
Pacific
Journal of
Mathematics

ON THE NUMBER OF PAIRS OF POSITIVE INTEGERS
x1, x2 ≤ H SUCH THAT x1x2 IS A k-TH POWER

DOYCHIN I. TOLEV

Volume 249 No. 2 February 2011



PACIFIC JOURNAL OF MATHEMATICS
Vol. 249, No. 2, 2011

ON THE NUMBER OF PAIRS OF POSITIVE INTEGERS
x1, x2 ≤ H SUCH THAT x1x2 IS A k-TH POWER

DOYCHIN I. TOLEV

We find an asymptotic formula for the number of pairs of positive integers
x1, x2 ≤ H such that the product x1x2 is a k-th power.

1. Notation

Let H be a sufficiently large positive number and k ≥ 2 be a fixed integer. By the
letters j, l,m, n, u, v, x, y, z we denote positive integers. The letter p is reserved
for primes, and

∏
p denotes a product over all primes. By the letters s and w, we

denote complex numbers, and i =
√
−1. By ε we denote an arbitrary small positive

number. The constants in the Vinogradov and Landau symbols are absolute or
depend on ε and k. As usual, ζ(s) is the Riemann zeta function. By Vk we denote
the set of k-free numbers (that is, positive integers not divided by a k-th power of
a prime), and Nk is the set of k-th powers of natural numbers. We denote by µ(n)
the Möbius function and by τ(n) the number of positive divisors of n. Further, we
define η(n)=

∏
p|n p. We write (u, v) for the greatest common divisor of u and v.

We assume that min(1, 0−1)= 1.

2. Introduction and statement of the result

Let Sk(H) be the number of pairs of positive integers x1, x2 ≤ H whose product
x1x2 is in Nk . We will establish an asymptotic formula for Sk(H). This problem
is related to a result of Heath-Brown and Moroz [1999]. They considered the
diophantine equation x1x2x3= x3

0 and found an asymptotic formula for the number
of primitive solutions such that 1≤ x1, x2, x3 ≤ H .

It is easy to find an asymptotic formula for the quantity

S∗k (H)= #{x1, x2 | x1, x2 ≤ H, (x1, x2)= 1, x1x2 ∈ Nk}.
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Indeed, if (x1, x2)= 1, then x1x2 ∈ Nk exactly when x1 ∈ Nk and x2 ∈ Nk . Hence

S∗k (H)= #{x1, x2 | x1, x2 ≤ H, (x1, x2)= 1, x1 ∈ Nk, x2 ∈ Nk}

=

∑
z1,z2≤H1/k ,

(z1,z2)=1

1,

and using the well-known property of the Möbius function we get

S∗k (H)=
∑

z1,z2≤H1/k

∑
d|(z1,z2)

µ(d)=
∑

d≤H1/k

µ(d)
(H 1/k

d
+ O(1)

)2
.

Therefore

(1)
S∗k (H)= H 2/k

∑
d≤H1/k

µ(d)
d2 + O(H 1/k log H)

= ζ(2)−1 H 2/k
+ O(H 1/k log H).

It is also easy to evaluate S2(H). Indeed, we have

S2(H)=
∑
d≤H

∑
x1,x2≤H,
(x1,x2)=d,
x1x2∈N2

1=
∑
d≤H

∑
y1,y2≤H/d,
(y1,y2)=1,
y1 y2d2

∈N2

1=
∑
d≤H

S∗2 (H/d).

Now we apply (1) and after calculations that we leave to the reader, we find

S2(H)= ζ(2)−1 H log H + O (H) .

However it is not clear how to apply (1) in order to evaluate Sk(H) for k ≥ 3.
Another quantity related to Sk(H) is

Tk(H)= #{x1, x2 | x1x2 ≤ H 2, x1x2 ∈ Nk} =
∑

n≤H2/k

τ(nk).

Using well-known analytic methods, based on Perron’s formula and the simplest
properties of ζ(s), we are able to prove the asymptotic formula

Tk(H)∼ γk H 2/k (log H)k,

where γk > 0 depends only on k. In this paper we show that using the same
analytic tools, as well as an idea of Heath-Brown and Moroz [1999], we may find
an asymptotic formula for Sk(H) for any k ≥ 2:

Theorem. For any integer k ≥ 2, we have

(2) Sk(H)= ck H 2/k(log H)k−1
+ O(H 2/k(log H)k−2),
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where

ck =
Pk

((k− 1)!)2

(
1+ 1

kk−2

∑
k/2<m≤k−1

(−1)k−m(2m− k)k−1
(k−1

m

)
k−m

)
,(3)

Pk =
∏

p

(
1− 1

p

)k−1(
1+ k−1

p

)
.(4)

3. Some lemmas

Lemma 1. (i) Every positive integer x can be represented uniquely in the form
x = yz, where y ∈ Vk and z ∈ Nk .

