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NONCONVENTIONAL ERGODIC AVERAGES AND MULTIPLE
RECURRENCE FOR VON NEUMANN DYNAMICAL SYSTEMS

TIM AUSTIN, TANJA EISNER AND TERENCE TAO

The Furstenberg recurrence theorem (or equivalently Szemerédi’s theorem)
can be formulated in the language of von Neumann algebras as follows:
given an integer k ≥ 2, an abelian finite von Neumann algebra (M, τ) with
an automorphism α :M→M, and a nonnegative a∈M with τ(a)>0, one has
lim infN→∞ N−1 ∑N

n=1 Re τ(aαn(a) · · ·α(k−1)n(a))> 0; a later result of Host
and Kra shows this limit exists. In particular, Re τ(aαn(a) · · ·α(k−1)n(a)) is
positive for all n in a set of positive density.

From the von Neumann algebra perspective, it is natural to ask to what
remains of these results when the abelian hypothesis is dropped. All three
claims hold for k = 2, and we show that all three claims hold for all k when
the von Neumann algebra is asymptotically abelian, and that the last two
claims hold for k = 3 when the von Neumann algebra is ergodic. However,
we show that the first claim can fail for k=3 even with ergodicity, the second
claim can fail for k ≥ 4 even when assuming ergodicity, and the third claim
can fail for k = 3 without ergodicity, or k ≥ 5 and odd assuming ergodicity.
The second claim remains open for nonergodic systems with k = 3, and the
third claim remains open for ergodic systems with k = 4.
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1. Introduction

1a. Multiple recurrence. Let (X,X, µ) be a probability space, and let T : X→ X
be a measure-preserving invertible transformation on X (that is, T and T−1 are
both measurable, and µ(T (A)) = µ(A) for all measurable A). From the mean
ergodic theorem we know that for any f ∈ L∞(X), the averages N−1∑N

n=1 f ◦T−n

converge in (say) L2(X) norm,1 which implies in particular that the averages
N−1∑N

n=1
∫

X f1( f2 ◦ T−n) dµ converge for all f1, f2 ∈ L∞(X). Furthermore,
if f1 = f2 = f is nonnegative with positive mean

∫
X f dµ > 0, then the Poincaré

recurrence theorem implies that this latter limit is strictly positive. In particular,
this implies that the mean

∫
X f ( f ◦ T−n) dµ is positive for all natural numbers

n in a set E ⊂ N of positive (lower) density (that is, the set E is a set such that
lim infN→∞ N−1#{1≤ n ≤ N : n ∈ E}> 0).

Thanks to a long effort starting with Furstenberg’s ground breaking new proof
[1977] of Szemerédi’s theorem on arithmetic progressions [1975], it is now known
that all of these single recurrence results extend to multiple recurrence:

Theorem 1.1 (abelian multiple recurrence). Let (X,X, µ) be a probability space,
let k ≥ 2 be an integer, and let T : X → X be a measure-preserving invertible
transformation.

• (Convergence in norm.) For any f1, . . . , fk−1 ∈ L∞(X), the averages

1
N

N∑
n=1

( f1 ◦ T−n) · · · ( fk−1 ◦ T−(k−1)n)

converge in L2(X) norm as N →∞.

• (Weak convergence.) For any f0, f1, . . . , fk−1 ∈ L∞(X), the averages

1
N

N∑
n=1

∫
X

f0( f1 ◦ T−n) · · · ( fk−1 ◦ T−(k−1)n) dµ

converge as N →∞.

• (Recurrence on average.) For any nonnegative f ∈ L∞(X) with
∫

X f dµ> 0,
one has

(1) lim inf
N→∞

1
N

N∑
n=1

∫
X

f ( f ◦ T−n) · · · ( f ◦ T−(k−1)n) dµ > 0.

1The minus sign here is not of particular significance (other than to conform to some minor
notational conventions) and can be ignored in the sequel if desired.
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• (Recurrence on a dense set.) For any nonnegative f ∈ L∞(X) such that∫
X f dµ > 0, one has

(2)
∫

X
f ( f ◦ T−n) · · · ( f ◦ T−(k−1)n) dµ > c > 0

for some c > 0 and all n in a set of natural numbers of positive lower density.

We have called this result the “abelian” multiple recurrence theorem in order to
emphasise the abelian nature of the algebra L∞(X).

Remarks 1.2. Clearly, convergence in norm implies weak convergence; also, be-
cause the averages (2) are bounded and nonnegative, recurrence on average implies
recurrence on a dense set. Using the weak convergence result, the limit inferior in
(1) can be replaced with a limit, but we have retained the limit inferior in order to
keep the two claims logically independent of each other.

As mentioned earlier, the k = 2 cases of Theorem 1.1 follow from classi-
cal ergodic theorems. Furstenberg [1977] established recurrence on average (and
hence recurrence on a dense set) for all k, and observed that this result was equiv-
alent (by what is now known as the Furstenberg correspondence principle) to
Szemerédi’s famous theorem [1975] on arithmetic progressions, thus providing an
important new proof of that theorem. Convergence in norm (and hence in mean)
was established for k = 3 by Furstenberg [1977], for k = 4 by Conze and Lesigne
[1984; 1988a; 1988b] assuming total ergodicity and by Host and Kra [2001] in
general, for k = 5 in some cases by Ziegler [2005], and for all k by Host and Kra
[2005] and subsequently also by Ziegler [2007]. See [Kra 2006] for a survey of
these results, and their relation to other topics such as dynamics of nilsequences,
and arithmetic progressions in number-theoretic sets such as the primes.

There is also a multidimensional generalisation of the results above to multiple
commuting shifts:

Theorem 1.3 (abelian multidimensional multiple recurrence). Let (X,X, µ) be a
probability space, let k ≥ 2 be an integer, and let T0, . . . , Tk−1 : X → X be a
commuting system of measure-preserving invertible transformations.

• (Convergence in norm.) For any f1, . . . , fk−1 ∈ L∞(X), the averages

1
N

N∑
n=1

T n
0 (( f1 ◦ T−n

1 ) · · · ( fk−1 ◦ T−n
k−1))

converge in L2(X) norm.
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• (Weak convergence.) For any f0, f1, . . . , fk−1 ∈ L∞(X), the averages

1
N

N∑
n=1

∫
X
( f0 ◦ T−n

0 )( f1 ◦ T−n
1 ) · · · ( fk−1 ◦ T−n

k−1) dµ

converge.

• (Recurrence on average.) For any nonnegative f ∈ L∞(X) with
∫

X f dµ> 0,
one has

(3) lim inf
N→∞

1
N

N∑
n=1

∫
X
( f ◦ T−n

0 )( f ◦ T−n
1 ) · · · ( f ◦ T−n

k−1) dµ > 0.

• (Recurrence on a dense set.) For any nonnegative f ∈ L∞(X) such that∫
X f dµ > 0, one has

(4)
∫

X
( f ◦ T−n

0 )( f ◦ T−n
1 ) · · · ( f ◦ T−n

k−1) dµ > c > 0

for some c > 0 and all n in a set of natural numbers of positive lower density.

Of course, Theorem 1.1 is the special case of Theorem 1.3 when Ti := T i . It
is often customary to normalise T0 to be the identity transformation (by replacing
each of the Ti with T−1

0 Ti ).

Remarks 1.4. The k = 2 case is again classical. Recurrence on average (and
hence on a dense set) in this theorem was established for all k by Furstenberg and
Katznelson [1978], which by the Furstenberg correspondence principle implies a
multidimensional version of Szemerédi’s theorem, a combinatorial proof of which
in full generality has only been obtained relatively recently in [Nagle et al. 2006]
and [Gowers 2006]. Convergence in norm (and weak convergence) was estab-
lished for k = 3 in [Conze and Lesigne 1984], for some special cases of k = 4 in
[Zhang 1996], for all k assuming total ergodicity in [Frantzikinakis and Kra 2005],
and for all k unconditionally in [Tao 2008], with subsequent proofs in [Towsner
2007; Austin 2010; Host 2009]. The results can fail if the shifts T0, . . . , Tk−1 do
not commute [Bergelson and Leibman 2004]. Note that noncommutativity of the
shifts should not be confused with the noncommutativity of the underlying algebra,
which is the focus of this paper.

1b. Noncommutative analogues. From the perspective of the theory of von Neu-
mann algebras, the space L∞(X) appearing in these theorems can be interpreted as
an abelian von Neumann algebra, with a finite trace τ( f ) :=

∫
X f dµ and with an

automorphism T : L∞(X)→ L∞(X) defined by T f := f ◦ T−1. It is then natural
to ask whether the results can be extended to nonabelian settings. More precisely,
we recall the following definitions.
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Definition 1.5 (noncommutative systems). A finite von Neumann algebra is a pair
(M, τ ), where M is a von Neumann algebra (that is, an algebra of bounded oper-
ators on a separable2 complex Hilbert space that contains the identity 1, is closed
under adjoints, and is closed in the weak operator topology), and τ : M→ C is a
finite faithful trace (that is, a linear map with τ(a∗) = τ(a), τ(ab) = τ(ba), and
τ(a∗a) ≥ 0 for all a, b ∈M, with τ(a∗a) = 0 if and only if a = 0 and τ(1) = 1).
The operator norm of an element a ∈ M is denoted ‖a‖. We say that an element
a ∈ M is nonnegative if one has a = b∗b for some b ∈ M. An element a ∈ M is
central if one has ab= ba for all b ∈M. The set of all central elements is denoted
Z(M) and referred to as the centre of M; the algebra M is abelian if Z(M)=M.

A shift α on a finite von Neumann algebra (M, τ ) is trace-preserving ∗-auto-
morphism, that is, α is an algebra isomorphism such that α(a∗) = α(a)∗ and
τ(α(a))= τ(a) for all a∈M. We say that the shift is ergodic if the invariant algebra
{a ∈M :α(a)=a} consists only of the constants C1. We refer to the triple (M, τ, α)
as a von Neumann Z-system, or a von Neumann dynamical system. More generally,
if α0, . . . , αk−1 are k commuting shifts on M , we refer to (M, τ, α0, . . . , αk−1) as
a von Neumann Zk-system.

It is easy to verify that if (X,X, µ) is a (classical) probability space with a
shift T : X → X , then (L∞(X),

∫
X · dµ, ◦T

−1) is an (abelian example of a) von
Neumann dynamical system, and more generally if T0, . . . , Tk−1 : X → X are
commuting shifts, then (L∞(X),

∫
X · dµ, ◦T

−1
0 , . . . , ◦T−1

k−1) is an abelian example
of a von Neumann Zk-system. In fact, all abelian von Neumann dynamical systems
arise (up to isomorphism of the algebras) as such examples; see [Kadison and
Ringrose 1997, Chapter 5].

A finite von Neumann algebra (M, τ ) gives rise to an inner product 〈a, b〉 :=
τ(a∗b) on M; the properties of the trace ensure that this inner product is positive
definite. (We use the convention for a scalar product to be conjugate linear in
the first coordinate.) The Hilbert space completion of M with respect to this inner
product will be referred to as L2(τ ). Note that α extends to a unitary transformation
on L2(τ ). In the abelian case when M = L∞(X,X, µ), the space L2(τ ) can be
canonically identified with L2(X,X, µ).

Inspired by Theorems 1.1 and 1.3, we now make the following definitions:

Definition 1.6 (noncommutative recurrence and convergence). Let k ≥ 2 be an
integer, (M, τ, α) be a von Neumann dynamical system, and (M, τ, α0, . . . , αk−1)

be a von Neumann Zk-system.

2In our applications, the hypothesis of separability can be omitted since one can always pass to
the separable subalgebra generated by a finite collection a0, . . . , ak−1 of elements and their shifts if
desired.
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• We say (M, τ, α) enjoys order k convergence in norm if for any a1, . . . , ak−1

in M, the averages

1
N

N∑
n=1

(αn(a1))(α
2n(a2)) · · · (α

(k−1)n(ak−1))

converge in L2(τ ) as N →∞.

• We say (M, τ, α) enjoys order k weak convergence if for any a0, a1, . . . , ak−1

in M, the averages

1
N

N∑
n=1

τ(a0(α
n(a1))(α

2n(a2)) · · · (α
(k−1)n(ak−1)))

converge as N →∞.

• We say (M, τ, α) enjoys order k recurrence on average if for any nonnegative
a ∈M with τ(a) > 0, one has

(5) lim inf
N→∞

1
N

N∑
n=1

Re τ(a(αn(a))(α2n(a)) · · · (α(k−1)n(a))) > 0.

• We say that (M, τ, α) enjoys order k recurrence on a dense set if for any
nonnegative a ∈M with τ(a) > 0, one has

(6) Re τ(a(αn(a))(α2n(a)) · · · (α(k−1)n(a))) > c > 0

for some c> 0 and all n in a set of natural numbers of positive lower density.

• We say (M, τ, α0, . . . , αk−1) converges in norm if for any a1, . . . , ak−1 ∈M,
the averages

1
N

N∑
n=1

α−n
0 ((αn

1 (a1))(α
n
2 (a2)) · · · (α

n
k−1(ak−1)))

converge in L2(τ ) as N →∞.

• We say (M, τ, α0, . . . , αk−1) converges weakly if for any a0, a1, . . . , ak−1∈M,
the averages

1
N

N∑
n=1

τ((αn
0 (a0))(α

n
1 (a1))(α

n
2 (a2)) · · · (α

n
k−1(ak−1)))

converge as N →∞.
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• We say that (M, τ, α0, . . . , αk−1) enjoys recurrence on average if for any non-
negative a ∈M with τ(a) > 0, one has

(7) lim inf
N→∞

1
N

N∑
n=1

Re τ((αn
0 (a))(α

n
1 (a)) · · · (α

n
k−1(a))) > 0.

• We say that (M, τ, α) enjoys order k recurrence on a dense set if for any
nonnegative a ∈M with τ(a) > 0, one has

(8) Re τ((αn
0 (a))(α

n
1 (a)) · · · (α

n
k−1(a))) > c > 0.

for some c> 0 and all n in a set of natural numbers of positive lower density.

Remark 1.7. As before, we may normalise α0 to be the identity. Of course, the
first four properties here are nothing more than the specialisations of the last four
to the case αi = α

i for 0≤ i ≤ k−1. The real part is needed in (5), (6), (7) and (8)
because there is no necessity for the traces here to be real-valued (the difficulty
being that the product of two nonnegative elements of a nonabelian von Neumann
algebra need not remain nonnegative). In the case of (5), one can omit the real part
by taking averages from −N to N , since one has the symmetry

τ(a(αn(a))(α2n(a)) · · · (α(k−1)n(a)))= τ((a(αn(a))(α2n(a)) · · · (α(k−1)n(a)))∗)

= τ((α(k−1)n(a)) · · · (α2n(a))(αn(a))a)

= τ(a(α−n(a)) · · · (α−(k−1)n(a)))

for any self-adjoint a.
Note however that it is quite possible for the expressions (6) or (8) to be negative

even when a is nonnegative. Because of this, while recurrence on average still
implies recurrence on a dense set, the converse is not true; one can have recurrence
on a dense set but end up with a zero or even negative average due to the presence
of large negative values of (6) or (8). We will see examples of this later.

Remark 1.8. As we said earlier, the Furstenberg correspondence principle equates
recurrence results with combinatorial statements (such as Szemerédi’s theorem)
that can be formulated in a purely finitary fashion. However, we do not know
whether the same is true for noncommutative recurrence results. Formulating a
finitary statement that would imply recurrence results for some nonabelian von
Neumann dynamical system probably requires some quite strong approximate em-
beddability of the system into finite-dimensional matrix algebras with approximate
shifts, together with a recurrence assertion for such finite-dimensional systems in
which the various parameters may all be chosen independent of the dimension.
Since many of the results we prove below in the infinitary setting are negative
anyway, we will not pursue this issue here.
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These properties (and related topics) for von Neumann dynamical systems have
been studied by Niculescu, Ströh and Zsidó [2003], Duvenhage [2009], Beyers,
Duvenhage and Ströh [2010], and Fidaleo [2009]. A variant of these questions, in
which one averages over a higher-dimensional range of shifts, was also studied in
[Fidaleo 2007]. In this paper we shall develop further positive and negative results
regarding these properties, which we now present.

1c. Positive results. When k = 2, all systems enjoy norm and weak convergence,
as well as recurrence on average and on a dense set, thanks to the ergodic theorem
for von Neumann algebras; see for example [Krengel 1985, Section 9.1]. Indeed,
from that theorem, we know that for any von Neumann dynamical system (M, τ, α)

and a ∈ M, the averages N−1∑N
n=1 α

n(a) converge in L2(τ ) to the orthogonal
projection of a to the invariant space L2(τ )α := { f ∈ L2(τ ) : α( f ) = f }, giving
the convergence results. If a is nonnegative and nonzero, this projection can be
verified to have a positive inner product with a, giving the recurrence results.

Now we consider the cases k ≥ 3. We have already seen from Theorems 1.1
and 1.3 that we have convergence and recurrence in those abelian systems arising
from ergodic theory, and have recalled above that in fact these include all examples
(up to isomorphism).

Proposition 1.9. Let k ≥ 2. If (M, τ, α) is an abelian von Neumann dynamical
system, then (M, τ, α) enjoys weak convergence and convergence in norm, and
recurrence on average and on a dense set.

More generally, an abelian von Neumann Zk-system (M, τ, α0, . . . , αk−1) enjoys
weak convergence and convergence in norm, and recurrence on average and on a
dense set.

We now generalise these results to the wider class of asymptotically abelian
systems.

Definition 1.10 (asymptotic abelianness). A von Neumann dynamical system
(M, τ, α) is asymptotically abelian if

lim
N→∞

1
N

N∑
n=1

‖[αn(a), b]‖L2(τ ) = 0 for all a, b ∈M,

where [a, b] := ab− ba is the commutator.

Remark 1.11. In previous literature such as [Beyers et al. 2010], a stronger version
of asymptotic abelianness is assumed, in which the L2(τ ) norm is replaced by the
operator norm. Variants of this type of “topological asymptotic abelianness”, and
their relationship with noncommutative topological weak mixing have also been
considered in [Kerr and Li 2007].
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Our work also singles out this case as special, since the assumption of asymptotic
abelianness seems to be essential for the correct working of some the chief technical
tools taken from the commutative setting (particularly the van der Corput estimate).
In [Niculescu et al. 2003; Beyers et al. 2010; Duvenhage 2009], convergence and
recurrence were shown for all orders k for asymptotically abelian systems under
some additional assumptions such as weak mixing or compactness. Our first main
result shows that in fact all asymptotically abelian systems enjoy convergence and
recurrence.

Theorem 1.12. Let k ≥ 2. If (M, τ, α) is an asymptotically abelian von Neumann
dynamical system, then (M, τ, α) enjoys weak convergence and convergence in
norm, and recurrence on average and on a dense set.

More generally, if (M, τ, α0, . . . , αk−1) is a von Neumann Zk-system, and the
αiα
−1
j for i 6= j are each individually asymptotically abelian, then this Zk-system

enjoys weak convergence and convergence in norm, and recurrence on average
and on a dense set.

Theorem 1.12 can be deduced from the genuinely abelian case (Proposition 1.9)
by using two results. The first one is essentially from [Beyers et al. 2010] or
[Duvenhage 2009], which considered the model case αi = αi ; for the sake of
completeness, we present a proof in Appendix A.

Theorem 1.13 (multiple ergodic averages for relatively weakly mixing extensions).
Let (M, τ, α0, . . . , αk−1) be a von Neumann Zk-system, and let N be a von Neu-
mann subalgebra of M that is invariant under all of the αi . If for any distinct
0≤ i, j ≤ k−1 the shift αiα

−1
j is asymptotically abelian and weakly mixing relative

to N, then the associated multiple ergodic averages satisfy∥∥∥ 1
N

N∑
n=1

α−n
0

k−1∏
i=1

αn
i (ai )−

1
N

N∑
n=1

α−n
0

k−1∏
i=1

αn
i (EN(ai ))

∥∥∥
L2(τ )
→ 0

as N →∞, where EN :M→N is the conditional expectation constructed from τ ,
and the products are from left to right.

We will recall the notions of relative weak mixing and conditional expectation
in Section 3.

The second result, which is new and may have other applications elsewhere,
can be viewed as a partial analogue for asymptotically abelian systems of the
Furstenberg–Zimmer structure theorem [Furstenberg et al. 1982].

Theorem 1.14 (structure theorem for asymptotically abelian systems). If (M, τ, α)
is an asymptotically abelian von Neumann dynamical system, then α is weakly
mixing relative to the centre Z(M)⊂M.
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Remark 1.15. In the case when M is a factor (that is, when the centre is trivial),
results of this nature (with a slightly different notion of mixing and of asymptotic
abelianness) were established in [Bratteli and Robinson 1987, Example 4.3.24].

These results quickly imply Theorem 1.12. Indeed, when studying (for instance)
convergence in norm for a Zk-system, one can use Theorem 1.14 followed by
Theorem 1.13 to replace each of the a0, . . . , ak−1 by their conditional expectations
EZ(M)(a0), . . . , EZ(M)(ak−1) without any affect on the convergence, at which point
one can apply Proposition 1.9. (Note that the centre Z(M) does not depend on what
shift α−1

i α j one is analysing.) The other claims are similar (using Lemma 3.1
to ensure that if a is nonnegative with positive trace, then so is the conditional
expectation EZ(M)(a)).

Remark 1.16. The arguments above in fact show a more quantitative statement:
if a is nonnegative with ‖a‖ ≤ 1 and τ(a) ≥ δ for some 0 ≤ δ ≤ 1, then one has
the same lower bound c(k, δ) ≥ 0 for (6) as is given by Szemerédi’s theorem for
(1) for nonnegative functions f with ‖ f ‖L∞(X) ≤ 1 and

∫
X f dµ≥ δ; in particular,

one could insert the bound of Gowers [2001]. Similar remarks apply to multiple
commuting shifts. We leave the details to the reader.

The proof of Theorem 1.14, given in Section 3 below, rests on noncommutative
versions of several of the steps on the way to the Furstenberg–Zimmer structure
theorem in the commutative world of ergodic theory [Furstenberg 1977; Zimmer
1976b; 1976a]. In particular, it rests on a version of the dichotomy between
relatively weakly mixing inclusions and those containing a relatively isometric
subinclusion, well known in ergodic theory from the cited work of Furstenberg and
Zimmer and already generalised to the noncommutative world by Popa [2007], for
applications to the study of superrigidity phenomena.

If (M, τ, α) is not asymptotically abelian, matters are rather more complicated,
with positive results only obtaining under additional restrictions. For k = 3 and for
ergodic shifts, we have a positive result, established in Section 5:

Theorem 1.17. If k = 3 and (M, τ, α) is an ergodic von Neumann dynamical sys-
tem, one has weak convergence and convergence in norm, as well as recurrence on
a dense set.

The weak convergence result was previously established in [Fidaleo 2009].

1d. Negative results. Recurrence on average cannot be included in Theorem 1.17.

Theorem 1.18. Let k = 3. Then there exists an ergodic von Neumann dynamical
system (M, τ, α) for which recurrence on average fails. (In fact one can make the
average (5) strictly negative.)
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We establish this in Section 2b. The main tool is a sophisticated version of the
Behrend set construction, combined with the crossed product construction.

Without the ergodicity assumption,3 one also loses recurrence on a dense set:

Theorem 1.19. Let k=3. There exists a von Neumann dynamical system (M, τ, α)
for which recurrence on a dense set fails. (In fact one can make the means (6) equal
to a negative constant for all nonzero n.)

This result, also proved in Section 2b, is simpler to prove than Theorem 1.18,
and uses the original Behrend set construction and crossed product constructions.

One loses recurrence on a dense set for larger k even when ergodicity is assumed:

Theorem 1.20. Let k ≥ 5 be odd. There exists an ergodic von Neumann dynamical
system (M, τ, α) for which recurrence on a dense set fails. (In fact one can make
the means (6) equal to a negative constant for all nonzero n.)

We establish this in Section 2c. This result uses a counterexample of Bergelson,
Host, Kra, and Ruzsa [Bergelson et al. 2005] combined with a group theoretic con-
struction. The restriction to odd k is mostly technical and can almost certainly be
removed; however, we are unable to decide whether Theorem 1.20 can be extended
to the k = 4 case because it was shown in [Bergelson et al. 2005] that the k = 5
counterexample in that paper cannot be replicated for k = 4.

For convergence, we have counterexamples for k ≥ 4 even when we assume
ergodicity:

Theorem 1.21. Let k ≥ 4. There exists an ergodic von Neumann dynamical system
(M, τ, α) for which weak convergence and convergence in norm fail.

We establish this in Section 2a. The main tool is a group theoretic construction.
The counterexamples above were for the single shift case, but of course they are

also counterexamples to the more general situation of multiple commuting shifts.
Table 1 summarises the positive and negative results (in the single shift case).

We note in particular that the following questions remain open:

Question 1.22. If k = 3, does weak or norm convergence hold for nonergodic von
Neumann dynamical systems (M, τ, α)?

Question 1.23. If k = 3, does weak or norm convergence hold for von Neu-
mann Z3-systems (M, τ, α0, α1, α2), (possibly after imposing suitable ergodicity
hypotheses)?

Question 1.24. If k = 4 (or if k ≥ 6 is even), does recurrence on a dense set hold
for ergodic von Neumann dynamical systems (M, τ, α)?

3In the commutative case, an easy application of the ergodic decomposition allows one to recover
the nonergodic case of the recurrence and convergence results from the ergodic case. Unfortunately,
in the noncommutative case, the ergodic decomposition is only available when the invariant factor
Mτ is central, which is the case in the asymptotically abelian case, but not in general.
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Conv. norm? Conv. mean? Recur. avg.? Recur. dense?
k = 2 Yes Yes Yes Yes
k = 3, erg. Yes Yes No Yes
k = 3, nonerg. ??? ??? No No
k ≥ 4, even, erg. No No No? ???
k ≥ 4, even, nonerg. No No No? No?
k ≥ 5, odd, erg. No No No No
k ≥ 5, odd, nonerg. No No No No

Table 1. Positive and negative results for noncommutative con-
vergence and recurrence of a single shift for various values of k,
and for various assumptions of ergodicity. The entries marked
“No?” would be expected to have a negative answer if one adopts
the principle that recurrence results which fail for one value of k,
should also fail for higher values of k.

We present some remarks on the first two problems in Section 6.

Notational remark. Unfortunately this paper stands between two quite unrelated
uses of the word “factor”, one from operator algebras and one from ergodic theory.
In the hope that it may be of interest to operator algebraists, we have deferred to
their usage (even though the true notion of a factor due to Murray and von Neumann
is actually not essential to our work), and will refer throughout to inclusions of von
Neumann algebras, even in the commutative setting where these can be identified
with ergodic-theoretic “factors”.

2. Counterexamples

In this section we construct various counterexamples of von Neumann systems
(M, τ, α) that will demonstrate the negative results in Theorems 1.18-1.21. The
material in this section is independent of the positive results in the rest of the
paper, but may provide some cautionary intuition to keep in mind when reading
the proofs of those results.

2a. Nonconvergence for k ≥ 4. We first show that convergence results fail for
k ≥ 4, even if one assumes ergodicity. In fact the divergence is so bad that it is
essentially arbitrary:

Theorem 2.1 (no convergence for k ≥ 4). Let k ≥ 4 be an integer, and let A ⊂ Z

be a set. Then there exist an ergodic von Neumann system (M, τ, α) and elements
a0, . . . , ak−1 ∈M such that

τ(a0α
n(a1) · · ·α

(k−1)n(ak−1))= 1A(n) for all integers n.
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It is clear that this implies Theorem 1.21 by choosing A appropriately (and
noting that failure of weak convergence implies failure of convergence in norm, by
Cauchy–Schwarz applied in the contrapositive).

Proof. It will suffice to verify the k = 4 case, as the higher cases follow by setting
a j = 1 for j ≥ 4. We will need a group G with four distinguished elements
e0, e1, e2, e3 and an automorphism T : G → G such that T k has no fixed points
other than the identity for all k 6= 0 and such that

e0(T r e1)(T 2r e2)(T 3r e3)= id

holds for all r ∈ A and fails for all r ∈Z\A. Constructing such a group is somewhat
nontrivial and is deferred to Appendix B, and in particular to Proposition B.11.

The group algebra CG of formal finite linear combinations of group elements
of G acts (on the left) on the Hilbert space `2(G) in the obvious way (arising from
convolution on G) and can thus be viewed as a subspace of the von Neumann alge-
bra B(`2(G)); note that all the elements of G become unitary in this perspective.
We can place a finite faithful trace τ on CG by declaring the identity element to
have trace 1, and all other elements of G to have trace zero. If we then define M

to be the closure of CG in the weak operator topology of B(`2(G)), we obtain a
finite von Neumann algebra, known as the group von Neumann algebra LG of G.
The shift T leads to an algebra isomorphism α of CG, which then easily extends
to a shift α on M = LG. Because none of the powers of T have any nontrivial
fixed points, the orbit of any nonzero group element contains no repetitions, and
so one can easily establish that αn f converges weakly to τ( f ) as n→∞ for every
f ∈CG and hence by approximation that the unitary operator on `2(G) associated
to α has no fixed points outside Cδid. This implies that (M, τ, α) is ergodic, since
given a ∈ M for which α(a) = a and τ(a) = 0 it follows that a(δid) ∈ `

2(G) is a
fixed point for the action of T on `2(G), which must therefore equal τ(a)δid = 0,
and hence τ(a∗a) = ‖a(δid)‖

2
2 = 0 and so a = 0, by the faithfulness of τ . If we

now set a j = e j for j = 0, 1, 2, 3, we obtain the claim. �

Remark 2.2. An inspection of the proofs of Theorem 2.1 and Proposition B.11
shows that the expression a0α

n(a1)α
2n(a2)α

3n(a3) can more generally be replaced
by αc0n(a0)α

c1n(a1)α
c2n(a2)α

c3n(a3) whenever c0, c1, c2, c3 are integers such that
ci 6= ci+1 for all i = 0, 1, 2, 3 (with the cyclic convention ci+4 = ci ). Thus for
instance one can construct von Neumann systems for which

τ(a0(α
n(a1))a2α

n(a3))= 1A(n)

for an arbitrary set A. We omit the details.

Remark 2.3. The examples of nonconvergence given above are not self-adjoint
or positive, and the ai are not equal to each other. However, it is not hard to
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modify the examples to give an example of a positive ai = a for which the averages
N−1∑N

n=1 τ(aα
n(a)α2n(a)α3n(a)) do not converge. Indeed, one can repeat the

above construction with

a := id+ 1
100

3∑
i=0

(ei + e∗i );

this is easily seen to be positive and self-adjoint, and a modification of the above
computations then shows that

τ(aαn(a)α2n(a)α3n(a))= 1+ 2
1004 1A(n) for all n,

which is enough to ensure divergence by choosing A appropriately. We leave the
details to the reader.

Remark 2.4. The group G constructed here can easily be shown to have infinite
conjugacy classes (by the same methods used to prove Proposition B.11). This
implies that the group algebra LG is a factor. See [Kadison and Ringrose 1997,
Theorem 6.7.5] for details.

2b. Negative averages for k = 3. We now show the negativity of various triple
averages. The main tool is the following Behrend-type construction of a set that
avoids progressions of length three, but contains many “hexagons”:

Lemma 2.5 (Behrend-type example). Let ε > 0. Then for all sufficiently large d ,
there exists a subset F of Z/dZ such that |F | ≥ d1−ε, but F contains no nontrivial
arithmetic progressions of length three; thus n, n+ r, n+ 2r ∈ F can only occur if
r = 0. On the other hand, the set

{(x, h, k) ∈ Z/dZ : x, x + h, x + k, x + k+ 2h, x + 2k+ h, x + 2k+ 2h ∈ F}

of “hexagons” in F has cardinality at least d3−ε.

The first part of the lemma already follows directly from [Behrend 1946] or
the earlier [Salem and Spencer 1942]. The claim about hexagons will be needed
in the proof of Theorem 2.11 below, but is not needed for the simpler results in
Corollary 2.7 or Theorem 2.10.

Proof. Let R be a large multiple of 400 (depending on ε). We claim that for n a
large enough multiple of 4 (depending on R), the set {−R, . . . , R}n ⊂ Zn contains
a subset E of cardinality |E | ≥ e−O(n)Rn (where the implied constant in the O
notation is absolute), and which contains ≥ e−O(n)R3n hexagons

{x, x + h, x + k, x + k+ 2h, x + 2k+ h, x + 2k+ 2h}

but contains no arithmetic progressions of length three. Choosing d sufficiently
large, letting n be the largest integer such that (10R)n ≤ d , and then embedding
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x x+h

x+k

x+2k+h x+2h+2k

x+2h+k

Figure 1. A hexagon. Note the absence of arithmetic progressions
of length three.

{−R, . . . , R}n in Z/dZ using base 10R (say), as in the work of Behrend or Salem
and Spencer, this claim will imply the lemma (after choosing R sufficiently large
depending on ε).

The claim itself remains. From the classical results on the Waring problem (see
for example [Vaughan 1997]), we know that every large integer N has ∼ N (k−2)/2

representations as the sum of k squares for k large enough (one can for instance
take k = 5, but for our purposes any fixed k will suffice). Using this, we see that
for any fixed δ ∈ (0, 1

10), every integer r such that δR2n ≤ r ≤ 1
10 R2n (say) will

have ≥ (cδR)n−Cδ representations as the sum of n squares of integers less than R,
where cδ,Cδ > 0 depend only on δ. In other words, the sphere

Er := {x ∈ {−R, . . . , R}n : |x |2 = r}

has cardinality at least (cδR)n−Cδ . On the other hand, such spheres have no non-
trivial progressions of length three. Thus it will suffice (for n large enough) by the
pigeonhole principle to show that there are at least e−O(n)R3n hexagons

{x, x + h, x + k, x + k+ 2h, x + 2k+ h, x + 2k+ 2h} in {−R, . . . , R}n

such that

(9) |x |2=|x+h|2=|x+k|2=|x+k+2h|2=|x+2k+h|2=|x+2k+2h|2≤ 1
10 R2n

(note that the case when |x |2 ≤ δR2n for sufficiently small δ can be eliminated by
crude estimates).

To count the solutions to (9), we perform some elementary changes of variable
to replace the constraints in (9) with simpler constraints. We begin by observing
that if a, b, c ∈ {−R/100, . . . , R/100}n are such that

(10) a · b = b · c = c · a = 0 and c · c = 3b · b,



16 TIM AUSTIN, TANJA EISNER AND TERENCE TAO

then x := a − 2b, h := b+ c, k := b− c can be verified to be a solution to (9),
with the map (a, b, c)→ (x, h, k) being injective, so it suffices to show that there
are at least e−O(n)R3n triples (a, b, c) with the properties above.

For reasons that will become clearer later, we will initially work in dimension
n/4 rather than n. Using the Waring problem results as before, we can find at least
e−O(n)R3n/4 triples a, b, c ∈ {−R/400, . . . , R/400}n/4 such that

c · c = 3b · b.

This is one of the four constraints required for (10). To obtain the remaining ones,
we use a pigeonholing trick followed by a tensor power trick. First, observe that if
a, b, c∈{−R/400, . . . , R/400}n/4, then a·b, b·c, c·a are of order O(R2n)≤ eO(n).
Applying the pigeonhole principle, one can thus find h1, h2, h3=O(R2n) such that
there are e−O(n)R3n/4 triples

(11) a, b, c ∈ {−R/400, . . . , R/400}n/4

with

(12) a · b = h1, b · c = h2, c · a = h3, c · c = 3b · b.

This is an inhomogeneous version of (10) (at dimension n/4 rather than n), with
the zero coefficients replaced by more general coefficients h1, h2, h3. To eliminate
these coefficients we use a tensor power trick. Let S be the set of all triples (a, b, c)
obeying (11) and (12). We then observe that if (ai , bi , ci ) ∈ S for i = 1, 2, 3, 4,
then the vectors a, b, c ∈ Zn defined by

a := (a1, a2, a3, a4); b := (b1, b2,−b3,−b4); c := (c1,−c2, c3,−c4)

solve (10). The map from the (ai , bi , ci ) to (a, b, c) is an injection from S4 to the
solution set of (10), and so we obtain at least |S|4 ≥ e−O(n)R3n solutions to (10) as
required. �

This leads to a useful matrix counterexample:

Lemma 2.6 (restricted third moment can be negative). There exists a positive semi-
definite Hermitian matrix (A( j, k))1≤ j,k≤d for which the quantity

(13)
∑

n,r∈Z/dZ

A(n, n+ r)A(n+ r, n+ 2r)A(n+ 2r, n)

is negative, where we extend A(i, j) periodically in both variables by d.

Proof. We will take d to be a multiple of 3, and A( j, k) to take the form

A( j, k) := 1E( j)1E(k)+ 1E( j)ω− j 1E(k)ωk,
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where E ⊂ Z/dZ is a set to be determined later and ω := e2π i/3 is a cube root of
unity. The matrix (A( j, k))1≤ j,k≤d is then the sum of two rank one projections and
is thus positive semidefinite and Hermitian. The expression (13) can be expanded
as ∑

n,r∈Z/dZ:
n,n+r,n+2r∈E

(1+ωr )(1+ωr )(1+ω−2r ).

The summand can be computed to equal 8 when r is divisible by 3, and −1 other-
wise. Thus, to establish the claim, it suffices to find a set E such that the set

{(n, r) ∈ Z/dZ : n, n+ r, n+ 2r ∈ E, r 6= 0 mod 3}

is more than eight times larger than the set

{(n, r) ∈ Z/dZ : n, n+ r, n+ 2r ∈ E, r = 0 mod 3};

thus the length three arithmetic progressions in E with spacing not divisible by 3
need to overwhelm the length three progressions with spacing divisible by 3.

To do this, we use Lemma 2.5 to get a subset F ⊂{1, . . . , [d/10]} of cardinality
|F | ≥ d0.99 that contains no arithmetic progressions of length three. We then pick
three random shifts h0, h1, h2 ∈ {1, . . . , d/3} uniformly at random, and consider
the set

E := {3( f + hi )+ i : i = 0, 1, 2, f ∈ F}

consisting of three randomly shifted, dilated copies of F .
By construction, the only length three progressions in E with spacing divisible

by 3 are the trivial progressions n, n, n with r = 0, so the total number of such
progressions is at most d. On the other hand, for any fixed f0, f1, f2 ∈ F , the
numbers 3( fi + hi )+ i for i = 0, 1, 2 have a probability 3/d of forming an arith-
metic progression with spacing not divisible by 3, due to the random nature of
the hi . Thus the expected value of the total number of such progressions is at least
(d0.99)3× 3/d = 3d1.97. For d large enough, this gives the claim. �

This gives a simple example of negative averages for nonergodic systems:

Corollary 2.7 (negative average for nonergodic system). There exists a finite von
Neumann algebra (M, τ ) with a shift α and a nonnegative element a ∈M, such that
(2N + 1)−1∑N

n=−N τ(aα
n(a)α2n(a)) converges to a negative number.

Proof. Let a= (A( j, k))1≤ j,k≤d be as in Lemma 2.6. We let M be the von Neumann
algebra of complex d × d matrices with the normalised trace τ and with the shift

α(B( j, k))1≤ j,k≤d := (e2π i( j−k)/d B( j, k))1≤ j,k≤d .
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This is easily verified to be a shift. We see that

τ(aαn(a)α2n(a))= 1
d

∑
j,k,l∈Z/dZ

e2π in(k+l−2 j)/d A( j, k)A(k, l)A(l, j).

This expression is periodic in n with period d and has average

1
d

∑
l,r∈Z/dZ

A(l, l + r)A(l + r, l + 2r)A(l + 2r, l)

and the claim then follows from Lemma 2.6. �

This shows that recurrence on average for k= 3 can fail for nonergodic systems.
However, this is not yet enough to establish either Theorem 1.18 or Theorem 1.19.
To obtain these stronger results we must introduce the crossed product construction
in von Neumann algebras. For a comprehensive introduction to this concept, see
[Kadison and Ringrose 1997, Chapter 13]. We shall just recall the key properties
of this construction we need here.

Suppose we have a finite von Neumann algebra (M, τ ), and an action U of a
(discrete) group G on M; thus for each g ∈ G we have a shift U (g) :M→M such
that U (g)U (h)=U (gh) for all g, h ∈G, with U (id) being the identity. Then there
exists a crossed product (M oU G, τ ) that contains both the original space (M, τ )
and the group algebra CG as subalgebras. Furthermore, in this crossed product we
have

(14) U (g)a = gag−1

for all a ∈M and g ∈ G, and

τ(ga)= τ(ag)= 0

for all a ∈ M and g ∈ G with g not equal to the identity. Finally, the span of the
elements ag for a ∈M and g ∈ G is dense in M oU G.

Remark 2.8. The exact construction of the crossed product is not relevant for our
applications, but for the convenience of the reader we sketch one such construction
here. We first form the Hilbert space

h := `2(G, L2(τ ))=
⊕
g∈G

L2(τ )

consisting of tuples (xg)g∈G in L2(τ ). This space has an action of M defined by

a(xg)g∈G := ((U (g−1)a)xg)g∈G

for a ∈M, and an action of G (and hence CG) defined by

h(xg)g∈G := (xh−1g)g∈G .
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One can verify that these actions combine to an action of the twisted convolu-
tion algebra `1(G,M) on h, defined as the space of formal sums

∑
h∈G hah with∑

h∈G‖ah‖<∞, and subject to the relations (14). We define a trace on such sums
by the formula τ(

∑
h∈G hah) := τ(aid). One can then show that one can extend

this to a finite trace on the weak operator topology closure of `1(G,M), viewed
as a subset of B(h); this closure can then be denoted M oU G. In other words,
M oU G is constructed as the von Neumann algebra generated by the action of M

and G on h.

Example 2.9. The group von Neumann algebra LG can be viewed as CoG, where
G acts trivially on the one-dimensional von Neumann algebra C.

We can now get a stronger version of Corollary 2.7:

Theorem 2.10 (negative trace for nonergodic system). There exists a von Neu-
mann dynamical system (M, τ, α) and a nonnegative element a ∈ M, such that
τ(aαn(a)α2n(a)) is negative (and independent of n) for all nonzero n. In particu-
lar, Theorem 1.19 holds.

Proof. Let (M′, τ, β) be a von Neumann dynamical system to be chosen later.
Using the crossed product construction, we can build an extension M :=M′oU Z2

of M′ generated by M′ and two commuting unitary elements u and m, such that

(15) mam−1
= β(a)

and uau−1
= a for all a ∈M′. In particular, the element u is central. It is then easy

to see that we can build4 a shift α on M for which

α(a)= a, α(u)= u, α(m)= mu

for all a ∈ M′, since the action of the group Z2 generated by m and u on M′ is
unchanged when one replaces m by mu.

Now let a ∈M be an element of the form

a =
(∑

i∈Z

fi mi
)(∑

i∈Z

fi mi
)∗
,

where fi ∈ M′ and only finitely many of the fi are nonzero. This is clearly non-
negative, and can be simplified by (15) to the power series

a =
∑
h∈Z

ghmh,

4To build α explicitly, we can view M as an algebra of operators on the Hilbert space h :=⊕
( j,k)∈Z2 L2(τ ) as per Remark 2.8, and let α be the conjugation a 7→WaW∗ by the unitary operator

W : h→ h defined by W (x( j,k))( j,k)∈Z2 := (x( j,k− j))( j,k)∈Z2 .
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where the gh ∈M′ are the twisted autocorrelations of the f j , given by

gh =
∑
j∈Z

f j+hβ
h( f ∗j ).

Let n be nonzero. The expression τ(aαn(a)α2n(a)) can be expanded as∑
h1,h2,h3∈Z

τ(gh1mh1 gh2(mun)h2 gh3(mu2n)h3).

The net power of the central element u here is n(h2+ 2h3), and the net power of
m is h1 + h2 + h3. Thus we see that the trace vanishes unless h2 + 2h3 = h1 +

h2+ h3 = 0, or equivalently if (h1, h2, h3)= (h,−2h, h) for some h. Performing
this substitution and using (15), we simplify this expression to

(16)
∑
h∈Z

τ(ghβ
h(g−2h)β

−h(gh)).

In particular, this expression is now manifestly independent of n 6= 0.
We now select M′ to be the commutative von Neumann system L∞(Z/dZ) with

the shift β( f (x)) := f (x + 1) and the normalised trace. Thus the gh and fh are
now complex-valued functions on Z/dZ, and the expression above can be expanded
explicitly as

1
d

∑
x∈Z/dZ

∑
h∈Z

gh(x)g−2h(x + h)gh(x − h).

Meanwhile, the gh(x) by definition can be written as

gh(x)=
∑
j∈Z

f j+h(x) f j (x + h).

We pick a large number N to be chosen later, and set

f j (x) := b(x, x + j)11≤ j≤Nd ,

where b : Z/dZ×Z/dZ→C is a function periodic in two variables of period d to
be chosen later. Then we can compute

gh(x)=
(

1−
|h|
d N

)
+

N A(x, x + h)+ O(1),

where

(17) A(x, y) :=
∑

z∈Z/dZ

b(x, z)b(y, z)
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and O(1) denotes a quantity that can depend on d (and b) but is uniformly bounded
in N . The expression (16) can then be computed to be

C N 4

d

∑
x,h∈Z/dZ

A(x, x + h)A(x + h, x − h)A(x − h, x)+ O(N 3),

where C > 0 is the explicit constant C :=
∫

R
(1 − |h|)2

+
(1 − |2h|)+ dh. By the

substitutions x = m+ r and h = r , we can reexpress this as

(18) C N 4

d

∑
m,r∈Z/dZ

A(m,m+ r)A(m+ r,m+ 2r)A(m+ 2r,m)+ O(N 3).

Now, let d and A( j, k) be as in Lemma 2.6. By the spectral theorem (which
in particular allows one to construct self-adjoint square roots of positive definite
matrices), we can find b(x, y) such that (17) holds. The summand in (18) is then
negative, and the claim follows by choosing N large enough depending on all other
parameters. �

Of course, by Theorem 1.17, one cannot have such a result when the underlying
shift α is ergodic. On the other hand, one can extend Corollary 2.7 to the ergodic
case:

Theorem 2.11. There exists an ergodic von Neumann system (M, τ, α) and a non-
negative element a ∈M, such that (2N+1)−1∑N

n=−N τ(aα
n(a)α2n(a)) converges

to a negative number. In particular, Theorem 1.18 holds.

Proof. Let d be a large odd number, and let u := e2π i/d be a primitive d-th root
of unity. We will let M be a completion of the noncommutative torus. This is
obtained by first forming the C∗-algebra generated by two unitary generators e1

and e2 obeying the commutation relation

e2e1 = ue1e2

and with all of the expressions e j
1ek

2 having zero trace unless j = k = 0, in which
case the trace is 1, and then completing in the weak operator topology resulting
from the Gel’fand–Naimark–Segal representation on L2(τ ). One can represent this
finite von Neumann algebra more explicitly by letting e1 and e2 act on L2((R/Z)2)

by the maps e1 f (x, y) := e2π i x f (x, y) and e2 f (x, y) := e2π iy f (x+1/d, y), with
the trace τ given by τ(a)= 〈�, a�〉L2((R/Z)2), where �≡ 1 is the identity function
on (R/Z)2.

We let θ1, θ2 ∈ S1 be generic unit phases, and then define the shift α on M by
setting

α(e1) := θ1e1 and α(e2) := θ2e2.
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It is easy to see that this is a shift. If θ1 and θ2 are generic (so that θ j
1 θ

k
2 is not a

root of unity for any ( j, k) 6= (0, 0)), this shift is easily verified to be ergodic (as
one can verify the mean ergodic theorem by hand on the generators e j

1ek
2, and then

argue as in the proof of Theorem 2.1 using the faithfulness of τ ).
We set a := gg∗, where g is an element of the form g :=

∑M
k=1

∑
h∈Z cheh

1ek
2,

M is a large number (much larger than d) to be chosen later, and ch are complex
numbers to be chosen later, all but finitely many of which are zero. Clearly a is
nonnegative. A computation shows that

(19) a =
∑

h,k∈Z

ch,keh
1ek

2, where ch,k := M
(

1−
|k|
M

)
+

∑
l∈Z

cl+hclukl .

Since
αn(a)=

∑
h,k∈Z

ch,kθ
hn
1 θ kn

2 eh
1ek

2,

some Fourier analysis and the genericity of θ1 and θ2 show that the expression

1
2N+1

N∑
n=−N

τ(aαn(a)α2n(a))

converges as N →∞ to the expression∑
h,k

ch,kc−2h,−2kch,kτ(eh
1ek

2e−2h
1 e−2k

2 eh
1ek

2).

The trace here simplifies to u3hk . Inserting the expression for ch,k in (19), we can
expand this expression as

(20) M3
∑

h,k,l1,l2,l3∈Z

φ(k/M)cl1+hcl1cl2−2hcl2cl3+hcl3ukl1−2kl2+kl3+3hk,

where φ(x) := (1− |x |)2
+
(1− |2x |)+. By Poisson summation, the expression∑

k

φ(k/M)ukl1−2kl2+kl3+3hk

can be computed to be M
∫

R
φ(x)dx +O(1) if l1−2l2+ l3+3h is divisible by d,

and O(1) otherwise, where O(1) denotes a quantity that can depend on d but is
bounded uniformly in M . If we then assume that the ch vanish for h outside of
{1, . . . ,M} and are bounded uniformly in M , we can thus expand (20) as

C M4
∑

h,l1,l2,l3∈Z:
d |l1−2l2+l3+3h

cl1+hcl1cl2−2hcl2cl3+hcl3 + O(M7)

for some absolute constant C > 0.
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If we now set ch := b(h)1[1,M](h), where b : Z/dZ→ C is a periodic function
with period d and independent of M to be chosen later, we can express this as

Cd M8
∑

h,l1,l2,l3∈Z/dZ:
l1−2l2+l3+3h=0

b(l1+ h)b(l1)b(l2− 2h)b(l2)b(l3+ h)b(l3)+ O(M7)

for some Cd > 0 depending on d but independent of M . Making the substitutions
l1 = x , l2 = x + k+ 2h and l3 = x + 2k+ h, we see that we will be done as soon
as we are able to find d and b for which the expression

X :=
∑

x,h,k∈Z/dZ

b(x)b(x + h)b(x + k)b(x + k+ 2h)b(x + 2k+ h)b(x + 2k+ 2h)

is negative.
To do this, we again appeal to Lemma 2.5 to find a set F ⊂ Z/dZ of size at

least d0.99 (assuming d large enough), which contains no arithmetic progressions
of length three, but contains at least d2.99 hexagons x , x + h, x + k, x + k + 2h,
x + 2k + h, x + 2k + 2h. We then set b(x) := εx 1F (x), where the εx = ±1 are
independent signs; thus X is now the random variable

X =
∑

εxεx+hεx+kεx+2h+kεx+h+2kεx+2h+2k,

where the sum is over {x, h, k : x, x+h, x+k, x+k+2h, x+2k+h, x+2k+2h∈ F}.
We will show (for d large enough) that the standard deviation of X exceeds its
expectation, which shows that there exists a choice of signs for which X is negative.

We first compute the expectation of X . The only summands with nonzero
expectation occur when all the signs cancel, which only occurs when h = 0 or
when k = 0, as can be seen by an inspection of the number of ways to collapse
the hexagon in Figure 1; here we need the hypothesis that d is odd. But since F
contains no nontrivial arithmetic progressions, there are no summands for which
only one of the h, k are zero, so we are left only with the h= k= 0 terms, of which
there are at most d . Thus the expectation of X is at most d.

Now we compute the variance. There are at least d2.99 hexagons in F , and all but
O(d2) of them are nondegenerate in the sense that the six vertices of the hexagon
are all distinct. The summands in X corresponding to nondegenerate hexagons
have variance 1, and the correlation between any two summands in X is either
zero or positive (the latter occurs when two summands are permutations of each
other). Thus the variance of X is � d2.99, so the standard deviation is � d1.495,
and the claim follows. �

2c. Negative trace for k= 5. Now we show negative traces can occur even in the
ergodic case when k = 5.
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Theorem 2.12. There exists an ergodic von Neumann dynamical system (M, τ, α)

and a nonnegative element a ∈M, such that τ(aαn(a)α2n(a)α3n(a)α4n(a)) is neg-
ative for every nonzero n.

This establishes the k = 5 case of Theorem 1.20. A similar argument holds for
all larger odd values of k, which we leave to the interested reader; we restrict here
to the case k = 5 simply for ease of notation.

To prove this theorem, our starting point is the following result of Bergelson,
Host, Kra, and Ruzsa [Bergelson et al. 2005]:

Theorem 2.13. For any δ > 0, there is a measure-preserving system (X,X, µ, S)
and a measurable set A ⊂ X with 0< µ(A) < δ such that

µ(A∩ Sn(A)∩ S2n(A)∩ S3n(A)∩ S4n(A))≤ µ(A)100

(say) and

(21) µ(A∩ Sn(A))= µ(A)2

for every nonzero integer n.

Proof. This follows from [Bergelson et al. 2005, Theorem 1.3] (see also the remark
immediately below that theorem). The property (21) is not explicitly stated in that
theorem, but follows from the construction in [Bergelson et al. 2005, Section 2.3]
(the system X is a torus (R/Z)2 with the skew shift S : (x, y) 7→ (x+α, y+2x+α),
and the set A has the special form A = (R/Z)× B for some set B). �

We apply this theorem for some sufficiently small δ (to be chosen later) to obtain
X, µ, S, A with the properties above. We will combine this with the group G, the
automorphism T , and the elements e0, e1, e2, e3, e4 arising from Proposition B.13
as follows.

First, we create the product space L∞(X G, dµG), whose σ -algebra is generated
up to negligible sets by the tensor products

⊗
g∈G fg, where fg ∈ L∞(X, dµ) is

equal to 1 for all but finitely many g. This product has a unitary, trace-preserving
action U of G, defined by

U (h)
⊗
g∈G

fg :=
⊗
g∈G

fh−1g.

We can therefore create the crossed product M := L∞(X G, dµG) oU G. Note
that if we embed L∞(X, µ) into L∞(X G, dµG) by using the identity component
of X G , we have

(22)
⊗
g∈G

fg =
∏
g∈G

U (g) fg

(note that the U (g) fg necessarily commute with each other).
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We define a shift α on M by requiring that

α
(⊗

g∈G

fg

)
=

⊗
g∈G

S( fT−1g) and α(g)= T g;

one can check that this is indeed a well-defined shift on M.
We claim that α is ergodic. Indeed, if a ∈ M is of the form a = f g for some

f ∈ L∞(X G, dµG) and g ∈G not equal to the identity, then since the powers of T
have no nontrivial fixed points, the orbit T ng escapes to infinity, and the orbit αn(a)
converges weakly to zero. Meanwhile, if g is the identity, then it is classical that
the Bernoulli system G � L∞(X G, dµG) is ergodic, and so the ergodic theorem
applies to a in this case. Putting the two facts together and arguing as for the
ergodicity in Theorem 2.1 yields the ergodicity of α.

Note that 1A lies in L∞(X, dµ), and can thus be identified with an element of M

by the previous embedding. We set

a :=
3∑

i=0

1A · (2− ei − e−1
i ) · 1A.

Clearly a is nonnegative. Now let n be nonzero, and consider the expression

(23) τ(aαn(a)α2n(a)α3n(a)α4n(a)).

Expanding out a, we obtain a linear combination of terms of the form

τ(1Ag01A1Sn(A)(T ng1)1Sn(A)1S2n(A)(T
2ng2)

· 1S2n(A)1S3n(A)(T
3ng3)1S3n(A)1S4n(A)(T

4ng4)1S4n(A)),

where g0, g1, g2, g3, g4 ∈ {id, e0, e1, e2, e3, e4, e−1
0 , e−1

1 , e−1
2 , e−1

3 , e−1
4 }. This trace

vanishes unless

(24) g0T ng1T 2ng2T 3ng3T 4ng4 = id .

By Proposition B.13, we conclude that g0, g1, g2, g3, g4 are either all equal to the
identity, or are a permutation of e0, e1, e2, e3, e4, or are a permutation of e−1

0 , e−1
1 ,

e−1
2 , e−1

3 , e−1
4 . In the latter two cases, the contribution to (23) is either zero or

negative (being negative the trace of the product of several nonnegative elements
in a commutative von Neumann algebra). Here we are using the fact that 5 is odd.
Discarding all of these contributions except the one where gi,0 = ei,0 (which has
a nontrivial contribution thanks to Proposition B.13), we conclude that (23) is at
most

105τ(1A1Sn(A)1S2n(A)1S3n(A)1S4n(A))

− τ(1Ae01A1Sn(A)e11Sn(A)1S2n(A)e21S2n(A)1S3n(A)e31S3n(A)1S4n(A)e41S4n(A)).
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By Theorem 2.13, the first expression is at most 105µ(A)100. Now consider the
second expression. By Proposition B.13, we see that the partial products e0e1 · · · ei

for i = 0, 1, 2, 3 are distinct. Using (22), we conclude that the trace here can be
computed as

µ(S4n(A)∩ A)µ(A∩ Sn(A))µ(Sn(A)∩ S2n(A))

·µ(S2n(A)∩ S3n(A))µ(S3n(A)∩ S4n(A)),

which by (21) is equal to µ(A)10. Thus the expression (23) is no more than
215µ(A)100

−µ(A)10, which is negative if the upper bound δ for µ(A) is chosen
to be sufficiently small.

This concludes the proof of Theorem 2.12.

Remark 2.14. Given that the counterexample in Theorem 2.13 can be extended
to any k ≥ 5, it seems reasonable to expect that Theorem 1.20 can be extended
to all k ≥ 5 (not just the odd k), though we have not pursued this issue. On
the other hand, the analogue of Theorem 2.13 fails for k = 4, as was shown in
[Bergelson et al. 2005]. Because of this, the k = 4 case of Theorem 1.20 remains
open; the construction given here does not work, but it is possible that some other
construction would suffice instead.

3. Inclusions of finite von Neumann dynamical systems

In this section we recall some fairly well-known constructions relating to von
Neumann dynamical systems and their basic properties, culminating in a treatment
of Popa’s [2007] noncommutative version of the Furstenberg–Zimmer dichotomy.
This material will be needed to establish the structure theorem, Theorem 1.14.

Let (M, τ ) be a finite von Neumann algebra. As noted in the introduction, we can
embed M into a Hilbert space L2(τ ). In order to distinguish the algebra structure
from the Hilbert space structure,5 we shall refer in this section to the embedded
copy of an element a ∈ M of the algebra in L2(τ ) as â rather than a; thus for
instance M̂= {â : a ∈M} is a dense subspace of L2(τ ).

Clearly, L2(τ ) has the structure of an M-bimodule, formed by extending the
regular bimodule structure on M by density; the left-representation is, of course,
the classical Gel’fand–Naimark–Segal representation associated to τ . When it is
necessary to denote the copy of M in B(L2(τ )) consisting of the members of M

acting by multiplication on the left (respectively, right), we will denote this algebra
by Mleft (respectively, Mright).

5It is tempting to ignore these distinctions and identify M̂ with M. While this is normally quite a
harmless identification, we will take some care here because we will be studying the bimodule action
of M on L2(τ ), and keeping track of this action can become notationally confusing if the algebra
elements are identified with the vectors that they act on.
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The space L2(τ ) contains a distinguished vector 1̂ — the representative of the
multiplicative identity 1 in M — with the property that a1̂= 1̂a = â for all a ∈M.
This vector will play a prominent role in the rest of this section.

Now let (N, τ |N) be a von Neumann subalgebra of (M, τ ) (with the inherited
trace). Then we can canonically identify L2(τ |N) with the closed subspace

{b̂ : b ∈ N} = N1̂= 1̂N

of L2(τ ) in the obvious manner.
We will make use of certain well-known properties of these constructs, which

we merely recall here. A clear account of all of them can be found in [Jones and
Sunder 1997, Chapters 1 and 3].

First, it is important that there is a simple necessary and sufficient condition for
a vector ξ ∈ L2(τ ) to lie in the dense subspace M̂: this is so if and only if the linear
operator M̂→ L2(τ ), x̂ 7→ xξ is bounded for the norm ‖·‖L2(τ ), and so extends by
continuity to a bounded operator L2(τ )→ L2(τ ). The necessity of this conclusion
is clear, and its sufficiency requires just a little argument using the fact that for a
finite von Neumann algebra (M, τ ) we have Mright =M′′right and Mleft =M′′left; see
[Jones and Sunder 1997, Theorem 1.2.4].

A simple application of this condition now shows that the orthogonal projection
eN : L2(τ )→ N1̂ maps the dense subspace M̂ into N̂, and so defines also a linear
operator EN : M → N. Indeed, for a ∈ M we need only to show that the map
M̂→ L2(τ ), x̂ 7→ xeN(â) is bounded for the norm ‖ · ‖L2(τ ). Since N is also a
von Neumann algebra and eN(â) ∈N1̂∼= L2(τ |N), it actually suffices to check this
for x ∈N. However, since N1̂ is an (N,N)-sub-bimodule, left multiplication by x
commutes with eN, and so we have, as required,

‖xeN(â)‖L2(τ ) = ‖eN(xâ)‖L2(τ ) ≤ ‖x̂a‖L2(τ ) ≤ ‖a‖‖x̂‖L2(τ ).

The linear operator EN is referred to as the conditional expectation of M onto
N associated to τ , and it has the following readily verified properties:

Lemma 3.1 (properties of conditional expectation). For all a ∈ M, the operator
EN satisfies

• (idempotence) EN(EN(a))= EN(a);

• (contractivity) ‖EN(a)‖ ≤ ‖a‖;

• (trace-preservation) τ |N(EN(a))= τ(a);

• (positivity) EN(a∗a)≥ 0 (as a member of N); and

• (relation with eN) for all ξ ∈ L2(τ ),

eN(a(eN(ξ)))= EN(a)(eN(ξ))= eN(EN(a)(ξ)).
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Example 3.2. If M= L∞(X,X, µ) for some probability measure µ with the usual
trace, and (Y,Y, ν) is a factor space of (X,X, µ) with a measurable factor map
π : X → Y that pushes µ forward to ν, then L∞(Y,Y, ν) can be identified with a
subalgebra of M, and the conditional expectation map becomes its classical coun-
terpart from probability theory.

Together with M, the orthogonal projection eN now generates in B(L2(τ )) a
larger von Neumann algebra 〈M, eN〉 ⊇M. In general 〈M, eN〉 is no longer a finite
von Neumann algebra, but it does contain the dense ∗-subalgebra

A := lin(M∪ {xeN y : x, y ∈M})

on which we define the lifted trace τ̄ :A→C by specifying τ̄ (xeN y)= τ(xy). By
choosing an orthonormal basis for L2(τ ) relative to the right action of N, and con-
sequently realising 〈M, eN〉 as an amplification of N, this linear map is seen to be
nonnegative and faithful, and hence defines a semifinite normal faithful [0,+∞]-
valued trace (which we still denote by τ̄ ) on the cone (〈M, eN〉)

+ of nonnegative
(and self-adjoint) elements of 〈M, eN〉. This witnesses that the algebra 〈M, eN〉 is
semifinite (that is, any positive element of it may be approximated from below
by finite-τ̄ positive elements). We will not spell out these standard manipulations
here (see, for instance, [Popa 2007, Section 1.5]), but we will invoke a notion of
orthonormal basis for right-N-submodules of L2(τ ) shortly.

Remark 3.3. In case N⊂M is a finite-index inclusion of finite II1 factors, then we
find that 〈M, eN〉 is also a finite II1 factor. Writing M1 for this factor, it follows that
the construction above may be repeated with the inclusion M ↪→ M1 in place of
N ↪→M, and indeed that it may be iterated to form an infinite tower of II1 factors

N⊂M⊂M1 ⊂M2 ⊂ · · · .

This is Jones’ basic construction, which underlies his famous work [1983] on the
possible values of the index [N : M], and also several more recent developments.
Once again we refer the reader to [Jones and Sunder 1997] for a thorough account
of its importance, and numerous further references. However, since the construc-
tion of this whole infinite tower is special to the case of II1 factors, we will not
focus on it further here.

It is easy to check that the right action of any n∈N commutes with any xeN y, and
hence with any member of 〈M, eN〉. In fact it can be shown that 〈M, eN〉

′
= Nright

and hence that N′right = 〈M, eN〉
′′
= 〈M, eN〉: first, if A ∈ B(L2(τ )) commutes

with every b ∈ Mleft, then it must be the right action of some a ∈ M, and now
if also eN(1̂a) = 1̂a then we must in fact have a ∈ N; see [Jones and Sunder
1997, Proposition 3.1.2]. Let us record the following immediate but important
consequence of this for our later work:
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Lemma 3.4. If V ≤ L2(τ ) is a closed right-N-submodule, then the orthogonal
projection PV : L2(τ )→ V is a member of 〈M, eN〉. �

Using τ̄ we can also define an alternative completion of A = lin MeNM for
each p ∈ [1,∞) by setting ‖A‖p,τ̄ :=

p
√
τ̄ ((A∗A)p/2) for A ∈ A (where as usual

the power (A∗A)p/2 is defined using spectral theory for the self-adjoint operator
A∗A, and the nonnegativity of τ̄ is used to show that τ̄ ((A∗A)p/2) is finite even
when p/2 is not an integer). We denote this completion by L p(τ̄ ); it is a Hilbert
space when p = 2. In general elements of L p(τ̄ ) do not correspond to elements
of 〈M, eN〉, but they do give possibly unbounded but closable operators that are
weakly approximable by members of this algebra, which are therefore affiliated
to Nright. If A ∈ L p(τ̄ ) is such an operator that is self-adjoint, then it admits a
spectral decomposition A =

∫
R

s P(ds) for some spectral measure P on R taking
values in the projections of 〈M, eN〉 ∩ L1(τ̄ ), of possibly unbounded support in R,
but for which ‖A‖p

p,τ̄ =
∫

R
|s|p τ̄ P(ds) <∞.

If V is as in Lemma 3.4 then we may write that PV has finite lifted trace if it
corresponds to a member of 〈M, eN〉 ∩ L1(τ̄ ).

Now let us introduce some dynamics. Suppose that α is a shift on M that restricts
to a shift on N. Then, as mentioned in the introduction, α induces a unitary operator
acting on L2(τ ), which we shall distinguish from α by writing it as Uα; thus for
instance

Uαâ =Uα(a1̂)= α(a)1̂= α̂(a) for all a ∈M.

It is clear that N1̂ is an invariant subspace for Uα, so that Uα commutes with eN.
Also, conjugation by Uα agrees with the action α on M; thus

UαaU−1
α ξ = α(a)ξ for all a ∈M and ξ ∈ L2(τ ).

Thus, conjugation by Uα extends the action of α to 〈M, eN〉.
The following special class of one-sided submodules of L2(τ ) appears here al-

most exactly as in the commutative setting.

Definition 3.5 (finite-rank modules). A left- (respectively, right-) N-submodule V
of L2(τ ) has finite rank if there are some ξ1, ξ2, . . . , ξr ∈V such that V =

∑r
i=1 Nξi

(respectively, V =
∑r

i=1 ξi N), and the numerical value of its rank is the least r ≥ 1
for which this is possible.

