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Using basic homotopy constructions, we show that isomorphism classes of
string structures on spin bundles are naturally given by certain degree 3
cohomology classes, which we call string classes, on the total space of the
bundle. Using a Hodge isomorphism, we then show that the harmonic repre-
sentative of a string class gives rise to a canonical 3-form on the base space,
refining the associated differential character. We explicitly calculate this
3-form for homogeneous metrics on 3-spheres, and we discuss how the co-
homology theory tmf could potentially encode obstructions to positive Ricci
curvature metrics.

1. Introduction

Degree four characteristic classes arise as obstructions in several ways in math and
theoretical physics. This is analogous to the way the Stiefel–Whitney classes w1

and w2 encode obstructions to orientations and spin structures on a manifold M .
One usually encounters the degree four classes when considering structures anal-
ogous to the spin structure, but on mapping spaces Map(6,M), where 6 is a 1-
or 2-dimensional manifold. It is common to say that 1

2 p1(M) = 0 ∈ H 4(M;Z) is
the obstruction to forming a string structure on a manifold M .

In this paper, we only deal with a homotopy-theoretic version of string struc-
tures. While geometric notions, such as [Coquereaux and Pilch 1989; Stolz and
Teichner 2004; Waldorf 2009], are necessary for applications, we show we can re-
cover some of this geometric information from the topological data for free. When
dealing with these degree 4 classes, one usually must also deal with the associated
differential characters. We naturally obtain globally defined forms representing
these characters. We also speculate on the possibility that the string orientation of
tmf may encode obstructions to positive Ricci curvature metrics. This would be
analogous to the obstructions for positive scalar curvature metrics encoded in the
spin orientation of KO.
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Throughout, all manifolds will be compact, connected, oriented, smooth, and
without boundary. We now set up notation. Let G be a compact, simply connected,
simple Lie group and λ ∈ H 4(BG;Z) a universal characteristic class. Let P π

−→M
be a principal G-bundle with connection 2, and let

λ(P) ∈ H 4(M;Z), λ(2) ∈�4(M), λ̌(2) ∈ Ȟ 4(M),

respectively be the naturally induced characteristic class, Chern–Weil form, and
Cheeger–Simons differential character. The differential character is closely related
to the Chern–Simons form CSλ(2) ∈ �3(P). Finally, g will be a Riemannian
metric on M . (In Section 2, we also consider more general G and λ.)

To the characteristic class

λ ∈ H 4(BG;Z)∼= H 3(G;Z)∼= π3(G)∼= Z,

one can associate a topological group G̃λ and homomorphism G̃λ → G killing
off the corresponding element in π3(G) and inducing isomorphisms in all higher
homotopy groups [Stolz 1996; Stolz and Teichner 2004; Baez et al. 2007; Hen-
riques 2008; Schommer-Pries 2009]. When G=Spin(k) and λ= 1

2 p1, the resulting
group is commonly known as String(k). While the actual groups G̃λ are not easy
to describe, their homotopy type is clearly fixed. Therefore, we base our construc-
tions only on the homotopy type. While more concrete models of G̃λ lead to more
geometric definitions of G̃λ-structures, we only consider the problem of lifting the
classifying map from BG to B̃Gλ. We call a specific choice of lift a trivialization
of the cohomology class λ.

In Section 2, we show that, up to homotopy, such trivializations of λ are naturally
equivalent to cohomology classes S∈ H 3(P;Z) that restrict to �λ∈ H 3(G;Z) on
the fibers. Here, �λ is the class that universally transgresses to λ. These classes
S are referred to as λ-trivialization classes. In the case where G = Spin(k) and
λ = 1

2 p1, we see that the homotopy class of a string structure is equivalent to its
string class S. An important consequence is that one can describe an element in
string bordism by a spin manifold M and string class S ∈ H 3(Spin(T M);Z).

In fact, these statements hold in greater generality, and Section 2 considers the
more general case where G is a topological group and λ∈ H n(BG; H). Homotopy
classes of lifts to B̃Gλ still induce canonical classes in H n−1(P; H), and there is
an equivalence when H̃ i (BG; H)= 0 for i < n.

In Section 3, we analyze the harmonic representative of a λ-trivialization class
S on P π

−→ M . The metric on P is naturally induced by a connection 2 on P
and a Riemannian metric g on M . The harmonic 3-forms on P , in an adiabatic
limit, were previously analyzed in [Redden 2008]. In Theorem 3.7, we see that the
induced Hodge isomorphism H 3(P;R) ∼=−→�3(P) sends the string class S to the 3-
form CSλ(2)−π∗HS,g,2. We call the form HS,g,2 ∈�

3(M) the canonical 3-form
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associated to the λ-trivialization class, metric, and connection. Proposition 3.12
states

d∗HS,g,2 = 0 ∈�2(M) and ȞS,g,2 = λ̌(2) ∈ Ȟ 4(M),

where ȞS,g,2 is the induced differential character. Thus, the form HS,g,2 lifts
λ̌(2) to take values in R instead of R/Z. This lift is independent of the metric
on M ; the metric picks out the forms with smallest norm lifting λ̌(2).

We note that any time one encounters λ̌(2) and λ(P) = 0, the form HS,g,2 is
relevant because it gives a purely local version of λ̌(2). This situation arises in
theoretical physics under the guise of anomaly cancellation. It also arises when
constructing the loop group extension bundle L̂ P→ L P restricting to L̂G→ LG.

In Sections 4–6, we deal exclusively with string structures on the frame bundle
Spin(T M)→ M of a manifold with spin structure. Given a string class S and
Riemannian metric g, we use the Levi-Civita connection to produce the canonical
3-form HS,g.

Section 4 is largely motivational and provides background information on how
string structures arise and why they are important. In particular, we discuss the
string orientation

MString σ
−→ tmf

of the cohomology theory of topological modular forms [Hopkins 2002] and its
tentative relationship to index theory on loop spaces. This is analogous to the
well-understood relationship between KO-theory and index theory. A theorem of
Hitchin shows that the spin orientation of KO encodes obstructions to positive
scalar curvature metrics. In the hope of an analogous theorem, Question 4.3 asks,
If (M,S, g) is a closed Riemannian n-manifold with string class S satisfying both
Ric(g) > 0 and HS,g = 0, does this imply that σ [M,S] = 0 ∈ tmf−n(pt)?

In Section 5, we give an equivalent reformulation of Question 4.3. One can
use the canonical 3-form HS,g to modify the Levi-Civita connection, inducing a
metric connection ∇S,g with torsion. Since the metric is used to “raise an index”
of HS,g, the global rescaling of M determines a canonical 1-parameter family
of connections associated to HS,g. This converges to the Levi-Civita connection
in the large volume limit. Proposition 5.4 states that the simultaneous condition
(Ric(g) > 0, HS,g = 0) is equivalent to the modified connection having positive
Ricci curvature in a small volume limit. An interesting side note is the alternate
description of the Levi-Civita connection. For a fixed metric g, the Levi-Civita
connection is the unique metric connection maximizing the Ricci curvature.

In Section 6, we examine Question 4.3 in the case where M= S3 with a homoge-
neous metric (under the left or right action of S3∼=SU(2)). In this case, the answer
to Question 4.3 is yes, but not if either of the conditions (Ric(g) > 0, HS,g = 0)
are weakened in an obvious way. The only (S, g) satisfying both conditions is the
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string class and round metric induced from D4. In this case, the string bordism class
is obviously 0. However, there is a 1-parameter family of left-invariant metrics g
satisfying Ric(g) ≥ 0 and HR,g = 0, where R is induced by the right-invariant
framing. Since σ [S3,R] = 1/24 ∈ tmf−3(pt), we see that our question would have
a negative answer if one were to weaken the curvature condition. Also, one can find
Ricci positive metrics g such that HR,g is arbitrarily small, so one cannot easily
weaken the condition HS,g = 0 either.

We close by noting that Section 3 is part of a more general story. The results of
[Redden 2008] and Section 2 imply that the adiabatic-harmonic representative of a
spinc class gives a canonical 2-form refining the flat differential character W̌3(2).
Similarly, the harmonic representative of an SU-class on a U (n)-bundle canonically
gives a 1-form refining the character č1(2). It appears there is a very general
relationship between certain cohomology classes on a bundle P , their harmonic
representatives, and the associated differential characters. The author is currently
attempting to prove and properly understand these relations.

2. Trivializations of characteristic classes

In this section we make some observations on the general theory of trivializing a
characteristic class, and we apply it to the Pontrjagin class 1

2 p1 ∈ H 4(BSpin;Z) to
obtain results in subsequent sections. In the case of spin structures, or trivializations
ofw2, the results in this section are quite standard. In fact, this section is essentially
a rewriting of [Lawson and Michelsohn 1989, Chapter 2.1] so that it applies in
greater generality.

Since we will frequently use the notions of homotopy fibers and Eilenberg–
Mac Lane spaces, we recall a couple of key facts. If H is an abelian group,1 then
an Eilenberg–Mac Lane space of type K (H, n) is a space with the only nontriv-
ial homotopy group being πn K (H, n) ∼= H . The space K (H, n) is unique up to
homotopy and is the classifying space for ordinary cohomology; that is, for a CW-
complex X ,

H n(X; H)∼= [X, K (H, n)],

where the right side is homotopy classes of based maps X → K (H, n). Further-
more, the loopspace functor � induces a homotopy equivalence

�K (H, n)' K (H, n− 1) for n > 1.

The homotopy fiber of a map is defined as the pullback of the pathspace fibration.
Given a space Y with basepoint y1, we obtain the pathspace

PY = {γ : [0, 1] → Y | γ (1)= y1}.

1 H is unrelated to the canonical forms in subsequent sections.
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The natural map PY → Y given by γ (0) is a fibration whose fiber is homotopic
to �Y . In fact, �Y acts on the total space of this fibration. The homotopy fiber
X̃ f of a map X f

−→ Y is then the actual pullback of PY . If the homotopy fiber
construction is repeated, one obtains a sequence of fibrations homotopic to

· · ·�X̃ f →�X
� f
−→�Y → X̃ f → X

f
−→ Y.

Now, let G be a connected topological group (of CW type so that standard
classifying space constructions apply). Then, BG is the classifying space for G-
bundles, and H∗(BG; H) is the cohomology of BG with coefficients in H . The
examples we will be concerned with are when G is a classical Lie group such as
SO(n) or Spin(n), and H = Z or Z/2. Consider a universal characteristic class
λ ∈ H n(BG; H), equivalent to a homotopy class of maps

BG
λ
−→ K (H, n).

We fix a specific map λ and will not distinguish notationally between the map and
the cohomology class.