(ii) Every integer y ∈ Vk can be written uniquely in the form y = u1u2
2u3

3 · · · u
k−1
k−1,

where u j ∈ V2 for 1≤ j ≤ k− 1 and (ui , u j )= 1 for 1≤ i, j ≤ k− 1, i 6= j .

(iii) If y1, y2 ∈ Vk and y1 y2 ∈ Nk , then η(y1)= η(y2)= (y1 y2)
1/k .

Proof. The proofs of (i) and (ii) can by obtained easily from the fundamental
theorem of arithmetic and we leave this to the reader. Let us prove (iii). By our
assumption, any prime in the factorization of y1 y2 occurs with exponent at most
2k−2, and hence with exponent exactly k. Since the exponent of each prime in y1

and y2 is ≤ k− 1, the integers y1 and y2 have the same prime factors. �

The next lemma is a version of the Perron formula. Denote

(5) E(γ )=
{

1 if γ ≥ 1,
0 if 0< γ < 1.

Lemma 2. If γ > 0, 0< c < c0 and T > 1, then

E(γ )= 1
2π i

∫ c+iT

c−iT

γ s

s
ds+ O(γ c min(1, T−1

|log γ |−1)).

The constant in the Landau symbol depends only on c0.

Proof. This is a slightly simplified version of a lemma from [Davenport 2000,
Section 17]. �

Some of the basic properties of Riemann’s zeta function are presented in the
next lemma.

Lemma 3. (i) ζ(s) is meromorphic in the complex plane and has a pole only at
s = 1. It is simple and with a residue equal to 1.

(ii) If Re(s) > 1, then ζ(s)=
∏

p(1− p−s)−1.

(iii) If Re(s)≥ σ > 1, then ζ(s)� (σ − 1)−1
+ 1.

(iv) If 1/2≤ σ0 ≤ 1, σ ≥ σ0 and |t | ≥ 2, then ζ(σ + i t)� |t |(1−σ0)/2+ε.
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(v) There exist λ0 > 0 such that if X ≥ 2, |t | ≤ X and σ ≥ 1− λ0/log X , then
ζ(σ + i t) 6= 0.

Proof. See [Titchmarsh 1986, Chapters 1–3 and 5]. �

4. Proof of the theorem

4.1. We already considered the case k = 2, so we may assume that k ≥ 3.
Working as in [Heath-Brown and Moroz 1999] we apply Lemma 1(i) and find

that Sk(H) is equal to the number of quadruples y1, y2, z1, z2 such that

y1, y2 ∈ Vk, z1, z2 ∈ Nk, y1z1 ≤ H, y2z2 ≤ H, y1z1 y2z2 ∈ Nk .

Obviously the last of the above conditions is equivalent to y1 y2 ∈ Nk because z1

and z2 are k-th powers. Hence

Sk(H)=
∑

y1,y2≤H,
y1,y2∈Vk ,

y1 y2∈Nk

∑
m j≤(H/y j )

1/k ,

j=1,2

1=
∑

y1,y2≤H,
y1,y2∈Vk ,

y1 y2∈Nk

((H/y1)
1/k
+O(1))((H/y2)

1/k
+O(1)).

Expanding brackets, we get

(6) Sk(H)= H 2/kUk(H)+ O(H 1/k Wk(H)),

where
Uk(H)=

∑
y1,y2≤H,
y1,y2∈Vk ,

y1 y2∈Nk

(y1 y2)
−1/k and Wk(H)=

∑
y1,y2≤H,
y1,y2∈Vk ,

y1 y2∈Nk

y−1/k
1 .

Using Lemma 1(iii), we see that for a given y1 the integer y2 is determined uniquely.
Therefore we have

(7) Uk(H)=
∑
y≤H,
y∈Vk ,

η(y)k≤H y

η(y)−1 and Wk(H)=
∑
y≤H,
y∈Vk ,

η(y)k≤H y

y1/kη(y)−1.