Proposition 3.6 (relativised Gram–Schmidt procedure). If V ≤ L2(τ ) is a Uα-
invariant right-N-submodule of finite rank r then there are ξ1, ξ2, . . . , ξr ∈ L2(τ )

such that

• the subspaces ξi N≤ L2(τ ) are pairwise orthogonal, and

• V =
∑r

i=1 ξi N.
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Proof. This uses a relativised Gram–Schmidt argument much as in the commutative
setting; see for example [Glasner 2003, Lemma 9.4]. We proceed by induction on r .
If V has rank 1, then the result is immediate from the definition, so let us suppose
that it has rank r + 1 for some r ≥ 1. Then given a representation

V =
r+1∑
i=1

ξ ◦i N,

we know that any member of V may be approximated in ‖ · ‖L2(τ ) by expressions
of the form ξ ◦1 n1+ · · · + ξ

◦

r+1nr+1 for n1, n2, . . . , nr+1 ∈ N. This, in turn, may be
rewritten as

(ξ⊥1 n1+ · · ·+ ξ
⊥

r nr )+ ((ξ
◦

1 − ξ
⊥

1 )n1+ · · ·+ (ξ
◦

r − ξ
⊥

r )nr )+ ξ
◦

r+1nr+1

where for each i ≤ r we have decomposed ξ ◦i into its component ξ⊥i orthogonal to
ξr+1N and the remainder ξ ◦i − ξ

⊥

i ∈ ξr+1N. Since ξr+1N is a right-N-submodule,
it follows that the second and third inner sums in the decomposition above both
lie in ξr+1N, and now since ξr+1N⊥ is also a right-N-submodule, we have in fact
shown that

V = V1+ ξr+1N,

where V1 :=
∑r

i=1 ξ
⊥

i N is a rank-r right-N-submodule that is orthogonal to ξr+1N.
Applying the inductive hypothesis to V1 now completes the proof. �

The following definition is also drawn from the commutative world. This notion
has previously been extended to the setting of noncommutative algebras by Popa
in [2007], who discusses several other aspects and equivalent conditions in that
paper. (See also [Niculescu et al. 2003; Duvenhage 2009; Beyers et al. 2010] for
an analysis of the absolute analogue of weak mixing, in which the subalgebra N is
the trivial algebra C1.)

Definition 3.7 (relative weak mixing). If (M, τ, α) is a von Neumann dynamical
system and N ⊂ M is an α-invariant von Neumann subalgebra, then α is weakly
mixing relative to N if for any a ∈M∩N⊥ we have

1
N

N∑
n=1

‖EN(a∗αn(a))‖2τ → 0 as N →∞.

The basic inverse theorem that we need, extending the idea of Furstenberg and
Zimmer to the noncommutative context, is contained in the following proposition,
which essentially proves again part of [Popa 2007, Lemma 2.10]:

Proposition 3.8 (lack of weak mixing implies finite trace submodule). If α is
not weakly mixing relative to N, then there is a Uα-invariant right-N-submodule
V ≤ L2(τ )	N1̂ such that PV has finite lifted trace.
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Proof. Suppose that a ∈M∩N⊥ is such that

1
N

N∑
n=1

‖EN(a∗αn(a))‖2τ 6→ 0.

Define b := aeNa∗ ∈ 〈M, eN〉, and now observe (using the cyclic permutability
of τ̄ and the identity eNmeN ≡ EN(m)eN) that for any n ∈ N we have

τ̄ (b(U n
αbU−n

α ))= τ̄ (aeNa∗U n
α (aeNa∗)U−n

α )= τ̄ (aeNa∗αn(a)eNα
n(a)∗)

= τ̄
(
EN(a∗αn(a))eNα

n(a)∗a
)
= ‖EN(a∗αn(a))‖2τ .

Averaging in n, it follows that

τ̄
(

b 1
N

N∑
n=1

αn(b)
)
→ 〈b, b1〉τ̄ 6= 0,

where b1 is the limit of the ergodic averages N−1∑N
n=1 α

n(b) in the Hilbertian
completion L2(τ̄ ), which is therefore invariant under the further extension of the
unitary operator Uα to this Hilbert space.

This new element b1 need not, in general, correspond to a member of 〈M, eN〉

(it is easily seen to be so in the commutative setting, but for special reasons);
however, as a ‖·‖2,τ̄ -limit of members of 〈M, eN〉 =N′right, the element can always
be identified with a closed operator on L2(τ ) that is affiliated with the right action of
the algebra N, and as such it admits a spectral decomposition b1 =

∫
∞

0 s P(ds) for
some resolution of the identity P on [0,∞)whose contributing spectral projections
lie in 〈M, eN〉, and for which

∫
∞

0 s2τ̄ (P(ds))= ‖b1‖
2
2,τ̄ <∞. Hence τ̄ P(I ) <∞

for any Borel subset I ⊆ (0,∞) bounded away from 0. Now choosing any such
subset I for which P(I ) 6= 0 gives an orthogonal projection P(I ) ∈ 〈M, eN〉 of
finite lifted trace that is Uα-invariant, commutes with the right-N-action because
it lies in 〈M, eN〉, and moreover has image orthogonal to 1̂N because we initially
chose b to lie in the orthogonal complement of this subspace. �

Remark 3.9. The implication above can in fact be reversed, and these conditions
shown to be equivalent to a number of others; see [Popa 2007, Lemma 2.10] for a
more complete picture.

In the next section we will push the above results a little further under the
additional assumption that the subalgebra N is central, leading to the proof of
Theorem 1.14.

4. The case of asymptotically abelian systems

We now specialise to the case of an asymptotically abelian system, with the crucial
additional assumption that the subalgebra N is central.
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Lemma 4.1. Suppose that (M, τ, α) is a von Neumann dynamical system, N⊂M is
an α-invariant central von Neumann subalgebra and V ≤ L2(τ ) is a Uα-invariant
right-N-submodule of finite lifted trace. Then for any ε > 0 there is a further Uα-
invariant right-N-submodule V1 ≤ V such that

• τ̄ (PV − PV1) < ε,

• V1 has finite rank, say r ≥ 1, and

• there are an orthogonal right-N-basis ξ1, ξ2, . . . , ξr and a unitary matrix of
unitary operators U = (u j i )1≤i, j≤r ∈Ur×r (N) such that

Uα(ξi )=

r∑
j=1

ξ j u j i for all i = 1, 2, . . . , r.

We refer to U as the cocycle representing the action of Uα on the basis elements ξi .

Proof. We will prove this invoking the picture of the representation of N on L2(τ )

as a direct integral coming from spectral theory. By the classical theory of direct
integrals (see, for instance, [Kadison and Ringrose 1997, Chapter 14]), we can
select

• a standard Borel probability space (Y, ν),

• a Borel partition Y =
⋃

n≥1 Yn ∪ Y∞,

• a collection of Hilbert spaces Hn for n ∈ {1, 2, . . . ,∞} with dim(Hn)= n, and

• a unitary equivalence

8 : L2(τ )→ H :=

∫
⊕

Y
Hy ν(dy),

where we define Hy to be Hn when y ∈ Yn ,

such that N (acting on either the right or left, since these agree for a central sub-
algebra of M) is identified with the algebra of functions L∞(ν) acting by point-
wise multiplication. Explicitly, if we denote elements of H as measurable sections
v : Y →

∐
y∈Y Hy , then f ∈ L∞(ν) acts on H by

Mf (v)(y) := f (y)v(y).

Moreover, in order to accommodate 8(N1̂) we select a measurable section v0 ∈H

with ‖v0(y)‖Hy ≡ 1, and now N1̂ is identified with

{y 7→ f (y)v0(y) : f ∈ L∞(µ)},

so that the orthogonal projection 8eN8
−1 acts by

8eN8
−1(v)(y) := 〈v(y), v0(y)〉Hy · v0(y).
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The larger algebra Mright is identified under8with a direct integral
∫
⊕

Y My ν(dy),
so that elements of 8(M) are expressed as measurable sections

T : Y →
∐
y∈Y

B(Hy)

acting by T v(y) := T (y)(v(y)) and such that T (y) ∈ My ν-almost surely, where
(My)y∈Y is a measurable field of finite von Neumann subalgebras of B(Hy) for
each of which the state

My→ C : T 7→ 〈v0(y), T (v0(y))〉Hy

is a faithful finite trace; overall we have

τ(a)= 〈1̂, a1̂〉 =
∫

Y
〈v0(y),8(a)(y)(v0(y))〉Hy ν(dy) for a ∈M,

and so in particular if n ∈ N then 8(n) ∈ L∞(µ) and τ(n)=
∫
8(n) dν.

Given these data, for a, b ∈M we can compute that and

8(aeNb)8−1v(y)= 〈8(b)(y)(v(y)), v0(y)〉 ·8(a)(y)(v0(y)),

τ̄ (aeNb)= τ(ab)=
∫

Y
〈v0(y),8(ab)(y)(v0(y))〉Hy ν(dy)

=

∫
Y
〈8(a∗)(y)(v0(y)),8(b)(y)(v0(y))〉Hy ν(dy)

=

∫
Y

tr(8(aeNb)8−1
|Hy ) ν(dy).

In this representation an N-submodule V ≤ L2(τ ) corresponds to a subspace
8(V )≤H of the form

∫
⊕

Y Vy ν(dy) for some measurable subfield of Hilbert spaces
Vy ≤Hy , and the calculation above now shows that τ̄ (PV )=

∫
Y dim(Vy) ν(dy), so

PV has finite lifted trace if and only if the function y 7→ dim(Vy) is ν-integrable.
We can enhance this picture further by noting that since α preserves N it must

correspond to some ν-preserving transformation S y Y , and that since it also
preserves M and extends to a unitary operator on L2(τ ) it must also preserve each of
the cells Yn . Similarly, since V is Uα-invariant, the transformation S must preserve
the function y 7→deg(Vy). It follows that the unitary operator8Uα8

−1 on L2(τ ) is
actually given by a measurable section of unitary operators 9 : Y →

∐
y∈Y U(Hy)

such that
8Uα8

−1v(y)=9(y)(v(S−1 y)).

Now, since y 7→ deg(Vy) is ν-integrable, for sufficiently large r ≥ 1 we know
that ∫

{y∈Y :deg(Vy)>r}
deg(Vy) ν(dy) < ε.
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Define

W :=
∫
⊕

{y∈Y :deg(Vy)≤r}
Vy ν(dy)⊕

∫
⊕

{y∈Y :deg(Vy)>r}
{0} ν(dy)

and V1 := 8
−1(W ). Clearly V1 is still a right-N-submodule that is Uα-invariant,

and it clearly also has rank at most r (since it suffices to prove this for W , for which
it follows by a relativised Gram–Schmidt construction of a fibrewise-orthonormal
basis exactly as in the setting of commutative ergodic theory; see for instance
[Glasner 2003, Lemma 9.4]). Also, we have

τ̄ (PV − PV1)=

∫
{y∈Y :deg(Vy)>r}

deg(Vy) ν(dy) < ε.

Finally, the selection of unitaries 9 must preserve the field of subspaces Vy

above the S-invariant set {y ∈ Y : deg(Vy) = s} for each s ≤ r . Choosing an
abstract d-dimensional Euclidean space Wd for each d ≤ r and adjusting each
fibre of W by a unitary in order to identify each Vy for which dim(Vy) ≤ r with
Wdim(Vy), we obtain a new representation of V1 as a right-N-submodule using these
fibres Wd , so that the action of Uα is now described by a measurable family of
unitaries 9 ′(y) ∈U(Wdim(Vy)). Picking an orthonormal basis for each Wd , writing
these unitary operators as unitary matrices in terms of these bases, noting that their
individual entries are now identified with elements of L∞(µ)=8(N), and carrying
everything back to L2(τ ) using 8−1 gives the desired expression for Uα. �

Remark 4.2. Frustratingly, both the fact that a Uα-invariant V of finite lifted trace
may be approximated by a Uα-invariant V1 of finite rank, and the fact that given
such a module of finite rank the action of Uα on it may be described by a unitary
element in U(Mr×r (N)), seem to be difficult to prove without the assumption that
N is central and the resulting representation of the action of N on L2(µ) as the
multiplication action of some L∞(ν) on a measurable field of Hilbert spaces. It
would be interesting to settle this issue more generally:

Question 4.3. Do these conclusions hold for a finite-lifted-trace invariant sub-
module corresponding to an arbitrary inclusion of finite von Neumann algebras
with a trace-preserving automorphism?

Before moving on let us quickly note an important difference from the setting
of abelian von Neumann algebras.

Example 4.4. If M is abelian, then it is well known from commutative ergodic
theory that all the intermediate Uα-invariant submodules V ≤ L2(τ ) that have
finite-rank over N together generate an intermediate subalgebra between N and M,
and that this then corresponds to an intermediate measure-preserving system. We
will see shortly that an analogous conclusion can sometimes be recovered in the
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asymptotically abelian setting, but it is certainly not true for general finite-rank
submodules, even when the smaller algebra N is abelian.

Consider, for example, the inclusion i : LZ∼= L∞(mT) ↪→ LF2 corresponding to
the embedding of Z as the cyclic subgroup aZ of the free group F2 = 〈a, b〉. Here
LG is the group von Neumann algebra of G, defined in Section 2a. In this case
we can identify L2(τ ) as `2(F2) and L2(τ |N) as the subspace spanned by {ξan }n∈Z.
Now define α ∈Aut LF2 simply by lifting the group automorphism of F2 that fixes
a and maps b 7→ ba. Now the subspace V := lin{ξban : n ∈ Z} ≤ `2(F2) is a
Uα-invariant right N-module of rank one which is orthogonal to L2(τ |N). On the
other hand, although ξb ∈ M̂∩V , we have αm(ξ 2

b )= α
m(ξb2)= ξbambam for m ∈ Z,

and it is easy to see that these elements of M do not remain within any finite-rank
right-N-submodule.

It is true that if L2(τ )	 L2(τ |N) contains a finite-rank right-N-submodule V ,
then it also contains a finite-rank left-N-module in the form of J (V ), where J is the
modular automorphism on V , defined by extending the conjugation map a 7→ a∗

on M ≡ M̂ by density. The point is that it can happen that J (V ) ⊥ V , and that
all elements of J (V ) are weakly mixed by Uα: it is the right-module V , and no
other, that serves as the obstruction to overall relative weak mixing coming from
Theorem 1.13.

Definition 4.5. A vector ξ ∈ L2(τ ) is central if mξ = ξm for all m ∈M.

Lemma 4.6 (no nonobvious central vectors). The closure Z(M)1̂= 1̂Z(M) is equal
to the set of all central vectors in L2(τ ).

Proof. Suppose that ξ ∈ L2(τ ) is central. Define aξ :M1̂→ L2(τ ) by aξ (m1̂) := ξm.
This is a densely defined linear operator on L2(τ ), and it is closable because if
mn 1̂= 1̂mn→ 0 in ‖ · ‖L2(τ ) for some sequence (mn)n≥1 in M and also ξmn→ ξ ′

in ‖ · ‖L2(τ ), then we have

〈m′1̂, ξ ′〉 = lim
n→∞
〈m′1̂, ξmn〉 = lim

n→∞
〈1̂m∗n, (m

′)∗ξ〉 = 0 for every m′ ∈M,

and so in fact we must have ξ ′ = 0. Also, we clearly have

aξ (m1̂)= aξ (1̂m)= ξm = mξ = (aξ (1̂))m = m(aξ (1̂)) for every m ∈M,

so aξ is affiliated with both the right- and left-actions of M on L2(τ ). The same
therefore holds for aξ + a∗ξ and i(aξ − a∗ξ ), and now these are self-adjoint and so
each of them may be expressed as an unbounded spectral integral all of whose
contributing spectral projections must lie in M′left ∩ M′right = Z(M). Therefore,
approximating aξ = 1

2(aξ + a∗ξ )+
1
2(aξ − a∗ξ ) by a sum of two large but bounded

integrals with respect to the respective resolutions of the identity, we get a sequence
of elements an ∈ Z(M) such that an→ aξ pointwise on dom(clos(aξ ))⊇M1̂, and
hence such that an 1̂→ ξ in ‖ · ‖L2(τ ). Hence ξ ∈ Z(M)1̂, as required. �
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Proposition 4.7. If (M, τ, α) is an asymptotically abelian von Neumann dynamical
system, N is a shift-invariant central von Neumann subalgebra, and V ≤ L2(τ ) is
an α-invariant right-N-submodule of M having finite lifted trace, then all elements
of V are central vectors.

Proof. Clearly it will suffice to prove this for all finite-rank approximants V1 to V
as given by Lemma 4.1. Thus we may assume that V actually has finite rank. Let
ξ1, ξ2, . . . , ξr and U = (u j i )1≤i, j≤r ∈Mr×r (N) be as given by the third part of that
lemma.

Since α is asymptotically abelian, we have for any a1̂ ∈M1̂ and b ∈M that

1
N

N∑
n=1

‖bU n
α (a1̂)−U n

α (a1̂)b‖L2(τ ) =
1
N

N∑
n=1

‖bαn(a)−αn(a)b‖L2(τ )→ 0.

Approximating an arbitrary ξ ∈ L2(τ ) by elements of M1̂, it follows that for
each fixed b ∈M and ξ ∈ L2(τ ), we have

lim
N→∞

1
N

N∑
n=1

‖bU n
α (ξ)−U n

α (ξ)b‖L2(τ ) = 0.

On the other hand, we know that

Uα(ξi )=

r∑
j=1

ξ j u j i for all i = 1, 2, . . . , r,

and so, writing U n
= (u(n)j i )1≤i, j≤r , we have

U−n
α (ξi )=

r∑
j=1

ξ j u
(−n)
j i implies ξi=

r∑
j=1

U n
α (ξ j )α

n(u(−n)
j i ) for all i=1, 2, . . . , r.

Clearly each u(−n)
j i is still a unitary, and so from this, averaging in n and the

centrality of N, we obtain

‖bξi−ξi b‖L2(τ ) =

∥∥∥ 1
N

N∑
n=1

( r∑
j=1

bU n
α (ξ j )α

n(u(−n)
j i )−

r∑
j=1

U n
α (ξ j )α

n(u(−n)
j i )b

)∥∥∥
L2(τ )

=

∥∥∥ 1
N

N∑
n=1

r∑
j=1

(bU n
α (ξ j )−U n

α (ξ j )b)αn(u(−n)
j i )

∥∥∥
L2(τ )

≤

r∑
j=1

1
N

N∑
n=1

‖bU n
α (ξ j )−U n

α (ξ j )b‖L2(τ ),
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and now since each of the summands in j tends to 0 as N→∞, it follows that we
must in fact have bξi=ξi b for every i≤r , and hence (taking N-linear combinations,
which have central coefficients, and then a completion) that all vectors in V are
central, as required. �

Corollary 4.8. If (M, τ, α) is an asymptotically abelian von Neumann dynamical
system, then the subalgebra Mα

:= {a ∈M : α(a) = a} of individually α-invariant
elements is central.

Proof. Of course, if α(a) = a, then lin{1̂a} is a rank one α-invariant submodule
of L2(τ ) for the trivial central subalgebra N := C1̂, and the claim follows from
Proposition 4.7. This claim can also be easily verified directly from the definition
of asymptotic abelianness. �

Proof of Theorem 1.14. Suppose, for the sake of contradiction, that α were not
weakly mixing relative to Z(M)⊂M. Then Proposition 3.8 gives a nontrivial right-
Z(M)-submodule V ≤ L2(τ )	Z(M)1̂ of finite lifted trace, and now Proposition 4.7
tells us that V must consist of central vectors. However, Lemma 4.6 now gives
V ≤ Z(M)1̂, implying a contradiction with our assumption that V ⊥ Z(M)1̂. �

For the results in this section it suffices to assume that for every a∈M there exists
a sequence {n j } such that lim j→∞‖[α

n j (a), b]‖L2(τ ) = 0 for every b ∈M. We do
not know whether this condition is strictly weaker than asymptotically abelianness.

Remark 4.9. A variant of Theorem 1.14 can also be deduced from the results in
[Niculescu et al. 2003] (and more specifically, Theorem 4.2 and Proposition 5.5
of that paper); we thank the anonymous referee for pointing out this fact. More
specifically, the result is that if α is an automorphism of a finite von Neumann
algebra M that leaves invariant a faithful normal trace τ , and Eτ is the conditional
expectation to the factor

Mr := lin
wot
{a ∈M : α(a)= λa for some λ ∈ T},

then for any a, b ∈M one has

lim
N→∞

1
N

N∑
n=1

|〈Eτ (a∗αn(a))− Eτ (a)∗αn(Eτ (a)), b〉L2(τ )| = 0;

in particular, for N going to infinity along a density one set of integers, the ex-
pression Eτ (a∗αn(a))− Eτ (a)∗αn(Eτ (a)) converges to zero in the weak operator
topology. This property is weaker than the relative weak mixing property with
respect to this factor (which one does not expect to hold in general, even in the
abelian case), but on the other hand does not require any hypothesis of asymptotic
abelianness.
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5. Triple averages for nonasymptotically abelian systems

The use to which we put relative weak mixing in the preceding section is very
special to asymptotically abelian systems: in general there seems to be no way
to track the error term resulting from the rearrangement at the heart of the proof
of Theorem 1.13 without this assumption. However, in the special case of triple
averages this problem does simplify somewhat, provided we assume instead that
our system (M, τ, α) is ergodic, so that Mα

= C1. In this case we will be able
to obtain convergence weakly and in norm, as well as recurrence on a dense set
(Theorem 1.17).

This assumption is not so innocuous as might be expected from its analogue
in the world of commutative ergodic theory. In that setting it is possible quite
generally to decompose a system (that is, more precisely, to decompose its invari-
ant measure) into ergodic components, and then many assertions about the whole
system, including multiple recurrence and the convergence of multiple averages,
follow if they can be proved for each ergodic component separately. However,
in the setting of a general von Neumann dynamical system, this decomposition is
available only if Mα is central in M; otherwise the automorphism α can exhibit
genuinely new phenomena precisely by virtue of having the nontrivial fixed sub-
algebra Mα “move around”. This was already seen in the failure of recurrence on
a dense set when the ergodicity hypothesis is dropped (Theorem 1.19).

The key for convergence of triple averages is the following decomposition that
is similar to the commutative case, first established (in a slightly more general
setting) in [Niculescu et al. 2003] (and more specifically, from Theorem 4.2 and
Proposition 5.5 in that paper); for the convenience of the reader we give a short
proof of that decomposition here. The result does not require ergodicity of the
system. A closely related decomposition was also used in [Fidaleo 2009].

Proposition 5.1 (decomposition of von Neumann dynamical systems). Suppose
(M, τ, α) is a von Neumann dynamical system. Then one has the orthogonal
decomposition M=Mr ⊕Ms , where

Mr : = lin
wot
{a ∈M : α(a)= λa for some λ ∈ T} and

Ms : =
{
a ∈M : limN→∞ N−1∑N

n=1|τ(bα
n(a))| = 0 for every b ∈M

}
,

that is, Mr is the von Neumann subalgebra spanned by the eigenvectors of α and Ms

is the subspace of the elements of M that are weakly mixed by α. The corresponding
projection onto Mr is the conditional expectation of M onto Mr and in particular
preserves positivity.

Proof. Since the continuation Uα of α to L2(τ ) is a unitary operator, the Jacobs–
Glicksberg–de Leeuw decomposition holds for Uα (see for example [Krengel 1985,
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Section 2.4]), that is, L2(τ ) = L2
r (τ )⊕ L2

s (τ ), where the reversible part L2
r (τ ) is

defined as

L2
r (τ )= lin{x :Uα(x)= λx for some λ ∈ T}

and the stable part L2
s (τ ) is defined as the space of all x ∈ L2(τ ) such that

lim
N→∞

1
N

N∑
n=1

|〈U n
α (x), y〉| = 0 for every y ∈ L2(τ ).

Moreover, this decomposition is orthogonal since Uα is unitary. We do not need
here the Jacobs–Glicksberg–de Leeuw decomposition in full generality but only its
version for unitary operators, which can be also proved via the spectral theorem.

By a result of Størmer [1974], the eigenvectors of Uα belong to M. We thus
have Mr = M ∩ L2

r (τ ) and Ms = M ∩ L2
s (τ ). The fact that the weak operator

closure and the closure in the L2(τ )-topology coincide for self-adjoint subalgebras
implies the second formula for Mr and thus Mr is a von Neumann subalgebra
of M. The conditional expectation now maps M onto Mr assuring the orthogonal
decomposition M=Mr ⊕Ms . �

In the remainder of this section we assume our system is ergodic.

Proposition 5.2 (convergence of triple averages). Let (M, τ, α) be an ergodic von
Neumann dynamical system. Then the averages

(25) 1
N

N∑
n=1

αn(a)α2n(b)

converge in ‖ · ‖L2(τ ) as N →∞ for every a, b ∈M.

Proof. By the proposition above, it suffices to assume that a and b each belong to
Mr or Ms . Suppose first that a ∈Mr , and fix b. The operators SN given by

SN x = 1
N

N∑
n=1

αn(x)α2n(b)

are linear and bounded on M for the norm ‖ · ‖L2(τ ), so we may assume that
α(a) = λa for some λ ∈ T. Then SN a = (N + 1)−1∑N

n=0 a(λα2)n(b), which
converges in L2(τ ) by the mean ergodic theorem.

Suppose now that a ∈ Ms . We show that the desired limit is zero. Consider
un := α

n(a)α2n(b)1̂ and observe that

〈un, un+ j 〉 = τ(α
2n(b∗)αn(a∗)αn+ j (a)α2n+2 j (b))

= τ(αn(b∗)a∗α j (a)αn+2 j (b))= τ(a∗α j (a)αn(α2 j (b)b∗)).
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The ergodicity of the system implies

γ j := lim
N→∞

∣∣∣ 1
N

N∑
n=1

〈un, un+ j 〉

∣∣∣= ∣∣∣τ(a∗α j (a) lim
N→∞

1
N

N∑
n=1

αn(α2 j (b)b∗))
∣∣∣

= |τ(a∗α j (a))| · |τ(α2 j (b)b∗)|.

Since a ∈Ms and τ(α2 j (b)b∗) are bounded in j , limN→∞ N−1∑N
j=1 γ j = 0, and

therefore by the classical van der Corput lemma for Hilbert spaces (see for example
[Furstenberg 1977] or [Bergelson 1987]), we have limN→∞ N−1∑N

n=1 un = 0. �

Remarks 5.3. (1) For compact nonergodic systems the averages (25) converge
as well, since M=Mr in this case; this was observed in [Beyers et al. 2010].

(2) As in the commutative case we see that the Kronecker subalgebra Mr is char-
acteristic for (25), that is, the limit of the averages in (25) does not change
when replacing a by EMr a and b by EMr b.

As was shown in Corollary 2.7, one cannot expect that

lim
N→∞

1
N

N∑
n=1

τ(aαn(a)α2n(a)) > 0 for every positive a.

However, a modification extending [Beyers et al. 2010, Theorem 5.13] is still true.

Proposition 5.4. For an ergodic von Neumann system (M, τ, α), one has

lim inf
N→∞

1
N

N∑
n=1

(Re τ(aαn(a)α2n(a)))+ > 0 for every 0< a ∈M.

In particular, one has recurrence on a dense set.

Proof. Decompose a = b+ c with b ∈Mr and c ∈Ms as in Proposition 5.1, with
b> 0 by Lemma 3.1. We first show that there exists a compact abelian group G, an
open set U ⊂G, and g ∈G such that for the 1-step Bohr set KU := {n ∈N : gn

∈U }
one has

(26) Re τ(bαn(b)α2n(b)) > 1
2τ(b

3) > 0 for every n ∈ KU .

Take ε := τ(b3)/(18‖b‖2). Since b ∈ Mr , we find k ∈ N, λ1, . . . , λk ∈ T

and b1, . . . , bk ∈M \ {0} such that α(b j ) = λ j b j for every j = 1, . . . , k and such
that ‖b − (b1 + · · · + bk)‖L2(τ ) < ε. Set now G := Tk , g := (λ1, . . . , λk) and
U := Uε/(k max‖b j‖)(1) ⊂ Tk . Observe that for every n such that gn

∈ U , we have
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|λn
j − 1|< ε/(k max‖b j‖) for every j = 1, . . . , k and therefore

‖αn(b)− b‖L2(τ ) ≤ ‖a
n(b1+ · · ·+ bk)− (b1+ · · ·+ bk)‖L2(τ )

+ 2‖b1+ · · ·+ bk − b‖L2(τ )

≤max‖b j‖L2(τ )(|λ
n
1 − 1| + · · · + |λn

k − 1|)+ 2ε

<max‖b j‖
kε

k max‖b j‖
+ 2ε = 3ε.

So we can prove (26) by the Cauchy–Schwarz inequality:

|τ(bαn(b)α2n(b))− τ(b3)| ≤ |τ(bαn(b)(α2n(b)− b))| + |τ(b(αn(b)− b)b)|

≤ ‖b‖2(‖α2n(b)− b‖L2(τ )+‖α
n(b)− b‖L2(τ ))

≤ 3‖b‖2‖αn(b)− b‖L2(τ ) < 9‖b‖2ε = 1
2τ(b

3).

Take now V :=Uε/(2k max‖b j‖)(1)⊂U and a continuous function f :G→[0, 1]
satisfying 1V ≤ f ≤ 1U . Then by (26), Re τ(bαn(b)α2n(b)) is positive whenever
f (gn) 6= 0 and therefore

lim inf
N→∞

1
N

N∑
n=1

f (gn)Re τ(bαn(b)α2n(b))

≥ lim inf
N→∞

1
N

N∑
n=1

1V (gn)Re τ(bαn(b)α2n(b)).

Since the set KV := {n ∈N : gn
∈ V } ⊂ KU is syndetic (that is, has bounded gaps)

in N, this implies by (26)

(27) lim inf
N→∞

1
N

N∑
n=1

f (gn)Re τ(bαn(b)α2n(b)) > 0.

Next, we show that

(28) ‖ · ‖L2(τ )− lim
N→∞

1
N

N∑
n=1

f (gn)αn(b)α2n(c)= 0.

We first consider a character γ ∈ Ĝ and define un := γ(gn)αn(b)α2n(c)1̂. We have

〈un, un+ j 〉 = γ(gn)γ(gn+ j )γ(α2n(c∗)αn(b∗)αn+ j (b)α2n+2 j (c))

= γ(g j )τ (αn(c∗)b∗α j (b)αn+2 j (c))= γ(g j )τ (b∗α j (b)αn(α2 j (c)c∗)).

By ergodicity of α,

γ j := lim
N→∞

∣∣∣ 1
N

N∑
n=1

〈un, un+ j 〉

∣∣∣= ∣∣∣γ(g j )τ (b∗α j (b) lim
N→∞

1
N

N∑
n=1

αn(α2 j (c)c∗))
∣∣∣

= |τ(b∗α j (b))| · |τ(α2 j (c)c∗)|,
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and the assumption c ∈ Ms implies limN→∞ N−1∑N
j=1 γ j = 0. By the van der

Corput estimate, we thus have

lim
N→∞

1
N

N∑
n=1

un = lim
N→∞

1
N

N∑
n=1

γ(gn)αn(b)α2n(c)1̂= 0.

We have now proved (28), since the characters form a total set in C(G) and the
operators SN f := N−1∑N

n=1 f (gn)αn(b)α2n(c) are uniformly bounded on C(G).
Analogously one also has

‖ · ‖L2(τ )− lim
N→∞

1
N

N∑
n=1

f (gn)αn(c)α2n(b)

= ‖ · ‖L2(τ )− lim
N→∞

1
N

N∑
n=1

f (gn)αn(c)α2n(c)= 0.

The Cauchy–Schwarz inequality implies now that

lim sup
N→∞

∣∣∣ 1
N

N∑
n=1

f (gn)τ (cαn(b)α2n(c))
∣∣∣

= lim sup
N→∞

∣∣∣τ(c 1
N

N∑
n=1

f (gn)αn(b)α2n(c)
)∣∣∣

≤ ‖c‖L2(τ ) lim sup
N→∞

∥∥∥ 1
N

N∑
n=1

f (gn)αn(b)α2n(c)
∥∥∥

L2(τ )
= 0.

Analogously, the Cesàro sums of f (gn)τ (cαn(c)α2n(b)), f (gn)τ (cαn(c)α2n(c))
and f (gn)τ (bαn(c)α2n(c)) vanish, while

τ(cαn(b)α2n(b))= τ(bαn(b)α2n(c))= τ(bαn(c)α2n(b))= 0

follows from the orthogonality of Mr and Ms and the fact that Mr is an α-invariant
self-adjoint subalgebra of M.

Combining this with (27), we obtain by the linearity of τ

lim inf
N→∞

1
N

N∑
n=1

(Re τ(aαn(a)α2n(a)))+

≥ lim inf
N→∞

1
N

N∑
n=1

f (gn)(Re τ(aαn(a)α2n(a)))+

= lim inf
N→∞

1
N

N∑
n=1

f (gn)(Re τ(bαn(b)α2n(b)))+> 0. �
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6. Closing remarks

We present some remarks concerning Question 1.22. By Theorem 1.17, we have
a positive answer to this question when the invariant algebra Mα is trivial. One
can also extend these arguments to cover the case when the invariant algebra Mα

is central by representing M as a direct integral over Mα, see Kadison, Ringrose
[Kadison and Ringrose 1997, Chapter 14].

It is clear that if the answer to Question 1.23 is always positive, then the same
is true for Question 1.22. What is less obvious is that the converse is true; if the
answer to 1.22 is always true, then the answer to 1.23 is always true. To see this,
let (M, τ ) be a finite von Neumann algebra with two commuting shifts α1 and α2.
We then form the infinite tensor product MZ

:=
⊗

n∈Z M, which is another finite
von Neumann algebra, which contains an embedded copy of M by using the 0
coordinate of Z. Next, let G be the free abelian group on two generators e and f ,
and let U be the action of G on MZ defined by

U (e)
⊗
n∈Z

an :=
⊗
n∈Z

α2
1α
−1
2 (an) and U ( f )

⊗
n∈Z

an :=
⊗
n∈Z

an−1

for all an ∈M with all but finitely many an equal to 1. If we define a shift α′ to MZ

by the formula

α′
⊗
n∈Z

an :=
⊗
n∈Z

α
2(n+1)
1 α−n

2 (an),

we then observe the identities

α′U (e)(α′)−1
=U (e) and α′U ( f )(α′)−1

=U ( f e)

(here we use the hypothesis that α1 and α2 commute). Because of this, we can
define a shift α on the crossed product MZ oU G by declaring α to equal α′ on MZ,
and

α(e) := e and α( f ) := f e.

If a1 and a2 lie in MZ, we observe that

αn(a1 f 2)α2n( f −2a2 f )= (α′)n(a1)((α
′)2nU (e)−2n(a2)) f.

If we assume that a1 and a2 in fact lie in M, we can simplify this as

α2n
1 (a1)α

2n
2 (a2) f.

Thus, if we assume 1.22 has an affirmative answer for the system MZ oU G, we
see that the averages of α2n

1 (a1)α
2n
2 (a2) f (and hence of α2n

1 (a1)α
2n
2 (a2)) converge

for arbitrary a1, a2 ∈ M; from this one easily deduces (after dividing n into even
and odd classes) that 1.23 has an affirmative answer for the system M.



44 TIM AUSTIN, TANJA EISNER AND TERENCE TAO

In particular, we see that the task of establishing Question 1.22 in the affirmative
for arbitrary von Neumann dynamical systems is at least as hard as that of achieving
convergence for two commuting shifts in the abelian case, a result first obtained in
[Conze and Lesigne 1984].

One can also cover some other (nonergodic, nonabelian) cases of Question 1.22
by ad hoc methods. Suppose that M is a group von Neumann algebra LG, with
shift α given by automorphisms α1, α2 : G → G of the group. Then one can
affirmatively answer 1.22 as follows. First, by density and linearity we may assume
that a1 and a2 are themselves group elements: a1 = g1 ∈ G and a2 = g2 ∈ G. We
then see that the means of αn(g1)α

2n(g2) will converge to zero unless there exists
a group element g0 for which

(29) αn(g1)α
2n(g2)= g0

for all n in a set of positive upper density. But such sets contain nontrivial parallelo-
grams n, n+ h, n+ k, n+ h+ k for h, k > 0. Applying (29) for n and n+ h and
rearranging, one obtains

αn(g2α
2h(g−1

2 ))= g−1
1 αh(g1).

Similarly, applying (29) for n+ k and n+ h+ k, one has

αn+k(g2α
2h(g−1

2 ))= g−1
1 αh(g1).

Writing u := g−1
1 αh(g1), one thus has

αh(g1)= g1u and αk(u)= u.

If we then write

v := g−1
1 αhk(g1)= uαh(u) · · ·α(k−1)h(u),

we see that αhkn(g1)= g1v
n for all n, and α(v)= v. Thus we have

αhkn+ j (g1)α
2hkn+2 j (g2)= α

j (g1(α
2hk(v))nα j (g2)) for any n, j .

The means of this in n converge in L2(τ ) by the mean ergodic theorem. Summing
over all 0 ≤ j < hk, we obtain weak convergence, thus answering Question 1.22
affirmatively in this case. The same type of argument also lets one deal with crossed
products of abelian systems by groups, in which the shift acts as an automorphism
on the group; we omit the details.

Finally, we remark that the results on asymptotically abelian systems, while
stated for Zk-systems, should in fact be valid for any commuting action of a general
locally compact second countable (lcsc) abelian group.
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Appendix A. An application of the van der Corput lemma

The purpose of this appendix is to establish Theorem 1.13. Our arguments fol-
low [Niculescu et al. 2003, Proposition 7.4 and Theorem 7.5] closely (for another
adaptation of the same argument, see also [Beyers et al. 2010, Proposition 4.4]).
We may normalise α0 to be the identity.

We induct on k ≥ 2. When k= 2 we know from the usual mean ergodic theorem
for von Neumann algebras (see for example [Krengel 1985, Section 9.1]) that

1
N

N∑
n=1

αn(a)→ EMα (a) in ‖ · ‖L2(τ ),

and since Mα
⊆ N by the relative weak mixing assumption, we also have

1
N

N∑
n=1

αn(EN(a))→ EMα (EN(a))= EMα (a) in ‖ · ‖L2(τ ),

so combining these conclusions gives the result.
Now suppose that k≥ 3 and that we know the desired conclusion for any similar

family of `< k automorphisms. By decomposing each ai as (ai−EN(ai ))+EN(ai )

and expanding out the expression
∏k−1

i=1 α
n
i (ai ), we find that it suffices to show that

for any i ≤ k− 1,

ai ⊥ N implies
1
N

N∑
n=1

k−1∏
i=1

αn
i (ai )→ 0 in ‖ · ‖L2(τ );

let us argue the case i = 1, the others following at once by symmetry.
By the Hilbert-space-valued version of the classical van der Corput estimate

(see, for instance, [Furstenberg 1977] or [Bergelson 1987]) this will follow if we
show that

1
H

H∑
h=1

∣∣∣ 1
N

N∑
n=1

〈 k−1∏
i=1

αn+h
i (ai ),

k−1∏
i=1

αn
i (ai )

〉
τ

∣∣∣
=

1
H

H∑
h=1

∣∣∣ 1
N

N∑
n=1

τ
(
αn

k−1(α
h
k−1(a

∗

k−1)) · · ·α
n
1 (α

h
1 (a
∗

1))·α
n
1 (a1) · · ·α

n
k−1(ak−1)

)∣∣∣→0

as N →∞ and then H →∞.
Let us now set bi :=α

n
i (α

h
i (a
∗

i )) and ci :=α
n
i (α

h
i (ai )) to lighten notation. Having

done so, we now set ourselves up for applying the asymptotic abelianness property
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by observing that

bk−1bk−2bk−3 · · · c1c2 · · ·

= (bk−2bk−1bk−3 · · · c1c2 · · · )+ ([bk−1, bk−2]bk−3 · · · c1c2 · · · )

= (bk−2bk−3bk−1bk−4 · · · c1c2 · · · )+ (bk−2[bk−1, bk−3]bk−4 · · · c1c2 · · · )

+ ([bk−1, bk−2]bk−3bk−4 · · · c1c2 · · · )
...

= bk−2bk−3bk−4 · · · b1c1c2 · · · ck−2(bk−1ck−1)

+

k−2∑
j=1

x j [bk−1, b j ]y j +

k−2∑
j=1

u j [bk−1, c j ]v j ,

where each x j , y j , u j and v j for 1 ≤ j ≤ k− 2 is some product of a subset of the
elements {bi , ci : i ≤ k− 2}.

Importantly, there is some M > 0 such that ‖x j‖, ‖y j‖, ‖u j‖, ‖v j‖ ≤ M for all
j ≤ k−2, and not depending on n or h, while on the other hand for any j ≤ k−2
we have

[bk−1, b j ] = [α
n
k−1(α

h
k−1(a

∗

k−1)), α
n
j (α

h
j (a
∗

j ))],

and hence overall we have

1
N

N∑
n=1

∥∥∥k−2∑
j=1

x j [bk−1, b j ]y j

∥∥∥
L2(τ )

≤ M2
k−2∑
j=1

1
N

N∑
n=1

‖[bk−1, b j ]‖L2(τ )

= M2
k−2∑
j=1

1
N

N∑
n=1

‖[αh
k−1(a

∗

k−1), (α
−1
k−1α j )

n(αh
j (a
∗

j ))]‖L2(τ )→ 0

as N→∞, by the asymptotic abelianness of α−1
k−1α j . The same reasoning applies

to the term
∑k−2

j=1u j [bk−1, c j ]v j , and now applies again to show that in the scalar
average of interest to us we may also commute bk−2 from the left end of our product
over to be immediately on the left of ck−2, and then move bk−3 to ck−3, and so on.
Overall, this shows that

1
H

H∑
h=1

∣∣∣ 1
N

N∑
n=1

τ
(
αn

k−1(α
h
k−1(a

∗

k−1)) · · ·α
n
1 (α

h
1 (a
∗

1)) ·α
n
1 (a1) · · ·α

n
k−1(ak−1)

)∣∣∣
∼

1
H

H∑
h=1

∣∣∣ 1
N

N∑
n=1

τ
(
αn

1 (α
h
1 (a
∗

1)a1) · · ·α
n
k−1(α

h
k−1(a

∗

k−1)ak−1)
)∣∣∣
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=
1
H

H∑
h=1

∣∣∣ 1
N

N∑
n=1

τ
(
αh

1 (a
∗

1)a1 · (α2α
−1
2 )n(αh

2 (a
∗

2)a2)

· · · (αk−1α
−1
1 )n(αh

k−1(a
∗

k−1)ak−1)
)∣∣∣

=
1
H

H∑
h=1

∣∣∣τ(αh
1 (a
∗

1)a1 ·

( 1
N

N∑
n=1

(α2α
−1
1 )n(αh

2 (a
∗

2)a2)

· · · (αk−1α
−1
1 )n(αh

k−1(a
∗

k−1)ak−1)
))∣∣∣

as N →∞ and then H →∞. However, now we notice that the inner average
of operators with respect to N here is precisely of the form hypothesized by the
theorem, but involving only the k−1 automorphisms α jα

−1
1 for j =1, 2, . . . , k−1,

which still satisfy the necessary hypotheses of relative weak mixing and asymptotic
abelianness. Hence this operator average asymptotically agrees with

1
H

H∑
h=1

∣∣∣τ(αh
1 (a
∗

1)a1 ·

( 1
N

N∑
n=1

(α2α
−1
1 )n(EN(α

h
2 (a
∗

2)a2))

· · · (αk−1α
−1
1 )n(EN(α

h
k−1(a

∗

k−1)ak−1))
)∣∣∣

=
1
H

H∑
h=1

∣∣∣τ(EN(α
h
1 (a
∗

1)a1) ·
( 1

N

N∑
n=1

(α2α
−1
1 )n(EN(α

h
2 (a
∗

2)a2))

· · · (αk−1α
−1
1 )n(EN(α

h
k−1(a

∗

k−1)ak−1))
))∣∣∣,

where the second equality holds because the operator average in the inner brackets
now lies in N, and so we apply the usual identity for conditional expectations
τ(aEN(b))= τ(EN(aEN(b)))= τ(EN(a)EN(b)).

Writing

sN :=
1
N

N∑
n=1

(α2α
−1
1 )n(EN(α

h
2 (a
∗

2)a2)) · · · (αk−1α
−1
1 )n(EN(α

h
k−1(a

∗

k−1)ak−1)),

we see that ‖sN‖ ≤ C for some fixed C and all N ∈ N, and now combining this
bound with the Cauchy–Schwarz inequality we obtain

1
H

H∑
h=1

|τ(EN(α
h
1 (a
∗

1)a1) · sn)| =
1
H

H∑
h=1

|〈s∗n 1̂, (EN(α
h
1 (a
∗

1)a1)1̂〉L2(τ )|

≤
1
H

H∑
h=1

C · ‖EN(α
h
1 (a
∗

1)a1‖L2(τ ).

Finally, it follows that this tends to 0 as H → ∞ by the our assumption that
a1 ⊥ N and the relative weak mixing hypothesis. This completes the proof of
Theorem 1.13.
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Appendix B. A group theory construction

The purpose of this appendix is to explicitly describe a certain type of group, which
we shall term a square group, generated by relations involving quadruples of gen-
erators. In particular, we will be able to solve the equality problem for such groups.
Our arguments here are motivated by an observation of Grothendieck that groups
can be identified with the sheaf of their flat connections on simplicial complexes,
and experts will be able to detect the ideas of sheaf theory lurking beneath the
surface of the material here, although we will not use that theory explicitly.

Definition B.1 (square groups). A square base � = (H ∪ V,�) consists of the
following data:

• A set H∪V of generators, partitioned into a subset H of horizontal generators
and a subset V of vertical generators.

• A set �⊂ (H×V ×H×V )∪(V ×H×V ×H) of quadruples (e0, e1, e2, e3)

of alternating orientation (thus if e0 is horizontal then e1 must be vertical, and
so forth).

Furthermore, we require the two axioms on the set �:

• (Cyclic symmetry.) If (e0, e1, e2, e3) ∈�, then (e1, e2, e3, e0) ∈�.

• (Unique continuation.) If e0, e1 ∈ H ∪V , then there is at most one quadruple
(e0, e1, e2, e3) ∈� with the first two components e0 and e1.

If � is a square base, we define the square group G� associated to that base to be
the group generated by the generators H ∪V , subject to the relations e0e1e2e3= id
for all (e0, e1, e2, e3) ∈ �. We define the alphabet of the square base (or square
group) to be the set H ∪ V ∪ H−1

∪ V−1 consisting of the horizontal and vertical
generators and their formal inverses.

To describe square groups explicitly, we shall need some notation of a combi-
natorial and geometric nature. Let N := {0, 1, 2, . . . } denote the natural numbers.

Definition B.2 (monotone paths and regions). A monotone path is a finite path in
the discrete quadrant N2 from (0, 0) to some endpoint (n,m) that consists only
of rightward edges (i, j)→ (i + 1, j) and upward edges (i, j)→ (i, j + 1) (in
particular, the path will have length n+m). Given a monotone path γ from (0, 0)
to (n,m), the shadow of γ is defined to be all the pairs (i, j) ∈ N2 such that
(i, j ′) ∈ γ for some j ′ ≥ j . We say that one monotone path γ′ lies above another
monotone path γ with the same endpoint (n,m) if the shadow of γ′ contains the
shadow of γ. In such cases, we refer to the set-theoretic difference between the
two shadows as a monotone region from (0, 0) to (n,m), with γ′ and γ referred to
as the upper boundary and lower boundary of the region, respectively.
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Figure 2. A monotone region, bounded above and below by two
monotone paths. Note the horizontal and vertical convexity of the
monotone region.

We will also consider a monotone path as a degenerate example of a monotone
region. Monotone regions are horizontally and vertically convex: if two endpoints
of a horizontal or vertical line segment in N2 lie in a monotone region, then the
interior of that segment does also.

Definition B.3 (flat connections). Fix a square base �, and let � ⊂ N2 be a set.
A connection 0 on � is an assignment 0((i, j)→ (i + 1, j)) ∈ H ∪ H−1 of a
horizontal element of the alphabet to every horizontal edge (i, j), (i + 1, j) ∈ �,
and an assignment 0((i, j)→ (i, j + 1)) ∈ V ∪ V−1 of a vertical element of the
alphabet to every vertical edge (i, j) 7→ (i, j + 1) ∈ �. We adopt the convention
that

0((i + 1, j)→ (i, j)) := 0((i, j)→ (i + 1, j))−1,

0((i, j + 1)→ (i, j)) := 0((i, j)→ (i, j + 1))−1,

where (e−1)−1
:= e for e ∈ H ∪ V of course.

We say that the connection 0 is flat if for every square (i, j), (i+1, j), (i, j+1),
(i + 1, j + 1) in �, there exists an oriented loop f0, f1, f2, f3 of horizontal and
vertical edges around the square (in either orientation) such that

(0( f0), 0( f1), 0( f2), 0( f3)) ∈�.

We call a flat connection on a monotone region from (0, 0) to (n,m)maximal if it
cannot be extended to any strictly larger monotone region with the same endpoints.
It is reduced if there does not exist a triple (i, j), (i + 1, j), (i + 2, j) or (i, j),
(i, j+1), (i, j+2) in� such that0((i, j)→ (i+1, j))0((i+1, j)→ (i+2, j))= id
or 0((i, j + 1)→ (i, j))0((i, j + 1)→ (i, j + 2))= id.
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Figure 3. A monotone region {A, B,C, D, E, F,G} (with A =
(0, 0), B = (0, 1), and so on) with a connection 0 defined by
the group elements a, b, c, d, e, f, g, h ∈ G�; thus for instance
0(B→C)= b and 0(C→ B)= b−1. If say (a, b, g−1, h−1) and
( f, e, d−1, c−1) are in �, then this connection is flat.

In the degenerate case when � is just a monotone path, every connection is
automatically flat, as there are no squares.

Let 0 be a flat connection on a monotone region �. Then one can integrate
this connection to produce a map 80 : �→ G� by setting 80(0, 0) := id and
80(v)=80(u)0(u→ v) for all horizontal and vertical edges (u→ v) in�. From
the flatness of 0 and the “connected” nature of � it is easy to see that 80 exists
and is unique. In particular, we can define the definite integral |0| of 0 to be the
group element |0| :=80(n,m), where (n,m) is the endpoint of �.

Example B.4. The definite integral of the flat connection in Figure 3 is equal to
abcd = ab f e = hgcd = hg f e.

Every group element g in G� can arise as a definite integral of some flat con-
nection, simply by expressing g as a word in the alphabet H ∪ V ∪ H−1

∪ V−1,
and creating an associated monotone path and connection for that word. Later on
we shall see that the definite integral will provide a one-to-one correspondence
between group elements and maximal reduced flat connections (Corollary B.10).

Lemma B.5. Let � be a square base, and let (n,m) ∈ N2.

• (Unique continuation.) If � is a monotone region from (0, 0) to (n,m), and γ
is a path from (0, 0) to (n,m) in �, then any flat connection on � is uniquely
determined by its restriction to γ. In other words, if 0 and 0′ are two flat
connections on � that agree on γ, then they agree on all of �.

• (Maximality.) If �0 is a monotone region from (0, 0) to (n,m), and 0 is a flat
connection on �0, then there exists a unique extension of 0 to a maximal flat
connection on a monotone region � from (0, 0) to (n,m) containing �0.
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Proof. We first establish unique continuation. This is best explained visually. The
key observation is that if two flat connections on a square agree on two adjacent
sides of a square, then they must agree on the whole square. This is ultimately
a consequence of the unique continuation property of the square base �, and can
be verified by a routine case check. Thus, if 0 and 0′ are two connections on �
that agree on γ, they also agree on any perturbation of γ in � formed by taking an
adjacent pair of horizontal and vertical edges in γ and “popping” them by replacing
them by the other two edges of the square that they form; note that this retains the
property of being a monotone path. One can check that after a sufficient number
of upward and downward “popping” operations one can cover the upper and lower
boundaries of 0, and everything in between, and the claim follows.

Example B.6. We continue working with Figure 3. Suppose two flat connections
0 and 0′ on the indicated region agree on the upper boundary ABC DE , with
the indicated connection values a, b, c, d . By unique continuation of �, the only
possible values available for 0 and 0′ on the remaining two edges C F , F E of the
square C DE F are f and e. Thus we may “pop” the upper square and obtain that 0
and 0′ also agree on the monotone path ABC F E . After popping the lower square
also we obtain that 0 and 0′ agree on the entire monotone region.

To prove the second claim, we simply observe that if 0 can be extended to two
monotone regions� and�′ containing�0, then by unique continuation they agree
on the intersection�∩�′ (which is also a monotone region), and can thus be glued
to form a flat connection on the union �∪�′ (which is also a monotone region6).
Since there are only finitely many monotone regions from (0, 0) to (n,m), the
claim then follows from the greedy algorithm. �

Definition B.7 (concatenation). Let 0 be a maximal reduced flat connection on
some monotone region � from (0, 0) to (n,m), and let x ∈ H ∪V ∪H−1

∪V−1 be
a symbol in the alphabet. We define the concatenation 0 · x of 0 with x to be the
maximal flat connection 0′=0 ·x on a monotone region �′ from (0, 0) to (n′,m′)
generated by the following rule.
• (Collapse.) If x is horizontal (that is, x ∈ H ∪ H−1), if (n− 1,m) lies in �,

and if 0((n − 1,m)→ (n,m)) = x−1, then one sets (n′,m′) := (n − 1,m),
sets �′ to be the restriction of � to the region {(i, j) ∈ N2

: i ≤ n − 1} (that
is, one deletes the rightmost column of �), and sets 0′ to be the restriction of
0 to �′.

• (Extension.) If x is horizontal, and either (n − 1,m) lies outside of � or
0((n − 1,m) → (n,m)) 6= x−1, then one sets (n′,m′) := (n + 1,m), and

6One way to see this is to rotate the plane by 45 degrees, so that monotone paths become graphs
of discrete Lipschitz functions with Lipschitz constant 1, and monotone regions become the regions
between two such functions.



52 TIM AUSTIN, TANJA EISNER AND TERENCE TAO

extends 0 to �∪ {(n+ 1,m)} by setting 0((n,m)→ (n+ 1,m)) := x ; note
that this is still flat because it does not create any squares. One then extends 0
further by the second part of Lemma B.5 to create the maximal flat connection
0′ on �′ that extends 0.

• If x is vertical instead of horizontal, one follows the analogue of the above
rules but with the roles of n and m reversed.

Example B.8. Imagine one concatenated a horizontal edge x to the flat connection
in Figure 3, which we shall assume to be maximal reduced. If x is not equal to d−1,
then the concatenated connection would thus extend one unit to the right of E to
the endpoint (3, 2), and may possibly extend also to the square to the right of E F
if there is an appropriate tuple in � to achieve this extension. If instead x was
equal to d−1, then the connection would collapse to the region {A, B,C, D,G},
so that the endpoint is now D = (1, 2).

This definition gives a representation of G�:

Lemma B.9. Let � be a square base and 0 a maximal reduced flat connection.

• (Preservation of reducibility.) 0 ·x is reduced for any x ∈ H∪V ∪H−1
∪V−1.

• (Invertibility.) We have (0 · x) · x−1
= 0 for any x ∈ H ∪ V ∪ H−1

∪ V−1.

• (Square relations.) We have (((0·e0)·e1)·e2)·e3=0 for any (e0, e1, e2, e3)∈�.

In particular, the group G� acts on the space O of maximal reduced flat connec-
tions in a unique manner, sending 0 to 0 · g for any 0 ∈ O and g ∈ G�.

Proof. We begin with the preservation of reducibility claim. If 0 · x is formed by
collapsing 0, the claim is clear, so suppose instead that 0·x is formed by extension.
By symmetry we may assume that x is horizontal. Let (n,m) denote the endpoint
of 0, and let �′ be the domain of 0 · x (which then has endpoint (n+ 1,m)).

Assume for contradiction that 0 · x is not reduced. Since 0 was reduced, there
are only two possibilities: either one has a vertical degeneracy

(30) 0((n+ 1, j)→ (n+ 1, j + 1))0((n+ 1, j + 1)→ (n+ 1, j + 2))= id

for some (n+1, j), (n+1, j+1), (n+1, j+2) ∈�′, or else one has a horizontal
degeneracy

(31) 0((n− 1, j)→ (n, j))0((n, j)→ (n+ 1, j))= id

for some (n− 1, j), (n, j), (n+ 1, j) ∈�′.
Suppose first that one has a vertical degeneracy (30). Consider the restrictions

01 and 02 of the connection 0 on the adjacent squares

((n, j), (n, j + 1), (n+ 1, j), (n+ 1, j + 1)) and

((n, j + 1), (n, j + 2), (n+ 1, j + 1), (n+ 1, j + 2)).
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By construction01 and02 agree on their common edge ((n, j+1)→ (n+1, j+1)),
and 01((n+1, j+1)→ (n+1, j)) is equal to 02((n+1, j+1)→ (n+1, j+2)). By
the unique continuation property of �, this implies that 01 and 02 are reflections of
each other; in particular 01((n, j+1)→ (n, j)) equals 02((n, j+1)→ (n, j+2)).
But this implies that 0 is not reduced, a contradiction.

Suppose instead that one has a horizontal degeneracy (31). From Definition B.7
we know that j cannot equal m, otherwise we would have collapsed rather than
extended 0. Let 0 ≤ j < m be the largest j for which (31) holds. By repeating
the argument in the previous paragraph, we see that the restrictions of 0 to the
adjacent squares

((n− 1, j), (n, j), (n− 1, j + 1), (n, j + 1)) and

((n, j), (n+ 1, j), (n, j + 1), (n+ 1, j + 1))

are reflections of each other, which implies that (31) also holds for j + 1, contra-
dicting the maximality of j . This establishes the preservation of reducibility.

Now we establish the invertibility. Again, by symmetry we may assume that x
is horizontal.

If 0 ·x is a (horizontal) extension of 0, then it is easy to see from Definition B.7
that (0 · x) · x−1 will be the (horizontal) collapse of 0 · x , which is 0. Conversely,
if 0 · x is the (horizontal) collapse of 0, then (0 · x) · x−1 will be the (horizontal)
extension (because 0 was reduced), which will equal 0 again (by uniqueness of
maximal extension).

Finally, we establish the square relations. From cyclic symmetry and invertibil-
ity we may assume that e0 and e2 are horizontal and e1 and e3 are vertical. From
invertibility again, it suffices to show that

(0 · e0) · e1 = (0 · e−1
3 ) · e−1

2

for any maximal reduced flat connection 0. We denote the endpoint of 0 by (n,m).
We divide into four cases. Suppose first that 0 ·e0 is an extension of 0, and that

(0 · e0) · e1 is an extension of 0 · e0. Then we claim that 0 · e−1
3 is an extension

of 0. If this were not the case, then 0((n,m − 1)→ (n,m)) must equal e3, but
then since (0 · e0)((n,m)→ (n+ 1,m)) equals e0 by construction, the domain of
0 · e0 must include the square (n,m− 1), (n,m), (n+ 1,m− 1), (n+ 1,m) with

(0 · e0)((n+ 1,m− 1)→ (n+ 1,m))= e−1
1 ,

causing (0 ·e0) ·e1 to be a collapse rather than an extension, a contradiction. Thus
0 · e−1

3 extends 0. A similar argument shows that (0 · e−1
3 ) · e−1

2 extends 0 · e−1
3

(otherwise 0((n−1,m)→ (n,m)) would equal e−1
0 , causing 0 ·e0 to be a collapse

rather than an extension). It is then easy to verify that (0 ·e−1
3 ) ·e−1

2 and (0 ·e0) ·e1
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are the same since they glue together to form a flat connection on 0 and on the
square (n,m), (n+ 1,m), (n,m+ 1), (n+ 1,m+ 1).

Now suppose that 0 · e0 is an extension of 0, but that (0 · e0) · e1 is a collapse
of 0 · e0. Arguing as before, we conclude that 0((n,m − 1)→ (n,m)) equals e3,
and so 0 · e−1

3 is a collapse of 0; similarly, (0 · e−1
3 ) · e−1

2 cannot be a collapse of
0 · e−1

3 (this would force 0 · e0 to be a collapse also) and so is an extension. It is
again easy to verify that (0 · e−1

3 ) · e−1
2 and (0 · e0) · e1 are the same.

The remaining two cases (when 0 ·e0 is a collapse of 0, and (0 ·e0) ·e1 is either
an extension or collapse of 0 · e0) are similar to the preceding two, and are left to
the reader. �

This gives us a satisfactory explicit description of a square group:

Corollary B.10. Let � be a square group. Then the definite integral map 0 7→ |0|
is a bijection from O to G�; thus every group element has a unique representation
as the definite integral of a maximal reduced flat connection.

Proof. The surjectivity of this map was already established in the discussion after
Definition B.3, so it suffices to establish the injectivity. We will establish this via
the identity 0 =∅ · |0| for all for all 0 ∈ O, where ∅ is the trivial flat connection
over the monotone region {(0, 0)} from (0, 0) to (0, 0). This identity shows that 0
can be reconstructed from |0|, demonstrating injectivity.

Let � be the domain of 0, which by definition is a monotone region from (0, 0)
to some point (n,m). Let γ be some monotone path in � from (0, 0) to (n,m)
(for example, one could take γ to be the upper or lower boundary of �). We label
the vertices of γ in order as (0, 0) = (i0, j0), (i1, j1), . . . , (in+m, jn+m) = (n,m).
From definition of |0|, we see that

|0| = 0((i0, j0)→ (i1, j1))0((i1, j1)→ (i2, j2)) · · ·0((in+m−1, jn+m−1)

→ (in+m, jn+m)).

For each 0 ≤ k ≤ n +m, defined �k to be the portion of � that is in the region
{(i, j) : i ≤ ik, j ≤ jk}; thus �k is a monotone region from (0, 0) to (ik, jk) that
is increasing in k. Let 0k be the restriction of 0 to �k . Since 0 was maximal and
reduced, each of the 0k is also. Since 0n+m = 0, it will suffice to establish that

0k =∅ ·0((i0, j0)→ (i1, j1))0((i1, j1)→ (i2, j2)) · · ·0((ik−1, jk−1)→ (ik, jk))

for all 0≤ k≤ n+m. But this is easily established by induction (the reduced nature
of the 0k is necessary to avoid the collapse case in Definition B.7). �

As a consequence of this corollary, we can distinguish any two elements in G�

from each other as long as we can express them as the definite integrals of distinct
maximal reduced flat connections.
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Applications. We now specialise the abstract group-theoretic machinery above to
the application at hand. We begin with a proposition that will be used to show
nonconvergence of quadruple recurrence (Theorem 2.1).

Proposition B.11 (independence of AP4 relations). Let A ⊂ Z be a (possibly
infinite) set of integers. Then there exist a group G with elements e0, e1, e2, e3,
together with an automorphism T : G→ G, such that for r ∈ N, the relation

(32) e0(T r e1)(T 2r e2)(T 3r e3)= id

holds if and only if r ∈ A. Furthermore, no power T k of T with k 6= 0 has any fixed
points other than the identity element id.

Remark B.12. Informally, this proposition asserts that the algebraic relations (32)
for various r ∈ Z are independent of each other. In contrast, with progressions of
length three (that is, in the case k=3) the analogous relations are highly degenerate.
Indeed, suppose that

(33) e0(T r e1)(T 2r e2)= id

for all r ∈ A. Then if r, r + h lie in A, we have

e0(T r e1)(T 2r e2)= e0(T r T he1)(T 2r T 2he2),

which we can rearrange as (T he−1
1 )e1 = T r ((T 2he2)e−1

2 ). If r , r + h, r ′, r ′+ h lie
in A, we thus have

T r ((T 2he2)e−1
2 )= T r ′((T 2he2)e−1

2 ).

Assuming that T r ′−r has no fixed points, we conclude that (T 2he2)e−1
2 is the iden-

tity; assuming that T 2h has no fixed points either, we conclude that e2 is the identity.
Similar arguments can be used to show that e0 and then e1 are also the identity.
Thus the relations (33) and the no-fixed-points hypothesis lead to a total collapse
of the group generated by e0, e1, e2 as soon as A contains even a single nontrivial
parallelogram r, r + h, r ′, r ′ + h. (A variant of this argument also shows that if
(33) is obeyed for r and r + h, then it is also obeyed for r + 2h even without
the fixed point hypothesis.) This algebraic distinction between triple recurrence
and quadruple recurrence can be viewed as the primary reason why recurrence
and convergence results continue to hold for triple products, but not for quadruple
products even under the assumption of ergodicity (which is reflected here in the
no-fixed-points assumption).

Proof. We let G be the group generated by the generators ei,n for i = 0, 1, 2, 3 and
n ∈ Z, subject to the relations

e0,ne1,n+r e2,n+2r e3,n+3r = id for all n ∈ Z and r ∈ A.
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Since the set of such relations is invariant under the shift ei,n 7→ ei,n+1, we see that
we can define an automorphism T : G→ G by setting T ei,n := ei,n+1. If we then
set ei := ei,0, it is clear that (32) holds for all r ∈ A.

To see that (32) fails for r 6∈ A, we note that G can be viewed as a square
group, with horizontal generators {ei,n : i = 0, 2; n ∈ Z} and vertical generators
{ei,n : i = 1, 3; n ∈Z} and square relations � made of (e0,n, e1,n+r , e2,n+2r , e3,n+3r )

and its cyclic permutations for all n ∈ Z and r ∈ A; note that the crucial unique
continuation property follows from the basic observation that an arithmetic pro-
gression is determined by any two of its elements (“two points determine a line”).
If n ∈ Z and r 6∈ A, one sees that the connection on the path of length four from
(0, 0) to (2, 2) associated to the word e0,ne1,n+r e2,n+2r e3,n+3r is already a maximal
reduced flat connection (as none of the three squares that share two edges with the
path can be completed to a square from �) and so by Corollary B.10, its definite
integral e0,ne1,n+r e2,n+2r e3,n+3r is not equal to the identity, as required.

Finally, to show that T k has no nontrivial fixed points, one simply observes that
T k will shift any nontrivial maximal reduced flat connection to a different maximal
reduced flat connection, and then invokes Corollary B.10 again. �

Next, we establish a variant that is useful for showing negative averages for
quintuple recurrence (Theorem 2.12).

Proposition B.13 (independence of AP5 relations). There exists a group G with
distinct elements e0, e1, e2, e3, e4, together with an automorphism T :G→G, such
that the relation

(34) e0(T r e1)(T 2r e2)(T 3r e3)(T 4r e4)= id

holds for all r ∈Z. Furthermore, no power T k of T with k 6= 0 has any fixed points
other than the identity element id. Finally, if r ∈ Z is nonzero, and

g0, g1, g2, g3, g4 ∈ {id, e0, e1, e2, e3, e4, e−1
0 , e−1

1 , e−1
2 , e−1

3 , e−1
4 }

are such that

(35) g0(T r g1)(T 2r g2)(T 3r g3)(T 4r g4)= id,

then g0, g1, g2, g3, g4 are either equal to the identity, or are a permutation of
{e0, e1, e2, e3, e4} or of {e−1

0 , e−1
1 , e−1

2 , e−1
3 , e−1

4 }.

Proof. For each i = 0, 1, 2, 3, 4, we define G(i) to be the group generated by the
generators e(i)j,n for j ∈ {0, 1, 2, 3, 4} \ {i} and n ∈ Z subject to the relations

(36) e(i)0,ne(i)1,n+r e(i)2,n+2r e(i)3,n+3r e(i)4,n+4r = id for all n, r ∈ Z,

with the convention that e(i)i,n = id for all n. This group has an automorphism
T (i)
: G(i)

→ G(i) that maps e(i)j,n to e(i)j,n+1 for all n.
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We now set G to be the product group G := G(0)
×G(1)

× · · ·×G(4), and set

e j := (e
(0)
j,0, e(1)j,0, . . . , e(4)j,0) for j = 0, 1, 2, 3, 4.