Let B̃Gλ be the homotopy fiber of BG λ
−→ K (H, n). This gives rise to the

sequence

· · · → G
�λ
−−→ K (H, n− 1)→ B̃Gλ→ BG λ

−→ K (H, n)

of fibrations up to homotopy. Let P π
−→ M be a principal G-bundle over the

space M ; that is, P has a free continuous (right) G-action with quotient map
π : P → P/G ∼= M . Any such bundle P can be obtained as the pullback of
the universal bundle

P

π

��

f ∗ // EG

π

��
M

f // BG.

Consequently, any G-bundle has a natural characteristic class

λ(P) := f ∗λ ∈ H n(M; H).

Definition 2.1. A trivialization of the characteristic class λ on P is a lift of the
classifying map to B̃Gλ, that is, a lift f̃

B̃Gλ

��
M

f̃
<<y

y
y

y f // BG.

We say two trivializations f̃0 and f̃1 are homotopic if they are homotopic through
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the space of lifts, that is, if there exists a homotopy F̃ : [0, 1] × M → B̃Gλ such
that F̃ |0 = f̃0, F̃ |1 = f̃1, and F̃ |t is a lift of f for all t ∈ [0, 1].

Proposition 2.2. Let P π
−→M be a G-bundle classified by the map f : M→ BG.

(1) There exists a trivialization of λ on P if and only if λ(P)= 0 ∈ H n(M; H).

(2) If λ(P) = 0, the set of trivializations of λ up to homotopy has a free and
transitive action of H n−1(M; H); that is, it is an H n−1(M; H)-torsor.

Proof. Part (1) follows from the definition of the homotopy fiber. A lift f̃ is
precisely the choice of a nullhomotopy of λ ◦ f : M → K (H, n), and λ ◦ f is
nullhomotopic precisely when the cohomology class λ(P)= 0.

For part (2), assume an initial trivialization f̃0. This is equivalent to a global
section f̃0 : M → f ∗ B̃Gλ, and B̃Gλ → BG is a fibration with fibers of type
�K (H, n)' K (H, n− 1). In fact the H-space �K (H, n) acts fiberwise on B̃Gλ,
so a global section f̃0 induces a fiber homotopy equivalence

M ×�K (H, n) ' //

$$

f ∗ B̃Gλ

~~
M.

Therefore, the homotopy class of any other section f̃1 :M→ f ∗ B̃Gλ is equivalent
to the homotopy class of a function M→�K (H, n)' K (H, n− 1). �

Note that the connectedness of G implies that BG is simply connected, so we
don’t have to use local coefficients when dealing with the cohomology of fibers.
The cohomology of any fiber is canonically isomorphic to H∗(G; H), and we have
a well-defined “restriction to fibers” map in cohomology, given by

i∗ : H∗(P; H)→ H∗(G; H).

Proposition 2.3. (1) A trivialization f̃ of λ(P) gives a canonical cohomology
class in H n−1(P; H) that restricts on fibers to the class �λ ∈ H n−1(G; H).

(2) The cohomology class in (1) only depends on the homotopy class of f̃ .

(3) Furthermore, H n−1(M; H) acts equivariantly on the homotopy classes of λ-
trivializations and H n−1(P; H) via π∗.

Proof. For part (1), consider the universal pullback bundle

EG

��

5∗EG5∗oo

��
BG B̃Gλ

5oo
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Then, a lift f̃ : M → B̃Gλ such that 5 ◦ f̃ = f is equivalent to a G-equivariant
map f̃ ∗ : P→5∗EG such that 5∗ ◦ f̃ ∗ = f ∗.

Since EG is contractible, 5∗EG is a K (H, n − 1) space, as evidenced by the
natural homotopy equivalence of fibrations given by

G //

'

��

5∗EG
**

'

��
B̃Gλ.

�BG �λ // �K (H, n)

44

Therefore, any lift f̃ is equivalent to f̃ ∗ : P → 5∗EG ' K (H, n − 1). When
restricted to a fiber, f̃ ∗ :G→5∗EG is equivalent to �λ :G→ K (H, n−1). This
is shown in the following commutative diagram:

K (H, n− 1)

5∗xx ��
P

��

f ∗ //

f̃ ∗
33

p
n

l
j h

EG

��

B̃Gλ

5xx
M

f //

f̃ 22

p
n

l
j h f e

BG

For part (2), a homotopy F̃ between any two trivializations f̃0 and f̃1 naturally
lifts to an equivariant homotopy F̃∗ between the bundle maps f̃ ∗0 and f̃ ∗1 . There-
fore, the cohomology class f̃ ∗ ∈ H n−1(P; H) of a trivialization only depends on
the homotopy class of f̃ .

For part (3), the fiberwise action of �K (H, n) on B̃Gλ
5
−→ BG naturally pulls

back via π∗ to an action on5∗EG. If f̃1= φ · f̃0, where φ :M→�K (H, n), then

f̃ ∗1 = π
∗φ · f̃ ∗0 .

Therefore, if two homotopy classes trivializations [ f̃0] and [ f̃1] differ by [φ] ∈
H n−1(M, H), their natural cohomology classes [ f̃ ∗0 ], [ f̃

∗

1 ] ∈ H n−1(P, H) differ
by π∗[φ]. �

The previous proposition gives a map

(2.4) {λ-trivializations}/∼ −→ {S ∈ H n−1(P; H) | i∗S=�λ ∈ H n−1(G; H)}

that is equivariant under the natural H n−1(M; H) action. Here, ∼ denotes equiv-
alence up to homotopy. In general, this map is neither injective nor surjective. We
will refer to such a cohomology class S as λ-trivialization class.

Proposition 2.5. Suppose H̃ i (G; H)= 0 for i < n− 1. Then (2.4) is a bijection.
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Proof. The connectedness of G implies the E2 term in the Leray–Serre cohomology
spectral sequence for EG→ BG is

Er,s
2
∼= H r (BG; H s(G; H)),

and the contractibility of EG implies that Er,s
∞
= 0 for (r, s) 6= (0, 0). This, com-

bined with the vanishing of H i (G; H) for i < n−1, implies that the transgression

dn : E0,n−1
n

∼= H n−1(G; H)→ En,0
n
∼= H n(BG; H)

is an isomorphism. In fact, Lemma 2.6 says that dn(�λ)= λ.
The Leray–Serre cohomology spectral sequence for P π

−→M is pulled back from
the sequence for the universal bundle. This results in the exact sequence

0→ H n−1(M; H)
π∗

−→ H n−1(P; H)
i∗
−→ H n−1(G; H)

dn
−→ H n(M; H)

�λ 7→ λ(P).

If λ(P) = 0, then the action of H n−1(M; H) is free and transitive on classes in
H n−1(P; H) restricting to �λ. Since (2.4) is an equivariant map, and both sides
are torsors for H n−1(M; H), it must be a bijection. �

Lemma 2.6. Suppose that H̃ i (X)= 0 for i < n. Then, the cohomology transgres-
sion for the pathspace fibration�X ↪→ P X→ X is the inverse of the loop functor;
that is, d−1

n =� in

H n−1(�X; H)
dn

∼=

--
H n(X; H).

�

nn

Proof. For the fibration �X ↪→ P X → X , the transgression and loop functor are
related by

H n(X; H)

��

� // H n−1(�X; H)

En,0
n E0,n−1

n .
dnoo

OO

This follows from the general relationship between the transgression and coho-
mology loop suspension [Serre 1951]. If H̃ i (X; H) = 0 for i < n, then there is
no room for any nontrivial differentials in the Serre spectral sequence until dn .
Therefore, En,0

n
∼= H n(X; H), E0,n−1

n
∼= H n−1(�X; H) and dn is an isomorphism

with inverse �. �

Finally, we wish to make a general note about stable cohomology classes. The
usual examples are Chern classes, Pontryagin classes, and Stiefel–Whitney classes,
and they correspond to the stable cohomology of classifying spaces for the groups
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U (k) and O(k). In general, assume one has a sequence of groups {G(k)} and
natural inclusions G(k) ↪→ G(k+ 1) inducing maps

· · · → BG(k)→ BG(k+ 1)→ BG(k+ 2)→ · · ·

such that the cohomology stabilizes. We then refer to the cohomology of BG =
limk→∞ BG(k). Any cohomology class λ ∈ H n(BG; H) is stable and defines a
sequence of cohomology classes λk ∈ H n(BG(k); H) for all k:

H n(BG; H)→ H n(BG(k); H), λ 7→ λk,

though the k-subscript is usually unnecessary and dropped. Given a G(k)-bundle
P(k) classified by f : M → BG(k), one can stably extend to a G(k+l)-bundle
P(k+ l) by M f

−→ BG(k)→ BG(k+ l). It is obvious that the characteristic class
is stable in that λk+l(P(k+ l))= λk(P(k)) ∈ H n(M; H).

Proposition 2.7. Consider λ ∈ H n(BG; H). A trivialization of λk on any G(k)-
bundle naturally induces a trivialization of λ on any stable extension of P.

Proof. This follows from the naturality of homotopy fibers. If we consider the
inclusion map ι : BG(k)→ BG(k+ 1), then

B̃G(k)λ = λ∗k P K (H, n)= (λk+1 ◦ ι)
∗P K (H, n)= ι∗ ˜BG(k+ 1)λ.

Drawing this bundle map, we have

B̃G(k)λ

��

// ˜BG(k+ 1)λ

��
M

f̃
;;

f // BG(k) // BG(k+ 1).

Any trivialization of B̃G(k)λ naturally extends to a trivialization of ˜BG(k+ 1)λ
by composition, and this process can be continued indefinitely. �

To the G(k1)-bundle P1
π1
−→M and G(k2)-bundle P2

π2
−→M we can associate the

G(k1)×G(k2)-bundle P1×M P2→ M . If there are inclusions

BG(k1)× BG(k2)
ι1×ι2
−−−→ BG(k1+ k2),

the bundle P1×M P2 is also naturally a G(k1+ k2)-bundle.
Suppose that H i (BG; H)= 0 for i < n. The Kunneth formula then implies the

additivity of λ ∈ H n(BG; H):

(2.8) λ(P1×M P2)= λ(P1)+ λ(P2) ∈ H n(M; H).
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The bottom square of the diagram below then commutes up to homotopy, implying
the existence of the dotted arrow map.

˜BG(k1)λ× ˜BG(k2)λ //___

��

˜BG(k1+ k2)λ

��
BG(k1)× BG(k2)

λ×λ

��

// BG(k1+ k2)

λ

��
K (H, n)× K (H, n) // K (H, n)

Therefore, a trivialization of λ on the bundles P1 and P2 induces a trivialization
of λ on P1×M P2 when viewed as a G(k1+ k2)-bundle (at least up to homotopy).
This can also be seen explicitly in terms of cohomology classes.

