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We study principal curvatures of fibers and Heegaard surfaces smoothly
embedded in hyperbolic 3-manifolds. It is well known that a fiber or a Hee-
gaard surface in a hyperbolic 3-manifold cannot have principal curvatures
everywhere less than one in absolute value. We show that given an upper
bound on the genus of a minimally embedded fiber or Heegaard surface and
a lower bound on the injectivity radius of the hyperbolic 3-manifold, there
exists a δ > 0 such that the fiber or Heegaard surface must contain a point
at which one of the principal curvatures exceeds 1 + δ in absolute value.

1. Introduction

The principal curvatures of a surface or lamination smoothly embedded in a hy-
perbolic 3-manifold are related to the topology of the surface and the 3-manifold.
For example in [Breslin 2010] we show that incompressible surfaces and strongly
irreducible Heegaard surfaces embedded in hyperbolic 3-manifolds can always be
isotoped to a surface with principal curvatures bounded in absolute value by a fixed
constant that does not depend on the surface or the 3-manifold. In [Breslin 2009]
we show that laminations in hyperbolic 3-manifolds with principal curvatures ev-
erywhere close to zero have boundary leaves with noncyclic fundamental group and
that laminations in hyperbolic 3-manifolds with principal curvatures everywhere
in the interval (−1, 1) have boundary leaves with nontrivial fundamental group.

This note was motivated by a question about surfaces with principal curvatures
near the interval (−1, 1). It is well known that a closed orientable surface smoothly
embedded in a finite-volume complete hyperbolic 3-manifold with principal curva-
tures everywhere in the interval (−1, 1) is incompressible and lifts to a quasiplane
in H3 (see [Thurston 1979] or [Leininger 2006] for a proof). Thus Heegaard
surfaces and fibers in hyperbolic 3-manifolds cannot have principal curvatures
everywhere in the interval (−1, 1). We are interested in finding obstructions to
isotoping Heegaard surfaces and fibers in hyperbolic 3-manifolds to have principal
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curvatures close to the interval (−1, 1). See [Rubinstein 2005] or [Krasnov and
Schlenker 2007] for more on surfaces in hyperbolic 3-manifolds with principal
curvatures in the interval (−1, 1).

It follows from work of Freedman, Hass, and Scott [Freedman et al. 1983] that
an incompressible surface in a closed Riemannian 3-manifold can be isotoped to
a minimal surface. It follows from work of Pitts-Rubinstein that a strongly irre-
ducible Heegaard surface in a closed Riemannian 3-manifold can be isotoped to
either a minimal surface or the boundary of a regular neighborhood of a minimal
surface (see [Rubinstein 2005] for a sketch of the proof). We show that given an
upper bound on the genus of a minimally embedded fiber or Heegaard surface and
a lower bound on the injectivity radius of the hyperbolic 3-manifold, there exists
a δ > 0 such that the fiber or Heegaard surface must contain a point at which one
of the principal curvatures is greater than 1+ δ in absolute value.

Theorem 1. For each g ≥ 2, ε > 0, there exists δ := δ(g, ε) such that if S is a
genus g minimally embedded fiber in a closed hyperbolic mapping torus M with
inj(M) > ε, then S contains a point at which one of the principal curvatures is at
least 1+ δ in absolute value.

Theorem 2. For each g ≥ 2, ε > 0, there exists δ := δ(g, ε) such that if S is a
genus g minimally embedded Heegaard surface in a closed hyperbolic 3-manifold
M with inj(M)>ε, then S contains a point at which one of the principal curvatures
is at least 1+ δ in absolute value.

The proofs of Theorem 1 and Theorem 2 both use geometric limit arguments.
Assuming that no such δ > 0 exists, we consider a sequence of hyperbolic 3-
manifolds as in the statement with minimally embedded fibers or Heegaard surfaces
whose principal curvatures are closer and closer to the interval [−1, 1]. After possi-
bly passing to a subsequence, the sequence of manifolds converges geometrically to
a hyperbolic 3-manifold M and the surfaces converge to an incompressible surface
S in M with principal curvatures everywhere in the interval [−1, 1]. This implies
that the limit set of a lift of S to H3 is a proper subset of ∂H3. In either case, we
show that the cover of M corresponding to the image of π1(S) in π1(M) has a
doubly degenerate hyperbolic structure contradicting that the limit set of a lift of
S to H3 is a proper subset of ∂H3.

