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Let .S n.r/;g0/ be the canonical sphere of radius r . Denote by zGs the
Sasaki metric on the unit tangent bundle T1S n.r/ induced from g0 and
by zGzs the Sasaki metric on T1T1S n.r/ induced from zGs . We resolve here,
for n � 7, a question raised by Boeckx, González–Dávila, and Vanhecke:
namely, we prove that the geodesic flow

� W .T1S n.r/; zGs/! .T1T1S n.r/; zGzs/

is an unstable harmonic vector field for any r > 0 and n � 7. In particular,
in the case rD1, � is an unstable harmonic map. We show that these results
are invariant under a four-parameter deformation of the Sasaki metric zGzs .

1. Introduction

Let .M;g/ be a compact Riemannian manifold and X1.M / the set of all smooth
unit vector fields on .M;g/, which we suppose to be nonempty, equivalently, the
Euler–Poincaré characteristic of M vanishes. Let .T1M; zGs/ be the unit tangent
sphere bundle equipped with the Sasaki metric zGs . A unit vector field U 2X1.M /

determines a map between .M;g/ and .T1M; zGs/ and the energy E zGs
.U / is de-

fined as the energy of the corresponding map

U W .M;g/! .T1M; zGs/:

A unit vector field U is said to be a harmonic vector field if it is a critical point
for the energy functional E zGs

restricted to X1.M / [Wiegmink 1995; Wood 1997].
Harmonic unit vector fields aren’t harmonic maps unless an additional curvature
condition is satisfied [Han and Yim 1998; Abbassi et al. 2009a].

For the unit sphere S2mC1, m> 1, the Hopf vector fields are unstable harmonic
unit vector fields [Wood 1997]. The unit vector fields of minimum energy on the
unit sphere S3 are precisely the Hopf vector fields, equivalently, the unit Killing
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vector fields, and no others [Brito 2000]. Contact metric manifolds which Reeb
vector field is harmonic are called H -contact manifolds [Perrone 2004]. In [Per-
rone 2009a] we studied the stability of the Reeb vector field of a compact H -contact
three-manifold. If the unit tangent bundle itself is taken as the source manifold of
unit vector fields, then a distinguished unit vector field, namely, the geodesic flow
vector field � , appears in a natural way (it is collinear, with a constant factor, to the
Reeb vector field of the standard contact metric structure on T1M ).

Let .M;g/ be a Riemannian manifold locally isometric to a two-point homo-
geneous space, that is, locally flat or locally isometric to a rank-one symmetric
space. Boeckx and Vanhecke [2000] proved that � W .T1M; zGs/! .T1T1M; zGz s/

is a harmonic vector field (and a harmonic map), where zGz s is the corresponding
Sasaki metric on T1T1M .

Concerning the stability of the geodesic flow � we have few results. Boeckx
et al. [2002] studied the stability of � as harmonic vector field when such a M is
in addition compact (note that, by [Borel 1963], compact quotients always exist)
and satisfies some other conditions. More precisely, the authors proved that if
n � 3 and M is of nonpositive curvature with nonzero first Betti number, then
the geodesic flow � W .T1M; zGs/! .T1T1M; zGz s/ is an unstable harmonic vector
field. In the positive curvature case they considered a space of constant curvature
and proved a similar yet weaker result. Indeed, in such case, they proved that the
existence of nonzero Killing vector fields implies the instability of � for the energy
functional E QQG , in certain ranges of the dimension and the curvature. With these
results, the question of stability of � remains open, particularly in the case of a
compact quotient of a two-point homogeneous space of positive curvature. The
most intriguing one, according to Boeckx et al. [2002], concerns the unit spheres
Sn.1/ for n> 2. Their method does not give any answers in this case.

Recently, the papers [Abbassi et al. 2009a; 2009b; 2010a; Perrone 2009b; 2010]
examined the question of when a vector field V W .M;g/! .TM;G/ and a unit
vector field U W .M;g/! .T1M; zG/ are harmonic vector fields and define harmonic
maps, where G is a natural Riemannian metric on TM and zG is its restriction to the
unit tangent sphere bundle T1M . (Natural Riemannian metrics form a very large
family, which includes the Sasaki metric, the Cheeger–Gromoll metric, metrics
of Cheeger–Gromoll type [Benyounes et al. 2007] and the Kaluza–Klein metrics
[Wood 1990].) The restrictions zG of such metrics to T1M possess a simpler form
and globally depend on four real parameters a; b; c; d satisfying some inequalities
(the parameters aD 1, b D c D d D 0 define the Sasaki metric zGs). Suppose that
.M;g/ is a Riemannian manifold locally isometric to a two-point homogeneous
space and T1M , T�T1M are equipped with arbitrary natural Riemannian metrics
zG and zGz respectively. Then, Abbassi et al. [2010b] proved that the geodesic flow
� W .T1M; zGs/! .T�T1M; zGz / is always a harmonic vector field, and it also defines
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a harmonic map under some conditions on the coefficients determining the natural
Riemannian metrics.

