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We consider here the semilinear equation 1u + 2ε2 sinh u = 0 posed on a
bounded smooth domain � in R2 with homogeneous Neumann boundary
condition, where ε > 0 is a small parameter. We show that for any given
nonnegative integers k and l with k+ l ≥ 1, there exists a family of solutions
uε that develops 2k interior and 2l boundary singularities for ε sufficiently
small, with the property that

2ε2 sinh uε⇀ 8π
2k∑

i=1

(−1)i−1δξi + 4π
2l∑

i=1

(−1)i−1δξi ,

where (ξ1, . . . , ξ2(k+l)) are critical points of some functional defined explic-
itly in terms of the associated Green function.

1. Introduction

The two-dimensional sinh-Poisson equation

(1-1) 1u+ 2ε2 sinh u = 0

arises in various important contexts, notably as a vorticity equation in classical
hydrodynamics [Gurarie and Chow 2004; Chow et al. 1998; Kuvshinov and Schep
2000; Mallier and Maslowe 1993], in physico-chemical hydrodynamics [Probstein
1994] and in the geometry of constant mean curvature surfaces [Wente 1986]. In
the vorticity connection, it occurs in a remarkable manner out of natural relaxation
states in the long-time computation of two-dimensional fluid motion [Mallier and
Maslowe 1993] (see also the references therein). In geometry, the sinh-Poisson
equation plays a very important role in the study of the construction of constant
mean curvature surfaces initiated by Wente [1986]. Wente’s seminal work then
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led to work by Steffen [1986], Struwe [1986] and Brezis and Coron [1984], which
completed the understanding of the blow-up for constant mean curvature surfaces
from a geometric point of view. Spruck [1988] was the first to study the sinh-
Poisson equation from an analytic point of view. Recently, the asymptotic behav-
ior of solutions to (1-1) was studied on a closed Riemann surface in [Ohtsuka and
Suzuki 2006] and [Jost et al. 2008]. The authors applied the so-called “symmetriza-
tion method” and “Pohozaev identity”, respectively, to show that there possibly
exist two different types of blow-up for a family of solutions to (1-1). Conversely,
Bertolucci and Pistoia [2007] tried to construct blow-up solutions to (1-1) with
Dirichlet boundary conditions for n = 2, and proved that for ε positive and small
enough, there exist at least two pairs of solutions that change sign exactly once, that
concentrate in the domain and that have their nodal lines intersecting the boundary.

In [Wei et al. 2011] and [Wei 2009] the Neumann problem

(1-2)
{
1u+ 2ε2 sinh u = 0 in �,

∂u/∂ν = 0 on ∂�

was considered, where� is a bounded domain in R2 with smooth boundary ∂� and
ε > 0 is a parameter. The authors showed a concentration phenomena of solutions
to (1-2) in the domain in [Wei et al. 2011], and on the boundary in [Wei 2009].

In this paper, we continue the study of the existence of solutions to (1-2). We
prove that there exists a family of solutions uε that concentrate positively and neg-
atively in the domain and its boundary.

To state our results, we need to introduce some notation. First, let us define the
corresponding Green function for the Neumann problem:

(1-3)


−1G(x, y)= δy(x)− 1/|�| in �,

∂G/∂ν = 0 on ∂�,∫
�

G(x, y)dx = 0.

The regular part of G(x, y) is defined depending on whether y lies in the domain
or on its boundary as

(1-4) H(x, y)=

G(x, y)+ 1
2π

log|x − y| for y ∈�,

G(x, y)+ 1
π

log|x − y| for y ∈ ∂�.

In this way, H( · , y) is of class C1,α in �.
For k+ l ≥ 1 and points ξ j for j = 1, . . . , 2(k+ l), with ξ j ∈� for j ≤ 2k and

ξ j ∈ ∂� for 2k+ 1≤ j ≤ 2(k+ l), we define

(1-5) ϕ2(k+l)(ξ1, . . . , ξ2(k+l))=

2(k+l)∑
j=1

c2
j H(ξ j , ξ j )+

∑
j 6=i

c j ci (−1) j+i G(ξ j , ξi )
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and denote

Md :=
{
ξ = (ξ1, . . . , ξ2k, ξ2k+1, . . . , ξ2(k+l)) ∈�

2k
× ∂�2l∣∣min

j 6=i
|ξ j − ξi | ≥ d, min

j=1,...,2k
dist(ξ j , ∂�)≥ d

}
,

where ci = 8π for i = 1, . . . , 2k and ci = 4π for i = 2k+ 1, . . . , 2(k+ l).

Definition 1.1 [Esposito et al. 2006]. We say that ξ is a C0-stable critical point of
ϕm : Md → R if for any sequence of functions ϕn

m : Md → R such that ϕn
m → ϕm

uniformly on compact sets of Md , the function ϕn
m has a critical point ξn such that

ϕn
m(ξn)→ ϕm(ξ).

In particular, if ξ is a strict local minimum/maximum point of ϕm , then ξ is a
C0-stable critical point.

Theorem 1.2 (main result). Let k and l be nonnegative integers with k + l ≥ 1.
Assume ξ∗ ∈ Md is a C0-stable critical point of ϕ2(k+l). Then for any sufficiently
small ε > 0, there is a solution uε to (1-2) with the property that

(1-6) 2ε2
∫
�

|sinh uε|dx→ 8π(2k+ l) as ε→ 0.

More precisely, for any sequence {εn}n≥1 that tends to 0, there is a subsequence
and 2(k + l) points ξi ∈ � for i = 1, . . . , 2(k + l), with ξ j ∈ � for j ≤ 2k and
ξ j ∈ ∂� for 2k+1≤ j ≤ 2(k+ l), and positive constants µi for i = 1, . . . , 2(k+ l)
such that

(1-7) uε(x)=
2(k+l)∑

i=1

(−1)i−1
(

log 1
(ε2µ2

i +|x−ξi |
2)2
+ ci H(x, ξi )

)
+ o(1)

and

(1-8) 2ε2 sinh uε⇀ 8π
2k∑

i=1

(−1)i−1δξi + 4π
2(k+l)∑

i=2k+1

(−1)i−1δξi

in the sense of measure. Moreover, the constants µi are given by

log(8µ2
i )= ci H(ξi , ξi )+

∑
j 6=i

(−1) j+i c j G(ξi , ξ j ).

The l = 0 (or k = 0) case of this theorem was proved in [Wei et al. 2011] (or
[Wei 2009]). The conditions that ξ∗ ∈ Md be a C0-stable critical point of ϕ2(k+l)

is perhaps not necessary. Here, we need it only because of the technique we will
use. In particular, for the case k = l = 1 and � = B = B(0, 1), the unit ball
in R2, we don’t need the condition and can obtain the existence and the profile
of sign-changing solutions that concentrate positively and negatively at different
points ξ1, ξ2 ∈ B and ξ3, ξ4 ∈ ∂B. More precisely:
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Theorem 1.3. Let k = l = 1. Then, there exists a solution uε to (1-2) that concen-
trates at different points ξ1, ξ2 ∈ B and ξ3, ξ4 ∈ ∂B, according to (1-6), (1-7) and
(1-8) with k = l = 1, as ε goes to 0.

Del Pino and Wei [2006] considered the problem −1u + u = λeu under Neu-
mann boundary conditions and built a solution with λ

∫
�

eu uniformly bounded and
boundary-interior concentrating, such that λeu ⇀ 8π

∑k
j=1 δξ j + 4π

∑m
j=k+1 δξ j .

For basic cells, they used explicit solutions of

1u+ eu
= 0 in R2,

∫
R2

eudx <+∞

given by

Uµ,ξ = log
8µ2

(µ2+ |x − ξ |2)2
for µ > 0 and ξ ∈ R2.

In this paper, we will also construct solutions predicted by the theorems using these
ones, but suitably scaled and projected so that it works for the nonlinearity we con-
sider here. A special feature of our problem is presence of mixed positive-negative
boundary-interior bubbling solutions. This is a new concentration phenomenon.
To capture such solutions, we use the so-called localized energy method, which
combines Lyapunov–Schmidt reduction and variational techniques. Such a scheme
was been used in many works; see for instance [Dávila et al. 2005; del Pino et al.
2005; del Pino and Wei 2006] and references therein. Here we follow [del Pino
and Wei 2006; Wei et al. 2011; Wei 2009], but we will overcome some of the
difficulties that the mixed concentration phenomenon brings by delicate analysis.

2. Ansatz for the solution

In this section we will provide a first approximation for the solution of the problem
(1-2) predicted by Theorems 1.2 and 1.3. Let us fix k+l≥1. For i=1, . . . , 2(k+l),
let ξi ∈� and let µi be positive numbers to be chosen later. We define

(2-1) ui (x)= log
8µ2

i

(ε2µ2
i + |x − ξi |

2)2
.