2. Preliminaries

Let M be a hyperbolic 3-manifold with no cusps and finitely generated fundamental
group. By a result of Scott, M has a compact core which is a compact submanifold
C of M whose inclusion into M is a homotopy equivalence. The connected com-
ponents of M \C are called the ends of M . It follows from the positive solution of
the tameness conjecture by Agol [2004] and by Calegari and Gabai [2006] that an
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end of M is homeomorphic to 6×[0,∞) where 6 is a closed orientable surface.
The convex core, CC(M), of M is the smallest convex submanifold of M whose
inclusion is a homotopy equivalence. An end E of M is convex-cocompact if
E ∩CC(M) is compact and E is degenerate otherwise. Given a closed orientable
surface 6 of genus greater than one, a hyperbolic structure on 6 × R such that
both ends are degenerate is called doubly degenerate.

A sequence of pointed hyperbolic n-manifolds (Mi , pi ) converges geometrically
to the pointed hyperbolic n-manifold (M, p) if for every sufficiently large R and
each ε > 0, there exists i0 such that for every i ≥ i0, there is a (1+ ε)-bilipschitz
pointed diffeomorphism κi : (B(p, R), p)→ Mi , where B(p, R) ⊂ M is the ball
of radius R centered at p and B(pi , R)⊂ Mi is the ball of radius R centered at pi .
We call the maps κi almost isometries.

We will use the fact that minimal surfaces have bounded diameter in the presence
of a lower bound on injectivity radius. See [Rubinstein 2005] or [Souto 2007] for
more on minimal surfaces in hyperbolic 3-manifolds.

Lemma 1. Let S be a connected minimal surface in a complete hyperbolic 3-
manifold M with inj(M)≥ ε. Then the diameter of S is at most 4|χ(F)|/ε+ 2ε.

We will also use the following Lemma in the proofs of Theorems 1 and 2.

Lemma 2. If S is a closed orientable surface smoothly immersed with principal
curvatures everywhere in the interval [−1, 1] in a complete hyperbolic 3-manifold
M with no cusps, then the limit set of a lift of S to H3 is a proper subset of ∂H3.

Proof. Let S̃ be a lift of S to H3. Assume that S̃ is not a horosphere, as otherwise
we are done. Thus the principal curvatures of S cannot be everywhere equal to 1
or everywhere equal to −1. If the principal curvatures at every point of S are −1
and 1, then there is a pair of line fields defined on the entire surface, implying that
S is a torus. Since closed surfaces in M with all principal curvatures in [−1, 1] are
incompressible and M has no cusps, S cannot be a torus. Thus there is a point p
in S̃ at which one of the principal curvatures is in (−1, 1). Assume that the other
principal curvature at p is in [−1, 1). Let H be a horosphere tangent to S̃ at p. Use
an upper half space model of H3 in which H is a horizontal plane and S̃ is below
H . Let l be a simple loop in S̃ which contains p such that the principal curvatures
at each point on l are in [−1, 1) with at least principal curvature in (−1, 1). At
each point x in l, let Hx be the horosphere above S̃ tangent to S̃ at x . For each x in
l, let cx ∈ ∂H3 be the center of the horosphere Hx . The set of points C = {cx |x ∈ l}
forms a closed curve in ∂H3. Since the principal curvatures of S̃ are everywhere
in the interval [−1, 1], S̃ cannot transversely intersect any of the horospheres Hx .
Thus, the limit set of S̃ cannot cross the closed curve C , so that the limit set of S̃
is a proper subset of ∂H3. �
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It is well-known that the limit set of a lift to H3 of a fiber 6 in a doubly degen-
erate hyperbolic 6×R is the entire boundary ∂H3. By Lemma 2, such a fiber 6
cannot be smoothly embedded with principal curvatures everywhere in the interval
[−1, 1].

3. Principal curvatures of fibers

In the proof of Theorem 1, we will use the following fact about geometric limits
of hyperbolic mapping tori.

Theorem. Let (Mi , pi ) be a sequence of pairwise distinct pointed hyperbolic map-
ping tori with genus g fibers and inj(Mi ) > ε for all i . Then a subsequence
of (Mi , pi ) converges geometrically to a pointed hyperbolic 3-manifold (M, p)
homeomorphic to 6×R where 6 is a closed genus g surface and M has a doubly
degenerate hyperbolic structure.