The main purpose of this paper is to study the stability of the geodesic flow

� W .T1Sn.r/; zGs/! .T1T1Sn.r/; zGz /;

where Sn.r/ is the canonical sphere of radius r and zGz is an arbitrary natural Rie-
mannian metric on T1T1Sn.r/ induced from the Sasaki metric zGs on T1Sn.r/ (see
Theorem 4.2 and Theorem 5.3). In particular, we get that the geodesic flow

� W .T1Sn.r/; zGs/! .T1T1Sn.r/; zGz /

is an unstable harmonic vector field (and an unstable harmonic map) for any r > 0,
n � 7, and for any natural Riemannian metric zGz on T1T1Sn.r/ induced from the
Sasaki metric zGs . When zGz D zGz s , we resolve the question of posed in [Boeckx
et al. 2002, page 202] for any n � 7. In order to get all these results, we use the
Hessian form of the energy functional

E zG W X
1.M /! R;U 7!E zG.U /DE

�
U W .M;g/! .T1M; zG/

�
;

for an arbitrary natural Riemannian metric zG (see Theorem 3.2). It should be noted
that the instability of the Hopf vector fields on S2mC1, m > 1, and the stability
(instability) results given in [Perrone 2009a] are invariant under a four-parameter
deformation of the Sasaki metric zGs on T1M (see Corollary 3.4).

2. Natural Riemannian metrics on T1M

Let .M;g/ be an n-dimensional Riemannian manifold and r its Levi-Civita con-
nection. We denote by R the Riemannian curvature tensor of .M;g/ with the sign
convention R.X;Y /ZD�rXrY ZCrY rX ZCrŒX ;Y �Z:Moreover, we denote
by Ric the Ricci tensor of type .0; 2/, by Q the corresponding endomorphism field
and by � the scalar curvature.

At any point .x;u/ of the tangent bundle TM , the tangent space of TM splits
into the horizontal and vertical subspaces with respect to r:

.TM /.x;u/ DH.x;u/˚V.x;u/:

For any vector X 2Mx , there exists a unique vector X h 2 H.x;u/ (the horizon-
tal lift of X to .x;u/ 2 TM ), such that p�X

h D X , where p W TM ! M is
the natural projection. The vertical lift of a vector X 2 Mx to .x;u/ 2 TM is
a vector X v 2 V.x;u/ such that X v.df / D Xf , for all smooth functions f on
M . Here we consider 1-forms df on M as smooth functions on TM . The map
X !X h is an isomorphism between the vector spaces Mx and H.x;u/. Similarly,
the map X!X v is an isomorphism between Mx and V.x;u/. Each tangent vector
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zZ 2 .TM /.x;u/ can be written in the form zZ D X hCY v, where X;Y 2Mx are
uniquely determined vectors. The geodesic flow � on TM is a vector field given,
in terms of local coordinates, by

�.x;u/ D uh
.x;u/ D

X
i

ui.@=@xi/h.x;u/; where uD
X

i

ui.@=@xi/x 2Mx :

The natural Riemannian metrics form a wide family of Riemannian metrics on
TM . These metrics depend on several smooth functions from RCD Œ0;C1/ to R

and as their name suggests, they arise from a very “natural” construction starting
from a Riemannian metric g over M (see [Abbassi and Sarih 2005; Abbassi et al.
2010a] and the references in [Abbassi 2008]). Given an arbitrary g-natural metric
G on the tangent bundle TM of a Riemannian manifold .M;g/, there are six
smooth functions ˛i , ˇi W R

C! R, i D 1; 2; 3, such that for every u, X , Y 2Mx ,
we have

(2-1)

G.x;u/.X
h;Y h/D .˛1C˛3/.r

2/gx.X;Y /C .ˇ1Cˇ3/.r
2/gx.X;u/gx.Y;u/;