The ansatz is

(2-2) U (x)=
2(k+l)∑

i=1

(−1)i−1(ui (x)+ H ε
i (x))

where H ε
i (x) is a correction term defined as the solution of

(2-3)


1H ε

i = ε
2 1
|�|

∫
�

eui in �,

∂H ε
i

∂ν
=−

∂ui

∂ν
on ∂�
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with the property that

(2-4)
∫
�

H ε
i (x)dx =−

∫
�

ui dx .

This function resembles the shape of the regular part of the Green’s function. In-
deed, the following estimate for H ε

i holds true.

Lemma 2.1. For any 0< α < 1

(2-5) H ε
i (x)= ci H(x, ξi )− log(8µ2

i )+ O(ε)

holds uniformly in �, where H is the regular part of the Green function defined
by (1-4).

Proof. The regular part of Green’s function H(x, ξi ) satisfies

(2-6)


1H(x, ξi )=

1
|�|

in �,

∂H
∂ν
(x, ξi )=

4
ci

(x − ξi ) · ν(x)
|x − ξi |

2 on ∂�.

Now we define zε(x)= H ε
i (x)+ log(8µ2

i )− ci H(x, ξi ). Then
1zε = ε2 1

|�|

∫
�

eui −
ci

|�|
in �,

∂zε
∂ν
= 4

(x − ξi ) · ν(x)
ε2µ2

i + |x − ξi |
2
− 4

(x − ξi ) · ν(x)
|x − ξi |

2 on ∂�.

First, by the definition of ui , we have

(2-7)

ε2
∫
�

eui = ε2
∫
�

8µ2
i

(ε2µ2
i + |x − ξi |

2)2

= 8ε2
∫
�/εµi

µ2
i

(ε2µ2
i + ε

2µ2
i y2)2

ε2µ2
i

= 8
∫
�/εµi

dy
(1+ y2)2

= 2ci

(∫ ∞
0

tdt
(1+ t2)2

+ O
(∫ ∞

1/εµi

tdt
(1+ t2)2

))
= ci + O(ε2µ2

i )

Next, for ξi ∈� with i = 1, . . . , 2k, we have

∂H ε
i

∂ν
= 4

(x − ξi ) · ν(x)
ε2µ2

i + |x − ξi |
2
= 4

(x − ξi ) · ν(x)
|x − ξi |

2 + O(ε2) for all ξi ∈�, x ∈ ∂�.
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For ξi ∈ ∂� with i = 2k+ 1, . . . , 2(k+ l), we have

(2-8) lim
ε→0

∂H ε
i

∂ν
= 4

(x − ξi ) · ν(x)
|x − ξi |

2 for all x 6= ξi .

We claim that for any p > 1 there exists C > 0 such that

(2-9)
∥∥∥∂H ε

i

∂ν
− 4

(x − ξi ) · ν(x)
|x − ξi |

2

∥∥∥
L p(∂�)

≤ Cε1/p.

It is not difficult to prove that the inequality

(2-10) |(x − ξi ) · ν(x)|≤ C |x − ξi |
2 for all x ∈ ∂�

holds for ξi ∈ ∂� by assuming that ξi = 0 and that near the origin ∂� is the graph
of a function P : (−δ, δ)→R with P(0)= P ′(0)= 0. Now from (2-10) we obtain

(2-11)

∣∣∣∂H ε
i

∂ν
− 4

(x − ξi ) · ν(x)
|x − ξi |

2

∣∣∣= 4ε2µ2
i

|(x − ξi ) · ν(x)|
|x − ξi |

2(ε2µ2
i + |x − ξi |

2)

≤
Cε2

ε2µ2
i + |x − ξi |

2
.

Thus for λ > 0 small but fixed,

(2-12)
∣∣∣∂H ε

i

∂ν
− 4

(x − ξi ) · ν(x)
|x − ξi |

2

∣∣∣≤ Cε2 for all |x − ξi | ≥ λ, x ∈ ∂�.

Letting p > 1 and changing variables x − ξi = εyµi , we have∫
Bλ(ξi )∩∂�

∣∣∣ ε2

ε2µ2
i +|x−ξi |

2

∣∣∣p
= Cε

∫
Bλ/εµi (0)∩∂�ε

∣∣∣ 1
1+|y|2

∣∣∣p
dy

= Cε
∫ λ/εµi

0

1
(1+t2)p dt ≤ Cε.

This, combined with (2-11) and (2-12), shows that (2-9) holds.
By elliptic regularity theory, we obtain zε ∈ W 1+s,p(�) for any p ≥ 1, with

0< s < 1/p. On the other hand, from the Poincaré inequality we get∥∥∥zε −
1
|�|

∫
�

zε
∥∥∥

W 1+s,p(�)
≤ C‖∇zε‖L p(�) ≤ Cε1/p.

This implies the existence of a constant M such that

zε(x)= M + O(εα) for any α ∈ (0, 1),

uniformly in �, where M = limε→0|�|
−1
∫
�

zεdx .
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To obtain the result, we only need to show M = 0. First, by the definition of zε
we have

(2-13) M = lim
ε→0

( 1
|�|

∫
�

H ε
i (x)dx + log(8µ2

i )−
ci

|�|

∫
�

H(x, ξi )dx
)
.

The direct computation from (2-4) shows that∫
�

H ε
i (x)=−

∫
�

(
log(8µ2

i )+ log 1
(ε2µ2

i +|x−ξi |
2)2

)

=−|�| log(8µ2
i )+ 2

∫
�

log
(

1+
ε2µ2

i

|x − ξi |
2

)
− 4

∫
�

log 1
|x−ξi |

= −|�| log(8µ2
i )+ ci

∫
�

H(x, ξi )dx + O(ε2 log ε−1),

where the last equality is consequence of the definition of H and the property of
the Green function. Therefore (2-13) implies M = 0. �

In �ε = �/ε, let v(y) = u(εy); then solving problem (1-2) is equivalent to
solving

(2-14)
{
1v(y)+ 2ε4 sinh v = 0 in �ε,

∂v/∂ν = 0 on ∂�ε.

We will seek a solution v of (2-14) of the form

(2-15) v(y)= V (y)+φ(y) for all y ∈�ε,

where

(2-16) V (y)=
2(k+l)∑

i=1

(−1)i−1(ui (εy)+ H ε
i (εy)).

Problem (2-14) can be restated: Find a solution φ to

(2-17)
{
1φ+Wφ+ R+ N (φ)= 0 in �ε,

∂φ/∂ν = 0 on ∂�ε,

where

W = 2ε4 cosh V,(2-18)

N (φ)= 2ε4(sinh(V +φ)−φ cosh V − sinh V ) (the nonlinear term),(2-19)

R =1V + 2ε4 sinh V (the error term).(2-20)

We choose the parameters µi as

(2-21) log(8µ2
i )= H(ξi , ξi )+

∑
j 6=i

(−1) j+i G(ξi , ξ j ).
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From Appendix A, we have for all y ∈�ε the estimates

|R(y)| ≤ Cεα
2(k+l)∑

i=1

1
1+|y−ξ ′i |3

,(2-22)

W (y)=
2(k+l)∑

i=1

8µ2
i

(µ2
i + |y− ξ

′

i |
2)2
(1+ θε(y)),(2-23)

with

(2-24) |θε(y)| ≤ Cεα +Cε
2(k+l)∑

i=1

|y− ξ ′i |,

where ξ ′i = ξi/ε.

3. Analysis of the linearized problem

In this section we study the solvability of the problem

(3-1)


−1φ =Wφ+ h+

2(k+l)∑
i=1

Ji∑
j=1

c j iχi Z j i + c0χ Z in �ε,

∂φ

∂ν
= 0 on ∂�ε

with ∫
�ε

χi Z j iφ = 0 for i = 1, . . . , 2(k+ l), j = 1, Ji ,(3-2) ∫
�ε

χ Zφ = 0,(3-3)

where W is a function that satisfies (2-23) and (2-24), h ∈ L∞(�ε), c0, c j i ∈ R,
the functions χ , χi , Z and Z j i will be defined below, Ji = 2 for i = 1, . . . , 2k, and
Ji = 1 for i = 2k+ 1, . . . , 2(k+ l).

Define z j i by

z0i =
1
µi
− 2

µi

µ2
i + |y|2

and z j i =
y j

µ2
i + |y|2

.

It is well known that any solution to

(3-4) 1φ+
8µ2

i

(µ2
i + |y|2)2

φ = 0 , |φ| ≤ C(1+ |y|)σ

is a linear combination of z j i for j = 0, 1, 2; see [Chen and Lin 2002, Lemma 2.1].
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Next, we fix a large constant R0 and a nonnegative smooth function χ : R→ R

such that χ(r)= 1 for r ≤ R0, χ(r)= 0 for r > R0+ 1, and 0≤ χ ≤ 1.
For i = 1, . . . , 2k (corresponding to the interior bubble case), we define

χi (y)= χ(|y− ξ ′i |), Z j i (y)= z j i (y− ξ ′i ) for j = 0, 1, 2, i = 1, . . . , 2k.

