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MIXED INTERIOR AND BOUNDARY NODAL BUBBLING
SOLUTIONS FOR A sinh-POISSON EQUATION

JUNCHENG WEI, LONG WEI AND FENG ZHOU

We consider here the semilinear equation Au + 2¢*sinhu = 0 posed on a
bounded smooth domain £ in R? with homogeneous Neumann boundary
condition, where ¢ > 0 is a small parameter. We show that for any given
nonnegative integers k and / with k 41 > 1, there exists a family of solutions
u. that develops 2k interior and 2/ boundary singularities for ¢ sufficiently
small, with the property that

2k 21

26 sinhu, — 81 ) (=1)' "8 +4m Y (=175,

i=1 i=1
where (&, ..., &u+1)) are critical points of some functional defined explic-
itly in terms of the associated Green function.

1. Introduction

The two-dimensional sinh-Poisson equation
(1-1) Au+2¢?sinhu =0

arises in various important contexts, notably as a vorticity equation in classical
hydrodynamics [Gurarie and Chow 2004; Chow et al. 1998; Kuvshinov and Schep
2000; Mallier and Maslowe 1993], in physico-chemical hydrodynamics [Probstein
1994] and in the geometry of constant mean curvature surfaces [Wente 1986]. In
the vorticity connection, it occurs in a remarkable manner out of natural relaxation
states in the long-time computation of two-dimensional fluid motion [Mallier and
Maslowe 1993] (see also the references therein). In geometry, the sinh-Poisson
equation plays a very important role in the study of the construction of constant
mean curvature surfaces initiated by Wente [1986]. Wente’s seminal work then
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led to work by Steffen [1986], Struwe [1986] and Brezis and Coron [1984], which
completed the understanding of the blow-up for constant mean curvature surfaces
from a geometric point of view. Spruck [1988] was the first to study the sinh-
Poisson equation from an analytic point of view. Recently, the asymptotic behav-
ior of solutions to (1-1) was studied on a closed Riemann surface in [Ohtsuka and
Suzuki 2006] and [Jost et al. 2008]. The authors applied the so-called “symmetriza-
tion method” and “Pohozaev identity”, respectively, to show that there possibly
exist two different types of blow-up for a family of solutions to (1-1). Conversely,
Bertolucci and Pistoia [2007] tried to construct blow-up solutions to (1-1) with
Dirichlet boundary conditions for n = 2, and proved that for & positive and small
enough, there exist at least two pairs of solutions that change sign exactly once, that
concentrate in the domain and that have their nodal lines intersecting the boundary.
In [Wei et al. 2011] and [Wei 2009] the Neumann problem

{Au+282sinhu:o in Q,

(1-2)
du/dv=0 on dQ

was considered, where 2 is a bounded domain in R? with smooth boundary 32 and
& > 0 is a parameter. The authors showed a concentration phenomena of solutions
to (1-2) in the domain in [Wei et al. 2011], and on the boundary in [Wei 2009].

In this paper, we continue the study of the existence of solutions to (1-2). We
prove that there exists a family of solutions u. that concentrate positively and neg-
atively in the domain and its boundary.

To state our results, we need to introduce some notation. First, let us define the
corresponding Green function for the Neumann problem:

—AG(x,y) =68y(x) — 1/ in €2,
(1-3) aG/av =0 on 0L2,
fQ G(x,y)dx =0.

The regular part of G(x, y) is defined depending on whether y lies in the domain
or on its boundary as

G(x,y)+2ilog|x—y| for y € Q,
(1-4) H(x,y) = 7
G(x,y)+;log|x—y| for y € 0.

In this way, H( -, y) is of class C'%in Q.
For k+1> 1 and points §; for j =1,...,2(k+1[), with §; € Q for j < 2k and
§j € dQ for 2k +1 < j <2(k +1), we define

2(k+1)

(1-5) @i Er s barn) = Y GHEEN+ Y cje(=1)ITG &), &)

j=1 J#i
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and denote

My =& =1, B Eotsts - Eern) € 22 X 9QY

where ¢; =8m fori=1,...,2kand¢c; =4nw fori =2k +1,...,2(k+1).
Definition 1.1 [Esposito et al. 2006]. We say that & is a C*-stable critical point of
¢m : Mg — R if for any sequence of functions ¢/, : Mg — R such that ¢} — ¢,
uniformly on compact sets of .Il4, the function ¢/, has a critical point &, such that
@ (En) = Om(§).

In particular, if £ is a strict local minimum/maximum point of ¢,,, then £ is a
CO-stable critical point.
Theorem 1.2 (main result). Let k and | be nonnegative integers with k +1 > 1.
Assume £* € My is a C-stable critical point of ©2k+1)- Then for any sufficiently
small ¢ > 0, there is a solution u, to (1-2) with the property that

(1-6) 282/ |sinh u,|dx — 872k +1) ase — 0.
Q

More precisely, for any sequence {e,},>1 that tends to 0, there is a subsequence
and 2(k + 1) points & € Q fori = 1,...,2(k + 1), with §j € Q for j < 2k and
§; € 0Q for 2k +1 < j <2(k+1), and positive constants w; fori =1, ...,2(k+1)
such that

2(k+1)

. 1
1D w@=Y (=)o +eiH(x,)) +o(l
(1) ue®) ;j( Y e G E T 8) o)
and

2k . 2(k+1) )
(1-8) 27 sinhu, — 87 Y (=176 +4r D (—D)7e,

i=1 i=2k+1

in the sense of measure. Moreover, the constants (u; are given by

logBuf) = ciH (&, &)+ Y (=) V' e; G, £)).
J#

The [ = 0 (or kK = 0) case of this theorem was proved in [Wei et al. 2011] (or
[Wei 2009]). The conditions that £* € .ll; be a C°-stable critical point of O (k+1)
is perhaps not necessary. Here, we need it only because of the technique we will
use. In particular, for the case k =/ =1 and Q2 = B = B(0, 1), the unit ball
in R?, we don’t need the condition and can obtain the existence and the profile
of sign-changing solutions that concentrate positively and negatively at different
points &1, & € B and &3, &4 € 9 B. More precisely:
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Theorem 1.3. Let k =1 = 1. Then, there exists a solution u, to (1-2) that concen-
trates at different points &, &, € B and &3, &4 € 0B, according to (1-6), (1-7) and
(1-8)withk =1=1, as € goes to 0.

