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GRAPHS TO BE HAMILTONIAN

H. R. MAIMANI, M. R. POURNAKI AND S. YASSEMI

The unit graph corresponding to an associative ring R is the graph obtained
by setting all the elements of R to be the vertices and defining distinct
vertices x and y to be adjacent if and only if x + y is a unit of R. By a
constructive method, we derive necessary and sufficient conditions for unit
graphs to be Hamiltonian.

1. Introduction

A graph is Hamiltonian if it has a cycle that visits every vertex exactly once;
such a cycle is called a Hamiltonian cycle. In general, the problem of finding
a Hamiltonian cycle in a given graph is an NP-complete problem and a special
case of the traveling salesman problem. It is a problem in combinatorial optimiza-
tion studied in operations research and theoretical computer science; see [Garey
and Johnson 1979]. The only known way to determine whether a given graph
has a Hamiltonian cycle is to undertake an exhaustive search, and until now no
theorem giving a necessary and sufficient condition for a graph to be Hamiltonian
was known. The study of Hamiltonian graphs has long been an important topic.
See [Gould 2003] for a survey, updating earlier surveys in this area.

Let n be a positive integer, and let Z,, be the ring of integers modulo n. Grimaldi
[1990] defined a graph G (Z,,) based on the elements and units of Z,,. The vertices
of G(Z,) are the elements of Z,, and distinct vertices x and y are defined to be
adjacent if and only if x 4+ y is a unit of Z,,. For a positive integer m, it follows
that G(Z,,,) is a ¢(2m)-regular graph, where ¢ is the Euler phi function. In case
m > 2, the graph G(Z,,,) can be expressed as the union of ¢(2m)/2 Hamiltonian
cycles. The odd case is not quite so easy, but the structure is clear and the results
are similar to the even case. We recall that a cone over a graph is obtained by taking
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the categorical product of the graph and a path with a loop at one end, and then
identifying all the vertices whose second coordinate is the other end of the path.
When p is an odd prime, G(Z ) can be expressed as a cone over a complete partite
graph with (p — 1)/2 partitions of size two. This leads to an explicit formula for
the chromatic polynomial of G(Z,). Grimaldi [1990] also concludes with some
properties of the graphs G(Z ), where p is a prime number and m > 2. Recently,
the authors of this paper generalized G (Z,) to G(R), the unit graph of R, where R
is an arbitrary associative ring with nonzero identity and studied the properties of
this graph; see [Ashrafi et al. 2010; Maimani et al. 2010].

By a constructive method, we derive necessary and sufficient conditions for unit
graphs to be Hamiltonian.

2. Preliminaries and the main result

Throughout the paper, by a graph we mean a finite undirected graph without loops
or multiple edges. Also all rings are finite commutative with nonzero identity. For
undefined terms and concepts, see [West 1996; Atiyah and Macdonald 1969].

We first start with recalling some notions from graph theory. For a graph G
and for any two vertices x and y of G, we recall that a walk between x and y is a
sequence x = vy, €1, V1, . .., €k, Uy = y of vertices and edges of G, denoted by

X=V9)—> VU] —> - —> V=Y,

such that for every i with 1 <i < k, the edge ¢; has endpoints v;_; and v;. Also
a path between x and y is a walk between x and y without repeated vertices. A
cycle of a graph is a path such that the start and end vertices are the same. Two
cycles are considered the same if they consist of the same vertices and edges. The
number of edges (counting repeats) in a walk, path or a cycle, is called its length.
A Hamiltonian path (cycle) in G is a path (cycle) in G that visits every vertex
exactly once. A graph is called Hamiltonian if it contains a Hamiltonian cycle.
Also a graph G is called connected if for any vertices x and y of G there is a path
between x and y.