For i = 2k+ 1, . . . , 2(k+ l) (corresponding to the boundary bubble case), first
we strength the boundary similarly to [del Pino and Wei 2006]. Let us concentrate
on ξi ∈ ∂�. Without loss of generality, we assume that ξi = 0 and the unit outward
normal at ξi is (0,−1). Let P(x1) be the defining function for the boundary ∂� in
a neighborhood Bρ(ξi ), that is,

�∩ Bρ(ξi )= {(x1, x2) | x2 > P(x1), (x1, x2) ∈ Bρ(ξi )},

and then define Fi : Bρ(ξi )∩N→ R2 by Fi = (Fi1, Fi2), where

Fi1 = x1+
x2− P(x1)

1+ |P ′(x1)|2
P ′(x1) and Fi2 = x2− P(x1).

Then we set
Fεi (y)= ε

−1 Fi (εy)

and define

χi (y)=χ(Fεi (y)), Z j i (y)= z j i (Fεi (y)) for j = 0, 1, i = 2k+1, . . . , 2(k+l).

It is important to observe that Fi preserves the Neumann boundary condition and

1Z0i +
8µi

(µ2
i + |y− ξ

′

i |
2)2

Z0i = O
(

εα

(1+|y−ξ ′i |)3
)
.

Let 0< b < 1 and define for all i = 1, . . . , 2(k+ l),

(3-5) Z(y)=
{

min{1/µi − ε
b, Z0i (y)} if |y− ξ ′i |< δ/ε,

1/µi − ε
b if |y− ξ ′i | ≥ δ/ε

and χ =
∑2(k+l)

i=1 χi .

Now let us introduce the norms

‖h‖∞ = sup
y∈�ε
|h(y)| and ‖h‖∗ = sup

y∈�ε

|h(y)|

ε2+
∑2(k+l)

i=1 (1+ |y− ξ ′i |)−2−σ
,

where we fix 0< σ < 1, reserving the precise choice for later. Our main result in
this section is stated as follows:

Proposition 3.1. Let d > 0 and let k, l be nonnegative integers with k + l ≥
1. Then there exists a ε0 such that for any 0 < ε < ε0, any 2(k + l)-points
(ξ1, . . . , ξ2(k+l))∈Md and any h∈ L∞(�ε), there is a unique solution φ∈ L∞(�ε),
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c0, c j i ∈ R to (3-1), with i = 1, . . . , 2(k + l) and j = 1, Ji . Moreover there is a
positive C independent of ε such that

‖φ‖L∞(�ε) ≤ C |log ε|‖h‖∗,

max{|c0|, |c j i |} ≤ C‖h‖∗ for i = 1, . . . , 2(k+ l), j = 1, Ji .

We begin to prove this result by studying a linear problem

(3-6)
{
−1φ = h+Wφ in �ε,
∂φ/∂ν = 0 on ∂�ε,

together with orthogonality conditions (3-2) and (3-3).

Proposition 3.2. Let h ∈ L∞(�ε). For fixed d > 0 there exist ε0 > 0 and C such
that if 0 < ε < ε0, ξ = (ξ1, . . . , ξ2(k+l)) ∈ Md and φ ∈ L∞(�ε) is a solution of
(3-6) such that (3-2) and (3-3) hold, then

‖φ‖L∞(�ε) ≤ C log ε−1
‖h‖∗,

where C is independent of ε.

We will prove this estimate by contradiction assuming that there exist a sequence
ε→ 0, points (ξ1, . . . , ξ2(k+l))∈Md (we omit the dependence on ε in the notation)
and functions h, φ ∈ L∞(�ε) such that

(3-7) ‖φ‖L∞(�ε) = 1 and log ε−1
‖h‖∗ = o(1).

Fix 0< γ < β < 1/2 and consider the function η given by

(3-8) η(r)=


1 if r < ε−γ ,

log ε−β − log r
log ε−β − log ε−γ

if ε−γ < r < ε−β,

0 if r > ε−β .

Let η̃ be a radial smooth cut-off function on R2 such that η̃(r) ≡ 1 for r < ε−β ,
η̃ ≡ 0 for r > 2ε−β , |η̃′(r)| ≤ Cεβ and |η̃′′(r)| ≤ Cε2β . Then we set

η1i (y)=
{
η(|y− ξ ′i |) for i = 1, . . . , 2k,
η(|Fεi (y)|) for i = 2k+ 1, . . . , 2(k+ l);

η2i (y)=
{
η̃(|y− ξ ′i |) for i = 1, . . . , 2k,
η̃(|Fεi (y)|) for i = 2k+ 1, . . . , 2(k+ l);

a0i =
1

µi ((4/ci ) log εγ−1+H(ξi , ξi ))

and also
Ẑ0i (y)= Z0i (y)−µ−1

i + a0i G(εy, ξi ).
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Now define a test function

Z̃0i = η1i Z0i + ε(1− η1i )η2i Ẑ0i .

Given φ satisfying (3-6) and the orthogonality conditions (3-2) and (3-3), let

φ̃ = φ−

2(k+l)∑
i=1

di Z̃0i ,

where the numbers di are chosen so that
∫
�ε
χi Z0i φ̃= 0 for any i = 1, . . . , 2(k+l),

namely di =
∫
�ε
χi Z0iφ/

∫
�ε
χi Z2

0i . Observe that

di = O(1) and ‖φ̃‖L∞(�ε) = O(1).

Moreover, φ̃ satisfies

(3-9)

 −1φ̃ =W φ̃+ h−
2(k+l)∑

i=1

di L(Z̃0i ) in �ε,

∂φ̃/∂ν = 0 on ∂�ε,

and the orthogonality condition

(3-10)
∫
�ε

χi Z j i φ̃ = 0 for all i = 1, . . . , 2(k+ l), j = 0, 1, Ji ,

where L := −1−W.
To reach a contradiction it is sufficient to establish the following:

Lemma 3.3. φ̃→ 0 uniformly in �ε.

Lemma 3.4. di → 0 for all i = 1, . . . , 2(k+ l).

We postpone proofs of these lemmas and mention first some key steps.

Lemma 3.5. For all i = 1, . . . , 2(k+ l) and R > 0, we have

φ̃→ 0 uniformly in �ε ∩ BR(ξ
′

i ).

Proof. Assume that for some R > 0 and i = 1, . . . , 2(k + l) there is a c > 0 such
that supBR(ξ

′

i )
|φ̃| ≥ c > 0 for a subsequence ε→ 0. Let us translate and rotate �ε

so that ξ ′i = 0 and �ε approaches the upper half plane R2
+

. By the elliptic estimate,
φ̃→ φ̃0 uniformly on compact sets and φ̃0 is a nontrivial bounded solution of (3-4).
Then we conclude that φ̃0 is a linear combination of z j i for j = 0, 1, Ji . On the
other hand, we can take the limit in the orthogonality relations (3-10), observing
that the limits of the functions Z j i are just rotations and translations of z j i , and we
find that

∫
R2
+

χφ̃0z j i = 0. This contradicts the fact that φ̃0 6≡ 0. �
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Lemma 3.6. φ̃ ≡ 1
|�ε|

∫
�ε

φ̃→ 0.

Proof. By potential theory we have

φ̃(y)− φ̃ =
∫
�ε

G(εy, εz)
(

W φ̃+ h−
2(k+l)∑

i=1

di L(Z̃0i )
)

dz,

where G is the Green function defined by (1-3).
Note that since ∫

�ε

W φ̃+ h−
2(k+l)∑

i=1

di L(Z̃0i )= 0

and

G(εy, εz)=− 4
ci

log ε− 4
ci

log|y− z| + H(εy, εz),

we have

(3-11) φ̃(y)− φ̃

=
1

8π

∫
�ε

(
H(εy, εz)− 4

ci
log|y− z|

)(
W φ̃+ h−

2(k+l)∑
i=1

di L(Z̃0i )
)

dz.

Since φ̃(y)→0 uniformly on sets of the form |y−ξ ′i |< R, we can select a sequence
Rε→∞ such that

φ̃(y)→ 0 uniformly for |y− ξ ′i |< Rε.

We can assume Rε→∞ as slowly as we need.
Select a point ym ∈�ε for m=1, . . . , 2k or ym ∈∂�ε for m=2k+1, . . . , 2(k+l),

such that |ym − ξ
′
m | = Rε. We claim that when we evaluate (3-11) at ym , all terms

in the right side of (3-11) converge to zero except for∫
�ε

log|ym − z|L(Z̃0i )dz = 2π
µi
δmi + o(1),

where δmi is Kronecker’s delta.