Del Pino and Wei [2006] considered the problem —Au + u = Le* under Neu-
mann boundary conditions and built a solution with A |, o €" uniformly bounded and
L . k
boundary-interior concentrating, such that Ae" — 87 3 _; 8, + 47 Z’J’Lk 11 9%;-
For basic cells, they used explicit solutions of

Au+e"=0 inR?, / e'dx < +oo
RZ

given by
812

(12 + |x — &%)
In this paper, we will also construct solutions predicted by the theorems using these
ones, but suitably scaled and projected so that it works for the nonlinearity we con-
sider here. A special feature of our problem is presence of mixed positive-negative
boundary-interior bubbling solutions. This is a new concentration phenomenon.
To capture such solutions, we use the so-called localized energy method, which
combines Lyapunov—Schmidt reduction and variational techniques. Such a scheme
was been used in many works; see for instance [D4vila et al. 2005; del Pino et al.
2005; del Pino and Wei 2006] and references therein. Here we follow [del Pino
and Wei 2006; Wei et al. 2011; Wei 2009], but we will overcome some of the

difficulties that the mixed concentration phenomenon brings by delicate analysis.

Ut =log for ;1 > 0 and & € R?.

2. Ansatz for the solution

In this section we will provide a first approximation for the solution of the problem
(1-2) predicted by Theorems 1.2 and 1.3. Letus fixk+/>1. Fori=1, ..., 2(k+I),
let & € Q and let u; be positive numbers to be chosen later. We define

8,ui2
uF+1x— &P

2-1) u;(x) =log

The ansatz is
2(k+1)

(2-2) U)= Y (=" ui(x) + Hf (x))

i=1

where H/(x) is a correction term defined as the solution of

(2-3)
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with the property that

2-4) / H? (x)dx = —/ u; dx.
Q Q

This function resembles the shape of the regular part of the Green’s function. In-
deed, the following estimate for H? holds true.

Lemma 2.1. Forany0 <o <1
(2-5) Hf(x) = ¢;H(x, &) —log(8u?) + O(e)

holds uniformly in Q, where H is the regular part of the Green function defined
by (1-4).

Proof. The regular part of Green’s function H (x, &;) satisfies

AH(x, &) = Ilﬁl in Q,
(2-6) IH 4 (x—&) - v(x)
= T gy M

Now we define z;(x) = Hf (x) + log(81?) — ¢; H (x, &). Then

1 .

Aze = > — e”"—c—l in Q,
1€2] Je |€2]

9ze 4 (xz—fi)'v(x) _4(96—&')'1)2()6) 090

v e2u; + |x — &2 lx — &l

First, by the definition of u;, we have

812
82/€ui=82/ — M; v
Q Q (ecu; +1x — &%)

2
_ 882/ Hi 22
Q/en, (2147 +e2uiy)?

2-7) dy
=8 2\2
Q/epi (1 +y )

=2¢i (/0 ﬂ:fl—;)z * 0</1/e;u (lf“d—;)z>)

=ci + 0(82,ul-2)

Next, for & € Q withi =1, ..., 2k, we have

dH; _4 (x—=§&)-v(x) _4(X—§i)'v(x)

— = +0(?) forall & e Q, x €.
v 82,ul.2+|x—§ilz lx — &2 e i
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For & e 0Q2 withi =2k+1,...,2(k+1), we have

. OHf  (x—&)-v(x)
2-8) R N A

for all x #&;.

We claim that for any p > 1 there exists C > 0 such that
(x —&)-vx)

dH? y
(2-9) |5 -4 <Cell?,
v lx — &2 lLreo)
It is not difficult to prove that the inequality
(2-10) |(x — &) -v(x)|< Clx — &> forall x € 92

holds for &; € 92 by assuming that & = 0 and that near the origin 92 is the graph
of a function P : (=4, §) — R with P(0) = P’(0) = 0. Now from (2-10) we obtain

OHf =8 V)| 400 16 =) v@)]

ov v =& =& 2]+ — &)
- Ce?
BERTE AT

(2-11)

Thus for A > 0 small but fixed,

|Hf_4u—&»v@>
B X — &2

(2-12) <Cg? forall |x —&|> A, x € 9Q.

Letting p > 1 and changing variables x — &, = eyu;, we have
2 p 1 p
[N e vt L N (oo
B (g)na! €71 +|x — &l By e 092, | 11V
A/epmi 1
=C ———dt <Ce.
8/0 A+ ="°

This, combined with (2-11) and (2-12), shows that (2-9) holds.
By elliptic regularity theory, we obtain z, € W!'*P(Q) for any p > 1, with
0 <s < 1/p. On the other hand, from the Poincaré inequality we get

Z—L Z
B |Q|QS

This implies the existence of a constant M such that

dy

< C||Vzellroy < Ce'?.
W1+S,p(Q)

ze(x) =M+ O(¥) forany« € (0, 1),

uniformly in Q, where M = lim,_,(|2|~! fQ Zedx.
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To obtain the result, we only need to show M = 0. First, by the definition of z,
we have

(2-13) _hm |Q|/H‘9(x)dx+log(8ul)—@/ H(x,fﬂdx).

The direct computation from (2-4) shows that

e .2 1
LHi (x) = L(log(&u,)—i-l()g (82/"1‘2+|x_€i|2)2)

2 el u;
= —|Q|log(8 .)+2/10 (1+ ! )—4/10
1€2] log (84 o8 & Ch |

= —1@llogud) +ar [ Hex&dx-+ O loge™),
Q

where the last equality is consequence of the definition of H and the property of
the Green function. Therefore (2-13) implies M = 0. [l

In Q, = Q/e, let v(y) = u(ey); then solving problem (1-2) is equivalent to
solving

Av(y)+2¢*sinhv=0 in Q,
(2-14)
ov/ov=0 onaS2,.
We will seek a solution v of (2-14) of the form
(2-15) v() =V +o¢(y) forallye S,
where
2(k+1)
(2-16) V) = > (=D uiey) + Hf (ey)).

i=1
Problem (2-14) can be restated: Find a solution ¢ to
Ap+Wop+R+N(@)=0 inQ,,
o1 { o+ Wo @) :
d¢p/dv=0 on 0€2,

where

(2-18) W =2¢*cosh V,

(2-19) N(¢) = 284(sinh(V +¢) —¢pcoshV —sinh V) (the nonlinear term),
(2-20) R=AV +2¢*sinh V (the error term).

We choose the parameters w; as

(2-21) logBu}) = H(E, &) + Y (=1 G (&, &)).
J#i
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From Appendix A, we have for all y € 2, the estimates

2(k+1) |
2-22 R(y)| < Ce® N S
(2-22) [R(y)| = Ce ; R
2(k+1) M-2
(2-23) W) = ‘ (1 +6.(,)),
,.; W +ly—¢g»
with
2(k+1)
(2-24) 0| < Ce*+Ce Y |y—§]l,
i=1
where &/ =& /e.