We now define the unit graph corresponding to a ring. Let R be a ring and
U (R) be the set of unit elements of R. The unit graph of R, denoted by G (R), is
the graph obtained by setting all the elements of R to be the vertices and defining
distinct vertices x and y to be adjacent if and only if x + y € U(R). The graphs
in Figure 1 are the unit graphs of the rings indicated. It is easy to see that, for
given rings R and S, if R = § as rings, then G(R) = G(S) as graphs. This point is
illustrated in Figure 2.

We continue this section by collecting some notions from ring theory. First of all,
for a given ring R, the Jacobson radical J(R) of R is defined to the intersection
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0 0 1 10 11
1 2 3 2 01 00
G(Z3) G(Z4) G(Zy x Z3)

Figure 1. Unit graphs of some specific rings.

00 0
11 21 5 1
10 200 = 2 4
01 3
G(Z3 x Z») G(Zs)

Figure 2. Unit graphs of two isomorphic rings.

of all maximal ideals of R. Let R be a ring and let k be a positive integer. An
element » € R is said to be k-good if we may write r = u; + - - - + uy, where
ui,...,ur € U(R). The ring R is said to be k-good if every element of R is
k-good. Following [Goldsmith et al. 1998], we now define an invariant of a ring,
called the unit sum number, which expresses in a fairly precise way how the units
generate the ring. The unit sum number u(R) of R is given by

e min{k | R is k-good} if R is k-good for some k > 1,

o w if R is not k-good for every k, but every element of R is k-good for some k
(that is, when at least U (R) generates R additively), and

e 00 otherwise (that is, when U (R) does not generate R additively).

For example, let D be a division ring. If |D| > 3, then u(D) = 2; whereas if
|D| =2, that is, D = Z;, the field of two elements, then u(Z,) = w. We have also
u(Z, x Z,) = oo —see [Ashrafi and Vamos 2005] for unit sum numbers of some
other rings. The topic of unit sum numbers seems to have arisen with a paper by
Zelinsky [1954], in which he shows that if V' is any finite- or infinite-dimensional
vector space over a division ring D, then every linear transformation is the sum of
two automorphisms unless dim V =1 and D is the field of two elements. Interest
in this topic increased recently after Goldsmith, Pabst and Scott [1998] defined the
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unit sum number. For additional historical background, see [Vdmos 2005], which
also contains references to recent work in this area.

We are now ready to state the main result of this paper. The proof is given in
Section 3 by a sequence of lemmas and propositions.

Theorem 2.1. Let R be a ring such that R 2 Z> and R 2 73. Then the following
Statements are equivalent:

(a) The unit graph G(R) is Hamiltonian.

(b) The ring R cannot have Z, x Z5 as a quotient.

(c) The ring R is generated by its units.

(d) The unit sum number of R is less than or equal to w.

(e) The unit graph G(R) is connected.

3. The proofs

In this section we state and prove some lemmas that will be used in the proof
of Theorem 2.1. For the convenience of the reader we state without proof a few
known results in the form of propositions that will be used in the proofs. We also
recall some definitions and notations for later use.

A bipartite graph is one whose vertex-set is partitioned into two (not necessarily
nonempty) disjoint subsets so that the two end vertices for each edge lie in distinct
partitions. Among bipartite graphs, a complete bipartite graph is one in which
each vertex is joined to every vertex that is not in the same partition. The complete
bipartite graph with two partitions of size m and n is denoted by K, ,.

The following result characterizes the complete bipartite unit graphs of rings.

Proposition 3.1 [Ashrafi et al. 2010, Theorem 3.5]. Let R be a ring and m be a
maximal ideal of R such that |R/m| = 2. Then G(R) is a bipartite graph. The unit
graph G(R) is a complete bipartite graph if and only if R is a local ring.

The degrees of all vertices of a unit graph is given by the following result. For
a graph G and for a vertex x of G, the degree deg(x) of x is the number of edges
of G incident with x.

