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AN EXAMPLE OF A SINGULAR METRIC ARISING FROM THE
BLOW-UP LIMIT IN THE CONTINUITY APPROACH TO

KÄHLER–EINSTEIN METRICS

YALONG SHI AND XIAOHUA ZHU

A family of Kähler metrics with Calabi’s symmetry on CP2 # CP2 arises
from the continuity method for finding Kähler–Einstein metrics. We study
the blow-up limit of this family.

1. Introduction

Let M be a compact Kähler manifold with c1(M) > 0. In algebraic geometry, M
is called a Fano manifold. It is an important problem to study the existence of
Kähler–Einstein metrics on such manifolds. In contrast to the c1 < 0 and c1 = 0
cases, there may be no Kähler–Einstein metrics on a given Fano manifold. Yau,
Tian and Donaldson have conjectured that the existence of Kähler–Einstein metrics
on M is equivalent to the K-polystability of M ; see [Tian 1997; Donaldson 2002].

To find a Kähler–Einstein metric on M , one usually reduces the problem to
solving a family of complex Monge–Ampère equations with parameter λ ∈ [0, 1]
via the continuity method, as Yau did in [1978]. If M does not admit a Kähler–
Einstein metric, then the solutions of this family must blow up as λ → t0 for
some t0 ∈ [0, 1]. Since the solutions of this family give rise to a family of Kähler
metrics with strictly positive Ricci curvature and the same volume, the compactness
theorem of Gromov implies that this family contains a subfamily converging to a
compact metric space with a length metric. The study of this limit space should
be helpful in understanding the relationship between Kähler–Einstein metrics and
stabilities in geometric invariant theory.

In this paper, we study a simple example, namely the blow-up of CP2 at one
point, CP2 #CP2, with a Calabi symmetric metric as the background metric. Note
that M = CP2 # CP2 is a ruled surface P(C⊕U ), where C and U are the trivial
line bundle and the universal bundle over CP1, respectively. It is well known
that M is Fano and the automorphism group of M is not reductive [Calabi 1982].
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Therefore by Matsushima’s theorem [1957], there are no Kähler–Einstein metrics
on M . So if one uses the continuity method to solve the Kähler–Einstein metric
equation on M with parameter λ ∈ [0, 1], the parameter λ at which the equation
is solvable could not reach 1. Recently, G. Székelyhidi showed that the Monge–
Ampère equation is solvable if and only if the parameter λ is less than 6/7, if one
chooses a Calabi symmetric metric as a background Kähler metric [2009].12 There
are two distinguished divisors E1 and E2, respectively defined as the zero section
and the infinity section of the ruled surface M . A Calabi symmetric Kähler metric
g on M is defined by a convex function u in t ∈ (−∞,∞) with its Kähler form ωg

given by

(1-1) ωg =
√
−1∂∂̄u in C2

\ {0},

where t = log(|z1|
2
+|z2|

2) and (z1, z2) are the standard coordinates on C2
\{0} ∼=

M \(E1∪E2). Székelyhidi’s result implies that the Kähler metrics gλ arising from
the solutions of Monge–Ampère equations will blow up as λ→ 6/7.

On the other hand, by a general theorem of Cheeger and Colding [1997], there
exists a subsequence of metrics gλi that converges in the Gromov–Hausdorff sense
to a limit metric space g∞ whose singular set has Hausdorff codimension at least
2. On the regular part, g∞ is Cα-continuous. It is an interesting problem to study
the geometry of the limit space.

Theorem 1.1. (1) Among the Kähler metrics gλ arising from the continuity method
for finding Kähler–Einstein metrics, there exists a sequence converging smoothly
in the Cheeger–Gromov sense to a singular Kähler metric g∞ on CP2 # CP2. The
limit g∞ is smooth on CP2 # CP2

\ E2 and has conically symmetric singularities
on E2 with the same conical angle 10π/7 along one direction. Moreover, g∞ on
CP2 # CP2

\ E1 ∪ E2 is defined by a strictly increasing convex function ψ∞(t)
on (−∞,∞), which satisfies the equation

(1-2) ψ ′ψ ′′ = e13t/7−6ψ/7.

(2) The Ricci curvature of g∞ is given by

(1-3) Ric(g∞)=
√
−1∂∂̄( 1

7 t + 6
7ψ∞) on C2

\ {0}.

In particular, the Ricci curvature of g∞ is bounded.