3. Analysis of the linearized problem

In this section we study the solvability of the problem

2(k+1) J;
—Ap=Wo+h+ Y > cjixiZji+coxZ inQ,
(3-1) i=1 j=1
ad
—¢=O on 92,
av
with
(3-2) /X,-Zj,-qszo fori=1,...,2(k+10), j=1,J,
(3-3) /XZ¢=0,
Qe

where W is a function that satisfies (2-23) and (2-24), h € L*°(Q2), co,cji € R,

the functions x, x;, Z and Z;; will be defined below, J; =2 fori =1, ..., 2k, and

Ji=1fori=2k+1,...,2(k+1).
Define z;; by

1 i

200 = — —2——— and Zji
Hio iyl

__ i

IRGEEE

It is well known that any solution to
8/Ll-2

(7 +1y1%)?

is a linear combination of zj; for j =0, 1, 2; see [Chen and Lin 2002, Lemma 2.1].

(-4 A+ ¢=0, Ipl=CA+]|yD?
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Next, we fix a large constant Ry and a nonnegative smooth function y : R — R
such that x(r) =1forr < Ry, x(r) =0forr > Ry+1,and 0 < y < 1.

Fori =1, ..., 2k (corresponding to the interior bubble case), we define

xiM=x(Uy—8&0D, Zji(y)=zji(y—§) forj=0,1,2,i=1,...,2%k.

Fori =2k+1,...,2(k+1) (corresponding to the boundary bubble case), first
we strength the boundary similarly to [del Pino and Wei 2006]. Let us concentrate
on & € d2. Without loss of generality, we assume that &§; = 0 and the unit outward
normal at &; is (0, —1). Let P(x;) be the defining function for the boundary 0€2 in
a neighborhood B, (§;), that is,

QN B,(&) ={(x1,x2) | x2 > P(x1), (x1, x2) € B,(§)},
and then define F; : B,(&) NN — R2 by F; = (F;y, Fip), where

X2 — P(xy)

T panp’ (0 @ Fa=x=Pe,

Fi1 =X+
Then we set
Ff(y)=¢""Fi(ey)
and define
XiM=XF ), Zji(y)=z;(F(y) forj=0,1,i=2k+1,...,2(k+D).
It is important to observe that F; preserves the Neumann boundary condition and
8LLi &”
+ 2 112)2 ! 3)'
(i +1y—§19) A+ly=§D

Let0 <b <1 anddefineforalli =1,...,2(k+1),
min{1/p; — %, Zoi(y)} i |y —&/| < /e,

1/ —&” if |y —§/|=é/e

AZy;

Zo,-=0(

(3-5) Z(y)= {

2(k+l
and x = 3757 .
Now let us introduce the norms

|h(y)l
1hlleo = sup [h(y)| and Al = sup ———55-7 P
yEQe yeQ €7+ Zi:l (I+1y— ‘i:[ ==
where we fix 0 < o < 1, reserving the precise choice for later. Our main result in
this section is stated as follows:

Proposition 3.1. Let d > 0 and let k,l be nonnegative integers with k + 1 >
1. Then there exists a gy such that for any 0 < ¢ < &y, any 2(k + [)-points
&1, ..., &4+ € Mg and any h € L*°(K2;), there is a unique solution ¢ € L*°(L2;),
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co,cji € Rto (3-1), withi =1,...,2(k+1) and j =1, J;. Moreover there is a
positive C independent of € such that
l@llLe,) < Cllogelllh|lx,
max{|col, |c;i[} < Cllhlls fori=1,...,2(k+1), j=1,J.

We begin to prove this result by studying a linear problem

—Ap=h+W in 2,
(3-6) { ) +W¢ in
d¢p/0v =0 on 92,

together with orthogonality conditions (3-2) and (3-3).

Proposition 3.2. Let h € L>°(R2,). For fixed d > 0 there exist &g > 0 and C such
thatif 0 < e < &9, &€ = (&1,...,&4+1)) € Mg and ¢ € L>(82,) is a solution of
(3-6) such that (3-2) and (3-3) hold, then

¢l < Cloge™" 1],
where C is independent of ¢.

We will prove this estimate by contradiction assuming that there exist a sequence
e — 0, points (&1, ..., &x+1)) € Mg (We omit the dependence on ¢ in the notation)
and functions i, ¢ € L°°(£2,) such that

(3-7) gl =1 and loge™'[[h].=o(l).
Fix 0 < y < B < 1/2 and consider the function 5 given by
1 ifr<e™7,

loge™" —logr

(3-8) n(r) = ife” <r<eg P,

loge=# —loge~v
0 if r > e P,

Let 77 be a radial smooth cut-off function on R? such that 7(r) = 1 for r < 75,
i=0forr>2¢"P, |7 ()| <CeP and |7”(r)| < Ce*#. Then we set

n(ly—g/ fori=1,...,2k,
n(IFE)) fori=2k+1,...,2(k+1);
n(ly—¢/) fori=1,...,2k,
AAFE)) fori=2k+1,...,2(k+1);
aoi = !
wi((@4/ci)logey—1+H (&, &))

ni(y) = {

mi(y) = {

and also
Zoi(V) = Zoi (v) — ;' 4+ aniG(ey, &).
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Now define a test function
Zoi =i Zoi + (1 — 1) Zoi.
Given ¢ satisfying (3-6) and the orthogonality conditions (3-2) and (3-3), let

2(k+1)
- Z di Zo;,
i=1
where the numbers d; are chosen so that st Xi Zoz‘¢~> =0foranyi=1,...,2(k+I),
namely d; = ng Xi Zo,-gb/fgf Xi Z3;. Observe that
di=0() and |¢ll =@, = O(D).

Moreover, ¢ satisfies

2(k+1)
(3-9) —Ap=Wo+h— 21: d;L(Zy) in Q.,
3 /v =0 N on 99,
and the orthogonality condition
(3-10) / xiZji¢=0 foralli=1,...,2(k+10), j=0,1,J,
Q.

where L := —A —W.
To reach a contradiction it is sufficient to establish the following:

Lemma 3.3. ¢ — 0 uniformly in Q,.
Lemma34. d; — Oforalli=1,...,2(k+1).
We postpone proofs of these lemmas and mention first some key steps.

Lemma 3.5. Foralli=1,...,2(k+1) and R > 0, we have
® — 0 uniformly in Q. N Bg(&]).

Proof. Assume that for some R >0andi =1,...,2(k+1) there is a ¢ > 0 such
that supp, & )|¢| > ¢ > ( for a subsequence ¢ — 0 Let us translate and rotate €2,

so that £/ =0 and €2, approaches the upper half plane [Ri2 By the elliptic estimate,
d) — qbo uniformly on compact sets and ¢0 is a nontrivial bounded solution of (3-4).
Then we conclude that ¢y is a linear combination of z; ji for j =0,1,J;. On the
other hand, we can take the limit in the orthogonality relations (3-10), observing
that the limits of the functions Z ; are just rotations and translations of z;;, and we
find that fRi X oz ji = 0. This contradicts the fact that b0 % 0. [l
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1 ~
— — 0.
€2 /gzgd)

Proof. By potential theory we have

Lemma 3.6. 5

2(k+1)

b0 =d= [ Gleren(Whrh— 3 diLizw)dz
é i=1

where G is the Green function defined by (1-3).
Note that since

2(k+1)
W+h— ) dL(Zy)=0
S i=1
and
4 4
G(ey,ez) = - loge — o logly —z| + H (ey, €2),
1 1
we have

B-11) ¢ —¢
2(k+1)

:SLH/QS(H(gy,sz)—Ciilog|y—z|)(Wq3+h— 3 diL(Zo,-)>dz.

i=1

Since ¢ (y) — 0 uniformly on sets of the form | y—&/| < R, we can select a sequence
R, — o0 such that

#(y) — 0 uniformly for |y —&/| < R..