Proposition 3.2 [Ashrafi et al. 2010, Proposition 2.4]. Let R be a ring. Then the
following statements hold for the unit graph of R:

(1) If2 ¢ U(R), then deg(x) = |U(R)| for every x € R.
(2) If2€U(R), thendeg(x)=|U(R)|—1 forevery x e U(R) and deg(x) =|U (R)|
forevery x € R\ U(R).
We also need the following well known result due to Dirac, which initiated the
study of Hamiltonian graphs. This work was continued by Ore [1960].
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Proposition 3.3 [Dirac 1952, Theorem 3]. If G is a graph with n vertices, n > 3,
and every vertex has degree at least n/2, then G is Hamiltonian.

Lemma 3.4. Let R be a local ring with |R| > 4. Then the unit graph G(R) is
Hamiltonian.

Proof. Suppose m is the unique maximal ideal of R. There are two possibilities:
either |R/m| =2 or |R/m| > 2.

First, suppose that |R/m| = 2. In this case, Proposition 3.1 implies that the unit
graph G(R) is a complete bipartite graph. Moreover, its proof shows that m and
R\ m are the partite sets of G(R). Since |R/m| =2, we conclude that jm|=|R\m|
and so G(R) = K|, |m|- The assumptions |R| >4 and |R/m| =2 imply that [m| > 2
and thus G(R) is Hamiltonian.

Second, suppose that |R/m| > 2. In this case, Proposition 3.2 implies that
deg(x) > |U(R)|—1for all x € R. We claim that |U (R)|—1>|R|/2. To show this,
note that R is a local ring with |R| > 4. If | R| = 4, then the assumption |[R/m| > 2
implies that j[m| < 2 and so m = 0. Therefore R is a field and so |U(R)| = 3. Thus
|U(R)|—1=2=|R]|/2. If |R| =5, then R is again a field and so |U (R)| = 4. Thus
|[U(R)|—1=3>2.5=|R|/2. If |R| = 6, then since R is local with |R/m| > 2, we
conclude that |U (R)| > 2|R|/3. Therefore |[U (R)|—1> (2|R|/3)—1>|R|/2. Thus
the claim holds and so deg(x) > |R|/2 for every x € R. Therefore Proposition 3.3
implies that G(R) is Hamiltonian. U

The following result gives us information about the existence of a Hamiltonian
cycle in unit graphs of the direct product of a ring and a field.

Lemma 3.5. Let T be a ring with Hamiltonian unit graph and let F be a field.
If F 2 7, then the unit graph G(T x F) is Hamiltonian.

Proof. Since the unit graph G (7') is Hamiltonian, there is a Hamiltonian cycle with
length n = |T'| in G(T), say

O=ay—>a— - -—ay_1 — a, —> ap+1 =0.

Either the characteristic of F is equal to 2 or it is not.
First, suppose the latter. In this case we may assume that
F={0,x1,...,xqF|=1)/2, =X1, ..., =X(F|=1)/2}-

If n is even and |F| = 5, then x, # —x; and so x| + x, is a unit element of F.
Now consider the following paths in the unit graph G(T x F):

Py: (0,0) — (a2, x1) = (a3,0) — (as, x1) —> -+ — (an, x1),
Pi: (0,x2) = (a2,0) — (a3, x2) > -+ — (ap—1,x2) = (an, 0),

Py: (0,x1) = (a2, x2) = (az, x1) —> -+  — (au, x2).
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Also for every i with 3 <i < (|F|—1)/2, consider the path
Pt (0, x;) = (a2, x;) = (a3, x;) = - -+ = (an, Xi),
and for every i with 1 <i < (|F|—1)/2, consider the path
P!: (0, —x;) = (a2, —x;) = -+ - = (an, —X;).