By (1-2), one sees that the limit metric g∞ is not a Kähler–Ricci soliton. This sit-
uation is quite different from the case of Kähler–Ricci flow studied in [Zhu 2007],
where it was shown that the evolved Kähler metrics arising from the Kähler–Ricci

1Actually, Székelyhidi proved that the maximal solvable parameter λ is independent of the back-
ground metrics we choose.

2Chi Li [2009] has calculated the maximal solvable parameter λ for all toric Fano manifolds.
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flow on a given toric Fano manifold will converge smoothly to a Kähler–Ricci
soliton in the Cheeger–Gromov sense if the initial Kähler metric is toric. (See also
[Koiso 1990] for the special case CP2 # CP2 with a Calabi symmetric metric as
the initial metric.) The existence of Kähler–Ricci solitons on a toric Fano manifold
was proved in [Wang and Zhu 2004]. Note that CP2 #CP2 is a toric Fano manifold
and that a Calabi symmetric metric is toric.

It is well known that the limit metric space of a sequence of 4-dimensional Rie-
mannian manifolds with Ricci curvature bounded from below and with sectional
curvature bounded in the L2 norm can only have isolated singularities [Anderson
2005; Cheeger et al. 2002]. Theorem 1.1 gives an example of limit metric space
with nonisolated singularities. Note that here the sequence of 4-dimensional Rie-
mannian manifolds have only lower bound on their Ricci curvature (without the
condition for sectional curvature).

In Section 2, we reduce the Monge–Ampère equations to a family of ordinary
differential equations using Calabi’s symmetry conditions. In Section 3, we use the
Futaki invariant [1983] to give a simple proof to the “only if” part of Székelyhidi’s
result and to get some crucial estimates. The convergence problem is discussed in
Section 4. Theorem 1.1 is finally proved in Section 5 by studying the structure of
the singular limit metric. We remark that Theorem 1.1 still holds for the higher
dimensional blow-up space CPn # CPn according to our proof.

2. Reduction of the equation under Calabi’s symmetry conditions

Let (M, g) be a compact Kähler manifold with positive first Chern class c1(M)>0,
where the Kähler class [ωg] equals 2πc1(M). To study the existence of Kähler–
Einstein metrics on M , we use the continuity method. Consider the complex
Monge–Ampère equations

(2-1) det(gi j̄ +φi j̄ )= det(gi j̄ )e
h−λφ

with parameter λ ∈ [0, 1], where h is a Ricci potential of g defined by

Ric(g)−ωg =
√
−1∂∂̄h.

See [Yau 1978; Tian 1987]. If (2-1) is solvable at λ = 1, then the solution φ will
define a Kähler–Einstein metric whose Kähler form given by ωg+

√
−1∂∂̄φ. In our

case M =CP2 #CP2, we choose a background Kähler metric g satisfying Calabi’s
symmetry conditions, namely, g is defined by a convex function u in t ∈ (−∞,∞),
so that

(2-2) gαβ̄ = ∂α∂β̄u(t)= e−t u′(t)δαβ + e−2t z̄αzβ(u′′(t)− u′(t)).
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As Calabi pointed out [1982], g can extend across E1 and E2 if and only if the
following hold:3

(1) The function u0(r) defined for all r > 0 by

(2-3) u0(r)= u0(et)= u(t)− t

is extendable by continuity to a smooth function at r = 0 satisfying u′0(0) > 0.

(2) The function u∞(r) defined for all r > 0 by

(2-4) u∞(r)= u∞(e−t)= u(t)− 3t

is extendable by continuity to a smooth function at r =0 satisfying u′
∞
(0)>0.

Let v(t) :=− log det(gαβ̄)= 2t− log u′(t)− log u′′(t). Then the Ricci curvature
is

(2-5) Rαβ̄ = ∂α∂β̄v(t)= e−tv′(t)δαβ + e−2t z̄αzβ(v′′(t)− v′(t)).

Since all solutions φ of (2-1) are symmetric, it becomes

(u′+φ′)(u′′+φ′′)= e2t−u−λφ,

which we can rewrite as

(2-6) ψ ′ψ ′′ = e2t−(λψ+(1−λ)u),

where ψ = u+φ. Note that the volume of g is computed by

(2-7)
Vol(M, g)=

∫
C2\{0}

u′′u′e−2t dz1 ∧ dz2 ∧ dz1 ∧ dz2

= Vol(S3)

∫
∞

−∞

u′′u′dt = 4 Vol(S3),

where Vol(S3) denotes the volume of the unit sphere in R4. So we may normalize u
so that

(2-8)
∫
+∞

−∞

e2t−u(t)dt = 4.