Claim 1.
∫
�ε

log|ym − z|L(Z̃0i )dz = 2π
µi
δmi + o(1).

This is proved in Appendix B.

Claim 2.
∫
�ε

log|y− z|h(z)dz = o(1) uniformly for y ∈�ε.
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Proof. Observe that log|y− z| = O(log ε−1) for |y− z|> R, where R > 0 is fixed,
and that

∫
�ε∩BR(y)

∣∣log|y− z|
∣∣dz ≤ C . Then∣∣∣∫

�ε

log|y− z|hdz
∣∣∣≤ C log ε−1

‖h‖∗ = o(1). �

Claim 3.
∫
�ε

log|y− z|W φ̃dz = o(1).

Proof. It suffices to show that log ε−1
∫
�ε

W φ̃dz=o(1). Integrating equation (3-9),
we have ∫

�ε

W φ̃+ h−
2(k+l)∑

i=1

di L(Z̃0i )= 0.

The claim then follows from (B-10) and (3-7). �

Claim 4. A ≡
∫
�ε

H(εy, εz)(W φ̃+ h− L(Z̃0i ))= o(1) uniformly for y ∈�ε.

This is proved in Appendix B.
We now return to the proof of Lemma 3.6. From claims above, we get

(3-12) φ̃(yi )− φ̃ =
8πdi

ciµi
+ o(1) for all i = 1, . . . , 2(k+ l).

But the orthogonality condition (3-3) implies that

(3-13)
2(k+l)∑

i=1

di ai = 0, where ai =

∫
�ε

χi Z2
0i > 0.

Multiplying (3-12) by ci aiµi , adding and using (3-13), we find

2(k+l)∑
i=1

ciµi ai φ̃(yi )− aφ̃ = o(1), where a =
2(k+l)∑

i=1

ci aiµi .

Since φ̃(yi )→ 0 and a is bounded away from zero, we get that φ̃ = o(1). �

Proof of Lemma 3.3. Let φ̌ = φ̃(x/ε), with x ∈�. Then φ̌ satisfies{
−1φ̌(x)= ε−2

(
W̌ φ̌+ h+

∑2(k+l)
i=1 di (1Ž0i + W̌ Ž0i )

)
in �,

∂φ̌/∂ν = 0 on ∂� ,

where W̌ (x)=W (x/ε), Ž0i (x)= Z̃0i (x/ε) and ȟ(x)= h(x/ε). For given δ > 0,
let Eδ =� \

⋃2(k+l)
i=1 Bδ(ξi ). Then

1
ε2 ‖ȟ‖L∞(Eδ) ≤ C‖h‖∗→ 0 and 1

ε2 ‖W̌ φ̌‖L∞(Eδ) ≤ Cε2.
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Furthermore, in Eδ we have Ž0i ≡ 0. Recalling ‖φ̌‖L∞(�)≤ 1 and |�|−1
∫
�
φ̌→ 0,

we obtain φ̌→ 0 uniformly in Eδ and this implies

φ̃→ 0 uniformly in �ε \
⋃2(k+l)

i=1 Bδ/ε(ξ ′i ) for any δ > 0.

For a given R1> 0, let Ai = Bδ/ε(ξ ′i )\BR1(ξ
′

i ). Given ε > 0 small enough, there
exist R1 > 1 independent of ε (if necessary we can choose R1 large enough) and
ψi :�ε ∩ Ai → R smooth and positive such that

−1ψi −Wψi ≥ C |y− ξ ′i |
−2−σ

+ ε2 in �ε ∩ Ai ,

∂ψi/∂ν ≥ 0 on ∂�ε ∩ Ai ,

ψi > 0 in �ε ∩ Ai ,

ψi ≥ c > 0 on ∂Ai ∩�ε,

where C, c > 0 can be chosen independent of ε and ψi is bounded uniformly in
�ε ∩ Ai . Let 90 be the unique solution of

190− ε
490+ ε

2
= 0 in �ε, ∂90/∂ν = ε on ∂�ε,

and take ψ1i = 1− r−σ , where r = |y− ξ ′i |. Then we claim that the function

ψi (y)=
4
σ 2 (C90+ψ1i )

satisfies the requirements.
In fact, a simple calculation shows that

−1ψ1i = σ
2r−2−σ .

If ξ ′i ∈�ε, we have
∂ψ1i

∂νε
= O(ε1+σ ) on ∂�ε.

If ξ ′i ∈ ∂�ε and |y− ξ ′i |> R, we have

∂ψ1i

∂νε
= σ

(y− ξ ′i ) · νε
r2+σ on ∂�ε.

As before, we write ∂�ε near ξ ′i as the graph {(y1, y2) | y2 = ε
−1 P(εy1)} with

P(0)= P ′(0)= 0. Then we have

∂ψ1i

∂νε
=

σ

r2+σ

y1 P ′(εy1)− P(εy1)√
1+ P ′(εy1)2

=
σ

r2+σ

O(εr2)√
1+ O(δ2)

= O
(
ε

rσ
)

for all R < r < δ/ε. Thus we see that

∂ψ1i

∂νε
= o(ε) on ∂�ε.
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Therefore, for |y− ξ ′i |> R with i = 1, . . . , 2(k+ l), where R is large, we have by
the definition of ψi and the fact that W ≤ 1/(1+ |y− ξ ′i |

4) that

−1ψi −Wψi =
C
σ 2 (ε

2
− ε490)−

4
σ 2

C90+ψ1i

1+ r4 +
C

r2+σ ≥ ε
2
+

C
r2+σ .

And on ∂�ε,
∂ψi

∂νε
≥ Cε.

This verifies the claim.
Thanks to the barrierψi , we deduce that the following maximum principle holds

in �ε ∩ Ai . If φ ∈ H 1(�ε ∩ Ai ) satisfies{
−1φ−Wφ ≥ 0 in �ε ∩ Ai ,

φ ≥ 0 on ∂�ε ∩ Ai ,

then φ ≥ 0 in �ε ∩ Ai .
Let h be bounded and φ̃ be a solution of (3-9) satisfying (3-10). We first claim

that ‖φ̃‖L∞(�ε∩Ai ) can be controlled in terms of

2(k+l)∑
i=1

|di |‖L(Z̃0i )‖∗, sup
�ε∩∂Ai

|φ̃|, and ‖h‖∗.

Indeed, set

8= C
(

sup
�ε∩∂Ai

|φ̃| + ‖h‖∗+
2(k+l)∑

i=1

|di |‖L(Z̃0i )‖∗

)
ψi .

By the maximum principle above, we have |φ̃| ≤ 8 in �ε ∩ Ai . Since ψi is uni-
formly bounded, we get

|φ̃| ≤ C
(

sup
�ε∩∂BR1 (ξ

′

i )

|φ̃| + sup
�ε∩∂Bδ/ε(ξ ′i )

|φ̃| + ‖h‖∗+
2(k+l)∑

i=1

|di |‖L(Z̃0i )‖∗

)
in �ε ∩ Ai . But ‖h‖∗ = o(1) by the assumption, sup�ε∩∂BR1

(ξ ′i )|φ̃| → 0 by
Lemma 3.5, and sup�ε∩∂Bδ/ε(ξ ′i )

|φ̃| → 0 as shown above. At the same time, we
also know |di | = O(1) and ‖L(Z̃0i )‖∗ = O(ε2γ ) = o(1) from (B-10), this proves
the result. �

Proof of Lemma 3.4. We take Z̃0i as test function to (3-9), obtaining

(3-14)
2(k+l)∑

i=1

di

∫
�ε

L(Z̃0i )Z̃0i =

∫
�ε

φ̃(1Z̃0i +W Z̃0i )+

∫
�ε

h Z̃0i .
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Observe that

(3-15)
∣∣∣∫
�ε

Z̃0i h
∣∣∣≤ ‖h‖∗‖Z̃0i‖L∞(�ε) ≤ C log ε−1

‖h‖∗
1

log ε−1 = o(1) 1
log ε−1 ,

and

(3-16)
∣∣∣∫
�ε

φ̃(1Z̃0i +W Z̃0i )

∣∣∣≤ ‖φ̃‖L∞(�ε)‖L(Z̃0i )‖∗ = o(1) 1
log ε−1 .

It is not difficult to show as above that∣∣∣∫
�ε

L(Z̃0i )Z̃0i

∣∣∣≥ C
log ε−1 . �

Proof of Proposition 3.1. First we prove that for any φ, c j i , c0 and any solution
to (3-1), we have the bound

(3-17) ‖φ‖L∞(�ε) ≤ C log ε−1
‖h‖∗.

From Proposition 3.2, we obtain that

(3-18) ‖φ‖L∞(�ε) ≤ C log ε−1
(
‖h‖∗+

2(k+l)∑
i=1

Ji∑
j=1

|c j i | + |c0|

)
.