Proposition 2.9. For l = 1, 2, let Pl
πl
−→M be a G(kl)-bundle. Let P1×M P2→M

be the G(k1)×G(k2)-bundle and P→ M the induced G(k1+k2)-bundle. Assume
H i (BG(k); H)=0 for i<n (here k=k1, k2, k1+k2) and λ∈H n(BG; H). Then up
to homotopy, a λ-trivialization on any two of {P, P1, P2} induces a λ-trivialization
on the third.

Proof. Equation (2.8) implies the existence of a λ-trivialization on the third bundle
if the other two admit λ-trivializations. Proposition 2.5 states the choice of a trivial-
ization, up to homotopy, is equivalent to a λ-trivialization class Si ∈ H n−1(Pi ; H)
restricting to �λ on the fibers. We now show that the choice of λ-trivialization
class on any two bundles determines one on the third bundle.

Note that there are natural bundle maps

P1×M P2

π1yy π2 %%

ι1×ι2 // P

P1 P2.

We seek solutions to the equation

(ι1× ι2)
∗S= π∗S1+π

∗S2.

Just as in Proposition 2.5, the following commutative diagram is obtained from the
Serre spectral sequences for the bundles P and P1×M P2:

0→ H n−1(M) // H n−1(P) //

(ι1×ι2)
∗

��

H n−1(G(k1+ k2))

(ι1×ι2)
∗

��

// H n(M)

0→ H n−1(M) // H n−1(P1×M P2) // H n−1(G(k1))⊕ H n−1(G(k2)) // H n(M)

The cohomology coefficients are all H but suppressed for spacing purposes.
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We know that (ι1 × ι2)∗λk1+k2 = λk1 ⊕ λk2 . For any three classes S,S1,S2 in
the respective bundles, the exact sequence implies

(ι1× ι2)
∗S−π∗1 S1−π

∗

2 S2 = π
∗φ

for a unique φ ∈ H n−1(M; H). If we fix two of the classes S,S1,S2, modifying
the third by φ gives us a solution to our desired equation. �

The previous proposition is useful when dealing with cobordism theories. In
the Pontryagin–Thom construction, the relevant extra structure takes place on the
stable normal bundle. Suppose the m-manifold M already has a G-structure on
the stable normal bundle ν(M). A lift of the classifying map to B̃Gλ induces
maps on the Thom spaces, which in turn give an element in the G̃λ-bordism group
MG̃−m

λ (pt).
However, it is often easier or more desirable to describe structures on the tangent

bundle. For any manifold M , T M⊕ν(M) is canonically isomorphic to the trivial
bundle, so Proposition 2.9 often allows us to construct cobordism classes while
only dealing with T M , or G(T M).

Corollary 2.10. Let λ ∈ H n(BG; H) be a stable class and suppose H i (BG; H)
vanishes for i < n. Then, an m-manifold M with G-structure and λ-trivialization
class S ∈ H n−1(G(T M); H) canonically determines a G̃λ-bordism class [M,S]

in MG̃−m
λ (pt).

We now apply Propositions 2.2, 2.3, and 2.5 and Corollary 2.10 to recover stan-
dard information on spin and spinc structures as well as a convenient description
of string structures.

2a. Spin structures. For k> 2, π1(SO(k))∼=Z/2, and the nontrivial double cover
is known as Spin(k). The Hurewicz image of the generator of π1(SO(k)) is the
generator of H 1(SO(k);Z/2), which transgresses to w2 ∈ H 2(BSO(k);Z/2). It is
then clear that

B̃SO(k)w2 ' BSpin(k).

Moreover, there is a spin orientation of KO-theory α : MSpin→KO. Propositions
2.2, 2.3, 2.5, and Corollary 2.10 imply the following.

Proposition 2.11. Let P π
−→M be a principal SO(k)-bundle.

• P admits a spin structure if and only if w2(P)= 0 ∈ H 2(M;Z/2).

• The set of spin structures up to isomorphism is naturally equivalent to the
set of spin classes S ∈ H 1(P;Z/2) that restrict to the nontrivial class in
H 1(SO(k);Z/2).

• The set of spin structures up to isomorphism is a torsor for H 1(M;Z/2).



458 CORBETT REDDEN

• An oriented m-manifold M with spin class S ∈ H 1(SO(T M);Z/2) gives
rise to the bordism class [M,S] ∈ MSpin−m(pt) and the KO-theory class
α[M,S] ∈ KO−m(pt).

Geometrically, the statements can be understood by interpreting H 1( · ;Z/2) in
terms of double covers; see [Lawson and Michelsohn 1989, Chapter 2.1]. Then, a
spin structure on P is an equivariant double cover of P restricting fiberwise to the
nontrivial double cover of SO(k).

2b. Spinc structures. For k > 2,

H 1(SO(k);Z)= 0 and H 2(SO(k);Z)∼= H1(SO(k);Z)∼= π1(SO(k))∼= Z/2.

The group Spinc(k) = Spin(k)×Z/2 S1 is a nontrivial S1-bundle over SO(k) and
hence classified by the generator of H 2(SO(k);Z); this generator transgresses to
W3 ∈ H 3(BSO(k);Z)∼= Z/2. Therefore,

B̃SO(k)W3 ' BSpinc(k).

Furthermore, there is a spinc orientation MSpinc
→ K of K -theory. Propositions

2.2, 2.3, 2.5, and Corollary 2.10 imply the following.

Proposition 2.12. Let P π
−→M be a principal SO(k)-bundle.

• P admits a spinc structure if and only if W3(P)= 0 ∈ H 3(M;Z).

• The set of spinc structures up to homotopy is naturally equivalent to the set of
classes S ∈ H 2(P;Z) that restrict to the nontrivial class in H 2(SO(k);Z).

• The set of spinc structures up to homotopy is a torsor for H 2(M;Z).

• An oriented m-manifold M with spinc class S ∈ H 2(SO(T M);Z) gives rise
to the bordism class [M,S] ∈MSpinc −m(pt) and K -theory class ∈ K−m(pt).

Again, the statements above all have direct geometric interpretations based on
K (Z, 2) ' BS1. A spinc structure is an equivariant S1-extension of P restricting
to the nontrivial extension on fibers. One can always tensor an S1-bundle over P
with the pullback of an S1-bundle on M .

2c. String structures. Let G be any compact simple simply connected Lie group.
Then, π2(G)=0 and π3(G)∼=H 3(G;Z)∼=Z. What happens when you kill π3(G)?
The 3-connected cover G〈4〉→ G cannot be a finite-dimensional Lie group, since
any connected nonabelian Lie group has nontrivial π3. However, there do exist
topological groups G̃→ G that are 3-connected coverings. Various constructions
can be found in [Stolz 1996; Stolz and Teichner 2004; Baez et al. 2007; Henriques
2008; Schommer-Pries 2009]. The results of all these imply the following (and
usually one only needs G to be semisimple):
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Choose a “level” λ ∈ H 4(BG;Z)∼= H 3(G;Z). Then, there exists a topological
group and continuous homomorphism G〈λ〉→G such that G〈λ〉 has the homotopy
type of the fiber of G �λ

−−→ K (Z, 3). Applying the classifying space functor gives

BG〈λ〉 → BG λ
−→ K (Z, 4).

When this construction is applied to G=Spin(k)with λ= 1
2 p1∈H 4(BSpin(k);Z),

the resulting topological group is known as String(k). Trivializations of 1
2 p1 are

commonly referred to as string structures. Applying the classifying space functor
gives us BString(k), and it is clear that

BString(k)' ˜BSpin(k) 1
2 p1
.

Remark 2.13. While multiple models for G〈λ〉 exist, there is no “easy” model
like the one Clifford algebras provide for the Spin groups. One must deal with
some combination of higher categories, von Neumann algebras, or gerbes, each of
which have particular subtleties. In this paper, we avoid these subtleties by only
considering the homotopy type of G〈λ〉. While we lose some information, we
can characterize lifts of structure groups purely in terms of ordinary cohomology
classes.

Remark 2.14. One should be careful when talking about spin, spinc, and string
structures up to homotopy. In addition to ignoring geometric considerations, these
structures are naturally categories and have automorphisms; we only deal with
isomorphism classes. The automorphisms play an important role, especially if one
wishes to talk about structures locally or glue together manifolds with structures.
See [Stolz and Teichner 2004; Waldorf 2009] for more concrete and categorical
models of string structures.

For k ≥ 3, Spin(k) is simply connected and compact; thus H̃ i (Spin(k);Z) = 0
for i < 3. Also, there is a generalized cohomology theory tmf that has a string
orientation MString σ

−→ tmf, as discussed more in Section 4. Propositions 2.2, 2.3
and 2.5 and Corollary 2.10 then imply the following statements, which can obvi-
ously be rewritten for arbitrary λ ∈ H 4(BG;Z) (except for the string orientation).

Definition 2.15. Let P π
−→M be a principal Spin(k)-bundle for k ≥ 3.

• A string structure on a principal Spin(k)-bundle P→ M is a lift of the clas-
sifying map to BString(k), that is, a lift f̃

BString(k)

��
M

f̃
::u

u
u

u
u f // BSpin(k).



460 CORBETT REDDEN

• A string class S ∈ H 3(P;Z) is a cohomology class that restricts fiberwise to
the stable generator of H 3(Spin(k);Z).

Proposition 2.16. Let P π
−→M be a principal Spin(k)-bundle for k ≥ 3.

• P admits a string structure if and only if 1
2 p1(P)= 0 ∈ H 4(M;Z).

• Up to homotopy, the choice of a string structure is equivalent to the choice of
a string class S ∈ H 3(P;Z).

• If S is a string class, then so is S + π∗φ for φ ∈ H 3(M;Z). This natural
action of H 3(M;Z) on string classes is free and transitive; that is, the set of
string classes is a torsor for H 3(M;Z).

• A spin m-manifold M with string class S ∈ H 3(Spin(T M);Z) determines
canonical classes [M,S] ∈ MString−m(pt) and σ [M,S] ∈ tmf−m(pt).

Remark 2.17. The cohomology H 3(Spin(k);Z) does not stabilize until k = 5,
so we briefly describe the stable generator in dimensions 3 and 4. Under the
low-dimensional isomorphisms with the symplectic groups, the groups Spin(k)
for k = 3, 4, 5 are related through the diagram

Spin(3) � � //

∼=

��

Spin(4)

∼=

��

� � // Spin(5)

∼=

��
Sp(1) � � Id× Id //

� _

��

Sp(1)×Sp(1) � � //
� _

��

Sp(2)� _

��
H

� � Id× Id // H⊕H
� � // GL(H, 2).