We can assume R, — oo as slowly as we need.

Selectapoint y,, € 2, form=1, ..., 2kory, €9, form=2k+1, ..., 2(k+I]),
such that |y, — &, | = R.. We claim that when we evaluate (3-11) at y,,, all terms
in the right side of (3-11) converge to zero except for

/ log|ym — z|L(Zo;)dz = i_n(smi +o(1),
Qe i

1

where §,,; 1s Kronecker’s delta.
. = 2w
Claim 1. log|lym — z|L(Zo;)dz = =8 +0(1).
Q. Mi
This is proved in Appendix B.

Claim 2. / log|y — z|h(z)dz = o(1) uniformly for y € Q..
Q,
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Proof. Observe that log|y —z| = O (loge™") for |y —z| > R, where R > 0 is fixed,
and that meBR(y)Hogly —z||dz < C. Then

)/ logly—zlhdz‘ §Cloge_]||h||*:0(l). U
Q2

Claim 3. / log|y — z|Wedz = o(1).
Q;

Proof. Tt suffices to show that log & ! f Q Wodz=o(1). Integrating equation (3-9),

we have
2(k+1)

/ W(,Z; +h— Z diL(Z()i) =0.

$2 i=1

The claim then follows from (B-10) and (3-7). O

Claim4. A = / H{ey, sz)(W(;S +h— L(Zol-)) =o0(1) uniformly for y € Q..
Q;

This is proved in Appendix B.
We now return to the proof of Lemma 3.6. From claims above, we get

(3-12) ¢3<y,.)_5:8’f_df+o(1> foralli =1,...,2(k+10).

LM

But the orthogonality condition (3-3) implies that

2(k+1)
(3-13) Y dia; =0, wherea; = / xiZ5; > 0.
i=1 £

Multiplying (3-12) by c;a; i, adding and using (3-13), we find

2(k+1) 2(k+1)

Z Ciliiaidz()’i)_aq_gzo(l), where a = Z Ciai L.

i=1 i=1
Since qg(y,-) — 0 and a is bounded away from zero, we get that 5 =o(1). O
Proof of Lemma 3.3. Let b= $(x/¢), with x € Q. Then $ satisfies
—AP(x) = 2(Wh+h+ 35 di(AZoy + WZo) inQ,

/v =0 on 92,

where W (x) = W(x/e), Zoi(x) = Zo:(x/¢) and h(x) = h(x/¢). For given § > 0,
let Es =\ U Bs(&). Then

1~ 1,5y
8_2||h||L°O(E,g)§C||h”*_>O and 8_2||W¢||L°0(E5)§C82-
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Furthermore, in E5 we have Zg; = 0. Recalling ||qv5||Loo(Q) <1land|Q|"! fQ é — 0,
we obtain ¢ — 0 uniformly in Es and this implies

¢ — 0 uniformly in ©, \ Ul.ziklﬂ) Bs/c(§/) forany & > 0.

For a given R; > 0, let A; = Bs;:(§/) \ Bg, (§/). Given & > 0 small enough, there
exist R; > 1 independent of ¢ (if necessary we can choose R; large enough) and
Y 2, NA; — R smooth and positive such that

—AY; =W > Cly —&/|777° +&% inQ.NA;,

i /ov >0 on 92, N A;,
vi >0 in Q. NA;,
Vi>c>0 on dA; N,

where C, ¢ > 0 can be chosen independent of & and ; is bounded uniformly in
Q:NA;. Let Wy be the unique solution of

AV —e*Wy+e>=0 in Q, dWy/dv =¢ on 9L,

and take ¥1; =1 —r~7, where r = |y — &/|. Then we claim that the function

4
Yi(y) = ;(C‘Vo + v1i)

satisfies the requirements.
In fact, a simple calculation shows that

—AYy; =or 270,

If &/ € Q;, we have
Y
Vg
If & € 0Q, and |y —&/| > R, we have

(Y —§&) v

=0
Vg p2to

=0(@E'"") ondQ,.

n J€2;.

As before, we write 92, near &/ as the graph {(yi, y2) | y2 = e~ P(gyy)} with
P(0) = P’(0) =0. Then we have

W o yiPEy)—Pley) o  O(r?) 0(3)
e T 14 Pley)? 14 0(8?) re
forall R <r < §/e. Thus we see that

0V

oV,

=o(e) on d%2.
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Therefore, for |y —&/| > R withi =1, ...,2(k+1), where R is large, we have by
the definition of y; and the fact that W < 1/(1+ |y — 5{|4) that

C. 2 4 4 CW+y;  C , C
—AW,'—Ww,'=O_—2(8 —& \IJQ)—; 1+I"4 +r2+028 +r2+0.
And on 992,
Vi >

AV

This verifies the claim.

Thanks to the barrier v;, we deduce that the following maximum principle holds
in Q, NA;. If g € H(Q: N A;) satisfies

—Ap—W¢p>0 inQ.NA;,
¢>0 onadf2;NA;,

then ¢ > 0 in 2, N A;.

Let i be bounded and ¢ be a solution of (3-9) satisfying (3-10). We first claim
that ||<,z3|| L=(Q.NA;) can be controlled in terms of

2(k+1)
D ldilIL(Zodllv,  sup [, and |Al..
i1 Q:NIA;
Indeed, set
2(k+1)
@ = C(erl:p @1+ 171+ Z |d|||L<Zol>||*)wz

By the maximum principle above, we have |p| < ® in €, N A;. Since ¥; is uni-
formly bounded, we get

2(k+1)
Bl<c( s 11+ s BRI Y L))
QEﬂ@BRl (%'l,) QEﬂaBg/S (S’,) i=1

in Q. N A;. But ||k|lx = o(1) by the assumption, SUPQeny By, (& )¢| — 0 by
Lemma 3.5, and supg.nyp,, ¢ )|¢| — 0 as shown above. At the same time, we
also know |d;| = O(1) and ||L(Zy)|ls« = O(?") = o(1) from (B-10), this proves
the result. ([

Proof of Lemma 3.4. We take Zo,- as test function to (3-9), obtaining

2(k+1)

(3-14) Z d; /

L(ZOI)ZOl —/ ¢(AZOI + WZOI)+[ hZOl
Qe

Q¢



240 JUNCHENG WEI, LONG WEI AND FENG ZHOU

Observe that

~ ~ - 1 1
(3-15) (f Zoih| = 1011 Zoill (@) = Cloge™ hll—=— = o()——,
Q. oge loge
and
PN ~ ~ ~ 1
(3-16) ‘/ H(AZyi +WZy)| < ||¢||L°°(Qg)”L(ZOi)”*:0(1)1 -
Q. oge

It is not difficult to show as above that

‘/ L(Zo) Zo;
Qe

Proof of Proposition 3.1. First we prove that for any ¢, c¢;;, co and any solution
to (3-1), we have the bound

> .
~ loge~!