G.x;u/.X
h;Y v/D ˛2.r

2/gx.X;Y /Cˇ2.r
2/gx.X;u/gx.Y;u/;

G.x;u/.X
v;Y h/DG.x;u/.X

h;Y v/;

G.x;u/.X
v;Y v/D ˛1.r

2/gx.X;Y /Cˇ1.r
2/gx.X;u/gx.Y;u/;

where r2 D gx.u;u/. Put

�i.t/D ˛i.t/C tˇi.t/;

˛.t/D ˛1.t/.˛1C˛3/.t/�˛
2
2.t/;

�.t/D �1.t/.�1C�3/.t/��
2
2.t/;

for all t 2 RC. Then, a g-natural metric G on TM is Riemannian if and only if

(2-2) ˛1.t/ > 0; �1.t/ > 0; ˛.t/ > 0; �.t/ > 0 for all t 2 RC:

The Sasaki metric Gs , the Cheeger–Gromoll metric, metrics of Cheeger–Gromoll
type [Benyounes et al. 2007] and the Kaluza–Klein metrics, as commonly defined
on principal bundle [Wood 1990], belong to the subclass of g-natural Riemannian
metrics on TM for which horizontal and vertical distribution are mutually orthog-
onal (i.e., ˛2 D ˇ2 D 0). More generally, g-natural Riemannian metrics on TM

for which horizontal and vertical distribution are mutually orthogonal are called
metrics of Kaluza–Klein type [Perrone 2010].

Next, the tangent sphere bundle of radius r over a Riemannian manifold .M;g/,
is the hypersurface Tr M D f.x;u/ 2 TM W gx.u;u/D r2g. The tangent space of
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Tr M at a point .x;u/ 2 Tr M is given by

(2-3) .Tr M /.x;u/ D fX
h
CY v WX 2Mx;Y 2 fug

?
�Mxg:

We call g-natural metrics on Tr M the restrictions of g-natural metrics of TM to
its hypersurface Tr M . These metrics possess a simpler form. Precisely, taking in
account of (2-1) and (2-3), every natural Riemannian metric zG on Tr M is neces-
sarily induced by a natural Riemannian metric G on TM of the special form (see
also [Abbassi 2008; Abbassi et al. 2009a]):

(2-4)

G.x;u/.X
h;Y h/D .aC c/gx.X;Y /Cˇ gx.X;u/gx.Y;u/;

G.x;u/.X
h;Y v/DG.x;u/.X

v;Y h/D b gx.X;Y /;

G.x;u/.X
v;Y v/D a gx.X;Y /;

for three real constants a; b; c and a smooth function ˇ W Œ0;1/! R. It is easily
seen that G is obtained by the general expression (2-1) when

(2-5) ˛1 D a; ˛2 D b; ˛3 D c; ˇ1 D ˇ2 D 0; ˇ3 D ˇ;

Such a metric zG on Tr M only depends on the value d D ˇ.r2/ of ˇ at r2. From
(2-2) and (2-5) it follows that zG is Riemannian if and only if

(2-6) a> 0; ˛ WD a.aC c/� b2 > 0 and � D a.aC cC r2d/� b2 > 0:

By (2-4), horizontal and vertical lifts are orthogonal with respect to zG if and
only if b D 0. Moreover, metrics satisfying b D 0 are all and the ones induced
by natural Riemannian metrics of Kaluza–Klein type. For this reason, a natural
Riemannian metric zG on Tr M will be said to be of Kaluza–Klein type if and only
if horizontal and vertical lifts are zG-orthogonal, that is, bD 0 in (2-4). Notice that
the Sasaki metric, the Cheeger–Gromoll metric, metrics of Cheeger–Gromoll type
and the Kaluza–Klein metrics belong to the subclass of natural Riemannian metrics
on T1M of Kaluza–Klein type. Moreover, an arbitrary natural Riemannian metric
zG on Tr M can be considered as a deformation on four parameters (a; b; c; d ) of
the Sasaki metric zGs (which is defined by aD 1, b D c D d D 0/.