We also set

T (g(0), g(1), . . . , g(4)) := (T (0)g(0), T (1)g(1), . . . , T (4)g(4));

thus T is an automorphism on G. By construction it is clear that (34) holds. Also,
by the arguments in Proposition B.11, no nonzero power of T (i) has any nontrivial
fixed points, and so the same is also true of T .

Now we establish the final claim of the proposition. Suppose g0, . . . , g4 obey
the stated properties. Let i = 0, 1, 2, 3, 4, and let g(i)j be the G(i) component of g j

for j = 0, 1, 2, 3, 4; thus

(37) g(i)0 ((T
(i))r g(i)1 )((T

(i))2r g(i)2 )((T
(i))3r g(i)3 )((T

(i))4r g(i)4 )= id .

From the construction of G(i), we see that for any distinct j, k ∈ {0, 1, 2, 3, 4}\{i},
there is a homomorphism φ

(i)
j,k : G(i)

→ Z to the additive group Z mapping e(i)j,n
to+1, e(i)k,n to−1, and all other e(i)l,n to zero for n ∈Z and l ∈ {0, 1, 2, 3, 4}\{i, j, k}
(note that these requirements are compatible with the defining relations (36)). This
homomorphism is T (i) invariant. Applying this homomorphism to (37), we obtain∑4

l=0 φ
(i)
j,k(g

(i)
l )= 0.

In other words, the number of times gl for l = 0, 1, 2, 3, 4 equals e j , minus
the number of times it equals e−1

j , is equal to the number of times gl equals ek ,
minus the number of times it equals e−1

k . Letting j, k, i vary, we thus see that this
number is independent of j . It is easy to see that this number cannot exceed 1 in
magnitude, and if it is equal to+1 or−1, then g0, g1, g2, g3, g4 is a permutation of
{e0, e1, e2, e3, e4} or of {e−1

0 , e−1
1 , e−1

2 , e−1
3 , e−1

4 }, respectively. (Note that this argu-
ment also ensures that e0, e1, e2, e3 and e4 are distinct.) The remaining possibility
to eliminate is when this number is zero, thus each ei occurs in g0, g1, g2, g3, g4 as
often as e−1

i . Suppose for instance that g0, g1, g2, g3, g4 contains one occurrence
each of e0, e−1

0 , e1, e−1
1 . Applying (37) with i = 4 (say), and then applying the

homomorphism that maps e(4)0,n to zero, e(4)1,n to n, e(4)2,n to−2n, and e(4)3,n to n (here we
use the identity (n+r)−2(n+2r)+(n+3r)=0 to ensure consistency with (36)), we
obtain a contradiction. We argue similarly if g0, g1, g2, g3, g4 contains any other
combination of one or two distinct pairs e j , e−1

j . The remaining case to eliminate is
if g0, g1, g2, g3, g4 contains e j and e−1

j twice each for some j , say j = 0. Applying
(37) with i = 4 again, we can use Corollary B.10 to contradict (37), since the right
side is a definite integral of a maximal flat connection on a horizontal path of length
four. We argue similarly for other values of j , and the claim follows. �
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PRINCIPAL CURVATURES OF FIBERS
AND HEEGAARD SURFACES

WILLIAM BRESLIN

We study principal curvatures of fibers and Heegaard surfaces smoothly
embedded in hyperbolic 3-manifolds. It is well known that a fiber or a Hee-
gaard surface in a hyperbolic 3-manifold cannot have principal curvatures
everywhere less than one in absolute value. We show that given an upper
bound on the genus of a minimally embedded fiber or Heegaard surface and
a lower bound on the injectivity radius of the hyperbolic 3-manifold, there
exists a δ > 0 such that the fiber or Heegaard surface must contain a point
at which one of the principal curvatures exceeds 1 + δ in absolute value.

1. Introduction

The principal curvatures of a surface or lamination smoothly embedded in a hy-
perbolic 3-manifold are related to the topology of the surface and the 3-manifold.
For example in [Breslin 2010] we show that incompressible surfaces and strongly
irreducible Heegaard surfaces embedded in hyperbolic 3-manifolds can always be
isotoped to a surface with principal curvatures bounded in absolute value by a fixed
constant that does not depend on the surface or the 3-manifold. In [Breslin 2009]
we show that laminations in hyperbolic 3-manifolds with principal curvatures ev-
erywhere close to zero have boundary leaves with noncyclic fundamental group and
that laminations in hyperbolic 3-manifolds with principal curvatures everywhere
in the interval (−1, 1) have boundary leaves with nontrivial fundamental group.

This note was motivated by a question about surfaces with principal curvatures
near the interval (−1, 1). It is well known that a closed orientable surface smoothly
embedded in a finite-volume complete hyperbolic 3-manifold with principal curva-
tures everywhere in the interval (−1, 1) is incompressible and lifts to a quasiplane
in H3 (see [Thurston 1979] or [Leininger 2006] for a proof). Thus Heegaard
surfaces and fibers in hyperbolic 3-manifolds cannot have principal curvatures
everywhere in the interval (−1, 1). We are interested in finding obstructions to
isotoping Heegaard surfaces and fibers in hyperbolic 3-manifolds to have principal

This work was partially supported by the NSF RTG grant 0602191.
MSC2000: 57M50.
Keywords: hyperbolic manifold, Heegaard surface, fiber, principal curvatures.
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curvatures close to the interval (−1, 1). See [Rubinstein 2005] or [Krasnov and
Schlenker 2007] for more on surfaces in hyperbolic 3-manifolds with principal
curvatures in the interval (−1, 1).

It follows from work of Freedman, Hass, and Scott [Freedman et al. 1983] that
an incompressible surface in a closed Riemannian 3-manifold can be isotoped to
a minimal surface. It follows from work of Pitts-Rubinstein that a strongly irre-
ducible Heegaard surface in a closed Riemannian 3-manifold can be isotoped to
either a minimal surface or the boundary of a regular neighborhood of a minimal
surface (see [Rubinstein 2005] for a sketch of the proof). We show that given an
upper bound on the genus of a minimally embedded fiber or Heegaard surface and
a lower bound on the injectivity radius of the hyperbolic 3-manifold, there exists
a δ > 0 such that the fiber or Heegaard surface must contain a point at which one
of the principal curvatures is greater than 1+ δ in absolute value.

Theorem 1. For each g ≥ 2, ε > 0, there exists δ := δ(g, ε) such that if S is a
genus g minimally embedded fiber in a closed hyperbolic mapping torus M with
inj(M) > ε, then S contains a point at which one of the principal curvatures is at
least 1+ δ in absolute value.

Theorem 2. For each g ≥ 2, ε > 0, there exists δ := δ(g, ε) such that if S is a
genus g minimally embedded Heegaard surface in a closed hyperbolic 3-manifold
M with inj(M)>ε, then S contains a point at which one of the principal curvatures
is at least 1+ δ in absolute value.

The proofs of Theorem 1 and Theorem 2 both use geometric limit arguments.
Assuming that no such δ > 0 exists, we consider a sequence of hyperbolic 3-
manifolds as in the statement with minimally embedded fibers or Heegaard surfaces
whose principal curvatures are closer and closer to the interval [−1, 1]. After possi-
bly passing to a subsequence, the sequence of manifolds converges geometrically to
a hyperbolic 3-manifold M and the surfaces converge to an incompressible surface
S in M with principal curvatures everywhere in the interval [−1, 1]. This implies
that the limit set of a lift of S to H3 is a proper subset of ∂H3. In either case, we
show that the cover of M corresponding to the image of π1(S) in π1(M) has a
doubly degenerate hyperbolic structure contradicting that the limit set of a lift of
S to H3 is a proper subset of ∂H3.

2. Preliminaries

Let M be a hyperbolic 3-manifold with no cusps and finitely generated fundamental
group. By a result of Scott, M has a compact core which is a compact submanifold
C of M whose inclusion into M is a homotopy equivalence. The connected com-
ponents of M \C are called the ends of M . It follows from the positive solution of
the tameness conjecture by Agol [2004] and by Calegari and Gabai [2006] that an
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end of M is homeomorphic to 6×[0,∞) where 6 is a closed orientable surface.
The convex core, CC(M), of M is the smallest convex submanifold of M whose
inclusion is a homotopy equivalence. An end E of M is convex-cocompact if
E ∩CC(M) is compact and E is degenerate otherwise. Given a closed orientable
surface 6 of genus greater than one, a hyperbolic structure on 6 × R such that
both ends are degenerate is called doubly degenerate.

A sequence of pointed hyperbolic n-manifolds (Mi , pi ) converges geometrically
to the pointed hyperbolic n-manifold (M, p) if for every sufficiently large R and
each ε > 0, there exists i0 such that for every i ≥ i0, there is a (1+ ε)-bilipschitz
pointed diffeomorphism κi : (B(p, R), p)→ Mi , where B(p, R) ⊂ M is the ball
of radius R centered at p and B(pi , R)⊂ Mi is the ball of radius R centered at pi .
We call the maps κi almost isometries.

We will use the fact that minimal surfaces have bounded diameter in the presence
of a lower bound on injectivity radius. See [Rubinstein 2005] or [Souto 2007] for
more on minimal surfaces in hyperbolic 3-manifolds.

Lemma 1. Let S be a connected minimal surface in a complete hyperbolic 3-
manifold M with inj(M)≥ ε. Then the diameter of S is at most 4|χ(F)|/ε+ 2ε.

We will also use the following Lemma in the proofs of Theorems 1 and 2.

Lemma 2. If S is a closed orientable surface smoothly immersed with principal
curvatures everywhere in the interval [−1, 1] in a complete hyperbolic 3-manifold
M with no cusps, then the limit set of a lift of S to H3 is a proper subset of ∂H3.

Proof. Let S̃ be a lift of S to H3. Assume that S̃ is not a horosphere, as otherwise
we are done. Thus the principal curvatures of S cannot be everywhere equal to 1
or everywhere equal to −1. If the principal curvatures at every point of S are −1
and 1, then there is a pair of line fields defined on the entire surface, implying that
S is a torus. Since closed surfaces in M with all principal curvatures in [−1, 1] are
incompressible and M has no cusps, S cannot be a torus. Thus there is a point p
in S̃ at which one of the principal curvatures is in (−1, 1). Assume that the other
principal curvature at p is in [−1, 1). Let H be a horosphere tangent to S̃ at p. Use
an upper half space model of H3 in which H is a horizontal plane and S̃ is below
H . Let l be a simple loop in S̃ which contains p such that the principal curvatures
at each point on l are in [−1, 1) with at least principal curvature in (−1, 1). At
each point x in l, let Hx be the horosphere above S̃ tangent to S̃ at x . For each x in
l, let cx ∈ ∂H3 be the center of the horosphere Hx . The set of points C = {cx |x ∈ l}
forms a closed curve in ∂H3. Since the principal curvatures of S̃ are everywhere
in the interval [−1, 1], S̃ cannot transversely intersect any of the horospheres Hx .
Thus, the limit set of S̃ cannot cross the closed curve C , so that the limit set of S̃
is a proper subset of ∂H3. �
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It is well-known that the limit set of a lift to H3 of a fiber 6 in a doubly degen-
erate hyperbolic 6×R is the entire boundary ∂H3. By Lemma 2, such a fiber 6
cannot be smoothly embedded with principal curvatures everywhere in the interval
[−1, 1].

3. Principal curvatures of fibers

In the proof of Theorem 1, we will use the following fact about geometric limits
of hyperbolic mapping tori.

Theorem. Let (Mi , pi ) be a sequence of pairwise distinct pointed hyperbolic map-
ping tori with genus g fibers and inj(Mi ) > ε for all i . Then a subsequence
of (Mi , pi ) converges geometrically to a pointed hyperbolic 3-manifold (M, p)
homeomorphic to 6×R where 6 is a closed genus g surface and M has a doubly
degenerate hyperbolic structure.

Proof of Theorem 1. Suppose, for contradiction, that Theorem 1 does not hold.
Then there exists a sequence of hyperbolic mapping tori (Mi ) with inj(Mi ) > ε

such that Mi has a genus g minimal surface fiber with principal curvatures less than
1+ 1/ i in absolute value. For each i , let pi be a point in Si . By Theorem A the
sequence (Mi , pi ) has a subsequence, say the entire sequence, which converges to a
doubly degenerate pointed hyperbolic 3-manifold (M, p) homeomorphic to 6×R

where6 is a genus g closed surface. By Lemma 1, the diameters of the surfaces Si

are uniformly bounded. Thus we can find a compact subset K of M homeomorphic
to 6×[−1, 1] such that for i large enough, say for all i , Si is contained in κi (K ).
The surface S :=6×{0} in M is isotopic to κ−1

i (Si ) for each i . Since the surfaces
κ−1

i (Si ) have bounded area and curvature, a subsequence converges to a smoothly
immersed surface with principal curvatures in [−1, 1] which is homotopic to S.
Lemma 2 implies that the limit set of a lift of S to H3 is a proper subset of ∂H3,
contradicting the fact that M is doubly degenerate. �

4. Principal curvatures of Heegaard surfaces

In the proof of Theorem 2, we will use the following fact about geometric limits.

Theorem. Every sequence (Mi , pi ) of pointed hyperbolic 3-manifolds such that
inj(Mi , pi ) is bounded away from 0 has a geometrically convergent subsequence.

Lemma 3 [Souto 2006, Lemma 2.1]. Let (Mi ) be a sequence of hyperbolic 3-
manifolds converging to a hyperbolic manifold M. Assume that there is a compact
subset K ⊂ M such that for all sufficiently large i the homomorphism π1(K )→
π1(Mi ) provided by geometric convergence is surjective. Then, if the cover of M
corresponding to the image of π1(K ) into π1(M) has a convex-cocompact end, so
does Mi for all but finitely many i .
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Proof of Theorem 2. Suppose for contradiction that Theorem 2 does not hold. Then
there exists a sequence (Mi ) of closed hyperbolic 3-manifolds with inj(Mi ) > ε

such that Mi has a genus g minimal Heegaard surface Si with principal curvatures
less than 1+1/ i in absolute value. For each i let pi be a point in Si . By Theorem
B the sequence (Mi , pi ) has a convergent subsequence, say the entire sequence,
which converges geometrically to a pointed hyperbolic 3-manifold (M, p). By
Lemma 1, the diameters of the surfaces Si are uniformly bounded. Thus each
Mi contains a compact subset Ki homeomorphic to Si × [−1, 1] with uniformly
bounded diameter. For i large enough the pull-back κ−1

i (Ki ) of Ki through the
almost isometries provided by geometric convergence are embedded compact sub-
sets homeomorphic to 6 × [−1, 1] where 6 is a closed surface of genus g. For
i large enough the surfaces κ−1

i (Si ) are all isotopic to a fixed embedded genus g
surface S in M . Since the surfaces κ−1

i (Si ) have bounded area and curvature, a
subsequence converges to a smoothly immersed surface with principal curvatures
in [−1, 1] which is homotopic to S. Thus the surface S is incompressible in M
and by Lemma 2 the limit set of a lift of S to H3 is a proper subset of ∂H3.

To arrive at a contradiction we will show that the cover of M corresponding
to the image of π1(S) into π1(M) is doubly degenerate, implying that the limit
set of a lift of S to H3 is all of ∂H3. For i large enough κi (S) is isotopic to the
Heegaard surface Si in Mi , so that the homomorphism (κi )∗ : π1(S)→ π1(Mi )

provided by geometric convergence is surjective. By Lemma 3, if the cover of M
corresponding to the image of π1(S) into π1(M) has a convex-cocompact end, so
does Mi for all but finitely many i . Since each Mi is closed we have that the cover
of M corresponding to the image of π1(S) into π1(M) cannot have a convex-
cocompact end. Thus the cover of M corresponding to the image of π1(S) into
π1(M) is doubly degenerate contradicting the fact that S is isotopic to a surface
with principal curvatures everywhere in [−1, 1]. �
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SELF-IMPROVING PROPERTIES OF INEQUALITIES OF
POINCARÉ TYPE ON s-JOHN DOMAINS

SENG-KEE CHUA AND RICHARD L. WHEEDEN

We derive weak- and strong-type global Poincaré estimates over s-John
domains in spaces of homogeneous type. The results show that Poincaré
inequalities over quasimetric balls with given exponents and weights are
self-improving in the sense that they imply global inequalities of a similar
kind, but with improved exponents and larger classes of weights. The main
theorems are applications of a geometric construction for s-John domains
together with self-improving results in more general settings, both derived
in our companion paper J. Funct. Anal. 255 (2008), 2977–3007. We have
reduced our assumption on the principal measure µ to be just reverse dou-
bling on the domain instead of the usual assumption of doubling. While the
primary case considered in the literature is p ≤ q, we will also study the
case 1 ≤ q < p.

0. Introduction

This is a companion paper to [Chua and Wheeden 2008], where we established the
self-improving nature of Poincaré inequalities over domains in general measure
spaces. The self-improving nature of Poincaré estimates was observed initially by
Saloff-Coste [1992] in the setting of Riemannian manifolds and has been exten-
sively studied in other general settings; see examples in [Chua and Wheeden 2008].
The main goal of this paper is to apply our previous results to derive global Poincaré
estimates on s-John domains (see Definition 1.2) in spaces of homogeneous type
for reverse doubling measures (see Definition 1.4) instead of the usual doubling
measures; see [Franchi et al. 1998; 2003].

The notion of an s-John domain was introduced by Smith and Stegenga [1990],
while the terminology John domain introduced by Martio and Sarvas [1979]. John
domains are the same as s-John domains in case s = 1. In spaces of homogeneous
type with the segment (geodesic) property, John domains are the same as Boman
domains; see [Buckley et al. 1996]. It is easy to see that bounded Lipschitz domains
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Keywords: global Poincaré estimates, domains with cusps, δ-doubling, reverse doubling,

power-type weights, quasimetric spaces.
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(including all bounded domains with smooth boundaries) and bounded domains
that satisfy the interior cone condition are John domains. When s > 1, the notion
of an s-John domain is a generalization of that of a John domain, a weakening
of requirements relative to the case s = 1 in order to accommodate domains with
rougher boundaries. Some examples of s-John domains in case s > 1 are given in
[Hajłasz and Koskela 1998]. There have been many studies concerning (bounded)
John domains; see for example [Buckley and Koskela 1995; Chua 2001; Acosta
et al. 2006] and references therein. Results for John domains have also been gen-
eralized in [Hurri-Syrjänen 2004; Väisälä 1994; Chua 2009] to “unbounded John
domains” or “generalized John domains”. On the other hand, for bounded convex
domains, sharp estimates have been obtained in [Chua and Wheeden 2006; Chua
and Duan 2009; Chua and Wheeden 2010]

One of our main goals in this paper is to extend the following Poincaré estimate
for s-John domains stated in [Kilpeläinen and Malý 2000, Theorem 2.3].

Theorem A. Suppose that � ⊂ Rn is an s-John domain. Let a, b, p, q be real
numbers that satisfy

a ≥ 0, b ≥ 1− n, 1≤ p < q <∞, 1/q ≥ 1/p− 1/n

and

(0-1)
1
q
≥

s(n+ b− 1)− p+ 1
(n+ a)p

.

Then there is a constant C = C(n, a, b, p, q, �) > 0 such that

(0-2) ‖ f − f�,ρadx‖Lq
ρa dx (�)

≤ C‖∇ f ‖
L p
ρbdx

(�)
for all f ∈ C1(�),

where ρ(x)= dist(x, �c) and f�,ρadx =
∫
�

f (x)ρ(x)adx
/ ∫

�
ρ(x)adx.

The assumption that f ∈ C1(�) in Theorem A does not automatically imply
that the norm on the right side of (0-2) or the average f�,ρadx on the left side is
finite. However, as we shall see in Theorem 1.12, (0-2) holds under the weaker
hypothesis that f ∈ Liploc(�), that is, it holds for all f that are locally Lipschitz
continuous on �, provided the average on the left side is replaced by the average
|B ′|−1

∫
B ′ f (x)dx over a “central” ball B ′ ⊂�, which is always finite for such f .

If f ∈ Liploc(�) and the right side of (0-2) is finite, it follows that f ∈ Lq
ρadx(�),

and then f�,ρadx is finite and it is possible to replace the average over the central
ball by this average in (0-2). The inequality (0-2) was also proved in [Hajłasz and
Koskela 1998] except that when p> 1, they required strict inequality in (0-1). The
necessity of the conditions 1/q ≥ 1/p−1/n and 1+ (n+a)/q− (n+b)/p ≥ 0 is
easy to see as usual by considering Lipschitz functions that vanish outside balls in
�; see [Chua and Duan 2009, Final Remark]. Condition (0-1) is sharp too as can
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be seen by considering mushroom-like domains; see [Hajłasz and Koskela 1998]
for details. On the other hand, for special s-John domains such as s-cusp domains,
condition (0-1) can be relaxed; see Theorem 1.14 for an estimate of this kind.

In this paper, we will apply results from [Chua and Wheeden 2008], where we
use a different approach from those in [Hajłasz and Koskela 1998] and [Kilpeläinen
and Malý 2000] to obtain self-improving properties of Poincaré-type inequalities
in measure spaces. The approach modifies one used in [Franchi et al. 2003]. We
now apply the outcome to derive global Poincaré inequalities on s-John domains�
(including 1-John domains) in spaces of homogeneous type and for measures that
are doubling, δ-doubling or just reverse doubling on �; see Definition 1.4. The
notions of δ-doubling and doubling on � are equivalent on 1-John domains. We
note that power-type weights of the form dist(x, �0)

a , with a≥ 0 and�0⊂�
c, are

examples of δ-doubling measures. We are also able to prove Theorem A without
the assumption b ≥ 1− n. Moreover, we will consider the case 1≤ q ≤ p.

1. Definitions and main results

Definition 1.1. A pair 〈H, d〉 is a quasimetric space if d is a quasimetric on the
set H , that is, if there exists a constant κ such that for all x, y, z ∈ H ,

(1) d(y, x)= d(x, y) is positive if x 6= y and vanishes if x = y, and

(2) d(x, y)≤ κ(d(x, z)+ d(y, z)).

For a quasimetric space 〈H, d〉, any x ∈ H and r > 0, we write

B(x, r)= {y ∈ H : d(x, y) < r}

and call B(x, r) the ball with center x and radius r . If B = B(x, r) is a ball and c
is a positive constant, we use cB to denote B(x, cr). If B is a ball, we use r(B)
and xB to denote the radius and center of B.

Definition 1.2. Let 〈H, d〉 be a quasimetric space. Fix �⊂ H , and for x ∈ H , set

d(x)= dist(x, �c)= inf
y∈�c

d(x, y).

Let φ be a strictly increasing function on [0,∞) such that φ(0) = 0 and φ(t) < t
for all t >0. We say that� is a φ-John domain with central point (or center) x ′ ∈�
if for all x ∈ � with x 6= x ′, there is a curve γ : [0, l] → � such that γ(0) = x ,
γ(l)= x ′,

d(γ(b), γ(a))≤ b− a for all [a, b] ⊂ [0, l], and(1-1)

d(γ(t)) > φ(t) for all t ∈ [0, l].(1-2)

If � is a φ-John domain for the function φ = φs defined by φs(t) = cs t s for
t ≤ 1 and φs(t) = cs t for t > 1, with s ≥ 1, we say � is an s-John domain. We
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may assume that 0 < cs < 1. This definition is essentially the same as those by
Smith and Stegenga [1990] and Hajłasz and Koskela [1998], who instead assume
that φs(t) = c0t s for some c0 > 0 and all t ≥ 0. For any M > 1, we will write
JM(t)= t/M . As M varies, the class of JM -John domains is the same as the class
of 1-John domains. If � is a JM -John domain for some M , then we will refer to
M as the 1-John constant of �.

Note that (1-2) implies that d(x) > 0 for all x ∈�.

Definition 1.3. Let 〈H, d〉 be a quasimetric space. Given � ⊂ H and δ > 0, we
say that a ball B(x, r) is a δ-ball if x ∈ � and 0 < r ≤ δd(x). Balls of the form
B(x, r) with x ∈� and r = δd(x) will be called δ-Whitney balls.

Some useful properties of δ-balls are listed in Observation 2.1 in the next section.
See also [Sawyer and Wheeden 2006], where such balls play a role in proving
regularity of solutions of subelliptic equations.

For technical reasons (see, for example, the proof of Observation 2.1), whenever
we consider δ-balls, we will always assume that 0 < δ < 1/(2κ2), where κ is the
quasimetric constant in Definition 1.1. We note now that the weaker restriction
0 < δ < 1/κ guarantees that every δ-ball is contained in �. In fact, let x ∈ � and
B(x, r) be a δ-ball with κδ < 1. If y ∈ B(x, r), then

d(x)≤ κ(d(x, y)+ d(y)) < κ(r + d(y))≤ κ(δd(x)+ d(y)).

Hence, d(y) > [(1/κ)− δ]d(x). In particular, d(y) > 0 and therefore y ∈�.
We next define what we mean by δ-doubling, doubling and reverse doubling.

Definition 1.4. Let 〈H, d〉 be a quasimetric space. A nonnegative finite functional
σ defined on balls in H , that is, σ : {B : B is a ball in H }→ [0,∞), will be called
a ball set function (or a set function on balls). In practice, given � ⊂ H , we will
only consider balls B with xB ∈� and r(B)≤ diam(�), where diam(�) is defined
using the quasimetric d. Given�⊂ H , 0<δ < 1/(2κ2), and a ball set function σ ,
we say that σ is δ-doubling on � if there are positive constants Aσ and Dσ such
that for all δ-balls B(x, r) in �,

σ(B(x, r̃))
σ (B(x, r))

≤ Aσ
( r̃

r

)Dσ

for all 0< r < r̃ ≤ diam(�).

If this inequality holds for all balls with center in � and r̃ ≤ diam(�), we say
that σ is doubling on�. If σ is also a measure1 on�, we say that σ is a δ-doubling
measure or doubling measure on �. Note that this definition is equivalent to the
one in [Chua and Wheeden 2008, Definition 1.7]. In case σ is a ball set function or
measure and there is a constant C such that σ(2B)≤ Cσ(B) for all balls B ⊂ H ,

1Except in Theorem B below, we will assume that all measures are defined on a fixed σ -algebra
that contains all balls.



INEQUALITIES OF POINCARÉ TYPE ON s-JOHN DOMAINS 71

we say simply that σ is doubling instead of doubling on H . Moreover, we say that
σ is reverse doubling on � if there exist A, D > 0 such that

(1-3)
σ(B(x, r))
σ (B(x, r̃))

≤ A
(r

r̃

)D
for all x ∈�, with 0< r < r̃ ≤ diam(�).

Björn and Shanmugalingam [2007] gave a similar definition of doubling on �.
Some properties of δ-doubling ball set functions are given in Proposition 2.2.

If B(x, r)\ B(x, r ′) 6=∅ for all 0< r ′< r , x ∈ H , we say the quasimetric space
satisfies the nonempty annuli property in H . Similarly, we say that a set�⊂ H has
the nonempty annuli property if (�∩ B(x, r))\ B(x, r ′) 6=∅ for all 0< r ′< r and
x ∈� for which � is not a subset of B(x, r ′). A doubling measure on � satisfies a
reverse condition of the same type provided � has the nonempty annuli property;
this is similar to a fact from [Wheeden 1993, page 269].

We say that a family of balls (or cubes in the usual Euclidean case) has bounded
intercepts if there exists a constant N such that each ball in the family intersects at
most N other balls in the family. Such a family also has bounded overlaps in the
pointwise sense since no point belongs to more than N + 1 balls in the family.

Given an s-John domain with central point x ′ and a number M > 1, we distin-
guish two types of points x , depending on whether or not x can be connected to x ′

by a curve satisfying the JM -John condition:

Definition 1.5. Let M > 1 and � be an s-John domain with central point x ′. Let
�M

g be the set of points x in� such that there is γx : [0, lx ]→� such that γx(0)= x
and γx(lx)= x ′, and

d(γx(t1), γx(t2))≤ |t1− t2| for t1, t2 ∈ [0, lx ],

d(γx(t)) > JM(t) for all t ∈ [0, lx ].

We will say points in �M
g are M-good points of �, and points in � \�M

g = �
M
[

are M-bad points of �. Note that if �M
g =�, then � is a 1-John domain.

A nonempty subset �0 of �c will be said to confine the M-bad points of � if
there exists a constant M > 0 such that

(1-4) sup
x∈�M

[

sup
t∈[0,lx ]

d(γx(t),�0)/d(γx(t))≤ M .

Note that (1-4) is the same as d(B, �0) ≤ C(κ, δ)Mr(B) for all x ∈ �M
[ and all

δ-Whitney balls B with center along the s-John curve that connects x to x ′.

Similar definitions can be given for φ-John domains.
In case � is a 1-John domain, there exists M > 1 such that �M

g = �, and
hence any nonempty set �0 ⊂ �c confines the M-bad points of �. For any
s-John domain, the choice �0 = �c confines all the M-bad points of �, and
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d(B, �c)≤ d(xB)= δ
−1r(B) for any δ-Whitney ball B. Moreover, in case�⊂Rn

with the usual Euclidean metric, we will show in the proof of Theorem 1.12 that
if there exists ε > 0 such that �0 ⊃ ∂�∩ (

⋃
x∈�M

[
B(x, ε)), then �0 confines the

M ′-bad points of � for some M ′ ≥ M .
If � is an s-John domain and c is a positive constant, then any point x ∈� with

d(x)≥ c is an M-good point for suitably large M depending only on c, κ , s and cs ;
the simple proof is given at the beginning of the proof of Theorem 1.12.

Before we state our first main theorem, we need to describe some chains of balls.
We say a measure µ satisfies the ratio condition (R) on � if there are constants
0<θ1<θ2< 1 and α≥ 2 such that for each x ∈�, there exists a strictly decreasing
sequence {r x

j } j∈N of positive real numbers such that

r x
j → 0, r x

1 = diam(�), r x
j /α < r x

j+1 < r x
j

and

(1-5) θ1 ≤
µ(B(x, r x

j+1))

µ(B(x, r x
j ))
≤ θ2 for all j .

It follows from (1-5) that µ(B(x, r x
j ))→ 0, and then the fact that r x

j → 0 is auto-
matic since r x

j decreases and we always assume that balls have positive µ-measure.
See parts (1) and (2) of Remark 1.7 for further comments about (1-5).

Next, given any δ < 1/(2κ2) and 1 ≤ τ < 1/(2δκ2), Proposition 2.3(c) implies
that for any φ-John domain �, there is a sequence of δ-balls {Qx

i }
∞

i=1 with centers
along the curve γ from x to x ′ guaranteed by the φ-John condition, such that
Qx

1 = B(x ′, δd(x ′)) and {Qx
i } has the intersection property

Qx
i ∩ Qx

i+1 contains a δ-ball Q′i with Qx
i ∪ Qx

i+1 ⊂ N Q′i

for some positive constant N independent of x and i . Moreover, Qx
i is centered at

x for large i ; in fact, for balls Bx
j = B(x, r x

j ) as in (1-5), there exist Kx , K ′x ∈ N

such that τQx
i+Kx
= Bx

i+K ′x
for i ≥ 0, Bx

j is a τδ-ball if j ≥ Kx , and Qx
i is not

centered at x if i ≤ Kx . We associate with each ball Bx
j = B(x, r x

j ) for j ≥ 1 the
following special subcollection of {Qx

i }:

(1-6) C(Bx
j )= Cφ(Bx

j )= {Q
x
i : τQx

i ⊂ Bx
j and τQx

i 6⊂ Bx
j+1}.

In case j ≥ Kx , the set C(Bx
j ) consists of just the single ball τ−1 Bx

j = Qx
j .

Our first self-improving result for s-John domains will be a consequence of a
general weak-type theorem [Chua and Wheeden 2008, Theorem 1.2]; this theorem,
which we now recall, is measure-theoretic and does not require the underlying
structure of an s-John domain or even of a quasimetric space. In it, the sets Qx

i and
Bx

j are merely measurable sets, generally unrelated to the balls of (1-5) and (1-6).
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Theorem B. Let σ and µ be measures on a σ -algebra 6 of subsets of X. Let �
be a measurable subset of X and f be a fixed measurable function such that the
following assumptions hold for some constants satisfying

0< p0, q <∞, 0< θ1 < θ2 < 1,

0< A1, A2 <∞, 0< θ < 1, Cσ ≥ 1, ℘ ≥ 1.

(1) For each x ∈ �, there is a sequence of measurable sets {Qx
i }
∞

i=1, depending
on x , and a fixed set B ′ ⊂ X such that Qx

1 = B ′,

(1-7) 0< σ(Qx
i ∪ Qx

i+1)≤ Cσσ(Qx
i ∩ Qx

i+1) <∞ for i = 1, 2, . . . ,

and

(1-8)
(

1
σ(Qx

i )

∫
Qx

i

| f − fQx
i
|

p0dσ
)1/p0

≤ a(Qx
i ),

where { fQx
i
} is a sequence of constants that converges to f (x) and {a(Qx

i )} is
a sequence of nonnegative numbers.

(2) For each x ∈�, there is a sequence {Bx
j }
∞

j=1 of measurable sets and a sequence
{µ∗(Bx

j )} of positive numbers such that

(1-9) µ(�)≤ ℘µ∗(Bx
1 ) and A1θ

k
1 ≤

µ∗(Bx
j+k)

µ∗(Bx
j )
≤ A2θ

k
2 for j, k ∈ N.

(3) Let F= {Bx
j }x∈�, j∈N. Assume for any Bx

j ∈ F, there is C(Bx
j )⊂ {Q

x
l }l∈N such

that
⋃

j∈N C(Bx
j ) = {Q

x
l }l∈N and C(Bx

i )∩C(Bx
j ) = ∅ for each x ∈ � when

i 6= j . Further, for any countable subcollection I of pairwise disjoint sets
{Bα} in F, let

A(Bα)=
∑

Q∈C(Bα)

a(Q)

and assume that

(1-10)
∑
Bα∈I

(
A(Bα)qµ∗(Bα)

)θ
≤ (Cq

0µ(�))
θ .

(4) Let the collection F be a cover of Vitali type of subsets of � with respect to
(µ,µ∗), that is, given any measurable set E ⊂ � and a collection BE =

{Bx
i(x) : x ∈ E}, there is a countable, pairwise disjoint collection B′E ⊂ BE

such that

µ(E)≤ Vµ
∑

Bα∈B′E

µ∗(Bα) and Vµ ≥ 1.
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Then

(1-11) sup
t>0

tµ{x ∈� : | f (x)− fB ′ |> t}1/q ≤ CC0
(
℘Vµµ(�)

)1/q
,

where C depends on Cσ , p0, q, A1, A2, θ, θ1 and θ2.

Note that [Chua and Wheeden 2008, Theorem 1.8] can be generalized by as-
suming that µ∗ satisfies condition (R) instead of (1.14) there. Of course, one must
change the B j in (1.15) there accordingly.

We now revert to the context of an s-John domain and to the choice of balls
made in (1-5) and (1-6). Our first self-improving result is as follows.

Theorem 1.6. Let � be an s-John domain with central point x ′ in a quasimetric
space 〈H, d〉. Let 0 < δ < 1/(2κ2), 1 ≤ τ < 1/(2δκ2) and M > 1. Suppose σ,µ
and w are measures, σ is δ-doubling on �, and a∗(B) is a nonnegative functional
defined for all δ-balls B. Let 0< p0 <∞ and 1≤ p<∞, and let f and g be fixed
measurable functions such that

(1-12) 1
σ(B)1/p0

‖ f − fB‖L
p0
σ (B)
≤ a∗(B)‖g‖L p

w(τ B)

for all δ-balls B in� with fB(x,r)→ f (x) as r→ 0 for µ-almost all x ∈�, that is,
such that (1-8) holds with a(B)=a∗(B)‖g‖L p

w(τ B) . Let�0 be a nonempty subset of
�c that confines (with constant M) the M-bad points of �. Set ρ(x)= d(x, �0),2

and for real numbers a and b, define measures µa and wb by dµa = ρ
adµ and

dwb = ρ
bdw. Let

ρ(�)= sup{ρ(x) : x ∈�}.

Suppose µ satisfies condition (R) on� and there are constants η, η′, β and β ′ with
β ′ ≥ 0 such that for all pairs of balls (B, Q) with B = Bx

j = B(x, r x
j ) as in (1-5)

and Q ∈ C(B),

(1-13) µ(B)1/qa∗(Q)≤ C1r(B)β
′

if either x ∈�M
g or B is any τδ-ball (then B = τQ), and

(1-14) µ(B)1/qa∗(Q)≤ C1r(B)η/qr(Q)β−η
′/p

if x ∈�M
[ and r(B)≥ τδd(x). Let a ≥ 0, η+ a ≥ 0, and

ε′ = β ′+
a
q
−

b
p
≥ 0,(1-15)

ε =
η+a

q
+min{χs, χ} ≥ 0 where χ =

s(βp−b−η′)−(s−1)(p−1)
sp

,(1-16)

2See Remark 3.2 concerning the choice of ρ(x) in our theorems.
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and χ > 0 if η + a = 0. Assume further that µa satisfies the following Vitali-
type condition (compare with condition (4) of Theorem B): given any measurable
set E ⊂ � and a collection BE = {Bx

j (x) : x ∈ E}, there is a countable pairwise
disjoint collection B′E ⊂BE such that

µa(E)≤ Va

∑
Bα∈B′E

µa(Bα) and Va ≥ 1.

(i) If p < q <∞, then

(1-17) sup
t>0

tµa{x ∈� : | f (x)− fB ′ |> t}1/q ≤ CC1

(
µa(�)

µa(B ′)

)1/q
‖g‖

L p
wb (�)

×

{
max{ρ(�)ε

′

, diam(�)ε} if χ 6= 0,
max{ρ(�)ε

′

, diam(�)ε(1+ |log diam(�)|)(p−1)/p
} if χ = 0,

where B ′ = B(x ′, δd(x ′)) and C depends on all parameters in the conditions but
is independent of ρ(�) and diam(�). If s = 1, neither (1-14) nor (1-16) is needed
(see Remark 1.7(3)), and the weak-type constant can be chosen to have the form

(1-18) CC1

(
µa(�)

µa(B ′)

)1/q
ρ(�)ε

′

.

Here C is also independent of M,M, η, η′ and β.

(ii) Suppose 1 ≤ q ≤ p and there exist M1,M2, η̃, η̃
′ > 0 such that for λ = κ +

2κ2 and all k ∈ Z, the number of disjoint balls B(x, r) with center x ∈ �M
[ and

r ≥ max{τδd(x), λk
} is at most M1λ

−η̃k , and the number of disjoint τδ-balls B
with r(B)≥ λk is at most M2λ

−η̃′k . If

(1-19) (p− q)η̃/(pq) < ε and (p− q)η̃′/(pq) <min{ε′, β ′},

then

(1-20) sup
t>0

tµa{x ∈� : | f (x)− fB ′ |> t}1/q ≤ CC1

(
µa(�)

µa(B ′)

)1/q
‖g‖

L p
wb (�)

,

where C depends on all parameters in the conditions and on diam(�) and ρ(�).

Remark 1.7. (1) When � satisfies the nonempty annuli property, condition (1-5)
will hold for r x

i = 2−i+1 diam(�) if we assume that µ is doubling on � since
the first inequality of (1-5) will then hold because of doubling, and the second
will hold since doubling implies reverse doubling; see [Chua and Wheeden 2008,
Proposition 2.3].

(2) Condition (R) is implied by weaker assumptions than doubling and nonempty
annuli. In fact, suppose µ is reverse doubling on�, and there exists 0<θ ′<1 such
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that for each fixed x ∈� and 0< r <diam(�), there exists r ′ with r < r ′<diam(�)
and

(1-21) θ ′µ(B(x, r ′))≤ µ(B(x, r)).

Then (R) holds for µ. Note that (1-21) is true for any θ ′<1 if µ(B(x, r)) is a right-
continuous function of r ≤ diam(�) for each fixed x in �; for Euclidean balls, this
is the case whenever µ is absolutely continuous with respect to Lebesgue measure.
To show that (R) holds, first choose α > 2 such that θ2 = Aα−D < 1, where A and
D are constants in (1-3). Note that µ(B(x, r/α))/µ(B(x, r)) ≤ θ2 for any x ∈ �
and 0< r ≤ diam(�) by (1-3). Fix any 0< θ1 < θ

′θ2 and define

r− = sup{t ∈ [r/α, r ] : µ(B(x, t))≤ θ2µ(B(x, r))},

r+ = inf {t ∈ [r/α, r ] : µ(B(x, t))≥ (θ1/θ
′)µ(B(x, r))}.

Note that r/α ≤ r− < r by left-continuity, and also that r/α ≤ r+ ≤ r . If r+ < r−,
then for any r ′ with r+ < r ′ < r−, we have

θ1 < θ1/θ
′
≤ µ(B(x, r ′))/µ(B(x, r))≤ θ2.

It is impossible that r+ > r− since otherwise there exists t with r− < t < r+,
and consequently µ(B(x, t)) > θ2µ(B(x, r)) and µ(B(x, t)) < (θ1/θ

′)µ(B(x, r)),
yielding the contradiction θ1/θ

′>θ2. We now only need to handle the case r+=r−.
But, by monotonicity of measure, in case r− > r/α we have

µ(B(x, r−))= lim
t→(r−)−

µ(B(x, t))≤ θ2µ(B(x, r)),

while in case r− = r/α we have µ(B(x, r−)) ≤ θ2µ(B(x, r)) by (1-3) as above.
On the other hand, by (1-21), there exists r ′ > r− = r+ (and r ′ < r as r− < r ) such
that

θ ′µ(B(x, r ′))≤ µ(B(x, r−)).

But µ(B(x, r ′)) ≥ (θ1/θ
′)µ(B(x, r)) as r ′ > r+. Then r− itself has the desired

properties r/α ≤ r− < r and θ1 ≤ µ(B(x, r−))/µ(B(x, r)) ≤ θ2. In any case we
can find r/α ≤ r ′ < r such that

θ1 ≤
µ(B(x, r ′))
µ(B(x, r))

≤ θ2.

(3) Conditions (1-14) and (1-16) are not required for 1-John domains since then
�M
[ is empty if M is large. Thus we only need condition (1-13) if s = 1. For any

s ≥ 1, we have r(Q)∼ r(B) in condition (1-13), with constants depending only on
τ and M , no matter whether x ∈�M

g and Q ∈C(B), or whether x ∈� and B= τQ.
Hence, if µ is δ-doubling, (1-13) is equivalent to the simpler condition

(1-22) µ(B)1/qa∗(B)≤ C1r(B)β
′
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for all δ-balls B.

(4) Condition (1-13) can often be replaced by the simpler (1-22) even when µ has
no doubling properties. For example, suppose that a∗(B) has the special mono-
tonicity property that given M ′ > 1, there exists c ≥ 1 such that

(1-23) a∗(B1)≤ ca∗(B2) if B1 ⊂ B2 ⊂ M ′B1.

Then, whether or not µ is doubling, (1-13) follows easily if (1-22) holds with
B = M ′Q for all δ-balls Q and an appropriate constant M ′ depending on M, τ, s.

As an application, we obtain results about 1-John domains of the type studied in
[Drelichman and Durán 2008] and [Hurri-Syrjänen 2004]. We illustrate this now in
the form of a weak-type statement; however, the analogous strong-type statement
is also true by using ideas related to Theorem 1.12. Consider for simplicity the
case of Euclidean balls B ⊂ Rn , and let

p0 = 1, β = 1, dσ = dx, 1< p <∞, p′ = p/(p− 1).

For nonnegative locally integrable weights w1, w2 such that w−1/(p−1)
2 is locally

integrable, let dµ= w1dx and

ã∗(B)= C
r(B)
|B|

(∫
B
w
−1/(p−1)
2 dx

)1/p′

.

It is easy to see that ã∗(B) has the special monotonicity property (1-23) since∫
B w
−1/(p−1)
2 dx is truly monotone increasing in B. On the other hand, Hölder’s

inequality applied to the L1, L1 Poincaré estimate for Euclidean balls yields the
following version of (1-12) involving ã∗(B), with β = p0 = 1 and dσ = dx :

1
|B|

∫
B
| f − fB |dx ≤ Cr(B) 1

|B|

∫
B
|∇ f |dx

≤ C
r(B)
|B|

(∫
B
|∇ f |pw2dx

)1/p(∫
B
w
−1/(p−1)
2 dx

)1/p′

= ã∗(B)
(∫

B
|∇ f |pw2dx

)1/p
.

Condition (1-22) takes the form

(1-24)
(∫

B
w1dx

)1/q
r(B)1−n

(∫
B
w
−1/(p−1)
2 dx

)1/p′

≤ Cr(B)β
′

for B = M ′Q and all δ-balls Q. If s = 1, (1-14) is not needed as a hypothesis
in Theorem 1.6 (since �M

[ is empty for 1-John domains), and if we assume the
remaining hypothesis (R) for the measure dµ = w1dx , for example if we assume
(see Remark 1.7(2)) the reverse doubling condition (1-3) and note that (1-21) is
automatically true since µ is absolutely continuous with respect to the Lebesgue



78 SENG-KEE CHUA AND RICHARD L. WHEEDEN

measure, then we obtain as a corollary of Theorem 1.6(i) that for a 1-John domain
� and 1< p < q <∞,

sup
t>0

t (w1)a{x ∈� : | f (x)− fB ′ |> t}1/q ≤ C‖∇ f ‖L p
(w2)b

(�)

for the same range of a and b as in Theorem 1.6 with β = 1 and η′ = η = n. In
fact, our hypotheses are weaker than those in [Drelichman and Durán 2008], where
(1-24) with β ′ = 0 is assumed for all balls B, and where both absolute continuity
and reverse doubling of µ are assumed, whereas we require (1-24) for a more
restricted class of balls and can assume (R) for µ rather than absolute continuity
and reverse doubling.

(5) If µa is doubling on � or if � has the Besicovitch covering property (for
example, Euclidean space has the Besicovitch property), then µa will satisfy the
Vitali covering condition in Theorem 1.6. See also [Sawyer and Wheeden 1992;
Di Fazio et al. 2008].

(6) The exponents ε and ε′ in (1-17) are nonnegative by (1-15) and (1-16). We also
note for future reference that (1-16) implies (η+ a)/q − (η′ + b)/p + β ≥ 0; in
fact, this is the same as (η+ a)/q ≥ (η′+ b− βp)/p, which follows from (1-16)
when η′ + b − βp > 0 (since s, p ≥ 1) and is obvious when η′ + b − βp ≤ 0.
Moreover, if we assume (1-14) for all B, Q with Q ∈C(B), then (1-13) follows in
case β ′ ≤ β + η/q − η′/p.

(7) In (1-17) of Theorem 1.6, it is often true that ρ(�) ≤ C(κ,M) diam(�). This
clearly occurs when ∂�∩�0 6=∅. It is also the case when �M

[ 6=∅ since if there
is x1 ∈�

M
[ , then d(x1, �0)≤ Md(x1) by (1-4), and hence

d(x, �0)≤ κ(diam(�)+ d(x1, �0))≤ C(κ,M) diam(�) for all x ∈�.

Recall that �M
[ is nonempty unless � is a 1-John domain. If also diam(�)≤ 1 and

β ′ ≥ β+η/q−η′/p, then ε′ = β ′+a/q−b/p ≥ β+ (η+a)/q− (η′+b)/p and
so both maximums in (1-17) are the corresponding last terms that involve diam(�)
because

β +
η+ a

q
−
η′+ b

p
=

(
η+ a

q
+χ

)
+

s− 1
sp′
≥ ε.

(8) By definition, ρ(x) = dist(x, �0) for any subset �0 of �c that confines the
M-bad points of �. Hajłasz and Koskela [1998] and Kilpeläinen and Malý [2000]
assume �0 to be all of �c.

(9) For particular choices of η and η′, condition (1-14) is a corollary of (1-13) if µ
satisfies the doubling condition µ(B̃) ≤ C(r(B̃)/r(B))D1µ(B) for some D1 and
all pairs B, B̃ of balls with B ⊂ B̃, B̃ centered in � and r(B̃) ≤diam(�). In fact,
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fix a ball B centered in � and let Q be a δ-ball in B. Then

µ(B)1/qa∗(Q)≤ C
( r(B)

r(Q)

)D1/q
µ(Q)1/qa∗(Q)

≤ C
( r(B)

r(Q)

)D1/q
r(Q)β

′

by (1-13),

which gives (1-14) with η = D1 and η′ = p
(
β − β ′ + D1/q

)
. In particular, with

this version of (1-14), condition (1-16) implies

D1+ a
q
≥

s(pD1/q + b−β ′ p)+ (s− 1)(p− 1)
p

.

While these estimates are often not sharp and the η and η′ obtained in this way
are often undesirable, nevertheless, in the usual Euclidean case, where β = 1,
µ=w= 1, D1= n and (1-13) holds with β ′= 1+n/q−n/p, they yield the same
conditions as in Theorem A. In fact, the version of (1-16) given above reduces to

n+ a
q
≥

s(n+ b− 1)− p+ 1
p

,

and the restriction β ′ ≥ 0 is the same as 1/q ≥ 1/p−1/n. Finally, (1-15) becomes
(n+a)/q− (n+b)/p+1≥ 0, which follows from (1-16) as explained in part (6)
of this remark.

(10) By using standard interpolation techniques, we find the weak Lq estimate
(1-17) implies a strong-type inequality in which the left side of (1-17) is replaced
by ‖ f − fB ′‖L

q0
µa (�)

for any q0 with 0 < q0 < q; see [Chua and Wheeden 2008,
Remark 1.13].

(11) In Theorem 1.6, the condition a ≥ 0 can be replaced by assuming that (1-5),
(1-13) and (1-14) hold for µa (instead of µ), as will be clear from the proof. When
� is a 1-John domain in Rn with Euclidean distance, there exists ε > 0 such that
if −ε < a < 0, the weighted Lebesgue measure ρ(x)adx = dist(x, �c)adx is δ-
doubling (and hence doubling) on �; see [Hajłasz and Koskela 1998, Theorem 6
and Lemma 6]. Thus, for such a (set a = −ε0 for convenience), Theorem 1.8(i)
below with dσ = ρ−ε0dx , dw = dx and a = 0 can be used to deduce [Hajłasz
and Koskela 1998, Theorem 8] as it is easy to see (1-12) holds with dσ = ρ−ε0dx ,
dw=dx and β= p= p0=1 and (1-13) holds withµ=σ and β ′= (n−ε0)/q−n+1.
Note that when�0=�

c, we do not need to assume β ′≥ 0 since then r(B)∼ ρ(B)
for all δ-Whitney balls. Moreover, the argument works for 1< p ≤ q by choosing
β ′ = (n− ε0)/q − n/p+ 1.
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(12) The measure µ can be replaced in (1-5), (1-13), (1-14) and the Vitali-type
condition of Theorem 1.6 by µ|� since the conclusions (for example, (1-17)) are
relative to �.

(13) For any ball B = B(x, r) with x ∈ � and r ≥ 1, the set C(B) will contain
a δ-ball of comparable size. Since σ is δ-doubling on �, there can be at most
a bounded number (with bound depending on Aσ , Dσ and diam(�)) of pairwise
disjoint such balls B(x, r).

(14) When d is a metric, the first ball Bx
1 in the ratio condition (1-5) satisfies

� ⊂ Bx
1 and hence the factor (µa(�)/µa(B ′))1/q in (1-17), (1-18) and (1-20)

can be replaced by 1; see the proof of Theorem 1.6 concerning the estimate of ℘
in (1-9).

Next, we discuss some strong-type inequalities in the special cases when µ= σ
and p= q = 1 or s = 1. Other estimates of strong type are given in later theorems.

Theorem 1.8. Let � be an s-John domain with central point x ′ in a quasimetric
space 〈H, d〉, and let δ, τ , M , a∗(B), p0, p, β ′ and B ′ be as in Theorem 1.6.
Suppose σ and w are measures and σ is δ-doubling on �. Also, let f and g
be as before, that is, (1-12) holds for all δ-balls B in �, but we do not assume
fB(x,r)→ f (x) σ -almost everywhere.

(i) Suppose s = 1, q = p0 ≥ p, β ′ ≥ 0 and

(1-25) σ(B)1/qa∗(B)≤ C1r(B)β
′

for all balls B for which there is a concentric δ-Whitney ball B̃ with λ−2 B̃⊂ B⊂ B̃,
where λ = κ + 2κ2. If a ≥ 0 and ε′ = β ′ + a/q − b/p ≥ 0, then the strong-type
estimate

(1-26) ‖ f − fB ′‖Lq
σa (�)
≤ CC1 ρ(�)

ε′
‖g‖

L p
wb (�)

holds with C depending on all relevant parameters but not on ρ(�) or diam(�).
The condition β ′ ≥ 0 is not needed when �0 = �

c or when r(B) ≤ cρ(B) for all
balls B as above.

(ii) Suppose s ≥ 1, q = p0 = p = 1, β ∈ R and (1-14) holds with µ replaced
by σ for any pair (B, Q) of balls such that Q ⊂ B, Q satisfies λ−2 Q̃ ⊂ Q ⊂ Q̃,
where Q̃ is the δ-Whitney ball concentric with Q, and B is a ball centered in �
with r(B)≤ diam(�). If a ≥ 0, β + η− η′ ≥ 0 and (1-16) holds, then

(1-27) ‖ f − fB ′‖L1
σa (�)

≤ CC1 max{ρ(�)(η+a−s(η′+b−β))/s, ρ(�)η+a−η′−b+β
}‖g‖

L1
wb
(�)
,
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where C depends on all relevant parameters but not on ρ(�) or diam(�). Also,
(1-27) holds even if �0 does not confine the M-bad points provided

(1-28) β + η/s− η′ ≥ 0.

Again, one can replace the conditions for σ by the corresponding ones for σ |�.
To derive a strong-type version of (1-17) better than the one in Remark 1.7(10),

we recall from [Chua and Wheeden 2008] a strong-type analogue of Theorem B.
Given ω > 0 and a nonnegative function g, the truncation τωg is defined by

τωg(x)=min{g(x), 2ω}−min{g(x), ω} =


ω if g(x)≥ 2ω,
g(x)−ω if ω ≤ g(x) < 2ω,
0 if g(x) < ω.

Let f be a fixed measurable function on � and B ′ be a fixed measurable set
in �. Let fB ′,σ =

∫
B ′ f dσ/σ(B ′). For each function τω| f − fB ′,σ |, ω > 0,

and each x ∈ �, we assume the existence of sequences {Bx
i }, {Q

x
i } and {a(Qx

i )}

with properties as in Theorem B, but as there, these sequences as well as F and
the sets C(B) may depend on τω| f − fB ′,σ |. For easy reference, we will denote
f ω= τω| f − fB ′,σ | and write b(Qx

i , f ω) instead of a(Qx
i ), and F( f ω) instead of F,

but we will not adopt new notation to indicate that {Bx
i } and {Qx

i }may vary with ω.
A typical example of b(Q, g) is

b(Q, g)= bY (Q, g)= r(Q)β
(

1
w(Q)

∫
Q
|Y f |pdw

)1/p
for 1≤ p <∞,

where Y is a differential operator with Y 1= 0, that is, with no zero order term.
Given f and f ω = τω| f − fB ′,σ |, the analogue of (1-8) that we will assume in

our strong-type analogue of Theorem B is

(1-29)

1
σ(Qx

i )
1/p0
‖ f ω−( f ω)Qx

i ,σ
‖

L
p0
σ (Qx

i )
≤ b(Qx

i , f ω),

( f ω)Qx
i ,σ
=

1
σ(Qx

i )

∫
Qx

i

f ωdσ

for all ω> 0. We will also assume an analogue of (1-10): For some constants q> 0
and 0< θ < 1,

(1-30)

∑
Bα∈I

(
A(Bα, f ω)qµ∗(Bα)

)θ
=

∑
Bα∈I

([ ∑
Q∈C(Bα)

b(Q, f ω)
]q
µ∗(Bα)

)θ
≤
(
h(�, f ω)qµ(�)

)θ
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for every disjoint subcollection I of F( f ω) and allω>0. Here h(�, · ) is a constant
that is assumed to satisfy

(1-31) h∗(�, f )q := sup
ω>0

∞∑
k=1

h(�, f 2kω)q <∞.

Conditions (1-30) and (1-31) are stability properties of the functional bY under
truncation similar to ones that were introduced in [Long and Nie 1991; Maz’ja
1985] and exploited in many papers such as [Franchi et al. 1995; Franchi et al.
1998; 2003].

The following strong-type analogue of Theorem B extends both [Franchi et al.
2003, Corollary 3] and [Franchi et al. 1998, Theorem 3.1].

Theorem 1.9 [Chua and Wheeden 2008, Theorem 1.10]. Let σ and µ be measures
on a σ -algebra of subsets of X , let � be a measurable set, and let f be a fixed
measurable function. Suppose that for each f ω = τω| f − fB ′,σ | with ω > 0, there
are sets {Qx

i } and {Bx
i } (possibly depending on ω and f in addition to x , but with

Qx
1 = B ′ for all x) satisfying the conditions of Theorem B, but now assuming (1-29)

instead of (1-8), and (1-30) for all ω > 0 instead of (1-10). If (1-31) is true, then
the strong-type Poincaré inequality

(1-32) 1
µ(�)

‖ f − fB ′,σ‖
q
Lq
µ(�)
≤C℘Vµh∗(�, f )q+

( 8
σ(B ′)

‖ f − fB ′,σ‖L1
σ (B

′)

)q

holds with C as in Theorem B.

We will derive the following result as a corollary of Theorem 1.9 and use it to
prove the strong-type estimate given below in Theorem 1.12.

Theorem 1.10. Suppose that the conditions of Theorem 1.6(i) hold except that
(1-12) is replaced by

(1-33) 1
σ(B)1/p0

‖ f ω− f ωB,σ‖L
p0
σ (B)
≤ a∗(B)‖Y f ω‖

L p
w(τ B)

for all f ω=τω| f− fB ′,σ |withω>0 (where f is a fixed function), and all δ-balls B,
where Y f ω is some function. Then when q > p, instead of (1-17), the strong-type
inequality

(1-34) 1
µa(�)

‖ f − fB ′,σ‖
q
Lq
µa (�)

≤
C̃

µa(B ′)
sup
ω>0

∞∑
k=1

‖Y f 2kω
‖

q
L p
wb (�)
+

C
σ(B ′)q

‖ f − fB ′,σ‖
q
L1
σ (B

′)

holds, where C̃ is an absolute constant times those in (1-17) and (1-18).
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Remark 1.11. In many applications, the right side of (1-34) can be reduced to
a multiple of ‖Y f ‖qL p

wb (�)
. For example, since q > p, it is true for a differential

operator Y on Euclidean space that

(1-35)
∑

k

‖Y f 2kω
‖

q
L p
wb (�)
≤

(∑
k

‖Y f 2kω
‖

p
L p
wb (�)

)q/p
≤ C‖Y f ‖q

L p
wb (�)

for ω > 0.

Moreover, the second term on the right side of (1-34) is often bounded by a multiple
of ‖Y f ‖L p

wb (�)
. For instance, if we assume (1-33) holds for f on the ball B ′ and

p0 ≥ 1, then

1
σ(B ′)

‖ f − fB ′,σ‖L1
σ (B

′)
≤

1
σ(B ′)1/p0

‖ f − fB ′,σ‖L
p0
σ (B ′)

≤ a∗(B ′)‖Y f ‖
L p
w(τ B ′)

≤ a∗(B ′)‖Y f ‖
L p
wb (�)

.

Our next result, a corollary of Theorem 1.10, contains Theorem A in the special
case that �0=�

c. We do not require that b≥ 1−n and we consider more general
types of distance weights than those in Theorem A. Also, we include the case
p ≥ q ≥ 1.

Theorem 1.12. Suppose that s ≥ 1 and � ⊂ Rn is an s-John domain with respect
to ordinary Euclidean distance dE . Let 0 < δ < 1/2 and B ′ = B(x ′, δdE(x ′)) be
the δ-Whitney ball centered at the central point x ′ of �. Suppose ε > 0, M > 1
and that �0 satisfies

(∗) ∂�∩
( ⋃

x∈�M
[

B(x, ε)
)
⊂�0 ⊂�

c,

and set ρ(x) = dE(x, �0). Let a ≥ 0, b ∈ R, and p, q satisfy 1 ≤ p, q <∞ and
1/q ≥ 1/p− 1/n. If either q > p and

(1-37)
s(n+ b− 1)− p+ 1

(n+ a)p
≤

1
q
,

or if p ≥ q and both

(1-38)
s(n+ b− 1)− p− n+ 1

p
<

a
q

and 1+
a
q
−

b
p
> 0,

then there is a constant C , depending on all relevant parameters, diam(�) and
ρ(�), such that

(1-39) ‖ f −C(�, f )‖
Lq
ρa dx (�)

≤ C‖∇ f ‖
L p
ρbdx

(�)
for f ∈ Liploc(�).

Here C(�, f ) can be chosen to be either

1
|B ′|

∫
B ′

f dx or fD,ρadx =
1

|D|ρadx

∫
D

fρadx
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for any D ⊂ � with |D| > 0. In case C(�, f ) = fD,ρadx , the constant C also
depends on the ratio |�|ρadx/|D|ρadx . Furthermore, for s = 1, (1-39) remains
valid even if p = q when (1-37) holds. In case p = q = 1, (1-39) holds if

n+ a+ s(1− b− n)≥ 0,

as opposed to the strict inequality required in (1-38) when p = q. Moreover, it
remains true for any nonempty set�0⊂�

c if 1≤ s ≤ n/(n−1), that is, for such s,
the restriction that ∂�∩ (

⋃
x∈�M

[
B(x, ε))⊂�0 is not needed.

Remark 1.13. (1) The average fD,ρadx is well defined if

f ∈ Liploc(�) and ‖∇ f ‖
L p
ρbdx (�)

<∞;

this follows as usual by first applying (1-39) with C(�, f ) chosen to be
|B ′|−1

∫
B ′ f dx .

(2) The case p = q = 1 is also considered in [Hajłasz and Koskela 1998], except
that b ≥ 1− n is assumed there.

(3) If s = 1, then �M
g = � for some M > 1, and Theorems 1.12 and 1.10 are

generalizations of results in [Chua 2006] and [Chua 2001], where the weights
are assumed to be doubling on all of Rn .

(4) The range of q is sharp; see [Hajłasz and Koskela 1998] for the case q > p.

As mentioned earlier, the q range in Theorem 1.12 can be enlarged for special
s-John domains. Some results of this type are given in Section 3. In particular, for
s > 1, we will consider the following typical s-cusp domain, which is an s-John
domain:

D = {(z, z′) ∈ R×Rn−1
: 0< z < 4, |z′|< zs

}.

The next result extends [Kilpeläinen and Malý 2000, Example 2.4], where the
case D0 = Dc (equivalently, D0 = ∂D) is mentioned.

Theorem 1.14. Let D be the s-cusp domain above, let D0 be a subset of Dc, and
let ρ(x)= dE(x,D0). Suppose a ≥ 0, b ∈ R, 1≤ p < q , and

(1-40) 1
q
≥

1
p
−

1
n
.

(1) If there exists ε > 0 such that B((0, 0), ε)∩ ∂D⊂ D0 and

(1-41)
1
q
≥

s(n+ b− p)+ (s− 1)(p− 1)
p(s(n− 1)+ 1+ a)

,

then

(1-42) ‖ f − fD,ρadx‖Lq
ρa dx (D)

≤ C‖∇ f ‖
L p
ρbdx (D)

for all f ∈ Liploc(D).
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(2) If D0 = ∂D and

(1-43)
1
q
≥

s(n+ b− p)+ (s− 1)(p− 1)
p(s(n− 1+ a)+ 1)

,

then (1-42) holds for all f ∈ Liploc(D).

The q range in (1-43) is larger than in (1-41), and the range in (1-41) is larger
than in Theorem 1.12. Results for p ≥ q can also be obtained by similar methods.

2. Preliminaries

In general, we will not attempt to give very precise values for constants that arise in
the proofs, although we will keep track of important parameters on which constants
depend. We will consistently use the notation

λ= κ + 2κ2.

The constant λ arises naturally in Observation 2.1 and Proposition 2.2 and for
simplicity we often use it in estimates in which better constants could be chosen.

We now recall several useful geometric facts, which require only that d be a
quasimetric.

Observation 2.1 [Chua and Wheeden 2008, Observation 2.1]. (1) If z ∈ B(x, r),
then

B(z, r)⊂ 2κB(x, r)⊂ λB(z, r).

(2) Let B1 and B2 be balls with B1 ∩ B2 6=∅. Then
(a) B2 ⊂ λmax{r(B2)/r(B1), 1}B1.
(b) If in addition both B1 and B2 are δ-balls with δ < 1/(2κ2), then

λ−1d(xB2)≤ d(xB1)≤ λd(xB2).

Thus if B1 and B2 are intersecting δ-Whitney balls, then

λ−1
≤ r(B2)/r(B1)≤ λ and λ−2 B1 ⊂ B2 ⊂ λ

2 B1.

(c) If δ < 1/(2κ2) and z is in a δ-ball B(x, r), then

1
2κ
≤

d(x)
d(z)
≤ 2κ.

Next, we list some facts about δ-doubling set functions on balls.

Proposition 2.2. (1) If 0 < δ1, δ2 < 1/κ and σ is δ1-doubling on �, then σ is
also δ2-doubling on �.

(2) Let σ be a measure on �. If σ is δ-doubling on balls in � and σ |� is defined
by σ |�(B) = σ(B ∩�) for balls B ⊂ H , then σ |� is also δ-doubling since
σ |� and σ are the same on δ-balls.
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(3) If � is a φ-John domain and M > 1, then for any x and r that satisfy x ∈�M
g

and δd(x) ≤ r ≤ diam(�), there is a δ-ball Q such that Q ⊂ B(x, r) and
r ≤ c2r(Q) with c2 depending only on κ, δ, diam(�)/d(x ′) and M.

(4) If � is a 1-John domain, then the notions of δ-doubling on � and doubling
on � are equivalent.

Proof. Parts (1) and (2) are easy to show, and we will only prove (3) and (4).

Proof of (3): Let x, r be as in part (3) and B ′ = B(x ′, δd(x ′)). If B ′ ⊂ B(x, r),
then since

r ≤ diam(�)=
diam(�)

d(x ′)
d(x ′)=

1
δ

diam(�)
d(x ′)

r(B ′),

we may choose Q = B ′ and c2 ≥ diam(�)/(δd(x ′)). If B ′ 6⊂ B(x, r), we let
γ : [0, l] →� be a 1-John curve that connects x to x ′ and define

t0 = sup{t ∈ [0, l] : B(γ(t), δd(γ(t)))⊂ B(x, r)}.

Clearly 0≤ t0 ≤ l.
Claim: There exist t1 and t2 with 0≤ t1 ≤ t0 ≤ t2 ≤ l such that the balls

Q1 = B(γ(t1), δd(γ(t1))) and Q2 = B(γ(t2), δd(γ(t2)))

satisfy

Q1 ⊂ B(x, r), Q2 6⊂ B(x, r), xQ2 = γ(t2) ∈ Q1.

We will prove the claim by considering 2 cases.

Case (i): B(γ(t0), δd(γ(t0)))⊂ B(x, r). In this case, t0 < l since we have assumed
B ′ 6⊂ B(x, r). We then choose t1= t0 and t2= t0+ε < l for sufficiently small ε > 0
such that γ(t2) ∈ B(γ(t0), δd(γ(t0))), using the fact that d(γ(t2), γ(t0))≤ |t2− t0|.