O

(3-17) @l o,y < Cloge ™ |hl,.

From Proposition 3.2, we obtain that

2(k+1) J;

(-18)  l¢lim@ = Cloge™ (Ihll+ Y Y lesil + leol).

i=1 j=I

So it suffices to estimate the values of the constants a; and co.
To this end, we multiple (3-1) by Z;; and integrate to find

(3-19) /L(¢)Zji=/ thi+Cji/ ViZ;.
Q. Q Qe

Note that Z;; = O(1/(1 + |y —&;])) for j #0, so

(3-20) /Q nz;; = olhll.)
and
90Z; »
(3-21) /L(¢)Zji=/ L(Zji)¢+/ 3—¢=0(810g8 1l Lo (@.))-
Qe Q. aQ, oV

Substituting (3-20) and (3-21) into (3-19), we obtain
(3-22) ICjil = Ollhlly) + O(slog e~ |pll L=(a))-

On the other hand, multiplying (3-1) by Z we get

(3-23) CO/ Xzz=/ L(¢)Z—/ hZ.
Q. Qe Qe
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Estimating as before, we have

(3-24) /Q hZ = O(Ih)
and
(3-25) /Q L@®Z= / L(Z)p = Oeloge ™ I plLea)-

Thus it follows from (3-23)—(3-25) that

(3-26) lcol = O([Iklls) + O(elog e @l L=(g,))-

From (3-22) and (3-26) we see that the desired bound holds.
Now consider the Hilbert space

H={¢eH1(szg):/ xZ¢>=0,f XiZip=0fori=1,...,2(k+D), j=1,Jl~}
Qe Qe

with the norm ||¢||%1 = fQ£|V¢)|2. Problem (3-1) is equivalent to finding ¢ € H
such that

/ v¢>v¢—/ ng/f:f hy forall ¥ € H.
Qe Q¢ Q

By Fredholm’s alternative, this is equivalent to the uniqueness of solutions to this
problem, which is guaranteed by the a priori estimate (3-17). U

Remark. The result of Proposition 3.1 implies that the unique solution ¢ = T (h)
of (3-1) defines a continuous linear map from L°°(2,), with norm | - ||, into
L*>(K2;). Moreover, the operator T is differential with respect to the variables &, .
In fact, computations similar to those used in [Wei et al. 2011] yield the estimate

(3-27) 13 @Il (0,) < Cloge™H)?||All.

4. The nonlinear problem with constraints
Let us introduce a small parameter T and consider
(4-1) Vi) =V +1tZ(y) foryeQ,,
where V and Z are given by (2-16) and (3-5). Then we set

W =2e*cosh Vi, Ry = AV;+2e*sinh vy

and
N (¢1) = 2¢*(sinh(V] + ¢1) — ¢ cosh Vi —sinh V).
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Now we consider the following auxiliary nonlinear problem:

2(k+1) J;

Apr+Wigi+Ri+N @)+ D Y cjixiZji+coxZ=0 in<Q,
i=1 j=1

(4-2) 0¢1/0v=0 on 02,

/ XZ¢1=0, f XiZji¢1=0
Q. Qe
foralli=1,...,2(k+10),j=1, J;.

Then we can follow the proofs [Wei et al. 2011, Lemma 4.1 and Theorem 4.2] to
obtain the following results; we omit the details.

Lemmad.1. Letk+1>1,d>0, a€(0,1)andt = 0(86) with 6 > a/2. Then
there exist g > 0 and C > 0 such that for 0 <& < &g and for any &1, . . ., Exq1y € My,
problem (4-2) admits a unique solution ¢y, co, cj fori=1,...,2(k+1), j =1, J;,
such that
(4-3) o1l L=y < Ce“.
Furthermore, the function (t,&') — ¢1(1,&’) € C(Q,) is C' and
4t IDe 1l L=,y < Clloge|* (e + &% + &),

D11l 1o,y < C(e* + ) [logel.

Lemma 4.2. Letk+[>1andd > 0. For any 0 < « < 1 there exist ¢y > 0 and
C > O such that for 0 < e < eg and any (&1, . . ., §24+1)) € Mg, there exists a unique
T with |t| = O(e%) such that problem (4-2) admits a unique solution ¢, co, c;; for
i=1,...,2(k+1), j=1, J; with co = 0 and such that

4-5) pllL=(q,) < Ce®.

Furthermore, the function & +— ¢ (£') is C! and

| Dl (g, < Ce*[logel?.

5. Variational reduction and expansion of the energy

In view of Lemmas 4.1 and 4.2, given & = (&1, ..., &20+1)) € Mg, we set ¢ () and
c;ji (&) to be the unique solution to (4-2) with ¢o = 0 satisfying the bounds (4-3)
and (4-4). Let
1o (v) = % Vol2dx — 2e4f cosh vdx
Q. e

and define

(5-1) Fe(§) =J.(ViE) + ¢,
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where &’ =& /¢ and V(') = V(&) + 1 (§')Z(&') with T(§) given by Lemma 4.2.
Lemma 5.1. If§ = (&1, ..., &4+41)) € My is a critical point of Fy, then

v=Vi(E)+ o)
is a critical point of J., that is, a solution to (2-14).
Proof. A direct computation gives

OF: _ 1 00(iE) +9 (&) _
9 %,

Since V(&) + ¢ (&) solves (4-2) with ¢y = 0, we have

V(& 0 !
=7 DIViE) +6E)( alf)+ ﬁf))

2(k+1)  J;

F, (1), 20
asm aps Zc”/ nZi(Tg, o, )

i=1 j=1

From the assumption D F,(£) = 0, we obtain

2(k+1) J;

Vi) 99"
gcﬁfga)@zﬁ< TR T )=0 forallm=1,....20t+1).