So it suffices to estimate the values of the constants a j i and c0.
To this end, we multiple (3-1) by Z j i and integrate to find

(3-19)
∫
�ε

L(φ)Z j i =

∫
�ε

h Z j i + c j i

∫
�ε

ψi Z2
j i .

Note that Z j i = O(1/(1+ |y− ξi |)) for j 6= 0, so

(3-20)
∫
�ε

h Z j i = O(‖h‖∗)

and

(3-21)
∫
�ε

L(φ)Z j i =

∫
�ε

L(Z j i )φ+

∫
∂�ε

∂Z j i

∂ν
φ = O(ε log ε−1

‖φ‖L∞(�ε)).

Substituting (3-20) and (3-21) into (3-19), we obtain

(3-22) |C j i | = O(‖h‖∗)+ O(ε log ε−1
‖φ‖L∞(�ε)).

On the other hand, multiplying (3-1) by Z we get

(3-23) c0

∫
�ε

χ Z2
=

∫
�ε

L(φ)Z −
∫
�ε

h Z .
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Estimating as before, we have

(3-24)
∫
�ε

h Z = O(‖h‖∗)

and

(3-25)
∫
�ε

L(φ)Z =
∫
�ε

L(Z)φ = O(ε log ε−1
‖φ‖L∞(�ε)).

Thus it follows from (3-23)–(3-25) that

(3-26) |c0| = O(‖h‖∗)+ O(ε log ε−1
‖φ‖L∞(�ε)).

From (3-22) and (3-26) we see that the desired bound holds.
Now consider the Hilbert space

H=
{
φ∈H 1(�ε) :

∫
�ε

χ Zφ=0,
∫
�ε

χi Z j iφ=0 for i=1, . . . , 2(k+l), j=1, Ji

}
with the norm ‖φ‖2H =

∫
�ε
|∇φ|2. Problem (3-1) is equivalent to finding φ ∈ H

such that ∫
�ε

∇φ∇ψ −

∫
�ε

Wφψ =

∫
�ε

hψ for all ψ ∈ H.

By Fredholm’s alternative, this is equivalent to the uniqueness of solutions to this
problem, which is guaranteed by the a priori estimate (3-17). �

Remark. The result of Proposition 3.1 implies that the unique solution φ = T (h)
of (3-1) defines a continuous linear map from L∞(�ε), with norm ‖ · ‖∗, into
L∞(�ε). Moreover, the operator T is differential with respect to the variables ξ ′m .
In fact, computations similar to those used in [Wei et al. 2011] yield the estimate

(3-27) ‖∂ξ ′mφ‖L∞(�ε) ≤ C(log ε−1)2‖h‖∗.

4. The nonlinear problem with constraints

Let us introduce a small parameter τ and consider

(4-1) V1(y)= V (y)+ τ Z(y) for y ∈�ε,

where V and Z are given by (2-16) and (3-5). Then we set

W1 = 2ε4 cosh V1, R1 =1V1+ 2ε4 sinh V1

and
N1(φ1)= 2ε4(sinh(V1+φ1)−φ1 cosh V1− sinh V1).
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Now we consider the following auxiliary nonlinear problem:

(4-2)



1φ1+W1φ1+R1+N1(φ1)+

2(k+l)∑
i=1

Ji∑
j=1

c j iχi Z j i+c0χ Z = 0 in �ε,

∂φ1/∂ν = 0 on ∂�ε,∫
�ε

χ Zφ1 = 0,
∫
�ε

χi Z j iφ1 = 0

for all i = 1, . . . , 2(k+l), j = 1, Ji .

Then we can follow the proofs [Wei et al. 2011, Lemma 4.1 and Theorem 4.2] to
obtain the following results; we omit the details.

Lemma 4.1. Let k+ l ≥ 1, d > 0, α ∈ (0, 1) and τ = O(εθ ) with θ > α/2. Then
there exist ε0>0 and C>0 such that for 0<ε<ε0 and for any ξ1, . . . , ξ2(k+l)∈Md ,
problem (4-2) admits a unique solution φ1, c0, c j i for i = 1, . . . , 2(k+l), j = 1, Ji ,
such that

(4-3) ‖φ1‖L∞(�ε) ≤ Cεα.

Furthermore, the function (τ, ξ ′)→ φ1(τ, ξ
′) ∈ C(�ε) is C1 and

(4-4)
‖Dξ ′φ1‖L∞(�ε) ≤ C |log ε|2(ε+ ε2θ

+ ε2α),

‖Dτφ1‖L∞(�ε) ≤ C(εα + εθ )|log ε|.

Lemma 4.2. Let k + l ≥ 1 and d > 0. For any 0 < α < 1 there exist ε0 > 0 and
C > 0 such that for 0<ε< ε0 and any (ξ1, . . . , ξ2(k+l))∈Md , there exists a unique
τ with |τ | = O(εα) such that problem (4-2) admits a unique solution φ, c0, c j i for
i = 1, . . . , 2(k+ l), j = 1, Ji with c0 = 0 and such that

(4-5) ‖φ‖L∞(�ε) ≤ Cεα.

Furthermore, the function ξ ′ 7→ φ(ξ ′) is C1 and

‖Dξ ′φ‖L∞(�ε) ≤ Cεα|log ε|2.

5. Variational reduction and expansion of the energy

In view of Lemmas 4.1 and 4.2, given ξ = (ξ1, . . . , ξ2(k+l)) ∈Md , we set φ(ξ) and
c j i (ξ) to be the unique solution to (4-2) with c0 = 0 satisfying the bounds (4-3)
and (4-4). Let

Jε(v)=
1
2

∫
�ε

|∇v|2dx − 2ε4
∫
�ε

cosh vdx

and define

(5-1) Fε(ξ)= Jε(V1(ξ
′)+φ(ξ ′)),
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where ξ ′ = ξ/ε and V1(ξ
′)= V (ξ ′)+ τ(ξ ′)Z(ξ ′) with τ(ξ) given by Lemma 4.2.

Lemma 5.1. If ξ = (ξ1, . . . , ξ2(k+l)) ∈Md is a critical point of Fε, then

v = V1(ξ
′)+φ(ξ ′)

is a critical point of Jε, that is, a solution to (2-14).

Proof. A direct computation gives

∂Fε
∂ξm
= ε−1 ∂ Jε(V1(ξ

′)+φ(ξ ′))

∂ξ ′m
= ε−1 D Jε(V1(ξ

′)+φ(ξ ′))
(∂V1(ξ

′)

∂ξ ′m
+
∂φ(ξ ′)

∂ξ ′m

)
.

Since V1(ξ
′)+φ(ξ ′) solves (4-2) with c0 = 0, we have

∂Fε
∂ξm
= ε−1

2(k+l)∑
i=1

Ji∑
j=1

c j i

∫
�ε

χi Z j i

(∂V1(ξ
′)

∂ξ ′m
+
∂φ(ξ ′)

∂ξ ′m

)
.

From the assumption DFε(ξ)= 0, we obtain

2(k+l)∑
i=1

Ji∑
j=1

c j i

∫
�ε

χi Z j i

(∂V1(ξ
′)

∂ξ ′m
+
∂φ(ξ ′)

∂ξ ′m

)
= 0 for all m = 1, . . . , 2(k+ l).

Since

‖∂ξ ′mφ(ξ
′)‖L∞(�ε) ≤ Cεα|log ε|2 and ∂ξ ′m V (ξ ′)= (−1)m Z jm + o(1)

for j = 1, Ji , where o(1) is in the L∞-norm as a direct consequence of (4-1), it
follows that

2(k+l)∑
i=1

Ji∑
j=1

c j i

∫
�ε

χi Z j i ((−1)m Z jm + o(1))= 0 for all m = 1, . . . , 2(k+ l),

which is a strictly diagonal dominant system. This implies that c j i = 0 for all
i = 1, . . . , 2(k+ l), j = 1, Ji . �

A key step in seeking the critical points of the functional Fε is finding its ex-
pected closeness to the functional Jε(V1(ξ)). The procedure is completely similar
to that of [Wei et al. 2011, Theorem 5.2], so we omit it here.

Lemma 5.2. The expansion

Fε(ξ)= Jε(V )+ θε(ξ)

holds with |θε(ξ)| + |∇θε(ξ)| = o(1) uniformly on points in Md .

Now we will give an asymptotic estimate of Jε(V ), where V is defined by (2-16)
and Jε is given as above.
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Lemma 5.3. Let k + l ≥ 1, let d > 0, let µi be given by (2-21) and let V be the
function defined in (2-16). Then the expansion

(5-2) Jε(V )=−
1
2

2(k+l)∑
i=1

ci

(
ci H(ξi , ξi )+

∑
j, j 6=i

(−1) j+i c j G(ξ j , ξi )
)

+ 2
2(k+l)∑

i=1

ci log ε−1
+

2(k+l)∑
i=1

ci (log 8− 2)+ O(εα).

holds uniformly on points ξ = (ξ1, . . . , ξ2(k+l)) ∈Md .