Case (ii): B(γ(t0), δd(γ(t0))) 6⊂ B(x, r). In this case, t0 > 0 since γ(0) = x
and δd(x) ≤ r . We then let t2 = t0 and pick t1 < t0 such that Q1 ⊂ B(x, r)
and |t1 − t0| < δd(γ(t0))/λ. Clearly γ(t1) ∈ B(γ(t0), δd(γ(t0))), and hence by
Observation 2.1(2b),

d(γ(t1), γ(t0))≤ |t1− t0|< δd(γ(t0))/λ≤ δd(γ(t1)).

Therefore γ(t2)= γ(t0) ∈ Q1. This completes the proof of the claim.
With t1 and t2 as in the claim, set x1 = γ(t1) and x2 = γ(t2). Let us show that

there exists c1 > 0 depending on κ, δ and M such that d(x1) > c1r . To this end,
pick z ∈ Q2 with z 6∈ B(x, r). Then

r ≤ d(z, x)≤ κ(d(x1, x)+κ(d(x2, x1)+d(x2, z)))≤ κ(t1+κ(δd(x1)+δλd(x1)))
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by Observation 2.1(2b). Also d(x1) = d(γ(t1)) > t1/M , and it is now clear that
d(x1) ≥ C(M, κ, δ)r . Thus, after choosing Q = Q1, we have Q ⊂ B(x, r),
r(Q)= δd(x1) and r ≤ c2r(Q).

Proof of (4): It is clear that if σ is doubling on �, then it is also δ-doubling on �.
Next, suppose σ is δ-doubling on � with σ(2k B) ≤ ckσ(B) for all δ-balls B in
� and all positive integers k. Let us show that d(x ′) ∼ diam(�) with constants
of equivalence depending only on κ and M . Indeed, choose x0 ∈ � such that
d(x0, x ′) > C(κ) diam(�) and let γ : [0, l] → � be a 1-John curve that connects
x0 to x ′, that is,

d(γ(s1), γ(s2))≤ |s1− s2| and d(γ(t)) > t/M if t, s1, s2 ∈ [0, l].

Then l ≥ d(x0, x ′) and d(x ′) = d(γ(l)) > l/M ≥ C(κ,M) diam(�), while the
opposite inequality d(x ′)≤ diam(�) is obvious.

Let B(x, r) be a ball with δd(x) < r ≤ diam(�) and x ∈�. By part (3), we can
find a δ-ball Q such that Q⊂ B(x, r) and r ≤ c2r(Q), with c2 depending only on κ ,
δ and the 1-John constant M of �. Hence by Observation 2.1(2a), B(x, r)⊂ C Q
with C depending on κ, δ and M , and by Observation 2.1(1), 2k B(x, r)⊂ C2k Q.
Consequently,

σ(2k B(x, r))≤ σ(C2k Q)≤ C(κ, δ,M)ckσ(Q)≤ C(κ, δ,M)ckσ(B(x, r)),

where the second inequality follows from the fact that Q is a δ-ball. This completes
the proof of part (4). �

The next proposition guarantees the existence of a covering of a φ-John domain
by balls with Whitney-like properties, as well as with extra properties that are
useful for deriving weighted Poincaré estimates.

Proposition 2.3 [Chua and Wheeden 2008, Proposition 2.6]. Let 〈H, d〉 be a quasi-
metric space and 0< δ < 1/(2κ2). Suppose �⊂ H , there is a δ-doubling measure
µ on � with doubling constant Dµ, and d(x) = d(x, �c) > 0 for all x ∈ �. Then
there exists a covering W = {Bi } of � by δ-balls Bi with the following properties:

(a) r(Bi )≤ δd(xBi )≤ λ
2r(Bi ), where xBi is the center of Bi .

(b) For every τ ≥ 1 that satisfies τδ < 1/(2κ2), there is a constant K depending
only on τ , κ and Dµ such that the balls {τ Bi : Bi ∈W } have bounded intercepts
with bound K ; in particular, the balls {τ Bi : Bi ∈ W } also have pointwise
bounded overlaps with overlap constant K .

(c) Let x ′ ∈ � and φ be a strictly increasing function on [0,∞) that satisfies
φ(0)= 0 and φ(t) < t for all t . Then for each x ∈� for which there is a curve
γ : [0, l] → � satisfying γ(0) = x and γ(l) = x ′ and the φ-John properties
(1-1) and (1-2), there exists a finite chain of δ-balls {Bi }

L
i=0 ⊂ W , depending
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on x and with L = L x , such that x ∈ B0, x ′ ∈ BL , BL is independent of x and
satisfies λ−2 B(x ′, δd(x ′))⊂ BL ⊂ B(x ′, δd(x ′)), Bi ∩ Bi+1 contains a δ-ball
B ′i with Bi ∪ Bi+1 ⊂ λ

4 B ′i for all i , and

(2-1) B0 ⊂
λ2φ−1(2κλ2r(Bi )/δ)

r(Bi )
Bi for all i .

Also, there is a finite chain of δ-Whitney balls {Qi }
L
i=0 depending on x with

bounded intercepts and centers on γ such that

Q0 = B(x, δd(x)), QL = B(x ′, δd(x ′)), λ−2Qi ⊂ Bi ⊂ Qi ,

and Qi ∩Qi+1 contains a δ-ball Q′i with Qi ∪Qi+1 ⊂ λ
6Q′i . Note that the last

ball QL in the chain does not depend on x.

(d) Let x ′, φ, x and {Qi } be as in (c). If Qi 6⊂ B(x, r), then r(Qi )≥ δφ(r/(2κ)).

(e) Let x, γ and {Qi } be as in (c). For all ε > 0, the number of disjoint Qi having
radius between ε and 2ε is at most 2φ−1(2ε/δ)/ε. In particular, if φ = JM ,
the number of disjoint Qi with radius between δε/(4κ2 M) and 4κε is at most
a constant depending only on δ, κ and M.

Finally, the next result gives a simple extension of [Chua 1993, Theorem 1.5]:

Proposition 2.4 [Chua and Wheeden 2008, Theorem 2.9]. Let� be a domain in a
quasimetric space with quasimetric constant κ , and let 0 < δ < 1/(2κ2). Suppose
� is covered by a countable collection W of δ-balls such that for some N ≥ 1,

(i)
∑

B∈W χB ≤ Nχ
�

, and

(ii) there is a central ball B0 ∈ W that can be connected with every ball B ∈ W
by a finite chain of balls B0, B1, . . . , Bk(B) = B from W such that B ⊂ N B j

for all j and each B j ∩ B j+1 contains a ball B ′j with B j ∪ B j+1 ⊂ N B ′j .

(Domains satisfying (i) and (ii) are often called Boman chain domains.)
Let f be a function on � and fB be an associated constant for every B ∈ W . If

w is a δ-doubling measure on � and 1≤ q <∞, then

(2-2) ‖ f − fB0‖
q
Lq
w(�)
≤ C

∑
B∈W

‖ f − fB‖
q
Lq
w(B)

,

where C depends only on κ, q, N and the doubling constant of w.

Remark 2.5. It is easy to see from parts (a)–(c) of Proposition 2.3 with φ = JM

that 1-John domains satisfy the Boman chain condition. The converse is also true
if the domain is assumed to satisfy a segmental geodesic condition; for this fact on
metric spaces, see [Buckley et al. 1996].

The proof mentioned in [Chua and Wheeden 2008] only works ifw is a doubling
measure on�. It is true that δ-doubling measures are doubling on 1-John domains.
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However, a Boman chain domain may not be a 1-John domain. Thus, in order to
prove Proposition 2.4, one must modify [Chua and Wheeden 2008, Lemma 2.8]
by assuming that w is δ-doubling and that the family of balls consists of δ-balls.
The modified lemma can be proved by considering the Hardy–Littlewood maximal
function with respect to δ-balls instead of all balls.

3. Proofs of the main theorems

Proof of Theorem 1.6. Let � be an s-John domain, let M > 1 and let �0 be a
nonempty subset of �c that confines the M-bad points of �. Set ρ(x)= d(x, �0)

and dµa = ρ
a dµ. For any ball B, let

ρ(B)= sup{ρ(x) : x ∈ B}, ρ∗(B)= ρ(B)+ r(B), µ∗a(B)= ρ
∗(B)aµ(B).

Note that µa(B)≤ µ∗a(B) when a ≥ 0.
Let us show that ρ is essentially constant on any δ-ball B for δ < 1/(2κ)2. In

fact, if x, y ∈ B, then

ρ(y)= d(y, �0)≤ κ(d(y, x)+ d(x, �0))≤ κ(2κr(B)+ ρ(x)).

But
r(B)≤ δd(xB)∼ d(x)≤ d(x, �0)= ρ(x),

and we get ρ(y)≤Cρ(x) by combining inequalities. It’s also true that r(B)≤ρ(B)
for any δ-ball B. Otherwise we would have d(xB, �0)< r(B), so there would exist
z ∈ �0 with d(xB, z) < r(B), and then z ∈ B ∩�0, while B must lie in � since
it is a δ-ball. Hence, if B is a δ-ball and δ < 1/(2κ)2, there is a positive constant
C(κ)≤ 1 such that

(3-1) C(κ)ρ(B)≤ ρ(x)≤ ρ(B) for all x ∈ B, and r(B)≤ ρ(B).

Let us show that

(3-2) C(κ)
r(B)

r(B̃)
≤
ρ∗(B)

ρ∗(B̃)
≤ 1 for all concentric balls B ⊂ B̃.

The second inequality holds since ρ(B) ≤ ρ(B̃) and r(B) ≤ r(B̃) for such B and
B̃. Also then ρ(B̃)≤ κ(ρ(B)+2κr(B̃)) and hence there is a constant c1 depending
on κ such that

ρ∗(B̃)≤ c1(ρ(B)+ r(B̃)).

We now consider two cases:

Case ρ(B)≥ r(B̃): Then

ρ∗(B)

ρ∗(B̃)
≥

ρ(B)

c1(ρ(B)+ r(B̃))
≥

1
2c1
≥

r(B)

2c1r(B̃)
.
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Case ρ(B) < r(B̃): Then

ρ∗(B)

ρ∗(B̃)
≥

r(B)

c1(ρ(B)+ r(B̃))
≥

r(B)

2c1r(B̃)
.

It follows that (3-2) holds.
Let a ≥ 0. By hypothesis, µ satisfies (1-5). We will now show that under the

hypothesis of Theorem 1.6, conditions (1)–(4) in Theorem B hold with µ,µ∗ there
replaced by µa, µ

∗
a , and with B ′ = B(x ′, δd(x ′)). Recall that Bx

j = B(x, r x
j ) for

x ∈ � are balls as in (1-5) and satisfy r x
1 = diam(�), r x

j /α < r x
j+1 < r x

j for some
α ≥ 2, and r x

j → 0. We next define {Qx
i }
∞

i=1 for x ∈ � by letting {Qi }
L
i=0 be as in

Proposition 2.3 and defining {Qx
i }

L+1
i=1 by

Qx
1 = QL = B ′, Qx

2 = QL−1, . . . , Qx
L+1 = Q0 = B(x, δd(x)).

Note that there exists l such that Bx
l+1 ⊂ τQ0 ⊂ Bx

l and Bx
l+1 6= τQ0. We then

define Qx
L+i+1 = τ

−1 Bx
l+i for i ≥ 1. Then since σ is δ-doubling by hypothesis,

(1-7) follows from r x
j ∼ r x

j+1 and from Proposition 2.3(c) since the balls Q′i there
are δ-balls. Also (1-8) holds with a(Q)= a∗(Q)‖g‖L p

w(τQ) by (1-12), so condition
(1) of Theorem B holds for {Qx

i } with this choice of a(Q).
By (1-5) for µ and (3-2), µ∗a satisfies the ratio estimate in (1-9) for {Bx

j } with
θ1 be replaced by θ1/α

a and θ2 remaining the same. Moreover, since B ′ = Qx
1 ⊂

∪i Qx
i ⊂ Bx

1 , we have µa(B ′)≤ µa(Bx
1 )≤ µ

∗
a(B

x
1 ) and

µa(�)=
µa(�)

µ∗a(B
x
1 )
µ∗a(B

x
1 )≤

µa(�)

µa(B ′)
µ∗a(B

x
1 ).

Hence the first estimate in (1-9) holds for the pair µa, µ
∗
a with ℘=µa(�)/µa(B ′),

and we have verified condition (2) of Theorem B.
We will now verify condition (3). The partitioning properties follow easily and

we only need to check (1-10) for (µa, µ
∗
a). Let us show that (1-10) holds with

θ = p/q for p and q as in Theorem 1.6. Let I be a collection of disjoint balls
{B j } in {Bx

l : x ∈ �, l ∈ N}. Consider first those B j that are τδ-balls, so that
A(B j )= a(Q j ) where B j = τQ j . Since ρ(B j )≥ r(B j ) by (3-1), we have

A(B j )µ
∗

a(B j )
1/q
= a(Q j )µ

∗

a(B j )
1/q
= a(Q j )µ(B j )

1/qρ∗(B j )
a/q

≤ a∗(Q j )‖g‖L p
w(τQ j )

µ(B j )
1/q(2ρ(B j ))

a/q

≤ Ca∗(Q j )‖g‖L p
wb (τQ j )

µ(B j )
1/qρ(B j )

a/q−b/p

since ρ(z)∼ρ(B j ) for all z ∈ B j by (3-1). Here C and the constants of equivalence
depend at most on p, q, a, b, κ and τ . For the rest of the proof, C and various
constants of equivalence are positive and may depend on these parameters and
many others, but not on the constant C1 in (1-13) and (1-14). Continuing the
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estimate above, we obtain

≤ CC1 ‖g‖L p
wb (τQ j )

ρ(B j )
a/q−b/pr(B j )

β ′ by (1-13)

≤ CC1 ‖g‖L p
wb (τQ j )

ρ(B j )
a/q−b/p+β ′ since β ′ ≥ 0

≤ CC1 ρ(�)
a/q−b/p+β ′

‖g‖
L p
wb (τQ j )

since β ′+ a
q
−

b
p
≥ 0 by (1-15)

= CC1ρ(�)
a/q−b/p+β ′

‖g‖
L p
wb (B j∩�)

since B j = τQ j ⊂� in the present case. Here ρ(�)= supz∈� ρ(z) as usual.
Next consider a typical B j that is not a τδ-ball: B j = B(x j , r j ), x j = xB j ∈�

and r j = r(B j ) > τδd(x j ). We will now use the notion of M-good and M-bad
points to extend the notion of an s-John domain by allowing the function φ to vary
with the starting point x of the curve γ, using φs and JM in Definition 1.2 for
M-bad points and M-good points respectively:

Convention 3.1. We adopt a convention for choosing curves that connect points x
of the s-John domain � to the central point x ′: If x ∈�M

g , we choose the curve γ
from x to x ′ that corresponds to picking φ = JM , while if x ∈�M

[ , we choose the
curve corresponding to φ = φs .

We abuse earlier terminology by referring to these curves as curves from x to
x ′ guaranteed by the φs,M -John condition. Furthermore, given x and t , we denote
by φs,M(t) either φs(t) or JM(t), depending on whether x ∈�M

[ or x ∈�M
g .

Let γ be the φs,M -John curve connecting x j to x ′, with φs,M equal to either JM

or φs depending on whether x j is an M-good or M-bad point. The balls Qi in
C(B j ) are δ-Whitney balls centered on γ, and they lie in B j and (by (1-6) and
Proposition 2.3(d)) satisfy τr(Qi ) ≥ δφs,M(r j/(2ακ)). Furthermore, the enlarged
balls τQi lie in B j by definition (see (1-6)), and they have bounded intercepts as
we now show. In fact, Observation 2.1(2b) applied with δ replaced by τδ to the
τδ-balls τQi shows that if two such τQi , τQk intersect, then d(xQi ) ∼ d(xQk ),
and therefore r(Qi ) ∼ r(Qk). Then τQi have bounded intercepts (for example,
this follows from [Chua and Wheeden 2008, Lemma 2.5] applied with F = {Qi }

and N = τ ).
Let I j ={Qi } be a family of disjoint balls in Cφs,M (B j ). Since balls in Cφs,M (B j )

have bounded intercepts uniformly in j , it is a union of a bounded number of
families of disjoint balls; see the proof of [Chua and Wheeden 2008, Lemma 2.5].
Because of disjointness, we know by Proposition 2.3(e) that the number of Qi in I j

with radius between ε and 2ε is at most (2/ε)φ−1
s,M(2ε/δ). Our strategy for verifying

(1-10) will be first to estimate the portion of A(B j )µ
∗
a(B j )

1/q that corresponds to
summing over I j , and then to sum over different I j and different B j .
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First suppose that x j is an M-bad point of � and r j ≤ 1. In case s = 1, we
choose M (depending on cs) so large that there are no M-bad points, and so we
may now assume s > 1. Since x j is M-bad, we have r(Qi )≥ Cr s

j for all Qi ∈ I j .
For the part of A(B j )µ

∗
a(B j )

1/q that corresponds to summing over I j , we have in
case p > 1,∑

Qi∈I j

a(Qi )µ
∗

a(B j )
1/q
=

∑
Qi∈I j

a∗(Qi )‖g‖L p
w(τQi )

µ∗a(B j )
1/q

≤ C
∑

Qi∈I j

a∗(Qi )ρ(Qi )
−b/p
‖g‖

L p
wb (τQi )

µ∗a(B j )
1/q

since ρ(z1)∼ ρ(z2) for any two z1, z2 ∈ τQi by (3-1)

≤ C
(∑

Qi∈I j

‖g‖p
L p
wb (τQi )

)1/p(∑
Qi∈I j

( a∗(Qi )

ρ(Qi )b/p

)p′)1/p′

µ∗a(B j )
1/q .

We now show thatµ∗a(B j )≤Cra
jµ(B j ) since x j is an M-bad point and�0 confines

the M-bad points. By definition of ρ∗, it suffices to show that ρ(B j ) ≤ Cr j . We
first estimate ρ(B ′j ), where B ′j is the δ-Whitney ball concentric with B j :

ρ(B ′j )= sup
B ′j

ρ ≤ C(κ) inf
B ′j
ρ by (3-1)

= C(κ)d(B ′j , �0)≤ C(κ)Mr(B ′j ) by (1-4)

= C(κ)Mδd(x j )≤ Cr j

by the assumptions about B j presently in force. Thus

ρ(B j )≤ κ(ρ(B ′j )+ r j )≤ C r j

as desired. It follows that the earlier expression is at most

≤ C‖g‖
L p
wb (

⋃
τQi )

( L j∑
l=0

∑
2lr0≤r(Qi )<2l+1r0

( a∗(Qi )

ρ(Qi )b/pµ(B j )
1/q
)p′)1/p′

ra/q
j ,

where r0 =min{r(Qi ) : Qi ∈ I j } ≥Cr s
j and 2L j r0 ∼max{r(Qi ) : Qi ∈ I j } ≤ 2κr j ,

and where we used the fact that the τQi have bounded overlaps.
Note that ρ(Qi )∼ r(Qi ) by applying (3-1) and the argument just used showing

that ρ(B ′j ) is less than a multiple of r(B ′j ). Also, the number of terms in the inner
sum above is at most C(2lr0)

−1+(1/s). Therefore, by (1-14) and since
⋃
τQi ⊂ B j ,

the last expression is bounded by

CC1‖g‖L p
wb (B j∩�)

( L j∑
l=0

(2lr0)
(β−b/p−η′/p)p′−(s−1)/s

)1/p′

r (η+a)/q
j .
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Recall that

(3-3) χ =
s(βp− b− η′)− (s− 1)(p− 1)

sp
= β −

b
p
−
η′

p
−

s− 1
sp′

.

Therefore,

∑
Qi∈I j

a(Qi )µ
∗

a(B j )
1/q
≤ CC1‖g‖L p

wb (B j∩�)

( L j∑
l=0

(2lr0)
p′χ
)1/p′

r (η+a)/q
j .

In case χ ≥ 0, this is at most

CC1‖g‖L p
wb (B j∩�)

(1+ L j )
1/p′rχ+(η+a)/q

j

≤ CC1rχ+(η+a)/q
j (1+ |log r j |)

1/p′
‖g‖

L p
wb (B j∩�)

,

where the (1 + L j )
1/p′ term is present only if χ = 0 and where we used that

2L j ≤ 2κ(r j/r0) ≤ Cr1−s
j ; recall that r j ≤ 1 in the present case. For any positive

real numbers u, v, α with u < v ≤ 1, we have uα(1+ |log u|)≤ cαvα(1+ |log v|),
and therefore, since by assumption χ ≥ 0 and η+ a ≥ 0 with χ > 0 if η+ a = 0,
we obtain the estimate

≤ CC1 diam(�)χ+(η+a)/q(1+ |log diam(�)|)1/p′
‖g‖

L p
wb (B j∩�)

.

Again, the factor (1+ log diam(�))1/p′ is needed only when χ = 0.
In case χ < 0,∑

Qi∈I j

a(Qi )µ
∗

a(B j )
1/q
≤ CC1‖g‖L p

wb (B j∩�)
rχ0 r (η+a)/q

j

≤ CC1r sχ+(η+a)/q
j ‖g‖

L p
wb (B j∩�)

≤ CC1 diam(�)sχ+(η+a)/q
‖g‖

L p
wb (B j∩�)

since sχ + (η+ a)/q ≥ 0 by (1-16).
Similarly, when p = 1 (still assuming x j is an M-bad point and r j ≤ 1, and

recalling that r(Qi )≥ Cr s
j if Bi ∈ I j ),∑

Qi∈I j

a(Qi )µ
∗

a(B j )
1/q
≤ C

∑
‖g‖

L1
wb
(τQi )

(
sup

Qi∈I j

a∗(Qi )

ρ(Qi )b

)
µ∗a(B j )

1/q

≤ C‖g‖
L1
wb
(B j∩�)

(
sup

Qi∈I j

a∗(Qi )µ(B j )
1/q

ρ(Qi )b

)
ra/q

j

≤ CC1‖g‖L1
wb
(B j∩�)

(
sup

Qi∈I j

r(Qi )
β−b−η′

)
r (η+a)/q

j .
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Since p= 1, we have χ =β−b−η′, and supQi∈I j
r(Qi )

β−b−η′ is at most a multiple
of rχj if χ ≥ 0 and a multiple of r sχ

j if χ < 0. Thus the last expression is at most

CC1‖g‖L1
wb
(B j∩�)

{
diam(�)χ+(η+a)/q if χ ≥ 0,
diam(�)sχ+(η+a)/q if χ < 0,

which is equal to
CC1 diam(�)ε‖g‖

L1
wb
(B j∩�)

.

Our estimation of the portion of A(B j )µ
∗
a(B j )

1/q that corresponds to summing
over I j is now complete in case x j is an M-bad point and r j ≤ 1.

Next we will estimate the same portion of A(B j )µ
∗
a(B j )

1/q in the remaining
cases that x j ∈�

M
g , or both x j ∈�

M
[ and r j > 1. The case s = 1 is included in the

first of these by choosing M to be the value in the definition of a 1-John domain.
In either case, 8s,M(r j/(2ακ)) ∼ r j (for the second case, recall that φs(t) = cs t
when t ≥ 1). Thus r(Qi ) ∼ r j if Qi ∈ I j , and consequently while the argument
will be similar to the one above, it will be simpler.

Let us show that ρ∗(B j )∼ ρ(Qi ) for such Qi . Since ρ∗(B j )= ρ(B j )+ r j and
ρ(B j ) ≥ ρ(Qi ) ≥ r(Qi ) ∼ r j , then ρ∗(B j ) ∼ ρ(B j ), and it suffices to show that
ρ(B j )≤ Cρ(Qi ). But the quasitriangle inequality gives the desired

ρ(B j )≤ C(κ)(ρ(Qi )+ r j )∼ ρ(Qi ).

Thus, in either of the remaining cases,

(3-4)

∑
Qi∈I j

a(Qi )µ
∗

a(B j )
1/q
=

∑
Qi∈I j

‖g‖
L p
w(τQi )

a∗(Qi )µ
∗

a(B j )
1/q

≤ C
∑

Qi∈I j

‖g‖
L p
wb (τQi )

a∗(Qi )µ(B j )
1/qρ(Qi )

a/q−b/p

≤ CC1
∑

Qi∈I j

rβ
′

j ‖g‖L p
wb (τQi )

ρ(Qi )
a/q−b/p by (1-13)

≤ CC1
∑

Qi∈I j

ρ(Qi )
β ′+a/q−b/p

‖g‖
L p
wb (τQi )

since β ′ ≥ 0

≤ CC1ρ(�)
β ′+a/q−b/p

‖g‖
L p
wb (B j∩�)

by (1-15).

We have now estimated
∑

Qi∈I j
a(Qi )µ

∗
a(B j )

1/q in all cases. The corresponding
estimates of the full sum

A(B j )µ
∗

a(B j )
1/q
=

∑
Qi∈C(B j )

a(Qi )µ
∗

a(B j )
1/q , with C(B j )= Cφs,M (B j ),

are comparable. To verify (1-10), it remains to raise these estimates to the power p
and add them over those B j in a disjoint collection I = {B j }.
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Thus, if s = 1,∑
I

A(B j )
pµ∗a(B j )

p/q
≤ C(C1)

pρ(�)p(β ′+a/q−b/p)
‖g‖p

L p
wb (�)

= C(C1)
pρ(�)pε′

‖g‖p
L p
wb (�)

by (1-15) since the B j are disjoint. Note that C is independent of M,M, η, η̃, β.
In any of the other cases,∑

I

A(B j )
pµ∗a(B j )

p/q
≤

C(C1)
p
‖g‖p

L p
wb (�)

{
max{ρ(�)pε′, diam(�)pε

} if χ 6= 0,
max{ρ(�)pε′, diam(�)pε(1+ |log diam(�)|)p−1

} if χ = 0.

It now follows that (1-10) holds with C p
0 µ(�)

p/q there taken to be the right sides
of the estimates above. This verifies condition (3) of Theorem B.

Then (1-11) of Theorem B implies that (1-17) and (1-18) hold provided

{B(x, r x
j ) : x ∈�, j ∈ N}

is a Vitali-type cover with respect to (µa, µ
∗
a). However, this follows from the

analogous assumption in Theorem 1.6 for µa and the fact that µa ≤µ
∗
a . The proof

of part (i) of Theorem 1.6 is now complete.
We next prove part (ii), that is, the case 1≤ q ≤ p. Recall that we have obtained

the following estimates in the proof of part (i) for the balls

{Bα} = {Bx
j : x ∈�, j ∈ N}

as in (1-5):
First, if Bα = B(x, r) is a τδ-ball, or if x ∈ �M

g , or if both x ∈ �M
[ and r ≥ 1,

then — see the reasoning before (3-4), note that r(Qi )∼ r(Bα) and ρ(Qi )∼ρ(Bα)
for any Qi ∈ C(Bα) now, and recall that r(Qi )≤ ρ(Qi ) by (3-1) —

A(Bα)µ∗a(Bα)
1/q
≤ CC1‖g‖L p

wb (Bα∩�)
r(Bα)β

′

ρ(Bα)a/q−b/p

≤ CC1‖g‖L p
wb (Bα∩�)

r(Bα)min{ε′,β ′}ρ(�)max{0,a/q−b/p},

where ε′ = β ′+ a/q − b/p.
Second, suppose Bα = B(x, r), x ∈�M

[ , and 1> r ≥ τδd(x). If χ 6= 0,

A(Bα)µ∗a(Bα)
1/q
≤ CC1 r(Bα)ε‖g‖L p

wb (Bα∩�)
,

but if χ = 0,

A(Bα)µ∗a(Bα)
1/q
≤ CC1r(Bα)ε(1+ |log r(Bα)|)1/p′

‖g‖
L p
wb (Bα∩�)

.
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Assuming (1-19), there exists 0 < θ < 1 such that (p − qθ)η̃/(pqθ) < ε and
(p− qθ)η̃′/(pqθ) < min{ε′, β ′}. Part (ii) will then also follow from Theorem B.
Indeed, for example, when χ 6= 0, if I is a collection of pairwise disjoint balls with
center in �M

[ and τδd(x)≤ r < 1, then it follows from Hölder’s inequality that∑
Bα∈I

(A(Bα)µ∗a(Bα)
1/q)qθ

≤ CCqθ
1

(∑
Bα∈I

‖g‖p
L p
wb (Bα∩�)

)qθ/p(∑
Bα∈I

(r(Bα)εqθ )p/(p−qθ)
)(p−qθ)/p

.

However, by (1-19) and the hypothesis of Theorem 1.6(ii),

∑
(r(Bα)εqθ )p/(p−qθ)

=

0∑
k=−∞

∑
λk<r(Bα)≤λk+1

r(Bα)εqθp/(p−qθ)

≤

0∑
k=−∞

M1λ
−η̃kλ(k+1)εqθp/(p−qθ)

≤ C.

When s = 1, the constant C is independent of M,M1,M, β, η, η̃, η′. �

Remark 3.2. Checking through the proof of Theorem 1.6, we note that instead of
requiring ρ(x)= d(x, �0), it suffices to assume that ρ is any nonnegative function
satisfying the following properties (with ρ(B) defined to be supx∈B ρ(x)):

(i) ρ(x)∼ ρ(B) if x ∈ B for any δ-ball B in �;

(ii) r(B)≤ Cρ(B) for any δ-ball B in �;

(iii) ρ(B̃)≤ C(ρ(B)+ r(B̃)) for all balls B ⊂ B̃ with both centers in �;

(iv) ρ(Q) ∼ r(Q) for all δ-Whitney balls Q along s-John curves from M-bad
points.

In case � is a 1-John domain, (iv) is redundant as there are then no M-bad points.
If ρ(x)= d(x, �0) with �0⊂�

c, the first three properties of course hold, and (iv)
will hold if �0 confines all the M-bad points of �.

The same remark applies also to Theorem 1.10. Furthermore, in Theorem 1.8(i),
only the first three properties are needed since s= 1, while in Theorem 1.8 part (ii),
one can substitute (i)–(iii) above for the condition that ρ(x) = d(x, �0) with
�0 ⊂ �

c, and substitute (iv) for the condition that �0 confines all M-bad points.
Finally, Theorem 1.12 remains valid for any nonnegative function ρ that satisfies all
four properties (on Euclidean balls instead of quasimetric balls) instead of choosing
ρ(x)= dE(x, �0) and assuming condition (∗) there. In fact, condition (∗) is used
in Theorem 1.12 to ensure that �0 confines all M-bad points.
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Proof of Theorem 1.8. For part (i), let � be a 1-John domain, and fix τ and δ with
τ ≥ 1 and 0 < τδ < 1/(2κ2). As noted in the remark following Proposition 2.4,
Proposition 2.3 provides a collection W = {B} of δ-balls for which the Boman
chain conditions listed in the hypothesis of Proposition 2.4 hold, with B0 in the
proposition chosen to be the ball QL = B(x ′, δd(x ′)) of Proposition 2.3(c), which
we denote by B ′. Moreover, by Proposition 2.3(a), each ball B ∈ W contains a
concentric δ/λ2-Whitney ball and lies inside a concentric δ-Whitney ball. By part
(b) of the same proposition, the enlarged balls {τ B}B∈W have bounded overlaps.
Thus, assuming the hypothesis of Theorem 1.8(i) and applying Proposition 2.4, we
have, with C depending on cs, q, κ, Aσ , Dσ , a and δ,

‖ f − fB ′‖
q
Lq
σa (�)
≤ C

∑
B∈W

‖ f − fB‖
q
Lq
σa (B)

≤ C
∑
B∈W

ρ(B)a‖ f − fB‖
q
Lq
σ (B)

by (3-1) and a ≥ 0

≤ C
∑
B∈W

ρ(B)aσ(B)
(
a∗(B)‖g‖L p

w(τ B)

)q by (1-12) since now p0 = q.

Recall that if λ−2 B̃ ⊂ B ⊂ B̃, where B̃ is the δ-Whitney ball concentric with B,
then by (1-25),

σ(B)a∗(B)q ≤ Cq
1 r(B)β

′q .

Combining estimates, we obtain

‖ f − fB ′‖
q
Lq
σa (�)
≤ C(C1)

q
∑
B∈W

ρ(B)ar(B)β
′q
‖g‖q

L p
w(τ B)

≤ C(C1)
q
∑
B∈W

ρ(B)a+β
′qρ(B)−bq/p

‖g‖q
L p
wb (τ B)

,

with C depending also on b and τ , since r(B) ≤ ρ(B) by (3-1), β ′ ≥ 0 and ρ is
essentially constant on τ B by (3-1) applied to τδ-balls. Note that the condition
β ′ ≥ 0 need not hold if ρ(B) ≤ cr(B) for all δ/λ2-Whitney balls, and then the
constant C also depends on c. Finally, since ε′ ≥ 0, we obtain the bound

C(C1)
qρ(�)a+β

′q−bq/p
∑
B∈W

‖g‖q
L p
wb (τ B)

≤ C(C1)
qρ(�)a+β

′q−bq/p
‖g‖q

L p
wb (�)

using the bounded overlap property of {τ B}B∈W and the fact that q ≥ p. Now
Theorem 1.8(i) follows.

Next, let us prove part (ii). Thus suppose s ≥ 1, p0 = p = q = 1 and the
hypotheses of Theorem 1.8(ii) hold. Let W be a covering of � that satisfies the
properties in Proposition 2.3. Fix M and for each x ∈�, let

Cx = {R0, R1, . . . , RL}, where L = L x ,
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be a chain of δ-balls as in the first part of property (c) in Proposition 2.3 with
φ = φs,M ; this chain is denoted there by {Bi }

L
i=0. The point x itself lies in the

first ball R0 in Cx , and the last ball RL satisfies λ−2 B ′ ⊂ RL ⊂ B ′ where B ′ =
B(x ′, δd(x ′)) is the “central” ball. Moreover, RL is the same for all x ∈�, and we
denote RL = B ′′. As in the proof of [Chua and Wheeden 2008, Lemma 3.1],

(3-5)

‖ fR0 − fB ′′‖L1
σa (R0)

≤

L∑
j=1

‖ fR j − fR j−1‖L1
σa (R0)

=

L∑
j=1

σa(R0)

σa(R j ∩ R j−1)
‖ fR j − fR j−1‖L1

σa (R j∩R j−1)

≤

L∑
j=1

σa(R0)

σa(R j ∩ R j−1)

(
‖ f − fR j−1‖L1

σa (R j∩R j−1)
+‖ f − fR j‖L1

σa (R j∩R j−1)

)
≤ C(a, Aσ , Dσ , κ)

L∑
j=0

σa(R0)

σa(R j )
‖ f − fR j‖L1

σa (R j )

since σa is δ-doubling.
Let W[ = {R : R ∈ Cx , x ∈ �M

[ } and Wg = {R : R ∈ Cx , x ∈ �M
g }. Also, let

W[0 and Wg0 be the subsets of W[ and Wg consisting of those R0 that are the first
entry in Cx as x ranges over �M

[ or over �M
g respectively. We will not distinguish

between W[0 and the subset of � that is covered by the balls in W[0, and similarly
for Wg0. Then �M

[ ⊂W[0, �M
g ⊂Wg0, and �=W[0 ∪Wg0. Hence

(3-6) ‖ f − fB ′′‖L1
σa (�)
≤ ‖ f − fB ′′‖L1

σa (W[0)
+‖ f − fB ′′‖L1

σa (Wg0)
.

For the first term on the right of (3-6), we have

‖ f − fB ′′‖L1
σa (W[0)

≤

∑
R0∈W[0

‖ f − fB ′′‖L1
σa (R0)

≤

∑
R0∈W[0

‖ f − fR0‖L1
σa (R0)

+

∑
R0∈W[0

‖ fR0 − fB ′′‖L1
σa (R0)

=: I+ II.

To estimate II, note by (3-5) that if R0 ∈W[0, then

‖ fR0 − fB ′′‖L1
σa (R0)

≤ C(a, Aσ , Dσ , κ)
∑

R∈W[;R0⊂R∗

σa(R0)

σa(R)
‖ f − fR‖L1

σa (R)
,

where R∗ ⊂ C[φ−1
s (Cr(R))/r(R)]R ∩ B(xR, diam(�)). In fact, by (2-1), R∗ is

chosen (depending at most on δ, κ, φs and M) so that for each ball R j in (3-5), we
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have R0 ⊂ R∗j assuming that R0 ∈W[0. Adding over R0 gives

II≤ C
∑

R∈W[

( ∑
R0∈W[0;R0⊂R∗

σa(R0)
) 1
σa(R)

‖ f − fR‖L1
σa (R)

≤ C
∑

R∈W[

σa(R∗)
σa(R)

‖ f − fR‖L1
σa (R)

since the balls in W have bounded overlaps. Clearly term I has the same bound,
and consequently the first term on the right of (3-6) satisfies

(3-7)

‖ f − fB ′′‖L1
σa (W[0)

≤ C
∑

R∈W[

σa(R∗)
σa(R)

‖ f − fR‖L1
σa (R)

≤ C
∑

R∈W[

σa(R∗)a∗(R)
ρ(R)b

‖g‖
L1
wb
(τ R)

by (1-12) and (3-1)

≤ C
(

sup
R∈W[

σ(R∗)ρ(R∗)aa∗(R)
ρ(R)b

)∑
R∈W

‖g‖
L1
wb
(τ R)

since σa(R∗)≤ ρ(R∗)aσ(R∗)

≤ C
(

sup
R∈W[

σ(R∗)ρ(R∗)aa∗(R)
ρ(R)b

)
‖g‖

L1
wb
(�)

since {τ R : R ∈W } has bounded overlaps.
The same argument with R∗ replaced by C R can be used to estimate the second

term on the right of (3-6) since (2-1) guarantees that in (3-5) we have R0 ⊂ C R j

when R0 ∈Wg0. This gives

(3-8) ‖ f − fB ′′‖L1
σa (Wg0)

≤ C
(

sup
R∈Wg

σ(C R)ρ(C R)aa∗(R)
ρ(R)b

)
‖g‖

L1
wb
(�)
.

To estimate the supremum in (3-8), note that every R ∈ W is a δ-ball and so
satisfies r(R) ≤ ρ(R) by (3-1). Also, by Proposition 2.3, λ−2 Q ⊂ R ⊂ Q for
the δ-Whitney ball Q concentric with R. Recall that we now assume a version of
(1-14) for such balls with µ replaced by σ and p = q = 1. Also ρ(C R)≤ Cρ(R)
from the definition of ρ(R), and σ(C R)≤ Cσ(R) since σ is δ-doubling. Thus

σ(C R)ρ(C R)aa∗(R)
ρ(R)b

≤ CC1 ρ(R)a−br(R)β+η−η
′

≤ CC1 ρ(R)a−b+β+η−η′

since β + η− η′ ≥ 0 by hypothesis. Using a − b+ β + η− η′ ≥ 0 due to (1-16)
with p = q = 1 (see Remark 1.7(6)), we obtain

(3-9) sup
R∈Wg

σ(C R)ρ(C R)aa∗(R)
ρ(R)b

≤ CC1 ρ(�)
a−b+β+η−η′ .
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The same estimate holds for the part of the supremum in (3-7) that is extended
over those R ∈W[ with r(R)≥1, since R∗⊂C R⊂ B(xR, diam(�)) for such R. To
estimate the remaining part, namely the part corresponding to r(R) ≤ 1, we first
apply our version of (1-14) to the pair (R∗, R) and note that r(R∗) = Cr(R)1/s

when r(R)≤ 1, obtaining

(3-10) sup
R∈W[; r(R)≤1

σ(R∗)ρ(R∗)aa∗(R)
ρ(R)b

≤ C sup
R∈W[; r(R)≤1

ρ(R∗)a

ρ(R)b
r(R)β−η

′
+η/s .

To further estimate (3-10), let us show that r(R) ∼ ρ(R) for any R ∈ W[. In fact,
ρ(R)≥ r(R) by (3-1). Also

ρ(R)= sup
z∈R

ρ(z)≤ C inf
z∈R

ρ(z)= Cd(R, �0) by (3-1),

and it is enough to show that d(R, �0) ≤ Cr(R) if R ∈ W[. This follows directly
from (1-4) if R ∈W[ is centered on an s-John curve leading from an M-bad point,
and it then follows for general R ∈W[ by using Proposition 2.3(c) to find a subball
of R of comparable radius that is centered on such a curve. Then if R ∈ W[ and
r(R)≤ 1,

ρ(R∗)≤ κ (ρ(R)+ r(R∗))≤ C(ρ(R)+ r(R)1/s)≤ Cρ(R)1/s,

and consequently, by (3-10),

(3-11)

sup
R∈W[;r(R)≤1

σ(R∗)ρ(R∗)aa∗(R)
ρ(R)b

≤ C sup
R∈W

ρ(R)a/s−b+β−η′+η/s

≤ Cρ(�)a/s−b+β−η′+η/s

since

a/s− b+β − η′+ η/s ≥ 0

by (1-16) (with p= q = 1). The estimate (3-11) holds even if �0 does not confine
the M-bad points provided we assume in addition that β−η′+η/s≥0; this follows
by simply majorizing the factor r(R)β−η

′
+η/s in (3-10) by ρ(R)β−η

′
+η/s and using

the inequality r(R)≤ ρ(R) when estimating ρ(R∗) above.
Combining (3-6)–(3-11) gives

‖ f − fB ′′‖L1
σa (�)
≤ CC1 max

{
ρ(�)a/s−b+β−η′+η/s, ρ(�)a−b+β+η−η′}

‖g‖L1
wb
(�).
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Finally, using a similar approach as in [Chua and Wheeden 2008, Lemma 3.1], we
have (recall that λ−2 B ′ ⊂ B ′′ ⊂ B ′)

‖ fB ′ − fB ′′‖L1
σa (�)
= σa(�)| fB ′ − fB ′′ |

≤
σa(�)

σ(B ′′)

(∫
B ′′
(| f − fB ′ | + | f − fB ′′ |)dσ

)
≤
σa(�)

σ(B ′′)

(
‖ f − fB ′‖L1

σ (B
′)
+‖ f − fB ′′‖L1

σ (B
′′)

)
≤ Cσa(�)(a∗(B ′)+ a∗(B ′′))‖g‖L1

w(τ B ′)

by (1-12) and the fact that σ is δ-doubling

≤ Cσ(�)ρ(�)a 1
ρ(B ′)b

(
a∗(B ′)+ a∗(B ′′)

)
‖g‖

L1
wb
(τ B ′)

≤ CC1ρ(�)
a−b+β+η−η′

‖g‖
L1
wb
(�)

using (1-14) for B ′ and B ′′ (with µ replaced by σ and p= q = 1). This completes
the proof of (1-27) by the triangle inequality. �

Proof of Theorem 1.10. For each x ∈ �, choose {Qx
i }
∞

i=1 and {Bx
j }
∞

j=1 as in the
proof of Theorem 1.6. For any ω > 0, set

b(Q, f ω)= a∗(Q)‖Y f ω‖
L p
w(τQ)

.

Note that (1-29) holds with this b( · , · ) by the hypothesis of Theorem 1.10. Also,
by the proof of Theorem 1.6(i) (with g there replaced by |Y f ω|),

(3-12)
∑
B∈I

A(B, f ω)pµ∗a(B)
p/q
≤ (C∗)p

‖Y f ω‖p
L p
wb (�)

for any collection I of disjoint balls Bx
j . Here C∗ is the constant in either (1-17)

or (1-18), respectively. This shows that (1-30) holds with (µ∗a, µa) in place of
(µ∗, µ), with θ = p/q, and with h(�, f ω) defined by

h(�, f ω)= C∗‖Y f ω‖
L p
wb (�)

µa(�)
−1/q .

Then (1-31) requires that

h∗(�, f )q = sup
ω>0

∞∑
k=1

‖Y f 2kω
‖

q
L p
wb (�)

<∞.
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Theorem 1.9 now gives (noting that ℘ = µa(�)/µa(B ′) as in the proof of
Theorem 1.6)

1
µa(�)

‖ f − fB ′,σ‖
q
Lq
µa (�)

≤ C µa(�)

µa(B ′)
C∗qh∗(�, f ) 1

µa(�)
+

( 8
σ(B ′)

‖ f − fB ′,σ‖L1
σ (B

′)

)q
,

which proves Theorem 1.10. �

Proof of Theorem 1.12. Suppose ε > 0, M > 1 and �0 is a subset of �c with
∂�∩

(⋃
x∈�M

[
B(x, ε)

)
⊂�0. We will show that �0 confines the M ′-bad points of

� for suitable M ′. Let us first show that if d(x)≥ ε/3 then x is an M ′-good point
for some M ′ > 1 depending on ε. Indeed, since � is an s-John domain, there is a
curve γ : [0, l] →� with γ(0)= x and γ(l)= x ′ such that

|γ(t1)− γ(t2)| ≤ |t1− t2| and d(γ(t))≥ cs min{t s, t}.

If t ≤ ε/(6κ), then

1
3ε ≤ d(x)≤ κ(d(γ(0), γ(t))+ d(γ(t)))≤ κ(t + d(γ(t)))≤ κ(ε/(6κ)+ d(γ(t))),

and consequently, d(γ(t))≥ ε/(6κ)≥ t . On the other hand, if κt ≥ ε/6, then

d(γ(t)) > cs t min{1, t s−1
} ≥ cs min{1, (ε/(6κ))s−1

}t.

Combining estimates shows that x ∈�M ′
g for suitably large M ′ depending only on

ε, κ, s and cs . We may assume M ′ ≥ M , so that �M ′
[ ⊂�

M
[ .

We now show that there is a constant C > 0 (independent of x) such that if
x ∈�M ′

[ and γ : [0, l] →� is the s-John curve connecting x to x ′, then d(γ(t))≥
Cd(γ(t),�0). We will use the fact that �0 ⊃ ∂�∩ B(x, ε). First, recall that we
must have d(x) < ε/3 since x ∈�M ′

[ . Let us consider two cases.

Case (i): t < ε/3. Then |γ(t)− x | ≤ t < ε/3 and hence

d(γ(t))≤ |γ(t)− x | + d(x) < 2ε/3.

Pick z ∈ ∂� such that d(γ(t))= |γ(t)− z|. Then z ∈ B(x, ε) since

|z− x | ≤ |z− γ(t)| + |γ(t)− x |< ε.

Thus z ∈�0 and d(γ(t))≥ d(γ(t),�0).

Case (ii): t ≥ ε/3. We combine the facts that d(γ(t)) > cs min{t s, t} ≥ cs,εt and

d(γ(t),�0)≤ |γ(t)− x | + d(x, �0)≤ t + ε ≤ 4t.

It follows that �0 confines the M ′-bad points of �, as desired.
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For all f ∈ Liploc(�) and all Euclidean balls B ⊂ �, the L1, L1 version of
Poincaré’s inequality together with Hölder’s inequality yield the L1, L p version

1
|B|
‖ f − fB‖L1(B)

≤ C
r(B)
|B|1/p ‖∇ f ‖L p(B) .

We will apply various earlier results with σ = µ = 1, Y = ∇, β = 1, s ≥ 1,
a ≥ 0, b ∈ R, 1/q ≥ 1/p− 1/n, η̃ = η̃′ = η = η′ = n, β ′ = 1− n/p+ n/q , and
a∗(B)=Cr(B)1−n/p. Let us first consider the case C(�, f )= |B ′|−1

∫
B ′ f dx . In

case q > p, we apply Theorem 1.10 to obtain (1-39); note that (1-37) now agrees
with (1-16).

For the case p = q > 1, note that (1-38) implies (1-37) with strict inequality,
that is,

s(n+ b− 1)− p+ 1
(n+ a)p

<
1
p
.

It follows that there exists q0 > p such that

s(n+ b− 1)− p+ 1
(n+ a)p

≤
1
q0
,

and we can then apply the result from the first part and then use Hölder’s inequality
to conclude this case. For the case p = q ≥ 1 and s = 1, where we assume (1-37),
that is, b−a≤ p, just apply Theorem 1.8(i), noting that β ′+a/q−b/p≥ 0 follows
from (1-37).

For the case p> q ≥ 1, we apply Theorem 1.6(ii). Conditions (1-38) now agree
with (1-19) by arguments like those in Remark 1.7(6). Of course, we will only
get a weak-type estimate instead of a strong-type one in this way. However, as the
conditions (1-38) are strict inequality, the weak-type estimate will be valid for some
q0 > q. Then (1-39) follows from interpolation; see Remark 1.7(10). Finally, in
case q = p= 1 and s≥ 1, recall that we assume n+a≥ s(n+b−1). In fact, (1-39)
with q = p = 1 and C(�, f ) = |B ′|−1

∫
B ′ f dx is true by Theorem 1.8(ii); now

β ′ = 1 and a∗(B)=Cr(B)1−n . Note that (1-16) follows from n+a ≥ s(n+b−1)
since then n+a ≥ n+b−1 if n+b−1≥ 0, while n+a ≥ n+b−1 holds trivially
if n+ b− 1< 0.

Now (1-39) is clear with C(�, f ) = |B ′|−1
∫

B ′ f in all cases. By the same
argument used in [Chua and Wheeden 2008, Remark 1.3], we see that (1-39) also
holds with C(�, f ) = (|D|ρadx)

−1
∫

D fρadx for any D ⊂ � such that |D| > 0,
provided the constant C in (1-39) also depends on |�|ρadx/|D|ρadx .

Finally, the last sentence in the statement of Theorem 1.12 follows directly from
the result in the last sentence of Theorem 1.8(ii) applied with the standard Eu-
clidean structure, that is, with β = 1, η = η′ = n and w = σ = 1, since then the
requirement in that sentence that β+ η/s− η′ ≥ 0 is guaranteed by assuming that
s ≤ n/(n− 1). �
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Proof of Theorem 1.14.. We will prove the result by applying Theorem 1.10 with
a∗(B)=Cr(B)1−n/p. For any (z, z′)∈D, we first connect (z, z′) to the axis z′= 0
(say to (z1, 0)) along the line through (z, z′) that is orthogonal to the boundary,
and then connect (z1, 0) to (2, 0) by a segment of the axis. Clearly, there exists
1 ≥ c̃ = c̃(s) > 0 small enough such that z1 < 2 whenever z < c̃, and then the
path from (z, z′) to (2, 0) lies in D and is an s-John curve. Moreover, if z ≥ c̃ then
(z, z′) can be connected to (2, 0) by a 1-John curve with constant M depending
on c̃. Hence the set of M-bad points DM

[ ⊂ {(z, z′) ∈ D : z < c̃}, and it is clear
that D0 confines the M-bad points when B((0, 0), ε)∩ ∂D ⊂ D0 for some ε > 0.
Moreover, recall that ∂D always confines the M-bad points.

Let δ = 1/4. First note that the measure µ(E) = |E ∩D|ρadx is δ-doubling for
any a ≥ 0. Let us show that it is also doubling on D when either a = 0 or when
D0 = ∂D and a ≥ 0. By Proposition 2.2(3) and the fact that µ is δ-doubling, we
only need to show that there exists c1 ≥ 1 such that µ(B(x, 2r)) ≤ c1µ(B(x, r))
for all d(x)/4≤ r ≤ 2 and x = (z, z′) with z < c̃ as {(z, z′) ∈ D : z ≥ c̃} ⊂ DM

g .
Consider first the case x = (z0, 0). Using the fact that y = t s is convex and

z0 < 1, we see by elementary calculus that d(x) is at least the distance between
x = (z0, 0) and the straight line passing through the point (z0, zs

0) with slope s;
note it suffices to consider only n = 2 here. Hence d(x) ≥ zs

0/
√

1+ s2 ≥ zs
0/(2s).

Again by calculus, if zs
0/(2s)≤ r ≤ 2 then

r2
≥

( z0/(2s)1/s + r/2
2

)2s
+ (r/2)2

since the analogous inequality with r1/s in place of z0/(2s)1/s is true if 0≤ r ≤ 2.
Hence when z0 < 1 and x = (z0, 0), the cylinder{

(z, z′) ∈ R×Rn−1
: z0+ r/4≤ z ≤ z0+ r/2, |z′|<

( z0/(2s)1/s + r/2
2

)s}
lies inside B(x, r) ∩ D when d(x) ≤ r ≤ 2. It follows that if x = (z0, 0) and
d(x)≤ r ≤ 2, then

• when a = 0, µ(B(x, r))≥ Cr(z0+ r)(n−1)s ;

• when a ≥ 0 and D0 = ∂D (so ρ((z, z′))= dE((z, z′))),

µ(B(x, r))≥ Cr(z0+ r)(n−1+a)s

since dE((z, z′))≥ C(z0+ r)s on a proportional part of the cylinder.

It is easy to see that both of these remain true (for a larger constant C) even if
d(x)/4≤ r ≤ 4 when x = (z0, 0), z0 < 1.

Next note that if a ≥ 0, D0 = Dc and 0< R < 4, then

(3-13) µ(B(x, R))≤ R(z0+ R)(n−1+a)s .
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Moreover, if a = 0 but D0 may not be Dc, then for 0< R < 4,

µ(B(x, R))≤ C R(z0+ R)(n−1)s .

Clearly (3-13) and the last estimate remain valid for x = (z0, 0) ∈ D without the
restriction z0 < 1. It is now easy to see that if either D0 = Dc or a = 0, then
µ(B(x, 2r))≤ c1µ(B(x, r)) for any x = (z0, 0) with z0 < c̃ and d(x)/4≤ r ≤ 2.

Finally, it remains to consider the case x= (z0, z′), z′ 6=0 and z0< c̃. Recall that
there is z1> z0 such that the line connecting x= (z0, z′) to x1= (z1, 0) is orthogonal
to the boundary. If r < 2|(z0, z′)− (z1, 0)|, it is easy to see that B(x, r) contains
a δ-ball Q with r(Q) ≥ c2r , and hence µ(B(x, 2r)) ≤ c1µ(B(x, r)) since µ is
δ-doubling for δ = 1/4. On the other hand, when r ≥ 2|(z0, z′)− (z1, 0)|, we have
B(x1, r/2)⊂ B(x, r)⊂ B(x1, 2r), and consequently µ(B(x, 2r)) ≤ c1µ(B(x, r))
with a larger c1 if necessary. We conclude that µ is doubling on D if either a = 0
or D0 = Dc and a ≥ 0. In particular, by Remark 1.7(1), (1-5) holds for µ in these
cases.

We are now ready to show part (2) of Theorem 1.14. Let a, b, p, q satisfy (1-40)
and (1-43). It will be convenient to rename a and b by ã and b̃ respectively. We
will apply Theorem 1.10 with a = b = 0 there to the measures

µ(E)= |E ∩D|ρ ãdx and w(E)= |E ∩D|
ρ b̃dx ,

where ρ(x) = d(x, �0). First, let B be any δ-ball in D and f be any locally
Lipschitz function on D. By the unweighted L1, L1 Poincaré inequality and the
fact that ρ(x)∼ ρ(B) on the δ-ball B, we have for p ≥ 1 that

(3-14) 1
µ(B)

‖ f − fB‖L1
µ(B)
≤ C

r(B)
w(B)1/p ‖∇ f ‖

L p
w(B)

.

Thus, (1-12) holds with fB = |B|−1
∫

B f dx , τ = 1, σ = µ and p0 = 1.
To verify (1-14), suppose as in (1-14) that B = B(x, r) and Q satisfy x ∈ DM

[ ,
d(x)/4 ≤ r < 2 and Q ∈ C(B). We first consider the case x = (z0, 0), with
z0 < c̃ < 1. Observe that

µ(B)1/q ≤ Cr(B)1/qr(Q)(n−1+ã)/q

by (3-13) and the fact that r(Q)≥C(z0+r(B))s (instead of the usual cr(B)s) since
Q has center on the axis between (z0, 0) and (2, 0). Now, since r(Q)∼ d(Q, ∂D),
we have w(Q)∼ r(Q)n+b̃ and hence

(3-15) µ(B)1/q ≤ Cr(B)1/qw(Q)1/pr(Q)(n−1+ã)/q−(n+b̃)/p.
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Since µ is δ-doubling, we can as before extend (3-15) to include the case when
x = (z0, z′) ∈ DM

b , with z′ 6= 0. Thus

(µ(B)/r(B))1/q ≤ C(w(Q)/r(Q)n+b̃−p(n−1+ã)/q)1/p,

which verifies (1-14) with η = 1 and η′ = n+ b̃− p(n− 1+ ã)/q .
Now suppose B is a δ-ball. Then µ(B)∼ r(B)nρ(B)ã andw(B)∼ r(B)nρ(B)b̃.

Hence,

µ(B)1/qw(B)−1/p
≤ Cρ(B)ã/q−b̃/pr(B)n/q−n/p

≤ C�r(B)β
′
−1,

where

β ′=1+ n
q
−

n
p
+min

{
0, ã

q
−

b̃
p

}
and C�=

{
ρ(�)ã/q−b̃/p if ã/q − b̃/p > 0,
1 if ã/q − b̃/p ≤ 0

and in case ã/q − b̃/p > 0 we have used r(B)≤ ρ(B)≤ ρ(�). Since

1+ n(1/q − 1/p)≥ 0 and 1+
n+ ã

q
−

n+ b̃
p
≥ 0

by (1-43), we have β ′ ≥ 0.
We now check that by (1-43), with η and η′ as above,

η+ 0
q
≥

s(η′+ 0− p)+ (s− 1)(p− 1)
p

.

Hence (1-16) holds with a, b, β there chosen as a = b = 0 and β = 1. Part (2) of
Theorem 1.14 then follows from Theorem 1.10; see Remark 1.11.

To prove part (1), we will use µ(E) = w(E) = |E ∩D|. It is clear that (3-14)
remains true for all δ-balls B. Next note that instead of (3-15), we have, for all
balls B and Q such that Q ∈ C(B),

(µ(B)/r(B))1/q ≤ C(w(Q)/r(Q)n−p(n−1)/q)1/p.

Part (1) now follows from Theorem 1.10 (see Remark 1.11) with a = a, b = b,
β = 1, η = 1 and η′ = n− p(n− 1)/q. �
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THE ORBIT STRUCTURE OF THE GELFAND–ZEITLIN GROUP
ON n× n MATRICES

MARK COLARUSSO

Dedicated to Bertram Kostant on the occasion of his 80th birthday.

Recently, Kostant and Wallach constructed an action of a simply connected
Lie group A ∼= Cn(n−1)/2 on gl(n) using a completely integrable system de-
rived from the Poisson analogue of the Gelfand–Zeitlin subalgebra of the
enveloping algebra. They show that A-orbits of dimension n(n− 1)/2 form
Lagrangian submanifolds of regular adjoint orbits in gl(n) and describe the
orbits of A on a certain Zariski open subset of regular semisimple elements.
In this paper, we describe all A-orbits of dimension n(n − 1)/2 and thus
all polarizations of regular adjoint orbits obtained using Gelfand–Zeitlin
theory.

1. Introduction

For n∈N, let1n
i, j be the set of ordered pairs of indices (i, j) such that 1≤ j≤ i≤n.

In [2006a; 2006b], Bertram Kostant and Nolan Wallach constructed an action
of a complex, commutative, simply connected Lie group A∼=Cn(n−1)/2 on the Lie
algebra of n × n complex matrices gl(n). The dimension of this group is exactly
half the dimension of a regular adjoint orbit in gl(n), and orbits of A of dimension
n(n−1)/2 are Lagrangian submanifolds of regular adjoint orbits. We refer to the
group A introduced by Kostant and Wallach as the Gelfand–Zeitlin group because
of its connection with the Gelfand–Zeitlin algebra, as we will explain in Section 2.

The group A and its action are constructed as follows. Given i < n, we can
think of gl(i) ↪→ gl(n) as a subalgebra by embedding an i× i matrix into the upper
left corner of an n × n matrix. For (i, j) ∈1n

i, j , let fi, j (x) be the polynomial
on gl(n) defined by fi, j (x) = tr(x j

i ), where xi denotes the i × i submatrix in
the upper left corner of x . In [2006a], Konstant and Wallach showed that the
functions { fi, j | (i, j) ∈1n

i, j } are algebraically independent and Poisson commute
with respect to the Lie–Poisson structure on gl(n) ∼= gl(n)∗. The corresponding

MSC2000: 14L30, 14R20, 37J35, 53D17.
Keywords: Lie–Poisson structure, integrable system, algebraic group actions, Gelfand–Zeitlin
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Hamiltonian vector fields ξ fi, j generate a commutative Lie algebra a of dimen-
sion n(n−1)/2. The group A is defined to be the simply connected, complex Lie
group that corresponds to the Lie algebra a. The vector fields ξ fi, j are complete
[Kostant and Wallach 2006a, Theorem 3.5], and therefore a integrates to a global
action of Cn(n−1)/2 on gl(n), thus defining the action of the group A on gl(n).

Our goal in this paper is to describe all A-orbits of dimension n(n−1)/2. An
element x ∈ gl(n) is called strongly regular if and only if its A-orbit is of di-
mension n(n−1)/2. We denote the set of strongly regular elements by gl(n)sreg.
One way of studying such orbits is to study the action of A on fibers of the map
8 : gl(n)→ Cn(n+1)/2

(1-1) 8(x)= (p1,1(x1), p2,1(x2), . . . , pn,n(x)),

where pi, j (xi ) is the coefficient of t j−1 in the characteristic polynomial of xi .
In [2006a, Theorem 2.3], Kostant and Wallach show that this map is surjective

and that every fiber of this map8−1(c)=gl(n)c contains strongly regular elements.
Following them, we denote the strongly regular elements in the fiber gl(n)c by
gl(n)sreg

c . By [2006a, Theorem 3.12], the A-orbits in gl(n)sreg are precisely the
irreducible components of the fibers gl(n)sreg

c . Thus, our study of the action of A
on gl(n)sreg is reduced to studying the A-orbit structure of the fibers gl(n)sreg

c . In
[2006a], the authors also describe the A-orbit structure on a special class of fibers
that consist of certain regular semisimple elements. In this paper, we describe the
A-orbit structure of gl(n)sreg

c for any c ∈ Cn(n+1)/2.
In Section 2, we describe the construction in [Kostant and Wallach 2006a] of

the group A in more detail, and in Section 3, we describe their results about the
A-orbits. We summarize these results briefly here. For any x ∈ gl(i), let σ(x)
denote the spectrum of x . Kostant and Wallach describe the action of the group A
on a Zariski open subset of regular semisimple elements defined by

gl(n)� = {x ∈ gl(n) | xi is regular semisimple, σ (xi−1)∩ σ(xi )=∅, 2≤ i ≤ n}.

Let ci ∈Ci and consider c= (c1, c2, . . . , cn) ∈C1
×C2
×· · ·×Cn

=Cn(n+1)/2.
Regard ci = (z1, . . . , zi ) as the coefficients of the degree i monic polynomial

(1-2) pci (t)= z1+ z2t + · · ·+ zi t i−1
+ t i .

Let�n denote the Zariski open subset of Cn(n+1)/2 given by the tuples c such that
pci (t) has distinct roots and pci (t) and pci+1(t) have no roots in common. Clearly,
gl(n)� =

⋃
c∈�n

gl(n)c. The action of A on gl(n)� is described as follows.

Theorem 1.1 [Kostant and Wallach 2006a, Theorems 3.23 and 3.28]. The elements
of gl(n)� are strongly regular. If c ∈ �n , then gl(n)c = gl(n)sreg

c is precisely one
orbit under the action of the group A. Moreover, gl(n)c is a homogeneous space
for a free, algebraic action of the torus (C×)n(n−1)/2.
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In Section 4, we give a construction that describes an A-orbit in an arbitrary
fiber gl(n)sreg

c as the image of a certain morphism of a commutative, connected
algebraic group into gl(n)sreg

c . The construction gives a bijection between A-orbits
in gl(n)sreg

c and orbits of a product of connected, commutative algebraic groups
acting freely on a concrete, well-understood variety, but it does not enumerate the
A-orbits in gl(n)sreg

c . In Section 5, we use the construction and combinatorial data
of the fiber gl(n)sreg

c to give explicit descriptions of the A-orbits in gl(n)sreg
c . The

main result is Theorem 5.11, which contrasts substantially with the generic case
described in Theorem 1.1.

Theorem 1.2. Let c = (c1, c2, . . . , cn) ∈ C1
×C2

× · · · ×Cn
= Cn(n+1)/2 be such

that there are 0≤ ji ≤ i roots in common between the monic polynomials pci (t) and
pci+1(t). Then the number of A-orbits in gl(n)sreg

c is exactly 2 j , where j =
∑n−1

i=1 ji .
For x ∈ gl(n)sreg

c , let Zi denote the centralizer of the Jordan form of xi in gl(i). The
orbits of A on gl(n)sreg

c are the orbits of a free algebraic action of the complex,
commutative, connected algebraic group Z = Z1× · · ·× Zn−1 on gl(n)sreg

c .

Remark 1.3. After the results of this paper were established, a very interesting
paper by Roger Bielawski and Victor Pidstrygach [2008] appeared proving simi-
lar results. They show there are 2 j orbits, where j =

∑n−1
i=1 ji , using symplectic

reduction and rational maps of fixed degree from the Riemann sphere into the flag
manifold for GL(n+1). Their arguments are independent and completely different
from ours. Our work is more precise in that we provide explicit representatives for
the A-orbits, and show that the A-orbits have a simply transitive algebraic action
of Z1×· · ·×Zn−1. These ideas were useful in the writing of [Colarusso and Evens
2010].

The nilfiber gl(n)0 = 8−1(0) contains some of the most interesting structure
in regard to the action of A. The fiber gl(n)0 has been studied extensively by
Lie theorists and numerical linear algebraists. Parlett and Strang [2008] studied
matrices in gl(n)0 and obtained interesting results. Ovsienko [2003] also studied
gl(n)0 and showed that it is a complete intersection. It turns out that the A-orbits
in gl(n)sreg

0 correspond to 2n−1 Borel subalgebras of gl(n). The main results are
contained in Theorems 5.2 and 5.5. We combine them into a single statement here.

Theorem 1.4. The nilfiber gl(n)sreg
0 contains 2n−1 A-orbits. For x ∈ gl(n)sreg

0 , let
A · x denote the Zariski closure of A·x (which is the same as its Hausdorff closure).
Then A · x is a nilradical of a Borel subalgebra in gl(n) that contains the standard
Cartan subalgebra of diagonal matrices.

The nilradicals obtained as closures of A-orbits in gl(n)sreg
0 are described ex-

plicitly in Theorem 5.5. In Theorem 5.7, we also describe the permutations that
conjugate the strictly lower triangular matrices into each of these 2n−1 nilradicals.
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Theorem 1.2 lets us identify exactly where the action of the group A is transitive
on gl(n)sreg

c . (See Corollary 5.13 and Remark 5.14.)

Corollary 1.5. The action of A is transitive on gl(n)sreg
c if and only if pci (t) and

pci+1(t) are relatively prime for each i in 1 ≤ i ≤ n − 1. Moreover, for such
c ∈ Cn(n+1)/2, we have gl(n)c = gl(n)sreg

c .

This corollary allows us to identify the maximal subset of gl(n) on which the
action of A is transitive on the fibers of the map 8 in (1-1) over this set. The set
gl(n)� is a proper open subset of this maximal set. This is discussed in detail in
Section 5c.

