e= 1

2+
1
2 pr , f = 1

2−
1
2 pr , g= 1,

where i =
√
−1. Then following McCarthy and Osburn’s argument, we know the

left side of (14) is congruent to

(pr
−1)/2∑

k=0

(4k+ 1)
(
(1

2)k

k!

)4

mod p4r

and the right side of (14) equals

0(1− 1
2 pr )0(1+ 1

2 pr )0(−1
2)

0(3
2)0(−

1
2 pr )0( 1

2 pr )
4F3

[
1
2 ,

1
2 +

1
2 pr , 1

2 −
1
2 pr , 1; 1

3
2 , 1− i 1

2 pr , 1+ i 1
2 pr

]
.

Since
0(1− 1

2 pr )0(1+ 1
2 pr )0(− 1

2)

0( 3
2)0(−

1
2 pr )0(

pr

2 )
= p2r ,
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it suffices to prove

pr
·

(pr
−1)/2∑

k=0

1
2k+ 1

(
(1

2)k

k!

)2

≡ 1 mod p3 for p > 3.

Recall that Lemma 2.1 says for any odd integer n > 1,

(2n+ 1)
n∑

k=0

(−1)k

2k+ 1

(n
k

)(n+k
k

)
= 1.

Therefore, combining this identity, congruence (8), and Lemma 2.4, we have

pr
·

(pr
−1)/2∑

k=0

1
2k+ 1

(
( 1

2)k

k!

)2

= pr
·

(pr
−1)/2−1∑
k=0

1
2k+1

(
( 1

2)k

k!

)2

+

(
(1

2)(pr−1)/2

( 1
2(p

r − 1))!

)2

≡ pr
·

(pr
−1)/2−1∑
k=0

(−1)k

2k+ 1

(1
2(p

r
− 1)

k

)( 1
2(p

r
− 1)+ k
k

)
+ (−1)(p

r
−1)/2

(
pr
− 1

1
2(p

r − 1)

)
mod p3

≡ 1 mod p3. �

Proof of Theorem 1.2. In (14), take

a= 1
2 , c= 1

2+ i 1
2 p, d = 1

2− i 1
2 p, e= 1

2−
1
2 p, f = 1

2+
1
2 p, g= 1

2− p4.

Then the left side of (14) is congruent to

(p−1)/2∑
k=0

(4k+ 1)
(
(1

2)k

k!

)6

mod p4.

Meanwhile, the right side of (14) is congruent to

0(1− 1
2 p)0(1+ 1

2 p)

0( 1
2)0(

3
2)

0(1+ p4)0(p4)

0(1
2 +

1
2 p+ p4)0( 1

2 −
1
2 p+ p4)

×

(p−1)/2∑
k=0

( 1
2)

2
k(

1
2 +

1
2 p)k( 1

2 −
1
2 p)k

k!2(1− i 1
2 p)k(1+ i 1

2 p)k
mod p4,

where
0(1− 1

2 p)0(1+ 1
2 p)

0(1
2)0(

3
2)

= (−1)(p−1)/2 p
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and

0(1+ p4)0(p4)

0(1
2 +

1
2 p+ p4)0( 1

2 −
1
2 p+ p4)

=
(p4
−

1
2(p− 1))(p−1)/2

(1+ p4)(p−1)/2

≡
(−1

2(p− 1))(− 1
2(p− 1)+ 1) · · · (−1)

1 · 2 · · · ( 1
2(p− 1))

mod p = (−1)(p−1)/2.

Therefore, Theorem 1.2 follows from the result of Kilbourn (see (3)) and the
next lemma. �

Lemma 4.1. Let p > 3 be a prime, then

(p−1)/2∑
k=0

(1
2)

2
k(

1
2 +

1
2 p)k(1

2 −
1
2 p)k

k!2(1− i 1
2 p)k(1+ i 1

2 p)k
≡

(p−1)/2∑
k=0

(
( 1

2)k

k!

)4

mod p3.

Proof. Expand

(p−1)/2∑
k=0

( 1
2)

2
k(

1
2 +

1
2 x)k( 1

2 −
1
2 x)k

k!2(1− i 1
2 x)k(1+ i 1

2 x)k
=

(p−1)/2∑
k=0

(
( 1

2)k

k!

)4

(1+ b2,k x2
+ b4,k x4

+ · · · ).

Using (8) and (9), we have

b2,k =−

k∑
j=1

1
(2 j−1)2

−
1
4

k∑
j=1

1
j2 =−

2k∑
j=1

1
j2 .