When r D 1, T1M is called unit tangent sphere bundle. Now, if zG is an arbitrary
g-natural Riemannian metric on T1M , then by (2-4) it follows that the geodesic
flow vector field � on T1M has constant length k�k zG D

p
aC cC d (not necessar-

ily equal to 1). Note that aCcCd > 0, since a> 0 and �D a.aCcCd/�b2> 0.
Hence, � defines a map � W T1M ! T�T1M where � WD

p
aC cC d ; if zG D zGs ,

then �D 1.
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3. The Hessian form for the energy E zG

Let .M;g/ be a compact Riemannian manifold of dimension n. Every unit vector
field U on M defines a map between .M;g/ and .T1M; zGs/ and we can define
E zGs

.U /, the energy of U , as the energy of the corresponding map:

E zGs
.U /D

1

2

Z
M

kdU k2 vg D
n

2
vol.M;g/C

1

2

Z
M

krU k2 dvg:

E.U / is equal, up to constants, to B.U /D
R

M krU k2 dvg which is known as the
total bending of U [Wiegmink 1995]. Here dvg denotes the canonical measure on
.M;g/. U is called a harmonic vector field if it is critical for the energy functional

E zGs
W X1.M /! R; U 7!E zGs

.U /DE
�
U W .M;g/! .T1M; zGs/

�
:

The corresponding critical point condition “ N�V is collinear to V ” has been de-
termined in [Wiegmink 1995] (see also [Wood 1997]), where N�U D �trr2U is
the rough Laplacian at U . This critical point condition has a tensorial character
and may also be considered on non compact manifolds.

Now, consider on T1M an arbitrary g-natural Riemannian metric zG. Then a unit
vector field U defines a mapping from .M;g/ to .T1M; zG/ and we can consider
the energy functional

E zG WX
1.M /!R; U 7!E zG.U /DE

�
U W .M;g/! .T1M; zG/

�
D

Z
M

e.U / dvg;

where e.U / is the energy density of U W .M;g/ ! .T1M; zG/ and is given by
[Abbassi et al. 2009a]

(3-1) 2e.U /D n.aC c/C d C a krU k2C 2b div U;

and so, integrating over M we get

(3-2) E zG.U /D
1

2
Œn.aC c/C d � vol.M;g/C

a

2

Z
M

krU k2dvg:

In [Abbassi et al. 2009a] we proved that the critical point condition for the
energy E zGs

is invariant under a four-parameter deformation of the Sasaki metric
zGs . More precisely:

Theorem 3.1 [Abbassi et al. 2009a]. Let (M,g) be a compact Riemannian manifold
of dimension n. Then, a unit vector field U 2X1.M / is a harmonic vector field for
the energy E zG if and only if U is a harmonic vector field for the energy E zGs

, that
is,�U DkrU k2U . Moreover, U W .M;g/! .T1M; zG/ is a harmonic map if and
only if U is a harmonic vector field and

(3-3) b QU C a tr ŒR.r�U;U / � �D .b krV k2� d div U /U C drU U:
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In the case of the Sasaki metric zGs , (3-3) gives a result of [Han and Yim 1998].
Wiegmink [1995] obtained the second variation formula for the energy E zGs

.
The second variation formula for the energy E zG could be deduced directly from
(3-1) by using Theorem 3.1. In the sequel, we include the proof for completeness.
Let U be a harmonic vector field for the energy E zG , and U.t/ a variation of U in
X1.M /. Then, by (3-1) we have

2e.t/ WD 2e.U.t//D n.aC c/C d C a krU.t/k2C 2b div U.t/;

and integrating over M , we find

(3-4) E zG.t/ WDE zG.U.t//D
n.aC c/C d

2
vol.M;g/C

a

2

Z
M

krU.t/k2dvg:

Differentiating (3-4) we obtain

E0
zG
.t/D a

Z
M

g
�
rU.t/;rU 0.t/

�
dvg;

and hence

E00
zG
.t/D a

Z
M

g
�
rU 0.t/;rU 0.t/

�
dvgC a

Z
M

g
�
rU.t/;rU 00.t/

�
dvg:

Therefore

E00
zG
.0/D a

Z
M

krW k2dvgC a

Z
M

g.rU;rA/ dvg;

where W D U 0.0/ is orthogonal to U and A D U 00.0/. On the other hand, for
any X;Y 2X.M /, by a direct calculation, one gets the Bochner-type formula (see
[Poor 1981, page 158] for X D Y ):