Il
_
~

18 ¢ ()| L,) < Ce¥llogel* and g V(E) = (=1)"Z +o(1)

for j = 1, J;, where o(1) is in the L°°-norm as a direct consequence of (4-1), it
follows that

2(k+1) J;

> Zcﬂf %iZi(=D)"Zjm+0(1) =0 forallm=1,...,2(k+1),

i=1 j=l1 L

which is a strictly diagonal dominant system. This implies that ¢;; = 0 for all
i=1,...,2(k+D, j=1, J. O

A key step in seeking the critical points of the functional F; is finding its ex-
pected closeness to the functional J.(V;(§)). The procedure is completely similar
to that of [Wei et al. 2011, Theorem 5.2], so we omit it here.

Lemma 5.2. The expansion
Fe(§) = Jo (V) +0.(8)
holds with |0.(§)| + |VO.(§)| = o(1) uniformly on points in M.

Now we will give an asymptotic estimate of J,(V), where V is defined by (2-16)
and J, is given as above.
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Lemma 5.3. Letk+1 > 1, letd > 0, let u; be given by (2-21) and let V be the
Sfunction defined in (2-16). Then the expansion

2(k+1)
(52) SV == 3 a(aHE. &)+ Y ~1/Ye6E. )
i=1 jo#
2(k+1) 2(k+1)
+2 Z ciloge™' + Z ci(log8 —2) + O (&%).
i=1 i=1

N —

holds uniformly on points § = (&1, ..., &) € M.

Proof. Recall the definition of V (y) = Y -5 (1)1 (u; (ey) + Hf (£y)). We find
that it satisfies

2(k+1)
—AV =¢* Z (—1)"71<e“"(6y) —
|
i=1
AV /v =0 on 3.

l/ eui(Ey)) in Q,,
&

&

(5-3)

We will compute the two terms in J. (V).
First, by (5-3) we have

/|VV|2:/ (—AV)V
QS

2(k+1)

/( Z( 1)11 eHiEy) _ |§2|/ ,(8)))

2(k+1)

< (3 0 (e + ) )

i=l
=e4;<—1>f+" | (wten+ ien)en

2(k+1) 2(k+1)

<Z (-1 )J 1/ uj(sy))</;2 Z (—l)i_l(ui(sy)—i-Hig(ey)))
e =1

=&Y (=T (wiey) + Hf (ey)e ™ + 0(e),
. Qe

where the last equality is due to the fact &* Z?i‘f”(—l)f—l Jo, € = 0(e"),
which can be easily deduced from (2-7).
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For j # i, we have by a calculation similar to (2-23)
/ e*(ui(ey) + H (ey))e"i

= (f +/ )(84(ui(8y) + H,'E(Sy))e“f(sy))
o Ja?

= L - : - o
‘/st;.:o (g2 logli — &1 + i H &, £) + (%)

=c;c;G(}, &)+ O(").

(5-4)

where Q! := Bs /(e (§}) N (Qe/11:) and Q2 :=(Q:/ui) \ QL. For j =i, we have

e | (uiley) + Hf (ey))e" ™
$2¢

SM,-Z < 8u?
= log ’ +ciH(E, &)
/gg W41y —&/P)2\N T (@2l ley —g22 0

~log(8u?) + 0 (%) + Oely — &)
=dc;loge™ +¢;(ci H (&, &) — 2log 8ud) + 2c;(log 8 — 1) + O (e®).

So from the choice of u; (see (2-21)), we get
(5-5 & / (ui(ey) + Hf (ey))e"™) = 4c;loge ™" +2¢;(log 8 — 1)
Qe
—ci(cHE. 6 +2 Y (D" 0, GEn &) + 0.
m, m#i

Combining (5-4) and (5-5), we have

2(k+1)
1 2_ 1 (e HE . & e GE E
(5-6) E/Q VVP =5 3 ei(eH @+ Y (-G 6))
¢ i=1 JoJ#i
2(k+1) 2(k+1)
+2 ) ciloge™ +(log8—1) Y ¢+ O(*).

i=1 i=1
Next, let us compute the second term in J. (V). Let Qll = Bs;c(§))N (2 /i). Then

2(k+1)

284f cosh V = 2¢* Z / cosh V + O(£?).
Q. iz /el
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Suppose first i is odd. Then
284/ coshV = 84/ e’ +0(e)
Q! Q!

=/ 84eui(sy) CXp(Hl-E + Z(_l)m—l(um + H,Z)) + 0(8)
Q m#i
=ci+ O(e).

Therefore

(5-7) 284/ coshV =c¢; + O(eg).
Q!

Similarly for i even, we also have (5-7). So we obtain

2(k+1)

5-8 z4f hv = i+ 0().
(5-8) & Qgcos Zc (&)

i=1

Finally, from (5-6) and (5-8) we conclude that (5-2) holds. U

6. Proof of main theorems

Proof of Theorem 1.2. Let

v(») = Vi) +¢EN(y) foryeQe,

where V| is given by (4-1) and ¢ is the unique solution to problem (4-2) with
co = 0, whose existence and properties are established in Lemma 4.2. According
to Lemma 4.1, v is a solution to problem (2-14) if we adjust £ so that it is a critical
point of the function F,(£) defined in (5-1), or equivalently, so that it is a critical
point of

2(k+1) 2(k+1)

(6-1) Fg(g)zz(z Y ciloge + Y c,~(log8—2)—F£(§)>.
i=1 i=1

From Lemmas 5.2 and 5.3 it follows that for & € Jlg,

(6-2) Fe(8) = o) (§) + O, (8),

where ®, and V¢ O, are uniformly bounded in the considered region as € — 0. On
the other hand, F ¢ — @2+ uniformly on compact sets of Jl, as € goes to 0. Now
by Definition 1.1, we deduce that if ¢ is small enough, there exists a critical point
& € My of 13'6 such that I:"g — @2k+1) (™). Moreover, up to subsequence, & — & as
¢ tends to 0, with @24+41)(§) = @ak+1)(§¥). The function u,(x) = v(y) is therefore
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a solution to (1-2) with the qualitative properties predicted by the theorem, as can
be easily shown. O

Proof of Theorem 1.3. First, we recall here some facts about the regular part of the
Green function H (x, y) defined by (1-4). If y € Q is a point close to 9€2, we let
y* be its uniquely determined reflection with respect to 2. Now, we consider the
auxiliary function
1 1
H* =——Ilog——
(x,y) o PR T

and set

W(x’ y) = H(X, y) - H*(xa )’)

Then from the equation corresponding to H (x, y) and the elliptic regularity theory,
it is not difficult to verify v (x, y) is bounded in € x & and hence one can derive
the estimates

(6-3) H(x,y)= —% log _ +0(1) forallxeQ uniformly.

|x — y*|

If y € 992, note that H (x, y) satisfies

1 .
AH(x,y)=— in €,
oH 1 —y)-

M oy = LE=N YD aa)
v T |x—yl?

With this and (2-10), we obtain that x — H (x, y) € C*(Q). On the other hand,
by the continuity of the boundary term with respect to y in L>°(d€2), we can get
H(x,y) e C(2,3Q). In particular, H (x, x) is in C(9€2).