The Spin(4) decomposition is induced by left and right multiplications of the unit
quaternions. The second inclusion Spin(4) ↪→ Spin(5) is isomorphic to the matrix
inclusion Sp(1)×Sp(1) ↪→Sp(2) along the diagonal. Since H 3(Sp(k);Z) stabilizes
at k = 1, we denote by 1 a generator of H 3(Sp(1);Z)∼= H 3(SU(2);Z). Then

H 3(Spin(5);Z) // H 3(Spin(4);Z) // H 3(Spin(3);Z)

1 � // (1, 1) � // 2.

We originally defined p1=−c2. Therefore, we see that� 1
2 p1 ∈ H 3(Spin(3);Z)

is twice a generator, and in fact � 1
2 p1 = −2�c2 ∈ H 3(S3

;Z), where �c2 is the
usual generator.

3. Harmonic representative of a string class

In Section 2 we showed that, up to homotopy, a string structure on a principal
Spin(k)-bundle P→M is equivalent to a string class S∈ H 3(P;Z). In this section
we consider the harmonic representative of a string class. This will depend on the
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choice of a metric on a closed manifold M , a connection on P , and it involves
taking an adiabatic limit. We also must pass from Z coefficients to R coefficients
and lose torsion information. The harmonic representative of S is the Chern–
Simons 3-form associated to the connection, minus a 3-form on M representing the
differential cohomology class ˇ12 p1(2). The corresponding result holds for arbitrary
λ ∈ H 4(BG;Z), where G is a compact, simple, simply connected Lie group.

3a. Background: Differential characters. The canonical 3-form of Theorem 3.7
is best understood in the language of differential characters, originally developed
in [Cheeger and Simons 1985]. See also [Freed 2002]. Let Ci (M) and Zi (M)
denote the group of smooth i-chains and cycles on M , respectively. Let �i

Z(M)
denote the closed differential i-forms with integral periods; that is, their image in
H i (M;R) lies in the image of H i (M;Z)→ H i (M;R). The group of differential
characters Ȟ i (M) is defined as certain homomorphisms satisfying a transgression
property:

Ȟ i (M) := {χ : Zi−1(M)→ R/Z | there exists ω ∈�i (M) satisfying∫
6

c∗ω = χ(∂c) mod Z for all c :6→ M ∈ Ci (M)}

The form ω associated to a character χ must be unique, and in fact ω ∈ �i
Z(M).

The character σ also determines a cohomology class in H i (M;Z) whose image in
H i (M;R) is the same as [ω]. These two maps induce the short exact sequences

0→
�i−1(M)

�i−1
Z (M)

→Ȟ i (M)→ H i (M;Z)→ 0,(3.1)

0→ H i−1(M;R/Z)→Ȟ i (M)→�i
Z(M)→ 0,(3.2)

0→
H i−1(M;R)
H i−1(M;Z)

→Ȟ i (M)→ H i (M;Z)×H i (M;R)�
i
Z(M)→ 0.(3.3)

In fact, these exact sequences uniquely characterize the groups Ȟ i (M) [Simons
and Sullivan 2008]; one can refer to Ȟ∗(M) as the differential cohomology of
M without specifying the exact model being used, just as one refers to ordinary
cohomology without specifying the model.

The importance of differential cohomology is due to the natural factoring of
the Chern–Weil homomorphism through Ȟ∗(M). Any compact Lie group G and
universal class λ∈ H 2i (BG;Z) determine the following for any G-bundle P→M
with connection 2:

Characteristic class λ(P) ∈ H 2i (M;Z)
Chern–Weil form λ(2) ∈�2i (M)
Chern–Simons form CSλ(2) ∈�2i−1(P)
Differential character λ̌(2) ∈ Ȟ 2i (M)
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The integral class and form associated to λ̌(2) are λ(P) and λ(2), respectively.
Suppose G is compact, semisimple and simply connected. Let λ ∈ H 4(BG;Z).

Then, as discussed in [Freed 1995], the associated Chern–Weil form is

λ(2)= 〈�∧�〉 ∈�4(M),

where � is the curvature of 2, and 〈 · , · 〉 is a suitably normalized Ad-invariant
inner product on g. In this case, the Chern–Simons form is

CSλ(2)= 〈2∧�〉− 1
6〈2∧ [2∧2]〉 ∈�

3(P),

and

(3.4) [i∗ CSλ(2)] =�λ ∈ H 3(G;R).

Suppose that c : X→ M is a 3-cycle. The assumptions on G imply that c∗P→ X
admits a global section p. Then

λ̌(2)(c)=
∫

X
p∗(c∗ CSλ(2)) mod Z.

Hence, the information contained in λ̌(2) ∈ Ȟ 4(M) is simply the R/Z-periods
of the Chern–Simons 3-form. One is forced to only consider the R/Z-periods
because different global sections will give different R-periods. Note that when M
is a connected oriented 3-manifold, (3.3) implies

Ȟ 4(M)∼= H 3(M;R)/H 3(M;Z)∼= R/Z,

and the isomorphism is given by evaluating on the fundamental cycle [M]. On a
3-manifold, the element λ̌(2) ∈ Ȟ 4(M)∼= R/Z is often called the Chern–Simons
[1974] invariant or number of the connection2. This invariant motivated the theory
of differential characters.

3b. Hodge isomorphism on P. A Riemannian metric g on an n-manifold M in-
duces the Hodge star ∗ :3i T M→3n−i T M , creating the codifferential

d∗ := (−1)n(i+1)+1
∗ d∗ :�i (M)→�i−1(M).

The Hodge Laplacian is the operator

1g = dd∗+ d∗d = (d + d∗)2 :�i (M)→�i (M).

When M is closed (compact with no boundary), classical Hodge theory states that
there is a canonical isomorphism

H i (M;R)
5Ker1g

'

// Ker1g ⊂�
i (M).
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We will later denote Ker1g by Hi (M), though the forms in H3(P) will only be
harmonic in a limit.

Let (M, g) be a closed Riemannian manifold, and let P π
−→ M be a principal

G-bundle with connection 2 (G a compact, simple, simply connected Lie group).
This naturally gives rise to a one-parameter family of right-invariant Riemannian
metrics on P:

gδ := δ−2π∗g⊕ gG for δ > 0,

where gG is any biinvariant metric on G. (The metric gG exists since G is compact,
and it is unique up to a scaling constant because G is simple.) Conceptually, gδ
is given by using the connection to decompose T P into horizontal and vertical
spaces; the metrics on M and G determine metrics on the horizontal and vertical
components, respectively.

For any δ > 0, we have the harmonic forms Ker13
gδ ⊂ �3(P). In general

this finite-dimensional subspace varies with δ, and we will not be concerned with
Ker1gδ for any particular δ. Instead, we analyze the adiabatic limit, the limit as
δ→ 0. Note that we had to choose the metric gG . For this reason, it seems natural
to introduce the scaling factor δ and take a limit, thus removing the dependence on
the initial choice of gG . Indeed, this is supported by concrete calculations, where
the adiabatic limit appears to be of most interest.

Theorem 3.5 [Mazzeo and Melrose 1990; Dai 1991; Forman 1995]. The 1-para-
meter space Ker1i

gδ ⊂ �i (P) smoothly extends to δ = 0. Furthermore, there
is a spectral sequence computing limδ→0 Ker1gδ that is isomorphic to the Serre
spectral sequence.

This theorem holds in greater generality, and the context of each cited paper
applies to the principal G-bundles with metric that we are considering. The spectral
sequence mentioned is a Hodge-theoretic sequence, the details of which are given
in [Forman 1995] and also summarized in [Redden 2008]. The fact that Ker1gδ
extends continuously to δ= 0 (as a path in Grassmannian space) implies that there
is still a Hodge isomorphism

H i (P;R)
5Ker10

'

// limδ→0 Ker1gδ ⊂�
i (P).

We now introduce the notation

Hi (M) := Ker1g ⊂�
i (M),

Hi (P) := lim
δ→0

Ker1gδ ⊂�
i (P),

Hi (G) := Ker1gG ⊂�
i (G).

In [Redden 2008], the spectral sequence interpretation of H3(P) was used to give
the following description of harmonic 3-forms on P in the adiabatic limit.
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Theorem 3.6 [Redden 2008, Proposition 4.5 and Theorem 4.6]. Consider the set
(P π
−→M, g,2), where G is a compact simple Lie group. If λ(P)= 0∈ H 4(M;R),

then
H3(P)= R[CSλ(2)−π∗h]⊕π∗H3(M),

where h ∈�3(M) is the unique coexact form satisfying dh = λ(2).

When G is also simply connected, the Serre spectral sequence gives the follow-
ing exact sequence, as seen in Proposition 2.5:

0 // H 3(M;Z) π∗ // H 3(P;Z) i∗ // H 3(G;Z)
d4 // H 4(M;Z)

S � ? //______ �λ
� // λ(P)

Theorem 3.7. Consider (P π
−→M, g,2) where G is a simply connected compact

simple Lie group. Suppose that λ(P)= 0 ∈ H 4(M;Z) and that S ∈ H 3(P;Z) is a
λ-trivialization class, that is, i∗S = �λ ∈ H 3(G;Z). Then, the image of S under
the Hodge isomorphism is of the form

H 3(P;Z)→ H 3(P;R)
5Ker10

'

// H3(P)⊂�3(P)

S 7→ CSλ(2)−π∗HS,g,2,

where HS,g,2 ∈�
3(M). Alternatively, 5Ker10S−CSλ(2) ∈ π∗�3(M).

Proof. The orthogonal decomposition of H3(P) in Theorem 3.6 corresponds to a
splitting H 3(P;R)∼= H 3(G;R)⊕ H 3(M;R). We know π∗H 3(M;R) restricts to
0⊂ H 3(G;R). As mentioned in (3.4), both CSλ(2)−π∗h and S cohomologically
restrict to �λ ∈ H 3(G;R), so

5Ker10S− (CSλ(2)−π∗h) ∈ π∗H3(M).

Therefore, the harmonic representative of S must be of the form

CSλ(2)−π∗h−π∗h′,

with h′ ∈H3(M), and we define HS,g,2 := h+ h′ ∈�3(M). �

Remark 3.8. The theorem does not hold without taking an adiabatic limit. For a
general δ > 0,

5Ker1gδ
S−CSλ(2) /∈ π∗�3(M),

but instead will contain forms with bidegree (2,1) and (1,2) in the (horizontal,
vertical) decomposition of �3(P) given by the connection.