2. The group A

We briefly discuss the construction of an analytic action of a group A∼= Cn(n−1)/2

on gl(n) that appears in [Kostant and Wallach 2006a]; see also [Colarusso 2009].
We regard gl(n)∗ as a Poisson manifold with the Lie–Poisson structure; see

[Vaisman 1994; Chriss and Ginzburg 1997]. The Lie–Poisson structure is the
unique Poisson structure on the symmetric algebra S(gl(n))= C[gl(n)∗] such that
for x, y ∈ S1(gl(n)), the Poisson bracket {x, y} is the Lie bracket [x, y]. We use
the trace form to transfer the Poisson structure from gl(n)∗ to gl(n). For i ≤ n, we
can view gl(i) ↪→ gl(n) as a subalgebra simply by embedding an i × i matrix in
the upper left corner of an n× n matrix, that is, via

(2-1) Y ↪→
[

Y 0
0 0

]
.

We have a corresponding embedding of the adjoint groups GL(i) ↪→ GL(n) via

g ↪→
[

g 0
0 Idn−i

]
.

In this paper, we always think of gl(i) ↪→ gl(n) and GL(i) ↪→ GL(n) via these
embeddings, unless otherwise stated.

We can use the embedding (2-1) to realize gl(i) as a summand of gl(n). Indeed,
we have

(2-2) gl(n)= gl(i)⊕ gl(i)⊥,

where gl(i)⊥ denotes the orthogonal complement of gl(i) in gl(n) with respect
to the trace form. It is convenient for us to have a coordinate description of this
decomposition.

Definition 2.1. For x ∈ gl(n), we let xi ∈ gl(i) be the upper left corner of x , that
is, (xi )k,l = xk,l for 1≤ k, l ≤ i . We refer to xi as the i × i cutoff of x .
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The decomposition of y ∈ gl(n) in (2-2) is written y = yi ⊕ y⊥i , where y⊥i
denotes the entries yk,l where k and l are not both in the set {1, . . . , i}. Using
this decomposition, we can think of the polynomials on gl(i), which we denote
by P(gl(i)), as a Poisson subalgebra of P(gl(n)), the polynomials on gl(n). Ex-
plicitly, if f ∈ P(gl(i)), then (2-2) gives f (x)= f (xi ) for x ∈ gl(n). The Poisson
structure on P(gl(i)) inherited from P(gl(n)) agrees with the Lie–Poisson structure
on P(gl(i)); see [Kostant and Wallach 2006a, page 330].

Since gl(n) is a Poisson manifold, we have the notion of a Hamiltonian vec-
tor field ξ f for any holomorphic function f ∈ O(gl(n)). If g ∈ O(gl(n)), then
ξ f (g)={ f, g}. The group A is defined as the simply connected, complex Lie group
that corresponds to a certain Lie algebra of Hamiltonian vector fields on gl(n). To
define this Lie algebra of vector fields, we consider the subalgebra of P(gl(n))
generated by the adjoint invariant polynomials for each of the n subalgebras gl(i).
We denote this subalgebra by J (gl(n)). We will soon see that

(2-3) J (gl(n))∼= P(gl(1))GL(1)
⊗ · · ·⊗ P(gl(n))GL(n).

This algebra may be viewed as a classical analogue of the Gelfand–Zeitlin sub-
algebra of the universal enveloping algebra U (gl(n)); see [Drozd et al. 1994].
Since P(gl(i))GL(i) is the Poisson center of P(gl(i)), it is easy to see that J (gl(n))
is Poisson commutative; see [Kostant and Wallach 2006a, Proposition 2.1]. Let
fi,1, . . . , fi,i generate the ring P(gl(i))GL(i). Then the set fi,i | 1 ≤ i ≤ n} gen-
erates J (gl(n)). Note that the sum

∑n−1
i=1 i = 1

2 n(n − 1) = n(n−1)/2 is half the
dimension of a regular adjoint orbit in gl(n). We will see shortly that the functions
{ fi,1, . . . , fi,i | 1 ≤ i ≤ n − 1} form a completely integrable system on a regular
adjoint orbit.

The surprising fact about this integrable system proved by Kostant and Wal-
lach is that the corresponding Hamiltonian vector fields ξ fi, j for (i, j) ∈1n−1

i, j
are complete; [Kostant and Wallach 2006a, Theorem 3.5]. Let fi, j = tr(x j

i ) and
a= span{ξ fi, j | (i, j) ∈1n−1

i, j }. We define A as the simply connected, complex Lie
group corresponding to the Lie algebra a. Since the vector fields ξ fi, j commute for
all i and j , the corresponding (global) flows define a global action of Cn(n−1)/2 on
gl(n). The group A ∼= Cn(n−1)/2, and it acts on gl(n) by composing these flows
in any order. The action of A also preserves adjoint orbits [Kostant and Wallach
2006a, Theorems 3.3 and 3.4].

The action of A ∼= Cn(n−1)/2 may seem at first glance to be noncanonical.
However, one can show that the orbit structure of Cn(n−1)/2 given by integrating
the complete vector fields ξ fi, j is independent of the choice of generators fi, j for
P(gl(i))GL(i). See [Kostant and Wallach 2006a, Theorem 3.5]. Since we are inter-
ested in studying the geometry of these orbits, we lose no information by fixing a
choice of generators.
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Remark 2.2. Using the Gelfand–Zeitlin algebra for complex orthogonal Lie alge-
bras so(n), we can define an analogous group Cd , where d is half the dimension
of a regular adjoint orbit in so(n). The construction of the group and the study of
its orbit structure on certain regular semisimple elements of so(n) are discussed in
detail in [Colarusso 2009].

For our choice of generators, we can write down the Hamiltonian vector fields
ξ fi, j in coordinates and their corresponding global flows. We use the following
notation. Given x, z ∈ gl(n), we denote the directional derivative in the direction
of z evaluated at x by ∂ z

x . Its action on function on a holomorphic function f is

(2-4) ∂ z
x f = d

dt

∣∣
t=0 f (x + t z).

By [Kostant and Wallach 2006a, Theorem 2.12],

(2-5) (ξ fi, j )x = ∂
[− j x j−1

i ,x]
x .

We see that ξ fi, j integrates to an action of C on gl(n) given by

(2-6) Ad(exp(t j x j−1
i )) · x for t ∈ C,

where x0
i = Idi ∈ gl(i).

Remark 2.3. The orbits of A are the composition of the (commuting) flows in
(2-6) for (i, j) ∈1n−1

i, j , in any order acting on x ∈ gl(n). Clearly, the action of A
stabilizes adjoint orbits.

Equation (2-5) gives us a convenient description of the tangent space to the
action of A on gl(n). We first need some notation. For x ∈ gl(n), let Zxi be the
associative subalgebra of gl(i) generated by the elements Idi , xi , x2

i , . . . , x i−1
i . We

then let Zx =
∑n

i=1 Zxi . Let x ∈ gl(n) and let A · x denote its A-orbit. Then (2-5)
gives us

Tx(A · x)= span{(ξ fi, j )x | (i, j) ∈1n−1
i, j } = span{∂ [z,x]x | z ∈ Zx}.

Following the notation in [Kostant and Wallach 2006a], we let

(2-7) Vx := span{∂ [z,x]x | z ∈ Zx} = Tx(A · x)⊂ Tx(gl(n)).

Our work focuses on orbits of A of maximal dimension n(n−1)/2, since such
orbits form Lagrangian submanifolds of regular adjoint orbits. (If such orbits exist,
they are the leaves of maximal dimension of the Gelfand–Zeitlin integrable sys-
tem.) Accordingly, we make the following theorem/definition. See [Kostant and
Wallach 2006a, Theorem 2.7 and Remark 2.8].
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Theorem/definition 2.4. An element x ∈gl(n) is called strongly regular if and only
if the differentials {(d fi, j )x | (i, j) ∈1n

i, j } are linearly independent at x. Equiva-
lently, x is strongly regular if the A-orbit A · x of x has dim(A · x) = n(n−1)/2.
We denote the set of strongly regular elements of gl(n) by gl(n)sreg.

Our goal is to determine the A-orbit structure of gl(n)sreg. In [Kostant and Wal-
lach 2006a], Kostant and Wallach produce strongly regular elements using the map

(2-8) 8 : gl(n)→ Cn(n+1)/2, x 7→ (p1,1(x1), p2,1(x2), . . . , pn,n(x)),

where pi, j (xi ) is the coefficient of t j−1 in the characteristic polynomial of xi .

Theorem 2.5 [Kostant and Wallach 2006a, Theorem 2.3]. Let b⊂ gl(n) denote the
standard Borel subalgebra of upper triangular matrices in gl(n). Let f be the sum
of the negative simple root vectors. Then the restriction of 8 to the affine variety
f + b is an algebraic isomorphism.

We will refer to the elements of f +b as Hessenberg matrices. They are matrices
of the form

f + b=


a11 a12 · · · a1n−1 a1n

1 a22 · · · a2n−1 a2n

0 1 · · · a3n−1 a3n
...

...
. . .

...
...

0 0 · · · 1 ann

 .
Theorem 2.5 implies that if x ∈ f +b, the differentials (dpi, j )x for (i, j) ∈1n

i, j
are linearly independent. For the same range of i and j , the sets of functions
{ fi, j } and {pi, j } both generate the classical analogue of the Gelfand–Zeitlin algebra
J (gl(n)). It follows that

span{(d fi, j )x | (i, j) ∈1n
i, j } = span{(dpi, j )x | (i, j) ∈1n

i, j } for any x ∈ gl(n)

by the Leibniz rule. Theorem 2.5 then implies f + b ⊂ gl(n)sreg and therefore
gl(n)sreg is a nonempty Zariski open subset of gl(n). Thus the functions { fi, j |

(i, j) ∈1n
i, j } are algebraically independent, and we obtain (2-3).

For c = (c1, c2, . . . , cn) ∈ C×C2
× · · · ×Cn

= Cn(n+1)/2, we denote the fiber
8−1(c) by gl(n)c, with 8 as in (2-8). For ci ∈ Ci , we define a monic polynomial
pci (t) with coefficients given by ci as in (1-2). Then x ∈ gl(n)c if and only if xi has
characteristic polynomial pci (t) for all i . Then for any c ∈Cn(n+1)/2, Theorem 2.5
says that gl(n)c is nonempty and contains a unique Hessenberg matrix. We denote
the strongly regular elements of the fiber gl(n)c by gl(n)sreg

c , that is,

gl(n)sreg
c = gl(n)c ∩ gl(n)sreg.

Since Hessenberg matrices are strongly regular, gl(n)sreg
c is a nonempty Zariski

open subset of gl(n)c for any c ∈ Cn(n+1)/2.
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Theorem 2.5 implies that every regular adjoint orbit contains strongly regular el-
ements. This follows from the fact that a regular adjoint orbit contains a companion
matrix, which is Hessenberg. We can then use A-orbits of dimension n(n−1)/2
to construct polarizations of dense, open submanifolds of regular adjoint orbits.
Hence, the Gelfand–Zeitlin system is completely integrable on each regular adjoint
orbit [Kostant and Wallach 2006a, Theorem 3.36].

Our goal is to give a complete description of the A-orbit structure of gl(n)sreg.
It follows from the Poisson commutativity of the algebra J (gl(n)) in (2-3) that the
fibers gl(n)c are A-stable. Whence, the fibers gl(n)sreg

c are A-stable. Moreover, we
have by [Kostant and Wallach 2006a, Theorem 3.12] that the A-orbits in gl(n)sreg

are the irreducible components of the fibers gl(n)sreg
c . From this it follows that

there are only finitely many A-orbits in the fiber gl(n)sreg
c .

In this paper, we describe the A-orbit structure of an arbitrary fiber gl(n)sreg
c and

count the exact number of A-orbits in the fiber. This gives a complete description
of the A-orbit structure of gl(n)sreg.

Remark 2.6. The set of fibers of the map 8 is the same as the set of fibers of
the moment map for the A-action x → ( f1,1(x1), f2,1(x2), . . . , fn,n(x)). Thus,
studying the action of A on the fibers of 8 is essentially studying the action of A
on the fibers of the corresponding moment map. We use the map 8 instead of the
moment map, since it is easier to describe the fibers of 8.

For our purposes, it is convenient to have a more concrete characterization of
strongly regular elements.

Proposition 2.7 [Kostant and Wallach 2006a, Theorem 2.14]. Let x ∈ gl(n) and
let zgl(i)(xi ) denote the centralizer in gl(i) of xi . Then x is strongly regular if and
only if the following two conditions hold.

(a) xi ∈ gl(i) is regular for all 1≤ i ≤ n.

(b) zgl(i−1)(xi−1)∩ zgl(i)(xi )= 0 for all 2≤ i ≤ n.

3. The action of A on generic matrices

For x ∈gl(i), let σ(x) denote the spectrum of x , where x is viewed as an i×i matrix.
We consider the following Zariski open subset of regular semisimple elements of
gl(n)

(3-1) gl(n)�
= {x ∈ gl(n) | xi is regular semisimple, σ(xi−1)∩ σ(xi )=∅, 2≤ i ≤ n}.

Kostant and Wallach give a complete description of the action of A on gl(n)�. We
give an example of a matrix in gl(3)�.



THE ORBIT STRUCTURE OF THE GELFAND–ZEITLIN GROUP ON n× n MATRICES 117

Example 3.1. Consider the matrix in gl(3)

X =

1 2 16
1 0 4
0 1 −3

 .
Because X has eigenvalues σ(X) = {−3, 3,−2}, it is regular semisimple and
σ(X2)= {2,−1}. Clearly, σ(X1)= {1}. Thus X ∈ gl(3)�.

We recall the notation introduced in (1-2). (If ci = (z1, z2, . . . , zi ) ∈ Ci , then
pci (t) = z1 + z2t + · · · + zi t i−1

+ t i .) Let �n ⊂ Cn(n+1)/2 be the Zariski open
subset consisting of c ∈ Cn(n+1)/2 with c = (c1, . . . , ci , . . . , cn) such that pci (t)
has distinct roots and pci (t) and pci+1(t) have no roots in common [Kostant and
Wallach 2006a, Remark 2.16]. It is easy to see that gl(n)� =

⋃
c∈�n

gl(n)c.
Kostant and Wallach described the A-orbit structure on gl(n)�, as summarized

in Theorem 1.1. We sketch the ideas behind a possible proof in the case of gl(3).
See [Kostant and Wallach 2006a] or [Colarusso 2009] for complete proofs and a
more thorough explanation.

The A-orbit of x ∈ gl(3) is

(3-2) Ad

z1

1
1

z2

z2

1

exp(t x2)

1

 · x,
where z1, z2 ∈ C× and t ∈ C; see Equation (2-6).

If we let Zi ⊂GL(i) be the centralizer of xi in GL(i), we notice from (3-2) that
the action of A appears to push down to an action of Z1× Z2. For x ∈ gl(3)�, we
should then expect to see an action of (C×)3 as realizing the action of A.

Working directly from the definition of the action of A in (3-2) is cumbersome.
The action of Z2 on x2 would be much easier to write down if x2 were diagonal.
However, x2 is not diagonal for x ∈ gl(3)�, but it is diagonalizable. So, we first
diagonalize x2 and then conjugate by the centralizer Z2 = (C

×)2. If γ (x) ∈GL(2)
is such (Ad(γ (x))·x)2 is diagonal, then we can define an action of (C×)3 on gl(3)c
for c ∈�3 by

(3-3) (z′1, z′2, z′3) · x = Ad

z′1
1

1

 γ (x)−1

z′2
z′3

1

 γ (x)
 · x,

with z′i ∈ C×.
We can show (3-3) is a simply transitive algebraic group action on gl(3)c by

explicit computation. Comparing (3-3) and (3-2), it is not hard to believe that
the action of (C×)3 in (3-3) has the same orbits as the action of A on gl(3)c. To
prove this precisely, one needs to see that gl(3)sreg

c = gl(3)c. This can be proved
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by computing the tangent space to the action of (C×)3 in (3-3) and showing that
it is same as the subspace Vx in (2-7), or by appealing to [Kostant and Wallach
2006a, Theorem 2.17]. The fact that gl(3)c is one A-orbit then follows by applying
[Kostant and Wallach 2006a, Theorem 3.12].

This line of argument is not the one used in [Kostant and Wallach 2006a] to
prove Theorem 1.1. The ideas here go back to a preliminary approach by Kostant
and Wallach. However, it is this method that generalizes to describe all orbits of A
in gl(n)sreg. We describe the general construction in the next section.

4. Constructing nongeneric A-orbits

4a. Overview. In the next three sections, we classify A-orbits in gl(n)sreg by de-
termining the A-orbit structure of an arbitrary fiber gl(n)sreg

c . Let ci ∈ Ci and
pci (t) = (t − λ1)

n1 · · · (t − λr )
nr with λ j 6= λk for j 6= k; see (1-2). To study the

action of A on gl(n)c with

c = (c1, . . . , ci , ci+1, . . . , cn) ∈ C1
× · · ·×Ci

×Ci+1
× · · ·×Cn

= Cn(n+1)/2,

we consider elements of gl(i + 1) of the form

(4-1)




λ1 1 · · · 0

0 λ1
. . .

...
...

. . . 1
0 · · · · · · λ1

 0

. . .

0


λr 1 · · · 0

0 λr
. . .

...
...

. . . 1
0 · · · · · · λr



y1,1
...
...

y1,n1
...

yr,1
...
...

yr,nr

z1,1 · · · · · · z1,n1 · · · zr,1 · · · · · · zr,nr w


with characteristic polynomial pci+1(t).

To avoid ambiguity, it is necessary to order the Jordan blocks of the i× i cutoff
of the matrix in (4-1). To do this, we introduce a lexicographical ordering on C

defined as follows. Let z1, z2 ∈C. We say that z1 > z2 if and only if Re z1 >Re z2,
or Re z1 = Re z2 and Im z1 > Im z2.

Definition 4.1. Let ci ∈ Ci be such that pci (t) = (t − λ1)
n1 · · · (t − λr )

nr with
λ j 6= λk , as in (1-2), and let λ1 > λ2 > · · · > λr in the lexicographical ordering
on C. For ci+1 ∈Ci+1, we define 4i

ci ,ci+1
as the set of elements x ∈ gl(i+1) of the
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form (4-1) whose characteristic polynomial is pci+1(t). We refer to 4i
ci ,ci+1

as the
solution variety at level i .

We know from Theorem 2.5 that 4i
ci ,ci+1

is nonempty for any ci ∈ Ci and any
ci+1 ∈ Ci+1. Let us denote the regular Jordan form that is the i × i cutoff of the
matrix in (4-1) by J . Let Zi denote the centralizer of J in GL(i). Since J is
regular, Zi is a connected, abelian algebraic group [Kostant 1963, Proposition 14].
The group Zi acts algebraically on the solution variety 4i

ci ,ci+1
by conjugation. In

the remainder of Section 4, we give a bijection between A-orbits in gl(n)sreg
c and

free Z1×· · ·× Zn−1 orbits on 41
c1,c2
×· · ·×4n−1

cn−1,cn
. In Section 5, we will classify

the Zi -orbits on 4i
ci ,ci+1

using combinatorial data of the tuple c ∈ Cn(n+1)/2. We
will then have a complete picture of the A-action on gl(n)sreg

c .
We now briefly outline the construction, which gives the bijection between A-

orbits in gl(n)sreg
c and Z1× · · · × Zn−1 orbits in 41

c1,c2
× · · · ×4n−1

cn−1,cn
. This con-

struction not only describes A-orbits in gl(n)sreg
c , but all A-orbits in the larger set

gl(n)c ∩ S, where S is the Zariski open subset of gl(n) consisting of elements x
whose cutoffs xi for 1≤ i ≤ n−1 are regular. We know by Proposition 2.7(a) that
gl(n)sreg

c ⊂ gl(n)c ∩ S, and it is in general a proper subset; see Example 5.4.
For 1≤ i ≤ n−2, choose a Zi -orbit Oi

ai
∈4i

ci ,ci+1
consisting of regular elements

of gl(i+1). For i = n−1, choose any orbit On−1
an−1

of Zn−1 in 4n−1
cn−1,cn

. Then define
a morphism

(4-2) 0a1,a2,...,an−1
n : O1

a1
× · · ·×On−1

an−1
→ gl(n)c ∩ S,

(x1, . . . , xn−1) 7→ Ad(g1,2(x1)
−1g2,3(x2)

−1
· · · gn−2,n−1(xn−2)

−1)xn−1.

where gi,i+1(xi ) conjugates xi into Jordan canonical form (with eigenvalues in
decreasing lexicographical order). For brevity, we define

0n := 0
a1,a2,...,an−1
n .

We denote the image of this morphism by im 0n .

Theorem 4.2. Every A-orbit in gl(n)c ∩ S is of the form im 0n for some choice
of orbits Oi

ai
⊂ 4i

ci ,ci+1
, with Oi

ai
consisting of regular elements of gl(i + 1) for

1≤ i ≤ n− 2.

In Section 4c, we prove Theorem 4.2 for A-orbits in gl(n)sreg
c (see Theorem 4.9).

In Section 4d, we establish the results needed to prove Theorem 4.2 for gl(n)c∩ S.

4b. Definition and properties of the 0n maps. We first define the map 0n only
for Zi -orbits Oi

ai
⊂4i

ci ,ci+1
on which Zi acts freely. To define 0n , we must define a

morphism Oi
ai
→ GL(i + 1) that sends y 7→ gi,i+1(y), where gi,i+1(y) conjugates

y into Jordan form with eigenvalues in decreasing lexicographical order. Since Zi

acts freely on Oi
ai

, we can identify Oi
ai
∼= Zi as algebraic varieties. Let xai be an
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arbitrary choice of base point for the orbit Oi
ai

, that is, Oi
ai
=Ad(Zi )·xai . We choose

an element gi,i+1(xai ) ∈ GL(i + 1) that conjugates the base point xai into Jordan
form (with eigenvalues in decreasing lexicographical order). For y = Ad(ki ) · xai ,
with ki ∈ Zi , we define

(4-3) gi,i+1(y)= gi,i+1(xai )k
−1
i .

For each choice of orbit Oi
ai
⊂ 4i

ci ,ci+1
for 1 ≤ i ≤ n − 1, we define a morphism

0n : Z1× · · ·× Zn−1→ gl(n) by

(4-4) 0n(k1, . . . , kn−1)

= Ad(k1g1,2(xa1)
−1k2g2,3(xa2)

−1
· · · kn−2gn−2,n−1(xan−2)

−1kn−1)xan−1 .

We want to give a more intrinsic characterization of im 0n .

Proposition 4.3. We have

(4-5)

im 0n ⊂ gl(n)c∩S,

im 0n = {x ∈ gl(n) | xi+1 ∈ Ad(GL(i))·xai for all 1≤ i ≤ n−1}.

Thus, im 0n is a quasiaffine subvariety of gl(n).

The following simple observation is useful in proving Proposition 4.3.

Remark 4.4. Let x ∈ gl(n)c ∩ S, and suppose that g ∈GL(i) is such that [Ad(g) ·
x]i =Ad(g) · xi is in Jordan canonical form with eigenvalues in decreasing lexico-
graphical order for 1≤ i ≤ n− 1. Then [Ad(g) · x]i+1 = Ad(g) · xi+1 ∈4

i
ci ,ci+1

.

Proof of Proposition 4.3. Denote the set on the right side of (4-5) by T . We note
T ⊂ gl(n)c ∩ S. Indeed, let Y ∈ T . Then Yi+1 ∈ Ad(GL(i)) · xai for 1 ≤ i ≤
n − 1. Since xai ∈ 4

i
ci ,ci+1

, the characteristic polynomial of Yi+1 is pci+1(t). For
1 ≤ i ≤ n− 2, note that xai is regular and hence so is Yi+1. Lastly, using the fact
that k1 ∈GL(1)= Z1 centralizes the (1, 1) entry of xa1 ∈4

1
c1,c2

, it follows that the
(1, 1) entry of Y is given by c1 ∈ C.

The inclusion im 0n ⊂ T is clear from the definition of 0n in (4-4). To see the
opposite inclusion we use induction. Let y ∈ T . Then y2 is in Ad(GL(1))·xa1 =O1

a1

since Z1=GL(1). Thus, there exists a k1∈ Z1 such that y2=Ad(k1)·xa1 . It follows
that

z2 = [Ad(g1,2(xa1))Ad(k−1
1 ) · y]3 = [Ad(g1,2(xa1))Ad(k−1

1 ) · y3] ∈4
2
c2,c3

.

But y3 ∈ Ad(GL(2)) · xa2 , so that z2 ∈ 4
2
c2,c3
∩ Ad(GL(2)) · xa2 , from which it

follows easily that z2 ∈ O2
a2

. Thus, there exists a k2 ∈ Z2 such that

[Ad(g2,3(xa2))Ad(k−1
2 )Ad(g1,2(xa1))Ad(k−1

1 ) · y]4 ∈43
c3,c4

.
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This completes the first two steps of the induction. We now assume that there exist
k1, . . . , k j−1 ∈ Z1, . . . , Z j−1 respectively such that

(4-6)
z j = [Ad(g j−1, j (xa j−1))Ad(k−1

j−1) · · ·Ad(g1,2(xa1))Ad(k−1
1 ) · y] j+1

∈4 j
c j ,c j+1

.

Since y j+1 ∈ Ad(GL( j)) · xa j , it follows that z j ∈ 4
j
c j ,c j+1 ∩Ad(GL( j)) · xa j . As

above, it follows that z j ∈ O
j
a j , so that there exists an element k j ∈ K j such that

[Ad(g j, j+1(xa j ))Ad(k−1
j )Ad(g j−1, j (xa j−1))Ad(k−1

j−1)

· · ·Ad(g1,2(xa1))Ad(k−1
1 ) · y] j+2 ∈4

j+1
c j+1,c j+2

.

We have made use of Remark 4.4 throughout. By induction, we conclude that there
exist k1, . . . , kn−1 ∈ Z1, . . . , Zn−1 respectively such that

xan−1 = Ad(k−1
n−1)Ad(gn−2,n−1(xan−1))Ad(k−1

n−2) · · ·Ad(g1,2(xa1))Ad(k−1
1 ) · y,

from which it follows that y = 0n(k1, . . . , kn−1).
To see the final statement, we observe T is a Zariski locally closed subset

of gl(n). Indeed, the set Ui = {x | xi+1 ∈ Ad(GL(i)) · xai } is locally closed, since
it is the preimage of the orbit Ad(GL(i)) · xai ⊂ gl(i + 1) under the projection
morphism πi+1(x)= xi+1. The set T =U1 ∩ · · · ∩Un−1 is locally closed. �

Remark 4.5. From Proposition 4.3 it follows that the set im 0n depends only on
the orbits Oi

ai
for 1≤ i ≤ n− 1, and is thus independent of the choices involved in

defining the map 0n in (4-4).

4c. 0n and A-orbits in gl(n)
sreg
c . In this section, we show that the image of the

morphism 0n is an A-orbit in gl(n)sreg
c . The first step is to see im 0n is smooth

variety.

Theorem 4.6. The morphism

0n : Z1× · · ·× Zn−1→ gl(n)c ∩ S

is an isomorphism onto its image. Hence, im 0n is a smooth, irreducible subvariety
of gl(n) of dimension n(n−1)/2.

Proof. We explicitly construct an inverse 9 : im 0n → Z1 × · · · × Zn−1 of 0n

and show that it is a morphism. Specifically, we show that there exist morphisms
ψi : im 0n→ Zi for 1≤ i ≤ n− 1 such that the morphism

(4-7) 9 = (ψ1, . . . , ψn−1) : im 0n→ Z1× · · ·× Zn−1

is an inverse of 0n . The morphisms ψi are constructed inductively.
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Given y ∈ im 0n , we have y2 ∈ O1
a1
⊂ 41

c1,c2
by Proposition 4.3. Thus, y2 =

Ad(k1) · xa1 for a unique k1 in Z1. The map O1
a1
→ Z1, Ad(k1) · xa1 7→ k1 is an

isomorphism of smooth affine varieties. Hence, the map ψ1(y)= k1 is a morphism.
Arguing as in the proof of Proposition 4.3, suppose we have defined morphisms

ψ1, . . . , ψ j−1, with ψi : im 0n → Zi for 1 ≤ i ≤ j − 1. Then the function
im 0n→ O

j
a j given by (4-6), that is,

y 7→ [Ad(g j−1, j (xa j−1))Ad(ψ j−1(y)−1) · · ·Ad(g1,2(xa1))Ad(ψ1(y)−1) · y] j+1,

is a morphism. We can then define a morphism ψ j : im 0n→ Z j by y 7→ k j , where
k j is the unique element of Z j such that

(4-8) Ad(k j ) · xa j = [Ad(g j−1, j (xa j−1))Ad(ψ j−1(y)−1)

· · ·Ad(g1,2(xa1))Ad(ψ1(y)−1) · y] j+1.

This completes the induction.
We now show that 9 is an inverse of 0n . That 0n(ψ1(y), . . . , ψn−1(y)) = y

follows exactly as in the proof of the inclusion T ⊂ im 0n in Proposition 4.3.
Finally, we show that 9(0n(k1, . . . , kn−1))= (k1, . . . , kn−1). Consider the ele-

ment
Ad(k j g j, j+1(xa j )

−1
· · · gn−2,n−1(xan−2)

−1kn−1) · xan−1 .

The ( j + 1)× ( j + 1) cutoff of this element is equal to k j · xa j . This fact with
j = 1 gives ψ1(y) = k1. Assume that we have ψ2(y) = k2, . . . , ψl(y) = kl for
2≤ l ≤ j − 1. Using the definition of ψ j in (4-8), we obtain

Ad(ψ j (y)) · xa j = [Ad(k j )Ad(g j, j+1(xa j )
−1
· · · gn−2,n−1(xan−2)

−1kn−1)xan−1] j+1

= Ad(k j ) · xa j .

Thus by induction, 9 ◦0n is the identity. Hence, 9 is a regular inverse of the map
0n and 9 is an isomorphism of varieties. �

The image of 0n is a smooth irreducible quasiaffine subvariety of gl(n). Thus
im 0n has the structure of a connected analytic submanifold of gl(n), and 0n is an
analytic isomorphism.

Proposition 4.7. The action of the analytic group A on gl(n) preserves the sub-
manifolds im 0n .

Proof. The action of A on gl(n) is given by the composition of the flows in (2-6)
in any order; see Remark 2.3. Thus, to see that the action of A preserves im 0n , it
suffices to see that the action of C in (2-6) preserves im 0n for any (i, j) ∈1n−1

i, j .
Suppose that x ∈ im 0n . Then by Proposition 4.3, xk+1 ∈ Ad(GL(k)) · xak for any
1 ≤ k ≤ n− 1. Define an element h = exp(t j x j−1

i ) ∈ GL(i) with t ∈ C fixed and
consider Ad(h) · x as in (2-6). We claim that (Ad(h) · x)k+1 ∈ Ad(GL(k)) · xak for



THE ORBIT STRUCTURE OF THE GELFAND–ZEITLIN GROUP ON n× n MATRICES 123

1≤ k ≤ n−1. We consider two cases. Suppose k ≥ i and consider (Ad(h) · x)k+1.
We have (Ad(h) · x)k+1 = Ad(h) · xk+1. But xk+1 ∈ Ad(GL(k)) · xak , so that
Ad(h) ·xk+1 ∈Ad(GL(k)) ·xak , since GL(i)⊂GL(k). Next, we suppose that k < i ,
so that k+ 1≤ i . Since h ∈ GL(i) centralizes xi ,

(Ad(h)x)k+1 = (Ad(h)(xi ))k+1 = (xi )k+1 = xk+1 ∈ Ad(GL(k)) · xak .

By Proposition 4.3, Ad(h) · x ∈ im 0n . �

The main theorem of this section depends on a technical result about the action
of Zi on the solution varieties 4i

ci ,ci+1
; this result will be proved independently

in Section 4d.

Lemma 4.8. For x ∈ 4i
ci ,ci+1

, the isotropy group Stab(x) of x under the action
of Zi is a connected algebraic group.

Thus, given an orbit O⊂4i
ci ,ci+1

of Zi ,

(4-9) dim(O)= i if and only if Zi acts freely on O.

Theorem 4.9. The submanifold im 0n ⊂ gl(n)c∩ S is a single A-orbit in gl(n)sreg
c .

Every A-orbit in gl(n)sreg
c is of the form im 0n with 0n = 0

a1,a2,...,an−1
n , where

Oi
ai
⊂ 4i

ci ,ci+1
are free Zi -orbits consisting of regular elements of gl(i + 1) for

1≤ i ≤ n− 1.

Proof. First, we show that im 0n is an A-orbit. For this, we need to describe the
tangent space Ty(im 0n) = (d0n)k , where k = (k1, . . . , kn−1) ∈ Z1 × · · · × Zn−1

and y=0n(k). Let {αi1, . . . , αi i } be a basis for Lie(Zi )= zi . Working analytically,
we compute

(d0n)k(0, . . . , αi j , . . . , 0)= d
dt

∣∣
t=0 0n(k1, . . . , ki exp(tαi j ), . . . , kn−1)

for 1 ≤ j ≤ i . Using the definition of the morphism 0n , the right side of this
becomes

d
dt

∣∣∣
t=0

Ad(k1g1,2(xa1)
−1
· · · ki exp(tαi j )gi,i+1(xai )

−1
· · · kn−2gn−2,n−1(xan−2)

−1kn−1)xan−1 ,

which, after defining

li = k1g1,2(xa1)
−1
· · · ki and hi = gi,i+1(xai )

−1
· · · kn−2gn−2,n−1(xan−2)

−1kn−1,

becomes
d
dt

∣∣
t=0 Ad(li exp(tαi j )hi ) · xan−1,

which in turn has differential

(4-10) ad(Ad(li ) ·αi j ) · (Ad(li hi ) · xan−1).
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By definition of the element li ∈GL(i), the i×i cutoff of Ad(l−1
i ) · y=Ad(l−1

i ) · yi

is in Jordan form (with eigenvalues in decreasing lexicographical order). Hence
elements of the form Ad(li ) · αi j = γi j for 1 ≤ j ≤ i form a basis for zgl(i)(yi ).
Since Ad(li hi ) · xan−1 = y, (4-10) implies that the image of (d0n)k is

(4-11) im((d0n)k)= span{∂ [γi, j ,y]
y | (i, j) ∈1n−1

i, j } = Ty(im 0n).

Equation (2-7), with y ∈ im 0n instead of x , reads

Ty(A · y)= span{∂ [z,y]y | z ∈ Z y} := Vy .

Now, y has the property that yi is regular for all i ≤ n − 1, so that zgl(i)(yi ) has
basis {Idi , yi , . . . , yi−1

i }; see [Kostant 1963, page 382]. Thus,

Ty(im 0n)= span{∂ [z,y]y | z ∈ Z y} = Vy .

This gives

(4-12) dim Vy = dim(A · y)= n(n−1)/2,

which implies im 0n ⊂ gl(n)sreg
c . By Proposition 4.7, A acts on im 0n . We claim

that the action of A is transitive on im 0n . Indeed, an A-orbit A · y with y ∈ im 0n

is a submanifold of im 0n of the same dimension as im 0n by (4-12), and thus
must be open. The action of A is then clearly transitive on im 0n since im 0n is
connected.

We now show that every A-orbit in gl(n)sreg
c is obtained in this manner. For

x ∈ gl(n)sreg
c , by Proposition 2.7(a) and Remark 4.4 there exists a matrix gi ∈GL(i)

such that zi = Ad(gi ) · xi+1 ∈ 4
i
ci ,ci+1

and zi is regular for each 1 ≤ i ≤ n − 1.
Thus zi ∈ Oi

ai
, with Oi

ai
an orbit of Zi in 4i

ci ,ci+1
consisting of regular elements

of gl(i + 1). We claim that Zi must act freely on Oi
ai

. Suppose to the contrary
that Stab(xai ) is nontrivial. Lemma 4.8 gives that dim(Stab(xai )) ≥ 1. But, this
implies dim(ZGL(i)(xi )∩ZGL(i+1)(xi+1))≥ 1, contradicting Proposition 2.7(b). By
Proposition 4.3, x is in im 0n , with 0n = 0

a1,a2,...,an−1
n for some choice of free Zi -

orbits Oi
ai
⊂4i

ci ,ci+1
. �

Remark 4.10. Let 0n be defined using Zi -orbits Oi
ai

, and let 0̃n := 0
ã1,ã2,...,ãn−1
n−1 be

defined using Zi -orbits Oi
ãi
=Ad(Zi )·xãi , where Oi

ai
∩Oi

ãi
=∅ for some i in 1≤ i ≤

n−1. Then the A-orbits im 0n and im 0̃n are distinct: Suppose to the contrary that
y ∈ im 0n ∩ im 0̃n . By Proposition 4.3, yi+1 ∈ Ad(GL(i)) · xai ∩Ad(GL(i)) · xãi .
This implies that there exists h ∈GL(i) such that Ad(h) ·xai = xãi . Since xai , xãi ∈

4i
ci ,ci+1

, the previous equation forces h ∈ Zi , which implies Oi
ai
= Oi

ãi
, a contradic-

tion. We have thus established a bijection between free Z1× · · ·× Zn−1 orbits on
the product of solution varieties 41

c1,c2
×· · · · · ·×4n−1

cn−1,cn
and A-orbits in gl(n)sreg

c .
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On the subvariety im 0n , we have a free and transitive algebraic action of the
algebraic group Z = Z1× · · ·× Zn−1. This action is defined as follows:

(4-13)
if 0n

−1(y)= (k1, . . . , kn−1),

then (k ′1, . . . , k ′n−1) · y = 0n(k ′1k1, . . . , k ′n−1kn−1).

Remark 4.11. The action in (4-13) generalizes the action of (C×)3 in (3-3) to the
nongeneric case.

Thus, the A-orbit im 0n is the orbit of an algebraic group acting on a quasiaffine va-
riety. We now show that Z= Z1×· · ·×Zn−1 acts algebraically on the fiber gl(n)sreg

c .
By [Kostant and Wallach 2006a, Theorem 3.12], the A-orbits in gl(n)sreg

c are the
irreducible components of gl(n)sreg

c . Since they are disjoint, these components are
both open and closed in gl(n)sreg

c (in the Zariski topology on gl(n)sreg
c ). Following

[Kostant and Wallach 2006a], we index these components by gl
sreg
c,i (n) = A · x(i),

with x(i) ∈ gl(n)sreg
c . We have morphisms φi : Z × gl

sreg
c,i (n)→ glsreg

c (n) given by
the action of Z on im 0n . The sets Z × gl

sreg
c,i (n) are (Zariski) open in the product

Z × gl(n)sreg
c and are disjoint. Thus, the morphisms φi glue to a unique morphism

8 : Z × gl(n)sreg
c → gl(n)sreg

c such that 8
∣∣

Z×gl
sreg
c,i (n)
= φi .

The morphism 8 defines an algebraic action of the group Z on gl(n)sreg
c whose

orbits are the orbits of A in gl(n)sreg
c . We have thus proved the following theorem.

Theorem 4.12. Let x ∈ gl(n)sreg
c be arbitrary and let Zi be the centralizer in GL(i)

of the Jordan form of xi (with eigenvalues in decreasing lexicographical order).
On gl(n)sreg

c the orbits of the group A are orbits of a free algebraic action of the
connected abelian algebraic group Z = Z1× · · ·× Zn−1.

We end this section with a result that will be of great use in Section 5 where we
count the number of A-orbits in the fiber gl(n)sreg

c .
It turns out that the condition in Theorem 4.9 that Oi

ai
⊂gl(i+1)reg is superfluous.

Theorem 4.13. If Oi
ai
⊂4i

ci ,ci+1
is a free Zi -orbit, then Oi

ai
⊂ gl(i + 1)reg.

Proof. Let c = (c1, c2, . . . , c j , c j+1, . . . , cn) ∈ Cn(n+1)/2, with c j ∈ C j , be given.
By Theorem 2.5, there is a unique upper Hessenberg matrix h ∈ gl(n)sreg

c . This
implies by Remark 4.4 that for any j in 1 ≤ j ≤ n− 1, there exists a g j ∈ GL( j)
such that (Ad(g j ) ·h) j+1 ∈4

j
c j ,c j+1 . Thus, Ad(g j ) ·h j+1 ∈ Z j · xa j = O

j
a j for some

xa j ∈4
j
c j ,c j+1 . But h ∈ gl(n)sreg and therefore h j+1 is regular by Proposition 2.7(a),

which implies that O
j
a j ⊂ gl( j + 1)reg. Also, by Proposition 2.7(b), Z j acts freely

on O
j
a j , as in the proof of the last statement of Theorem 4.9. Thus, for any j in

1≤ j ≤ n−1, there exists a free Z j -orbit in 4 j
c j ,c j+1 consisting of regular elements

of gl( j + 1).
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Now, let Oi
ai
⊂ 4i

ci ,ci+1
be any free Zi -orbit. Now, we use the free Z j -orbit

O
j
a j ⊂ gl( j + 1)reg as above for 1 ≤ j ≤ i − 1 and we use Oi

ai
to construct a

morphism
0i+1 := 0

a1,a2,...,ai
i+1 : Z1× · · ·× Zi → gl(n)c ∩ S.

By Theorem 4.9, im 0i+1 ⊂ gl(i + 1)sreg. Proposition 2.7(a) then implies

im 0i+1 ⊂ gl(i + 1)reg.

Then Oi
ai
⊂ gl(i+1)reg since elements of Oi

ai
are conjugate to those of im 0i+1. �

4d. A-orbits in gl(n)c ∩ S. We now discuss how the construction in Sections 4b
and 4c can be generalized to describe A-orbits of dimension strictly less than
n(n−1)/2 in the Zariski open subset of the fiber gl(n)c ∩ S. In this case, it is
more difficult to define the morphism 0n of (4-2). The problem is that it is not
clear how to define a morphism Oi

ai
→GL(i + 1) that sends x→ gi,i+1(x), where

Ad(gi,i+1(x)) · x is in Jordan form (with eigenvalues in decreasing lexicographical
order). This is not difficult in the strongly regular case, since we are dealing with
free Zi -orbits Oi

ai
∼= Zi so that gi,i+1(x) can be defined as in (4-3). The fortunate

fact is that even for an orbit Oi
ai
⊂ 4i

ci ,ci+1
of dimension strictly less than i , there

exists a connected, Zariski closed subgroup Ki ⊂ Zi with Ki acting freely on
Oi

ai
∼= Ki . Therefore, we can mimic what we did in (4-3).

To prove this, we need to understand better the action of Zi on 4i
ci ,ci+1

. As in
Section 4a, let J = J1⊕ · · · ⊕ Jr be the i × i cutoff of the matrix in (4-1), where
J j ∈ gl(n j ) is the Jordan block corresponding to eigenvalue λ j . We note since J is
regular, Zi is an abelian connected algebraic group, which is the product

∏r
j=1 Z J j

of groups, where Z J j denotes the centralizer of J j . It is then easy to see that the
action of Zi is the diagonal action of the product

∏r
j=1 Z J j on the last column of

x ∈4i
ci ,ci+1

and the dual action on the last row of x ; see (4-1). In other words, Z J j

acts only on the columns and rows of x that contain the Jordan block J j ; see (4-1).
This leads us to define an action of Z J j on C2n j by

(4-14) z · ([t1, . . . , tn j ], [s1, . . . , sn j ]
T )= ([t1, . . . , tn j ] · z

−1, z · [s1, · · · , sn j ]
T ).

Let O be the Zi -orbit of some x ∈4i
ci ,ci+1

, and let O j ⊂ C2 n j be the Z J j -orbit of

x[ j] = ([z j,1, . . . , z j,n j ], [y j,1, . . . , y j,n j ]),

where the coordinates for x are as in (4-1). It follows directly from our remarks
above that

(4-15) O∼= O1× · · ·×Or ,

where the isomorphism is Zi -equivariant. It is easy to describe the structure of the
isotropy groups for the Zi -action using this description of a Zi -orbit O⊂4i

ci ,ci+1
.
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Lemma 4.14. Let x ∈4i
ci ,ci+1

and let Stab(x)⊂ Zi be its isotropy group under the
action of Zi on 4i

ci ,ci+1
. Then, up to reordering,

(4-16) Stab(x)=
q∏

j=1

Z J j ×

r∏
j=q+1

U j ,

where U j ⊂ Z J j is a unipotent Zariski closed subgroup (possibly trivial) for some
q in 0≤ q ≤ r .

Proof. Suppose that x ∈ 4i
ci ,ci+1

is given by (4-1). By (4-15), to compute the
stabilizer of x we need only compute the stabilizers for each of the Z Jk orbits
Ok = Z Jk · x[k], where 1 ≤ k ≤ r . To compute the stabilizer of x[k], suppose that
there exists an i with 1≤ i ≤ nk such that yk,i 6= 0 and yk,l = 0 for i < l ≤ nk . We
consider the matrix equation

(4-17) Ak · yk = yk,

where Ak ∈ Z Jk is an invertible upper triangular Toeplitz matrix and yk ∈Cnk is the
column vector yk = (yk,1, . . . , yk,i , 0, . . . , 0)T . Since Ak is an upper triangular
Toeplitz matrix, we see by considering the i-th row in (4-17) that Ak is forced to be
unipotent. If on the other hand, all yk, j = 0 for 1≤ j ≤ nk , we can argue similarly
using the zk, j and the dual action.

If yk,l = 0 for all l and zk,l = 0 for all l, then clearly the stabilizer of x[k] is Z Jk

itself. Repeating this analysis for each k in 1≤ k ≤ r and after possibly reordering
the Jordan blocks of xi , we get the desired result. �

Proof of Lemma 4.8. Upon reordering the eigenvalues, we can always assume that
Stab(x) has the form given in (4-16) in Lemma 4.14. This proves the result since
unipotent algebraic groups are always connected and the groups Z J j are connected
since they are centralizers of regular elements in gl(n j ). �

We can now prove the structural theorem about the group Zi that lets us construct
the morphism 0n in the general case.

Theorem 4.15. Let x ∈4i
ci ,ci+1

and let Stab(x)⊂ Zi denote the isotropy group of x
under the action of Zi on 4i

ci ,ci+1
. Then as an algebraic group,

Zi = Stab(x)× K ,

where K is a connected, Zariski closed algebraic subgroup of Zi .

Proof. For the purposes of this proof we denote by H the group Stab(x). Without
loss of generality, we assume H is as given in (4-16). Let zi = Lie(Zi ) and let
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h= Lie(H). Now, by Lemma 4.14,

(4-18) h=

q⊕
j=1

zJ j ⊕

r⊕
j=q+1

n j ,

where zJ j is the Lie algebra of the abelian algebraic group Z J j and n j = Lie(U j )

is a Lie subalgebra of n+(n j ), the strictly upper triangular matrices in gl(n j ).
The proof takes two steps. We first find an algebraic Lie subalgebra k⊂ zi such

that zi = h⊕ k as Lie algebras. We then show that if K ⊂ Zi is the corresponding
Zariski closed subgroup, then Zi = H K and H ∩ K = {e}. To find k, consider
the abelian Lie algebra zJ j for q + 1 ≤ j ≤ r . Since zJ j is abelian, it has a Jordan
decomposition as a direct sum of Lie algebras zJ j = zss

J j
⊕ zn

J j
, where zss

J j
are the

semisimple elements of zJ j and zn
J j

are the nilpotent elements. Now the Lie algebra
n j in (4-18) is a subalgebra of zn

J j
. Take ñ j such that zn

J j
= n j ⊕ ñ j . Let

m j = zss
J j
⊕ ñ j .

Note that m j ⊕ n j = zJ j . We claim that m j is an algebraic subalgebra of zJ j .
Indeed, ñ j is algebraic since it is a nilpotent Lie algebra; see [Tauvel and Yu 2005,
page 383]. Let Ñ j be the corresponding algebraic subgroup. Then M j =C×× Ñ j

has Lie(M j ) = m j since C× is the semisimple part of group Z J j ; see (4-1). We
then take k=

⊕r
j=q+1 m j . This finishes the first step.

Let K =
∏r

j=q+1 M j be the Zariski closed, connected algebraic subgroup of∏r
j=q+1 Z J j that corresponds to the algebraic Lie algebra k. We now show that

Zi = H × K . H ∩ K is finite by our choice of K . But also H ∩ K ⊂
∏r

j=q+1 U j

and it is thus unipotent; see (4-16). Since any unipotent group must be connected,
we have H ∩ K = {e}. Now, it is clear that Zi = H K , since H K is a closed,
connected subgroup of Zi of dimension dim Zi . �

Proof of Theorem 4.2. With Theorem 4.15 in hand, we can now define the gen-
eral 0n morphism of (4-2) as we did in the strongly regular case. Now, suppose
we are given Zi -orbits Oi

ai
in 4i

ci ,ci+1, with Oi
ai
= Kai · xai

∼= Kai with Kai as in
Theorem 4.15 for 1 ≤ i ≤ n − 1, and with Oi

ai
consisting of regular elements of

gl(i + 1) for 1≤ i ≤ n− 2. As in (4-4), we define a morphism

0n := 0
a1,...,an−1
n : Ka1 × · · ·× Kan−1 → gl(n)c ∩ S.

Propositions 4.3 and 4.7, Theorem 4.6, and Remark 4.10 from the strongly
regular case remain valid in this case by simply replacing the groups Zi by the
groups Kai . We recall that the main ingredient in proving Theorem 4.6 is the fact
that the group Zi acts freely on Oi

ai
. The analogue of Theorem 4.9 remains valid

in this case, since it is easy to show that Ty(im 0n)= Vy for Vy as in (2-7). �
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The following corollary of Theorem 4.2 generalizes [Kostant and Wallach 2006a,
Theorem 3.14] to include elements that are not necessarily strongly regular.

Corollary 4.16. Let x ∈ gl(n)c ∩ S. The A-orbit A · x of x is a smooth, irreducible
subvariety of gl(n) that is isomorphic as an algebraic variety to a closed subgroup
Ka1 × · · ·× Kan−1 of the connected algebraic group Z1× · · ·× Zn−1.

5. Counting A-orbits in gl(n)
sreg
c

Using Theorem 4.9, we can count the number of A-orbits in gl(n)sreg
c for any

c ∈ Cn(n+1)/2 and explicitly describe the orbits. We know from Theorem 4.9
and Remark 4.10 that counting the number of A-orbits in gl(n)sreg

c is equivalent
to counting the number of Zi -orbits in 4i

ci ,ci+1
on which Zi acts freely. We show

in this section that the number of such orbits is directly related to the number of
degeneracies in the roots of the monic polynomials pci (t) and pci+1(t); see (1-2).
The study of this problem can be reduced to studying the structure of nilpotent
solution varieties 4i

0,0. Thus, we begin our discussion by describing the A-orbit
structure of the nilfiber gl(n)sreg

0 .

5a. Nilpotent solution varieties and A-orbits in the nilfiber. In this section, we
study strongly regular matrices in the fiber gl(n)0. By definition, x ∈ gl(n)0 if and
only if xi ∈gl(i) is nilpotent for all i . Such matrices have been studied by Ovsienko
[2003] and Parlett and Strang [2008].

We restate Definition 4.1 of the solution variety 4i
ci ,ci+1

in this case. Elements
of gl(i + 1) of the form

(5-1) X =


0 1 · · · 0 y1

0 0
. . .

...
...

...
. . . 1

...

0 · · · · · · 0 yi

z1 · · · · · · zi w


that are nilpotent define the nilpotent solution variety at level i , which we denote
by 4i

0,0. In this case, it is easy to write down elements in 4i
0,0. For example, we

can take all of the z j , y j , and w to be 0. However, such an element is not regular,
and so cannot be used to construct a 0n mapping that gives rise to a strongly regular
orbit in gl(n)sreg

0 . To describe A-orbits in gl(n)sreg
0 , we focus our attention on free

Zi -orbits in 4i
0,0; see Theorem 4.9. To find such orbits, we need to compute the

characteristic polynomial of X .

Proposition 5.1. The characteristic polynomial of the matrix in (5-1) is

(5-2) det(X − t)= (−1)i
[
−t i+1

+wt i
+
∑i−1

l=0
∑i−l

j=1 z j y j+l t i−1−l
]
.
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Proof. We compute the characteristic polynomial of the matrix in (5-1) using
the Schur complement formula for the determinant; see [Horn and Johnson 1985,
pages 21 and 22]. In the notation of that reference, α={1, . . . , n−1} and α′={n}.
Let J = X i denote the principal nilpotent Jordan block. Then the formula gives

(5-3) det(X − t)= det(J − t) (w− t)− z adj(J − t) y,

where adj(J − t) ∈ gl(i) denotes the classical adjoint matrix, z = [z1, . . . , zi ] is
a row vector, and y = [y1, . . . , yi ]

T is a column vector. We easily compute that
det(J − t)= (−1)i t i . It is not difficult to see that

adj(J − t)= (−1)i−1



t i−1 t i−2
· · · · · · t 1

0 t i−1 t i−2
· · · · · · t

... 0 t i−1 . . .
...

0
. . .

. . .
...

...
. . .

. . . t i−2

0 · · · · · · 0 t i−1


.

Now, we compute that the coefficient of t i−1−l for 0 ≤ l ≤ i − 1 in the product
z adj(J − t) yT is (−1)i−1∑i−l

j=1 z j y j+l . Summing up these terms for 0≤ l ≤ i−1
and using (5-3), we obtain the polynomial in (5-2). �

For the matrix in (5-1) to be nilpotent, we require that all of the coefficients of
the polynomial in (5-2) (excluding the leading coefficient) vanish, that is

(5-4)

z1 yi = 0,

z1 yi−1+ z2 yi = 0,
...

z1 y1+ · · ·+ zi yi = 0.

We claim that4i
0,0 has exactly two free Zi -orbits. These correspond to choosing

either z1 ∈ C× and yi = 0, or yi ∈ C× and z1 = 0 in the first equation of (5-4). We
claim that any point in 4i

0,0 with z1 6= 0 is in

(5-5) Oi
L =


0 1 · · · 0 0

0 0
. . .

...
...

...
. . . 1

...

0 · · · · · · 0 0
z1 · · · · · · zi 0

 ,
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with z j ∈ C for 2≤ j ≤ i . Any point in 4i
0,0 with yi ∈ C× is in

(5-6) Oi
U =


0 1 · · · 0 y1

0 0
. . .

...
...

...
. . . 1

...

0 · · · · · · 0 yi

0 · · · · · · 0 0

 ,

with y j ∈ C for 1≤ j ≤ i − 1. To verify this claim, note that if z1 6= 0 and yi = 0,
then y1 = 0 and y2 = 0, . . . , yi−1 = 0 by successive use of equations (5-4). The
case yi 6= 0 and z1 = 0 is similar. An easy computation in linear algebra, as in the
proof of Lemma 4.14 gives that Zi acts freely on Oi

U and Oi
L . We think of Oi

U as
the “upper orbit” in4i

0,0 and Oi
L as the “lower orbit”. Both orbits consist of regular

elements of gl(i + 1) by Theorem 4.13.
Now, suppose that both z1=0= yi in (5-4). It is easy to see that such an element

has a nontrivial isotropy group in Zi containing the one-dimensional subgroup of
matrices consisting of identity matrices with an element c ∈ C× inserted in the
upper right corner. It does not belong to a Zi -orbit of dimension i .

Thus, to analyze gl(n)sreg
0 , we consider only the Zi -orbits Oi

U ,Oi
L . We can con-

struct 2n−1 morphisms 0n = 0
a1,a2,...,an−1
n , where Oi

ai
= Oi

U ,Oi
L for 1≤ i ≤ n− 1.

The following result follows immediately from Theorems 4.9 and 4.12 and
Remark 4.10.

Theorem 5.2. The nilfiber gl(n)sreg
0 contains 2n−1 A-orbits. On gl(n)sreg

0 , the orbits
of A are orbits of a free action of the algebraic group (C×)n−1

×Cn(n−1)/2−n+1.

The nilfiber has much more structure than Theorem 5.2 indicates, which we can
see by considering an example of an A-orbit given as the image of a morphism 0n

with Oi
ai
=Oi

U , Oi
L and its closure. Closure here means either closure in the Zariski

topology in gl(n) or in the Euclidean topology, since A-orbits are constructible
sets these two different types of closure agree; see [Kostant and Wallach 2006a,
Theorem 3.7]. We will abbreviate from now on

Oi
ai
= ai , Oi

L = L , Oi
U =U.

Example 5.3. Let us take our A-orbit in gl(4)sreg
0 to be the image of 0a1,a2,a3

4 with
a1 = L , a2 = L and a3 =U . For coordinates, let us take

z1 ∈ C× for O1
L ,

z2 ∈ C×, z3 ∈ C for O2
L ,

y1, y2 ∈ C, y3 ∈ C× for O3
U .
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In these coordinates, we compute that im0
L ,L ,U
4 is

(5-7) im0
L ,L ,U
4 =


0 0 0 y3/(z1z2)

z1 0 0 y2/z2− y3z3/z2
2

z1 z3 z2 0 y1

0 0 0 0

 .
We compute the closure as

(5-8) im0
L ,L ,U
4 =


0 0 0 a1

a2 0 0 a3

a4 a5 0 a6

0 0 0 0

 ,
with ai ∈ C for 1≤ i ≤ 6. It is a nilradical of a Borel subalgebra that contains the
standard Cartan subalgebra of diagonal matrices in gl(4). The easiest way to see
this is to note that the strictly lower triangular matrices in gl(4) are conjugate to it
by the permutation τ = (1432).

This example illustrates that the A-orbits in gl(n)sreg
0 are essentially parametrized

by prescribing whether or not the i × i cutoff of an element x ∈ gl(n)0 has zeroes
in its i-th column or zeroes in its i-th row. This is because for an x ∈ gl(n)0 to be
in the image of a morphism 0n = 0

a1,a2,...,an−1
n with ai = L ,U , the i-th row or the

i-th column of xi must entirely consist of zeroes for each i by Proposition 4.3.
Contrast this with the following example of a matrix x ∈ gl(n)0 each of whose

cutoffs is regular, but that is not itself strongly regular.

Example 5.4. Consider x ∈ gl(4)0 defined by

(5-9) x =


0 0 0 0
1 0 0 x2

0 1 0 x3

y1 0 0 0

 ,
where x2 ∈C×, y1 ∈C× and x3 ∈C. Both the 4-th column and row of this matrix
have nonzero entries. Thus, this matrix cannot be in the image of a morphism
0n with ai = L ,U and is not strongly regular. However, one can easily check
that each cutoff of this matrix is regular, so that x ∈ gl(4)0 ∩ S. Thus, gl(4)sreg

0 is
a proper subset of gl(4)0 ∩ S. (One can also see that this matrix is not strongly
regular directly by observing that zgl(3)(x3)∩ zgl(4)(x) 6= 0.)

Example 5.3 demonstrates that although the A-orbits im 0n may be complicated,
their closures are relatively simple. In this example, the closure is a nilradical of a
Borel subalgebra that contains the standard Cartan subalgebra of diagonal matrices
in gl(n). This is in fact the case in general.
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Theorem 5.5. Let x ∈ gl(n)sreg
0 and let A · x denote the A-orbit of x. Then A · x

is a nilradical of a Borel subalgebra in gl(n) that contains the standard Cartan
subalgebra of diagonal matrices. More explicitly, if the A-orbit is given by 0n =

0
a1,a2,...,an−1
n , where ai =U or L for 1≤ i ≤ n− 1, then A · x is the set of matrices

of the form

na1,...,an−1 : =

x : xi+1 =

 xi

b1
...

bi

0 0


 if ai =U , or

na1,...,an−1 : =

{
x : xi+1 =

[
xi 0

b1 · · · bi 0

]}
if ai = L

with b j ∈ C.

Proof. Let x ∈ gl(n)sreg
0 . By Gerstenhaber’s theorem [1958], it suffices to show the

second statement of the theorem. Then A · x is a linear space consisting of nilpo-
tent matrices of dimension n(n−1)/2 and is clearly normalized by the diagonal
matrices in gl(n).

Suppose that A · x = im 0n with ai =U, L . Since A · x is an irreducible variety
of dimension n(n−1)/2, A · x ⊂ na1,...,an−1 is an irreducible, closed subvariety of
dimension n(n−1)/2= dim na1,...,an−1 , and therefore A · x = na1,...,an−1 . �

Remark 5.6. The set of strictly lower triangular matrices n− is the closure of the
A-orbit 0L ,...,L

n , and the set of strictly upper triangular matrices n+ is the closure
of the A-orbit 0U,...,U

n .

By Theorem 5.5, the A-orbits in gl(n)sreg
0 give rise to 2n−1 Borel subalgebras

of gl(n) that contain the diagonal matrices. Moreover, each of the nilradicals
na1,...,an−1 is conjugate to the strictly lower triangular matrices by a unique per-
mutation in Sn , the symmetric group on n letters. The A-orbits in gl(n)sreg

0 thus
determine 2n−1 permutations. We now describe these permutations.

Theorem 5.7. Let n− denote the strictly lower triangular matrices in gl(n) and let
na1,...,an−1 be as in Theorem 5.5. Then na1,...,an−1 is obtained from n− by conjugating
by a permutation σ = τ1τ2 · · · τn−1, where τi ∈Si+1 is either the long element wi,0

of Si+1 or the identity permutation, idi . The τi are determined by the values of
ai as follows. Let an = L. Starting with i = n − 1, we compare ai and ai+1. If
ai = ai+1, then τi = idi , but if ai 6= ai+1, then τi = w0,i .

The same procedure beginning with an =U produces a permutation that conju-
gates the strictly upper triangular matrices n+ into na1,...,an−1 .

Before proving Theorem 5.7, let us see it in action in Example 5.3. In that case the
nilradical in (5-8) is nL ,L ,U . Thus, according to Theorem 5.7, σ = (13)(14)(23),
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the product of the long elements for S3 and S4. Notice that σ = (1432), which is
precisely the permutation that we observed conjugates the strictly lower triangular
matrices in gl(4) into nL , L ,U in Example 5.3.

Proof of Theorem 5.7. Let πi : gl(n)→ gl(i) be the projection πi (x)= xi . For any
subset S ⊂ gl(n), we will denote by Si the image πi (S).

Suppose that L = an = an−1 = · · · = ai+1, but ai = U . Conjugating n− by
τi = w0,i produces the nilradical Ad(τi ) · n

− with (Ad(τi ) · n
−)i+1 = n+i+1. Thus,

(na1,...,an−1)i+1 and (Ad(τi ) ·n
−)i+1 now have the same (i+1)-st columns. We also

note that the components of Ad(τi )·n
− and na1,...,an−1 in gl(i+1)⊥ also agree, since

τi permutes the strictly lower triangular entries of the rows below the (i+1)-st row
of n− amongst themselves. Now, we start the procedure again with (Ad(τi )·n

−)i+1

and ai=U and use induction. We note that conjugating Ad(τi )·n
− by a permutation

in Sk with k ≤ i +1 leaves the component of Ad(τi ) ·n
− in gl(i +1)⊥ unchanged.

This proves the theorem. �

Remark 5.8. A related result is [Parlett and Strang 2008, Lemma 1, page 1736].

5b. General solution varieties 4i
ci ,ci+1

and counting A-orbits in gl(n)
sreg
c . Now,

we use our understanding of the nilpotent case to count A-orbits in the general
case. Recall the definition of the solution variety 4i

ci ,ci+1
in Section 4a. We also

recall some notation. Given c ∈ Cn(n+1)/2, we write c = (c1, . . . , ci , . . . , cn) with
ci = (z1, . . . , zi ) ∈ Ci and define a corresponding monic polynomial pci (t) with
coefficients given by ci ; see (1-2). Recall that J = J1⊕· · ·⊕ Jr , where Jk ∈ gl(nk),
denotes the regular Jordan form that is the i × i cutoff of the matrix in (4-1).
We now describe the Zi -orbit structure of the variety 4i

ci ,ci+1
for any ci ∈ Ci and

ci+1 ∈ Ci+1.
As in the nilpotent case, to understand 4i

ci ,ci+1
we must compute the character-

istic polynomial of the matrix in (4-1).

Proposition 5.9. The characteristic polynomial of the matrix in (4-1) is

(5-10)

(w− t)
r∏

k=1

(λk − t)nk

+

r∑
j=1

(
(−1)n j

r∏
k=1,k 6= j

(λk − t)nk

n j−1∑
l=0

n j−l∑
j ′=1

z j, j ′ y j, j ′+l(t − λ j )
n j−1−l

)
.

The proof of this proposition reduces to the case where J is a single Jordan
block of eigenvalue λ. The case of a single Jordan block follows easily from the
nilpotent case in Proposition 5.1 by a simple change of variables.

We need to understand the conditions that w, zi, j , and yi, j must satisfy so that
polynomial in (5-10) is equal to the monic polynomial pci+1(t). The first is easily
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determined by considering the trace of the matrix in (4-1). The values of the zi, j

and the yi, j are directly related to the number of roots in common between the
polynomials pci (t) and pci+1(t). Suppose that the polynomials pci (t) and pci+1(t)
have j roots in common, where 1≤ j ≤ r . Then we claim that4i

ci ,ci+1
has precisely

2 j free Zi -orbits. Consider the Jordan block corresponding to the eigenvalue λk .
First, suppose that λk is a root of pci+1(t). Then Proposition 5.9 implies

(5-11) zk,1 yk,nk = 0.

However, if λk is not a root of pci+1(t), then Proposition 5.9 gives

(5-12) zk,1 yk,nk ∈ C×.

As in the nilpotent case, (5-11) gives rise to two separate cases.

(5-13) zk,1 ∈ C× and yk,nk = 0

and

(5-14) yk,nk ∈ C× and zk,1 = 0.

In case (5-13), we can argue using (5-10) that the coordinates yk,i for 1≤ i ≤ nk

can be solved uniquely as regular functions of zk,1 ∈C× and zk,2, . . . , zk,nk ∈C. In
case (5-14), we can solve for zk,i as regular functions of yk,nk ∈C× and yk,i ∈C for
1≤ i ≤ nk−1. In the case of (5-12), we can take either the zk,i as coordinates that
determine the yk,i or vice versa. For concreteness, we take yk,i = pi (zk,1, . . . , zk,nk )

to be regular functions of zk,1 ∈ C× and zk,2, . . . , zk,nk ∈ C.

Remark 5.10. The solutions in the cases of (5-11) and (5-12) are obtained by
setting the derivatives of the polynomial in (5-10) up to order n p − 1 evaluated at
λp equal to the corresponding derivatives of the polynomial pci+1(t) evaluated at λp

for 1≤ p ≤ r . This produces r systems of linear equations. Each system involves
only the coordinates z p,k and yp,k from the p-th Jordan block. This follows directly
from the fact that the eigenvalues λs are all distinct. Each system can then be solved
inductively using the fact that the coefficient of (−1)n p(t−λp)

q ∏r
k=1, k 6=p(λk−t)nr

is given by the (n− q)-th row of the matrix product

(5-15)


z p,1 z p,2 · · · z p,n p

0 z p,1
. . .

...
...

. . . z p,2

0 · · · 0 z p,1

 ·


yp,1
...
...

yp,n p


.

Recall that Zi is the direct product Zi = Z J1×· · ·×Z Jr , with Z Js the centralizer
of Js . The adjoint action of Zi on 4i

ci ,ci+1
is a diagonal action in which Z Js acts

only on the columns and rows of an x ∈ 4i
ci ,ci+1

containing Js . This observation
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allowed us to decompose a Zi -orbit O into the product Ok ⊂ C2nk of Z Jk -orbits as
in (4-15). If λk is a root of pci+1(t), then (5-11) gives rise to two free Z Jk -orbits,
an “upper" orbit Ok,U in the case of (5-14) and a “lower" orbit Ok,L in the case of
(5-13). This is proved similarly to the nilpotent case. If on the other hand, λk is
not a root of pci+1(t), and we have (5-12), then the vector

(5-16) ([zk,1, . . . , zk,nk ], [p1(zk,1, . . . , zk,nk ), . . . , pk(zk,1, . . . , zk,nk )]
T ) ∈ C2nk

is a free Z Jk -orbit under the action of Z Jk defined in (4-14). Thus, using the orbits
Ok,U and Ok,L for 1≤ k≤ j , we can construct 2 j free Zi -orbits in4i

ci ,ci+1
by (4-15).