To prove the theorem we have to find an asymptotic formula for Uk(H) and to
estimate Wk(H).

4.2. Consider first Wk(H). Applying Lemma 1(ii), we get

Wk(H)≤
∑

u1u2
2···u

k−1
k−1≤H

(u1u2
2 · · · u

k−1
k−1)

1/k

u1u2 · · · uk−1

=

∑
u1u2

2···u
k−2
k−2≤H

u−1+1/k
1 u−1+2/k

2 · · · u−1+(k−2)/k
k−2

∑
uk−1≤

(
H

u1u2
2···u

k−2
k−2

)1/(k−1)

u−1/k
k−1 .
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The inner sum is� H 1/k(u1u2
2 . . . u

k−2
k−2)

−1/k ; hence

(8) Wk(H)� H 1/k
∑

u1u2
2···u

k−2
k−2≤H

(u1u2 . . . uk−2)
−1
� H 1/k(log H)k−2.

It remains to show that

(9) Uk(H)= ck(log H)k−1
+ O

(
(log H)k−2) .

Formula (2) is a consequence of (6), (8) and (9).

4.3. Using (5) and (7), we write Uk(H) in the form

Uk(H)=
∑
y≤H,
y∈Vk

η(y)−1 E(H yη(y)−k).

We put

(10) c = (log H)−1 and T = (log H)100k3

and applying Lemma 2 we find that

(11) Uk(H)=U (1)
+ O(1),

where

(12) U (1)
=

1
2π i

∫ c+iT

c−iT

H s

s
8(s)ds, and 8(s)=

∑
y≤H,
y∈Vk

ysη(y)−ks−1

and 1=
∑
y≤H,
y∈Vk

η(y)−1 min(1, T−1
|log(H yη(y)−k)|−1).

4.4. Consider first the sum 1. We put

(13) ~ = T−1/2

and write

(14) 1=11+12,

where in 11 the summation is taken over y satisfying |log(H y η(y)−k)| ≥ ~ and
in 12 over the other y. To estimate 11 we apply Lemma 1(iii), (10) and (13) to
find

(15)

11� T−1/2
∑
y≤H,
y∈Vk

η(y)−1
� T−1/2

∑
u1u2

2···u
k−1
k−1≤H

(u1u2 · · · uk−1)
−1

�
(log H)k−1

T 1/2 � 1.
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Consider 12. Using its definition and Lemma 1(iii), we find

12�
∑

u1,u2,...,uk−1:

|log(H/(uk−1
1 uk−2

2 ···u
2
k−2uk−1))|<~

(u1u2 · · · uk−1)
−1

�

∑
He−~<uk−1

1 uk−2
2 ···u

2
k−2uk−1<He~

(u1u2 · · · uk−1)
−1

�

∑
uk−1

1 uk−2
2 ···u

2
k−2<2H

(u1u2 · · · uk−2)
−1

∑
He−~

uk−1
1 uk−2

2 ···u2
k−2

<uk−1<
He~

uk−1
1 uk−2

2 ···u2
k−2

u−1
k−1.

To estimate the inner sum we apply the obvious inequality

(16)
∑

a<n≤b

n−1
≤ a−1

+ log(b/a) for 0< a < b

and find that

(17) 12�
∑

uk−1
1 uk−2

2 ···u
2
k−2<2H

H−1uk−1
1 uk−2

2 · · · u2
k−2+ ~

u1u2 · · · uk−2
�H−113+~(log H)k−2,

where

(18) 13 =
∑

uk−1
1 uk−2

2 ···u
2
k−2<2H

uk−2
1 uk−3

2 · · · uk−2.

If k > 3, then

(19)

13�
∑

uk−1
1 uk−2

2 ···u
3
k−3<2H

uk−2
1 uk−3

2 · · · u2
k−3

∑
uk−2<(2H/(uk−1

1 uk−2
2 ···u

3
k−3))

1/2

uk−2

� H
∑

uk−1
1 uk−2

2 ···u
3
k−3<2H

(u1u2 · · · uk−3)
−1
� H(log H)k−3.

The last estimate for 13 is obviously true also for k = 3. From (10), (13)–(15),
(17) and (19), we get

(20) 1� (log H)k−3.