Remark 3.9. When restricted to the fibers, the Chern–Simons form is the standard
harmonic (biinvariant) form representing �λ; that is, i∗ CSλ(2) ∈ H3(G). Just
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as S is a cohomological extension of �λ to all of P , we see that 5Ker10S =

CSλ(2)−π∗HS,g,2 is a harmonic extension of �λ to all of P .

3c. Properties of canonical 3-form. Theorem 3.7 gives a canonical construction

(3.10) {λ-triv classes}×Met(M)×A(P)→�3(M), S, g,2 7→ HS,g,2.

We call HS,g,2 the canonical 3-form associated to (S, g,2). While Theorem 3.7
only uses information about S as a class in H 3(P;R), the integrality becomes
necessary when understanding HS,g,2 in terms of differential characters. The exact
sequence (3.1) gives rise to

0→�3
Z(M)→�3(M)→ Ȟ 4(M)→ H 4(M;Z)→ 0(3.11)

HS,g,2 7→ ȞS,g,2,

where the character ȞS,g,2 obtained via �3(M)→ Ȟ 4(M) is given by simply by
integrating HS,g,2 on cycles and reducing mod Z. Also, note that H 3(M;Z) acts
naturally on {λ-triv classes}, and it also acts on �3(M) ×Met(M) by adding a
harmonic representative.

Proposition 3.12. The construction (3.10) is equivariant with respect to the natu-
ral action of H 3(M;Z); that is, HS+π∗φ,g,2 = HS,g,2+5Ker1gφ.

Furthermore, the forms HS,g,2 satisfy the following:

• d∗HS,g,2 = 0 ∈�2(M),

• d HS,g,2 = λ(2) ∈�
4(M),

• ȞS,g,2 = λ̌(2) ∈ Ȟ 4(M).

Proof. The action of H 3(M;Z) on λ-trivialization classes is given by addition
under π∗, and the action on �3(M) is given by adding the harmonic representative
(with respect to a fixed metric M). Theorem 3.6 implies that for φ ∈ H 3(M;Z)
with harmonic representative 5Ker1gφ ∈H3(M),

π∗(5Ker1gφ)=5Ker10(π
∗φ) ∈�3(P).

The property d∗HS,g,2 = 0 also follows directly from Theorem 3.6. That
5Ker10S is closed implies

d(CSλ(2)−π∗HS,g,2)= 0,

π∗λ(2)−π∗d HS,g,2 = 0,

d HS,g,2 = λ(2),

with the last equality following from π∗ being injective on forms.
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Finally, suppose that X c
−→M is a smooth 3-cycle on M . Then the value of λ̌(2)

on (X, c) is
λ̌(2)(c)= c∗λ̌(2) ∈ Ȟ 4(X)∼= R/Z.

Now, standard obstruction theory implies that c∗P → X admits a global section
p : X→ c∗P , and it is easy to see that

p∗c∗ ˇCSλ(2)= p∗ ˇCSλ(c∗2)= c∗λ̌(2) ∈ Ȟ 4(X).

Because CSλ(2)− π∗HS,g,2 ∈ �
3
Z(P), we have ˇCSλ(2) = π∗ ȞS,g,2 ∈ Ȟ 3(P)

and hence

c∗λ̌(2)= p∗c∗ ˇCSλ(2)= p∗c∗π∗ ȞS,g,2

= p∗π∗c∗ ȞS,g,2 = c∗ ȞS,g,2 ∈ Ȟ 4(X).

This implies that for all 3-cycles X c
−→M

ȞS,g,2(c)= λ̌(2)(c),

and hence λ̌(2)= ȞS,g,2 ∈ Ȟ 4(M). (This also implies d HS,g,2 = λ(2).) �

Integrating the form HS,g,2 naturally gives values in R, and Proposition 3.12
says that reducing mod Z gives the same values as λ̌(P). In other words, the choice
of a λ-trivialization class naturally gives a lift

(3.13)

R

��
Z3(M)

λ̌(2) //

HS,g,2
::

R/Z,

and the action of H 3(M;Z) modifies the lift by the induced map Z3(M)→ Z.
While the actual form HS,g,2 depends on the choice of a metric, this lift does not.

Proposition 3.14. The lift in (3.13) is independent of the choice of metric g.

Proof. If g0 and g1 are two different metrics, then (3.11) implies

HS,g1,2− HS,g0,2 ∈�
3
Z(M).

The space of Riemannian metrics is contractible, so

HS,g1,2− HS,g0,2 ∈ d�2(M). �

The role of the metric in (3.10) is to pick out the forms HS,g,2 with smallest
norm still satisfying ȞS,g,2= λ̌(2). We denote the lift by HS,2∈ Ȟ 4

R(M). Here we
use the nonstandard notation of Ȟ 4

R(M) to denote characters Z3(M)→R satisfying
the usual transgression assumption.
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In summary, the construction (3.10) induces lifts of the standard differential
character construction, which are encoded in the following diagram:

{λ-triv classes}×Met(M)×A(P)
HS,g,2 //

��

�3(M)

��

{λ-triv classes}×A(P)
HS,2 //

��

Ȟ 4
R(M)

��

A(P)
λ̌(2) // Ȟ 4(M).

Remark 3.15. Stolz and Teichner [2004] define a geometric trivialization of λ(P)
as a trivialization of the extended Chern–Simons field theory on P → M . This
includes defining a lift of the differential character λ̌(2) to take values in R, and
it aligns nicely with the construction above. In fact, if H 3(M;Z) has no torsion,
then the choice of a lift of λ̌(2) to Ȟ 4

R(M) is equivalent to the choice of a λ-
trivialization class. Waldorf [2009] gives an explicit model for string structures
in terms of trivializations of a Chern–Simons 2-gerbe, and shows that a string
structure produces a 3-form on M . The 3-forms obtained in our construction are
a proper subset of those he obtained, analogous to the relationship between forms
representing a de Rham class and harmonic forms.

Note that one can also directly define the lift HS,2 without using the Hodge
isomorphism. On a 3-cycle c : X→ M ,

(3.16) HS,2(c)=
∫

X
p∗(CSλ(c∗2)− c∗S),

where p is any global section, and S is any de Rham representative of S. This is
a simple consequence of S = CSλ(2)− HS,g,2+ dβ. It is also easy to verify that
the integral on the right side is independent of p. In cases like Lemma 3.18, this
allows us to calculate the form HS,g,2 without solving a differential equation.

Suppose the G-bundle P π
−→ M is topologically trivial. Then, the choice of a

global section p :M→ P is equivalent to a trivialization P∼=M×G. The canonical
λ-trivialization on M ×G induces one on P , and the corresponding cohomology
class is given by the Kunneth isomorphism

(3.17) H 3(P;Z)∼= H 3(M;Z)⊕ H 3(G;Z), S↔ (0, �λ).

Lemma 3.18. Suppose P π
−→ M is a trivial bundle with λ-trivialization class S

induced by the trivialization p : M→ P. Then,

HS,g,2− p∗ CSλ(2) ∈ d�2(M).
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In particular, p∗ CSλ(2) = HS,2 as elements of Ȟ 4
R(M). If d∗ p∗ CSλ(2) = 0,

then p∗ CSλ(2)= HS,g,2 ∈�
3(M).

Proof. As seen in (3.17), p∗S= 0 ∈ H 3(M;Z). Therefore, (3.16) simplifies to∫
X

c∗HS,g,2 =

∫
X

c∗ p∗ CSλ(2)

for all 3-cycles c : X→ M , so [HS,g,2− p∗ CSλ(2)] = 0 ∈ H 3(M;R). �

One usually chooses λ ∈ H 4(BG;Z) ∼= Z to be the generator. This is because
B̃Gλ is the universal extension. This universality is also reflected in the associated
canonical 3-forms.

Proposition 3.19. If S ∈ H 3(P;Z) is a λ-trivialization class and ` ∈ Z, then `S is
an `λ-trivialization class, and H`S,g,2 = `HS,g,2 ∈�

3(P).

Proof. The first statement is obvious, and the second follows from the linearity of
the Hodge isomorphism. �

We now apply the construction above to G = Spin(k) for k ≥ 3 with λ= 1
2 p1 ∈

H 4(BSpin(k);Z) to canonically produce 3-forms associated to string structures.
Since Spin(4) ∼= SU(2) × SU(2) is not simple, we define the canonical 3-form
when k = 4 to be the one obtained by stabilizing to Spin(5), a process that does
not affect ˇ12 p1(2).2

Theorem 3.20. Let P π
−→M be a principal Spin(k)-bundle (k≥ 3) with connection

2 over the Riemannian manifold (M, g). Under the Hodge isomorphism (in an
adiabatic limit), a string class S ∈ H 3(P;Z) is represented by

5Ker10S= CS 1
2 p1
(2)−π∗HS,g,2 ∈�

3(P).

The canonical form HS,g,2 ∈�
3(M) is such that

• d∗HS,g,2 = 0 ∈�2(M),

• ȞS,g,2 = ˇ
1
2 p1(2) ∈ Ȟ 4(M), and

• the construction of HS,g,2 is equivariant with respect to the natural action of
H 3(M;Z).

In particular, consider the case where (M, g) is a Riemannian manifold with spin
structure satisfying 1

2 p1(M) = 0 ∈ H 4(M;Z). Then, we can let P = Spin(T M),
and we call a string structure on Spin(T M) a string structure on M . Letting 2 be
the Levi-Civita connection, this gives a map

(3.21) {String classes on M}×Met(M)→�3(M), S, g 7→ HS,g.

2The arguments in [Redden 2008] can be extended to semisimple groups, and Theorem 3.20 also
holds for k = 4 without stabilizing.
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4. Canonical 3-forms and the string orientation of tmf

We now review how string structures arise and give a possible new application of
the canonical 3-forms HS,g from (3.21). First recall some classical results from
index theory; an excellent source is [Lawson and Michelsohn 1989]. Suppose
M is an oriented closed manifold. A priori, one cannot form a spinor bundle
SO(M)×SO(n) S±→ M , because the spinor representations SO(n)→GL(S±) are
only projective. The choice of a spin structure, discussed in Section 2a, allows
one to define the spinor bundle S±M := Spin(M) ×Spin(n) S± and Dirac operator
6DM : 0(S±)→ 0(S∓).

While the Fredholm operator 6DM depends on the spin structure, the Atiyah–
Singer index theorem states that its index does not, and in fact

index( 6DM)= Â(M) ∈ Z.

Here, Â(M) is a topological invariant determined by a manifold’s Pontryagin
classes and is defined for any oriented manifold. In general Â(M) ∈ Q, but
Â(M)∈Z when w2(M)= 0. There is also a refinement of Â(M) given by the spin
orientation α : MSpin→ KO. This refinement can be thought of as the Clifford-
linear index, and it does depend on the spin structure.