It is easy to see that P;_ is adjacent to P; for every i with 1 <i < (|F|—1)/2 and
P!_, is adjacent to P/ for every i with2 <i < (|F|—1)/2, and Pr|_12 is adjacent
to P|. Therefore PoPPyP3--- Popi—1y2P| - - P(/|F|—1)/2(0’ 0) is a Hamiltonian
cycle in the unit graph G (T x F), which shows that it is Hamiltonian. If n is even
and |F| = 3, then F = Z3 and thus the cycle

(a1,1) — (a2,0) — (a3, 2) — (as,2) — (a3, 0)
— (a2, 1) = (a3, 1) = - -+ = (ay—2, 1) = (an—1, 1)
— (a1, 2) — (az,2) — (a1,0) — (a,, 1) = (a1, D),

is a Hamiltonian cycle in the unit graph G(T" x F), and thus it is Hamiltonian.
If n is odd and |F| > 5, consider the path

Py (a1,0) — (a2, x1) = - - = (ay, 0) = (a1, x1) = (a2,0) = -+ — (an, x1),
and for 1 <i < (|F|—1)/2 consider the paths

Pi: (ar,xi) — (a2, x)) — -+ — (an, Xi),

P!: (a1, —x;) = (a2, —x;) = -+ = (Ap, —X;).
It is easy to see that PoPy--- P(r—1)2P] - - P(’lFl_l)/z(a],O) is a Hamiltonian
cycle in the unit graph G (T x F') and thus it is Hamiltonian. If n is odd and | F| =3,

we may obtain a Hamiltonian cycle in the unit graph G(T x F) by replacing the
eleven end-vertices in the cycle above with

(an-3, 1) = (@n—2, 1) = (an-1,0) = (an, 2) = (@n-1, 1)
— (an, 1) = (a1,0) = (a2, 2) — (a1, 2) = (a, 0) — (a1, D).
This shows that the unit graph G(T x F) is Hamiltonian.

Second, suppose that characteristic of F' is equal to 2. Therefore we have | F| > 4.
In this case we may assume that

F={x1,...,xm} = {xgi_1,x | 1 <i <2"71}.

If n is even, then for every i with 1 <i < 2m=1_consider the following paths in
the unit graph G(T x F):
P;i: (a1, x2i—1) = (a2, x25))  — -+ — (an, X2i),

P!: (a1, x2i) — (a2, x2i—1) = -+ = (an, X2i—1).
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Since | F| >4, itis clear that Py P),,_, PP, | --- Pyn-1 P{(0, x1) is a Hamiltonian
cycle in the unit graph G(T x F) and thus it is Hamiltonian.

If n is odd, then consider the path

m—1

P;: (a1, x2i—1) = (a2, x2i) = -+ - — (An-1, X2i) = (Qn, X2i—1) —> - -+ —> (An, X2i).

Therefore Py Py - - - Pyn-1(ay, x1) is a Hamiltonian cycle in the unit graph G (T x F)
and thus it is Hamiltonian. U

In the sequel we need Lemmas 3.7, 3.8 and 3.10. But first, we state the following
proposition, which is useful in the proof of Lemma 3.7. Recall that a cligue of a
graph G is a complete subgraph of G. Also a coclique (also called an independent
set of vertices) in a graph G is a set of pairwise nonadjacent vertices.

Proposition 3.6 [Ashrafi et al. 2010, Lemma 2.7]. Let R be a ring and suppose
that J (R) denotes the Jacobson radical of R. Suppose x,y € R.

(@) If x+ J(R) and y + J(R) are adjacent in the unit graph G(R/J(R)), then
every element of x + J (R) is adjacent to every element of y + J (R) in the unit
graph G(R).

(b) If2x € U(R), then x + J(R) is a clique in the unit graph G (R).
(c) If2x ¢ U(R), then x + J(R) is a coclique in the unit graph G(R).

Lemma 3.7. Let T be a ring and let R be a local ring with unique maximal ideal
m. If the unit graph G(T x R/m) is Hamiltonian, then the unit graph G(T X R) is
Hamiltonian.