Proof. Recall the definition of V (y)=
∑2(k+l)

i=1 (−1)i−1(ui (εy)+H ε
i (εy)). We find

that it satisfies

(5-3)

 −1V = ε4
2(k+l)∑

i=1

(−1)i−1
(

eui (εy)
−

1
|�ε|

∫
�ε

eui (εy)
)

in �ε,

∂V/∂ν = 0 on ∂�ε.

We will compute the two terms in Jε(V ).
First, by (5-3) we have∫
�ε

|∇V |2 =
∫
�ε

(−1V )V

=

∫
�ε

(
ε4

2(k+l)∑
j=1

(−1) j−1
(

eu j (εy)
−

1
|�ε|

∫
�ε

eu j (εy)
))

×

(2(k+l)∑
i=1

(−1)i−1
(

ui (εy)+ H ε
i (εy)

))
= ε4

∑
j,i

(−1) j+i
∫
�ε

(
ui (εy)+ H ε

i (εy)
)

eu j (εy)

−
ε4

|�ε|

(2(k+l)∑
j=1

(−1) j−1
∫
�ε

eu j (εy)
)(∫

�ε

2(k+l)∑
i=1

(−1)i−1
(

ui (εy)+ H ε
i (εy)

))
= ε4

∑
j,i

(−1) j+i
∫
�ε

(ui (εy)+ H ε
i (εy))eu j (εy)

+ O(ε),

where the last equality is due to the fact ε4∑2(k+l)
j=1 (−1) j−1

∫
�ε

eu j (εy)
= O(ε4),

which can be easily deduced from (2-7).
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For j 6= i, we have by a calculation similar to (2-23)

(5-4)

∫
�ε

ε4(ui (εy)+ H ε
i (εy))eu j (εy)

=

(∫
�1
ε

+

∫
�2
ε

)
(ε4(ui (εy)+ H ε

i (εy))eu j (εy))

=

∫
�1
ε |ξ ′j=0

8
(1+y2)2

(
log|ξi − ξ j |

−4
+ ci H(ξ j , ξi )

)
+ O(εα)

= c j ci G(ξ j , ξi )+ O(εα).

where �1
ε := Bδ/(εµ j )(ξ

′

j )∩ (�ε/µi ) and �2
ε := (�ε/µi ) \�

1
ε . For j = i, we have

ε4
∫
�ε

(ui (εy)+ H ε
i (εy))eui (εy)

=

∫
�ε

8µ2
i

(µ2
i + |y− ξ

′

i |
2)2

(
log

8µ2
i

(ε2µ2
i + |εy− ξi |

2)2
+ ci H(ξi , ξi )

− log(8µ2
i )+ O(εα)+ O(ε|y− ξ ′i |)

)
= 4ci log ε−1

+ ci (ci H(ξi , ξi )− 2 log 8µ2
i )+ 2ci (log 8− 1)+ O(εα).

So from the choice of µi (see (2-21)), we get

(5-5) ε4
∫
�ε

(ui (εy)+ H ε
i (εy))eui (εy)

= 4ci log ε−1
+ 2ci (log 8− 1)

− ci

(
ci H(ξi , ξi )+ 2

∑
m,m 6=i

(−1)m+i cmG(ξm, ξi )
)
+ O(εα).

Combining (5-4) and (5-5), we have

(5-6) 1
2

∫
�ε

|∇V |2 =−1
2

2(k+l)∑
i=1

ci

(
ci H(ξi , ξi )+

∑
j, j 6=i

(−1) j+i c j G(ξ j , ξi )
)

+ 2
2(k+l)∑

i=1

ci log ε−1
+ (log 8− 1)

2(k+l)∑
i=1

ci + O(εα).

Next, let us compute the second term in Jε(V ). Let�1
i = Bδ/ε(ξ ′i )∩(�ε/µi ). Then

2ε4
∫
�ε

cosh V = 2ε4
2(k+l)∑

i=1

∫
�1

i

cosh V + O(ε2).
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Suppose first i is odd. Then

2ε4
∫
�1

i

cosh V = ε4
∫
�1

i

eV
+ O(ε)

=

∫
�1

i

ε4eui (εy) exp
(

H ε
i +

∑
m 6=i

(−1)m−1(um + H ε
m)
)
+ O(ε)

= ci + O(ε).

Therefore

(5-7) 2ε4
∫
�1

i

cosh V = ci + O(ε).

Similarly for i even, we also have (5-7). So we obtain

(5-8) 2ε4
∫
�ε

cosh V =
2(k+l)∑

i=1

ci + O(ε).

Finally, from (5-6) and (5-8) we conclude that (5-2) holds. �

6. Proof of main theorems

Proof of Theorem 1.2. Let

v(y)= V1(ξ
′)(y)+φ(ξ ′)(y) for y ∈�ε,

where V1 is given by (4-1) and φ is the unique solution to problem (4-2) with
c0 = 0, whose existence and properties are established in Lemma 4.2. According
to Lemma 4.1, v is a solution to problem (2-14) if we adjust ξ so that it is a critical
point of the function Fε(ξ) defined in (5-1), or equivalently, so that it is a critical
point of

(6-1) F̃ε(ξ)= 2
(

2
2(k+l)∑

i=1

ci log ε−1
+

2(k+l)∑
i=1

ci (log 8− 2)− Fε(ξ)
)
.

From Lemmas 5.2 and 5.3 it follows that for ξ ∈Md ,

(6-2) F̃ε(ξ)= ϕ2(k+l)(ξ)+ ε2ε(ξ),

where2ε and ∇ξ2ε are uniformly bounded in the considered region as ε→ 0. On
the other hand, F̃ε→ ϕ2(k+l) uniformly on compact sets of Md as ε goes to 0. Now
by Definition 1.1, we deduce that if ε is small enough, there exists a critical point
ξε ∈Md of F̃ε such that F̃ε→ϕ2(k+l)(ξ

∗). Moreover, up to subsequence, ξε→ ξ as
ε tends to 0, with ϕ2(k+l)(ξ)= ϕ2(k+l)(ξ

∗). The function uε(x)= v(y) is therefore
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a solution to (1-2) with the qualitative properties predicted by the theorem, as can
be easily shown. �

Proof of Theorem 1.3. First, we recall here some facts about the regular part of the
Green function H(x, y) defined by (1-4). If y ∈ � is a point close to ∂�, we let
y∗ be its uniquely determined reflection with respect to ∂�. Now, we consider the
auxiliary function

H∗(x, y)=− 1
2π

log 1
|x−y∗|

,

and set

ψ(x, y)= H(x, y)− H∗(x, y)

Then from the equation corresponding to H(x, y) and the elliptic regularity theory,
it is not difficult to verify ψ(x, y) is bounded in �×� and hence one can derive
the estimates

(6-3) H(x, y)=− 1
2π

log 1
|x−y∗|

+ O(1) for all x ∈� uniformly.

If y ∈ ∂�, note that H(x, y) satisfies
1H(x, y)= 1

|�|
in �,

∂H
∂ν
(x, y)=

1
π

(x − y) · ν(x)
|x − y|2

on ∂�.

With this and (2-10), we obtain that x 7→ H(x, y) ∈ C1,α(�). On the other hand,
by the continuity of the boundary term with respect to y in L∞(∂�), we can get
H(x, y) ∈ C(�, ∂�). In particular, H(x, x) is in C(∂�).

Now, we prove the result. It suffices to show the existence of critical points of
the function ϕ2+2(ξ1, . . . , ξ4) in Md . In this case,

(6-4) ϕ2+2(ξ1, . . . , ξ4)= 16π2(4H(ξ1, ξ1)+4H(ξ2, ξ2)+H(ξ3, ξ3)+H(ξ4, ξ4)

− 4G(ξ1, ξ2)+ 2G(ξ1, ξ3)− 2G(ξ1, ξ4)

− 2G(ξ2, ξ3)+ 2G(ξ2, ξ4)−G(ξ3, ξ4)
)
.

We will look for a solution to problem (1-2) with the concentration points ξ given
by

ξ1 = (−λ, 0), ξ2 = (λ, 0), ξ3 = (1, 0), and ξ4 = (−1, 0) for λ ∈ (0, 1).

Using results obtained in the previous sections (or from the proof of Theorem 1.2),
we reduce the problem of finding solution to (1-2) to that finding critical points of
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the function ϕ2+2(λ) : (0, 1)→ R defined by

ϕ2+2(λ) := ϕ2+2(ξ(λ))

= 16π2
(

H(ξ3, ξ3)+ H(ξ4, ξ4)−
4
π

log 1
2−λ

+ O(1)

−
2
π

log 1
2λ
−

4
π

log 1
1−λ

+
4
π

log 1
1+λ

−
1
π

log 1
2

− H(ξ1, ξ2)+ H(ξ1, ξ3)− H(ξ1, ξ4)− H(ξ2, ξ3)+ H(ξ2, ξ4)− H(ξ3, ξ4)
)

= 32π(2 log(2− λ)+ log λ+ 2 log(1− λ)− 2 log(1+ λ))+ O(1).