(4.1)

KO−n(pt)

��
MSpin−n(pt) Â //

α

77

Z.

The KO-invariants usually appear in family index theorems, but they also contain
interesting information for a single manifold due to the torsion in KO−∗(pt).

Index theory is now a central part of mathematics, and one of its powerful ap-
plications is to the problem of when a closed manifold admits positive scalar cur-
vature metrics. The Lichnerowicz–Weitzenböck formula 6D2

M = ∇
∗
∇ +

1
4 s, which

relates 6DM to a positive operator and the scalar curvature s, implies the following:
If a closed spin manifold M admits a metric of positive scalar curvature, then
index( 6DM)= Â(M)=0 [Lichnerowicz 1962]. Furthermore, α[M]=0∈KO−n(pt)
for all spin structures [Hitchin 1974]. In fact, for simply connected spin manifolds
of dimension ≥ 5, all the α-invariants vanish if and only if M admits a metric of
positive scalar curvature [Stolz 1992].

There is an analogous story, though not fully developed, involving the Witten
genus, index theory on loop spaces, and elliptic cohomology. Witten [1988] used
intuition from theoretical physics and defined a topological invariant ϕW (M) known
as the Witten genus. He claimed it should be the S1-equivariant index of the Dirac
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operator on the free loop space L M ; that is,

“indexS1
6DL M ”= ϕW (M).

We place the left side in quotes because of analytic difficulties in defining a good
theory of Fredholm operators on infinite-dimensional manifolds. However, the
Witten genus (and other elliptic genera) are well defined, and one can make formal
sense of index theory on L M by using localization formulas or the representation
theory of loop groups. For a good overview on these ideas, see [Liu 1996]. While
ϕW (M) ∈ Q[[q]][q−1

] for any oriented manifold, for a string manifold, ϕW (M) is
the q-expansion of a modular form (M F) with integer coefficients and weight n/2,
and we say ϕW (M) ∈ M Fn . The intuitive reason is that when 1

2 p1(M) = 0, one
can define the spinor bundle on L M [Coquereaux and Pilch 1989]. We wish to
form L Spin(M) ×L Spin(n) S → L M , where S is a positive energy representa-
tion of L Spin(n). However, these representations are all projective, so one must
pass to an S1-extension ̂L Spin(n)→ L Spin(n). Topologically, our string class
S ∈ H 3(Spin(M);Z) transgresses to a class in H 2(L Spin(M);Z) that defines an
isomorphism class of S1-extension ̂L Spin(M)→ L Spin(M)→ L M . We say that
a string structure on M transgresses to a spin structure on L M (though in this paper
we have only discussed isomorphism classes of such structures). This led to the
following conjecture.

Conjecture 4.2 (Höhn and Stolz [Stolz 1996]). Let M be a closed oriented n-
manifold admitting spin and string structures. If M admits a metric of positive
Ricci curvature, then the Witten genus ϕW (M) vanishes.

Stolz’s heuristic argument comes from the hope that there is some Weizenböck-
type formula such that positive Ricci curvature on M implies positive scalar curva-
ture on L M , which in turn implies Ker( 6DL M)= ϕW (M)= 0. Though this reason-
ing is far from rigorous, there are no known counterexamples, and the conjecture
holds true for homogeneous spaces and complete intersections. To the author’s
knowledge, there are no known examples of simply connected closed manifolds
admitting metrics of positive scalar curvature, but not metrics of positive Ricci
curvature. If the conjecture is true, it would provide examples of such manifolds.

Just as KO-theory refines the Â-genus, there is a cohomology theory tmf, or
topological modular forms, with string-orientation refining the Witten genus (see
[Hopkins 2002]):

tmf−n(pt)

��
MString−n(pt)

ϕW //

σ
77

M Fn
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The map tmf−∗(pt)→ M F∗ is a rational isomorphism, but it is not integrally sur-
jective or injective. In particular, tmf−∗(pt) contains a great deal of torsion. While
defining tmf is a subtle process, informally tmf is the universal elliptic cohomology
theory, or the elliptic cohomology theory associated to the universal moduli stack
of elliptic curves. Despite several attempts [Baas et al. 2004; Hu and Kriz 2004;
Segal 1988; Stolz and Teichner 2004], there is still no geometric description of
tmf. However, it is believed that tmf should provide a natural home for family
index theorems on loop spaces.

One might hope that all the refined invariants in tmf also vanish for string man-
ifolds admitting positive Ricci curvature metrics, giving an analogy of Hitchin’s
theorem. However, there exist a fair number of compact nonabelian Lie groups
(thus admitting positive Ricci curvature metrics) that are sent to torsion elements
in tmf−∗(pt) via their left-invariant framing [Hopkins 2002]. In Section 6, we
investigate the case where M = S3.

Conceptually, this is still compatible with the analogy to classical index theory.
The group Spin(n) is a discrete cover of SO(n), so there are no local differ-
ences between the bundles Spin(M) and SO(M) and their connections. How-
ever, Spinc(n)→ SO(n) is an S1-extension, and one must choose a connection on
the S1-bundle Spinc(M) → SO(M). The curvature of this connection appears
in the Weizenböck formula for the spinc Dirac operator. Since String(M) →
Spin(M) has K (Z, 2)-fibers, string structures are more analogous to spinc struc-
tures. When constructing the S1-extension ̂L Spin(M)→ L Spin(M), one really
needs an S1-extension with connection [Coquereaux and Pilch 1989]. The form
CS 1

2 p1
(g) − π∗HS,g ∈ �

3(Spin(M)) representing S transgresses to the curva-
ture (minus a canonically defined term) of this connection on L Spin(M). One
would reasonably expect any Weizenböck-type formula for 6DL M to also involve the
form HS,g. We ask the following question in an attempt to formulate a connection
between tmf and obstructions for certain types of curvature.

Question 4.3. Let M be a closed n-dimensional manifold with spin structure such
that 1

2 p1(M)= 0 ∈ H 4(M;Z), and let S be a specified string class. Suppose there
exists a metric g such that

Ric(g) > 0 and HS,g = 0 ∈�3(M).

Does this imply that

σ [M,S] = 0 ∈ tmf−n(pt)?

Remark 4.4. The condition HS,g = 0 for some string class S is equivalent to
ˇ1

2 p1(g) = 0 ∈ Ȟ 4(M). This is a strong condition and is not usually satisfied for
generic metrics. While a great deal of information about the characters ˇ12 p1(g)
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is known for certain manifolds, the author is not aware of any general results
guaranteeing the existence or nonexistence of such metrics.

Remark 4.5. The condition HS,g = 0 is conformally invariant; if HS,g = 0, then
HS,e f g = 0 for any conformally related metric e f g. This follows from the confor-
mal invariance of ˇ12 p1(g) and the fact that 0 ∈H3(M) for all metrics.

We close this discussion by noting that 6DM and 6DL M can both be thought of
as partition functions of certain 1- and 2-dimensional supersymmetric nonlinear
sigma models [Witten 1999]. These sigma models require spin and string struc-
tures, respectively. In the 2-dimensional sigma models, the form HS,g is used to
trivialize the natural connection on a certain determinant line bundle [Witten 1999;
Alvarez and Singer 2002]. Sometimes, terms in the action of these sigma models
are combined and written as the connection ∇S,g discussed in Section 5.

Stolz and Teichner [2004] have shown that KO−n is homotopy equivalent to the
space of supersymmetric 1-dimensional Euclidean field theories of degree n, and
the spin orientation is (up to homotopy) given by the previously mentioned sigma
model. The hope is that the analogous statement should hold for 2-dimensional
field theories with the string orientation σ given by these sigma models. In this
context, Question 4.3 is essentially asking, If one does not have to add in the
terms HS,g, does positivity of the Ricci curvature imply that the corresponding
sigma model is qualitatively trivial?

5. Metric connections with torsion

Question 4.3 can be reformulated in terms of the Ricci curvature of a metric
connection with torsion. Given a string class and metric (S, g), we define the
torsion tensor T S,g by

T S,g
:= g−1 HS,g ∈�

1(M; gl(T M)),

where HS,g is the canonical 3-form from (3.21). This is simply a case of “raising
indices” and is equivalent to saying g(T S,g

X Y, Z)=HS,g(X, Y, Z), or in coordinates
T k

i j = grk Hi jr . Then

∇
S,g
:= ∇

g
+

1
2 T S,g

is a metric connection with torsion T S,g, where ∇g is the Levi-Civita connection.
In general, torsion tensor T of a connection is called totally skew-symmetric if

gT ∈ �3(M), that is, g(T ( · , · ), · ) is skew-symmetric in all three variables. By
construction, ∇S,g is a metric connection with totally skew-symmetric torsion. We
also note that the connection ∇S,g still preserves the geodesics of the Levi-Civita
connection. In general for a fixed metric g, we have the following equalities of
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subsets of connections on T M :

{Metric connections} =
{

Metric connections
with ∇g-geodesics

}
=

{Metric connections with
totally skew-symmetric
torsion

}

One can easily prove this by writing any connection ∇ as ∇g
+A and plugging into

the geodesic equation ∇X X = 0 and metric equation g(∇X Y, Z)=−g(Y,∇X Z).
For a torsion connection ∇T

=∇
g
+

1
2 T , we can still define the curvature tensor

RT
X,Y Z := (∇T

X∇
T
Y −∇

T
Y ∇

T
X −∇

T
[X,Y ])Z ,

and Ricci tensor
RicT (X, Y ) :=

∑
i

g(RT
ei ,X Y, ei ),

where {ei } is any orthonormal basis. We let Ricg denote the Ricci tensor of the
Levi-Civita connection.

Lemma 5.1. Suppose that ∇T
=∇

g
+

1
2 T is a metric connection with totally skew-

symmetric torsion satisfying gT = H ∈�3(M). Then the Ricci tensor satisfies

RicT (X, Y )= Ricg(X, Y )− 1
4

∑
i g(Tei X, Tei Y )−

1
2 d∗H(X, Y ).

Proof. Let 〈 · , · 〉 denote g( · , · ). Simply expanding using ∇T
=∇

g
+

1
2 T , we get

〈RT
ei ,X Y, ei 〉 = 〈∇

T
ei
∇

T
X Y −∇T

X∇
T
ei

Y −∇T
[ei ,X ]Y, ei 〉

= 〈Rg
ei ,X Y, ei 〉−

1
4〈TX Tei Y, ei 〉+

1
2〈∇

g
ei

TX Y − TX∇
g
ei

Y − T∇g
ei X Y, ei 〉

+
1
2〈T∇g

ei X−∇g
X ei−[ei ,X ]Y, ei 〉

= 〈Rg
ei ,X Y, ei 〉−

1
4〈Tei X, Tei Y 〉+

1
2〈(∇

g
ei

T )(X, Y ), ei 〉.