4.5. Consider the expression 8(s) defined by (12). Let c and T be specified by
(10) and

(21) T1 = 2kT .
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We apply Lemma 2 again and show that if Re(s)= c, then

(22) 8(s)= 1
2π i

∫ c+iT1

c−iT1

Hw

w
M(s, w) dw+ O(1∗),

where

M(s, w)=
∞∑

y=1,y∈Vk

ys−w η(y)−ks−1,(23)

1∗ =

∞∑
y=1,y∈Vk

η(y)−kc−1 min(1, T−1
1 |log(H/y)|−1).(24)

To justify (22) we note from Euler’s identity, (10) and parts (ii) and (iii) of Lemma 3
it follows that

(25)
∞∑

y=1,
y∈Vk

η(y)−kc−1
=

∏
p

(
1+ k−1

pkc+1

)
� ζ k−1(kc+ 1)� c−k+1

� (log H)k−1.

Hence M(s, w) is absolutely and uniformly convergent in Re(s) = Re(w) = c
because under this assumption we have M(s, w) �

∑
∞

y=1,y∈Vk
η(y)−kc−1. This

completes the verification of (22).

4.6. Consider the expression 1∗ defined by (24). We write it in the form

(26) 1∗ =1∗1+1
∗

2,

where the summation in 1∗1 is taken over y such that |log(H/y)| ≥ ~ and in 1∗2
over the other y. Using (10), (13), (21) and (25), we find

(27) 1∗1� T−1/2
∞∑

y=1,y∈Vk

η(y)−kc−1
� (log H)k−1−50k3

� 1.

To estimate 1∗2 we apply Lemma 1(iii) and (10), (13), (16) to get

1∗2�
∑

He−~<y<He~ ,
y∈Vk

η(y)−1
�

∑
He−~<u1u2

2···u
k−1
k−1<He~

(u1u2 · · · uk−1)
−1

�

∑
u2

2u3
3···u

k−1
k−1<2H

(u2u3 · · · uk−1)
−1

∑
He−~

u2
2u3

3···u
k−1
k−1

<u1<
He~

u2
2u3

3···u
k−1
k−1

u−1
1

�

∑
u2

2u3
3···u

k−1
k−1<2H

H−1u2
2u3

3 · · · u
k−1
k−1+ ~

u2u3 · · · uk−1

� H−113+ 1,(28)
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where 13 is given by (18). Applying (19), (26)–(28) we find

(29) 1∗� (log H)k−3.

We substitute in formula (12) the expression for 8(s) given by (22) and find a
new form of U (1). Using (10) and (29) we see that the contribution to U (1) coming
from 1∗ is

� (log H)k−3
∫ T

−T

dt
√

c2+t2
� (log H)k−2.

Therefore, taking also into account (11) and (20), we find

(30) Uk(H)=
1

(2π i)2

∫ c+iT

c−iT

H s

s

∫ c+iT1

c−iT1

Hw

w
M(s, w) dw ds+ O((log H)k−2).

4.7. For a fixed s satisfying Re(s)= c the infinite series M(s, w) defined by (23) is
absolutely and uniformly convergent for Re(w)≥ c and represents a holomorphic
function in Re(w) > c. Applying Euler’s identity we find

M(s, w)=
∏

p

(1+ p−ks−1(ps−w
+ p2(s−w)

+ · · ·+ p(k−1)(s−w)))

=

∏
p

(
1+

k−1∑
j=1

p−(k− j)s− jw−1
)
.

Using Lemma 3(ii), we conclude that for Re(s)= c and Re(w)≥ c, we have

(31) M(s, w)= K(s, w)
k−1∏
j=1

ζ((k− j)s+ jw+ 1),

where

K(s, w)=
∏

p

((
1+

k−1∑
j=1

p−(k− j)s− jw−1
) k−1∏

j=1

(1− p−(k− j)s− jw−1)
)
.

It is clear that there exists δ = δ(k) ∈ (0, 1/100) such that in the region

(32) Re(s) >−δ and Re(w) >−δ

the function K(s, w) is holomorphic with respect to s as well as to w and satisfies

(33) 0< |K(s, w)| � 1.

We have also

(34) K(0, 0)= Pk,

where Pk is given by (4).
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Suppose that we have a fixed s = c+ i t with −T ≤ t ≤ T . From (31), (33) and
Lemma 3(i), we conclude that the function Hww−1M(s, w) has a meromorphic
continuation to Re(w) >−δ and that poles may occur only at the points

(35) w = 0 and w = (1− k/m)s for 1≤ m ≤ k− 1.