Proof of Theorem 1. Suppose, for contradiction, that Theorem 1 does not hold.
Then there exists a sequence of hyperbolic mapping tori (Mi ) with inj(Mi ) > ε

such that Mi has a genus g minimal surface fiber with principal curvatures less than
1+ 1/ i in absolute value. For each i , let pi be a point in Si . By Theorem A the
sequence (Mi , pi ) has a subsequence, say the entire sequence, which converges to a
doubly degenerate pointed hyperbolic 3-manifold (M, p) homeomorphic to 6×R

where6 is a genus g closed surface. By Lemma 1, the diameters of the surfaces Si

are uniformly bounded. Thus we can find a compact subset K of M homeomorphic
to 6×[−1, 1] such that for i large enough, say for all i , Si is contained in κi (K ).
The surface S :=6×{0} in M is isotopic to κ−1

i (Si ) for each i . Since the surfaces
κ−1

i (Si ) have bounded area and curvature, a subsequence converges to a smoothly
immersed surface with principal curvatures in [−1, 1] which is homotopic to S.
Lemma 2 implies that the limit set of a lift of S to H3 is a proper subset of ∂H3,
contradicting the fact that M is doubly degenerate. �

4. Principal curvatures of Heegaard surfaces

In the proof of Theorem 2, we will use the following fact about geometric limits.

Theorem. Every sequence (Mi , pi ) of pointed hyperbolic 3-manifolds such that
inj(Mi , pi ) is bounded away from 0 has a geometrically convergent subsequence.

Lemma 3 [Souto 2006, Lemma 2.1]. Let (Mi ) be a sequence of hyperbolic 3-
manifolds converging to a hyperbolic manifold M. Assume that there is a compact
subset K ⊂ M such that for all sufficiently large i the homomorphism π1(K )→
π1(Mi ) provided by geometric convergence is surjective. Then, if the cover of M
corresponding to the image of π1(K ) into π1(M) has a convex-cocompact end, so
does Mi for all but finitely many i .
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Proof of Theorem 2. Suppose for contradiction that Theorem 2 does not hold. Then
there exists a sequence (Mi ) of closed hyperbolic 3-manifolds with inj(Mi ) > ε

such that Mi has a genus g minimal Heegaard surface Si with principal curvatures
less than 1+1/ i in absolute value. For each i let pi be a point in Si . By Theorem
B the sequence (Mi , pi ) has a convergent subsequence, say the entire sequence,
which converges geometrically to a pointed hyperbolic 3-manifold (M, p). By
Lemma 1, the diameters of the surfaces Si are uniformly bounded. Thus each
Mi contains a compact subset Ki homeomorphic to Si × [−1, 1] with uniformly
bounded diameter. For i large enough the pull-back κ−1

i (Ki ) of Ki through the
almost isometries provided by geometric convergence are embedded compact sub-
sets homeomorphic to 6 × [−1, 1] where 6 is a closed surface of genus g. For
i large enough the surfaces κ−1

i (Si ) are all isotopic to a fixed embedded genus g
surface S in M . Since the surfaces κ−1

i (Si ) have bounded area and curvature, a
subsequence converges to a smoothly immersed surface with principal curvatures
in [−1, 1] which is homotopic to S. Thus the surface S is incompressible in M
and by Lemma 2 the limit set of a lift of S to H3 is a proper subset of ∂H3.

To arrive at a contradiction we will show that the cover of M corresponding
to the image of π1(S) into π1(M) is doubly degenerate, implying that the limit
set of a lift of S to H3 is all of ∂H3. For i large enough κi (S) is isotopic to the
Heegaard surface Si in Mi , so that the homomorphism (κi )∗ : π1(S)→ π1(Mi )

provided by geometric convergence is surjective. By Lemma 3, if the cover of M
corresponding to the image of π1(S) into π1(M) has a convex-cocompact end, so
does Mi for all but finitely many i . Since each Mi is closed we have that the cover
of M corresponding to the image of π1(S) into π1(M) cannot have a convex-
cocompact end. Thus the cover of M corresponding to the image of π1(S) into
π1(M) is doubly degenerate contradicting the fact that S is isotopic to a surface
with principal curvatures everywhere in [−1, 1]. �
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