Now, using Theorem 4.13, we can construct 2
∑n−1

i=1 ji 0
a1,a2,...,an−1
n morphisms

into gl(n)sreg
c , where ji is the number of roots in common to the monic polynomials

pci (t) and pci+1(t). The following result follows immediately from Theorem 4.9
and Theorem 4.12 and Remark 4.10.

Theorem 5.11. Let c = (c1, c2, . . . , ci , ci+1, . . . , cn) ∈ Cn(n+1)/2. Suppose there
are 0≤ ji ≤ i roots in common between the monic polynomials pci (t) and pci+1(t).
Then the number of A-orbits in gl(n)sreg

c is exactly 2
∑n−1

i=1 ji . Further, on gl(n)sreg
c the

orbits of A are the orbits of a free algebraic action of the commutative, connected
algebraic group Z = Z1× · · ·× Zn−1 on gl(n)sreg

c .

Remark 5.12. A similar result is obtained in [Bielawski and Pidstrygach 2008].
See Remark 1.3 in the introduction.

Theorem 5.11 lets us identify exactly where the action of the group A is transitive
on gl(n)sreg

c . Let 2n be the set of c ∈ Cn(n+1)/2 such that the monic polynomials
pci (t) and pci+1(t) have no roots in common. From [Kostant and Wallach 2006a,
Remark 2.16], it follows that 2n ⊂ Cn(n+1)/2 is Zariski principal open.

Corollary 5.13. The action of A is transitive on gl(n)sreg
c if and only if c ∈2n .

Remark 5.14. We will see in the next section that gl(n)sreg
c = gl(n)c for c ∈ 2n .

Thus, the fiber gl(n)c consists entirely of strongly regular elements.

Corollary 5.13 allows us to enlarge the set of generic matrices gl(n)� studied
by Kostant and Wallach.

5c. The new set of generic matrices gl(n)2. We can expand the set of matrices
gl(n)� studied by Kostant and Wallach by relaxing the condition that each cutoff
is regular semisimple. More precisely, let σ(xi ) denote the spectrum of xi ∈ gl(i),
where xi is viewed as an i× i matrix. We define a Zariski open subset of elements
of gl(n) by gl(n)2 = {x ∈ gl(n) | σ(xi−1) ∩ σ(xi ) = ∅, 2 ≤ i ≤ n}. Clearly,
gl(n)2 =

⋃
c∈2n

gl(n)c.

Theorem 5.15. The elements of gl(n)2 are strongly regular and hence gl(n)sreg
c =

gl(n)c for c ∈ 2n . Moreover, gl(n)2 is the maximal subset of gl(n) for which the
action of A is transitive on the fibers of 8.
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Proof. If pci (t) and pci+1(t) are relatively prime polynomials, then we claim4i
ci ,ci+1

is exactly one free Zi -orbit. Indeed, in this case we only have the conditions (5-12)
for 1≤k≤r . Thus, we can apply our observation in (5-16) to see that4i

ci ,ci+1
is one

free Zi -orbit and hence consists of regular elements of gl(i+1) by Theorem 4.13.
Given x ∈ gl(n)c with c ∈2n , we claim that x ∈ im0

a1,a2,...,an−1
n with ai =4

i
ci ,ci+1

for 1≤ i ≤ n−1. Indeed, x2 ∈4
1
c1,c2

and is therefore regular. Thus, by Remark 4.4,
there exists a g2 ∈ GL(2) such that (Ad(g2) · x)3 = (Ad(g2) · x3) ∈ 4

2
c2,c3

. Now,
suppose xi+1∈Ad(GL(i))·4i

ci ,ci+1
. Thus, xi+1∈gl(i+1) is regular and Remark 4.4

provides a gi+1∈GL(i+1) such that (Ad(gi+1)·x)i+2=Ad(gi+1)·xi+2∈4
i+1
ci+1,ci+2

.
By induction, x j+1∈Ad(GL( j))·4 j

c j ,c j+1 for any j in 1≤ j≤n−1. Proposition 4.3
implies that x ∈ im 0n . Thus, gl(n)2 ⊂ gl(n)sreg by Theorem 4.9. The rest of the
theorem follows from Corollary 5.13. �

Remark 5.16. The strictly upper triangular part of a matrix x ∈gl(n)c where c∈2n

is determined by its strictly lower triangular part. This follows from the definition
of the morphisms 0n and the fact that all of the yk,i can be solved uniquely as
regular functions of the zk,i for 1≤ i ≤ nk and 1≤ k ≤ r .

Because elements of gl(n)2 are strongly regular, we have the following:

Corollary 5.17. Let x ∈ gl(n)2. Then xi ∈ gl(i) is regular for all i .

Using Corollary 5.13 and Theorem 5.11, we can directly generalize [Kostant
and Wallach 2006a, Theorem 3.23] for the case of 2n .

Corollary 5.18. For c ∈ 2n ⊂ Cn(n+1)/2, we have gl(n)c ∼= Z1 × · · · × Zn−1 as
algebraic varieties.
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ON MASLOV CLASS RIGIDITY
FOR COISOTROPIC SUBMANIFOLDS

VIKTOR L. GINZBURG

We define the Maslov index of a loop tangent to the characteristic foliation
of a coisotropic submanifold as the mean Conley–Zehnder index of a path
in the group of linear symplectic transformations, incorporating the “ro-
tation” of the tangent space of the leaf — this is the standard Lagrangian
counterpart — and the holonomy of the characteristic foliation. We also
show that, with this definition, the Maslov class rigidity extends to the class
of the so-called stable coisotropic submanifolds including Lagrangian tori
and stable hypersurfaces.

1. Introduction and main results

1.1. Introduction. As the title indicates, the main theme of the paper is the Maslov
class rigidity for coisotropic submanifolds. To be more specific, we define the
Maslov index of a loop tangent to the characteristic foliation in a coisotropic sub-
manifold and show that a displaceable, stable coisotropic submanifold carries a
loop with Maslov index in the range [1, 2n+1−k], where 2n is the dimension of
the ambient manifold and k is the codimension of the coisotropic submanifold.

The study of symplectic topology of coisotropic submanifolds can be traced
back to [Moser 1978] followed by [Banyaga 1980; Ekeland and Hofer 1989; Hofer
1990] and by the work of Bolle [1996; 1998]. Recently, the field has entered
a particularly active phase; see [Albers and Frauenfelder 2010; 2008; Dragnev
2008; Ginzburg 2007; Gürel 2010; ≥ 2011; Kang 2009; Kerman 2008; Tonnelier
2010; Usher 2009; Ziltener 2010; 2009]. Most of these papers, with the excep-
tion of [Ziltener 2009], concern such questions as generalizations to coisotropic
submanifolds of the Lagrangian intersection property or of the existence of closed
characteristics on stable hypersurfaces. The present work, which can be thought
of as a follow-up to [Ginzburg 2007], focuses mainly on the coisotropic version of
the Maslov class rigidity, also considered in [Ziltener 2009].

The work is partially supported by the NSF and by the faculty research funds of the University of
California, Santa Cruz.
MSC2000: primary 53D40; secondary 37J45, 53D12.
Keywords: coisotropic submanifolds, Maslov class, Hamiltonian Floer homology.
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The aspect of the Maslov class rigidity we are concerned with here is the fact
that the Maslov class of a closed displaceable Lagrangian submanifold automati-
cally satisfies certain restrictions. Namely, the minimal Maslov number of such a
submanifold lies between 1 and n+1. This phenomenon was originally studied in
[Polterovich 1991a; 1991b; Viterbo 1990] and there are two methods of proving re-
sults of this type. One of these methods uses the holomorphic curves technique (see
[Audin et al. 1994; Polterovich 1991a; 1991b]) and at this moment it is not known
how to directly apply it to coisotropic submanifolds due to the lack of Fredholm
properties for the Cauchy–Riemann problem with coisotropic boundary conditions.
The second approach, originating from [Viterbo 1990], relies on Hamiltonian Floer
homology (or its equivalent) and in combination with certain estimates from [Bolle
1998] can be easily adapted to the coisotropic setting; see, for example, [Ginzburg
2007]. Here, we heavily draw from the modern interpretation of this method given
in [Kerman 2009; Kerman and Şirikçi 2010].

The Maslov index of a loop tangent to the characteristic foliation is the mean
Conley–Zehnder index of a certain path in Sp(2n) associated with the loop and
comprising the “rotation” of the tangent space of the leaf, as the standard La-
grangian counterpart, and the holonomy of the characteristic foliation. Hence, the
index can be an arbitrary real number. This definition, which can also be found in
[Ziltener 2009], where it is treated in great detail, is of independent interest. Then,
the proof of the Maslov class rigidity for coisotropic submanifolds follows the path
of [Kerman 2009; Kerman and Şirikçi 2010; Viterbo 1990]. The main new element
of the proof is that we circumvent relating the Conley–Zehnder and Morse indices
as in [Duistermaat 1976; Viterbo 1990]; instead we use the explicit expression
for the geodesic flow of a metric, capitalizing on the fact that the submanifolds in
question are stable and hence admit a leaf-wise flat metric.

1.2. Coisotropic Maslov index. Let M be a coisotropic submanifold of a sym-
plectic manifold (W 2n, ω). Denote by F the characteristic foliation of M ; see
Section 2.1 for the definition. The normal bundle T⊥M to M is canonically isomor-
phic to the (leaf-wise) cotangent bundle T ∗F to F and the direct sum T F⊕T⊥M
is a symplectic vector bundle over M . We have a symplectic vector bundle decom-
position

(1-1) TW |M= (T F⊕ T⊥M)⊕ T⊥F,

where T⊥F is the normal bundle to F in M . Note that T⊥F carries a symplectic
leaf-wise flat connection.

Consider a loop γ : S1
→ M tangent to F, contractible in W and equipped with

a capping u : D2
→ W . The capping u gives rise to a symplectic trivialization ζ ,

unique up to homotopy, of the pull-back bundle γ ∗TW . Let us assume first that
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T F is orientable along γ (i.e., the pull-back γ ∗T F is orientable), and hence trivial,
and fix a trivialization ξ of this vector bundle. Then the pull-back γ ∗(T F⊕T⊥M)
receives a symplectic trivialization ξ ⊕ ξ∗. This trivialization can be viewed as a
family of symplectic maps4(t) :Tγ (0)F⊕T⊥γ (0)M→Tγ (t)F⊕T⊥γ (t)M parametrized
by t ∈ S1. Combining the family 4(t) with the holonomy 0(t) : T⊥γ (0)F→ T⊥γ (t)F
along γ , we obtain a family of symplectic maps 4(t)⊕0(t) : Tγ (0)W → Tγ (t)W ,
which, using the trivialization ζ , we can regard as a path 8 : [0, 1] → Sp(2n).

Definition 1.1. The coisotropic Maslov index µ(γ, u) of the capped loop (γ, u)
is the negative mean Conley–Zehnder index −1(8) ∈ R. (We refer the reader to
[Long 2002; Salamon and Zehnder 1992] for a detailed discussion of the mean in-
dex; here we use the notation and conventions from [Ginzburg and Gürel 2009]; see
Section 2.2.) When T F is not orientable along γ , we set µ(γ, u) := µ(γ 2, u2)/2,
where (γ 2, u2) stands for the double cover of (γ, u).

The standard argument shows that the index µ(γ, u) is well defined, that is,
independent of the choice of the trivializations ξ and ζ . It is also independent of the
choice of splitting (1-1): the normal bundle T⊥F is unambiguously defined only
as the quotient TW/T F while the splitting requires a choice of the complement to
T F in TW . To see that 1(8) is independent of this choice, we argue as follows;
see the proof of [Ginzburg and Gürel 2009, Lemma 2.6]. Observe that the path 8̃
resulting from a different splitting is homotopic to the concatenation of the path
8 with a path 9 of the form 9(t) = I + A(t), where I is the identity map and
A(t) : T⊥F→ (T F⊕ T⊥M). Thus, all eigenvalues of 9(t) are equal to one and,
as a consequence, 1(9) = 0. Hence, by the additivity and homotopy invariance
of the mean index [Ginzburg and Gürel 2009; Long 2002; Salamon and Zehnder
1992], we have 1(8̃)=1(8).

It is worth emphasizing that, in contrast with the ordinary Lagrangian Maslov in-
dex, the coisotropic Maslov index is not, in general, an integer and that this index is
different from the one considered in [Oh 2003]. The negative sign in the definition
of the coisotropic Maslov index is, of course, a matter of conventions: this is the
price we have to pay to match the sign of the standard Maslov index for Lagrangian
submanifolds (Example 1.2) while using the conventions from [Ginzburg and Gürel
2009]; see Section 2.2.

It is easy to see that the coisotropic Maslov index has the following properties:

• Homotopy invariance: µ(γ, u) is invariant, in the obvious sense, under a ho-
motopy of γ in a leaf of F. In particular, µ(γ, u) = 0 when u is homotopic
(rel boundary) to a disc in the leaf of F containing γ .

• Recapping: µ(γ, u#v) = µ(γ, u)− 2 〈c1(TW ), v〉, where the capping u#v is
obtained by attaching the sphere v∈π2(W ) to u. In particular,µ(γ ) :=µ(γ, u)
is independent of u when c1(TW ) |π2(W )= 0.
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• Homogeneity: µ(γ k, uk) = kµ(γ, u), where (γ k, uk) stands for the k-fold
cover of (γ, u). Moreover, when c1(TW ) |π2(W )= 0, the Maslov index gives
rise to a homogeneous quasimorphism π1(F)→ R for any leaf F of F.

Example 1.2. When M is a Lagrangian submanifold of W , the foliation F has
only one leaf, the manifold M itself, and the coisotropic Maslov index coincides
with the ordinary Maslov index. Indeed, in this case, Definition 1.1 turns into one
of the definitions of this index.

Example 1.3. When u is contained in M , the index µ(γ, u) is equal to the mean
index of the holonomy along γ with respect to a symplectic trivialization of T⊥F

associated with u. For instance, when M is a regular level of a Hamiltonian and
γ is a periodic orbit (and again u is contained in M), the Maslov index µ(γ, u) is
equal to the mean index of γ in M .

Example 1.4. When all leaves of F are closed and form a fibration, the path 8 is
a loop and µ(γ, u) is equal to the Maslov index of this loop. (In particular, then
µ(γ, u) is an integer.) In this setting, the coisotropic Maslov index is introduced
and investigated by Ziltener [2009]. Furthermore, one can express the coisotropic
Maslov index via the Lagrangian Maslov index in the graph of F; see [Ziltener
2009; 2010] for details.

Now we are in a position to state the main result of the paper. A much more
detailed discussion of the coisotropic Maslov index can be found in [Ziltener 2009].

1.3. Rigidity of the coisotropic Maslov index. Let W be a symplectically aspher-
ical manifold, which we assume to be either closed or geometrically bounded and
wide (e.g., convex at infinity) in the sense of [Gürel 2008].

Theorem 1.5. Let W 2n be as above and let M2n−k
⊂ W be a closed, stable, dis-

placeable coisotropic submanifold. (See Section 2.1 for the definitions.) Then, for
any δ > 0, there exists a loop η tangent to F and contractible in W and such that

1≤ µ(η)≤ 2n+ 1− k,(1-2)

0< Area(η)≤ e(M)+ δ,(1-3)

where Area(η) is the symplectic area bounded by η and e(M) is the displacement
energy of M .

Example 1.6. As in Example 1.2, assume that M is a stable Lagrangian subman-
ifold (and hence a torus). Then k = n and the theorem reduces to a particular
case of the standard Lagrangian Maslov class rigidity. This version of rigidity
is established in [Viterbo 1990] for W = R2n and in [Kerman 2009; Kerman and
Şirikçi 2010] for closed ambient manifolds; see also [Audin et al. 1994; Polterovich
1991a; 1991b] for generalizations.
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Example 1.7. Assume that M is a stable, displaceable, simply connected hyper-
surface. Then, by (1-2) and Example 1.3, M carries a closed characteristic η with
1 ≤ 1(γ ) ≤ 2n. This is apparently a new observation. However, if we replace
the upper bound by 2n + 1, the assertion becomes an easy consequence of the
properties of the mean index and, for instance, the displacement or symplectic ho-
mology proof of the almost existence theorem; see, for example, [Floer et al. 1994;
Ginzburg 2005; Gürel 2008; Hofer and Zehnder 1994] and references therein.

Remark 1.8. A word on the hypotheses of the theorem is due now. The assumption
that W be symplectically aspherical is imposed here only for the sake of simplicity
and can be significantly relaxed along the lines of [Kerman 2008; Usher 2009].
Hypothetically, a combination of our argument with the reasoning from these works
should lead to a generalization of the theorem to the case where we only require
the subgroup 〈ω, π2(M)〉 ⊂R to be discrete as in [Usher 2009, Theorem 1.6] or, at
least, where W is monotone or negative monotone; see [Kerman 2008]. (In such a
generalization, the geodesic η is, of course, equipped with capping.)

The condition that M is stable cannot be entirely omitted due to the counterex-
amples to the Hamiltonian Seifert conjecture showing that there exist hypersurfaces
in R2n (C2 when 2n = 4) without closed characteristics; see [Ginzburg 1999;
Ginzburg and Gürel 2003] and references therein. However, this condition can
possibly be relaxed as in [Usher 2009, Section 7].

Finally note that the existence of a loop η satisfying (1-3) is established in
[Ginzburg 2007, Theorem 2.7], where the second inequality (with δ= 0) is proved
under the additional hypothesis that M has restricted contact type. Thus, even
when only the area bounds are concerned, Theorem 1.5 is a generalization (up to
the issue of δ) of the results from [Ginzburg 2007], which became possible due to
incorporating a technique from [Kerman 2009; Kerman and Şirikçi 2010] into the
proof.

Remark 1.9. It is tempting to conjecture that the Maslov class of M is still nonzero
even when the stability assumption in Theorem 1.5 is dropped and all leaves of F

may be contractible. However, it is not entirely clear how to define this Maslov
class and what cohomology space this class should lie in. The situation contrasts
sharply with a similar question for the Liouville class of M , which can always be
defined, when W is exact, as the class [λ|F] of a global primitive λ of ω in the
tangential de Rham cohomology H1(F); see [Ginzburg 2007, Section 1.2].

2. Preliminaries

We start this section by recalling the relevant definitions and basic results concern-
ing coisotropic submanifolds. In Section 2.2, we set our conventions and notation.
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2.1. Stable coisotropic submanifolds. Let, as above, (W 2n, ω) be a symplectic
manifold and let M ⊂ W be a closed, coisotropic submanifold of codimension k.
Set ωM = ω|M . Then, as is well known, the distribution kerωM has dimension
k and is integrable. Denote by F the characteristic foliation on M , that is, the
k-dimensional foliation whose leaves are tangent to the distribution kerωM .

Definition 2.1. The coisotropic submanifold M is said to be stable if there exist
one-forms α1, . . . , αk on M such that ker dαi ⊃ kerωM for all i = 1, . . . , k and

(2-1) α1 ∧ · · · ∧αk ∧ω
n−k
M 6= 0

anywhere on M . We say that M has contact type if the forms αi can be taken to
be primitives of ωM . Furthermore, M has restricted contact type if the forms αi

extend to global primitives of ω on W .

Stable and contact type coisotropic submanifolds were introduced by Bolle
[1996; 1998] and considered in a more general setting in [Ginzburg 2007] and
also by Kerman [2008] and Usher [2009]. We refer the reader to [Ginzburg 2007]
for a discussion of the requirements of Definition 2.1 and examples. Here we only
note that although Definition 2.1 is natural, it is quite restrictive. For example,
a stable Lagrangian submanifold is necessarily a torus and a stable coisotropic
submanifold is automatically orientable.

Assume henceforth that M is stable. Then the normal bundle T⊥M to M in W
is trivial, since it is isomorphic to T ∗F and the latter bundle is trivial due to (2-1).
From now on, we fix the trivialization T⊥M = T ∗F∼= M×Rk given by the forms
αi and identify a small neighborhood of M in W with a neighborhood of M in
T ∗F=M×Rk . We will use the same symbols ωM and αi for differential forms on
M and for their pullbacks to M×Rk . (Thus we suppress the pullback notation π∗,
where π : M ×Rk

→ M is the natural projection, unless its presence is essential.)
As a consequence of the Weinstein symplectic neighborhood theorem, we have:

Proposition 2.2 [Bolle 1996; 1998]. Let M be a closed, stable coisotropic sub-
manifold of (W 2n, ω) with codim M = k. Then, for a sufficiently small r > 0, there
exists a neighborhood of M in W , which is symplectomorphic to

Ur = {(q, p) ∈ M ×Rk
| |p|< r},

equipped with the symplectic form ω = ωM +
∑k

j=1 d(p jα j ). Here (p1, . . . , pk)

are the coordinates on Rk and |p| is the Euclidean norm of p.

Thus, a neighborhood of M in W is foliated by a family of coisotropic subman-
ifolds Mp = M×{p} with p ∈ Bk

r , where Bk
r is the ball of radius r centered at the

origin in Rk . Moreover, a leaf of the characteristic foliation on Mp projects onto a
leaf of the characteristic foliation on M .
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Proposition 2.3 [Bolle 1996; 1998; Ginzburg 2007]. Let M be a stable coisotropic
submanifold.

(i) The leaf-wise metric (α1)
2
+ · · ·+ (αk)

2 on F is leaf-wise flat.

(ii) The Hamiltonian flow of ρ = (p2
1 + · · · + p2

k )/2 = |p|
2/2 is the leaf-wise

geodesic flow of this metric.

We conclude this section by pointing out that the metric ρ extends to a true
metric on M such that the leaves of F are totally geodesic submanifolds and that
the existence of such a metric is equivalent to the stability of M when M is a
hypersurface; see [Sullivan 1978] and [Usher 2009, Section 7].

2.2. Conventions and notation. In this section we specify conventions and nota-
tion used throughout the paper.

2.2.1. Action functional and the Hamilton equation. Let (W 2n, ω) be a symplec-
tically aspherical manifold, that is, ω|π2(W ) = c1|π2(W ) = 0. Denote by 3W the
space of smooth contractible loops γ : S1

→ W and consider a time-dependent
Hamiltonian H : S1

×W → R, where S1
= R/Z. Setting Ht = H(t, ·) for t ∈ S1,

we define the action functional AH :3W → R by

AH (γ )=A(γ )+

∫
S1

Ht(γ (t)) dt,

where A(γ ) = −Area(γ ) is the negative symplectic area bounded by γ . In other
words,

A(γ )=−

∫
u
ω,

where u : D2
→ W is a capping of γ , that is, u|S1 = γ . The least action principle

asserts that the critical points of AH are exactly the contractible one-periodic orbits
of the time-dependent Hamiltonian flow ϕt

H of H , where the Hamiltonian vector
field X H of H is defined by the Hamilton equation iX Hω =−dH .

2.2.2. Conley–Zehnder index. We consider a finite-dimensional symplectic vector
space V and denote by Sp(V ) the group of linear symplectic transformations of
V , setting Sp(2n) = Sp(R2n) as usual. We let 1(8) stand for the mean index
of a path 8 : [0, T ] → Sp(V ) and, when 8 is nondegenerate (i.e., 8(T ) has no
eigenvalues equal to one), we denote by µCZ(8) the Conley–Zehnder index of 8.
We refer the reader to [Long 2002; Salamon 1999; Salamon and Zehnder 1992]
and also [Ginzburg and Gürel 2009] for the definitions and a detailed discussion
of these notions. In this paper, we normalize these indices as in [Ginzburg and
Gürel 2009]. This normalization is different from the ones in [Long 2002; Sala-
mon 1999; Salamon and Zehnder 1992]. For instance, our µCZ(8) is the negative
of the Conley–Zehnder index as defined in [Salamon 1999]. For the flow 8(t)
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with 0≤ t ≤ 1 generated by a nondegenerate quadratic Hamiltonian H with small
eigenvalues, we have µCZ(8) = − sgn (H)/2, where sgn (H) is the signature of
H (the number of positive squares minus the number of negative squares). In
particular, when H is negative definite, we have µCZ(8) = n where 2n = dim V
and1(8)>0. In other words, when µCZ(8) is interpreted as the intersection index
of 8 with the discriminant 6⊂ Sp(V ) formed by symplectic transformations with
at least one eigenvalue equal to one, 6 is co-oriented by the Hamiltonian vector
field of a negative definite Hamiltonian.

Recall also from [Salamon and Zehnder 1992] that, regardless of conventions,
we have

(2-2) |1(8)−µCZ(8)|< n and 1(8)= lim
k→∞

µCZ(8
k)

k
,

where in the inequality we require 8(T ) to be nondegenerate and, in the limit
identity, we assume that 8(T )k 6∈ 6 for all k and thus µCZ(8

k) is defined. Note
that here we can replace 8k by the concatenation of the paths 8, 8(T )8, etc., up
to 8(T )k−18.

Let now x be a contractible periodic orbit of H on W 2n . Using a trivialization
of x∗TW arising from a capping of x , we can interpret the linearized flow dϕt

H
along x as a path 8 in Sp(2n). The mean index 1(x) of x is by definition 1(8).
When x is nondegenerate, we also set µCZ(x) :=µCZ(8). Since c1(TW )|π2(W )= 0,
these indices are well defined, that is, independent of the capping. When we need
to emphasize the role of H , we write 1H (x) and µCZ(x, H). By (2-2), we have

(2-3) |1(x)−µCZ(x)|< n and 1(x)= lim
k→∞

µCZ(xk)

k
.

As in (2-2), we require here x to be nondegenerate for µCZ(x) to be defined, and, in
the limit identity, we assume that x is strongly nondegenerate, that is, all iterated
orbits xk are nondegenerate. Finally note that with our normalizations 1(x) > 0
and µCZ(x) = n when x is a nondegenerate maximum (with small Hessian) of an
autonomous Hamiltonian.

2.2.3. Floer homology. In the definition of Floer homology, we adopt literally the
conventions and notation from [Ginzburg 2007]. All Hamiltonians considered in
this paper are assumed to be compactly supported. The manifold W , in addition
to being symplectically aspherical, is required to be either closed or geometrically
bounded and wide in the sense of [Gürel 2008]. (See, e.g., [Audin et al. 1994;
Cieliebak et al. 2004; Sikorav 1994] for the precise definition and a discussion of
geometrically bounded manifolds.)

Examples of geometrically bounded manifolds include symplectic manifolds
which are convex at infinity (e.g., R2n and cotangent bundles) as well as twisted
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cotangent bundles. Under the hypotheses that W is symplectically aspherical and
geometrically bounded, the compactness theorem for Floer’s connecting trajec-
tories holds (see [Sikorav 1994]) and the filtered Z-graded Floer homology of a
compactly supported Hamiltonian on W is defined for action intervals not con-
taining zero; see, for example, [Cieliebak et al. 2004; Ginzburg and Gürel 2004]
and references therein. We use the wideness hypothesis in Section 3.2 when con-
sidering a version of the “pinned” action selector introduced in [Kerman 2009].
This requirement is not restrictive, for, to the best of the author’s knowledge, no
examples of geometrically bounded open manifolds that are not wide are known.

We use the notation HF(a, b)
∗

(H) for the filtered Floer homology of H , graded
by the Conley–Zehnder index. The end-points a and b are always assumed to be
outside the action spectrum S(H) of H and, if W is open, we require that 0 6∈ (a, b).
When W is closed, we have a canonical isomorphism

HF∗(H)= H∗+n(W ;Z2),

where as usual HF∗(H) = HF(−∞,∞)
∗

(H). When all periodic orbits of H with
action in (a, b) are nondegenerate, we let CF(a, b)

∗
(H) be the vector space generated

over Z2 by such orbits, graded by the Conley–Zehnder index. The downward Floer
differential

∂ : CF(a, b)
∗

(H)→ CF(a, b)
∗−1 (H)

is then defined in the standard way and HF(a, b)
∗

(H) is the homology of the resulting
Floer complex. The above nondegeneracy requirement is generic (as long as 0 6∈
(a, b) if W is open) and, in general, we set

HF(a, b)
∗

(H) := HF(a, b)
∗

(H̃),

where H̃ is a small perturbation of H having only nondegenerate orbits with action
in (a, b). Since a and b are outside S(H), the homology HF(a, b)

∗
(H̃) is indepen-

dent of H̃ as long as H̃ is sufficiently close to H . We refer the reader to [Cieliebak
et al. 2004; Ginzburg 2007; Ginzburg and Gürel 2004] for the proofs and further
details on the construction and properties of the Floer homology in this setting as
well as for further references.

3. Proof of the main theorem

3.1. Maslov index for stable coisotropic submanifolds. Let M be a stable coiso-
tropic submanifold. In this section, we interpret the mean index1ρ(x) of a periodic
orbit x of the leaf-wise geodesic flow on M as, up to a sign, the coisotropic Maslov
index of the projection γ of x to M . We also establish certain bounds, going beyond
(2-3), on the Conley–Zehnder index of a small nondegenerate perturbation of x .
Throughout this subsection, we will use the notation from Section 2.1. In particular,
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we fix a neighborhood U = M × B, where B = Br , of M in W . Thus, let x be
a nontrivial, contractible in W closed orbit of the Hamiltonian flow of ρ and let
γ = π(x). Then γ is also contractible in W .

Proposition 3.1. We have

(3-1) µ(γ )=−1ρ(x).

Proof. It is convenient to first extend the decomposition (1-1) from TW |M to TW |U
as follows. Recall from Section 2.1 that the submanifolds Mp=M×{p}⊂M×B,
with p ∈ B, are coisotropic and that the characteristic foliation Fp of Mp projects
to F under π . Denote by F̃ the resulting foliation of U , obtained as the union
of foliations Fp. Let TM be the horizontal tangent bundle in M × B, that is,
(TM)(q,p) = T(q,p)Mp where (q, p) ∈U = M× B, and likewise let TB denote the
vertical bundle kerπ∗. Then the normal bundle T⊥F̃ to T F̃ in TM can be realized
as the subbundle E = (∩i kerπ∗αi )∩TM . We have the symplectic decomposition

(3-2) TW = (T F̃⊕ TB)⊕ E,

which turns into (1-1) once restricted to M .
The linearized projection π∗ gives rise to an isomorphism between the fibers

(T F̃)(q,p) and TqF, and E(q,p) and T⊥q F. Furthermore, (TB)(q,p) is naturally
isomorphic to T0 B = T⊥q M . Thus, we have a (symplectic) linear isomorphism
between the decomposition (3-2) along x and (1-1) along γ . In particular, we
obtain an isomorphism between the bundles x∗TW and γ ∗TW giving rise to a
one-to-one correspondence between trivializations of TW along x and along γ . In
what follows, we fix a trivialization arising from a capping of x .

Now recall that the flow of ρ on U can be identified with the geodesic flow
of the leaf-wise metric ρ on M . Thus, we need to prove that the mean index of
the linearized geodesic flow G(t) along x is equal to 1(8). The geodesic flow
preserves the terms T F̃⊕ TB and E in the decomposition (3-2). Indeed, the fact
that the first term is conserved is clear: the geodesic flow is tangent to the leaves.
To show that the second term is conserved, it suffices to recall that, as mentioned
above, the flow is tangent to the manifolds Mp due to conservation of momenta
and that the restrictions π∗α j |Mp are conserved since L Xρπ

∗α j = dp j .
Next let us show that

(3-3) G|E = 0,

where we identified x∗E and γ ∗T⊥F. To this end, let us recall the definition of
the holonomy 0. Consider an element [v] in T⊥γ (0)F= Tγ (0)M/Tγ (0)F represented
by a vector v ∈ Tγ (0)M . (Here and below, it is more convenient to think of E and
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T⊥F as quotient bundles rather than sub-bundles.) Let η : [0, δ)→M be a smooth
map with η(0) = γ (0) and η′(0) = v. Let now γ be parametrized by, say, [0, T ]
and let σ : [0, T ] × [0, δ)→ M be a map whose restriction to [0, T ] × 0 is γ , to
0×[0, δ) is η and such that σ |[0, T ]×s , for all s ∈ [0, δ), lies in a leaf of F. The class
[(∂σ/∂s)(t, 0)]∈T⊥γ (t)F is independent of the choice of σ and is the image 0(t)[v].
Let now w(s) ∈ Tη(s)F be a smooth family of vectors tangent to F and such that
w(0)= γ̇ (0). Consider the parametrized surface σ defined by setting σ |[0, T ]×s to be
the leaf-wise geodesic with the initial conditions (γ (s), w(s)). Then, in particular,
[(∂σ/∂s)(t, 0)] is independent of the choice of the curve η and the familyw. On the
one hand, this vector represents G(t)[v] by the definition of the linearized geodesic
flow and, on the other, it is 0(t)[v] due to the above description of the holonomy.

To complete the argument, it would be sufficient to show that G|T F̃⊕TB = 4,
where we identified x∗(T F̃⊕ TB) and γ ∗(T F⊕ T⊥M), but this is not true. Let
us fix a basis ξ(0) ∈ Tγ (0)F. Then, since the metric is flat, G(t)ξ(0) is the basis
ξ(t) in Tγ (t)F obtained from ξ(0) by the parallel transport along γ . Let

ξ∗(0) ∈ T ∗γ (0)F= T⊥γ (0)M

be the basis dual to ξ(0). Then G(t)ξ∗(0) = tξ(t)+ ξ∗(t) ∈ Tγ (t)F⊕ T ∗γ (t)F in
obvious notation. We conclude that G(t)|T F̃⊕TB =4(t)+ A(t), where

A(t) : T ∗γ (t)F→ Tγ (t)F.

To finish the proof, we argue as when showing in Section 1.2 that the coisotropic
Maslov index is independent of the splitting (1-1). With a trivialization fixed, we
can view G and 8= 4⊕0 as paths in Sp(2n). Then, G is homotopic with fixed
end-points to the concatenation of8 and the path9(t)= I+A(t). All eigenvalues
of 9(t) are equal to one and therefore 1(9) = 0. Thus, by the additivity and
homotopy invariance of the mean index (see, e.g., [Ginzburg and Gürel 2009; Long
2002; Salamon and Zehnder 1992]), we have 1(G)=1(8)=: −µ(γ ). �

Remark 3.2. Proposition 3.1 has the following hypothetical generalization. As-
sume that M admits a metric with respect to which F is totally geodesic. Referring
the reader to [Usher 2009, Section 7] for a detailed discussion of this condition,
we only mention here that it is satisfied when M is Lagrangian (for any metric on
M) and when M is stable. In the latter case, F is totally geodesic with respect to
ρ. Then, conjecturally, the mean Conley–Zehnder index of x is equal, up to a sign,
to the sum of the mean Morse index of γ and µ(γ ). When M is stable, the mean
Morse index is zero since ρ is flat, and this conjecture reduces to Proposition 3.1.
When M is Lagrangian and x is nondegenerate, the conjecture essentially reduces
to a well known relation between the Conley–Zehnder, Morse, and Maslov indices.
The latter is proved in [Viterbo 1990] using the results from [Duistermaat 1976] in
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the context of the finite-dimensional reduction. A proof relying on the Floer theory
version of the Conley–Zehnder index can be found in, for example, [Weber 2002];
see also [Kerman and Şirikçi 2010] for a simple argument.

The next proposition is a substitute for the relation between the Conley–Zehnder
and Maslov indices.

Proposition 3.3. Let K be a small perturbation of ρ and x̃ be a nondegenerate
periodic orbit of K close to a nontrivial, contractible periodic orbit x of ρ. Then

(3-4) 1ρ(x)− n ≤ µCZ(x̃)≤1ρ(x)+ (n− k)

Proof. Note that by the continuity of 1 and (2-3) we automatically have

1ρ(x)− n ≤ µCZ(x̃)≤1ρ(x)+ n,

regardless of the nature of the flow of ρ. Hence only the second inequality in (3-4)
requires a proof.

By arguing as in the proof of Proposition 3.1, it is not hard to reduce the propo-
sition to the following linear algebra result. Namely, consider a finite-dimensional
symplectic vector space V split as a symplectic direct sum

V = (L ⊕ L∗)⊕ E,

where E and (L ⊕ L∗) are symplectic spaces, and L and L∗ are Lagrangian in
L ⊕ L∗; see (1-1) and (3-2). Set dim V = 2n and dim L = k. Consider a path
G : [0, 1]→ Sp(V ) of the form G = A⊕0, where 0 is a path in Sp(E) beginning
at I and A is the block-diagonal path

A =
[

I t I
0 I

]
,

in Sp(L ⊕ L∗).

Lemma 3.4. Let G̃ : [0, 1]→ Sp(V ) be a small nondegenerate perturbation of G,
also beginning at I . Then

(3-5) 1(G)− n ≤ µCZ(G̃)≤1(G)+ (n− k).

Proof of the lemma. Again, by (2-2), we have

1(G)− n ≤ µCZ(G̃)≤1(G)+ n,

for any path G. Hence, only the second inequality in (3-5) requires a proof.
Next observe that, once the end-point 0(1) is fixed, the path 0 is immaterial

for the assertion of the lemma. In other words, if the lemma holds for one path
with a given end-point, it also holds for every path with the same end-point. This
follows from the facts that a homotopy of G can be traced by a homotopy of G̃
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(both with fixed end-points) and that µCZ and1 are invariant under such homotopy
and change in the same way when a loop is attached to a path.

As the first step of the proof, let us assume that all eigenvalues of 0(1) are equal
to one. Then 0(1) is in the image of the exponential mapping exp for Sp(E).
Indeed, 0(1) is conjugate to a symplectic linear map which can be chosen to be
arbitrarily close to I ; see, for example, [Ginzburg 2010, Lemma 5.5]. Since exp
is onto a neighborhood of the identity and commutes with conjugation, 0(1) is in
the image of exp. Since 0 is a regular point of exp and the set of regular points
is open, we can write 0(1) = exp(Q), where Q is a regular point of exp and all
eigenvalues of Q are equal to zero.

Here we identify the Lie algebra of the symplectic group with the space of
quadratic Hamiltonians. As is customary in symplectic geometry, the eigenvalues
of Q are, by definition, the eigenvalues of the linear Hamiltonian vector field X Q

generated by Q. Also note that if we identified Sp(E) with Sp(2(n− k)) and used
the matrix exponential map, we would write X Q = J Q and 0(1)= exp(J Q).

We have A(1) = exp(ρ) in Sp(L ⊕ L∗), where ρ is a positive definite form on
L∗ and zero on L . Arguing as above, it is not hard to show that ρ is a regular
point of exp for Sp(L ⊕ L∗) and that, moreover, ρ + Q is a regular point of the
exponential mapping for Sp(V ). Now we have G̃(1) = exp(K ) in Sp(V ), where
the quadratic form K is close to ρ+Q. In particular, K is also positive definite on
L∗ and all eigenvalues of K are close to those of ρ+ Q, that is, close to zero. As
has been pointed out above, we can set G̃(t) = exp(t K ) and 0(t) = exp(t Q). As
a consequence, with our conventions,

µCZ(G̃)=− sgn (K )/2≤ n− k,

where sgn (K ) stands for the signature of K (i.e., the number of positive eigenval-
ues minus the number of negative eigenvalues); see [Salamon 1999, Section 2.4].
In addition,1(G)= 0, and we obtain the second inequality of (3-5) in this case. To
summarize, we have proved (3-5) when all eigenvalues of 0(1) are equal to one.

To treat the general case, consider the symplectic direct sum decomposition
E = E0 ⊕ E1, where E0 is spanned by the generalized eigenvectors of 0(1)
with eigenvalue one and E1 is the symplectic orthogonal complement of E0 in
E . Clearly, 0(1) preserves this decomposition and, after altering if necessary the
path 0, we may assume that so do all maps 0(t). When G̃(1) is sufficiently close
to G(1), we have the decomposition V = V0 ⊕ V1 preserved by G̃(1), where V0

is close to (L ⊕ L∗) ⊕ E0 and V1 is close to E1. Applying a time-dependent,
close to the identity conjugation to G̃(t), we reduce the problem to the case where
V0= (L⊕L∗)⊕E0 and V1= E1. Consider now the paths G and G̃. Both paths begin
and end in Sp(V0)× Sp(V1), the first path is contained in this subgroup, and the
path G̃ is close to G. In particular, G̃ is in a tubular neighborhood of the subgroup.
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Projecting G̃ to Sp(V0)× Sp(V1), we can further reduce the question to the case
where G̃ is a path in Sp(V0)× Sp(V1), just as G is. Denote by G = (G0,G1) and
G̃ = (G̃0, G̃1) the corresponding decompositions of the paths. The E0-component
of G0(1) is the map 0(1)|E0 with all eigenvalues equal to one, and hence (3-5) has
already been proved for G0:

1(G0)− dim V0/2≤ µCZ(G̃0)≤1(G0)+ (dim V0/2− k).

On the other hand, the path G̃1 is a small perturbation of the path 0|E1 . Thus, we
have

1(G1)− dim V1/2≤ µCZ(G̃1)≤1(G1)+ dim V1/2.

Recall that 1(G) = 1(G0)+1(G1) and µCZ(G̃) = µCZ(G̃0)+µCZ(G̃1) and that
dim V0+dim V1=dim V =2n. Thus, adding up these inequalities, we obtain (3-5),
which completes the proof of the lemma and hence the proof of the proposition. �

3.2. Action selector for “pinned” Hamiltonians, following E. Kerman. Our goal
in this section is to describe a construction of an action selector for “pinned”
Hamiltonians, which was introduced in [Kerman 2009; Kerman and Şirikçi 2010].
Although the class of Hamiltonians and manifolds we work with is somewhat dif-
ferent from those in the references just given, the action selector is essentially the
same as the one considered there. As far as the proofs are concerned, we adopt
here the line of reasoning from [Ginzburg 2007] rather than following the Hofer-
geometric approach from [Kerman 2009]. Since the arguments are quite standard,
for the sake of brevity, we just outline the proofs.

Let M2n−k be a closed submanifold, not necessarily coisotropic, of a symplectic
manifold W 2n . As before, we require W to be symplectically aspherical and either
closed or a geometrically bounded and wide. We assume that M is displaceable
and fix a displaceable open set U containing M . Denote by H the collection of
nonnegative, autonomous Hamiltonians H :W→R supported in U , constant on a
small tubular neighborhood of M and attaining the absolute maximum C :=max H ,
depending on H , on this neighborhood. Let us require furthermore that C > e(U ),
where e(U ) is the displacement energy of U .

It is easy to see that HF(C−δ,C+δ)n (H)=Z2 once H ∈H and δ > 0 is sufficiently
small. In fact, HF(C−δ,C+δ)

∗
(H) = H∗+n−k(M;Z2). Furthermore, when a > C is

large enough (namely, if a > C + e(U )), the inclusion map

ia : Z2 ∼= HF(C−δ,C+δ)n (H)→ HF(C−δ,a)n (H)

is zero. The proof of this fact is, for example, contained in the proof of [Ginzburg
2007, Proposition 4.1]; see also [Kerman 2009] for the case of closed manifolds.
This is the main point of the argument where we need to assume that W is wide
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[Gürel 2008], unless W is closed. For H ∈H, set

c(H)= inf{a > C | ia = 0}.

(Strictly speaking, here we have to require a > C + δ and then also take infimum
over all sufficiently small δ>0.) This is a version of the action selector for “pinned”
Hamiltonians, introduced in [Kerman 2009].

Alternatively and more explicitly, the action selector c can be defined as follows.
Let H̃ be a C2-small, nondegenerate perturbation of H , also supported in U (or, to
be more precise, in S1

×U ) and such that H̃ ≥ H . Let us also assume that H̃ is au-
tonomous on a small neighborhood of M and that max H̃ =C =max H is attained
at p ∈ M . (In what follows, we will have p fixed and independent of H̃ .) Then
p, viewed as an element of degree n in the Floer complex CF(C−δ,∞)

∗
(H̃), is exact

and there exists a chain in CF(C−δ,∞)n+1 (H̃) mapped to p by the Floer differential;
see the proof of [Ginzburg 2007, Proposition 4.1]. Let us consider all such chains
and, within every chain, pick an orbit with the largest action and then among the
resulting orbits we choose an orbit x̃ with the least action. In other words, to obtain
x̃ , we first maximize the action within every chain and then minimize the result
among all chains which are primitives of p. Clearly, the orbit x̃ is in general not
unique, but the action AH̃ (x̃) is defined unambiguously.

Let us now set c(H̃) = AH̃ (x̃). Then c(H) is the infimum or the limit (in the
obvious sense) of c(H̃) over all such perturbations H̃ of H . (It is clear that c(H)
is less than or equal to the limit; the fact that c(H) is greater than or equal to
the limit is a consequence of the definition of the Floer homology for degenerate
Hamiltonians such as H .)

It follows from this description that there exists an orbit x of H , referred to in
what follows as a special one-periodic orbit of H , obtained as a limit point of the
orbits x̃ in the space of loops as H̃ → H , such that

(3-6) C <AH (x)= c(H) < C + e(U ) and 1≤1(x)≤ 2n+ 1.

Here the upper bound on the action is established by a variant of the standard
argument relating action change and the displacement energy; see, e.g., [Ginzburg
2005; Gürel 2008; Hofer and Zehnder 1994; Kerman 2009] and references therein.
The lower bound on action is clear for H̃ and x̃ . By continuity of the action (with
a little extra argument showing that the inequalities are strict) it also holds for H
and x . The bounds for the index follow from the continuity of the mean index and
(2-3). Note that, in general, the special orbit x is not unique.

Remark 3.5. There appears to be no reason to expect the orbit x̃ to be necessarily
connected to p by a Floer downward trajectory. However, there exists an orbit x̂
of H̃ with this property and such that C <AH̃ (x̂)≤AH̃ (x̃). This is an immediate
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consequence of the definition of x̃ . Carefully passing to the limit as H̃ → H we
obtain an orbit x ′ of H such that C <AH (x ′) ≤AH (x) and x ′ is connected to M
by a Floer downward trajectory. See [Ginzburg 2007] and, in particular, the proofs
of Propositions 4.1 and 5.1 therein for the proofs of these facts; note also that x̂ is
denoted by γ in [Ginzburg 2007, Proposition 4.1]. The existence of the orbit x ′ is
essential for showing that, in (1-3), the area bounded by η is strictly positive.

We refer the reader to [Kerman 2009] for a detailed investigation of the proper-
ties of the action selector c. One of these is particularly important for our argument.

Proposition 3.6 [Kerman 2009]. The action selector c is Lipschitz, with Lipschitz
constant equal to one, on H equipped with the sup-norm.

As an immediate consequence of the proposition, the selector c extends from H

to the C0-closure of H in the space of continuous functions supported in U and
this extension is again Lipschitz with Lipschitz constant equal to one. For the sake
of completeness, we touch upon a proof of the proposition.

Outline of the proof. Let H and K be two Hamiltonians in H. Consider the per-
turbations H̃ and K̃ as above. Clearly, it suffices to show that

(3-7) | c(H̃)− c(K̃ )| ≤ ‖H̃ − K̃‖H,

where

‖F‖H :=

∫ 1

0
(maxW Ft −minW Ft) dt

stands for the Hofer norm of F .
Denote by x̃ again a least action primitive of p in CF(C−δ,∞)

∗
(H̃) described

above. In particular, c(H̃) = AH̃ (x̃). It is not hard to see that under the linear
homotopy from H̃ to K̃ , the orbit x̃ is mapped to a primitive ỹ =

∑
ỹi of p in

the complex CF(C−δ,∞)
∗

(K̃ ), but not necessarily to a least action primitive. In any
case, c(K̃ )≤AK̃ (ỹ) :=max AK̃ (ỹi ). Meanwhile, a standard calculation yields

AK̃ (ỹ)−AH̃ (x̃)≤ ‖H̃ − K̃‖H.

Hence, we also have c(K̃ )−c(H̃)≤‖H̃− K̃‖H. A similar argument, but using the
homotopy from K̃ to H̃ , shows that c(H̃)− c(K̃ )≤ ‖H̃ − K̃‖H, and (3-7) follows.

�

Remark 3.7. It is worth pointing out that the main advantage of using the action
selector for pinned Hamiltonians in the proof of the main theorem over the ordinary
action selector is that the former enables us to determine the location of the special
orbit x via Lemma 3.8 without additional requirements on M such as that M has
restricted contact type. This results in sharper index and energy bounds that we
would have otherwise; see [Ginzburg 2007].
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3.3. Proof of Theorem 1.5. Throughout the proof, as in Section 2.1, a neighbor-
hood of M in W is identified with a neighborhood of M in M × Rk equipped
with the symplectic form ω = ωM +

∑k
j=1 d(p jα j ). Using this identification, we

denote by UR or just U , with R > 0 sufficiently small, the neighborhood of M in
W corresponding to M × Bk

R . (Thus, UR = {ρ < R2/2}.) Also set |p| :=
√

2ρ.
The proof of the theorem relies on a method, by now quite standard, developed

in [Viterbo 1990]. The first, albeit technical, step is to specify the class of “test”
Hamiltonians.

3.3.1. The Hamiltonians. Fix two real constants r>0 and ε>0 with ε<r< R and
a constant C > e(U ). Let H : [0, R] → R be a smooth, nonnegative, (nonstrictly)
decreasing function such that

• on [0, ε] the function H is a positive constant C ,

• on [ε, 2ε] the function H is concave (i.e., H ′′ ≤ 0),

• on [2ε, r − ε] the function H is linear decreasing from C − ε to ε,

• on [r − ε, r ] the function H is convex (i.e., H ′′ ≥ 0),

• on [r, R] the function H is identically zero.

Abusing notation, we also denote by H the function equal to H(|p|) on U and
equal to zero outside U . Let us fix the value of the parameter r , which is not
essential for what follows. The parameters C and ε will vary and we consider the
family of functions H = HC,ε parametrized by C and ε and depending smoothly
on these parameters.

Clearly, H ∈H for any choice of ε and C . As ε→0, the functions HC,ε converge
uniformly to the continuous functions HC,0 equal to C on M , zero outside Ur ,
and depending linearly of |p| on Ur . It is clear that the limit functions HC,0 are
continuous in C . Thus, by Proposition 3.6, c(HC,ε) is a continuous function of
C and ε including the limit value ε = 0. Moreover, the function C 7→ c(HC,0) is
Lipschitz with Lipschitz constant equal to one.

Denote by X the Hamiltonian vector field of the function |p| on U \ M . By
Proposition 2.3, the integral curves of X project to the geodesics of the leaf-wise
metric ρ on M , parametrized by arc length. The Hamiltonian vector field of H is

X H = H ′X,

where H ′ stands for the derivative of H with respect to |p|. Note that even though
X is defined only on U \ M , the vector field X H is defined everywhere, for H is
constant near M and outside Ur . Thus, nontrivial one-periodic orbits of X H lie
on the levels |p| = const with H ′(|p|) in the length spectrum S of the metric ρ.
(Recall that, by definition, S is formed by the lengths of nontrivial closed leaf-
wise geodesics of ρ. Here, we may restrict our attention only to the geodesics
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contractible in W .) Observe that the “coordinates” pi are constant along the or-
bits of the flow of X H . In other words, every trajectory starting in U lies on a
coisotropic submanifold M × p ⊂ U . This is a particular case of conservation of
momentum.

Let x be a nontrivial one-periodic orbit of H . A direct calculation relying on
Proposition 2.2 shows that

AH (x)= H(x)+A(x)

= H(x)+A(π(x))− |p(x)|l(π(x)),

where l and A stand for the length of the curve and, respectively, the negative
symplectic area bounded by the curve.

Assume that the slope of H (on the interval [2ε, r − ε]) is outside S. (This is a
generic condition.) Then the orbit x lies on the level where |p(x)| is either in the
range [ε, 2ε] or in the range [r − ε, r ]. Let now x be a special one-periodic orbit
from Section 3.2 such that, in particular, (3-6) holds. The key to the proof is the
following lemma, which specifies the location of x for, at least, some sequence of
the Hamiltonians H .

Lemma 3.8. There exists a sequence C j→∞ such that the slopes of all functions
HC j ,ε , with ε > 0 sufficiently small, are outside S and |p(x)| ∈ [ε, 2ε].

In the Lagrangian case this observation can be traced back to the original work
of Viterbo [1990]. Here we follow the treatment from [Kerman 2009] with sev-
eral modifications resulting from our somewhat different conventions and more
importantly from the fact that M is now coisotropic.

Proof of Lemma 3.8. The slope of the function HC,0 is C/r . This slope is in S if
and only if C ∈ rS in the obvious notation. The set S (and hence rS) is closed,
and the slope of HC,ε is close to the slope of HC,0 when ε > 0 is small. As a
consequence, the slope of HC,ε is outside S whenever C 6∈ rS and ε > 0 is small.

Pick C 6∈ rS and a positive sequence εi→ 0. Without loss of generality, we may
require all εi to be sufficiently close to zero to ensure that the slope of Hi := HC,εi

is not in S. Let xi be a special orbit of Hi . Since the norms of the differentials dHi

are bounded from above, the norms of the derivatives ẋi are point-wise bounded.
By the Arzela–Ascoli theorem, we may assume, after passing if necessary to a
subsequence, that the orbits xi converge to a curve y lying on a level |p| = const
including possibly the submanifold M . It is clear that y is smooth and projects to
a closed, leaf-wise geodesic on M . Furthermore,

AHi (xi )= c(Hi )→ HC,0(y)+A(y)= c(HC,0),

by the continuity of the action functional and of the action selector c.
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If |p(xi )| is in the range [r − εi , r ] for all i , the orbit y is on the level |p| = r
and HC,0(y)= 0. Thus, we then have

(3-8) c(HC,0)=A(y) ∈6,

where 6 is the action spectrum or, to be more precise, the symplectic area spec-
trum of the level |p| = r , that is, the collection of symplectic areas bounded by
contractible closed characteristics on this level.

Arguing by contradiction, assume now that the lemma fails, that is, for every
sufficiently large C , say C > a, which is not in rS, there exists such a sequence
εi with |p(xi )| in the range [r − εi , r ]. Consider the function f (C) := c(HC,0)

on the interval [a, ∞). By (3-8), f sends the set [a, ∞) \ rS to 6. Recall that
rS is not only closed, but also has zero measure; see [Ginzburg 2007, Lemma
6.6]. By Proposition 3.6, f is a Lipschitz function and, as is well known [Hofer
and Zehnder 1994], 6 has measure zero. To summarize, f is a Lipschitz function
sending a full measure set to a zero measure set. Such a function is necessarily
constant. This is impossible, for f (C)≥ C by (3-6). �

Let us fix one of the constants C = C j from Lemma 3.8 and let Hi = HC j ,εi .
Denote by xi , or just x , its one-periodic orbit such as in the lemma. (For the proof
of the theorem we do not need the entire double sequence, but only one family
of Hamiltonians HC j ,εi parametrized by εi .) Clearly, γi = π(xi ) is a leaf-wise
geodesic on M . Since the slopes of Hamiltonians Hi are bounded from above (by,
say, 2C j/r ), it is easy to prove using the Arzela–Ascoli theorem that the geodesics
γi converge as i → ∞ after if necessary passing to a subsequence. Denote the
limit geodesic (traversed in the opposite direction) by η. Our goal is to show
that η has the required properties (1-2) and (1-3). The fact that, by Lemma 3.8,
|p(xi )| ∈ [εi , 2εi ] (i.e., xi lies in the region where Hi is concave) will be essential
for proving this.

3.3.2. Index bounds. Consider a perturbation H̃ of H = Hi as in Section 3.2. This
Hamiltonian has a one-periodic orbit x̃ , a perturbation of x = xi , with index n+1.
After reparametrizing x and reversing its orientation, we can view x as a periodic
orbit x− of ρ. Likewise, x̃ can be viewed as a periodic orbit x̃− of a nondegenerate
perturbation K of ρ. Denote by γ− = π(x−) the geodesic γ = γi with reversed
orientation.

By Proposition 3.1, we have

µ(γ−)=−1ρ(x−),

and thus, by Proposition 3.3,

−µ(γ−)− n ≤ µCZ(x̃−)≤−µ(γ−)+ (n− k).
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It is not hard to show that µCZ(x̃−) = −µCZ(x̃) = −(n + 1) using the fact that x
is in the region where H is concave (i.e., |p(x)| ∈ [εi , 2εi ]) by Lemma 3.8. As a
consequence,

n+ 1≤ µ(γ−)+ n and µ(γ−)− n+ k ≤ n+ 1.

Hence,
1≤ µ(γ−)≤ 2n+ 1− k.

Passing to the limit and using the continuity of the mean index, we conclude that
the same holds for η, the limit of the curves γ−. This proves (1-2).

Remark 3.9. If we had used here just the second inequality of (3-6) rather than
Proposition 3.3, we would have the weaker bound 1≤ µ(γ−)≤ 2n+ 1.

3.3.3. Action bounds. By the first inequality in (3-6), we have

(3-9) C <AH (x)= H(x)+A(γ )− |p(x)|l(γ ) < C + e(U ).

Here, by the definition of H and Lemma 3.8, |p(x)| ∈ [εi , 2εi ] and H(x)∈ [C,C−
εi ]. Note that the sequence l(γ ) with γ = γi is bounded as i →∞ due the fact
that the slope of Hi is bounded. Thus, passing to the limit (for a subsequence if
necessary), we have 0 ≤ −A(η) ≤ e(U ). Here, the negative sign comes from the
fact that η is the limit of γ−, that is, the geodesics γ with reversed orientation.
Taking r > 0 sufficiently small, we obtain

0≤ Area(η)≤ e(M)+ δ,

for any given δ > 0, where Area(η)=−A(η) is the symplectic area bounded by η.
To finish the proof, we need to ensure that the first inequality is strict: Area(η)> 0.
This is an immediate consequence of the non-trivial fact that, by [Ginzburg 2007,
Theorem 6.1], AH (x ′)−C ≥ ε for some ε > 0 independent of i , where x ′ is the
orbit mentioned in Remark 3.5. For then we also have AH (x)−C ≥ ε and, by the
first inequality in (3-9), Area(γ−) > ε/2 when i is large enough. This concludes
the proof of (1-3), and thus the proof of the theorem.
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DIRAC COHOMOLOGY OF WALLACH REPRESENTATIONS

JING-SONG HUANG, PAVLE PANDŽIĆ AND VICTOR PROTSAK

Let G be either the metaplectic double cover of Sp(2n, R), or SO∗(2n),
or SU( p, q). Let g be the complexified Lie algebra of G and let K be a
maximal compact subgroup of G. Let X be one of the Wallach modules
for the pair (g, K ). In other words, X corresponds to a discrete point in
the classification of unitary lowest weight modules with scalar lowest K-
type. The purpose of this paper is to calculate the Dirac cohomology of
X . Our approach is based on the explicit knowledge of the K-types of X .
We establish a bijection between certain K-types Ei of X and certain K̃ -
types Fi of the spin module, where K̃ is the spin double cover of K . The
Dirac cohomology is then realized as the set of Parthasarathy–Ranga-Rao–
Varadarajan components of Ei ⊗ Fi .

1. Introduction

Let G be a connected real reductive Lie group with a Cartan involution 2. We
assume that the group of fixed points of 2, K = G2, is a maximal compact
subgroup of G. We will denote by g = k ⊕ p the Cartan decomposition of the
complexified Lie algebra of G. The classification of the unitary dual of G is a
significant open problem in representation theory. An important necessary con-
dition for unitarity (unitarizability) of a simple Harish-Chandra module X , due
to Parthasarathy [1980], is the Dirac inequality (Proposition 3.3), a byproduct of
studying the action of the Dirac operator D on X ⊗ S where S is a spin module
for the Clifford algebra C(p) ([Parthasarathy 1972; Vogan 1997]; see Section 3 for
details.) If X is unitary, then D is Hermitian (self-adjoint) with respect to a natural
Hermitian inner product, and hence D2

≥ 0 on X⊗S. Writing this inequality more
explicitly leads directly to the Dirac inequality.

While the Dirac inequality is necessary for unitarity, it is by no means sufficient.
A careful analysis of this fact led Vogan [1997] to the notion of Dirac cohomology
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(see also [Huang and Pandžić 2002]). The Dirac cohomology HD(X) of X is
Ker D divided by the intersection Im D∩Ker D. It is a module for the spin double
cover K̃ of K . If X is unitary, we have HD(X) = Ker D = Ker D2, since D is
Hermitian. In particular, the unitary X for which the equation D2

= 0 has nonzero
solutions in X ⊗ S are precisely the ones with nonzero Dirac cohomology. These
representations are extremal in the sense that Dirac inequality becomes equality
on some of the K̃ -types of X ⊗ S. Once such a K̃ -type E is fixed, there are only
a few possible irreducible modules X with HD(X) ⊇ E . Namely, the main result
of [Huang and Pandžić 2002], conjectured by Vogan, says that such E determines
the infinitesimal character of X .

The Dirac cohomology of various classes of representations turned out to be
intimately related with several classical subjects of representation theory like char-
acters and the construction of the discrete series [Huang and Pandžić 2006]. It is
also related to nilpotent Lie algebra cohomology [Huang et al. 2006] and to (g, K )
cohomology [Huang et al. 2009; Pandžić 2004].

Modules with nonzero Dirac cohomology include finite-dimensional modules
with highest weight stable under the Cartan involution [Kostant 1999; 2003; Huang
et al. 2009]. Further examples are Aq(λ) modules with λ stable under the Cartan
involution and sufficiently regular [Huang et al. 2009]; this class of modules in-
cludes the discrete series.

Another class of modules known to have nonzero Dirac cohomology are the
unitary highest (or lowest) weight modules. Their Dirac cohomology is in principle
known by results in [Huang et al. 2006] and [Enright 1988]. In the first of these
papers we showed that the Dirac cohomology is in some sense equal to the p+

cohomology, which was in turn determined by Enright. (Recall that the K -module
p breaks up as p+⊕p− since the pair (g, k) is now Hermitian symmetric.) Enright’s
description is quite complicated and abstract; but in [Huang et al. 2006] we showed
that the Dirac cohomology can be viewed as a space of harmonic representatives of
the p+ cohomology, so one can hope for a more explicit and concrete description.

The goal of this paper is to determine the Dirac cohomology of certain unitary
lowest weight modules as directly and explicitly as possible. The modules we con-
sider are the Wallach representations of the symplectic, orthogonal and indefinite
unitary groups. Wallach modules are named after Nolan Wallach, who constructed
them in the algebraic setting [1979]; they were recovered in the analytic setting
in [Vergne and Rossi 1976].1 Together with the trivial module, Wallach modules
form the discrete part in the classification of all unitary lowest weight modules
with scalar lowest K -type [Enright et al. 1983].

The lowest weights of Wallach modules are of the form ckζ . Here k is an integer
between 1 and r − 1, where r is the split rank (real rank) of G. The constant c is

1Wallach’s priority is confirmed in the introduction of Vergne and Rossi’s paper.
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1
2 in the symplectic case, 2 in the orthogonal case and 1 in the unitary case, while
ζ is the fundamental weight of g orthogonal to the roots of k.

The Wallach representations are also important in invariant theory and the theory
of reductive dual pairs [Howe 1989; 1995]. These modules can be realized as theta
lifts of the trivial representation in compact dual pair correspondences. Further-
more, they arise in the study of the geometry of nilpotent orbits [Nishiyama et al.
2001, Section 7]. They are also important in another approach to the classification
of unitary lowest weight modules [Adams 1987]: they are the basic ones from
which all others can be obtained by cohomological induction. Finally, they appear
in mathematical physics: they are related to the generalized hydrogen atom and to
generalized MICZ-Kepler problems [Meng 2008; 2007; 2010].

We note that the continuous family of unitary highest weight modules are full
generalized Verma modules. As such they are also Aq(λ)-modules for the maximal
parabolic subalgebra q = k⊕ p− of g. Therefore their Dirac cohomology can be
calculated using the methods and results of [Huang et al. 2009]. This is another
reason we focus our consideration on Wallach representations.

In the symplectic case, together with each Wallach module V+k (k=1, . . . , r−1,
where r is the real rank of G), we study another unitary lowest weight module
V−k , with nonscalar lowest K -type. For example, the even half of the oscillator
representation is the Wallach module V+1 , and the odd half is V−1 . Studying V−k
together with V+k requires no additional work, and moreover, replacing the Wallach
module with Vk = V+k ⊕V−k makes our main result stated below more uniform. We
provide a detailed description of Wallach representations, as well as of the modules
V−k in the symplectic case, in Section 2.

Let us introduce some standard notation. Let t be the common Cartan subalgebra
of g and k. We choose positive roots for g and k with respect to t in such a way
that

(1.1) 1+(g, t)=1+(k, t)∪1(p+),

where1(p+) denotes the set of t-weights of p+. As usual, we denote by ρ the half
sum of roots in 1+(g, t), by ρc the half sum of roots in 1+(k, t), and by ρn the
half-sum of roots in1(p+). Let WG and WK be the Weyl groups of (g, t) and (k, t)
respectively. For any k-dominant weight µ ∈ t∗, we denote by Eµ the irreducible
finite-dimensional k-module with highest weight µ.

We are now ready to state our main result.

Theorem 1.2. Let G be the metaplectic double cover of Sp(2n,R); or SO∗(2n);
or SU(p, q). Let X be one of the Wallach modules for the corresponding pair
(g, K ), or in the symplectic case, the direct sum of the Wallach module V+k with
the associated module V−k . Denote by 3 ∈ t∗ the g-dominant representative of the
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infinitesimal character of X. If 31, . . . , 3m are the WG-translates of 3 which are
dominant and regular for k, then

HD(X)=
m⊕

i=1

E3i−ρc .

In the rest of the introduction we explain our strategy for proving Theorem 1.2
and comment on its extensions. It will become clear from general results about
Dirac cohomology that any irreducible K̃ -submodule of HD(X) must be of the
form E3i−ρc . Thus, our task will be to show that each E3i−ρc , in fact, appears with
multiplicity one. In order to do this, we will first demonstrate in Proposition 3.4
that any K̃-submodule of X ⊗ S appearing in HD(X) must be the Parthasarathy–
Ranga-Rao–Varadarajan (PRV) component of the tensor product of a K-type of
X and a K̃-type of the spin module S. The rest of the paper is then devoted to
case-by-case calculations showing that for each i , there is in fact a unique K-type
Eµi ⊂ X and a unique K̃-type Eσi ⊂ S such that E3i−ρc is the PRV component of
Eµi ⊗ Eσi .

We will determine µi and σi very explicitly from the shortest element wi of WG

such that wi3=3i . We denote by WX the set of all wi for i = 1, . . . ,m. We will
prove the following version of Theorem 1.2.

Theorem 1.3. In the setting of Theorem 1.2, let WX be the collection of the shortest
element wi of WG such that wi3=3i . Then

HD(X)=
⊕
w∈WX

Ew3−ρc .

Moreover, for each w ∈ WX there is a unique K-type Eµ(w) of X , appearing in
X with multiplicity one, and a unique K̃-type Eσ(w) of S, such that Ew3−ρc is the
PRV component of Eµ(w)⊗ Eσ(w).

In each of the cases we are considering, all ingredients of Theorem 1.3 will be
made completely explicit. See Theorems 4.3, 5.2 and 7.6. We actually prefer the
formulation of Theorem 1.3 because in other known cases, Dirac cohomology is
usually expressed as a sum over a subset of the Weyl group.