All these points are actually simple poles. Indeed, for w = 0 this follows imme-
diately from (33) and parts (i) and (v) of Lemma 3. In the case 1 ≤ m ≤ k − 1,
the point w = (1 − k/m)s is a simple pole of ζ((k − m)s + mw + 1) and, due
to Lemma 3(v) and (10), it cannot be a pole or zero of ζ((k − j)s + jw+ 1) for
1≤ j ≤ k− 1 with j 6= m.

For 1 ≤ m ≤ k − 1, we denote by Rm(s) the residue of Hww−1M(s, w) at
w= (1−k/m)s and let R0(s) be the residue atw=0. A straightforward calculation,
based on the arguments above, (33) and Lemma 3(i), leads to

(36)

R0(s)= K(s, 0)
k−1∏
j=1

ζ( js+ 1),

Rm(s)=
H (1−k/m)s

(m− k)s
K
(

s,
(

1− k
m

)
s
) k−1∏

j=1,
j 6=m

ζ
(

k
(

1−
j

m

)
s+ 1

)
for 1≤ m ≤ k− 1.

4.8. Let us define

(37) θ =
δ

2k3 .

By (10) and (21) and since s = c+ i t , where −T ≤ t ≤ T , we see that all points
(35) are inside the rectangle with vertices c− iT1, −θ − iT1, −θ + iT1, c+ iT1.
Applying the residue theorem we find that∫ c+iT1

c−iT1

Hw

w
M(s, w) dw = 2π i

k−1∑
m=0

Rm(s)+ I1+ I2+ I3,

where

I1 =

∫
−θ−iT1

c−iT1

Hw

w
M(s, w) dw, I2 =

∫
−θ+iT1

−θ−iT1

Hw

w
M(s, w) dw,

I3 =

∫ c+iT1

−θ+iT1

Hw

w
M(s, w) dw.

From the formula above and (30) we get

(38) Uk(H)=
1

2π i

∫ c+iT

c−iT

H s

s

k−1∑
m=0

Rm(s) ds + J1+ J2+ J3+ O((log H)k−2).
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Here Jµ are the contributions coming from Iµ for µ= 1, 2, 3 and we will see that
we may neglect them.

To estimate Jµ we will first show that if s = c + i t , where |t | ≤ T , and if w
belongs to some of the sets of integration of I1, I2 or I3, then

(39) M(s, w)� T k2θ .

Having in mind (31) and (33), we see that in order to verify this it is enough to
establish that for s and w satisfying the conditions above, we have

(40) ζ(λ)� T kθ , where λ= (k− j)s+ jw+ 1 for 1≤ j ≤ k− 1.

If w = β + iT1 (or w = β − iT1), where −θ ≤ β ≤ c, then from (10), (21),
(37) it follows that for the number λ given by (40), we have Re(λ) ≥ 1− kθ and
T � |Im(λ)| � T . Hence the estimate (40) is a consequence of Lemma 3(iv).
Suppose now that w = −θ + i t1, where |t1| ≤ T1. From (10), (21) and (37),
we get Re(λ) ≥ 1− kθ and |Im(λ)| � T . If |Im(λ)| ≥ 2, then the estimate (40)
follows again from Lemma 3(iv). In the case |Im(λ)|< 2 we use also the inequality
Re(λ)≤ 1− θ/2 to conclude that ζ(λ)� 1, so the estimate (40) is true again.

From the definitions of Jµ and (10), (21), (37) and (39), we find

J1, J3�

∫ T

−T

1
√

c2+t2

∫ c

−θ

T k2θ

√

β2
+T 2

1

dβ dt � c−1
+log T � log H,

J2�

∫ T

−T

1
√

c2+t2

∫ T1

−T1

H−θT k2θ

√

θ2
+t2

1

dt1 dt � H−θ (c−1
+log T )T k2θ log T � 1.