(3-5) �g.X;Y /D g. N�X;Y /Cg.X; N�Y /� 2g.rX;rY /;

where � is the Laplacian acting on functions. This formula impliesZ
M

g. N�U;A/ dvg D

Z
M

g.rU;rA/dvg;

where, using Theorem 3.1, N�U D krU k2U . Then

E00
zG
.0/D a

Z
M

.krW k2CkrU k2g.U;A// dvg:

Moreover, krU k2 D 1 implies

kW k2 D g
�
U 0.0/;U 0.0/

�
D�g

�
U.0/;U 00.0/

�
D�g.U;A/:

Thus, we get:
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Theorem 3.2. Let .M;g/ be a compact Riemannian manifold. If U 2X1.M / is a
critical point of the energy functional E zG . Then

(3-6) .HessE zG/U .W /D a

Z
M

�
krW k2�krU k2kW k2

�
dvg

for any W 2 U?.

When T1M is equipped with the Sasaki metric zGs , we get the Hessian form
given in [Wiegmink 1995].

Corollary 3.3. Let .M;g/ be a compact Riemannian manifold and U a unit vector
field on M . Then the property of U W .M;g/ ! .T1M; zGs/ being a stable (or
unstable) harmonic vector field is invariant under a four-parameter deformation
of the Sasaki metric zGs on T1M .

Wood [1997] showed that for the unit sphere S2mC1, m > 1, the Hopf vector
fields are unstable for the energy E zGs

. Contact metric manifolds which Reeb vector
field is harmonic are called H -contact manifolds [Perrone 2004]. Recently, in
[Perrone 2009a] we studied the stability of the Reeb vector field of a compact
H -contact three manifold for the energy E zGs

. From Corollary 3.3 we get:

Corollary 3.4. The instability of the Hopf vector fields on S2mC1, m > 1, and
the stability (or instability) results given in [Perrone 2009a] are invariant under a
four-parameter deformation of the Sasaki metric zGs on T1M .

4. Instability of the geodesic flow

Let .M;g/ be a Riemannian manifold locally isometric to a two-point homoge-
neous space, that is, locally flat or locally isometric to a rank-one symmetric space.
We denote by zGs the Sasaki metric on T1M , by zGz s the corresponding Sasaki metric
on T1T1M and by zGz an arbitrary natural Riemannian metric on T1T1M constructed
from zGs . Boeckx and Vanhecke [2000] proved that � W .T1M; zGs/! .T1T1M; zGz s/

is a harmonic map, in particular � is a harmonic vector field for the energy E QQG .
About the stability of � , we have:

Theorem 4.1 [Boeckx et al. 2002]. Let .M;g/ be a compact quotient of a two-
point homogeneous space of nonpositive curvature and with first Betti number
b1.M / ¤ 0, dim M D n � 3. Then the geodesic flow � on T1M is unstable
for the energy E QQG .

In the positive curvature case they proved a similar yet weaker result. Indeed,
in such case, the existence of nonzero Killing vector fields implies the instability
of � for the energy functional E zGs

, in certain ranges of the dimension n and of
curvature. With these results, the question of stability of � remains open. The
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most intriguing one (according to [Boeckx et al. 2002, page 202]) concerns the
unit spheres Sn.1/ for n> 2. Their method does not give any answers in this case.

Now, we consider on T1M the Sasaki metric zGs while on T1T1M consider an
arbitrary natural Riemannian metric zGz constructed from zGs , where .M;g/ is a
compact quotient of a two-point homogeneous space of dimension n. Abbassi et
al. [2010b, Theorem 5] proved that � W .T1M; zGs/! .T1T1M; zGz / is a harmonic
vector field for the energy E QQG . From Theorem 3.2 we have that the geodesic flow
� is stable (or unstable) with respect to E QQG if and only if it has the same property
with respect to E QQGs , that is, when � W .T1M; zGs/! .T1T1M; zGz s/. So we consider
Hess E QQGs ; from the general expression (3-6), we have

(4-1) .Hess E QQGs /�.W /D

Z
T1M

�
kzrW k2�kzr�k2kW k2

�
dv zGs

for any vector field W on T1M such that zGs.�;W /D0, where zr is the Levi-Civita
connection of .T1M; zGs/. If X is an arbitrary vector field on M , the tangential
lift X t

z D X v
z � gx.Xx;u/u

v, z D .x;u/, is a vector field on T1M orthogonal
to �, but the horizontal lift X h in general is not. For that reason, we define the
modified horizontal NX h

z DX h
z �g.Xp;u/�z , zD .p;u/. This vector field on T1M

is orthogonal to � and tangent to T1M . Moreover, we have, from [Boeckx et al.
2002, Lemma 1, page 206],