Proof. Since the unit graph G(T x R/m) is Hamiltonian, there is a Hamiltonian
cycle in G(T x R/m), say

(ar, yi1+m) — -+ — (ap, yo +m) — (ar, y1 +m),

where n =|T x R/m|. Let m = {x, ..., x;}. Therefore for every i with 1 <i <t¢,
we have y; +m={y; +x1,...,yi+x;}andso T x R = Ul'.‘:l M;, where M; =
{(ai,yi +x;) | 1 < j <t} Itis easy to see that for every r with 1 <r <n —1,
every element of M, is adjacent to every element of M, ;. Also every element of
M, is adjacent to every element of M. Let S, for 1 <r <n — 1 be a subgraph of
the unit graph G(T x R) with vertex-set M, UM, | and edge-set {(a,, y- +x;) —
(ar41, Yre1+x0) |1 < j, £<t}. Alsolet S, be a subgraph of the unit graph G (T x R)
with vertex-set M, UM; and edge-set {(a,, y, +x;) — (a1, y1+x¢) | 1 < j, £ <t}.
It is easy to see that S, for 1 <r <n is a Hamiltonian complete bipartite subgraph
of the unit graph G (T x R). For every r with 1 <r <n—1, let P, be a Hamiltonian
path of S, with initial vertex (a,, y, + x;) and end point (@,+1, yr+1 + Xx1). Also
let P, be a Hamiltonian path of S, with initial vertex (a,, y, + x1) and end point
(ay, y1 + x1). Now we consider the following two cases:
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Case 1: n is even. In this case, the cycle
Py —> Py — - — Py — (a1, y1 +x1)

is a Hamiltonian cycle in the unit graph G(T x R) and thus it is Hamiltonian.

Case 2: n is odd. In this case, since |7 x R/m| is odd, |R/m| is odd. This
implies that |R| is odd and so 2 € U(R). We may assume that y; +m = m.
Therefore y, +m 7 m. Now Proposition 3.6 implies that the subgraph induced by
M, is a clique. Therefore the cycle

Pir— P3y— - = Py — (ay, yn+x1) = - = (an, Yo +x;) = (a1, y1 +x1)

is a Hamiltonian cycle in the unit graph G(T x R) and thus it is Hamiltonian. [J

Lemma 3.8. Let R= Ry X - -- X Ry, where every R; is a local ring with maximal
ideal m;. Suppose that R 22 73 and for every i with 1 <i <n, we have R; /m; % 7».
Then the unit graph G (R) is Hamiltonian.

Proof. We prove the lemma by induction on n. If n = 1, then R is local and
assumptions imply that |R| > 4. Therefore by using Lemma 3.4 we conclude that
the unit graph G(R) is Hamiltonian. Now suppose that the lemma holds true for
n—1. Consider T =Ry X ---x R,_1 and F = R,,/m,,. There are two possibilities:
either T = Zz or T 2 Z3.

First, suppose that T = Z3. If |R,| > 4, then by Lemma 3.5 the unit graph
G(R)=G(Z3 x R,) is Hamiltonian. If |R,| =3, then R, =73 and so R =73 x Z3.
Therefore the cycle

©0,0->1,H—- 01— 2,1)— 2,00 > (2,2)
—(0,2) - (1,0) — (1,2) — (0, 0),

is a Hamiltonian cycle in the unit graph G(R) = G(Z3 x Z3) and thus it is Hamil-
tonian.

Second, suppose that T 2 Z3. In this case the induction hypothesis implies
that the unit graph G(7T') is Hamiltonian. On the other hand, F = R,/m, is a
field with |F'| > 3. Therefore Lemma 3.5 implies that the unit graph G(T x F) is
Hamiltonian. Therefore by applying Lemma 3.7, we conclude that the unit graph
G (R) is Hamiltonian. U