3. Application of the Futaki invariant

For a convex function ψ(t) on (−∞,∞) satisfying the boundary conditions (2-3)
and (2-4), we consider the integral

(3-1) I =
∫
+∞

−∞

(2ψ ′ψ ′′−ψ ′2ψ ′′−ψ ′′2−ψ ′ψ ′′′)dt.

3This is also clear from our proof of Proposition 5.2.
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One can show that if ψ is a defining function of a Calabi symmetric metric on
M = CP2 # CP2, then I is just the Futaki invariant evaluated at the holomorphic
vector field z1∂/∂z1 + z2∂/∂z2, where z1 and z2 are the standard coordinates on
C2
\ {0} ' M \ (E1 ∪ E2).
Now by the boundary conditions, we have

I1 =

∫
+∞

−∞

2ψ ′ψ ′′dt = ψ ′2
∣∣+∞
−∞
= 8,

I2 =

∫
+∞

−∞

−ψ ′2ψ ′′dt =− 1
3ψ
′3∣∣+∞
−∞
=−

26
3 ,

I3 =

∫
+∞

−∞

−ψ ′′2−ψ ′ψ ′′′dt =−(ψ ′ψ ′′)
∣∣+∞
−∞
= 0.

These equalities imply that I = −2/3 6= 0. In particular, we see that there are no
Kähler–Einstein metrics on M .

Proposition 3.1. Equation (2-6) is solvable only if λ < 6/7.

Proof. According to the boundary conditions, the integral I should equal −2/3.
But by the equation, we have

I = (1− λ)
∫
+∞

−∞

(u′−ψ ′)ψ ′ψ ′′dt =
13(1− λ)

3
−

1− λ
2

∫
+∞

−∞

ψ ′2u′′dt.

Note that ψ ′2 < 9, we have − 2
3 = I >−14

3 (1− λ). So λ < 6/7. �

We can get more information from the integral I .

Lemma 3.2. For any fixed t0, we have

(3-2) lim
λ→6/7

∫
+∞

t0
ψ ′λψ

′′

λ dt = 0.

In particular, the functions ψ ′λ converge uniformly to the constant function 3 on
[t0,+∞) when λ→ 6/7.

Proof. The identity I ≡−2/3 is equivalent to

Aλ :=
∫
+∞

−∞

u′ψ ′λψ
′′

λ dt = 26
3
−

2
3(1−λ)

.

It follows that limλ→6/7 Aλ = 4. On the other hand, we have

(3-3)
Aλ >

∫ t0

−∞

ψ ′λψ
′′

λ dt + u′(t0)
∫
+∞

t0
ψ ′λψ

′′

λ dt

= 4+ (u′(t0)− 1)
∫
+∞

t0
ψ ′λψ

′′

λ dt.
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This implies that

0<
∫
+∞

t0
ψ ′λψ

′′

λ dt < 1
u′(t0)−1

(Aλ− 4)→ 0.

Thus
1
2(3

2
− (ψ ′λ(t0))

2)→ 0 as λ→ 6/7,

that is, ψ ′λ(t0) → 3 as λ → 6/7. By the monotonicity of ψ ′λ, the functions ψ ′λ
converge uniformly to 3 on [t0,+∞). �

4. Convergence

Now we analyze the behavior of ψλ as λ↗ 6/7.
Letwλ=−(2t−(1−λ)u−λψλ). Thenwλ is strictly convex. Let pλ∈M , so that

wλ(pλ)= infx∈M wλ(x)= Cλ. Clearly, pλ ∈ M\(E1
⋃

E2)∼= C2
\{0}, so we may

abuse the notation to identify pλ with its coordinate in C2
\{0}. Let tλ = log|pλ|2.

Lemma 4.1. When λ→ 6/7, we have tλ→−∞.

Proof. Suppose that there is a subsequence λi → 6/7 but tλ ≥ −C > −∞. Since
w′λ(tλ)= 0, we have

ψ ′λ(−C)≤ ψ ′λ(tλ)=
2
λ
−

1−λ
λ

u′(tλ)≤
2
λ
.

Then we can easily get a contradiction from this and Lemma 3.2. �

We now introduce a family of modified functions of ψλ by

ψ̃λ(t)= ψλ(t + tλ)− λ−1(2tλ− (1− λ)u(tλ)).