Here, we have used the fact that H(x, y) ∈ C(B̄, ∂B) and (6-3). Now there exists
a λ0 ∈ (0, 1) such that ϕ2+2(λ0) = maxλ∈(0,1) ϕ2+2(λ), since limλ→0+ ϕ2+2(λ) =

limλ→1− ϕ2+2(λ)=−∞. Then λ0 is a C0-stable critical point of ϕ2+2, and so the
function F̃ε(ξ) defined by (6-1) has a critical point. This proves our result. �

Appendix A.

Proof of (2-22) and (2-23). By Lemma 2.1 and the fact that H is C1 in �, we have

H ε
j (εy)= c j H(εy, ξ j )− log(8µ2

j )+ O(εα)

= c j H(ξi , ξ j )− log(8µ2
j )+ O(εα)+ O(ε|y− ξ ′i |).

Let us fix a small constant δ > 0. For |y− ξ ′i | ≤ δ/ε,

(−1)i−1 H ε
i (εy)+

∑
j 6=i

(−1) j−1
(

log
8µ2

j

(ε2µ2
i + |εy− εξ ′j |2)2

+ H ε
j (εy)

)
= (−1)i−1(ci H(ξi , ξi )− log(8µ2

i )
)

+

∑
j 6=i

(−1) j−1
(

log
8µ2

j

|ξi − ξ j |
4 + c j H(ξi , ξ j )− log(8µ2

j )

)
+ O(εα)+ O(ε|y− ξ ′i |)

= (−1)i−1(ci H(ξi , ξi )− log(8µ2
i ))

+

∑
j 6=i

(−1) j−1c j G(ξi , ξ j )+ O(εα)+ O(ε|y− ξ ′i |)

which is equal to O(εα)+ O(ε|y− ξ ′i |); here first equality follows because

ε2µ2
j + ε

2
|y− ξ ′j |

2
=
(
|ξ j − ξi | + O(|εy− ξi |)

)2
+ ε2µ2

j

= |ξ j − ξi |
2
(

1+ O
(
|εy− ξi |

2

|ξ j − ξi |
2

)
+

ε2µ2
j

|ξ j − ξi |
2

)
= |ξ j − ξi |

2(1+ O(ε2
|y− ξ ′i |

2)+ O(ε2)
)
.
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First, we estimate W . For |y− ξ ′i | ≤ δ/ε, a direct computation shows

W = 2ε4 cosh V

= ε4 exp
(2(k+l)∑

i=1

(−1)i−1(ui + H ε
i )
)
+ ε4 exp

(2(k+l)∑
i=1

(−1)i (ui + H ε
i )
)

= ε4
(

8µ2
i

ε4(µ2
i + |y− ξ

′

i |
2)2

)(−1)i−1

×exp
(
(−1)i−1 H ε

i (εy)+
∑
j 6=i

(−1) j−1
(

log
8µ2

j

(ε2µ2
j+ε

2|y−ξ ′j |2)2
+H ε

j (εy)
))

+ ε4
( 8µ2

i

ε4(µ2
i + |y− ξ

′

i |
2)2

)(−1)i

× exp
(
(−1)i H ε

i (εy)+
∑
j 6=i

(−1) j
(

log
8µ2

j

(ε2µ2
j + ε

2|y− ξ ′j |2)2
+ H ε

j (εy)
))

= ε4
(( 8µ2

i

ε4(µ2
i + |y− ξ

′

i |
2)2

)(−1)i−1

+

( 8µ2
i

ε4(µ2
i + |y− ξ

′

i |
2)2

)(−1)i)
× exp

[
O(εα)+ O(ε|y− ξ ′i |)

]
=

8µ2
i

(µ2
i + |y− ξ

′

i |
2)2

(
1+ O(εα)+ O(ε|y− ξ ′i |)

)
+ O(ε4).

Therefore

(A-1) W (y)=
8µ2

i

(µ2
i + |y− ξ

′

i |
2)2
(1+ O(εα)+ O(ε|y− ξ ′i |))

for all |y− ξ ′i |< δ/ε.

Similarly, for |y− ξ ′i |< δ/ε we have

(A-2)

2ε4 sinh V

= ε4
(( 8µ2

i

ε4(µ2
i + |y− ξ

′

i |
2)2

)(−1)i−1

−

( 8µ2
i

ε4(µ2
i + |y− ξ

′

i |
2)2

)(−1)i)
× exp

(
O(εα)+ O(ε|y− ξ ′i |)

)
= (−1)i−1 8µ2

i

(µ2
i + |y− ξ

′

i |
2)2

(
1+ O(εα)+ O(ε|y− ξ ′i |)

)
+ O(ε4).

On the other hand, for |y − ξ ′i | ≥ δ/ε, it is easy to see that W (y) = O(ε4) and
2ε4 sinh V = O(ε4). This, together with (A-1), implies (2-23) and (2-24).
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Next, by our definitions,

1V =
2(k+l)∑

i=1

(−1)i−1(ε21ui (εy)+ ε21H ε
i (εy)

)
=

2(k+l)∑
i=1

(−1)i−1
(
−ε4eui (εy)

+
ε4

|�|

∫
�

eui (x)dx
)

=

2(k+l)∑
i=1

(−1)i−1
(
−

8µ2
i

(µ2
i + |y− ξ

′

i |
2)2

)
+

2(k+l)∑
i=1

(−1)i−1 ε
4

|�|

∫
�

eui (x)dx .

The last term in the above equality can be controlled by O(ε4) since from (2-7),
we have

ε2
2(k+l)∑

i=1

(−1)i−1
∫
�

eui = O(ε2
|µi −µ j |),

Combining this with (A-2), we get (2-22). �

Appendix B.

Proof of Claim 1. Since η′(r) has a jump at r = ε−γ and r = ε−β and is otherwise
smooth, we see that L(Z̃0i ) is a measure.

L(Z̃0i )= (−1−W )
(
η1i Z0i + ε(1− η1i )η2i Ẑ0i

)
=−(Z0i − εη2i Ẑ0i )

(
[η′1i (ε

−γ )]µε−γ + [η
′

1i (ε
−β)]µε−β

)
− 2∇η1i (∇Z0i − ε Ẑ0i∇η2i − εη2i∇ Ẑ0i )− η1i (1Z0i +W Z0i )

− ε(1− η1i )(Ẑ0i1η2i + η2i1Ẑ0i + 2∇η2i∇ Ẑ0i +Wη2i Ẑ0i )

where [η′1i (r)] = η
′

1i (r
+) − η′1i (r

−) denotes the jump of η′1i at r , and µr is the
1-dimensional measure on the circle of radius r .

Let us consider first the case m = i :

(B-1)
∫
�ε

log|yi − z|L(Z̃0i )=

∫
�ε

(log|yi − z| − log|ξ ′i − z|)L(Z̃0i )dz

+

∫
�ε

log|ξ ′i − z|L(Z̃0i )dz.

Let r = |z−ξ ′i |, and note that 1η2i = O(ε2β) and ∇η2i = O(εβ). For r < ε−β , we
have

(B-2)

η1i (1Z0i +W Z0i )= η1i (1Z0i + evi (1+ θε)Z0i )

≤
8µ2

i

(µ2
i + |z− ξ

′

i |
2)2

O(εα + ε|z− ξ ′i |)+ O
(

εα

(1+|y−ξ ′i |)3
)
.
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Thus

(B-3)

∣∣∣∫
�ε

η1i (1Z0i +W Z0i ) log|z− ξ ′i |
∣∣∣

≤

∫
�ε

η1i

(
8µ2

i O(εα + ε|z− ξ ′i |)

(µ2
i + |z− ξ

′

i |
2)2

+ O
(

εα

(1+|y−ξ ′i |)3
))

log|z− ξ ′i |

≤ C
∫ ε−β

0

(
εα

(1+ r)3
+
εα + εr
(1+ r2)2

)
r log rdr

= O
(
(εα + ε1−β) log ε−1

)
= o(1).

For ε−γ < r < ε−β ,

(B-4)

1
µi
− a0i G(εz, ξi )=

1
µi
−

4 log ε−1
− 4 log|z− ξ ′i | + ci H(εz, ξi )

µi [4(1− γ ) log ε−1+ ci H(ξi , ξ j )]

=
log r − γ log ε−1

+ εr
(1− γ )µi log ε−1 (1+ O(ε)).