(4-2)
Z

T1M

�
kzrX t

k
2
�kzr�k2kX t

k
2
�

dv zGs
D an�1

Z
M

�
krXk2CAtkXk

2
�

dvg;

(4-3)
Z

T1M

�
kzr NX h

k
2
�kzr�k2k NX h

k
2
�

dv zGs
D an�1

Z
M

�
krXk2CAhkXk

2
�

dvg;

where n

n�1
an�1 is the volume of the unit sphere Sn�1, and

At D
5� 2n

4n.n� 1/.nC 2/
kRk2�

�2

2n2.nC 2/
C
�

n
� nC 2;

Ah D
4� n

4n.n� 1/.nC 2/
kRk2�

�2

2n.n� 1/.nC 2/
C
.n� 2/�

n.n� 1/
� nC 3:

Denote by �1 the Laplacian acting on 1-forms. Recall that �1 also acts on
vector fields via duality and it is related to the rough Laplacian N� and the Ricci
operator Q by the well-known Weitzenböck formula [Poor 1981, page 168]:

(4-4) �1 D
N�CQ:

Moreover, for any X 2 X.M /, from (3-5) we have

(4-5) �
1
2
�kXk2 D krXk2�g. N�X;X /:
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Then (4-4) and (4-5) imply that

�
1
2
�kXk2 D krXk2�g.�1X;X /CRic.X;X /:

As M is locally isometric to a two-point homogeneous space, it is Einstein, that
is, RicD .�=n/g, the above equation gives

(4-6)
Z

M

krXk2dvg D

Z
M

.g.�1X;X /�
�

n
kXk2/ dvg:

Then, (4-1), (4-2), and (4-6) imply

.Hess E QQGs /�.X
t /D an�1

Z
M

�
g.�1X;X /C

�
At �

�

n

�
kXk2

�
dvg;(4-7)

.Hess E QQGs /�.
NX h/D an�1

Z
M

�
g.�1X;X /C

�
Ah�

�

n

�
kXk2

�
dvg:(4-8)

Let �1 the first eigenvalue of the Laplacian � acting on functions. Consider an
eigenfunction f related to the eigenvalue �1. Set ! D df , so that

�1! D .dıC ıd/ df D dıdf D d�f D �1df D �1!:

Hence, if X0 is the vector field defined by g.X0; �/D !, we obtain

�1X0 D �1X0:

Consequently, .Hess E QQGs /�.X
t
0
/ < 0 if and only if �1 satisfies

(4-9) �1 <
�

n
�At D

2n� 5

4n.n� 1/.nC 2/
kRk2C

�2

2n2.nC 2/
C n� 2;

and .Hess E QQGs /�.
NX h
0
/ < 0 if and only if �1 satisfies

(4-10) �1 <
�

n
�Ah

D
n�4

4n.n�1/.nC2/
kRk2C

�2

2n.n�1/.nC2/
C

�

n.n�1/
Cn�3:

Now, suppose that .M;g/ is a space of constant curvature � > 0. Then,

� D n.n� 1/�; kRk2 D 2n.n� 1/�2
D

2�2

n.n� 1/
and

At �
�

n
D
.5� 2n/2n.n� 1/�2

4n.n� 1/.nC 2/
�

n2.n� 1/2�2

2n2.nC 2/
� .n� 2/;

that is,
�

n
�At D .n� 2/

�
�2

2
C 1

�
> 0 for any n> 2:
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Moreover,

Ah�
�

n
D
.4�n/2n.n�1/�2

4n.n�1/.nC2/
�

n2.n�1/2�2

2n.n�1/.nC2/
C
.n�2/n.n�1/�

n.n�1/
�.n�3/�

�

n

D
.2�n/

2
�2
���.n�3/;

that is,
�

n
�Ah D

.n� 2/

2
�2
C �C n� 3:

Therefore, by (4-9), .Hess E QQGs /�.X
t
0
/ < 0 if and only if �1 satisfies

(4-11) �1 <
�

n
�At D .n� 2/

�
�2

2
C 1

�
and, by (4-10), .Hess E QQGs /�.