The last term is easily seen to be a tensor. Using a normal orthonormal frame {ei }

at a point (that is, ∇ei e j = 0), one easily calculates that∑
i 〈(∇

g
ei T )(e j , ek), ei 〉 =

∑
i ∂i T i

jk =
∑

i ∂i Hi jk =−d∗H(e j , ek). �

The usual Ricci tensor Ricg is symmetric, and Lemma 5.1 shows that the skew-
symmetric part of RicT is − 1

2 d∗H . Because the canonical form HS,g satisfies
d∗HS,g = 0, it gives rise to a metric connection ∇S,g with symmetric Ricci tensor.
For an arbitrary metric connection ∇T , we refer to the Ricci curvature RicT (X) :=
RicT (X, X) as the symmetric component of RicT , which satisfies

Ricg(X)−RicT (X)= 1
4

∑
i‖Tei X‖2 ≥ 0,

with equality for all X precisely when T = 0. This gives an alternative description
of the Levi-Civita connection.
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Corollary 5.2. For a fixed Riemannian metric g, the Levi-Civita connection is the
unique metric connection that maximizes the Ricci curvature.

One convenient property of both the Levi-Civita connection and the usual Ricci
tensor is the invariance under a global scaling. A quick check shows that for ε > 0,

Ricεg(X)=
∑

i

εg(Rεg
ε−1/2ei ,X

X, ε−1/2ei )=
∑

i

g(Rg
ei ,X X, ei )= Ricg(X).

The form HS,g was constructed using a Hodge isomorphism in an adiabatic limit,
giving us the scale invariance HS,εg = HS,g. However, we use the metric to change
HS,g into a torsion tensor. Therefore,

T S,εg
= (εg)−1 HS,εg = ε

−1T S,g.

It is more natural then to consider the 1-parameter family of connections∇S,εg than
any fixed ∇S,g. In the large volume limit, as ε →∞, this connection converges
to the Levi-Civita connection ∇g. In the small volume limit, as ε→ 0, the terms
T S,εg blow up and ∇S,εg does not converge to a connection unless HS,g = 0.

Question 5.3. Let (M, g,S) be an n-dimensional Riemannian manifold with string
class. Suppose that the Ricci tensor of the modified connection ∇S,g is strictly
positive in the small volume scaling limit; that is

lim
ε→0

Ric(∇S,εg) > 0.

Does this imply σ [M,S] = 0 ∈ tmf−n(pt)?

Proposition 5.4. Question 4.3 is equivalent to Question 5.3.

Proof. This follows directly from the description of the Ricci tensor in Lemma 5.1,
which implies

Ricεg,S(X)= Ricg(X)− 1
4ε
∑

i‖Tei X‖2.

Consequently, if HS,g 6= 0, then Ricεg,S(X)
ε→0
−−−→−∞ for some X . The simulta-

neous conditions Ric(g) > 0 and HS,g = 0 are equivalent to Ric(∇S,εg) > 0 for
arbitrarily small ε. �

6. Homogeneous metrics on S3

We now examine the canonical 3-forms obtained when M = S3 with a homo-
geneous metric, and we compare the results with Question 4.3. We see that it has
an affirmative answer in this special situation, but it would not if the conditions
were weakened. In particular, there exists a 1-dimensional family of left-invariant
metrics g with nonnegative Ricci curvature such that the right-invariant framing R

produces HR,g = 0 and σ [S3,R] 6= 0 ∈ tmf−3(pt). The previous sentence is also
true with left and right swapped.
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6a. String structures on S3. Using the isomorphism S3 ∼= SU(2) ∼= Sp(1), the
left- and right-invariant framings induce two string classes, which we denote L

and R. The disc D4 inherits a standard framing from its inclusion D4
⊂ R4, and

this restricts to a framing of the stable tangent bundle for ∂D4
= S3. We denote

the induced string class by ∂D4 and note that, by construction, the string bordism
class [S3, ∂D4

] = 0 ∈ MString−3(pt).
The set of string classes is a torsor for H 3(S3

;Z) ∼= Z, an affine copy of Z. In
other words, the difference between any two string classes is naturally an integer.
We now determine where the three previously defined string classes live on this
affine line, and we use �c2 ∈ H 3(S3

;Z) as our standard generator. The left and
right framings are related by

S3
×Spin(3)

L
−→ Spin(S3)

R
←− S3

×Spin(3),

and the composition R−1
◦ L is the Adjoint representation lifted to Spin:

S3 ∼= SU(2)
Ad
−−→ Spin(su(2))∼= Spin(3).

The difference L−R is equal to π∗(Ad∗� 1
2 p1). The Adjoint representation here

is an isomorphism of Lie groups and hence an isomorphism on cohomology. As
mentioned in Remark 2.17, there is a factor of 2 and minus sign at work: The class
� 1

2 p1 is twice a generator of H 3(S3
;Z), and stably p1 = −c2. Hence � 1

2 p1 is
mapped to −2�c2, or −2 ∈ Z∼= H 3(S3

;Z), and we use the shorthand L+2=R.
Similarly, we examine the difference between the left-framing and the bound-

ing string structure, and in doing so reference Remark 2.17. The string structure
induced from D4 is a framing of the stable tangent bundle. The normal bundle
ν→ S3 is trivial, and we have the standard isomorphisms of bundles over S3:

Spin(T S3
⊕R)∼= Spin(T S3

⊕ ν)∼= Spin(D4)∼= Spin(4).

The difference in framing of the two stable bundles differs by the left-multiplication
map S3

→ Spin(4) given by considering S3 as the unit quaternions. Under the
standard isomorphisms S3 ∼= SU(2) and Spin(4) ∼= SU(2) × SU(2), this left-
multiplication map is the inclusion into the first factor:

SU(2)
Id×{1}
−−−−→ SU(2)×SU(2)∼= Spin(4).

The induced map on cohomology sends � 1
2 p1 to −�c2, or −1 ∈ Z ∼= H 3(S3

;Z).
Therefore,

L+ 1= ∂D4 and L+ 2= ∂D4
+ 1=R.

The Adams e-invariant gives an isomorphism π s
3
∼=
−→Z/24 and sends the left and

right framings to the two generators [Atiyah and Smith 1974]. Our calculations also
verify this explicitly. On a framed (4k−1)-dimensional manifold M , the e-invariant
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can be computed as follows. Choose a spin manifold W such that ∂W =M as spin
manifolds; such a manifold exists because MSpin4k−1(pt)= 0. Using the framing
of T M , define the Pontryagin classes pi (W,M) as relative classes in H∗(W,M).
We then obtain Â(W,M) by evaluating Â(T W, T M) on the fundamental class
of W , where Â(T W, T M) is the Â-polynomial with relative Pontryagin classes.
Then,

e[M] =
{

Â(W,M) mod Z for k even,
1
2 Â(W,M) mod Z for k odd.

The e-invariant is well-defined as an element of Q/Z, since choosing a different
W ′ will give Â(W ′,M)− Â(W,M) = Â(W ′ ∪M (−W )), which is an integer (or
even integer) by the Atiyah–Singer index theorem.

If we include metrics so that (W, g̃) is a Riemannian spin manifold with bound-
ary (M, g), then we naturally have the Pontryagin forms pi (g̃) ∈�4k(W ).

Proposition 6.1. If (M, g,S) is a Riemannian spin 3-manifold with string class,
then

e(M,S)= −
1

48

∫
W

p1(g̃)+
1
24

∫
M

HS,g mod Z.

Proof.

e[M,S] =
1
2

∫
W

Â(W,M)= 1
2

∫
W
(1− 1

24 p1(W,M)+· · · )=− 1
48

∫
W

p1(W,M).

We now construct a de Rham representative of p1(W,M). If ∂W = M , then
consider the bordism W ∪M ([0, 1]×M) obtained by gluing ∂W to {0}×M . The
string class S gives a stable trivialization p of Spin(T M) up to homotopy, and we
let2p denote the induced flat connection. Denoting the Levi-Civita connection on
Spin(T M) by 2g, we have the connection 2(t) on [0, 1]×M , where

2(t)= t2p + (1− t)2g.

Finally, define 2̃ to be the connection on Spin(W ∪M ([0, 1]×M)) induced by 2g̃

and 2(t). The form p1(2̃) is a de Rham representative of p1(W,M), and∫
W̃

p1(2̃)=

∫
W

p1(g̃)+
∫

M3

∫
[0,1]

p1(2(t))

=

∫
W

p1(g̃)+
∫

M
CSp1(2p,2g)=

∫
W

p1(g̃)− 2
∫

M
CS 1

2 p1
(2g,2p),

where CSλ(2g,2p) is the general Chern–Simons transgression between two con-
nections. Lemmas 6.3 and 3.18 together imply∫

M
CS 1

2 p1
(2g,2p)=

∫
M

p∗C S(2g)=

∫
M

HS,g.
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Therefore,

−
1
48

∫
W̃

p1(2̃)= −
1
48

∫
W

p1(g̃)+
1
24

∫
M

CS 1
2 p1
(2g,2p)

= −
1
48

∫
W

p1(g̃)+
1
24

∫
M

HS,g. �

Corollary 6.2. When M = S3 and g is the standard round metric,

e(S3,S)=
1

24

∫
S3

HS,g mod Z.

In the next subsection, we calculate HS,g for all left-invariant metrics on S3.
Equation (6.8) and the corollary above imply that e[S3,L]=− 1

24 , e[S3, ∂D4
]= 0,

and e[S3,R] = 1
24 . Below is a pictorial description of the space of string classes

on S3 and their corresponding string bordism class under e : MString−3 ∼=
−→Z/24.

oo //• •_

��

• • • •_

��

•

L_
��

∂D4
_

��

R_
��

−
2

24 −
1
24 0 1

24
2

24

Lemma 6.3. If p : M→ P is a global section and2p the induced flat connection,
then

CSλ(2,2p)= p∗ CSλ(2) ∈�3(M).