Therefore,

(B-5)

∫
�ε

(1− η1i )W (µ−1
i − a0i G) log|z− ξ ′i |dz

=

∫
r>ε−γ

O
( log r − γ log ε−1

+ εr
(1− γ )µi log ε−1

)
O(r−4r ) log rdr

= O(ε2γ log ε−1)

and

(B-6)

∫
�ε

∇η1i (∇Z0i − ε Ẑ0i∇η2i − εη2i∇ Ẑ0i ) log|z− ξ ′i |dz

= 2π
∫ ε−β

ε−γ

−r−1

(β − γ ) log ε−1

×

(
O(r−3)+ O(ε1+β)+ O

(
ε

log ε−1 (r
−1
+C)

))
r log rdr

= O(ε2γ )+ O(
ε1−β

log ε−1 ).

For r > ε−γ ,

Ẑ0i1η2i + η2i1Ẑ0i + 2∇η2i∇ Ẑ0i +Wη2i Ẑ0i

= Ẑ0i1η2i + 2∇η2i∇ Ẑ0i + η2i (1Z0i +W Z0i + a0i1G−Wµ−1
i +Wa2i G).
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So, recalling (B-5), we have

ε

∫
�ε

(1− η1i )(Ẑ0i1η2i + η2i1Ẑ0i + 2∇η2i∇ Ẑ0i +Wη2i Ẑ0i ) log|z− ξ ′i |dz

= ε

∫ 2ε−β

ε−β
O(ε2β)r log rdr + ε

∫ 2ε−β

ε−β
O(εβ)O

(
r−3
+

ε

log ε−1 (C + r−1)
)

r log rdr

+ ε

∫ 2ε−β

ε−γ

(
O
(
εα+εr

r4

)
+ O

(
εα

(1+r)3
)
+ O

(
ε2

log ε−1

))
r log rdr

− ε

∫
�ε

(1− η1i )W (µ−1
i − a0i G) log|z− ξ ′i |dz,

which is equal to O(ε log ε−1). A direct computation shows∫
�ε

[η′1i (ε
−γ )]µε−γ (Z0i − εη2i Ẑ0i ) log|z− ξ ′i |dz

=
−εγ

(β − γ ) log ε−1

∫
r=ε−γ

(Z0i − ε Ẑ0i ) log|z− ξ ′i |

=
−εγ

(β − γ ) log ε−1 ×
1+ O(ε2γ )

µi
× 2πε−γ log ε−γ

=
−2πγ

µi (β − γ )
+ O(ε2γ ).

Similarly,∫
�ε

[η′1i (ε
−β)]µε−β (Z0i − εη2i Ẑ0i ) log|z− ξ ′i |dz =

2πβ
µi (β − γ )

+ O(ε2β).

Hence ∫
�ε

L(Z̃0i ) log|z− ξ ′i |dz =
2π
µi
+ o(1).

For the first integral in the right side of (B-1), we can assume Rε→+∞ slowly
enough so that εγ Rε→ 0. Then

(B-7)
∣∣log|yi − z| − log|ξ ′i − z|

∣∣= ∣∣∣log
|yi − z|

r

∣∣∣≤ ∣∣∣log
|yi − ξ

′

i | + r
r

∣∣∣
for r = |ξ ′i − z|; therefore we have from (B-2)

(B-8)

∣∣∣∫
�ε

(log|yi − z| − log|ξ ′i − z|)η1i (1Z0i +W Z0i )dz
∣∣∣

≤ C
∫ ε−β

0
log(Rεr−1

+ 1)
(

O
(
εα+εr
(1+r2)2

)
+ O

(
εα

(1+r)3
))

rdr

= O(εα(Rε + log ε−1)).
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On the other hand, from (B-7), for ε−γ ≤ r = |z− ξ ′i | ≤ ε
−β we have∣∣log|yi − z| − log|ξ ′i − z|

∣∣≤ C |yi − ξ
′

i |/ε
−γ

and it follows that∣∣∣∫
�ε

(log|yi − z| − log|ξ ′i − z|)
(
L(Z̃0i )+ η1i (1Z0i +W Z0i )

)
dz
∣∣∣= O(εγ Rε).

Thus, from this and (B-8), we obtain

(B-9)
∣∣∣∫
�ε

(
log|yi − z| − log|ξ ′i − z|

)
L(Z̃0i )

∣∣∣= o(1).

Next, we show that if m 6= i , then∫
�ε

log|ym − z|L(Z̃0i )dz = o(1).

In fact,∫
�ε

log|ym − z|L(Z̃0i )dz

=

∫
�ε

(log|ym − z| − log|ym − ξ
′

i |)L(Z̃0i )dz+
∫
�ε

log|ym − ξ
′

i |L(Z̃0i )dz.

We assume that Rε < ε−γ /2, so that∣∣log|ym − z| − log|ym − ξ
′

i |
∣∣≤ log

(
1+
|z− ξ ′i |
|ym − ξ

′

i |

)
= O(ε|z− ξ ′i |).

Thus ∣∣∣∫
�ε

(log|ym − z| − log|ym − ξ
′

i |)L(Z̃0i )dz
∣∣∣= O

(
ε1−β

log ε−1

)
.

Finally,

(B-10)
∫
�ε

L(Z̃0i )dz = O(ε2γ ).

This implies ∫
�ε

log|ym − ξ
′

i |L(Z̃0i )dz = o(1).

Therefore Claim 1 holds. �

Proof of Claim 4. Let

ζ(r)=


1 if r < ε−1/2,

(log(δ/ε)− log r)/(log(δ/ε)− log ε−1/2) if ε−1/2 < r < δ/ε,
0 if r > δ/ε,
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and set

ψ(z)=
2(k+l)∑

i=1

H(εy, ξi )ζ(|z− ξ ′i |).

Testing (3-9) by ψ and integrating by parts, we obtain∫
�ε

(
W φ̃+ h−

2(k+l)∑
i=1

di L(Z̃0i )
)
ψ +

∫
�ε

φ̃1ψ −

∫
∂�ε

φ̃
∂ψ

∂ν
= 0.

Thus

A =
∫
�ε

(H(εy, εz)−ψ)
(

W φ̃+ h−
2(k+l)∑

i=1

di L(Z̃0i )
)
−

∫
�ε

φ̃1ψ +

∫
∂�ε

φ̃
∂ψ

∂ν
.

Since H, ψ and φ̃ are bounded,

(B-11)
∣∣∣∫
�ε

(H(εy, εz)−ψ)hdz
∣∣∣≤ C‖h‖∗ = o(1)

and

(B-12)
∣∣∣∫
�ε

(H(εy, εz)−ψ)L(Z̃0i )

∣∣∣≤ C
∣∣∣∫
�ε

L(Z̃0i )dz
∣∣∣= o(1).

Also, it is not difficult to show that

(B-13)
∫
�ε

φ̃1ψ = O
( 1

log(δ/ε)

)
= o(1),

∫
∂�ε

φ̃
∂ψ

∂ν
= O

( 1
log(δ/ε)

)
= o(1).

For instance, the first integer in (B-13) can be estimated as∣∣∣∫
�ε

φ̃1ψ

∣∣∣≤ ‖φ̃‖L∞(�ε)

∫
�ε

|1ψ |.

But 1ψ is a measure with support on the arcs r = ε−1/2 and r = δ/ε, where
r = |z− ξ ′i |, and∫

�ε

|1ψ | = O
(
ε−1/2 1

ε−1/2 log ε−1 +
δ

ε

1
(δ/ε) log ε−1

)
= O

( 1
log(δ/ε)

)
= o(1).

Note that for |z−ξ ′i |> δ/ε, we have W = O(r−4), and H and φ̃ are bounded; thus

(B-14)
∫
�ε\(

⋃
i Bδ/ε(ξ ′i ))

(H(εy, εz)−ψ)W φ̃ = o(1).
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On the other hand, for |z−ξ ′i |≤ δ/ε, we have H(εy, εz)−H(εy, ξi )= O(ε|z−ξ ′i |)
and W = O((r2

+ 1)−2). So

(B-15)

∣∣∣∫
�ε∩B

ε−1/2 (ξ
′

i )

(H(εy, εz)−ψ(z))W φ̃dz
∣∣∣

=

∣∣∣∫
�ε∩B

ε−1/2 (ξ
′

i )

(H(εy, εz)− H(εy, ξi ))W φ̃dz
∣∣∣

≤ Cε
∫ ε−1/2

0

r2

(r2+1)2
dr = O(ε1/2)= o(1).

In the region ε−1/2< r =|z−ξ ′i |<δ/ε, noting the fact that H , ζ and φ̃ are bounded
and that W = O(r−4), we find

(B-16)
∣∣∣∫
�ε∩Bδ/ε(ξ ′i )\B1/

√
ε(ξ
′

i )

(H(εy, εz)−ψ(z))W φ̃dz
∣∣∣≤ C

∫ δ/ε

1/
√
ε

r−3dr = o(1).

Therefore, Claim 4 follows from (B-10)–(B-16). �
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