Then ψ̃λ satisfies the equation

(4-1) ψ̃ ′′ψ̃ ′ = e(2−(1−λ)u
′(tλ))t−λψ̃+(1−λ) fλ(t),

where

fλ(t)=−(u(t + tλ)− u(tλ)− u′(tλ)t)= u0(etλ)− u0(et+tλ)+ (u′(tλ)− 1)t.

It is clear that limλ→6/7 fλ(t)= 0 for any t .

Proposition 4.2. There exist a sequence of convex functions ψ̃λi
, where λi → 6/7,

and a smooth convex function ψ∞ defined on (−∞,∞), such that the ψ̃λi
converge

locally uniformly and smoothly to ψ∞, which satisfies the equation

(4-2) ψ ′′ψ ′ = e(13/7)t−(6/7)ψ for t ∈ (−∞,∞).
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Proof. It suffices to prove that
|Cλ| ≤ C.

In fact, if this is true, we see that all the ψ̃λ are uniformly bounded on any bounded
intervals. As a consequence, by (4-1), the ψ̃ ′′λ are also uniformly bounded on any
bounded intervals. Then again by (4-1), it is easy to see that the Ck norms of the
ψ̃λ are locally uniformly bounded. Thus there exist a sequence of convex functions
ψ̃λ that converges locally uniformly in Ck norm to a convex function ψ∞ defined
on (−∞,∞). On the other hand, by Lemma 4.1, the tλ go to −∞ as λ→ 6/7.
Hence, by (4-1) and the fact that fλ(t)→ 0 as λ→ 6/7, we conclude that ψ∞ is
in fact smooth and satisfies (4-2).

Now we prove the the boundedness of Cλ. By the boundary conditions, we have

(4-3)
∫
∞

−∞

(ψ ′′λ ψ
′

λ)dt = 1
2(ψ

′

λ
2(∞)−ψ ′λ

2(−∞))= 4.

Then by the convexity of wλ and the fact |w′λ| ≤ 1, it is easy to get a lower bound
of Cλ. So we only need to obtain an upper bound. For simplicity, we write w=wλ
and ψ = ψλ.

Let B0 be the interval defined by

B0 := {t ∈ (−∞,∞) | Cλ ≤ w(t)≤ Cλ+ 1}.

Then there exist exact two numbers s0 and t0 with s0< t0 such thatw(s0)=w(t0)=
Cλ+ 1. Clearly tλ ∈ B0, and it holds that

ψ ′′ ≥ c0e−Cλ on B0.

So

(4-4) w′′ ≥ λc0e−Cλ ≥ 1
2 c0e−Cλ .

We want to show that

(4-5) R := 1
2(t0− s0)≤

√
4
c0

eCλ/2.

In fact we consider the function on R defined by

v(t)= 1
4 c0e−Cλ(|t − 1

2(s0+ t0)|2− R2)+Cλ+ 1.

Then it is clear that v(t) satisfies

(4-6) v′′ = 1
2 c0e−Cλ on B0 and v(s0)= v(t0)= Cλ+ 1.

Thus by (4-4) and (4-6), we get

(w− v)′′ ≥ 0 on B0 and w(t)= v(t) for t = s0 and t = t0.
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It follows from the convexity that

w ≤ v on B0.

In particular,

Cλ ≤ w(1
2(s0+ t0))≤ v( 1

2(s0+ t0))=− 1
4 c0e−Cλ R2

+Cλ+ 1.

This implies (4-5).
For k ≥ 1, we choose a family of closed sets

Bk := {t ∈ (−∞,∞) | k+Cλ ≤ w(t)≤ Cλ+ k+ 1}.

Then there are sk and tk with sk < tk−1, for k ≥ 1, such that

Bk = [sk−1, sk] ∪ [tk−1, tk].

By the convexity of w, it is easy to see w′(t0),−w′(s0)≥ 1/(2R), and so

−w′(s), w′(t)≥ 1/(2R) for all s ≤ s0 and t ≥ t0.

Thus
tk − tk−1 ≤ 2R and sk − sk−1 ≤ 2R.

Hence by (4-5), we get

sk − sk−1, tk − tk−1 ≤ 2R ≤ 2
√

4
c0

eCλ/2.

It follows that

(4-7)

∫
∞

−∞

e−wdt =
∑

k

∫
Bk

e−wdt

≤

∑
k

4
√

4
c0

eCλ/2e−Cλ−k

= 4
√

4
c0

e−Cλ/2
∑

k

e−k
≤ Ce−Cλ/2.

This inequality and (4-3) imply that 4≤ Ce−Cλ/2. �

According to Proposition 4.2, we can define a Kähler metric ω∞ on C2
\ {0} by

√
−1∂∂̄ψ∞. Then we have the following convergence of gλ.