Proof. This lemma is essentially a tautology. Using the notation of [Freed 2002],
in general CSλ(21,20) :=

∫
[0,1] λ(2t) ∈�

2i−1(M), where 2t := t21+ (1− t)20

is a connection on [0, 1]× P→ [0, 1]×M . Then,

CSλ(2) := CSλ(π∗2,2taut) ∈�
2i−1(P),

where 2taut is the trivial connection induced by the canonical section of π∗P .
Since one can compute these transgression forms via local frames, and by definition
p∗2p = 0, we easily see

CSλ(2,2p)=

∫
[0,1]

λ
(

p∗(t2+ (1− t)2p)
)
=

∫
[0,1]

λ
(

p∗t2
)

= p∗
∫
[0,1]

λ(t2)= p∗ CSλ(2). �

6b. Calculation of canonical 3-forms. We now investigate Question 4.3 by con-
sidering left-invariant metrics on S3∼= SU(2); that is, metrics g on SU(2) such that
left multiplication is an isometry. As noted in Proposition 6.11, the calculations for
right-invariant metrics only differ from those for left-invariant metrics by a sign.
Any such left-invariant metric is determined by its behavior on the tangent space at
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the identity, so we are considering metrics on the Lie algebra su(2) of left-invariant
vector fields. A global rescaling of g leaves the Ricci tensor and canonical form
HL,g invariant; hence it does not affect the outcome of Question 4.3. The space
of left-invariant metrics, up to change of oriented basis and global rescaling, is the
2-dimensional space Sym2

>0(R
3)/(SO(R3)×R+), where Sym2

>0(R
3) denotes the

6-dimensional space of positive-definite 3× 3-matrices.
We now give a more computationally explicit description of this space. Let
{e1, e2, e3} be the standard basis for su(2) satisfying

[e1, e2] = 2e3, [e2, e3] = 2e1, [e3, e1] = 2e2.

When {e1, e2, e3} is an orthonormal basis, the metric is biinvariant and equal to the
standard round metric on S3

⊂ D4. For any α1, α2 ∈ R>0, define the left-invariant
metric gα1,α2 by declaring {α1e1, α2e2, e3} to be an orthonormal basis. In the case
where α2 = 1, we recover the 1-parameter family of Berger metrics on S3. Based
on knowledge from [Milnor 1976], it suffices to consider the 2-parameter family
of metrics {gα1,α2}.

Lemma 6.4. If g is a left-invariant metric on SU(2), then there exists α1, α2 ∈R>0

such that gα1,α2 is isometric to a constant multiple of g.

Proof. Lemma 4.1 [Milnor 1976] implies that there exists an orthonormal basis
{E1, E2, E3} for g such that

[E1, E2] = λ3 E3, [E2, E3] = λ1 E1, [E3, E1] = λ2 E2,

where λi ∈R>0. (Milnor’s ei correspond to our Ei .) For any (λ1, λ2, λ3), it is clear
that the orthonormal basis{1

2

√
λ2λ3e1,

1
2

√
λ3λ1e2,

1
2

√
λ1λ2e3

}
defines a left-invariant metric isometric to the original g. Finally, we normalize so
that the coefficient of e3 is 1. Hence, there is a surjective map

R2
>0→ {Left-invariant metrics}/{Isom×Scale}, α1, α2 7→ gα1,α2 . �

We first calculate the Ricci curvature for gα1,α2 . A straightforward computation
gives the covariant derivative of the Levi-Civita connection in our invariant frame.
The nonzero components are

〈∇α1e1α2e2, e3〉 = α1α2+α1/α2−α2/α1,

〈∇α2e2α3e3, α1e1〉 = α1α2−α1/α2+α2/α1,

〈∇α3e3α1e1, α1e2〉 = −α1α2+α1/α2+α2/α1.
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The Ricci tensor is then diagonalized with eigenvalues

Ric(α1e1)= 2( α1α2−α1/α2+α2/α1)(−α1α2+α1/α2+α2/α1),

Ric(α1e2)= 2(−α1α2+α1/α2+α2/α1)( α1α2+α1/α2−α2/α1),

Ric(e3)= 2( α1α2+α1/α2−α2/α1)( α1α2−α1/α2+α2/α1).

Solving inequalities tells us that the Ricci curvature is strictly positive if and only
if (α1, α2) is in the interior of the region bounded by the three curves

(6.5) α2 =

√
α2

1

1+α2
1
, α2 =

√
α2

1

−1+α2
1
, α2 =

√
−α2

1

−1+α2
1
.

This region is shown in Figure 1, left. The Ricci curvature is nonnegative with one
zero eigenvalue on the three boundary curves.

Now we calculate the canonical 3-form HL,gα1,α2
∈ �3(S3). For dimensional

reasons, HL,gα1,α2
is harmonic and therefore

HL,gα1,α2
∈H3(S3)∼= H 3(S3

;R)∼= R

with its value in R determined by integrating over S3. Lemma 3.18 says that we can
calculate HL,gα1,α2

by simply calculating the Chern–Simons 3-form CS 1
2 p1(gα1,α2)

on the global frame {α1e1, α2e2, e3}. This is a straightforward, though lengthy,
calculation.

For the class 1
2 p1, the Chern–Simons form is

CS 1
2 p1(2)=−

1
16π2 Tr(�∧2− 1

62∧ [2∧2]),

with Tr being the ordinary matrix trace. The normalization constant can be seen
from 1

2 p1(2)=−
1
2 c2(2)=−

1
2

1
8π2 Tr(�∧�). The frame {ei } gives rise to the dual

frame {ei
} on su(2)∗. In our global frame, the Chern–Simons form is a constant

multiple of e1
∧ e2
∧ e3, the standard volume form for SU(2)∼= S3

⊂ D4. Using a
direct calculation along with

∫
S3 e1
∧ e2
∧ e3
= 2π2, we obtain

(6.6)
∫

S3
HL,gα1,α2

=−
1

16π2

∫
S3

Tr(2∧�− 1
62∧ [2∧2])

= −
α6

1α
6
2 −α

6
1α

4
2 −α

4
1α

6
2 −α

6
1α

2
2 −α

2
1α

6
2 −α

4
1α

2
2 −α

2
1α

4
2 + 4α4

1α
4
2 +α

6
1 +α

6
2

α4
1α

4
2

.

See Figure 1, right, for a graph of this function. If we set α2= 1 and only consider
the usual Berger metrics, we obtain

(6.7)
∫

S3
HL,gα1,1

=−2+
2α2

1 − 1
α4

1
.
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0 1 2 3
Α1

1

2

3

Α2

Figure 1. At left: Region with positive Ricci curvature. At right:
Values of

∫
S3 HL,gα1,α2

.

These values are graphed in Figure 2, left. Note that when reduced mod Z, (6.7)
coincides with the calculation performed in the original [Chern and Simons 1974].
If we set α1 = α2 = 1, we obtain the standard biinvariant metric and see that

(6.8)
∫

S3
HL,g1,1 =−1,

∫
S3

H∂D4,g1,1 = 0,
∫

S3
HR,g1,1 = 1.

We now analyze (6.6) on the region Ric ≥ 0. The only critical point occurs
at α1 = α2 = 1, where

∫
S3 HL,gα1,α2

= −1 is a maximal value. Furthermore,∫
S3 HL,gα1,α2

= −2 identically on the three curves bounding the region of positive
Ricci curvature. So, we have the range of values

{
∫

S3 HL,g | Ric(g) > 0, g left-invariant} = (−2,−1].

Figure 1, right, demonstrates this with the help of Mathematica; the level curves
for −2 are precisely the three functions from (6.5).

Due to the equivariance of the canonical 3-form under change of string class (see
Proposition 3.12), our calculation using L gives us HS,gα1,α2

for any other string
class S by∫

S3
HL+ j,gα1,α2

= j +
∫

S3
HL,gα1,α2

for any j ∈ Z∼= H 3(S3
;Z).

Therefore,

(6.9) {
∫

S3 HL+ j,g | Ric(g) > 0, g left-invariant} = (−2+ j,−1+ j].

To graphically demonstrate this, Figure 2, left, shows the canonical 3-forms for
various string classes on the 1-parameter family of left-invariant Berger metrics.

The entire previous discussion was based on left-invariant Riemannian metrics.
What if we had decided to use right-invariant metrics? Given an inner product ge
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Figure 2.
∫

S3 HS,gα1,α2
on Berger metrics, for left- and right-

invariant metrics, respectively.

on Te SU(2), we can form a left-invariant metric gL and a right-invariant metric gR

by left or right multiplying ge. The canonical 3-forms are related by the following
easy lemma, whose proof is at the end of this section.

Lemma 6.10. HL,gL =−HR,gR .

This fact is graphically demonstrated in Figure 2, right. In the case of the Berger
metrics, note that the Ricci curvature is positive for all α1 > 1/

√
2, and the Ricci

curvature is nonnegative with a 0 eigenvalue at α1 = 1/
√

2.

Proposition 6.11. Suppose the string class and (left or right)-invariant Riemann-
ian metric (S, g) on S3 satisfy

Ric(g) > 0 and HS,g = 0.

Then S= ∂D4 and g is the biinvariant round metric. Consequently,

σ [S3,S] = 0 ∈ tmf−3(pt)∼= Z/24.

Proof. If g is a left-invariant metric with positive Ricci curvature and HS,g = 0,
then (6.9) implies that S= L+ 1= ∂D4 with g the biinvariant metric g1,1.

If g is a right-invariant metric, Lemma 6.10 and (6.9) imply that

(6.12) {

∫
S3

HR+ j,g | Ric(g) > 0, g right-invariant} = [1+ j, 2+ j).

If HS,g = 0, then S = R − 1 = ∂D4 and g = g1,1. Finally, [S3, ∂D4
] = 0 ∈

MString−3, so σ [S3, ∂D4
] = 0 ∈ tmf−3. �

We conclude that in this case, Question 4.3 has a very nontrivial affirmative
answer. In particular, there are 1-dimensional families of left- and right-invariant
metrics that are Ricci nonnegative and satisfy HR,g = 0 and HL,g = 0, respectively.
Furthermore, as evidenced by Figure 2, one can find Ricci positive metrics with
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HL,g arbitrarily small but nonzero. Finally, we point out that for any string class S,
the lift of the Chern–Simons invariant

Met(S3)

∫
HS,g

−−−−→ R

is surjective. The 1-parameter families of left- and right-invariant Berger metrics
in Figure 2 show this.

Proof of Lemma 6.10. In a left- or right-invariant frame, the connection is computed
purely in terms of the Lie bracket on vector fields. On a Lie group G, one can
define two Lie algebra structures [ · , · ]L and [ · , · ]R corresponding to the usual
Lie bracket on left- or right-invariant vector fields. For X, Y ∈ TeG, these are
related by

[X, Y ]L =−[X, Y ]R.

If 2L ,2R denote the connections in the two frames, we have 2L = −2R and
�L =�R , so

Tr(2L ∧�L −
1
62L ∧ [2L ∧2L ])=−Tr(2R ∧�R −

1
62R ∧ [2R ∧2R]). �
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