Finally, we note that there are several other Hermitian cases which are not con-
sidered in this paper: the cases of O(2,m) and the exceptional cases E III and E
VII [Enright et al. 1983]. In each of these cases we have obtained a result analo-
gous to Theorem 1.3. Note that there is only one Wallach module for O(2,m),
which can be constructed using the noncompact dual pair Sp(2,R) × O(p, 2)
in Sp(2(p + 2),R). It is the theta-lift of the trivial representation of Sp(2,R).
This is a special case of theta-lifting for the dual pair Sp(2k,R) × O(p, q) in
Sp(2k(p + q),R), considered in [Zhu and Huang 1997]. There is one Wallach
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module for the exceptional case E III and two Wallach modules for E VII. We do
not include these cases here to keep this paper to a reasonable size and we do plan
to consider them together with the general cases of noncompact dual pairs listed
in [Nishiyama et al. 2001, Section 3, Table 1].

2. A description of Wallach representations

Let g0 be one of the simple real Lie algebras sp(2n,R), so∗(2n,R) or su(p, q). Let
g0= k0⊕p0 be a Cartan decomposition of g0, and let g= k⊕p be the complexified
Cartan decomposition. Since the pair (g, k) is Hermitian, p decomposes as p+⊕p−

as a k-module, and we fix such a decomposition.
As in the introduction, let t be a common Cartan subalgebra for g and k. We

choose systems of positive roots for g and k with respect to t so that (1.1) holds.
Below we will make explicit choices in each of the three cases.

Let ζ be the fundamental weight of g which is orthogonal to all the roots of k.
Furthermore, let c = 1

2 if g0 = sp(2n,R), c = 2 if g0 = so∗(2n,R) and c = 1 if
g0 = su(p, q). Finally, let r be the split rank (real rank) of g0. In other words,
r is the dimension of a maximal abelian subspace of p0. It is well known (see
[Knapp 2002, p. 107], for example) that r = n if g0 = sp(2n,R), r = [n/2] if
g0 = so∗(2n,R) and r =min(p, q) if g0 = su(p, q).

For an integer k such that 1≤ k < r , the k-th Wallach representation is the uni-
tary lowest weight representation with lowest weight kcζ . This definition is taken
from [Enright and Willenbring 2004, 1.4] except that they consider highest and not
lowest weight modules, which corresponds to exchanging the roles of p+ and p−

and introducing a minus sign on the weights. The same highest weight modules are
described in a slightly different fashion in [Enright et al. 1983, Section 5], where
it is shown that these modules together with the trivial module form the discrete
part of the classification of unitary highest weight modules with one dimensional
lowest K-type. (Note that since ζ is orthogonal to all the roots of k, kcζ is indeed
the weight of a one-dimensional k-module.)

We will now describe the Wallach modules more explicitly in each of the three
cases. To do this, we also review some well known structural facts.

We start with the symplectic case, g0 = sp(2n,R). In this case, both g =

sp(2n,C) and k= gl(n,C) have rank n. So if t is a common Cartan subalgebra of
g and k, both t and its dual can be identified with Cn . It is standard to choose the
positive compact roots to be ei−e j for 1≤ i < j ≤ n, and the positive noncompact
roots to be ei + e j for i < j and 2ei , i = 1, . . . , n. If we as usual denote by ρ and
ρc the half sums of the positive roots for g respectively for k, and by ρn = ρ − ρc
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the half sum of the noncompact positive roots, then we see

ρ = (n, . . . , 1), ρc =

(n−1
2
, . . . ,−

n−1
2

)
, ρn =

(n+1
2
, . . . ,

n+1
2

)
.

(The entries of ρc and ρ decrease by one, while those of ρn are constant.)
The Weyl group WK consists of permutations of the variables, while WG also

contains arbitrary sign changes of the variables. The fundamental chamber for g is
given by the inequalities x1 ≥ x2 ≥ · · · ≥ xn ≥ 0, while the fundamental chamber
for k is given by x1 ≥ x2 ≥ · · · ≥ xn . (These are the closed fundamental chambers;
the open ones are given by strict inequalities.)

The simple roots corresponding to our choice of positive roots are ei − ei+1,
for i = 1, . . . , n − 1, and 2en . It follows that in this case ζ = (1, 1, . . . , 1) and
consequently the lowest weight of the k-th Wallach representation is(k

2
,

k
2
, . . . ,

k
2

)
.

This is also the (only) weight of the lowest K-type of the k-th Wallach module.
The infinitesimal character is obtained by subtracting ρ from the lowest weight.
We conjugate the result to the positive Weyl chamber for g and obtain

(2.1) 3=
(

n− k
2
, n−1− k

2
, . . . ,

k
2
,

k
2
−1, k

2
−1, k

2
−2, k

2
−2, . . .

)
,

which ends with 1, 1, 0 if k is even and with 1
2 ,

1
2 if k is odd.

We will also need to describe other K-types of Wallach modules. An explicit
description can be found for example in [Nishiyama et al. 2001, Corollary 6.3]. The
result is that all K-types appear with multiplicity one, and their highest weights are

(2.2)
(k

2
,

k
2
, . . . ,

k
2

)
+ (d1, d2, . . . , dk, 0, . . . , 0),

for arbitrary even integers d1 ≥ · · · ≥ dk ≥ 0.
The proof of this fact relies on a construction of Wallach representations via

Howe duality. The relevant dual pair here is

Sp(2n,R)× O(k)⊂ Sp(2nk,R).

This dual pair construction is in turn related to invariant theory, more specifically
the first and second fundamental theorems of invariant theory, as described in
[Howe 1989] and [Howe 1995, Chapters 2 and 3]. Another relevant reference
is [Kashiwara and Vergne 1978]. In the following we outline the setting of this
approach.

Let Mn,k be the complex vector space of n×k matrices with the linear action of
the orthogonal group O(k) by the right matrix multiplication. This action induces
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an action of O(k) on the algebra P(Mn,k) of polynomial functions on Mn,k by
algebra automorphisms. Let

V+k = P(Mn,k)
O(k)

be the subalgebra of the O(k)-invariants in P(Mn,k). Then V+k can be expressed as
a quotient of the algebra P(S2(Cn)) of polynomial functions by the determinantal
ideal of rank k. The symplectic Lie algebra sp(2n,R) acts on P(Mn,k) by poly-
nomial coefficient differential operators. This action commutes with the action of
O(k), and hence V+k acquires the structure of a module for sp(2n,R) and hence
also for g= sp(2n,C). Furthermore, this module is the Harish-Chandra module of
an irreducible unitary representation of the metaplectic double cover S̃p(2n,R) of
Sp(2n,R).2 This representation of S̃p(2n,R) is called the theta-lift of the trivial
representation of O(k). The corresponding (g, K ) module V+k is also referred to
as the theta-lift of the trivial representation of O(k).

In this setting it is not too difficult to prove that the K-types of V+k are indeed
given by (2.2). See [Nishiyama et al. 2001, Section 6] for more details.

It will be good for our purposes to study the Wallach representation V+k together
with another module V−k , which is obtained as the theta-lift of the sign represen-
tation of O(k), that is, as the isotypic component of the sign representation O(k)
on P(Mn,k). Its K-types are given again by (2.2), but now d1 ≥ · · · ≥ dk ≥ 1 are
arbitrary odd integers. The module V−k is another unitary lowest weight module.
However its lowest K-type is not scalar, as it has highest weight(k

2
+1, . . . , k

2
+1, k

2
. . . ,

k
2

)
,

with the first k entries equal, and the last n−k entries also equal. We will be able to
find Dirac cohomology of V−k simultaneously with V+k , with no additional work.
Moreover, replacing the Wallach module V+k with the module Vk = V+k ⊕V−k , will
actually make our results more uniform when compared with the orthogonal and
unitary case, where we do not have analogs of V−k . The module Vk can be described
as the subalgebra of the invariants of the special orthogonal group SO(k) acting on
P(Mn,k).

To conclude the discussion of the symplectic case, we mention that for k = 1,
V+1 and V−1 are respectively the even and odd oscillator (Weil, metaplectic) repre-
sentations of S̃p(2n,R).

We now consider the orthogonal case, g0 = so∗(2n,R). The Lie algebras g =

so(2n,C) and k = gl(n,C) both have rank n, and we choose a common Cartan
subalgebra t in both of them. Both t and t∗ are identified with Cn . We choose the

2In particular, this means that the relevant K here is not U (n) which is the maximal compact
subgroup of Sp(2n,R), but the double cover of U (n) which is the maximal compact subgroup of
S̃p(2n,R). This is reflected by the possible presence of half integers in the expression (2.2).
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positive compact roots to be ei−e j for 1≤ i < j ≤ n, and the noncompact positive
roots to be ei + e j for 1≤ i < j ≤ n. Thus

ρ = (n−1, . . . , 0), ρc =

(n−1
2
, . . . ,−

n−1
2

)
, ρn =

(n−1
2
, . . . ,

n−1
2

)
.

(The entries of ρc and ρ decrease by one, while those of ρn are constant.)
The Weyl group WK consists of permutations of the variables, while WG also

contains arbitrary sign changes of even number of the variables. The fundamental
chamber for g is given by the inequalities x1 ≥ x2 ≥ · · · ≥ xn−1 ≥ |xn|, while the
fundamental chamber for k is given by x1 ≥ x2 ≥ · · · ≥ xn . (These are the closed
fundamental chambers; the open ones are given by strict inequalities.)

The simple roots corresponding to our choice of positive roots are ei −ei+1, for
i = 1, . . . , n− 1, and en−1+ en . It follows that in this case ζ =

(1
2 ,

1
2 , . . . ,

1
2

)
, so

the lowest weight of the k-th Wallach representation Vk , k = 1, 2, . . . , [n2 ], is

(k, k, . . . , k).

This is also the (only) weight of the lowest K-type of Vk . The infinitesimal char-
acter is obtained by subtracting ρ from the lowest weight. We conjugate the result
to the positive Weyl chamber for g and obtain

(2.3) (n−k−1, n−k−2, . . . , k+1, k, k, k−1, k−1, . . . , 1, 1, 0).

Note that n− k− 1≥ k+ 1, so there is at least one nonrepeated entry before k, k.
All K-types of Vk are of multiplicity one, and their highest weights are

(2.4) (k, . . . , k)+ (d1, d1, d2, d2, . . . , dk, dk, 0, . . . , 0),

for arbitrary integers d1 ≥ · · · ≥ dk ≥ 0. See, for example, Corollary 6.9 of
[Nishiyama et al. 2001]. This follows from the fact that each Vk is the theta-
lift of the trivial representation of the compact factor Sp(2k) of the dual pair
SO∗(2n,R) × Sp(2k) ⊂ Sp(4nk,R). Each Vk is the Harish-Chandra module of
a unitary representation of SO∗(2n,R).

Finally, let us consider the case g0 = u(p, q). It is slightly more convenient
to work with g0 = u(p, q), which leads easily to the desired conclusion for g0 =

su(p, q).
The Lie algebras

g= u(p, q)C = gl(p+ q,C),

k= (u(p)× u(q))C = gl(p,C)× gl(q,C)

are both of rank n = p + q . Let t be a Cartan subalgebra of both g and k. Then
both t and t∗ can be identified with Cn . We choose the positive roots for t in g to
be ei − e j , 1 ≤ i < j ≤ n. Among them, the compact ones are those for which
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either 1 ≤ i < j ≤ p or p+ 1 ≤ i < j ≤ n, while the noncompact ones are those
for which 1≤ i ≤ p and p+ 1≤ j ≤ n. Thus

ρ = 1
2

(
p+q−1, p+q−3, . . . ,−(p+q−1)

)
,

ρc =
1
2

(
p−1, p−3, . . . ,−(p−1) | q−1, q−3, . . . ,−(q−1)

)
,

ρn =
1
2(q, . . . , q | −p, . . . ,−p).

(We will often separate the first p coordinates from the last q coordinates by a bar).
The Weyl group WG consists of all permutations of n = p+ q elements, while

WK consists of those permutations that permute separately the first p elements
and the last q elements. The closed fundamental chamber for g consists of all
(x1, . . . , x p+q) such that x1≥· · ·≥ x p+q , while the closed fundamental chamber for
q consists of all (x1 . . . , x p | y1, . . . , yq) such that x1 ≥ · · · ≥ x p and y1 ≥ · · · ≥ yq .

To describe the Wallach representations, we first note that the simple roots cor-
responding to our choice of positive roots are ei − ei+1, i = 1, . . . , n − 1. All of
these are compact except for ep − ep+1. It follows that ζ = (a, . . . , a | b, . . . , b)
for some a and b such that a− b= 1. For g0 = su(p, q) it would also be required
that pa + qb = 0, so it would follow that a = p/n and b = −q/n. The lowest
weights of the Wallach modules Vk , k = 1, 2, . . . ,min(p, q)− 1, would then be(kp

n
, . . . ,

kp
n

∣∣∣−kq
n
, . . . ,−

kq
n

)
.

For g0=u(p, q)we can however simplify the lowest weight by twisting the module
by central character (k(p−q))/2n(1, . . . , 1), and thus work with the lowest weight
of the form (k

2
, . . . ,

k
2

∣∣∣−k
2
, . . . ,−

k
2

)
.

This twisting of course does not change the modules very much, and we will
call the twisted modules the Wallach modules for u(p, q) and denote them by
Vk , k = 1, 2, . . . ,min(p, q)− 1.

To obtain the infinitesimal character of Vk , we as usual subtract ρ from the
lowest weight. This has the following g-dominant representative:

(2.5) 3= 1
2(p+q−1−k, p+q−3−k, . . . , p−q+1+k,

p−q−1+k, p−q−1+k, . . . , p−q+1−k, p−q+1−k,

p−q−1−k, p−q−3−k, . . . ,−p−q+1+k).

Here after multiplying by 1
2 the first row consists of q − k coordinates decreasing

by 1
2 ·2= 1, the second row consists of k pairs of equal coordinates with the value

of each pair being 1 less than the value of the previous pair, and the third row
consists of p− k coordinates decreasing by 1.
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All K-types of Vk are of multiplicity one, and their highest weights are

(2.6)
(k

2
, . . . ,

k
2

∣∣∣−k
2
, . . . ,−

k
2

)
+ (d1, . . . , dk, 0, . . . , 0

∣∣∣ 0, . . . , 0,−dk, . . . ,−d1),

for arbitrary integers d1≥· · ·≥dk≥0. See for example Corollary 6.7 of [Nishiyama
et al. 2001]. This follows from the fact that each Vk is the theta-lift of the trivial
representation of the compact factor U (k) of the dual pair

U (p, q)×U (k)⊂ Sp(2(p+ q)k,R).

Each Vk is the Harish-Chandra module of a unitary representation of the double
cover of U (p, q) defined as the preimage of U (p, q) in the metaplectic double
cover of Sp(2(p+ q)k,R).

3. Preliminaries on Dirac cohomology

In this section we review basic facts about Dirac cohomology with emphasis on
the special Hermitian setting we are considering in this paper. For more details,
see [Huang and Pandžić 2006, Chapter 3].

Let G be a connected real reductive Lie group with Cartan involution 2 and
assume that K = G2 is a maximal compact subgroup of G. Let g = k ⊕ p be
the Cartan decomposition of the complexified Lie algebra of G corresponding to
2. We fix a nondegenerate invariant symmetric bilinear form B on g, equal to the
Killing form on the semisimple part of g.

Let U (g) be the universal enveloping algebra of g and let C(p) be the Clifford
algebra of p with respect to B. The Dirac operator D ∈U (g)⊗C(p) is defined as

D =
∑

i

bi ⊗ di ,

where bi is a basis of p, and di is the dual basis with respect to B. It is easy to check
that D does not depend on the choice of the basis bi and moreover it is K -invariant
for the diagonal action of K given by adjoint actions on both factors.

In the Hermitian setting, the k-module p decomposes as p+⊕ p−, where p± are
isomorphic as modules for the semisimple part of k, while the center of k acts on
them by dual characters. Let m= dim p+= dim p−. We now choose the basis bi in
the following way. Let 1(g) be the set of roots of the compact Cartan subalgebra t

in g. Let1+(g) denote a fixed choice of positive roots which is compatible with p+,
that is, the noncompact positive roots are exactly the t-weights α1, . . . , αm of p+.
For each αi we choose a root vector ei . Let fi be the root vector for the root −αi

such that B(ei , fi )= 1. Then for the basis bi of p we choose e1, . . . em; f1, . . . fm .
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The dual basis is then f1, . . . fm; e1, . . . em , and hence

D =
m∑

i=1
ei ⊗ fi + fi ⊗ ei .

Let X be a (g, K )-module. To get a module for the algebra U (g)⊗ C(p), we
tensor X with an irreducible (spin) module S for C(p). In the Hermitian case, p is
even-dimensional, hence there is only one irreducible C(p)-module up to isomor-
phism, and it can be constructed as S =

∧
p+.

Now X⊗ S is a (U (g)⊗C(p), K̃ ) module, where K̃ is the spin double cover of
K , that is, the pullback of the double cover Spin(p0)→ SO(p0) by the action map
K → SO(p0). The action of U (g)⊗C(p) on X⊗ S is the obvious one, and K̃ acts
on both factors, on X through K and on S through the spin group Spin(p0)⊂C(p).
The copy of k in U (g)⊗C(p) corresponding to K̃ is

k1 =
{
Y ⊗ 1+ 1⊗α(Y )

∣∣ Y ∈ k
}
.

Here α is the complexification of the map k0 → so(p0) ∼=
∧2 p0 ↪→ C(p0) given

by the adjoint action followed by the skew symmetrization.
Now the Dirac operator D acts on X⊗ S, and the Dirac cohomology of X is the

K̃ -module
HD(X)= Ker D/(Im D ∩Ker D).

If X is unitary, then it is well known that D is self-adjoint with respect to the inner
product on X ⊗ S induced by the invariant inner product on X and the usual inner
product on S (see [Wallach 1988, p. 367] or [Huang and Pandžić 2006, p. 63].) It
follows that Ker D ∩ Im D = 0, and hence

HD(X)= Ker D = Ker D2.

We will now summarize some earlier results. We denote by Eγ the irreducible
K̃ -module with highest weight γ ∈ t∗.

Theorem 3.1 [Huang and Pandžić 2002]. Let X be an irreducible unitary (g, K )-
module with infinitesimal character3∈ t∗. Assume that the K̃ -module Eγ appears
in X ⊗ S. Then the following are equivalent:

(1) the γ -isotypic component of X ⊗ S is contained in HD(X);

(2) 3 is conjugate to γ + ρc under the Weyl group WG =W (g, t);

(3) ‖3‖ = ‖γ + ρc‖.

The implication (1) ⇒ (2) is true without the unitarity assumption. This is
one of the main results of [Huang and Pandžić 2002], conjectured by Vogan. The
implication (2) ⇒ (3) is obvious. Let us briefly recall why (3) implies (1). By
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[Parthasarathy 1972] (see [Huang and Pandžić 2006, Proposition 3.1.6]),

(3.2) D2
=−(�g+‖ρ‖

2)+ (�k1 +‖ρc‖
2).

Here �g is the Casimir element of U (g) and �k1 is the Casimir element of U (k1).
Since �g acts on X by the scalar ‖3‖2−‖ρ‖2 and �k1 acts on a K̃-type Eγ by the
scalar ‖γ+ρc‖

2
−‖ρc‖

2, we see that D2
=0 on the isotypic component (X⊗S)(γ )

if and only if ‖3‖ = ‖γ + ρc‖.
Another useful consequence of the fact that D is self-adjoint for unitary X , and

hence D2
≥ 0, is Parthasarathy’s Dirac inequality:

Proposition 3.3 [Parthasarathy 1980, Lemma 2.5]. Let X be a unitary (g, K )-
module with infinitesimal character 3 ∈ t∗. Let Eγ be any K̃ -type contained in
X ⊗ S. Then

‖3‖ ≤ ‖γ + ρc‖.

This simply follows from writing out the inequality D2
≥ 0 on the isotypic

component (X ⊗ S)(γ ), using (3.2).
The following remark will be useful for our calculations.

Proposition 3.4. Let X be an irreducible unitary (g, K )-module with infinitesimal
character 3. Assume that HD(X) contains a K̃ -type

Eγ ⊂ Eµ⊗ Eσ ⊂ X ⊗ S,

where Eµ ⊂ X and Eσ ⊂ S. Then Eγ is the PRV component of Eµ⊗ Eσ , that is, γ
is conjugate to σ plus the lowest weight of Eµ under the Weyl group WK of k.

Proof. By Proposition 3.3, for any Eγ ′ ⊂ X ⊗ S, we have

‖γ ′+ ρc‖ ≥ ‖3‖.

Moreover, since D2
= ‖γ ′ + ρc‖

2
− ‖3‖2 on Eγ ′ , and D2

≥ 0, the expression
‖γ ′+ρc‖ is the smallest possible when γ ′ = γ . In particular, this is true for all γ ′

such that Eγ ′ is contained in Eµ⊗Eσ , which means that Eγ is the PRV component
of Eµ⊗ Eσ [Parthasarathy et al. 1967; Wallach 1988, 9.1.6]. �

We can now describe the setting for calculating Dirac cohomology of an irre-
ducible unitary (g, K ) module X more precisely. We are looking for K̃ -types Eγ
in X ⊗ S such that γ + ρc is conjugate to the infinitesimal character 3 of X by
some w ∈ WG . We can assume that 3 is g-dominant. The following obvious fact
will be useful.

Proposition 3.5. The only possible K̃ -types in HD(X) are of the form Ew3−ρc ,
with w ∈ WG such that w3 is dominant regular for k. In particular, w is in W 1,
where W 1

⊂WG consists of those w that take the fundamental Weyl chamber for g

into the fundamental Weyl chamber for k.
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Each coset of WK in WG contains exactly one element of W 1. In particular, W 1

has |WG |/|WK | elements.
On the other hand, it is well known (see [Wallach 1988] or [Huang and Pandžić

2006, Section 2.3], for instance) that the spin module S for k decomposes as

S =
⊕
σ∈W 1

Eσρ−ρc .

Thus we see that for a K -type Eµ of X and a K̃ -type Eσρ−ρc of S, the PRV com-
ponent of Eµ⊗ Eσρ−ρc will contribute to HD(X) if and only if

w3− ρc = (σρ− ρc+µ
−)′.

Here µ− denotes the lowest weight of Eµ, and (σρ − ρc + µ
−)′ denotes the k-

dominant WK -conjugate of σρ − ρc +µ
−. This will be the starting point for our

calculations. It will turn out that the calculation is slightly simpler if we add ρn to
both sides of the equation:

(3.6) w3− ρc+ ρn = (σρ− ρc+ ρn +µ
−)′.

Note that since ρn is WK -invariant, it is legitimate to put it inside the parentheses
on the right side.

To end this section, let us note that for unitary lowest weight modules the Dirac
cohomology never vanishes.

Proposition 3.7. Let X be an irreducible unitary lowest weight (g, K )-module
with lowest K -type Eµ. Then Eµ ⊗ C · 1 ⊂ X ⊗ S is contained in HD(X). In
particular, HD(X) is not zero.

Proof. This is straightforward: both Eµ ⊂ X and C · 1 ⊂ S are annihilated by all
fi ∈ p−. Thus every term of D =

∑
ei ⊗ fi + fi ⊗ ei kills Eµ⊗C · 1. �

4. The case of sp(2n, R)

We are going to use the facts about the structure of the pair (g, k) which we re-
viewed in Section 2. Besides that, we also need to describe the subset W 1

⊂ WG

consisting of those w ∈ WG which conjugate the fundamental chamber for g into
the fundamental chamber for k. Alternatively, W 1 can be described as the set of
the minimal length representatives of the left WK -cosets in WG .

In the symplectic case, W 1 may be parametrized by Zn
2 . Namely, for any choice

of sign changes ε = (ε1, . . . , εn), there is a unique permutation τ of the variables
such that for any g-dominant (x1, . . . xn), τ(ε1x1, . . . , εnxn) is k-dominant. We will
be slightly imprecise and identify ε with the corresponding element of W 1.

Recall that the modules we are interested in are Vk = V+k ⊕ V−k , where k in an
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integer such that 1 ≤ k ≤ n − 1. The infinitesimal character of Vk was given in
(2.1). We now rewrite it as

(4.1) 3=
(k

2
+n−k, k

2
+n−k−1, . . . , k

2
,

k
2
−1, k

2
−1, k

2
−2, k

2
−2, . . .

)
,

ending in the same way as before, by 1, 1, 0 if k is even and by 1
2 ,

1
2 if k is odd.

By Proposition 3.5, any w involved in (3.6) must put a minus on exactly one
member of each pair of repeated coordinates. It does not matter which of the two
gets a minus, since w3 will be the same in each case. In other words, we see that

w = ε1ε2 . . . εn−k+1(±∓)(±∓) . . . (±∓)(±),

where each of the pairs in parentheses can be (+−) or (−+), while the last sign
(±) appears when k is even. All such choices give the same w3, which is thus
determined by the sequence ε1ε2 . . . εn−k+1. We will therefore work only with w
of the form

(4.2) w = ε1ε2 . . . εn−k+1(+−)(+−) . . . (+−)(+).

This means that of all possible w defining the same weight w3 we choose the
shortest one. Namely, each time when we have (−+) instead of (+−), it requires
an additional transposition to keep g-dominant weights k-dominant.

Theorem 4.3. The Dirac cohomology of Vk is

HD(Vk)=
⊕
w

Ew3−ρc ,

with the summation over all w as in (4.2). All ingredients of the formula (3.6) are
uniquely determined by w: σ is given by

σ =−− · · ·− ε1ε2 . . . εn−k,

and the corresponding K -type in Vk is the one with highest weight of the form (2.2)
given by

d1 = · · · = dk = the number of pluses in the sequence ε = (ε1, . . . , εn−k+1).

In particular, HD(V+k ) contains all Ew3−ρc with w such that the number of pluses
in the sequence ε is even, while HD(V−k ) contains all Ew3−ρc) with w such that
the number of pluses in the sequence ε is odd.

Proof. By (2.2), the lowest weights of the K -types of Vk appearing in the right side
of (3.6) are

(0, . . . , 0, dk, . . . , d1)+
(k

2
, . . . ,

k
2

)
.
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Since (k/2, . . . , k/2) is invariant under WK , we can subtract it from both sides of
(3.6). Now we can write out the new left side of (3.6) using the expression (4.1)
for 3 and (4.2) for w. To do this, let

i1 > i2 > · · ·> ir and j1 < j2 < · · ·< js

be the integers in [0, n − k] such that εn−k+1−it = +, t = 1, . . . , r , respectively
εn−k+1− ju =−, u = 1, . . . , s. This means that r + s = n− k+ 1, and that

{i1, . . . , ir , j1, . . . , js} = {0, 1, . . . , n− k}.

Note that the sequence ε1, . . . , εn−k+1 is completely determined by is and js and
vice versa.

Now we have

(4.4) w3− ρc+ ρn −

(k
2
, . . . ,

k
2

)
= (i1+1, . . . , ir+r, r, . . . , r, r− j1, r+1− j2, . . . , n−k− js).

Note that r appears in k− 1 places, from the (r + 1)-st place to the (r + k− 1)-st.
On the other hand, the right side of (3.6) after subtracting (k/2, . . . , k/2) be-

comes

(4.5)
(
σρ− ρc+ ρn + (0, . . . , 0, dk, . . . , d1)

)′
.

(Recall that the prime means taking the k-dominant WK -conjugate.)
Since the largest component of (4.4) is i1+ 1≤ n− k+ 1, we see that for (3.6)

to hold, σρ cannot have entries n, n− 1, . . . , n− k + 1. Thus the starting k signs
of σ are all minuses, that is,

(4.6) σ =− · · ·− δ1 . . . δn−k .

Using similar notation as before, we see that

σρ = (I1, . . . , Ia,−J1, . . . ,−Jb,−(n−k+1),−(n−k+2), . . . ,−n),

where I1 > · · · > Ia and J1 < · · · < Jb are integers in [1, n − k] determined by
δ1, . . . , δn−k . In particular, a+ b = n− k,

{I1, . . . , Ia, J1, . . . , Jb} = {1, . . . , n− k},

and I s and J s correspond to δs via

δn−k+1−Iu =+, δn−k+1−Jv =−,

for all indices u and v.
It is now easily seen that (4.5) equals

(4.7) (I1+1, . . . , Ia+a,−J1+a+1, . . . ,−Jb+a+b, dk, . . . , d1)
′.
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Thus w3−ρc contributes to HD(Vk) if and only if (4.4) equals (4.7). Clearly, this
is the case if I s are equal to is, J s are equal to js, and all ds are equal to r . In this
case, δi = εi for i = 1, . . . , n− k. Thus to prove the theorem, we must show that
this is the only possibility.

Either ir = 0 and j1 > 0, or ir > 0 and j1 = 0. The proof in each of these two
cases is analogous, so we will assume that ir = 0 and j1 > 0. Thus (4.4) is

(4.8) (i1+1, . . . , ir−1+r−1, r, . . . , r, r− j1, . . . , n−k− js),

where the k entries from r -th to (r − 1+ k)-th are equal to r , entries before these
k are ≥ r , and entries after the k rs are < r .

We claim that a = r −1. To see this, assume first that a < r −1. Since only the
first a or the last k entries of (4.7) can be ≥ a+1, and since r > a+1, we see that
the number of entries of (4.7) that are ≥ r is at most a+ k. On the other hand, the
number of entries of (4.8) that are ≥ r is r −1+ k > a+ k. Hence (4.7) cannot be
equal to (4.8) or (4.4) in this case.

Similarly, if a > r − 1, then the first a ≥ r entries of (4.7) are ≥ a+ 1> r . On
the other hand, the r -th entry of (4.8) is r .

So indeed a = r −1. Now we see that the first a terms or (4.7) are ≥ a+1= r ,
and the next b terms are all < a + 1 = r . On the other hand, (4.8) has r − 1+ k
entries ≥ r . So we conclude that for (4.7) to be equal to (4.8), d1, . . . , dk must all
be equal to r . Hence also I s must be equal to is and J s must be equal to js, as
claimed. �

Theorem 4.3 explicitly exhibits the pairs (µ, σ̄ ) ∈ t∗ × t∗, such that Eµ is a
K -type of the module X = Vk and Eσ̄ is a K̃ -type of the spin module S, and such
that the PRV component of Eµ ⊗ Eσ̄ contributes to the Dirac cohomology of X .
(Recall that both Vk and the spin module are multiplicity free as k-modules.)

We now make this even more explicit by exhibiting the highest weight vectors
of Eµ and Eσ̄ , and also the lowest weight vectors of Eµ. These are known by
[Howe 1995]. Recall that p+ ∼= S2Cn , the space of n× n symmetric matrices, and
that up to a twist by the character detk/2n , Vk can be identified as a K -module with
the quotient of the symmetric algebra of p+ by the k-th symmetric determinantal
ideal, generated by minors of order k+ 1. For 1 ≤ i ≤ k, let δi and δ′i be the i × i
upper left and lower right corner minors of the symmetric matrix with generators
in p+.

Proposition 4.9. Let d1 ≥ . . .≥ dk ≥ 0, dk+1 = 0. The element

δ
d1−d2
1 . . . δ

dk−dk+1
k ∈ S(p+)

has k-highest weight (2d1, . . . , 2dk, 0, . . . , 0) and a nonzero image in the k-th de-
terminantal quotient.
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Conversely, every highest weight vector in the k-th determinantal quotient of
S(p+) has this form. The corresponding lowest weight vectors are obtained by
replacing each δi with δ′i .

Up to another twist by a character of k = gl(n,C), the spin module is isomorphic
to the exterior algebra 3(p+). A weight basis of p+ gives rise to the basis of the
exterior algebra consisting of decomposable skew-symmetric tensors. It turns out
that the highest weight vectors are decomposable. Let us introduce the following
partial order on the set of pairs A = {(i, j) : 1≤ i ≤ j ≤ n}:

(i, j)≤ (l,m) ⇐⇒ i ≤ l and j ≤ m.

Proposition 4.10. For any lower-closed subset of A, the exterior product of the
corresponding elements of p+ is a highest weight vector of 3(p+). Conversely,
every highest weight vector is proportional to the exterior product of the elements
of a weight basis of p+ corresponding to a lower-closed subset of A.

The set A is a lattice triangle, the upper half of the lattice n×n square 1≤ i, j ≤ n.
If A is represented graphically by dots in the lattice, the lower-closed subsets of A
are formed by subsets that are closed under leftward and downward “slides”. Each
such subset is uniquely determined by its lattice boundary, consisting of alternating
horizontal and vertical segments connecting the vertical axis i = 0 with the bisector
i = j .

To end this section, we note that the modules we are considering include the even
and odd oscillator representations; thus we recover the results of [Adams 1994].

5. The case of so∗(2n, R)

We are going to use the facts about the structure of the pair (g, k)which we reviewed
in Section 2. Besides that, we also need to describe the subset W 1

⊂ WG . In the
orthogonal case, W 1

⊂WG may be parametrized by Zn−1
2 . Namely, for any choice

of even number of sign changes ε = (ε1, . . . , εn), there is a unique permutation
τ of the variables such that for any g-dominant (x1, . . . xn), τ(ε1x1, . . . , εnxn) is
k-dominant. We will be slightly imprecise and identify ε with the corresponding
element of W 1.

Recall that the modules we are interested in are Vk , where 1≤ k ≤ [n/2]− 1 is
an integer and the lowest weight of Vk is (k, k, . . . , k).

The infinitesimal character 3 of Vk was given in (2.3). By Proposition 3.5,
any w involved in (3.6) must put a minus on exactly one member of each pair of
repeated coordinates of 3. It does not matter which of the two gets a minus, since
w3 will be the same in each case. In other words, we see that

w = ε1ε2 . . . εn−2k−1(±∓)(±∓) . . . (±∓)(±).
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Here each of the pairs in parentheses can be (+−) or (−+), while the last sign
is determined so that the total number of minuses is even. All such choices give
the same w3, which is thus determined by the sequence ε1ε2 . . . εn−2k−1. We will
therefore work only with w of the form

(5.1) w = ε1ε2 . . . εn−2k−1(+−)(+−) . . . (+−)(±),

with the last sign determined as before. In other words, we choose the shortest
possible w in each case.

Theorem 5.2. The Dirac cohomology of Vk is

HD(Vk)=
⊕
w

Ew3−ρc ,

with the summation over all w as in (5.1). All ingredients of the formula (3.6) are
uniquely determined by w: σ is given by

σ =−− · · ·− ε1ε2 . . . εn−2k−1±,

with the last sign determined so that the total number of minuses is even. The
corresponding K -type in Vk is the one with the highest weight of the form (2.4)
given by

d1 = · · · = dk = the number of pluses in the sequence ε = (ε1, . . . , εn−2k−1).

Proof. By (2.4), the lowest weights of the K -types of Vk appearing in the right side
of (3.6) are

(0, . . . , 0, dk, dk, . . . , d1, d1)+ (k, . . . , k).

Since (k, . . . , k) is invariant under WK , we can subtract it from both sides of (3.6).
Now we can write out the new left side of (3.6) using the expression (2.3) for 3
and (5.1) for w. To do this, let

i1 > i2 > · · ·> ir , j1 < j2 < · · ·< js

be the integers in [1, n− 2k− 1] such that

w3= (i1+k, . . . , ir+k, k, k−1, . . . ,−k,− j1−k, . . . ,− js−k).

This means that r + s = n− 2k− 1, and that

{i1, . . . , ir , j1, . . . , js} = {1, 2, . . . , n− 2k− 1}.

In terms of the sequence ε1, . . . , εn−2k−1, the is and js are described by requiring
εn−2k−it =+, t = 1, . . . , r , respectively εn−2k− ju =−, u = 1, . . . , s. The sequence
ε1, . . . , εn−2k−1 is completely determined by the is and the js and vice versa.



DIRAC COHOMOLOGY OF WALLACH REPRESENTATIONS 181

Now we see that

(5.3) w3− ρc+ ρn − (k, . . . , k)

= (i1, i2+1, . . . , ir+r−1, r, r, . . . , r, r+1− j1, r+2− j2, . . . , r+s− js).

Here r appears in 2k + 1 places, from the (r + 1)-st place to the (r + 2k + 1)-st.
Note also that r is the number of pluses in the sequence ε1, . . . , εn−2k−1.

On the other hand, the right side of (3.6) becomes, after subtracting (k, . . . , k),

(5.4)
(
σρ−ρc+ρn+(0, . . . , 0, dk, dk, . . . , d1, d1)

)′
.

(Recall that the prime means taking the k-dominant WK -conjugate.)
Since the largest component of (5.3) is i1 ≤ n− 2k− 1, we see that for (3.6) to

hold, σρ cannot have entries n− 1, n− 2, . . . , n− 2k. Thus the starting 2k signs
of σ are all minuses, that is,

(5.5) σ =− · · ·− δ1 . . . δn−2k .

Note that δn−2k is determined by the other δs, because the number of minuses must
be even.

Using similar notation as before, we see that

σρ =
(
I1, . . . , Ia, 0,−J1, . . . ,−Jb,−(n−2k),−(n−2k+1), . . . ,−(n−1)

)
,

where I1 > · · · > Ia and J1 < · · · < Jb are integers in [1, n− 2k − 1] determined
by δ1, . . . , δn−2k−1. In particular, a+ b = n− 2k− 1,

{I1, . . . , Ia, J1, . . . , Jb} = {1, 2, . . . , n− 2k− 1},

and I s and J s correspond to δs via

δn−2k−Iu =+, δn−2k−Jv =−,

for all indices u and v.
It is now easily seen that (5.4) equals

(5.6) (I1, I2+1, . . . , Ia+a−1, a, a+1− J1,

a+ 2− J2, . . . , a+ b− Jb, dk, dk, . . . , d1, d1)
′.

Thus Ew3−ρc contributes to HD(Vk) if and only if (5.3) equals (5.6). Clearly, this
is the case if I s are equal to is, J s are equal to js, and all ds are equal to r . In this
case, δi = εi for i = 1, . . . , n− 2k− 1. Thus to prove the theorem, we must show
that this is the only possibility.

So let us assume that (5.3) equals (5.6). Either ir = 1 and j1 > 1, or ir > 1 and
j1 = 1. The proof in each of these two cases is analogous, so we will assume that
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ir = 1 and j1 > 1. Thus (5.3) is

(5.7) (i1, . . . , ir−1+r−2, r, . . . , r, r+1− j1, . . . , r+s− js).

Here the first r +2k+1 entries are ≥ r while the last s entries are < r . Moreover,
at least 2k+ 2 entries are equal to r - the entries starting with the r -th entry.

We claim that a = r . To see this, assume first that a < r . Then a and a+u− Ju

for u = 1, . . . , b are all ≤ a < r . So there are at least b+ 1 = n− 2k − a entries
< r in (5.6), and therefore at most 2k+a < 2k+r entries ≥ r . But we saw that in
(5.7) there are exactly r + 2k+ 1 entries are ≥ r , so (5.7) (i.e., (5.3)) cannot equal
(5.6).

Assume now that a > r . Then at least the first a+1> r +1 entries of (5.6) are
≥ a > r , but the (r + 1)-st entry of (5.7) is equal to r , so again (5.7) (i.e., (5.3))
cannot equal (5.6).

So we indeed see that a = r and b = s. We now claim that Ir = 1. Namely,
if Ir > 1, then the first r entries of (5.6) are > r , but in (5.7) only the first r − 1
entries can be > r . So indeed Ir = 1 and hence J1 > 1. This implies that s entries
of (5.6), r + 1− J1, r + 2− J2, . . . , r + s − Js , are < r . Since (5.7) has exactly
s entries that are < r , namely r + 1− j1, . . . , r + s − js , we conclude that these
entries must be equal, that is, that Ju = ju , u = 1, . . . , s. It now follows that also
It = it , t = 1, . . . , r , and finally that all ds must be equal to r , as claimed in the
theorem. �

We leave it to the reader to formulate and prove analogs of Proposition 4.9 and
Proposition 4.10.

6. Some combinatorics of shuffles

We now turn to some properties of shuffles, needed in the next section. An (r, s)
shuffle is a permutation

i1, . . . , ir , j1, . . . , js

of the numbers 1, 2, . . . , r + s such that

i1 < i2 < · · ·< ir , j1 < j2 < · · ·< js .

To each such shuffle we associate the (r+ s)-tuple L = (L1, . . . , Lr | L ′1, . . . , L ′s),
where

(6.1) Lu = s+ u− iu and L ′v = v− jv,

for u = 1, . . . , r and v = 1, . . . , s. Clearly,

(6.2) s ≥ L1 ≥ · · · ≥ Lr ≥ 0≥ L ′1 ≥ · · · ≥ L ′s ≥−r.
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Note also that it is easy to recover the shuffle from L:

iu = s+ u− Lu and jv = v− L ′v,

for u = 1, . . . , r and v = 1, . . . , s. On the other hand, if we take an arbitrary L
satisfying (6.2), and calculate is and js as above, we will not necessarily obtain a
shuffle. In that case L is not attached to any shuffle.

Let x ∈ {0, 1, . . . , r} be the unique index such that

ix ≤ s but ix+1 > s.

(If all iu ≤ s we take x = r and if all iu > s we take x = 0.) Thus to get all numbers
1, . . . , s, besides i1, . . . , ix we must use j1, . . . , js−x . In other words,

js−x ≤ s and js−x+1 > s.

There are two cases: either ix = s and js−x < s, or ix < s and js−x = s. This
immediately leads to the following lemma.

Lemma 6.3. If x is as above, then exactly one of the following cases holds:

Case 1 : L x = x, L ′s−x >−x

Case 2 : L x > x, L ′s−x =−x

In each case, L x ≥ x ≥ L x+1, while L ′s−x ≥−x ≥ L ′s−x+1.

One can characterize x as the unique number in {0, . . . , r} such that L x = x or
L ′s−x =−x (but not both). In this way, one can see what x is directly from L .

Here is the result we are going to need in next section.

Proposition 6.4. Let i1, . . . , ir , j1, . . . , js be an (r, s) shuffle and let

L = (L1, . . . , Lr | L ′1, . . . , L ′s)

be attached to this shuffle as above. Let x ∈ {0, . . . , r} be as above. Let M be an
(r + s)-tuple obtained from L by replacing one or several pairs of the form a,−a
by x,−x , and then rearranging to descending order. Then M cannot be attached
to a shuffle.

Proof. Assume that we are in Case 1, so L x = x and L ′s−x >−x , while L ′s−x+1 ≤

−x . Note that after the changes we will still have Mx = x . If we were to replace
any (a,−a) with a< x (and hence −a>−x), we would end up with Ms−x =−x .
So Cases 1 and 2 happen simultaneously for M and thus by Lemma 6.3, M cannot
be attached to a shuffle. So we can assume that all a are > x . Let us choose a to
be the biggest possible, and let u < x be the index such that Lu = a and Lu+1 < a.

It follows that

iu = s+ u− Lu = s− a+ u, while iu+1 = s+ u+ 1− Lu+1 > s− a+ u+ 1.
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This implies that

js−a < s− a+ u, while js−a+1 = s− a+ u+ 1.

Namely, the numbers 1, 2, . . . , s−a+u include i1, . . . , iu and not iu+1, hence they
must also include j1, . . . , js−a . Also, s − a + u + 1 is not among the is, hence it
must be js−a+1.

This now tells us that

L ′s−a = s− a− js−a >−u, while L ′s−a+1 = s− a+ 1− js−a+1 =−u.

Since none of L ′1, . . . , L ′s−x is changed, and s− a+ 1≤ s− x , we see that

M ′s−a = L ′s−a >−u, while M ′s−a+1 = L ′s−a+1 =−u.

On the other hand, since Lu = a is replaced by x ,

Mu = Lu+1 < a.

We can now calculate kc = s+c−Mc, c= 1, . . . , r and ld = d−Md , d = 1, . . . , s,
and check that k1, . . . , kr , l1, . . . , ls is not a shuffle. Indeed, since Lu was the first
of the Ls that got changed, we see that

ku−1 = iu−1 < iu = s− a+ u, while ku = s+ u−Mu > s− a+ u,

so none of the kcs equals s− a+ u. On the other hand,

ls−a = js−a < s− a+ u, while ls−a+1 = js−a+1 = s− a+ u+ 1,

so none of the lds can be s− a+ u either.
The situation in Case 2 is analogous. We first use Lemma 6.3 to conclude that

this time all replaced pairs a,−a must satisfy a < x . We take the smallest (last)
such a and pick index v such that Lv = a while Lv−1 > a. We then argue that the
supposed shuffle attached to M cannot contain the number s− a+ v. �

Remark 6.5. Using very similar reasoning as above it is not difficult to obtain the
full conditions for an L satisfying (6.2) to be attached to a shuffle. We omit this
since Proposition 6.4 is all we need.

7. The case of u( p, q)

We are going to use the facts about the structure of the pair (g, k)which we reviewed
in Section 2. Besides that, we also need to describe the subset W 1

⊂ WG . In the
unitary case, W 1 consists of (p, q) shuffles, that is, each w ∈W 1 is a permutation
i1, . . . , i p, j1 . . . , jq of 1, 2, . . . , p+ q such that i1 < · · ·< i p and j1 < · · ·< jq .

The modules we are interested in are Vk , where 1 ≤ k ≤ min(p, q)− 1 is an
integer, of lowest weight µ0= (k/2, . . . , k/2 | −k/2, . . . ,−k/2). The modules Vk
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were described in Section 2. In particular, the infinitesimal character 3 of Vk was
given in (2.5). We rewrite 3 as 3=31−32, where

31 =
1
2(p+q+1−k, p+q+1−k, . . . , p+q+1−k),

32 = (1, 2, . . . , q−k, q−k+1, q−k+1, . . . , q, q, q+1, q+2, . . . , q+ p−k).

We now want to write down (3.6) in our present case. We will first modify it by
subtracting our lowest K -type µ0 from both sides. Since µ0 is WK -invariant, it can
be put inside the parentheses on the right side. To see what the left side is, note
that 31 is WG-invariant, and calculate

31−ρc+ρn−µ0 = (q−k+1, q−k+2, . . . , q−k+ p | 1, 2, . . . , q).

Thus, after subtracting µ0 the left side of (3.6) becomes

(7.1) (q − k+ 1, q − k+ 2, . . . , q − k+ p | 1, 2, . . . , q)−w32.

We are now going to apply Proposition 3.5, which says that w3 must be dominant
regular for k. We already mentioned that w ∈ W 1, that is, w is a (p, q) shuffle.
Regularity of w3 means that the first p coordinates of w3 must be strictly de-
creasing, and so must the last q coordinates. This means that w must split apart
each pair of equal coordinates in 3. Hence we can take w to be a permutation of
the form

(7.2)
w=

(
i1, i2,...,ix ,q−k+1,q−k+3,...,q+k−3,q+k−1, ix+k+1, ix+k+2,...,i p

∣∣
j1, j2,..., jy,q−k+2,q−k+4,...,q+k−2,q+k, jy+k+1, jy+k+2,..., jq

)
.

Here
1≤ i1 < · · ·< ix ≤ q − k,
1≤ j1 < · · ·< jy ≤ q − k

q + k+ 1≤ ix+k+1 < · · ·< i p ≤ p+ q,
q + k+ 1≤ jy+k+1 < · · ·< jq ≤ p+ q,

and all iu and jv are different integers. In particular, it follows that i1, . . . , ix and
j1, . . . , jy exactly exhaust all numbers 1, . . . , q−k, and consequently x+y=q−k.
(For each given w3, there are other choices for w leading to the same w3, and
the w we choose is the shortest among them.)

It now follows that

w32 = (i1, . . . , ix , q−k+1, q−k+2, . . . , q, ix+k+1−k, . . . , i p−k |

j1, . . . , jy, q−k+1, q−k+2, . . . , q, jy+k+1−k, . . . , jq−k).
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Plugging this into (7.1) we get for the left side of (3.6) the expression

(7.3)
(q−k+1− i1,...,q−k+ x− ix ,x,x,...,x,q+k+ x+1− ix+k+1,...,q+ p− i p|

1− j1,...,y− jy, y−q+k, y−q+k,...,y−q+k, y+k+1− jy+k+1+k,...,q− jq+k).

There are k components equal to x in (7.3), and also k components equal to
y− q + k =−x .

To analyze the right side of (3.6), we first write

ρ = 1
2(p+q+1, p+q+1, . . . , p+q+1)−(1, 2, . . . , p+q).

After a short calculation, this leads to

σρ− ρc+ ρn = (q + 1, q + 2, . . . , q + p | 1, 2, . . . , q)

−σ(1, 2, . . . , p | p+ 1, p+ 2, . . . , p+ q).

By (2.6), a general K -type of Vk has lowest weight

µ0+ (0, . . . , 0, dk, . . . , d1 | −d1, . . . ,−dk, 0, . . . , 0),

for some integers d1 ≥ d2 ≥ · · · ≥ dk ≥ 0. Thus, after subtracting µ0, the right side
of (3.6) becomes

(7.4)
(
(q+1, . . . , q+ p | 1, . . . , q)−σ(1, . . . , p | p+1, . . . , p+q)

+(0, . . . , 0, dk, . . . , d1 | −d1, . . . ,−dk, 0, . . . , 0)
)′
.

Now since i1 ≥ 1, the first component of (7.3) is ≤ q − k. Since (7.3) must be
equal to (7.4), the first component of σ(1, . . . , p | p + 1, . . . , p + q) must be
≥ k + 1. (Namely, adding some du 6= 0 to a component can only make it larger.)
This further implies that σ(1, . . . , p | p + 1, . . . , p + q) has 1, . . . , k among the
last q coordinates.

Similarly, since jq ≤ p+q, the last component of (7.3) is ≥−p+k. Hence, the
last component of σ(1, . . . , p | p+1, . . . , p+q) must be ≤ p+q−k. (Namely,
subtracting some du 6= 0 from a component can only make it smaller.) This further
implies that σ(1, . . . , p | p+1, . . . , p+q) has p+q−k+1, p+q−k+2, . . . , p+q
among its first p components. Since σ ∈W 1, we conclude that

σ(1, . . . , p | p+1, . . . , p+q)=

(I1, . . . , Ip−k, p+q−k+1, . . . , p+q | 1, . . . , k, J1, . . . , Jq−k),

for some k+1≤ I1< · · ·< Ip−k ≤ p+q−k and k+1≤ J1< · · ·< Jq−k ≤ p+q−k,
such that all Iu are different from all Jv; equivalently,

{I1, . . . , Ip−k, J1 . . . , Jq−k} = {k+1, k+2, . . . , p+q−k}.
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Plugging this into (7.4), we get

(7.5) (q+1− I1, . . . , q+ p−k− Ip−k, dk, . . . , d1 |

−d1, . . . ,−dk, k+1− J1, . . . , q− Jq−k)
′.

The question now is how we can make (7.5) equal to (7.3). Finding the answer to
this question is equivalent to proving the following theorem.

Theorem 7.6. The Dirac cohomology of Vk is

HD(Vk)=
⊕
w

Ew3−ρc ,

with the summation over all w as in (7.2). All ingredients of the formula (3.6) are
uniquely determined by w:

The permutation

σ = (I1, . . . , Ip−k, p+q−k+1, . . . , p+q | 1, . . . , k, J1, . . . , Jq−k)

is given by

σ = (i1+k, . . . , ix+k, ix+k+1−k, . . . , i p−k, p+q−k+1, . . . , p+q |

1, . . . , k, j1+k, . . . , jy+k, jy+k+1−k, . . . , jq−k),

where y = q − k− x.
The corresponding K -type in Vk is given by

d1 = · · · = dk = x .

Proof. We already know that for Ew3−ρc to contribute to HD(Vk), w must be as in
(7.2). Moreover, it is straightforward to check that if we choose σ and d1, . . . , dk

as in the statement of the theorem, then we do get equality of (7.5) and (7.3), and
hence a contribution of Ew3−ρc to HD(Vk).

It thus remains to show that there is no possible other choice of I1, . . . , Ip−k ,
J1, . . . , Jq−k and d1, . . . , dk that would make the expressions (7.5) and (7.3) equal.

To see this, let us first relate (7.5) and (7.3) to shuffles. Let us set r = p − k,
s = q − k, and define

i ′u = iu for u = 1, . . . , x, i ′u = iu+k − 2k for u = x + 1, . . . , r,

j ′v = ju for u = 1, . . . , y, j ′v = jv+k − 2k for u = x + 1, . . . , r.

Then it is easy to check that i ′1, . . . , i ′r , j ′1, . . . , j ′s is an (r, s) shuffle, and the (r+s)-
tuple L1 associated to this shuffle as in (6.1) is exactly (7.3) with the k terms x and
k terms −x omitted.

We further define

I ′u = Iu − k, u = 1, . . . , r, J ′v = Jv − k, v = 1, . . . , s.
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Then obviously I ′1, . . . , I ′r , J ′1, . . . , J ′s is an (r, s) shuffle, and the (r+s)-tuple L2

associated to this shuffle as in (6.1) is exactly (7.5) with the terms dk, . . . , d1 and
−d1, . . . ,−dk omitted.

Let us now suppose that (7.5) and (7.3) are equal, but not in the way stated in the
theorem. This would mean that some of the di are not equal to x , and consequently
the corresponding −di are not equal to −x . These pairs di ,−di therefore have to
appear in (7.3) with the terms x and −x omitted, that is in L1. Then there must be
an equal number of pairs x,−x among the entries of (7.5) with the terms dk, . . . , d1

and −d1, . . . ,−dk omitted, that is, among the entries of L2. The rest of L2 must
agree with the rest of L1. Thus, L2 is obtained from L1 by taking several pairs of
the form a,−a and replacing them by x,−x . Since both L1 and L2 are obtained
from shuffles, this is impossible by Proposition 6.4. This proves the theorem. �

We leave it to the reader to formulate and prove analogs of Proposition 4.9 and
Proposition 4.10.
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AN EXAMPLE OF A SINGULAR METRIC ARISING FROM THE
BLOW-UP LIMIT IN THE CONTINUITY APPROACH TO

KÄHLER–EINSTEIN METRICS

YALONG SHI AND XIAOHUA ZHU

A family of Kähler metrics with Calabi’s symmetry on CP2 # CP2 arises
from the continuity method for finding Kähler–Einstein metrics. We study
the blow-up limit of this family.

1. Introduction

Let M be a compact Kähler manifold with c1(M) > 0. In algebraic geometry, M
is called a Fano manifold. It is an important problem to study the existence of
Kähler–Einstein metrics on such manifolds. In contrast to the c1 < 0 and c1 = 0
cases, there may be no Kähler–Einstein metrics on a given Fano manifold. Yau,
Tian and Donaldson have conjectured that the existence of Kähler–Einstein metrics
on M is equivalent to the K-polystability of M ; see [Tian 1997; Donaldson 2002].

To find a Kähler–Einstein metric on M , one usually reduces the problem to
solving a family of complex Monge–Ampère equations with parameter λ ∈ [0, 1]
via the continuity method, as Yau did in [1978]. If M does not admit a Kähler–
Einstein metric, then the solutions of this family must blow up as λ → t0 for
some t0 ∈ [0, 1]. Since the solutions of this family give rise to a family of Kähler
metrics with strictly positive Ricci curvature and the same volume, the compactness
theorem of Gromov implies that this family contains a subfamily converging to a
compact metric space with a length metric. The study of this limit space should
be helpful in understanding the relationship between Kähler–Einstein metrics and
stabilities in geometric invariant theory.

In this paper, we study a simple example, namely the blow-up of CP2 at one
point, CP2 #CP2, with a Calabi symmetric metric as the background metric. Note
that M = CP2 # CP2 is a ruled surface P(C⊕U ), where C and U are the trivial
line bundle and the universal bundle over CP1, respectively. It is well known
that M is Fano and the automorphism group of M is not reductive [Calabi 1982].

Zhu is partially supported by NSF in China, grant number 10990013.
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Therefore by Matsushima’s theorem [1957], there are no Kähler–Einstein metrics
on M . So if one uses the continuity method to solve the Kähler–Einstein metric
equation on M with parameter λ ∈ [0, 1], the parameter λ at which the equation
is solvable could not reach 1. Recently, G. Székelyhidi showed that the Monge–
Ampère equation is solvable if and only if the parameter λ is less than 6/7, if one
chooses a Calabi symmetric metric as a background Kähler metric [2009].12 There
are two distinguished divisors E1 and E2, respectively defined as the zero section
and the infinity section of the ruled surface M . A Calabi symmetric Kähler metric
g on M is defined by a convex function u in t ∈ (−∞,∞) with its Kähler form ωg

given by

(1-1) ωg =
√
−1∂∂̄u in C2

\ {0},

where t = log(|z1|
2
+|z2|

2) and (z1, z2) are the standard coordinates on C2
\{0} ∼=

M \(E1∪E2). Székelyhidi’s result implies that the Kähler metrics gλ arising from
the solutions of Monge–Ampère equations will blow up as λ→ 6/7.

On the other hand, by a general theorem of Cheeger and Colding [1997], there
exists a subsequence of metrics gλi that converges in the Gromov–Hausdorff sense
to a limit metric space g∞ whose singular set has Hausdorff codimension at least
2. On the regular part, g∞ is Cα-continuous. It is an interesting problem to study
the geometry of the limit space.

Theorem 1.1. (1) Among the Kähler metrics gλ arising from the continuity method
for finding Kähler–Einstein metrics, there exists a sequence converging smoothly
in the Cheeger–Gromov sense to a singular Kähler metric g∞ on CP2 # CP2. The
limit g∞ is smooth on CP2 # CP2

\ E2 and has conically symmetric singularities
on E2 with the same conical angle 10π/7 along one direction. Moreover, g∞ on
CP2 # CP2

\ E1 ∪ E2 is defined by a strictly increasing convex function ψ∞(t)
on (−∞,∞), which satisfies the equation

(1-2) ψ ′ψ ′′ = e13t/7−6ψ/7.

(2) The Ricci curvature of g∞ is given by

(1-3) Ric(g∞)=
√
−1∂∂̄( 1

7 t + 6
7ψ∞) on C2

\ {0}.

In particular, the Ricci curvature of g∞ is bounded.

By (1-2), one sees that the limit metric g∞ is not a Kähler–Ricci soliton. This sit-
uation is quite different from the case of Kähler–Ricci flow studied in [Zhu 2007],
where it was shown that the evolved Kähler metrics arising from the Kähler–Ricci

1Actually, Székelyhidi proved that the maximal solvable parameter λ is independent of the back-
ground metrics we choose.

2Chi Li [2009] has calculated the maximal solvable parameter λ for all toric Fano manifolds.
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flow on a given toric Fano manifold will converge smoothly to a Kähler–Ricci
soliton in the Cheeger–Gromov sense if the initial Kähler metric is toric. (See also
[Koiso 1990] for the special case CP2 # CP2 with a Calabi symmetric metric as
the initial metric.) The existence of Kähler–Ricci solitons on a toric Fano manifold
was proved in [Wang and Zhu 2004]. Note that CP2 #CP2 is a toric Fano manifold
and that a Calabi symmetric metric is toric.

It is well known that the limit metric space of a sequence of 4-dimensional Rie-
mannian manifolds with Ricci curvature bounded from below and with sectional
curvature bounded in the L2 norm can only have isolated singularities [Anderson
2005; Cheeger et al. 2002]. Theorem 1.1 gives an example of limit metric space
with nonisolated singularities. Note that here the sequence of 4-dimensional Rie-
mannian manifolds have only lower bound on their Ricci curvature (without the
condition for sectional curvature).

In Section 2, we reduce the Monge–Ampère equations to a family of ordinary
differential equations using Calabi’s symmetry conditions. In Section 3, we use the
Futaki invariant [1983] to give a simple proof to the “only if” part of Székelyhidi’s
result and to get some crucial estimates. The convergence problem is discussed in
Section 4. Theorem 1.1 is finally proved in Section 5 by studying the structure of
the singular limit metric. We remark that Theorem 1.1 still holds for the higher
dimensional blow-up space CPn # CPn according to our proof.

2. Reduction of the equation under Calabi’s symmetry conditions

Let (M, g) be a compact Kähler manifold with positive first Chern class c1(M)>0,
where the Kähler class [ωg] equals 2πc1(M). To study the existence of Kähler–
Einstein metrics on M , we use the continuity method. Consider the complex
Monge–Ampère equations

(2-1) det(gi j̄ +φi j̄ )= det(gi j̄ )e
h−λφ

with parameter λ ∈ [0, 1], where h is a Ricci potential of g defined by

Ric(g)−ωg =
√
−1∂∂̄h.

See [Yau 1978; Tian 1987]. If (2-1) is solvable at λ = 1, then the solution φ will
define a Kähler–Einstein metric whose Kähler form given by ωg+

√
−1∂∂̄φ. In our

case M =CP2 #CP2, we choose a background Kähler metric g satisfying Calabi’s
symmetry conditions, namely, g is defined by a convex function u in t ∈ (−∞,∞),
so that

(2-2) gαβ̄ = ∂α∂β̄u(t)= e−t u′(t)δαβ + e−2t z̄αzβ(u′′(t)− u′(t)).
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As Calabi pointed out [1982], g can extend across E1 and E2 if and only if the
following hold:3

(1) The function u0(r) defined for all r > 0 by

(2-3) u0(r)= u0(et)= u(t)− t

is extendable by continuity to a smooth function at r = 0 satisfying u′0(0) > 0.

(2) The function u∞(r) defined for all r > 0 by

(2-4) u∞(r)= u∞(e−t)= u(t)− 3t

is extendable by continuity to a smooth function at r =0 satisfying u′
∞
(0)>0.

Let v(t) :=− log det(gαβ̄)= 2t− log u′(t)− log u′′(t). Then the Ricci curvature
is

(2-5) Rαβ̄ = ∂α∂β̄v(t)= e−tv′(t)δαβ + e−2t z̄αzβ(v′′(t)− v′(t)).

Since all solutions φ of (2-1) are symmetric, it becomes

(u′+φ′)(u′′+φ′′)= e2t−u−λφ,

which we can rewrite as

(2-6) ψ ′ψ ′′ = e2t−(λψ+(1−λ)u),

where ψ = u+φ. Note that the volume of g is computed by

(2-7)
Vol(M, g)=

∫
C2\{0}

u′′u′e−2t dz1 ∧ dz2 ∧ dz1 ∧ dz2

= Vol(S3)

∫
∞

−∞

u′′u′dt = 4 Vol(S3),

where Vol(S3) denotes the volume of the unit sphere in R4. So we may normalize u
so that

(2-8)
∫
+∞

−∞

e2t−u(t)dt = 4.

3. Application of the Futaki invariant

For a convex function ψ(t) on (−∞,∞) satisfying the boundary conditions (2-3)
and (2-4), we consider the integral

(3-1) I =
∫
+∞

−∞

(2ψ ′ψ ′′−ψ ′2ψ ′′−ψ ′′2−ψ ′ψ ′′′)dt.

3This is also clear from our proof of Proposition 5.2.
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One can show that if ψ is a defining function of a Calabi symmetric metric on
M = CP2 # CP2, then I is just the Futaki invariant evaluated at the holomorphic
vector field z1∂/∂z1 + z2∂/∂z2, where z1 and z2 are the standard coordinates on
C2
\ {0} ' M \ (E1 ∪ E2).
Now by the boundary conditions, we have

I1 =

∫
+∞

−∞

2ψ ′ψ ′′dt = ψ ′2
∣∣+∞
−∞
= 8,

I2 =

∫
+∞

−∞

−ψ ′2ψ ′′dt =− 1
3ψ
′3∣∣+∞
−∞
=−

26
3 ,

I3 =

∫
+∞

−∞

−ψ ′′2−ψ ′ψ ′′′dt =−(ψ ′ψ ′′)
∣∣+∞
−∞
= 0.

These equalities imply that I = −2/3 6= 0. In particular, we see that there are no
Kähler–Einstein metrics on M .

Proposition 3.1. Equation (2-6) is solvable only if λ < 6/7.

Proof. According to the boundary conditions, the integral I should equal −2/3.
But by the equation, we have

I = (1− λ)
∫
+∞

−∞

(u′−ψ ′)ψ ′ψ ′′dt =
13(1− λ)

3
−

1− λ
2

∫
+∞

−∞

ψ ′2u′′dt.

Note that ψ ′2 < 9, we have − 2
3 = I >−14

3 (1− λ). So λ < 6/7. �

We can get more information from the integral I .

Lemma 3.2. For any fixed t0, we have

(3-2) lim
λ→6/7

∫
+∞

t0
ψ ′λψ

′′

λ dt = 0.

In particular, the functions ψ ′λ converge uniformly to the constant function 3 on
[t0,+∞) when λ→ 6/7.

Proof. The identity I ≡−2/3 is equivalent to

Aλ :=
∫
+∞

−∞

u′ψ ′λψ
′′

λ dt = 26
3
−

2
3(1−λ)

.

It follows that limλ→6/7 Aλ = 4. On the other hand, we have

(3-3)
Aλ >

∫ t0

−∞

ψ ′λψ
′′

λ dt + u′(t0)
∫
+∞

t0
ψ ′λψ

′′

λ dt

= 4+ (u′(t0)− 1)
∫
+∞

t0
ψ ′λψ

′′

λ dt.
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This implies that

0<
∫
+∞

t0
ψ ′λψ

′′

λ dt < 1
u′(t0)−1

(Aλ− 4)→ 0.

Thus
1
2(3

2
− (ψ ′λ(t0))

2)→ 0 as λ→ 6/7,

that is, ψ ′λ(t0) → 3 as λ → 6/7. By the monotonicity of ψ ′λ, the functions ψ ′λ
converge uniformly to 3 on [t0,+∞). �

4. Convergence

Now we analyze the behavior of ψλ as λ↗ 6/7.
Letwλ=−(2t−(1−λ)u−λψλ). Thenwλ is strictly convex. Let pλ∈M , so that

wλ(pλ)= infx∈M wλ(x)= Cλ. Clearly, pλ ∈ M\(E1
⋃

E2)∼= C2
\{0}, so we may

abuse the notation to identify pλ with its coordinate in C2
\{0}. Let tλ = log|pλ|2.

Lemma 4.1. When λ→ 6/7, we have tλ→−∞.

Proof. Suppose that there is a subsequence λi → 6/7 but tλ ≥ −C > −∞. Since
w′λ(tλ)= 0, we have

ψ ′λ(−C)≤ ψ ′λ(tλ)=
2
λ
−

1−λ
λ

u′(tλ)≤
2
λ
.

Then we can easily get a contradiction from this and Lemma 3.2. �

We now introduce a family of modified functions of ψλ by

ψ̃λ(t)= ψλ(t + tλ)− λ−1(2tλ− (1− λ)u(tλ)).

Then ψ̃λ satisfies the equation

(4-1) ψ̃ ′′ψ̃ ′ = e(2−(1−λ)u
′(tλ))t−λψ̃+(1−λ) fλ(t),

where

fλ(t)=−(u(t + tλ)− u(tλ)− u′(tλ)t)= u0(etλ)− u0(et+tλ)+ (u′(tλ)− 1)t.

It is clear that limλ→6/7 fλ(t)= 0 for any t .

Proposition 4.2. There exist a sequence of convex functions ψ̃λi
, where λi → 6/7,

and a smooth convex function ψ∞ defined on (−∞,∞), such that the ψ̃λi
converge

locally uniformly and smoothly to ψ∞, which satisfies the equation

(4-2) ψ ′′ψ ′ = e(13/7)t−(6/7)ψ for t ∈ (−∞,∞).
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Proof. It suffices to prove that
|Cλ| ≤ C.