NX h
0
/ < 0 if and only if �1 satisfies

(4-12) �1 <
�

n
�Ah D

.n� 2/

2
�2
C �C n� 3:

Now, for a space of constant sectional curvature � >0, a result of Lichnerowicz and
Obata [Berger et al. 1971, pages 179–180] states that the eigenvalue �1 satisfies
�1 � n�, where the equality holds if and only if M is isometric to the canonical
sphere of radius r D

p
1=�. So, for the sphere Sn.r/ of radius r > 0, that is of

constant sectional curvature � D 1=r2, the conditions (4-11), (4-12) become

.�2
� 2�C 2/

�
n�

2.�2C 2/

�2� 2�C 2

�
> 0;(4-13)

.�2
� 2�C 2/

�
n�

2�2�2�C6

�2� 2�C 2

�
> 0:(4-14)

Examining these expressions, we conclude:
If n and � satisfy one of the following conditions, then (4-11) is satisfied:

� � > 0 and n� 7;

� � 2 �0; 1Œ [ �2;C1Œ and n� 6;

� � 2 �0; 1
3
.5�
p

7/Œ [ � 1
3
.5C
p

7/;C1Œ and n� 5;

� � 2 �0; 2�
p

2Œ [ �2C
p

2;C1Œ and n� 4;

� � 2 �0; 3�
p

7Œ [ �3C
p

7;C1Œ and n� 3:

If n and � satisfy one of the following conditions, then (4-12) is satisfied:

� � > 0 and n� 7;

� � 2 �0; 1Œ [ � 3
2
;C1Œ and n� 6;

� � 2 �0; 2
3
Œ [ �2;C1Œ and n� 5;

� � 2 �0; 3�2
p

2Œ [ �3C2
p

2;C1Œ and n� 4;

� � 2 �4;C1Œ and n� 3:
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Summarizing:

Theorem 4.2. Let Sn.r/ be the canonical sphere of radius r , and let � D 1=r2.
If one of the following conditions holds, then the geodesic flow � on T1Sn.r/ is
unstable for the energy E QQG :

� � > 0 and n� 7;

� � 2 �0; 1Œ [ � 3
2
;C1Œ and n� 6;

� � 2 �0; 2
3
Œ [ �2;C1Œ and n� 5;

� � 2 �0; 2�
p

2Œ [ �2C
p

2;C1Œ and n� 4;

� � 2 �0; 3�
p

7Œ [ �4;C1Œ and n� 3:

Corollary 4.3. The geodesic flow � on T1Sn.1/ is unstable for the energy E QQG ,
for n� 7.

The two-dimensional case. Let .M;g/ be a compact Riemannian surface of con-
stant curvature � > 0. If � < 1, Theorem 7 of [Boeckx et al. 2002] gives that the
geodesic flow � on T1M is an unstable harmonic vector field for the energy E QQGs .
If �D 1, .T1M;Gs/ is a compact Riemannian three-manifold of constant curvature
c D 1

4
and � is a unit Killing vector field. Brito [2000] proved that the unit vector

fields of minimum energy on the unit sphere S3 are precisely the unit Killing vector
fields, and no others. Recently, we proved an analogue of Brito’s theorem for a
compact Sasakian three-manifold [Perrone 2008, page 20]. A consequence of its
proof gives: the unit vector fields of minimum energy on a compact Riemannian
three-manifold of constant sectional curvature c � 0 are precisely the unit Killing
vector fields, and no others.

Other positively curved two-point homogeneous spaces. There are known ana-
logues of Theorem 4.2 for other compact positively curved two-point homogeneous
spaces, though with different conditions. We mention:

– For the real projective space RPn of constant sectional curvature � > 0, we know
from [Gallot 1980, page 38] that �1D 2.nC1/�. The conditions (4-11) and (4-12)
become

n.�2
� 4�C 2/� 2.�2

C 2�C 2/ > 0; n.�2
� 4�C 2/� 2.�2

C �C 3/ > 0:

Examining this inequality we find that if n� 3 and � 2 �0; 8�
p

62Œ [ �14;C1Œ,
the geodesic flow � on T1RPn is unstable for the energy E QQG .