We need the following result to give a proof of Lemma 3.10.
Proposition 3.9 [Chartrand and Oellermann 1993, Theorem 8.6]. Let G be a bi-
partite graph with partite sets X and Y such that | X|=|Y|=n>2. Ifdeg(x) >n/2
for every vertex x of G, then G is Hamiltonian.
Lemma 3.10. Let R = R; X --- X R, X Z,, where every R; is a local ring with
maximal ideal w;. If R;/m; 2 Z, for every i with 1 <i < n, then the unit graph
G (R) is Hamiltonian.
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Proof. We prove the lemma by induction on n. If n = 1, then R = R; x Z,. In
this case, it is easy to see that the unit graph G (R) is a bipartite graph with partite
sets X = Ry x {0} and Y = R; x {1}. On the other hand, by Proposition 3.2(1), we
have deg(x) =|U(R)|=|U(R1)| > |[U(Ry)|/2 > |R]|/4 for every vertex x in G(R).
Therefore, by Proposition 3.9, the unit graph G(R) is Hamiltonian.

Now suppose that the lemma holds for n — 1. The induction hypothesis implies
that the unit graph G(R| X --- X R,_1 X Z3) is Hamiltonian. On the other hand,
F = R,/m,, is a field with |F| > 3. Therefore Lemma 3.5 implies that the unit
graph G(Ry x -+ - X R,_1 X Z x F) is Hamiltonian and so by applying Lemma 3.7
we conclude that the unit graph G (R) is Hamiltonian. ([

A cycle graph is a graph that consists of a single cycle. The following result
characterizes the unit graphs of rings that are cycle graphs.

Proposition 3.11 [Ashrafi et al. 2010, Theorem 3.2]. Let R be a ring. Then the
unit graph G (R) is a cycle graph if and only if R is isomorphic to either

(a) Z4,
(b) Zg, or
© {[§ a]1a.bezs}.
The next result gives a sufficient condition for a unit graph to be Hamiltonian.

Lemma 3.12. Let R be a ring such that R 22 7, and R 2 Z3. If R cannot have
Zy x 73 as a quotient, then the unit graph G (R) is Hamiltonian.

Proof. Every ring is isomorphic to a direct product of local rings; see [McDonald
1974, page 95]. Therefore we may write R = R; X - -- X R,, where every R; is a
local ring with maximal ideal m;. We claim that |U (R)| > 2. To show this, suppose
to the contrary that |U (R)| = 1. This implies that |J (R)| = 1, where J(R) denotes
the Jacobson radical of R. Therefore |[m; x - -- xm,| =1 and so |m;| =1 for every
i with 1 <i <n. Therefore R; for1 <i <nisafieldandthus R=7, x --- x Z»,
where Z, occurs n times in the product. Now the assumption implies that R = 7,
a contradiction. Thus the claim holds and we have |U (R)| > 2.

First, suppose |U (R)| = 2. In this case, by Proposition 3.2, the unit graph G (R)
is a 2-regular connected graph and so is a cycle graph. Hence by Proposition 3.11,
R is isomorphic to either Z4, Zg, or {[& 2] | a, b € Z,}. It is easy to see that the
unit graph of each of them is Hamiltonian and therefore so is the unit graph G(R).

Second, suppose that |U(R)| > 3. By the assumption, R;/m; 2 Z, for every i,
except for possibly at most one i. If R;/m; 22 Z, for every i, then by Lemma 3.8
the unit graph G(R) is Hamiltonian. If for one i, say n, we have R,/m, = Z,,
then by Lemma 3.10 the unit graph G(R; X - - - X R, X Z3) is Hamiltonian. Now
by applying Lemma 3.7 we conclude that the unit graph G (R) is Hamiltonian. [l
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Proof of Theorem 2.1. (a) implies (b): By assumption, the unit graph G(R) is
Hamiltonian and so it is obviously connected. Therefore, by [Ashrafi et al. 2010,
Theorem 4.3], we have #(R) < w. This means that the ring R is generated by its
units and thus by [Raphael 1974, Corollary 7] it cannot have Z, x Z; as a quotient.

(b) implies (a): This holds by Lemma 3.12.

(b) is equivalent to (c): This holds by [Raphael 1974, Corollary 7].

(c) is equivalent to (d): This is true by definition.

(d) is equivalent to (e): This holds by [Ashrafi et al. 2010, Theorem 4.3]. [l
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