This means that the terms Jµ in formula (38) can be omitted. Then using (36), we
get

(41) Uk(H)=
1

2π i

(
N0+

k−1∑
m=1

1
m−k

Nm

)
+ O((log H)k−2),

where

(42) Nm =

∫ c+iT

c−iT
4m(s) ds

and

40(s)= s−1 H sK(s, 0)
k−1∏
j=1

ζ( js+ 1),(43)

4m(s)= s−2 H (2−k/m)sK
(

s,
(

1− k
m

)
s
) k−1∏

j=1,
j 6=m

ζ
(

k
(

1−
j

m

)
s+ 1

)
(44)

for 1≤ m ≤ k− 1.
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4.9. Consider first Nm for 1 ≤ m ≤ k/2. Since 4m(s) is a holomorphic function
in the rectangle with vertices c− iT , θ − iT , θ + iT and c+ iT , we have

(45)
Nm =

∫ θ−iT

c−iT
4m(s) ds+

∫ θ+iT

θ−iT
4m(s) ds+

∫ c+iT

θ+iT
4m(s) ds

=N(1)
m +N(2)

m +N(3)
m ,

say. If s belongs to the sets of integration of N
(1)
m or N

(3)
m and if 1 ≤ j ≤ k − 1,

j 6= m, then from Lemma 3(iv), it follows that

ζ(k(1− j/m)s+ 1)� T k2θ .

Hence, using (33), (37) and our assumption 1≤ m ≤ k/2, we find

(46) N(1)
m ,N(3)

m �

∫ θ

c

H (2−k/m)β

β2+ T 2 T k3θ dβ� T k3θ−2
� 1.

Suppose now that s belongs to the set of integration of N
(2)
m (that is, s = θ + i t for

|t | ≤ T ) and consider the number λ̃ = k(1− j/m)s + 1. It is easy to see that for
each j that occurs in (44), we have

Re(λ̃)≥ 1− k2θ, |Re(λ̃)− 1| ≥ θ, |Im(λ̃)| ≤ k2
|t |.

Hence an application of Lemma 3(iv) gives

ζ(λ̃)� (1+ |t |)k
2θ .

Therefore

(47) N(2)
m �

∫ T

−T

H (2−k/m)θ

θ2+ t2 (1+ |t |)k
3θ dt � 1.

From (45)–(47), we get Nm � 1 for 1≤ m ≤ k/2 and using (41) we find

(48) Uk(H)=
1

2π i

(
N0+

∑
k/2<m≤k−1

1
m−k

Nm

)
+ O((log H)k−2).

4.10. Consider now Nm for k/2<m ≤ k−1. The function 4m(s) has a pole only
at s = 0 and it is not difficult to compute that the corresponding residue is equal to

Lm(log H)k−1
+ O((log H)k−2),

where

(49) Lm =
(2m− k)k−1(−1)k−m−1

(k−1
m

)
Pk

((k− 1)!)2kk−2 .
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We leave the standard verification to the reader. From (42) and the residue theorem
we get

(50) Nm = 2π iLm(log H)k−1
+N′m +N′′m +N′′′m + O((log H)k−2),

where

N′m =

∫
−θ−iT

c−iT
4m(s) ds, N′′m =

∫
−θ+iT

−θ−iT
4m(s) ds, N′′′m =

∫ c+iT

−θ+iT
4m(s) ds.

Using Lemma 3(iv), we find that if s belongs to the set of integration of some of the
integrals above, then the product of the values of the zeta-function in the definition
(44) is� T k3θ . Hence from (10), (33), (37) and our assumption k/2<m ≤ k−1,
it follows that

(51)
N′m,N

′′′

m �

∫ c

−θ

T k3θ

β2+T 2 dβ� 1

N′′m �

∫ T

−T

H−(2−k/m)θ

θ2+t2 T k3θ dt � H−(2−k/m)θ T k3θ
� 1.

From (50) and (51), we find

(52) Nm = 2π iLm(log H)k−1
+ O((log H)k−2) for k/2< m ≤ k− 1.

4.11. It remains to consider N0. It is not difficult to see that the function 40(s)
specified by (43) has a pole only at s = 0, with residue equal to

L0(log H)k−1
+ O((log H)k−2),

where

(53) L0 =
Pk

((k− 1)!)2
.

From (42) and the residue theorem we find

N0 = 2π iL0(log H)k−1
+N′0+N′′0 +N′′′0 + O((log H)k−2),

where

N′0 =

∫
−θ−iT

c−iT
40(s) ds, N′′0 =

∫
−θ+iT

−θ−iT
40(s) ds, N′′′0 =

∫ c+iT

−θ+iT
40(s) ds.

Arguing as above, we conclude that N′0, N′′0, N′′′0 � 1 (we leave the verification to
the reader). Hence

(54) N0 = 2π iL0(log H)k−1
+ ((log H)k−2).

From (3), (34), (48), (49), and (52)–(54), we obtain (9), and the proof of the
theorem is complete. �
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