Now, we prove the result. It suffices to show the existence of critical points of
the function ¢42(&1, ..., &) in My. In this case,

(6-4) @221, ... &) =167 (4H (51, &) +4H (&2, &)+ H (&3, &3) + H (4, £4)
—4G (&1, 62) +2G (81, §3) —2G (81, 64)
—2G(5.8) +2G (5, &) — G (&3, &)).

We will look for a solution to problem (1-2) with the concentration points & given
by

&=(=21,0, &=0,0, &=(1,0), and & =(-1,0) forie(0,1).

Using results obtained in the previous sections (or from the proof of Theorem 1.2),
we reduce the problem of finding solution to (1-2) to that finding critical points of
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the function ¢;42(X) : (0, 1) = R defined by

©242(X) == 242(5(A))
1

4
= 1672(H (&, &) + H(Es, 80) — ~log 5=+ 0(1)

2 1 4 1 4 1 1 1

Tx 0%y Tt e T e

—H(&1,8)+HG1,8)— H(,84) — H(82,8) + H(8,8) — H(s, 54))
=32r(2log(2 — 1) +logh +2log(1 — 1) —2log(1+ 1))+ O().

Here, we have used the fact that H(x, y) € C (B, dB) and (6-3). Now there exists
a X € (0, 1) such that ¢242(Ao) = max;c(,1) ¥2+2(A), since lim; o+ g212(1) =
lim,_, |- @212(X) = —oo. Then A is a C%-stable critical point of ¢, and so the
function F,(£) defined by (6-1) has a critical point. This proves our result. U

Appendix A.
Proof of (2-22) and (2-23). By Lemma 2.1 and the fact that H is C' in &, we have
H{(ey) = c;H ey, §;) —log(8u3) + O (e%)
=c;jH(&, &) —log(8u3) + O (") + O(ely — ).
Let us fix a small constant § > 0. For [y —&/| <4/,
2
8,uj
(217 + ey — e&}1%)?

(=D Hf (ey) + Z(—l)”(log
J#
= (=" (c;H(&. &) —log(81]))

+ Hf(e?))))

. 82
+ 21 (log Ly s H G £) — log(81s)
Py & — &l

+0(e™) + O(ely — &)
= (=D (i H (&, &) —log(8u))
+ > (=17 GEL )+ O(*) + Olely — &)
J#i
which is equal to O(¢%) 4+ O(g|y — &/|); here first equality follows because

2
e +ely — €17 = (& — &l + 0(ey —&D) " +&°u]

_ &2 gZMZ.
— e i2 1 0<|8)’ &il j
155 =il ( + |sj—s,-|2>+|sj—s,-|2>

=& — &P (1+ 02y — &P + 0(eD)).
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First, we estimate W. For |y — &/| < §/¢, a direct computation shows

W =2¢*cosh V
2(k+1) 2(k+1)

_ g exp( 3w+ 1-1,.8)) 4t exp< 31 i+ Hf))
i=1

i=1
) (1)~
= 84( B4 )
et (u? + 1y —&/1»)?
2

. . 8us
_ i—1 € _1 j—ll J & ))
xexp(( DA <sy>+j§#( ) (og e +82|y_§}|2)2+H,<sy>

I 4( 8u; >(_”i
&
et (u? + 1y —&/1»)?
8,u§

1\ ge¢ —1\J €
xexp((—1)'H <sy)+§( 1) (1og (82M3+82|y_§;|2)2+H,<sy>))

_1)i—! 1
:84<< 8u? )( Y +< 8u? )< ”)
e*t(u; +1y —§/1%)? et(u? +1y —&/2)?

xexp[0(%) + 0Gely ~ &)

8u?
Rt |yMl_ gy (1 0E) +0Cly —&D) + 0",
Therefore
81?2 .
(A-1) W)= l (1+ 0"+ O(ely —&!1))

(i +1y —&1>)?
for all |y —&/| < §/e.

Similarly, for |y —&/| < §/¢ we have

2¢%sinh V

il TS
o) o))
et(u? + 1y — /22 et(u?+ 1y —&/H)?

X exp(O(sO‘) + O(ely — 5;|))

(A-2)

8,ui2

(i + 1y —&12)?

On the other hand, for |y — &/| > §/e, it is easy to see that W(y) = O(¢*) and
2¢*sinh V = O(&*). This, together with (A-1), implies (2-23) and (2-24).

= (1! (1+0(@*) + O(ely —£) + O(eh).
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Next, by our definitions,

2(k+1)

AV = > (=D (e* Aui(ey) + 2 AH (ey))
i=1

2(k+1) 4
i € i(x)
( l)t 1 < 4 u (Ey) © / eu dx)
Z |Q| Q
2(k+1) 2(k+1)

: 8u
_ 1 1—1( ) i—1 uz(X)d .
,;( U v = Z( D g '

The last term in the above equality can be controlled by O (g*) since from (2-7),
we have

2(k—+1)
& ) (=D f e = 0 (eI — wj),
i=1 &
Combining this with (A-2), we get (2-22). U

Appendix B.

Proof of Claim 1. Since n/(r) has a jump at » = ¢~ and r = ¢ ~# and is otherwise
smooth, we see that L(Z;) is a measure.

L(Zoi) = (=A = W) (n1i Zoi +&(1 — 7711')7721'201')
= —(Zoi — em Zo) (In; (€™ per + [y (™))
—2Vnii(VZoi — € Z0; Vo — en2iV Zoi) — n1: (A Zoi + W Zoi)
— (1 — i) (Zoi Ani + mai A Zo; + 2V 12V Zoi + Wi Zoi)

where [n};(r)] = n},(r™) — n},(r~) denotes the jump of 7}, at r, and u, is the
1-dimensional measure on the circle of radius r.
Let us consider first the case m =i:

(B-1) / loglyi — z|L(Zoi) = / (log|y; — z| — log|&/ — z) L(Zo:)dz
Qe Qe

+/ log|g/ — z|L(Zo)dz.
Qe

Let r = |z —&/|, and note that Any; = O0(e*#) and Viy; = O(eP). Forr <e7#, we
have

Mi(AZoi + WZoi) = mi(AZy; +e"" (1 +6;) Zo;)
(B-2) - 8u?
T (W lz—E)?

80{

(1+|y—${|)3)'

O(e* +elz — &)+ 0(
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Thus

[ micazo+wzo) togiz — &/

8u; O (e +elz— &) 2 ) /
i : : O ————=))1 — &
S/S;Em( (47 + 1z —§/?)? " <(1+|y—e§i|)3> oglz =&l
(B-3) N e +er
SC/O ((1+r)3+(1+r2)2)rlogrdr
= 0((8"‘ + &) log 8_1)
—o(1).