The claim is verified by using Lemma 2.8 and taking s = 2 in Lemma 2.7. �

Proof of Theorem 1.4. We start with the following combinatorial identity.

Lemma 4.2.
(p−1)/2∑

k=0

(6k+ 1)
(1

2)k(
1
2 −

1
2 p)k( 1

2 +
1
2 p)k

(1)k(1+ 1
4 p)k(1− 1

4 p)k

1
4k = (−1)(p−1)/2 p.

Proof. Recall that [Gessel 1995, (31.1)] says

5F4

[
1
2 + a− c, −n, n+ 1, 2− 2c+ n, 5

3 −
2
3 c+ 1

3 n;14
2− c+ n, 2

3 −
2
3 c+ 1

3 n, n− 2a+ 2, 3
2 − c

]

=
(2− c)n(2− 2a)n
(3− 2c)n( 3

2 − a)n
.

Letting a = 1
2 +

1
4 p, c = 1

2 +
1
4 p, and n = 1

2(p− 1) and using Lemma 2.2, we
have

5F4

[
1
2 ,

1
2 ,

7
6 ,

1
2 −

1
2 p, 1

2 +
1
2 p;14

1
2 ,

1
6 , 1− 1

4 p, 1+ 1
4 p

]
=
( 3

2 −
1
4 p)(p−1)/2(1− 1

2 p)(p−1)/2

(2− 1
2 p)(p−1)/2(1− 1

4 p)(p−1)/2

= (−1)(p−1)/2 p. �
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Lemma 4.3. The function( (p−1)/2∑
k=0

(6k+ 1)
(1

2)k(
1
2 −

1
2 x)k(1

2 +
1
2 x)k

(1)k(1+ 1
4 x)k(1− 1

4 x)k

1
4k

)/( (p−1)/2∑
k=0

6k+1
4k

(
(1

2)k

k!

)3)

is a formal power series in x2 with coefficients in Zp. Its x2 coefficient is zero
modulo p.

Proof. We use the strange valuation of Gosper:

5F4

[
2a, 2b, 1−2b, 1+ 2

3a, −n; 1
4

a+b−1, a+b+ 1
2 ,

2
3a, 1+2a+2n

]
=

(a+ 1
2)n(a+1)n

(a+b+ 1
2)n(a−b+1)n

.

See [Gessel and Stanton 1982, (1.2)]. Let a = 1
4 , b = 1

4 −
1
4 x and n = 1

2(p− 1).
Then the left side of the above equals
(15)

5F4

[
1
2 ,

1
2 −

1
2 x, 1

2 +
1
2 x, 7

6 ,
1
2 −

1
2 p; 1

4
1
2 + p, 1

6 , 1− 1
4 x, 1+ 1

4 x

]
=

( 3
4)(p−1)/2(

5
4)(p−1)/2

(1− 1
4 x)(p−1)/2(1+ 1

4 x)(p−1)/2
.

We remark that

(16) 5F4

[
1
2 ,

1
2 −

1
2 x, 1

2 +
1
2 x, 7

6 ,
1
2 −

1
2 p;14

1
2 + p, 1

6 , 1− 1
4 x, 1+ 1

4 x

]

≡

(p−1)/2∑
k=0

6k+ 1
4k

( 1
2)k(

1
2 −

1
2 x)k(1

2 +
1
2 x)k

(1)k(1+ 1
4 x)k(1− 1

4 x)k
mod p.

When x = 0, the right hand side of (15) equals ( 3
4)(p−1)/2(

5
4)(p−1)/2/(1)2(p−1)/2,

which is in pZp. In fact, if p ≡ 1 mod 4 then 5
4 +

1
4(p− 1)− 1= 1

4 p, and if p ≡
3 mod 4, then 3

4+
1
4(p−3)= 1

4 p, while (1)(p−1)/2 is a p-adic unit. It is not difficult
to see that p divides ((3)/4)(p−1)/2(

5
4)(p−1)/2/(1)2(p−1)/2 exactly. Consequently, if

we expand

5F4

[
1
2 ,

1
2 −

1
2 x, 1

2 +
1
2 x, 7

6 ,
1
2 −

1
2 p;14

1
2 + p, 1

6 , 1− 1
4 x, 1+ 1

4 x

]
in terms of formal power series of x (in fact, x2), each coefficient is in pZp. Thus
the coefficients of the right side of (16), including the coefficient of x2, are all
divisible by p. By Lemmas 2.8 and 4.2,

(p−1)/2∑
k=0

6k+1
4k

(
( 1

2)k

k!