Proposition 4.3. There exists a sequence of biholomorphic maps σλi on M , with
λi→ 6/7, such that the σ ∗λi

ωgλi
converge to ω∞ on C2

\ {0} smoothly as λi→ 6/7.
In particular, the (M \(E1∪E2), ωgλi

) converge to (C2
\{0}, ω∞) in the Cheeger–

Gromov sense.
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Proof. Let σλ be the biholomorphic map on C2
\ {0} defined by

σλ(z1, z2)= (etλz1, etλz2).

Clearly this action fixes the points {0} and ∞. Thus the action can extend to
CP2 # CP2. Furthermore,

σ ∗λωgλ =
√
−1∂∂̄σ ∗λψλ =

√
−1∂∂̄ψ̃λ on C2

\ {0}.

By Proposition 4.2, we see that there exist a sequence of parameters λi such that
σ ∗λωgλi

converge locally uniformly and smoothly to ω∞. �

5. Properties of the limit metric

Now we discuss the structure of ω∞ near E1 and E2.

Lemma 5.1. Let a := limt→−∞ ψ
′
∞
(t) and b := limt→∞ ψ

′
∞
(t). Then we have

a = 1 and b = 3.

Proof. Since Ric(ωλ) ≥ λωλ, by the Bonnet–Myers theorem, the diameters are
uniformly bounded. Then by the Bishop–Gromov volume comparison theorem,
we have

Vol(Br (x), ωλ)≥ Crn for all x ∈ M and r ≤ 1.

This means the family of metrics ωλ are noncollapsing. Then by a result of Cheeger
and Colding [1997, Theorem 5.4], the convergent sequence ωλi of metrics satisfy

lim
λi→6/7

Vol(M, ωλi )= Vol(M, ω∞).

On the other hand,

Vol(M, ωλ)=
∫

C2\{0}
ψ ′′ψ ′e−2t dz1 ∧ dz2 ∧ dz̄1 ∧ dz̄2

= Vol(S3)

∫
∞

−∞

ψ ′′ψ ′dt = 4 Vol(S3)

and
Vol(M, ω∞)= 1

2 Vol(S3)(b2
− a2).

It is obvious that a ≥ 1 and b ≤ 3. The claim follows. �

Proposition 5.2. The metric ω∞ can extend to a smooth metric on M \ E2.

Proof. In the standard coordinates on C2, we can express ω∞ as

(5-1)
ω∞ =

√
−1∂∂̄ψ∞

=
√
−1

∑
α,β

(e−tψ ′
∞
δαβ + e−2t(ψ ′′

∞
−ψ ′

∞
)z̄αzβ)dzα ∧ dz̄β,
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where z = (z1, z2) ∈ C2
\ {0} and t = log|z|2. We will use the coordinate transfor-

mation
w1 = z1/z2 and w2 = z2

near z= (z1, z2)= 0. In fact, this transformation blows up a neighborhood of 0 to a
neighborhood of E1 in M . Sinceω∞ is symmetric, we may consider the behavior of
ω∞ along z= (0, z2) with |z2|� 1 under this coordinate transformation. By (5-1),
it is easy to see the components of the metric at (0, z2) are given by

g11̄ = e−tψ ′
∞
(t), g22̄ = e−tψ ′′

∞
(t), g12̄ = 0.

Then, in the new coordinate system w, we have

(5-2) g̃11̄ = ψ
′

∞
(t), g̃22̄ = e−tψ ′′

∞
(t), g̃12̄ = w2w̄1e−tψ ′

∞
= 0.

On the other hand, by (4-2) and Lemma 3.2, we see that for any α < 1 there is a
uniform constant C1 such that

ψ ′′
∞
(t)≤ C1eαt for all t ≤ 0.

This implies
1≤ ψ ′

∞
(t)≤ 1+C2eαt ,

and so we get |ψ∞− t | ≤ C2. Thus again by (4-2), we obtain

(5-3) C−1
3 ≤ e−tψ ′′

∞
(t)≤ C3 for all t ≤ 0.

This means that
C−1
≤ g̃22̄ ≤ C for all t ≤ 0

and for some uniform constant C . Moreover from the argument above, one can
show that g1(s) := g̃22̄ can extend to a continuous function on the interval [0, 1),
where s = et . In fact, we will prove that g1(s) is C∞ at s = 0 in the following.