Fore " <r <e P,

1 1 4loge™! —4loglz —&/|+ciH ez, &)
— —apiG(ez, &) = — — I
B-4) i wi pild(l—y)loge=! +c;H(E, &))]
logr —yloge ' +er
=BTV T 11 0Ge)).
(I —=y)uniloge
Therefore,

/ (11— Uli)W(M,-_l —ap;iG) log|z — éji/ldz
Q;

- logr —y loge™!
(B-5) =f 0< PETT Y O8° +18r>0(r4r)logrdr
r>eg=v (I =y)ui logg*

=0 loge™)

and
/ Vi (VZoi — e Z0i Vi — eni V Zoi) loglz — &/ |dz
Q
-

e _r—l
=2 -
(B-6) i /SV (B—y)loge™!

x (O(r—3) L O@E"P) + O(k)g;1 '+ C)))r log rdr
2 g f
= 0(e”) + 0(—).
oge

Forr > &7V,

Zoi A + mai AZoi +2V 10V Zoj + Wi Zo,
= Z0i Ao + 2V V Zoi + 12i (A Zoi + W Zo; + agi AG — W'+ WayG).
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So, recalling (B-5), we have

8/ (1 _nli)(ZOiAUZi+772iA20i+2V772ivzoi+W772i20i)10g|z_$i/|dz
Qe

2e=F 26—F
=g/ O(szﬁ)rlogrdr+g/ O(Sﬂ)0<r_3+ - (C—i—r_l))rlogrdr
e . log e

2eF o o 2
e +er & &
H/H (0( e )+O((1—|—r)3)+0(10g8—1>>r10grdr

—e [ (1—m)W; " —apG) loglz — & |dz,
Qe

which is equal to O(eloge™"). A direct computation shows

/ [0} (67" ke (Zoi — £m2i Zoi) log|z — &]|dz
2,

—gV R
~ (B_v)loge ! Zoi — €Zo;) log|z — &/
(B—y)loge~! /r:,;—y( 0i 0i) loglz — &/
—oV 1 0 2)/
= € T e + (8 ) % 27.[8_}’ logg—y
(B—y)loge~ i
-2
= i + 0(827),
wi(B—v)
Similarly,
- 7 27
/ [77/11‘(8 ﬂ)]l/«rﬁ (Zoi — emi Zoi) loglz — & |dz = ————— + 0(3213)'
” wi(B—y)

Hence
- , 2
L(Zyi)log|z —§;|dz = " +o(1).

Q. i

For the first integral in the right side of (B-1), we can assume R, — 400 slowly
enough so that ¢ R, — 0. Then

— — & +r
B floglyi 2l ~loglg] —2I| = flog 1| < fiog W= HLE
for r = |&/ — z|; therefore we have from (B-2)
[ oty =l = logls/ ~ zhmui(AZo + W Zan)dz
Qe
B

(B-8) & 1 e¥+er &

sc ), et e (oG + o))

_C/O og(Rer— +1)( O (1+I"2)2 +0 (1—|—}’)3 rdr

= 0(%(R, +loge™")).
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On the other hand, from (B-7), for 7% <r = |z — &/| <&~ we have

|log|y; — z| — log|&/ —z|| < Clyi — &1/

and it follows that
’/ (logly; — z| —log|&/ — z)(L(Zo:) + m1i (AZo; + WZO,-))dz} = 0(¢"R,).
Qe

Thus, from this and (B-8), we obtain

(B-9) [ (et =<1 =toglef =21) o) | = o1,

Next, we show that if m # i, then

/ log|ym — 2| L(Zoi)dz = o(1).

&

In fact,

f log|ym — z|L(Zo;)dz

&

_ f (0] — 2| — oglym — &/ L(Zo1)dz + / log]ym — &/|L(Zor)dz.
Qe

Q¢

We assume that R, < &7 /2, so that

1z — &l
|log|ym — z| — log|ym — &/|| < log<l + —‘,) = O(elz —&).

| Ym _Eil

Thus

/ > 81_/3
| Gogion <1 —toslv ~ /DL Zonae] = 032 55
Finally,
(B-10) / L(Zo)dz = O(?).

This implies
/ log|ym — &/|L(Zoi)dz = o(1).

Qe
Therefore Claim 1 holds. O
Proof of Claim 4. Let

1 ifr <e /2,

¢(r) = { (log(6/¢) —logr)/(log(8/e) —loge1/?) if e 12 <r < §/e,
0 if r >§/e¢,



254 JUNCHENG WEI, LONG WEI AND FENG ZHOU

and set
2(k+1)

Y@ =Y Hey, &)z —&.

i=1
Testing (3-9) by ¢ and integrating by parts, we obtain

2(k+1)

- . . Y
/Qg(WqﬁJrh— ; diL(Zoi))llf—i--/;ZS(PAl/f—/aQS(pE=0.

Thus

_ 2(k—+I1) _ ~ ~8w
A=/§28(H(8y,8z)—l/f)(W¢+h— ; d,-L(ZO,-))—/ngﬁAx/f—F P
Since H, ¥ and ¢ are bounded,
(B-11) [ ey.e—wondz| < bl o)
and
(B-12) [ v e —wr@w| <c|[ L] =om.

Also, it is not difficult to show that

SAY — L\ _ 0V _ 1\ _
(B-13) /Q PAY = 0<1og(3/g)> =o(D, /39 o = 0(10g(3/8)) =o(D).

For instance, the first integer in (B-13) can be estimated as

[ #av]=1dlm [ 1201
Q. Qe

But Ay is a measure with support on the arcs » = ¢~'/2 and r = §/e, where
r=|z—§&/|, and

_ 1 8 1 1
_ 1/2 b _ _
/QJAW - 0<8 e~1/21oge~! + e (8/¢) loge—1> o O(IOg((S/s)) =o(l).

Note that for [z — /| > §/¢, we have W = O(r~*), and H and ¢ are bounded; thus

(B-14) (H(ey,e2) — )W = o(1).

Ls\(ui BS/S (g,,))
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On the other hand, for [z —&/| <§/e, we have H (ey, e2) — H (¢y, &) = O (¢|z—&/)
and W = O((r>+1)72). So

) / (H(ey, e7) — ¥ (2))Wedz
Q:NB,__12(§)

(B-15) = )/ (H(ey,e2) — H(ey, &) Wédz
eNB,—1/2(&))
<Cs /8_]/2 Ldr — 0('/?) = o(1)
= o (r2+1)? ‘

In the region e ~'/2 < r = |z—&/| < §/e, noting the fact that H, ¢ and ¢ are bounded
and that W = O (r—*), we find

8/e

(B-16) ‘ (H(sy, £7) — x/f(z))Wquz‘ < C/ r3dr = o(1).
QN By ED\By = (€D 1/ e

Therefore, Claim 4 follows from (B-10)—(B-16). [l
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