)3

≡ (−1)(p−1)/2 p mod p3.
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Namely,

(p−1)/2∑
k=0

6k+1
4k

(
( 1

2)k

k!

)3

= (−1)(p−1)/2 p+ ap3 for some a ∈ Zp.

The statement of Theorem 1.4 is equivalent to a ∈ pZp.
The quotient

(17)
( (p−1)/2∑

k=0

6k+1
4k

(1
2)k(

1
2 −

1
2 x)k(1

2 +
1
2 x)k

(1)k(1+ 1
4 x)k(1− 1

4 x)k

)/( (p−1)/2∑
k=0

6k+1
4k

( 1
2)k

(1)k

)

is a formal power series in x2 with p-integral coefficients, since the denominators
are divisible by p exactly. The same conclusion applies to

5F4

[
1
2 ,

1
2−

1
2 x, 1

2+
1
2 x, 7

6 ,
1
2−

1
2 p; 14

1
2+p, 1

6 , 1−1
4 x, 1+1

4 x

]/
5F4

[
1
2 ,

1
2 ,

1
2 ,

7
6 ,

1
2−

1
2 p;14

1
2+p, 1

6 , 1− 1
4 x, 1+ 1

4 x

]

= 5F4

[
1
2 ,

1
2−

1
2 x, 1

2+
1
2 x, 7

6 ,
1
2−

1
2 p;14

1
2+p, 1

6 , 1−1
4 x, 1+1

4 x

]/(
(3

4)(p−1)/2(
5
4)(p−1)/2

(1)2(p−1)/2

)

=
(1)2(p−1)/2

(1− 1
4 x)(p−1)/2(1+ 1

4 x)(p−1)/2
.

On the other hand, by (9), the x2 coefficient of

(1)2(p−1)/2

(1− 1
4 x)(p−1)/2(1+ 1

4 x)(p−1)/2

is a scalar multiple of H (2)
(p−1)/2, which is in pZp by Lemma 2.5; so is the x2

coefficient of (17). �

By Lemma 2.8 and the analysis above,

(−1)(p−1)/2 p
(−1)(p−1)/2 p+ ap3 =

(−1)(p−1)/2

(−1)(p−1)/2+ ap2 ≡ 1 mod p3
;

hence a ∈ pZp, which concludes the proof of Theorem 1.4. �

Lemma 4.4.

(p−1)/2∑
k=0

(6k+ 1)
( 1

2)k(
1
2 −

1
2 p)k( 1

2 +
1
2 p)k

(1)k(1+ 1
4 p)k(1− 1

4 p)k

(−1)k

8k = (−1)(p
2
−1)/8+(p−1)/2 p.



HYPERGEOMETRIC EVALUATION IDENTITIES AND SUPERCONGRUENCES 417

Proof. This time, we use [Gessel 1995, last identity of page 544]

4F3

[
2a+ n+ 1, n+ 1, 2

3a+ 1
3 n+ 4

3 , −n; − 1
8

a+ 3
2 + n, 2

3a+ 1
3 n+ 1

3 , 1+ a

]
=
(a+ 3

2)n

(2a+ 2)n
2n.

Letting a =− 1
4 p and n = 1

2(p− 1) and using Lemma 2.3, we have

4F3

[
1
2 ,

7
6 ,

1
2 +

1
2 p, 1

2 −
1
2 p;−1

8
1
6 , 1− 1

4 p, 1+ 1
4 p

]
=
(3

2 −
1
4 p)(p−1)/2

(2− 1
2 p)(p−1)/2

2(p−1)/2

= (−1)(p
2
−1)/8+(p−1)/2 p. �

Proof of Theorem 1.5. Equation (5) is a consequence of Lemma 4.4. �

Remark 1. Van Hamme’s conjecture that

(p−1)/2∑
k=0

(6k+ 1)
(
( 1

2)k

k!

)3
(−1)k

8k ≡ (−1)(p
2
−1)/8+(p−1)/2 p mod p3

holds if
(p−1)/2∑

k=0

(6k+ 1)
(
( 1

2)k

k!

)3( k∑
j=1

1
(2 j−1)2

−
1
16

k∑
j=1

1
j2

)
(−1)k

8k ≡ 0 mod p.

The proof of the latter is left to the interested reader.

Remark 2. In [2009], Zudilin proved the congruence (2) modulo p2 and the con-
gruence (5) modulo p.
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