We rewrite (4-2) as

(5-4) [ψ ′
∞

2
]
′

s = 2e−(6/7)(ψ∞−t),

where f ′ and [ f ]′s are derivatives of f with respect to t and s, respectively. Then
by (5-3), it is easy to see that [(ψ ′

∞
)2]′s is Lipschitz at s = 0. It follows that g1(s)

is also Lipschitz at s = 0. This implies that (ψ∞ − t)′s is Lipschitz at s = 0.
Thus by (5-4), we can repeat the arguments above to show that (g1)

′
s(0) exists and

(g1)
′
s(s) is Lipschitz at s = 0. Using the “bootstrap” argument, we see that g1(s)

is C∞ at s = 0.
The argument above also proves that g2(s)=ψ ′∞(t)= g̃11̄ is C∞ at s = et

= 0.
Note that s = |w2|

2. Since the derivative of ω∞ at (0, 0) along the direction of
the other variable w1 is a function in the variables w1 and w2, we see that ω∞ can
extend to a smooth metric on M \ E2. �
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To analyze the behavior of ω∞ near z=∞, we introduce the following concept.

Definition 5.3. Let g =
∑

i, j gi j̄ dzi ⊗ dz̄ j be a Kähler metric defined on M∗ =
M \D, where D is a smooth subvariety of codimension 1. We say that the metric g
has conically symmetric singularities on D along one direction with a conical angle
απ if for every point p ∈ D, there exists a coordinate system (U ;w1, . . . , wn)

near p such that w(p) = (0, . . . , 0) and in which the components gi j̄ of g on
U \ D are such that the components (|w1|

2−α)g11̄, g1 j̄ for j = 1, . . . , n and glm̄

for l,m = 2, . . . , n can be extended to a positive definite matrix-valued smooth
function on U in the variables |w1|

α/2, w2, w̄2, . . . , wn, w̄n .

Remark 5.4. If α = 2/k for some integer k ≥ 2 in Definition 5.3, then the metric
g has an orbifold structure. In fact, if Ṽ is a branched covering of a neighborhood
V of p by the map π : (z1, z2, . . . , zn) 7→ (w1 = (z1)

k, w2 = z2, . . . , wn = zn),
then π∗g can be extended to a smooth Kähler metric on Ṽ .

Theorem 5.5. (1) The singular Kähler metric ω∞ on CPn # CPn defined by ψ∞
has conically symmetric singularities lying on the infinity divisor E2, with the
same conical angle 10π/7 along one direction.

(2) The Ricci curvature of ω∞ satisfies the equation

(5-5) Ric(ω∞)=
√
−1∂∂̄( 1

7 t + 6
7ψ∞).

In particular, the Ricci curvature is bounded.

Proof. By Proposition 5.2, it suffices to analyze the behavior of ω∞ near E2. We
write the homogeneous coordinates on M\E1 (as a subset of CP2) as [Z0, Z1, Z2],
where E2 is defined by the equation Z0 = 0. Then we have on M \ (E1 ∪ E2)

z1 =
Z1

Z0
and z2 =

Z2

Z0
.

By the symmetry conditions we imposed, we may consider only the behavior of
ω∞ on the open set U := (M \ E1)∩ {Z2 6= 0}. The affine coordinates on U are

w1 =
Z1

Z2
=

z1

z2
and w2 =

Z0

Z2
=

1
z2
.

A direct computation shows that the components of the metric ω∞ at w = (0, w2)

are given by

(5-6) g̃11̄ = ψ
′

∞
(t), g̃22̄ = etψ ′′

∞
(t), g̃12̄ = 0,

where t = log(|z1|
2
+ |z2|

2) = log(1/|w2|
2). On the other hand, by (4-2) and the

arguments in the proof of Proposition 5.2, one can show that

(5-7)
|ψ∞− 3t | ≤ C,

et(ψ∞)
′′(t)= O(e(2/7)t) as t→∞.
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Moreover, if we set s = e−(5/7)t and rewrite (4-2) as

[ψ ′2
∞
]
′

s = 2e−(6/7)(ψ∞−3t),

then we can prove that g̃1(s)= e(5/7)tψ ′′
∞
(t) and g̃2(s)= ψ∞− 3t are both C∞ at

s = 0. Hence we have proved that ω∞ has a conical structure at each point in E2

with the same conical angle (10/7)π .
By (4-2), we see that the Ricci curvature of ω∞ satisfies (5-5). By the local

formula (5-6) of ω∞ near E2, the Ricci curvature is bounded. �

Theorem 1.1 follows from Theorem 5.5 and Proposition 5.2.
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