– For the complex projective space CPm, n D 2m, of constant holomorphic sec-
tional curvature � > 0, we have, from [Gray and Vanhecke 1979, page 177] and
[Gallot 1980, page 38],

(4-15) � Dm.mC 1/�; kRk2 D 2m.mC 1/�2; �1 D .mC 1/�:
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Using this, we obtain conditions, like Theorem 4.2, which imply the instability of
the geodesic flow on the unit tangent sphere bundle of the corresponding space.
For m> 1, the condition �1CAt � �=n< 0 becomes

.m� 1/.2mC 11/�2
� 16.mC 1/.2m� 1/�C 32.m� 1/.2m� 1/ > 0:

The other condition, �1CAh� �=n< 0, becomes

.m� 1/.mC 4/�2
� 4.mC 1/.4m� 3/�C 8.2m� 3/.2m� 1/ > 0:

A similar remark applies to the next two examples. The references are also the
same.

– For the quaternionic projective space, nD 4m, of constant quaternionic sectional
curvature � > 0, we have

(4-16) � D 4m.mC 2/�; kRk2 D 4m.5mC 1/�2; �1 D 2.mC 1/�:

– For the Cayley projective plane, nD 16, of maximum sectional curvature � > 0,

(4-17) � D 144�; kRk2 D 576�2; �1 D 48�:

5. Instability of harmonic maps defined by the geodesic flow

In the theory of harmonic maps, a fundamental question concerns the existence of
harmonic maps between two given Riemannian manifolds .M;g/ and .M 0;g0/. If
.M;g/ is compact and .M 0;g0/ is of nonpositive sectional curvature, there exists a
harmonic map f W .M;g/! .M 0;g0/ in each homotopy class [Eells and Sampson
1964]. However, there is no general existence result when .M 0;g0/ does not satisfy
this condition. This fact makes it interesting to find examples of harmonic maps
having such a target manifold. Since the standard existence theory for harmonic
maps does not apply, examples have to be constructed ad hoc.

Now, let zG be an arbitrary Riemannian g-natural metric on T1M . By (2-4), the
geodesic flow vector field � on T1M has constant length k�k zG D �D

p
aC cC d

(not necessarily equal to 1). Hence, we can study the harmonicity of the geodesic
flow as a map � W T1M ! T�T1M . We equip T�T1M with an arbitrary g-natural
Riemannian metric zGz coming from zG. By (2-6), zGz will depend on four constants
a0; b0; c0; d 0, satisfying

a0 > 0; a0.a0C c0/� .b0/2 > 0; a0.a0C c0C �2d 0/� .b0/2 > 0:

The following result shows that in many cases, the geodesic flow also defines a
harmonic map.
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Theorem 5.1 [Abbassi et al. 2010b]. Let .M;g/ be a two-point homogeneous
space. The map � W .T1M; zG/! .T�T1M; zGz / is a harmonic map if and only if

(5-1) na˛b0
n�1P
iD1

�2
i D

�
a0b3d C 2b0˛.˛� b2/

�
� � n.n� 1/b0˛.aC c/2;

where ˛ D a.aC c/ � b2 and the �i are the eigenvalues of the Jacobi operator
Ru DR. � ;u/u.

In particular, if zG D zGs (i.e., aD 1; bD c D d D 0) and M has constant sectional
curvature �, then �i D �, � D n.n�1/� and (5-1) becomes n.n�1/b0.��1/2D 0.
Thus we get:

Theorem 5.2. Let .M;g/ be a space of constant sectional curvature �.

(i) If � D 1, the geodesic flow determines a harmonic map

� W .T1M; zGs/! .T1T1M; zGz /

for any natural Riemannian metric zGz on T1T1M induced from zGs .

(ii) If � ¤ 1, the geodesic flow determines a harmonic map

� W .T1M; zGs/! .T�T1M; zGz /

if and only if zGz is of Kaluza–Klein type, that is, b0 D 0.

Since instability for the energy restricted to X1.T1M / clearly implies instability
in the large sense, combining Theorem 4.2 and Theorem 5.2 we get:

Theorem 5.3. (i) The geodesic flow vector field on T1S
n.1/, n > 6, determines

an unstable harmonic map � W .T1S
n.1/; zGs/! .T1T1S

n.1/; zGz / for any nat-
ural Riemannian metric zGz on T1T1S

n.1/ induced from zGs .

(ii) Let Sn.�/ be the canonical sphere of constant curvature �, where

� 2 �0; 3�
p

7Œ [ �4;C1Œ;

and let n � 3. Then the geodesic flow on T1S
n.�/ determines an unstable

harmonic map

� W .T1S
n.�/; zGs/! .T1T1Sn.�/; zGz /

for any metric of Kaluza–Klein type zGz on T1T1S
n.�/ induced from zGs .
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