Vol. 250, No. 1, 2011

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
The orbit structure of the Gelfand–Zeitlin group on n × n matrices

Mark Colarusso

Vol. 250 (2011), No. 1, 109–138
Abstract

Recently, Kostant and Wallach constructed an action of a simply connected Lie group A n(n1)2 on gl(n) using a completely integrable system derived from the Poisson analogue of the Gelfand–Zeitlin subalgebra of the enveloping algebra. They show that A-orbits of dimension n(n1)2 form Lagrangian submanifolds of regular adjoint orbits in gl(n) and describe the orbits of A on a certain Zariski open subset of regular semisimple elements. In this paper, we describe all A-orbits of dimension n(n 1)2 and thus all polarizations of regular adjoint orbits obtained using Gelfand–Zeitlin theory.

Keywords
Lie–Poisson structure, integrable system, algebraic group actions, Gelfand–Zeitlin algebra
Mathematical Subject Classification 2000
Primary: 14L30, 14R20, 37J35, 53D17
Milestones
Received: 3 October 2009
Revised: 16 December 2009
Accepted: 17 December 2009
Published: 1 March 2011
Authors
Mark Colarusso
Département de mathématiques et de statistique
Université Laval
1045 av de la Médecine
Québec, QC G1V 0A6
Canada
http://archimede.mat.ulaval.ca/pages/markcola/