In fact, if this is true, we see that all the ψ̃λ are uniformly bounded on any bounded
intervals. As a consequence, by (4-1), the ψ̃ ′′λ are also uniformly bounded on any
bounded intervals. Then again by (4-1), it is easy to see that the Ck norms of the
ψ̃λ are locally uniformly bounded. Thus there exist a sequence of convex functions
ψ̃λ that converges locally uniformly in Ck norm to a convex function ψ∞ defined
on (−∞,∞). On the other hand, by Lemma 4.1, the tλ go to −∞ as λ→ 6/7.
Hence, by (4-1) and the fact that fλ(t)→ 0 as λ→ 6/7, we conclude that ψ∞ is
in fact smooth and satisfies (4-2).

Now we prove the the boundedness of Cλ. By the boundary conditions, we have

(4-3)
∫
∞

−∞

(ψ ′′λ ψ
′

λ)dt = 1
2(ψ

′

λ
2(∞)−ψ ′λ

2(−∞))= 4.

Then by the convexity of wλ and the fact |w′λ| ≤ 1, it is easy to get a lower bound
of Cλ. So we only need to obtain an upper bound. For simplicity, we write w=wλ
and ψ = ψλ.

Let B0 be the interval defined by

B0 := {t ∈ (−∞,∞) | Cλ ≤ w(t)≤ Cλ+ 1}.

Then there exist exact two numbers s0 and t0 with s0< t0 such thatw(s0)=w(t0)=
Cλ+ 1. Clearly tλ ∈ B0, and it holds that

ψ ′′ ≥ c0e−Cλ on B0.

So

(4-4) w′′ ≥ λc0e−Cλ ≥ 1
2 c0e−Cλ .

We want to show that

(4-5) R := 1
2(t0− s0)≤

√
4
c0

eCλ/2.

In fact we consider the function on R defined by

v(t)= 1
4 c0e−Cλ(|t − 1

2(s0+ t0)|2− R2)+Cλ+ 1.

Then it is clear that v(t) satisfies

(4-6) v′′ = 1
2 c0e−Cλ on B0 and v(s0)= v(t0)= Cλ+ 1.

Thus by (4-4) and (4-6), we get

(w− v)′′ ≥ 0 on B0 and w(t)= v(t) for t = s0 and t = t0.
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It follows from the convexity that

w ≤ v on B0.

In particular,

Cλ ≤ w(1
2(s0+ t0))≤ v( 1

2(s0+ t0))=− 1
4 c0e−Cλ R2

+Cλ+ 1.

This implies (4-5).
For k ≥ 1, we choose a family of closed sets

Bk := {t ∈ (−∞,∞) | k+Cλ ≤ w(t)≤ Cλ+ k+ 1}.

Then there are sk and tk with sk < tk−1, for k ≥ 1, such that

Bk = [sk−1, sk] ∪ [tk−1, tk].

By the convexity of w, it is easy to see w′(t0),−w′(s0)≥ 1/(2R), and so

−w′(s), w′(t)≥ 1/(2R) for all s ≤ s0 and t ≥ t0.

Thus
tk − tk−1 ≤ 2R and sk − sk−1 ≤ 2R.

Hence by (4-5), we get

sk − sk−1, tk − tk−1 ≤ 2R ≤ 2
√

4
c0

eCλ/2.

It follows that

(4-7)

∫
∞

−∞

e−wdt =
∑

k

∫
Bk

e−wdt

≤

∑
k

4
√

4
c0

eCλ/2e−Cλ−k

= 4
√

4
c0

e−Cλ/2
∑

k

e−k
≤ Ce−Cλ/2.

This inequality and (4-3) imply that 4≤ Ce−Cλ/2. �

According to Proposition 4.2, we can define a Kähler metric ω∞ on C2
\ {0} by

√
−1∂∂̄ψ∞. Then we have the following convergence of gλ.

Proposition 4.3. There exists a sequence of biholomorphic maps σλi on M , with
λi→ 6/7, such that the σ ∗λi

ωgλi
converge to ω∞ on C2

\ {0} smoothly as λi→ 6/7.
In particular, the (M \(E1∪E2), ωgλi

) converge to (C2
\{0}, ω∞) in the Cheeger–

Gromov sense.
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Proof. Let σλ be the biholomorphic map on C2
\ {0} defined by

σλ(z1, z2)= (etλz1, etλz2).

Clearly this action fixes the points {0} and ∞. Thus the action can extend to
CP2 # CP2. Furthermore,

σ ∗λωgλ =
√
−1∂∂̄σ ∗λψλ =

√
−1∂∂̄ψ̃λ on C2

\ {0}.

By Proposition 4.2, we see that there exist a sequence of parameters λi such that
σ ∗λωgλi

converge locally uniformly and smoothly to ω∞. �

5. Properties of the limit metric

Now we discuss the structure of ω∞ near E1 and E2.

Lemma 5.1. Let a := limt→−∞ ψ
′
∞
(t) and b := limt→∞ ψ

′
∞
(t). Then we have

a = 1 and b = 3.

Proof. Since Ric(ωλ) ≥ λωλ, by the Bonnet–Myers theorem, the diameters are
uniformly bounded. Then by the Bishop–Gromov volume comparison theorem,
we have

Vol(Br (x), ωλ)≥ Crn for all x ∈ M and r ≤ 1.

This means the family of metrics ωλ are noncollapsing. Then by a result of Cheeger
and Colding [1997, Theorem 5.4], the convergent sequence ωλi of metrics satisfy

lim
λi→6/7

Vol(M, ωλi )= Vol(M, ω∞).

On the other hand,

Vol(M, ωλ)=
∫

C2\{0}
ψ ′′ψ ′e−2t dz1 ∧ dz2 ∧ dz̄1 ∧ dz̄2

= Vol(S3)

∫
∞

−∞

ψ ′′ψ ′dt = 4 Vol(S3)

and
Vol(M, ω∞)= 1

2 Vol(S3)(b2
− a2).

It is obvious that a ≥ 1 and b ≤ 3. The claim follows. �

Proposition 5.2. The metric ω∞ can extend to a smooth metric on M \ E2.

Proof. In the standard coordinates on C2, we can express ω∞ as

(5-1)
ω∞ =

√
−1∂∂̄ψ∞

=
√
−1

∑
α,β

(e−tψ ′
∞
δαβ + e−2t(ψ ′′

∞
−ψ ′

∞
)z̄αzβ)dzα ∧ dz̄β,
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where z = (z1, z2) ∈ C2
\ {0} and t = log|z|2. We will use the coordinate transfor-

mation
w1 = z1/z2 and w2 = z2

near z= (z1, z2)= 0. In fact, this transformation blows up a neighborhood of 0 to a
neighborhood of E1 in M . Sinceω∞ is symmetric, we may consider the behavior of
ω∞ along z= (0, z2) with |z2|� 1 under this coordinate transformation. By (5-1),
it is easy to see the components of the metric at (0, z2) are given by

g11̄ = e−tψ ′
∞
(t), g22̄ = e−tψ ′′

∞
(t), g12̄ = 0.

Then, in the new coordinate system w, we have

(5-2) g̃11̄ = ψ
′

∞
(t), g̃22̄ = e−tψ ′′

∞
(t), g̃12̄ = w2w̄1e−tψ ′

∞
= 0.

On the other hand, by (4-2) and Lemma 3.2, we see that for any α < 1 there is a
uniform constant C1 such that

ψ ′′
∞
(t)≤ C1eαt for all t ≤ 0.

This implies
1≤ ψ ′

∞
(t)≤ 1+C2eαt ,

and so we get |ψ∞− t | ≤ C2. Thus again by (4-2), we obtain

(5-3) C−1
3 ≤ e−tψ ′′

∞
(t)≤ C3 for all t ≤ 0.

This means that
C−1
≤ g̃22̄ ≤ C for all t ≤ 0

and for some uniform constant C . Moreover from the argument above, one can
show that g1(s) := g̃22̄ can extend to a continuous function on the interval [0, 1),
where s = et . In fact, we will prove that g1(s) is C∞ at s = 0 in the following.

We rewrite (4-2) as

(5-4) [ψ ′
∞

2
]
′

s = 2e−(6/7)(ψ∞−t),

where f ′ and [ f ]′s are derivatives of f with respect to t and s, respectively. Then
by (5-3), it is easy to see that [(ψ ′

∞
)2]′s is Lipschitz at s = 0. It follows that g1(s)

is also Lipschitz at s = 0. This implies that (ψ∞ − t)′s is Lipschitz at s = 0.
Thus by (5-4), we can repeat the arguments above to show that (g1)

′
s(0) exists and

(g1)
′
s(s) is Lipschitz at s = 0. Using the “bootstrap” argument, we see that g1(s)

is C∞ at s = 0.
The argument above also proves that g2(s)=ψ ′∞(t)= g̃11̄ is C∞ at s = et

= 0.
Note that s = |w2|

2. Since the derivative of ω∞ at (0, 0) along the direction of
the other variable w1 is a function in the variables w1 and w2, we see that ω∞ can
extend to a smooth metric on M \ E2. �
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To analyze the behavior of ω∞ near z=∞, we introduce the following concept.

Definition 5.3. Let g =
∑

i, j gi j̄ dzi ⊗ dz̄ j be a Kähler metric defined on M∗ =
M \D, where D is a smooth subvariety of codimension 1. We say that the metric g
has conically symmetric singularities on D along one direction with a conical angle
απ if for every point p ∈ D, there exists a coordinate system (U ;w1, . . . , wn)

near p such that w(p) = (0, . . . , 0) and in which the components gi j̄ of g on
U \ D are such that the components (|w1|

2−α)g11̄, g1 j̄ for j = 1, . . . , n and glm̄

for l,m = 2, . . . , n can be extended to a positive definite matrix-valued smooth
function on U in the variables |w1|

α/2, w2, w̄2, . . . , wn, w̄n .

Remark 5.4. If α = 2/k for some integer k ≥ 2 in Definition 5.3, then the metric
g has an orbifold structure. In fact, if Ṽ is a branched covering of a neighborhood
V of p by the map π : (z1, z2, . . . , zn) 7→ (w1 = (z1)

k, w2 = z2, . . . , wn = zn),
then π∗g can be extended to a smooth Kähler metric on Ṽ .

Theorem 5.5. (1) The singular Kähler metric ω∞ on CPn # CPn defined by ψ∞
has conically symmetric singularities lying on the infinity divisor E2, with the
same conical angle 10π/7 along one direction.

(2) The Ricci curvature of ω∞ satisfies the equation

(5-5) Ric(ω∞)=
√
−1∂∂̄( 1

7 t + 6
7ψ∞).

In particular, the Ricci curvature is bounded.

Proof. By Proposition 5.2, it suffices to analyze the behavior of ω∞ near E2. We
write the homogeneous coordinates on M\E1 (as a subset of CP2) as [Z0, Z1, Z2],
where E2 is defined by the equation Z0 = 0. Then we have on M \ (E1 ∪ E2)

z1 =
Z1

Z0
and z2 =

Z2

Z0
.

By the symmetry conditions we imposed, we may consider only the behavior of
ω∞ on the open set U := (M \ E1)∩ {Z2 6= 0}. The affine coordinates on U are

w1 =
Z1

Z2
=

z1

z2
and w2 =

Z0

Z2
=

1
z2
.

A direct computation shows that the components of the metric ω∞ at w = (0, w2)

are given by

(5-6) g̃11̄ = ψ
′

∞
(t), g̃22̄ = etψ ′′

∞
(t), g̃12̄ = 0,

where t = log(|z1|
2
+ |z2|

2) = log(1/|w2|
2). On the other hand, by (4-2) and the

arguments in the proof of Proposition 5.2, one can show that

(5-7)
|ψ∞− 3t | ≤ C,

et(ψ∞)
′′(t)= O(e(2/7)t) as t→∞.
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Moreover, if we set s = e−(5/7)t and rewrite (4-2) as

[ψ ′2
∞
]
′

s = 2e−(6/7)(ψ∞−3t),

then we can prove that g̃1(s)= e(5/7)tψ ′′
∞
(t) and g̃2(s)= ψ∞− 3t are both C∞ at

s = 0. Hence we have proved that ω∞ has a conical structure at each point in E2

with the same conical angle (10/7)π .
By (4-2), we see that the Ricci curvature of ω∞ satisfies (5-5). By the local

formula (5-6) of ω∞ near E2, the Ricci curvature is bounded. �

Theorem 1.1 follows from Theorem 5.5 and Proposition 5.2.
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DETECTING WHEN A NONSINGULAR FLOW IS
TRANSVERSE TO A FOLIATION

SANDRA SHIELDS

We show that any foliation transverse to a C1 nonsingular flow φ on a closed
3-manifold can be detected algorithmically. We use this to describe a pro-
cedure that, for any δ > 0, will determine whether or not there is a foliation
whose tangent space is bounded away from the tangent space to φ by a
distance of δ.

Introduction

An open problem in foliation theory is to determine whether a nonsingular C1

flow φ on an arbitrary closed 3-manifold M has a transverse foliation. Classical
results by Fried [1982] and Schwartzman [1957] state conditions for any such flow
to have a transverse section, and hence a transverse foliation. Milnor [1958] and
Wood [1971] found necessary and sufficiently conditions for the existence of a
2-dimensional foliation transverse to the foliation by circles of a circle bundle.
Later, Naimi [1994] did the same for the foliation by circles of a Seifert fibered
3-manifold. Goodman [1986] showed that a simple topological property is, for
a C0-dense class of flows, both necessary and sufficient for the existence of a
transverse foliation. However, there are flows that satisfy this property, yet do not
admit a transverse foliation; for example, flows on S3 with no periodic orbits as
described in [Schweitzer 1974; Harrison 1988; Kuperberg 1994].

The subtlety of the transverse foliation problem is underscored by the Milnor–
Wood result. Specifically, they showed that for circle bundles over a closed surface
of positive genus, there is a foliation transverse to the fibers precisely when the
Euler number of the bundle is no larger than the negative of the Euler characteristic
of the surface. Since one can have a circle bundle of sufficiently small Euler number
finitely covering one with a large Euler number, any property of a flow that is
preserved under finite covers cannot, in general, be both necessary and sufficient
for the existence of a transverse foliation.

In [Goodman and Shields 2007], we showed that when a flow φ has no self-
return disk (that is, a disk transverse to φ that flows continuously into its own

MSC2000: primary 57M50, 57R30; secondary 57N10, 57M10, 57M20.
Keywords: foliation, transverse flow, branched surface.
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interior), a simple algorithm for modifying any branched surface transverse to φ
will eventually produce a branched surface carrying a foliation F precisely when
F is transverse to φ. We show in Theorem 2.2 that this algorithm also works when
φ has self-return disks. We then find a procedure that can be used to determine
whether or not any branched surface produced by our algorithm carries a foliation.
In particular, we describe a process that allows us to modify any branched surface
in order to produce an essential branched surface that carries a foliation if and only
if the original does (Theorem 2.3). Algorithms in [Agol and Li 2003] can then be
applied to determine whether or not this new branched surface carries a foliation.
Hence we obtain in Theorem 2.4 an algorithmic means for detecting flows with
transverse foliations.

We further show in Theorem 2.5 that any for any δ > 0, one can find a positive
integer K such that if the branched surface produced at the K -th stage of our
algorithm does not carry a foliation transverse to φ, then there are no foliations that
remain a bounded distance of at least δ from φ. If, on the other hand, this branched
surface does carry a foliation, then the algorithm described in Theorem 2.4 will
detect that it does.

1. Preliminaries

Throughout, M will be a closed orientable 3-manifold and φ :M×R→M will be
a C1 nonsingular flow on M . An orbit segment of φ shall be a curve φ(x, t)t∈[a,b],
where x ∈ M and [a, b] is a closed interval in R. The forward orbit under φ of
a point x = φ(x, 0) in M will be the set of points φ(x, t)t>0; the backward orbit
consists of the points φ(x, t)t<0.

The foliations we consider will be C1 and codimension one.

Branched surface construction. The branched surfaces we associate with the flow
φ are in the class of regular branched surfaces introduced by [Williams 1974].
In particular, each is transverse to φ, connected, and has a set of charts defining
local orientation-preserving diffeomorphisms onto one of the models in Figure 1,
such that the transition maps are smooth and preserve the transverse orientation
indicated by the arrows. (Each local model projects horizontally into a vertical
model of R2 and has a smooth structure induced by T R2 when we pull back the
local projection.) So a branched surface W is a 2-manifold except on a dimension-
one subset µ (indicted by the dashed segments) called the branch set. The set
µ is a 1-manifold except at finitely many isolated points where it intersects itself
transversely. The components of W −µ are the sectors of W .

Given a nonsingular flow φ, we construct a transverse branched surface by first
choosing a finite generating set 1 = {Di }i=1,...n for φ, consisting of pairwise dis-
joint disks embedded in M that satisfy the following general position requirements:
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Figure 1

(i) Each Di is transverse to φ.

(ii) Under φ, the forward and backward orbit of every point meets the interior of
the generating set. In other words, the orbits all meet int1=

⋃n
i=1 int Di .

(iii) There are only finitely many points in ∂1 =
⋃n

i=1 ∂Di whose orbit, forward
or backward, meets ∂1 before meeting int1.

(iv) The forward orbit of any point in ∂1 meets ∂1 at most once before meeting
int1.

Note that we can find such a set for any given φ. In particular, cover M with
finitely many flow boxes for φ, and select a horizontal slice from each box. A slight
modification of each slice can then be used to ensure that the resulting collection
of disks satisfies the general position requirements above.

After choosing 1, cut M open along the interior of each element of 1 to obtain
a closed connected submanifold M∗ that is transverse to φ (except along ∂1) and
whose boundary contains ∂1. This can be thought of as blowing air into M to
create an air pocket at each generating disk. By requirement (ii) above, the restric-
tion of φ to M∗ is a flow φ∗ with the property that each orbit is homeomorphic to
the unit interval [0, 1]. Form a quotient space by identifying points that lie on the
same orbit of φ∗. That is, take the quotient M∗/∼, where x ∼ y if x and y lie on
the same interval orbit of φ∗. This quotient space can be embedded in M so that it
is transverse to φ and locally modeled on Figure 1. Specifically, we can view the
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x

W

x
fiber over x

N (W )

Figure 2

quotient map as enlarging the components of M −M∗ until each interval orbit of
φ∗ is contracted to a point in M . We refer to this embedded copy of the quotient
space as the branched surface W constructed from φ.

Although there are many embeddings of the quotient M∗/∼ that are transverse
to φ, the complement of each is a union of open 3-balls. So any two embeddings of
M∗/∼ are diffeomorphic in M ; that is, there is a diffeomorphism of M that maps
one onto the other. Consequently, we only distinguish between branched surfaces
transverse to φ up to diffeomorphism of M .

The branched surface W could have many generating sets. For example, if we
flow a generating disk forward or backward slightly without allowing any of its
points to pass through another point of 1, then the quotient space described above
does not change.

Also, note that we can thicken W in the transverse direction to recover M∗

which, for this reason, we shall henceforth call N (W ), the neighborhood of W . In
particular, N (W ) is obtained when we replace each point x in W with the interval
orbit of φ∗ whose quotient is x . We shall refer to these interval orbits as the fibers
of N (W ). See Figure 2.

Foliations carried by a branched surface. If a foliation F is transverse to φ, and
if there exists a generating set 1 for a branched surface W where each element
of 1 is contained in a leaf of F , then F is carried by W . In particular, when we
cut M open along 1, the foliation F becomes a foliation of N (W ) whose leaves
(some of which are branched) are transverse to the fibers. The branched leaves are
precisely those that contain a boundary component of N (W ), since these are the
(cut-open) leaves of F containing the elements of 1. (They can be thought of as
leaves of F with air blown into them.) Figure 3 shows a local picture of such a
foliation of N (W ).

Conversely, each foliation of N (W ) that is transverse to the fibers and whose
branched leaves contain the boundary components of N (W ) corresponds to a fo-
liation of M that is carried by W . In particular, when we collapse the components
of M − N (W ) (that is, the air pockets) to recover (M, φ), each of these foliations
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Figure 3

of N (W ) yields a foliation of M that is transverse to φ and whose leaves contain
the elements of 1. For the most part, we do not distinguish between a foliation of
M carried by W and a corresponding foliation of N (W ).

As noted above, flowing the disks in any generating set 1 = {Di }i=1,...n for φ
forward or backward still results in the same branched surface W , provided we do
not change the relative position of any two points in

⋃n
i=1 Di along some orbit of φ.

It follows that W carries a foliation transverse to φ if and only if we can move the
elements of 1 into leaves of that foliation, while preserving their relative position
in the flow direction. We will use this important fact to prove Theorem 2.2.

Reeb skeletons. Given a solid torus 6 embedded in M so that ∂6 ⊂W , if 6∩W
carries a Reeb foliation of6, then we say that6 is a Reeb skeleton. Such an object
exists, for example, if some foliation carried by W contains a Reeb component. If
a Reeb skeleton 6 contains no other Reeb skeletons, we say that 6 is minimal.
Here is an example of a minimal Reeb skeleton:

Staircase curves. Given a nonsingular flow φ, let γ = τ1 ∗ σ2 ∗ · · · ∗ τk−1 ∗ σk ∗ τk

be a compact curve in M , where τ1 has nonempty interior and τi is a positively
oriented orbit segment of φ for any 1≤ i ≤ k. If we can choose this decomposition
of γ so that each step σi has nonempty interior and is contained in an element of
some generating set1 for φ, we say γ is a staircase curve in (1, φ). See Figure 4.
The horizontal length ‖γ‖hor of γ is the sum of the lengths of its steps (that is,
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the lengths of the σi ). We shall only consider staircase curves whose horizontal
lengths are nonzero.

2. Main results

In [Goodman and Shields 2007], we described a procedure for successively mod-
ifying any branched surface transverse to a flow φ, which produces a sequence of
branched surfaces {Wk} all transverse to φ. We then showed the following:

Theorem 2.1. Given a C1 nonsingular flow φ on a closed orientable 3-manifold M
that has no self-return disks, let W be a branched surface constructed from φ and
let {Wk} be a sequence of branched surfaces produced by applying the procedure
to W . The flow φ is transverse to a foliation F if and only if there exists a K > 0
such that Wk carries F for all k ≥ K .

Our procedure for successively modifying W specifies a particular way to break
the elements of any generating set 1 for W into smaller and smaller disks. If
φ is transverse to a foliation F , this procedure eventually produces a generating
set for a branched surface that carries F . The idea is that once these disks become
sufficiently small, each slides injectively along orbit segments of φ into a leaf of the
foliation F . Moreover, the manner in which we construct these smaller generating
disks ensures that this sliding can be done without changing their relative position
in the φ-direction. So this collection of smaller disks generates a branched surface
carrying F .

The proof of Theorem 2.1 requires that we carefully control the size and spacing
of the new generating disks created each time we modify 1. However, the follow-
ing algorithm for modifying 1 produces the same sequence of branched surfaces
(up to diffeomorphism of M).

Given 1 = {Di }i=1,...,n , let T be one-third the minimal amount of the time it
takes for a point in

⋃n
i=1 Di to flow back into

⋃n
i=1 Di . For each positive integer k,

find εk > 0 with the property that flowing any disk D embedded in
⋃n

i=1 Di with
diameter less than εk forward or backward for time at most T gives a disk of
diameter less than 1/k. Cover each element of 1 by disks of diameter less than
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εk in the following manner: For each Di ∈1, triangulate Di with a graph of even
valence (except along ∂Di ) so that every point in Di is a distance of at most εk/3
from the nearest vertex. (Here we are measuring distance within Di using the
induced metric.) Cover each vertex of the graph with a disk of diameter less than
εk so that any point x ∈ Di is contained in at least one and at most three disks.
(Choose these disks so that their boundaries only intersect transversely.) Next,
number the disks covering each Di ∈ 1 1, 2 and 3 so that no two disks of the
same number meet (see Figure 5). Then lift all disks numbered 1 forward along
the flow for time T and push all disks numbered 3 backward along the flow for
time T . (Leave those labeled 2 fixed.) The new collection 1k of disks satisfies
the conditions for a generating set transverse to φ; so 1k generates a branched
surface Wk . If we use the same cover of 1, but reduce the amount of time we flow
its elements forward or backward, the generating set we obtain still produces the
same Wk .

To prove Theorem 2.1, we showed that a flow φ with no self-return disks is
transverse to a foliation F if and only if there exists a K > 0 such that Wk carries
F for all k ≥ K . We now show this to be the case, regardless of whether or not φ
has a self-return disk.

Theorem 2.2. Let φ be a C1 nonsingular flow on a closed orientable 3-manifold
M and let W be a branched surface constructed from φ. The flow φ is transverse
to a foliation F if and only if iterating the modification process above finitely many
times on W yields a branched surface carrying F. Specifically, φ is transverse to a
foliation F if and only if there exists a K > 0 such that Wk carries F for all k ≥ K .
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Proof. Suppose φ is transverse to some foliation F . Let 1 = {Di }1≤i≤n be a
generating set for a branched surface W constructed from φ. If W carries F , then
we’re done. So suppose this is not the case. As in the proof of Theorem 2.1,
construct a branched surface V using another generating set X for φ such that
each element of X is contained in a leaf of F and X ∩1 = ∅. So V carries F ,
and when we cut M open along X to obtain N (V ), each element of 1 becomes
embedded in the interior of N (V ), transverse to the fibers.

Let {1k} be a sequence of generating sets for φ obtained by successively ap-
plying our modification procedure to 1. We can change the value T used in the
construction of {1k} so that it is less than one-third the minimal amount of time
it takes a point in X ∪1 to flow back into it, without affecting the correspond-
ing sequence {Wk} of branched surfaces. This ensures that when we cut M open
along X , each 1k also becomes embedded in N (V ), transverse to the fibers.

In the proof of Theorem 2.1, we show that if none of the branched surfaces
produced by our modification process carry F , then for all k sufficiently large we
can find a staircase loop γk in (X ∪1k, φ) that is contained in N (V ). In addition,
we can choose these loops so that ‖γk‖hor→ 0 as k→∞. (This does not require
the absence of self-return disks for φ.) Moreover, the sequence {γk} corresponds
to a sequence {γ∗k} of staircase loops in (X ∪ 1,φ) contained in N (V ) whose
horizontal lengths are also decreasing to 0. This follows from the observation that
for any k, each step in γk has a preimage in 1 (before we flow the broken pieces
of 1 forward or backward). The steps of γ∗k consist of unions of these preimages.

Now, the projection of ∂X ∪ ∂1 along fibers of N (V ) onto V produces a finite
graph. Furthermore, each staircase loop in (X ∪1,φ) that is contained in N (V )
corresponds to a cycle of disks from the set X∪1 which, when projected, gives an
(possibly self-intersecting) annulus in V . Among the generators for that annulus
that are contained in its boundary and hence contained in the finite graph produced
above, there exists one of minimal length. It follows that there exists a lower bound
on the horizontal length of staircase loops in (X ∪1,φ) contained in N (V ). So
for all k sufficiently large, Wk carrries F . �

According to Theorem 2.2, if a nonsingular flow is transverse to a foliation F ,
then our algorithm for successively modifying any branched surface transverse to
that flow will eventually produce a branched surface that carries F . However, we
still need a way to actually detect when this occurs. Our method for doing so will
require the following:

Theorem 2.3. Let φ be a C1 nonsingular flow on a closed 3-manifold M and W be
a branched surface constructed from φ. We can construct a branched surface W ′′

(embedded in a different manifold M ′′) such that W ′′ carries a Reebless foliation
if and only if W carries a foliation.
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Proof. Let 1 be a generating set for a branched surface W transverse to φ. Perturb
φ slightly, if necessary, so that inside each minimal Reeb skeleton there exists a
periodic orbit that does not meet the branch set µ of W . Afterwards, if none of
the periodic orbits inside the Reeb skeleton are attractors or repellors, choose one
and “blow it up” so that it has a small tubular neighborhood consisting entirely of
periodic orbits (which also misses µ); then perturb the flow within the tube so that
it contains an attracting periodic orbit. (The new φ can also be used to construct W
from1.) After all such modifications, each Reeb skeleton contains a disk, in some
sector S of W , that is met by an attracting or repelling periodic orbit γ of φ and
flows, either forward or backward, into its own interior without meeting µ. Also,
there exists a corresponding self-return disk D for φ (or φ−1) contained in some
component of ∂N (W ). In other words, D projects onto our original self-return
disk and is contained in some (split-open) element of 1 whose projection onto W
contains S. After collapsing the complement of N (W ) in M , flow D slightly for-
ward if γ is an attractor and slightly backward if γ is a repellor. Subsequently, add
D to the collection1 of generating disks for W . If γ is an attractor (repellor), then
some of the original generating disks are met by forward (backward respectively)
orbit segments from D back into itself. Create holes in these generating disks that
are just large enough to ensure that this situation no longer occurs. See Figure 6.
(As a result, our generating set no longer consists of embedded disks. However,
the branched surface construction described in Section 1 can also be applied to the
more general setting where1 consists of finitely many closed planar surfaces with
boundary.) These changes in 1 correspond to the insertion of a Reeb skeleton 6
through S so that the intersection of ∂6 with the branch set of the new W consists
of finitely many meridian curves. Furthermore, all sectors branching into ∂6 from

Di∈∆

Dj∈∆

D

Dj

Di

D

Figure 6
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Figure 7

the exterior of6 do so in the opposite direction than does the only sector branching
into ∂6 from the interior of 6. See Figure 6. So if some foliation F carried by
the new W has a Reeb component carried by 6 ∩W , then F can be modified so
that it has only trivial holonomy around the meridian curves of ∂6. This Reeb
component then becomes removable in the usual sense. That is, we can modify F
to eliminate this Reeb component while staying transverse to φ, and when we do
so we get a foliation carried by the original W . Consequently, say that such a Reeb
skeleton is removable.

Conversely, we can modify any foliation carried by the original W by inserting
a Reeb component that is carried by 6∩W . So the modified W carries a foliation
if and only if the original W carries a foliation. See Figure 7.

Continue to modify W , as above, by inserting a removable Reeb skeleton into
the interior of each minimal Reeb skeleton for the original W . (These new Reeb
skeletons are pairwise disjoint.) Next, excise the interior of each of the new Reeb
skeletons to obtain a manifold M ′ with boundary. Let φ′ and W ′ represent the
restriction of φ and W , respectively, to M ′. Using the identity map, glue M ′ to a
copy of itself (on which the orientation of φ′ has been reversed) along each of its
toral boundary components T1, . . . , TN . This produces a new manifold M ′′ and a
new flow φ′′. Since the flow φ′ is transverse to ∂M ′, the new flow is nonsingular.
(It is possible that φ′′ is not C1 along the seam

⋃
1≤i≤N Ti . Specifically, when we

create M ′′, it is possible that some of the orbits of φ′ in M ′ do not piece together
smoothly with the corresponding orbits of φ′−1 in the copy of M ′.)

To ensure that W ′ and its copy W ′c glue to give another branched surface W ′′, we
modify W ′c slightly near each piece of its branch set contained in the seam. More
precisely, the identity map used to glue each toral boundary component Ti to a
copy of itself will initially yield local neighborhoods as shown in Figure 8. So we
shift the location of each branching of W ′c into Ti slightly, while staying transverse
to φ′′, to obtain local neighborhoods as shown in Figure 8. We then smooth out
the orbits of φ′′ in a small neighborhood of the seam, while staying transverse to
the new branched surface W ′′, so that φ′′ becomes a nonsingular C1 flow on M ′′.
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All sectors of W ′′ that branch into the same component of the seam do so in the
same direction. So any smoothly embedded compact surface in W ′′ that intersects
the seam is contained in the seam, and hence is a component of ∂M ′. It follows that
any compact surface that is smoothly embedded in W ′′ is also smoothly embedded
in W .

As noted earlier, if the original W carries a foliation, then our modified W also
carries a foliation F where Ti is a leaf contained in int N (W ) for each 1≤ i ≤ N . In
this case, W ′ carries a foliation of M ′ where each Ti is a toral leaf in the boundary
of some fiber neighborhood N (W ′). Consequently, W ′′ also carries a foliation
where each Ti is a leaf.

Conversely, W carries a foliation if W ′′ does. To see this, note that we can
thicken W ′′ to obtain N (W ′′) so that each Ti becomes embedded in the interior of
N (W ′′). Since for every i ≤ N , all sectors of W ′′ branching into Ti do so from
the same direction, we can isotope any foliation of N (W ′′) so that each Ti is a
leaf [Shields 1996]. So if W ′′ carries some foliation, then N (W ′) has a foliation
where each Ti is a leaf contained in ∂N (W ′). See Figure 9. We can then glue Reeb
skeletons back into W ′ along each Ti to get a branched surface transverse to φ and
carrying a foliation F of M such that each Ti is a leaf bounding a Reeb component
of F . In fact, the branched surface we obtain is the same modified W we obtained
earlier by inserting removable Reeb skeletons into the original W . It follows that
the original W will also carry a foliation.

All that remains is to show that W ′′ is Reebless. If not, there exists a solid torus
6′′ embedded in M ′′ so that ∂6′′ ⊂ W ′′ and 6′′ ∩W ′′ carries a Reeb foliation of
6′′. Choose 6′′ so that it does not properly contain another solid torus with these
properties. Since ∂6′′ is compact and smoothly embedded in W ′′, either

∂6′′ ∩
⋃

1≤i≤N Ti =∅ or ∂6′′ = Ti for some 1≤ i ≤ n.

In particular, ∂6′′ is smoothly embedded in both W ′ and W . Now, recall that to
create M ′′ we removed a tube through the interior of each Reeb skeleton for W in
M to get M ′, and then glued M ′ to a copy M ′c of itself. Hence, 6′′ is not contained
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in M ′; nor is it contained in M ′c. In other words, Ti ⊆ int6′′ for some 1 ≤ i ≤ N .
As noted above, all sectors of W ′′ branching into Ti do so in the same direction.
So Ti is a leaf in the Reeb foliation carried by 6′′ ∩ W ′′. However, this means
that Ti bounds a Reeb component of this foliation that is properly contained in 6′′,
contradicting the way we chose 6′′. It follows that any foliation carried by W ′′ is
Reebless. �

Theorem 2.4. Given a closed 3-manifold M , there is a procedure that detects when
a C1 nonsingular flow on M has a transverse foliation.

Proof. Given a nonsingular flow φ, let1 be a generating set for a branched surface
W constructed from φ and let {Wk} be a sequence of branched surfaces obtained by
applying our algorithm to W . By Theorem 2.2, some Wk will carry a foliation if and
only if φ is transverse to a foliation. So we describe a procedure for determining
whether or not a given Wk carries a foliation.

For each branched surface Wk in our sequence, we can construct the corre-
sponding Reebless branched surface W ′′k and transverse flow φ′′ by excising a
finite nonempty collection τk of solid tori and gluing the resulting manifold with
boundary to a copy of itself. Choose the set τk , as in the proof of Theorem 2.3, so
that W ′′k carries a Reebless foliation (where the boundary of each element of τk is
a leaf) if and only if Wk carries a foliation.

Using the procedure described in [Agol and Li 2003, proof of Theorem 5.2,
step 1], we can then determine whether the manifold M ′′k created during the con-
struction of W ′′k is irreducible, prime or homeomorphic to S2

× S1. If M ′′k is prime,
then it has no Reebless foliation, so there can be no such foliation carried by W ′′k .
If M ′′k is homeomorphic to S2

× S1, then the only Reebless foliation of M ′′k is the
trivial foliation by spheres. In this case, W ′′k cannot carry a Reebless foliation in
which the tori bounding the elements of τk are leaves.
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So we can assume that M ′′k is irreducible. It then follows that there are no
smoothly embedded spheres in W ′′k since such a sphere would be transverse to φ′′k
and bound a 3-ball; by Pugh’s generalized Poincare index theorem [Pugh 1968],
this 3-ball would necessarily contain a singularity for the flow, contradicting that
φ′′k is nonsingular.

Hence, Agol and Li’s procedure of [2003, proofs of Theorems 2.8 and 3.9] can
be used to determine whether or not W ′′k fully carries an essential lamination. In
the case that it does, the method of [Gabai 1983, proof of Theorem 5.1] can be
used to extend this lamination to a Reebless foliation carried by W ′′k . �

We next show that if our initial generating set for φ is chosen carefully, then our
algorithm can be used to detect whether or not there is a foliation that stays some
bounded distance δ away from φ. To state the result more precisely, we first need
some definitions.

Suppose U = {Ui }i=1,...,N is a covering of M by flow boxes for φ. For each
i ≤ N , there is a homeomorphism hi : Ui → I 3, where I = [0, 1] and all images
of orbit segments of φ contained in Ui are in the vertical direction (that is, each
orbit of hi (φ ∩Ui ) is of the form ({x0}X{t})0≤t≤1 for some x0 ∈ I 2). For each i ,
we refer to the preimage of ∂(I 2)× I under hi as the vertical boundary ∂vUi of Ui

and the preimages of I 2
×{0} and I 2

×{1} as the base and top, respectively.
We say that U is a standard covering of M if

(1) every point of M is contained in at most three flow boxes in U ,

(2) for every i and j , either Ui ∩U j =∅, or ∂vUi and intersect ∂vU j transversely
along a finite number of orbit segments, and

(3) Ui ∩U j ∩Uk is connected for every i , j and k.

Theorem 2.5. Given a C1 nonsingular flow φ on a closed 3-manifold M , define
U = {Ui }i=1,...,N to be a standard covering of M by finitely many flow boxes for
φ such that for all i 6= j , the top of Ui does not intersect the top or bottom of U j .
Choose a generating set1 for φ consisting of a horizontal slice from each box that
does not meet the top of any box, and let {1k} be a sequence of generating sets
obtained by applying our algorithm to 1. For any δ > 0, we can find an integer
K > 0 such that for any k ≥ K , the branched surface generated by 1k carries
all foliations of M that remain a bounded distance of δ from φ. Furthermore, K
depends only on δ, φ, 1 and U.

Proof. Assume δ > 0 is given and choose U as in the hypotheses. Let 1 be a
generating set for φ consisting of one horizontal slice, from each flow box, that
does not meet the top of any of the flow boxes. In other words, for each D ∈ 1,
there exists 1≤ i ≤ N and 0≤ t0 < 1 such that

D = hi
−1(I 2

×{t0}) and D ∩ (h j
−1(I 2

×{1}))=∅
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for all 1≤ j ≤ N . Then for each 1≤ i ≤ N , there exists a ti ∈ (0, 1) such that

(hi
−1(I 2

×[ti , 1]))∩1=∅ and

(hi
−1(I 2

×[ti , 1]))∩ (h−1
j (I

2
×{0}))=∅ for all 0≤ j ≤ N ,

and
(h−1

i (I 2
×[ti , 1]))∩ (h−1

j (I
2
×[t j , 1]))=∅ for all j 6= i .

Note that since U is finite, we can find some d > 0 such that the distance between
any two components of hi (Ui∩(

⋃
1≤ j≤N h−1

j (I
2
×[t j , 1]))), as well as the distance

between any such component and a component of hi (Ui∩(
⋃

1≤ j≤N h−1
j (I

2
×{0}))),

exceeds d for all 1≤ i ≤ N .
Now suppose there exists a foliation F of M whose distance from φ is bounded

below by δ (in that the smallest positive angle between the tangent vector to φ
and the tangent plane to the foliation at any point exceeds δ). We can construct
a branched surface V carrying F using another generating set X for φ, where
each C ∈ X is contained in

⋃
1≤i≤N h−1

i (I 2 X [ti , 1]) and in a leaf of F . We can
also ensure that each orbit segment of φ|Ui meets X ∩ (h−1

i (I 2
× [ti , 1])) for all

1≤ i ≤ N . So, henceforth, we shall refer to h−1
i (I 2

×[ti , 1]) as the X-region of Ui .
Since 1 cannot intersect any of the X -regions of U , the elements of X ∪1 are
pairwise disjoint. Thus when we cut M open along X to obtain N (V ) (foliated
by F), each element of 1 becomes embedded in the interior of N (V ), transverse
to the fibers.

Let {1k} be a sequence of generating sets for φ obtained by applying our al-
gorithm to 1. Recall that if we reduce the value T used in the construction of
{1k} so that it is less than one-third the minimal amount of time it takes a point in
X ∪1 to flow back into X ∪1, we do not affect the corresponding sequence {Wk}

of branched surfaces. So we can assume that when we cut M open along X , each
1k also becomes embedded in N (V ), transverse to the fibers. (The integer K we
find will not depend on X or N (V ). However, these objects play an important role
in the proof of Theorem 2.1, which we adapt here to show that WK carries F .)

For any k > 0, the branched surface Wk carries F if and only if we can flow
the elements of 1k injectively onto disks in leaves of F without changing their
relative position along orbits of φ (see Section 2). If we try to do so, while staying
in N (V ), there are only 2 obstructions we could encounter [Goodman and Shields
2007, Lemma 2.2]. The first is the existence of a staircase loop in (1k, φ) contained
in N (V ). This can cause problems, for example, if all the leaves of F are compact.
The other possible obstruction involves the existence of a connecting strip; that
is, a strip embedded in the interior of N (V ), transverse to the fibers, with ∂N (W )

branching from both its ends. When such a strip is crossed with negative index by a
staircase curve γk in (1k, φ) (as in Figure 10, top), yet is crossed with nonnegative
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Figure 10

index by F (as in either of the bottom figures in Figure 10), we cannot move the
steps of γk into leaves of F without either changing their relative position in the
flow direction or leaving N (V ). (This is the only situation in which a connecting
strip presents a problem.)

Both of these obstructions involve staircase curves in (1k, φ) that miss X . As
noted earlier, each such curve (or loop) γk corresponds to a staircase curve (or
loop, respectively) γ∗k in (1, φ) that also misses X . Also, γ∗k crosses a connecting
strip S with negative index if and only if γk crosses S with negative index. (For
details, see [Goodman and Shields 2007, proof of Theorem 2.3, page 12].)

So we shall first consider staircase curves in (1, φ) that miss X . We show
that if the horizontal length of such a curve is sufficiently small, then it cannot be
a loop, nor can it cross any connecting strip with negative index that is crossed
with nonnegative index by F . In other words, we find a constant η such that any
staircase curve in (1k, φ) that is involved in one of the obstructions described above
corresponds to a staircase curve in (1, φ) whose horizontal length exceeds η. We
then show how to find an integer K such that for every staircase curve in (1K , φ),
the horizontal length of the corresponding staircase curve in (1, φ) is less than η.

To begin, note that for any 1 ≤ i ≤ N , we can project (∂1∩Ui )∪ (∂vUi ) onto
the base of Ui to obtain a finite graph. We can use this to argue, as in the proof of
Theorem 2.2, that there exists a lower bound λi on the horizontal length of staircase
curves in (1, φ) contained in Ui that begin and end in the same component of
1∩Ui .

For any 1 ≤ i ≤ N , we can also project Ui ∩ (
⋃

1≤ j≤n ∂vU j ) onto the base
of Ui get another finite graph Gi . There exists a lower bound λ′i on the lengths
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of paths in Ui whose projections join nonadjacent edges of Gi . Choose some
λ<min({λi | 0≤ i ≤ N }∪{λ′i | 0≤ i ≤ N }) and let γ be a staircase curve in (1, φ)
contained in N (V ) such that 0< ‖γ‖hor < λ.

We first show that γ cannot be a loop. If some flow box in U contains γ, then
γ is not a staircase loop, since ‖γ‖hor < λ. So suppose there exist some i, j ≤ N
such that γ begins in Ui , enters U j and then later exits Ui . In particular, choose
i so that once γ exits Ui , it is no longer contained in any flow box. Choose j so
that γ exits Ui while still in U j , and so that no flow box met by γ before it enters
U j has this property. There exists a point at which γ enters U j and remains in U j

until after its exit from Ui . Let γ′ be the subcurve of γ from this point of entry into
U j to its point of exit from Ui .

For every i ≤ N , that (h−1
i (I 2

× [ti , 1]))∩1 is empty means that there can be
no steps of γ in the X -region of Ui . So γ cannot begin in [h−1

i (I 2
×[ti , 1])], since

this would mean that the bottom of U j intersects this X -region, contradicting the
way we chose ti . Furthermore, the way we chose X ensures that any orbit segment
of φ that enters a X -region of U must meet X before exiting that region. So since
no orbit segment in γ can flow through the X -region of Ui , the terminal point of γ′

lies in ∂vUi . If the initial point of γ′ lies in ∂vU j (as in Figure 11), then projecting
γ′ onto the base of U j yields a curve whose initial point and terminal point lie in
adjacent edges of G j , and whose interior does not meet G j (since ‖γ‖hor <λ

′

j ). It
follows that γ′ is contained in Uk for some k 6= i, j . (Figure 12 shows the projection
of γ′ onto a portion of G j .) By the way we chose i , the curve γ must then enter
Uk before entering U j , contradicting the way we chose j .

So γ enters U j through its base, and if it subsequently exits U j , it would have
to do so through ∂vU j . However, this would mean that there exists a subcurve γ′′

contained in γ ∩U j that begins in ∂vUi and ends in ∂vU j . Specifically, γ′′ is the
portion of γ that begins at its exit from Ui and ends at its exit from U j . Since
‖γ‖hor < λ

′

j , the initial point and terminal point of the projected γ′′ lie in adjacent
edges of G j , and its interior does not meet G j . Let x be the vertex adjacent to both
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these edges. There exists a flow box Ul , with l 6= i, j , containing x . Specifically,
the point at which γ enters U j is contained in Ul . Moreover, γ cannot exit Ul before
exiting U j (by our assumption that the interior of γ′′ meets no edges of G j ). So
since γ exits Ui while in U j and by the way we chose i , it enters Ul and (before
entering U j ) remains there until its exit from Ui , contradicting the way we chose
j . It follows that once γ enters U j it cannot leave it. In particular, γ cannot be a
loop.

Now suppose that γ crosses some connecting strip S with negative index and
that F crosses S with nonnegative index. Let C ′ and C ′′ be the elements of X
containing the ends of S. Specifically, the initial point γ(0) of γ lies in C ′ and
the terminal point γ(1) lies in C ′′. Furthermore, the first step of γ intersects some
fiber of N (V ) above C ′ and the last (higher) step intersects a fiber below C ′′. See
Figure 13. Since the steps of γ are contained in 1 (which does not intersect any of
the X -regions), γ must exit the X -region containing its initial point from the top,
before entering the X -region containing its terminal point from the bottom.

So if γ is contained in Ui , the distance between hi (γ(0)) and hi (γ(1)) exceeds d .
In particular, the distance in the vertical direction between the horizontal slices of
I 3 containing hi (γ(0)) and hi (γ(1)), respectively, exceeds d −‖hi (γ)‖hor (which

CF CFF
γ

C ′ C ′′
γ

Figure 13
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is possibly negative). Now, there exists a constant c such that

1
c
(d(hi (x), hi (y))≤ d(x, y)≤ c(d(hi (x), hi (y)),

for all i ≤ N and all x, y ∈M . So the horizontal length of hi (γ) is less than c‖γ‖hor.
In particular, whenever ‖γ‖hor < d/(2c), the absolute value of the smallest angle
between the foliation hi (F |Ui ) and the flow in the vertical direction must, at some
point p, be less than arctan((2c‖γ‖hor)/(d)) (since F crosses6 with a nonnegative
index). There also exists a constant ζ such that

(1/ζ )( 6 d(hi (v), hi (w))≤ 6 (v,w)≤ ζ(6 (hi (v), hi (w))

for all i ≤ N and any nonzero vectors v,w,∈ Tp(Ui ). So, in this case, the angle
between F and φ at h−1

i (p) is less than ζ arctan((2c‖γ‖hor)/(d)).
If, on the other hand, γ begins in Ui and ends in U j (that is, one end of 6 is

contained in Ui and the other is contained in U j ), then since γ enters U j from the
bottom, the lengths of both hi (γ ∩Ui ) and h j (γ ∩U j ) are at least d . In particular,
the distance in the vertical direction between bottom of h j (U j ) and the horizontal
slice of I 3 containing h j (γ(1) exceeds d−‖h j (γ∩U j )‖hor. Likewise, the distance
in the vertical direction between hi ((h−1

j (I
2
×{0}))∩Ui ) and the horizontal slice

of I 3 containing hi (γ(0)) exceeds d−‖hi (γ ∩Ui )‖hor. Hence we can argue, as in
the previous case, that whenever ‖γ‖hor < d/(2c), somewhere in Ui ∪U j the angle
between F and φ is less than ζ arctan((2c‖γ‖hor)/(d)).

Given any δ > 0, we can choose an η with 0 < η < min{λ, d/(2c)} so that
δ > ζ arctan(2cη)/d). As shown above, the horizontal length of any staircase loop
in (1, φ) is at least λ, and therefore exceeds η. Furthermore, since the foliation F
is bounded away from φ by δ, the horizontal length of any staircase curve in (1, φ)
that crosses a connecting strip with a different index than does F also exceeds η.
So all that remains to show is that we can find an integer K such that for every
staircase curve γK in (1K , φ), the horizontal length of the corresponding staircase
curve γ∗K in (1, φ) is less than η.

For this, recall that to construct 1k , we cover each element of 1 by disks of
diameter less than some number εk (where εk→ 0 as k→∞). We then flow some
of these disks forward and some backward to obtain 1k . Since no two adjacent
disks in same element of 1 move in the same direction, at most three consecutive
steps in γk have preimages in the same element of 1. Hence, if γk is a staircase
curve in (1k, φ), each step in the corresponding staircase curve γ∗k in (1, φ) has
length less than 3εk .

Now choose K sufficiently large to ensure that 6εK P < η, where P is the max-
imal number of components in 1 ∩Ui over all i ≤ N . If γ∗K is contained in Ui ,
then each of its steps is contained in a distinct element of 1∩Ui . For suppose, to
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the contrary, that there exists a subcurve of γ∗K that begins and ends in the same
component of1∩Ui . We can choose this subcurve so that its interior does not meet
any component of 1∩Ui more than once. This ensures that its horizontal length
will then be less than 3εK P < η < λ < λi , contradicting the way we chose λi . It
follows that when γ∗K is contained in Ui , each of its steps is contained in a distinct
element of 1∩Ui ; hence ‖γ∗K‖hor < 3εK P < η.

If on the other hand, the initial point γ∗K (0) of γ∗K lies in Ui and γ∗K exits Ui after
entering some other flow box U j , then either γ∗K remains in U j or it exits U j at
some point γ∗K (s1), s1 > 0. In the former case, the horizontal length of γ∗K is less
than 6εK P < η. In the latter case, this is true for the subcurve γ∗K (s)0≤s≤s1 . But
η<λ and we have already shown that any staircase curve in (1, φ)with horizontal
length less than λ cannot exit U j . So this latter case cannot occur. �
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MIXED INTERIOR AND BOUNDARY NODAL BUBBLING
SOLUTIONS FOR A sinh-POISSON EQUATION

JUNCHENG WEI, LONG WEI AND FENG ZHOU

We consider here the semilinear equation 1u + 2ε2 sinh u = 0 posed on a
bounded smooth domain � in R2 with homogeneous Neumann boundary
condition, where ε > 0 is a small parameter. We show that for any given
nonnegative integers k and l with k+ l ≥ 1, there exists a family of solutions
uε that develops 2k interior and 2l boundary singularities for ε sufficiently
small, with the property that

2ε2 sinh uε⇀ 8π
2k∑

i=1

(−1)i−1δξi + 4π
2l∑

i=1

(−1)i−1δξi ,

where (ξ1, . . . , ξ2(k+l)) are critical points of some functional defined explic-
itly in terms of the associated Green function.

1. Introduction

The two-dimensional sinh-Poisson equation

(1-1) 1u+ 2ε2 sinh u = 0

arises in various important contexts, notably as a vorticity equation in classical
hydrodynamics [Gurarie and Chow 2004; Chow et al. 1998; Kuvshinov and Schep
2000; Mallier and Maslowe 1993], in physico-chemical hydrodynamics [Probstein
1994] and in the geometry of constant mean curvature surfaces [Wente 1986]. In
the vorticity connection, it occurs in a remarkable manner out of natural relaxation
states in the long-time computation of two-dimensional fluid motion [Mallier and
Maslowe 1993] (see also the references therein). In geometry, the sinh-Poisson
equation plays a very important role in the study of the construction of constant
mean curvature surfaces initiated by Wente [1986]. Wente’s seminal work then
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led to work by Steffen [1986], Struwe [1986] and Brezis and Coron [1984], which
completed the understanding of the blow-up for constant mean curvature surfaces
from a geometric point of view. Spruck [1988] was the first to study the sinh-
Poisson equation from an analytic point of view. Recently, the asymptotic behav-
ior of solutions to (1-1) was studied on a closed Riemann surface in [Ohtsuka and
Suzuki 2006] and [Jost et al. 2008]. The authors applied the so-called “symmetriza-
tion method” and “Pohozaev identity”, respectively, to show that there possibly
exist two different types of blow-up for a family of solutions to (1-1). Conversely,
Bertolucci and Pistoia [2007] tried to construct blow-up solutions to (1-1) with
Dirichlet boundary conditions for n = 2, and proved that for ε positive and small
enough, there exist at least two pairs of solutions that change sign exactly once, that
concentrate in the domain and that have their nodal lines intersecting the boundary.

In [Wei et al. 2011] and [Wei 2009] the Neumann problem

(1-2)
{
1u+ 2ε2 sinh u = 0 in �,

∂u/∂ν = 0 on ∂�

was considered, where� is a bounded domain in R2 with smooth boundary ∂� and
ε > 0 is a parameter. The authors showed a concentration phenomena of solutions
to (1-2) in the domain in [Wei et al. 2011], and on the boundary in [Wei 2009].

In this paper, we continue the study of the existence of solutions to (1-2). We
prove that there exists a family of solutions uε that concentrate positively and neg-
atively in the domain and its boundary.

To state our results, we need to introduce some notation. First, let us define the
corresponding Green function for the Neumann problem:

(1-3)


−1G(x, y)= δy(x)− 1/|�| in �,

∂G/∂ν = 0 on ∂�,∫
�

G(x, y)dx = 0.

The regular part of G(x, y) is defined depending on whether y lies in the domain
or on its boundary as

(1-4) H(x, y)=

G(x, y)+ 1
2π

log|x − y| for y ∈�,

G(x, y)+ 1
π

log|x − y| for y ∈ ∂�.

In this way, H( · , y) is of class C1,α in �.
For k+ l ≥ 1 and points ξ j for j = 1, . . . , 2(k+ l), with ξ j ∈� for j ≤ 2k and

ξ j ∈ ∂� for 2k+ 1≤ j ≤ 2(k+ l), we define

(1-5) ϕ2(k+l)(ξ1, . . . , ξ2(k+l))=

2(k+l)∑
j=1

c2
j H(ξ j , ξ j )+

∑
j 6=i

c j ci (−1) j+i G(ξ j , ξi )
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and denote

Md :=
{
ξ = (ξ1, . . . , ξ2k, ξ2k+1, . . . , ξ2(k+l)) ∈�

2k
× ∂�2l∣∣min

j 6=i
|ξ j − ξi | ≥ d, min

j=1,...,2k
dist(ξ j , ∂�)≥ d

}
,

where ci = 8π for i = 1, . . . , 2k and ci = 4π for i = 2k+ 1, . . . , 2(k+ l).

Definition 1.1 [Esposito et al. 2006]. We say that ξ is a C0-stable critical point of
ϕm : Md → R if for any sequence of functions ϕn

m : Md → R such that ϕn
m → ϕm

uniformly on compact sets of Md , the function ϕn
m has a critical point ξn such that

ϕn
m(ξn)→ ϕm(ξ).

In particular, if ξ is a strict local minimum/maximum point of ϕm , then ξ is a
C0-stable critical point.

Theorem 1.2 (main result). Let k and l be nonnegative integers with k + l ≥ 1.
Assume ξ∗ ∈ Md is a C0-stable critical point of ϕ2(k+l). Then for any sufficiently
small ε > 0, there is a solution uε to (1-2) with the property that

(1-6) 2ε2
∫
�

|sinh uε|dx→ 8π(2k+ l) as ε→ 0.

More precisely, for any sequence {εn}n≥1 that tends to 0, there is a subsequence
and 2(k + l) points ξi ∈ � for i = 1, . . . , 2(k + l), with ξ j ∈ � for j ≤ 2k and
ξ j ∈ ∂� for 2k+1≤ j ≤ 2(k+ l), and positive constants µi for i = 1, . . . , 2(k+ l)
such that

(1-7) uε(x)=
2(k+l)∑

i=1

(−1)i−1
(

log 1
(ε2µ2

i +|x−ξi |
2)2
+ ci H(x, ξi )

)
+ o(1)

and

(1-8) 2ε2 sinh uε⇀ 8π
2k∑

i=1

(−1)i−1δξi + 4π
2(k+l)∑

i=2k+1

(−1)i−1δξi

in the sense of measure. Moreover, the constants µi are given by

log(8µ2
i )= ci H(ξi , ξi )+

∑
j 6=i

(−1) j+i c j G(ξi , ξ j ).

The l = 0 (or k = 0) case of this theorem was proved in [Wei et al. 2011] (or
[Wei 2009]). The conditions that ξ∗ ∈ Md be a C0-stable critical point of ϕ2(k+l)

is perhaps not necessary. Here, we need it only because of the technique we will
use. In particular, for the case k = l = 1 and � = B = B(0, 1), the unit ball
in R2, we don’t need the condition and can obtain the existence and the profile
of sign-changing solutions that concentrate positively and negatively at different
points ξ1, ξ2 ∈ B and ξ3, ξ4 ∈ ∂B. More precisely:
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Theorem 1.3. Let k = l = 1. Then, there exists a solution uε to (1-2) that concen-
trates at different points ξ1, ξ2 ∈ B and ξ3, ξ4 ∈ ∂B, according to (1-6), (1-7) and
(1-8) with k = l = 1, as ε goes to 0.

Del Pino and Wei [2006] considered the problem −1u + u = λeu under Neu-
mann boundary conditions and built a solution with λ

∫
�

eu uniformly bounded and
boundary-interior concentrating, such that λeu ⇀ 8π

∑k
j=1 δξ j + 4π

∑m
j=k+1 δξ j .

For basic cells, they used explicit solutions of

1u+ eu
= 0 in R2,

∫
R2

eudx <+∞

given by

Uµ,ξ = log
8µ2

(µ2+ |x − ξ |2)2
for µ > 0 and ξ ∈ R2.

In this paper, we will also construct solutions predicted by the theorems using these
ones, but suitably scaled and projected so that it works for the nonlinearity we con-
sider here. A special feature of our problem is presence of mixed positive-negative
boundary-interior bubbling solutions. This is a new concentration phenomenon.
To capture such solutions, we use the so-called localized energy method, which
combines Lyapunov–Schmidt reduction and variational techniques. Such a scheme
was been used in many works; see for instance [Dávila et al. 2005; del Pino et al.
2005; del Pino and Wei 2006] and references therein. Here we follow [del Pino
and Wei 2006; Wei et al. 2011; Wei 2009], but we will overcome some of the
difficulties that the mixed concentration phenomenon brings by delicate analysis.

2. Ansatz for the solution

In this section we will provide a first approximation for the solution of the problem
(1-2) predicted by Theorems 1.2 and 1.3. Let us fix k+l≥1. For i=1, . . . , 2(k+l),
let ξi ∈� and let µi be positive numbers to be chosen later. We define

(2-1) ui (x)= log
8µ2

i

(ε2µ2
i + |x − ξi |

2)2
.

The ansatz is

(2-2) U (x)=
2(k+l)∑

i=1

(−1)i−1(ui (x)+ H ε
i (x))

where H ε
i (x) is a correction term defined as the solution of

(2-3)


1H ε

i = ε
2 1
|�|

∫
�

eui in �,

∂H ε
i

∂ν
=−

∂ui

∂ν
on ∂�
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with the property that

(2-4)
∫
�

H ε
i (x)dx =−

∫
�

ui dx .

This function resembles the shape of the regular part of the Green’s function. In-
deed, the following estimate for H ε

i holds true.

Lemma 2.1. For any 0< α < 1

(2-5) H ε
i (x)= ci H(x, ξi )− log(8µ2

i )+ O(ε)

holds uniformly in �, where H is the regular part of the Green function defined
by (1-4).

Proof. The regular part of Green’s function H(x, ξi ) satisfies

(2-6)


1H(x, ξi )=

1
|�|

in �,

∂H
∂ν
(x, ξi )=

4
ci

(x − ξi ) · ν(x)
|x − ξi |

2 on ∂�.

Now we define zε(x)= H ε
i (x)+ log(8µ2

i )− ci H(x, ξi ). Then
1zε = ε2 1

|�|

∫
�

eui −
ci

|�|
in �,

∂zε
∂ν
= 4

(x − ξi ) · ν(x)
ε2µ2

i + |x − ξi |
2
− 4

(x − ξi ) · ν(x)
|x − ξi |

2 on ∂�.

First, by the definition of ui , we have

(2-7)

ε2
∫
�

eui = ε2
∫
�

8µ2
i

(ε2µ2
i + |x − ξi |

2)2

= 8ε2
∫
�/εµi

µ2
i

(ε2µ2
i + ε

2µ2
i y2)2

ε2µ2
i

= 8
∫
�/εµi

dy
(1+ y2)2

= 2ci

(∫ ∞
0

tdt
(1+ t2)2

+ O
(∫ ∞

1/εµi

tdt
(1+ t2)2

))
= ci + O(ε2µ2

i )

Next, for ξi ∈� with i = 1, . . . , 2k, we have

∂H ε
i

∂ν
= 4

(x − ξi ) · ν(x)
ε2µ2

i + |x − ξi |
2
= 4

(x − ξi ) · ν(x)
|x − ξi |

2 + O(ε2) for all ξi ∈�, x ∈ ∂�.
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For ξi ∈ ∂� with i = 2k+ 1, . . . , 2(k+ l), we have

(2-8) lim
ε→0

∂H ε
i

∂ν
= 4

(x − ξi ) · ν(x)
|x − ξi |

2 for all x 6= ξi .

We claim that for any p > 1 there exists C > 0 such that

(2-9)
∥∥∥∂H ε

i

∂ν
− 4

(x − ξi ) · ν(x)
|x − ξi |

2

∥∥∥
L p(∂�)

≤ Cε1/p.

It is not difficult to prove that the inequality

(2-10) |(x − ξi ) · ν(x)|≤ C |x − ξi |
2 for all x ∈ ∂�

holds for ξi ∈ ∂� by assuming that ξi = 0 and that near the origin ∂� is the graph
of a function P : (−δ, δ)→R with P(0)= P ′(0)= 0. Now from (2-10) we obtain

(2-11)

∣∣∣∂H ε
i

∂ν
− 4

(x − ξi ) · ν(x)
|x − ξi |

2

∣∣∣= 4ε2µ2
i

|(x − ξi ) · ν(x)|
|x − ξi |

2(ε2µ2
i + |x − ξi |

2)

≤
Cε2

ε2µ2
i + |x − ξi |

2
.

Thus for λ > 0 small but fixed,

(2-12)
∣∣∣∂H ε

i

∂ν
− 4

(x − ξi ) · ν(x)
|x − ξi |

2

∣∣∣≤ Cε2 for all |x − ξi | ≥ λ, x ∈ ∂�.

Letting p > 1 and changing variables x − ξi = εyµi , we have∫
Bλ(ξi )∩∂�

∣∣∣ ε2

ε2µ2
i +|x−ξi |

2

∣∣∣p
= Cε

∫
Bλ/εµi (0)∩∂�ε

∣∣∣ 1
1+|y|2

∣∣∣p
dy

= Cε
∫ λ/εµi

0

1
(1+t2)p dt ≤ Cε.

This, combined with (2-11) and (2-12), shows that (2-9) holds.
By elliptic regularity theory, we obtain zε ∈ W 1+s,p(�) for any p ≥ 1, with

0< s < 1/p. On the other hand, from the Poincaré inequality we get∥∥∥zε −
1
|�|

∫
�

zε
∥∥∥

W 1+s,p(�)
≤ C‖∇zε‖L p(�) ≤ Cε1/p.

This implies the existence of a constant M such that

zε(x)= M + O(εα) for any α ∈ (0, 1),

uniformly in �, where M = limε→0|�|
−1
∫
�

zεdx .
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To obtain the result, we only need to show M = 0. First, by the definition of zε
we have

(2-13) M = lim
ε→0

( 1
|�|

∫
�

H ε
i (x)dx + log(8µ2

i )−
ci

|�|

∫
�

H(x, ξi )dx
)
.

The direct computation from (2-4) shows that∫
�

H ε
i (x)=−

∫
�

(
log(8µ2

i )+ log 1
(ε2µ2

i +|x−ξi |
2)2

)

=−|�| log(8µ2
i )+ 2

∫
�

log
(

1+
ε2µ2

i

|x − ξi |
2

)
− 4

∫
�

log 1
|x−ξi |

= −|�| log(8µ2
i )+ ci

∫
�

H(x, ξi )dx + O(ε2 log ε−1),

where the last equality is consequence of the definition of H and the property of
the Green function. Therefore (2-13) implies M = 0. �

In �ε = �/ε, let v(y) = u(εy); then solving problem (1-2) is equivalent to
solving

(2-14)
{
1v(y)+ 2ε4 sinh v = 0 in �ε,

∂v/∂ν = 0 on ∂�ε.

We will seek a solution v of (2-14) of the form

(2-15) v(y)= V (y)+φ(y) for all y ∈�ε,

where

(2-16) V (y)=
2(k+l)∑

i=1

(−1)i−1(ui (εy)+ H ε
i (εy)).

Problem (2-14) can be restated: Find a solution φ to

(2-17)
{
1φ+Wφ+ R+ N (φ)= 0 in �ε,

∂φ/∂ν = 0 on ∂�ε,

where

W = 2ε4 cosh V,(2-18)

N (φ)= 2ε4(sinh(V +φ)−φ cosh V − sinh V ) (the nonlinear term),(2-19)

R =1V + 2ε4 sinh V (the error term).(2-20)

We choose the parameters µi as

(2-21) log(8µ2
i )= H(ξi , ξi )+

∑
j 6=i

(−1) j+i G(ξi , ξ j ).
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From Appendix A, we have for all y ∈�ε the estimates

|R(y)| ≤ Cεα
2(k+l)∑

i=1

1
1+|y−ξ ′i |3

,(2-22)

W (y)=
2(k+l)∑

i=1

8µ2
i

(µ2
i + |y− ξ

′

i |
2)2
(1+ θε(y)),(2-23)

with

(2-24) |θε(y)| ≤ Cεα +Cε
2(k+l)∑

i=1

|y− ξ ′i |,

where ξ ′i = ξi/ε.

3. Analysis of the linearized problem

In this section we study the solvability of the problem

(3-1)


−1φ =Wφ+ h+

2(k+l)∑
i=1

Ji∑
j=1

c j iχi Z j i + c0χ Z in �ε,

∂φ

∂ν
= 0 on ∂�ε

with ∫
�ε

χi Z j iφ = 0 for i = 1, . . . , 2(k+ l), j = 1, Ji ,(3-2) ∫
�ε

χ Zφ = 0,(3-3)

where W is a function that satisfies (2-23) and (2-24), h ∈ L∞(�ε), c0, c j i ∈ R,
the functions χ , χi , Z and Z j i will be defined below, Ji = 2 for i = 1, . . . , 2k, and
Ji = 1 for i = 2k+ 1, . . . , 2(k+ l).

Define z j i by

z0i =
1
µi
− 2

µi

µ2
i + |y|2

and z j i =
y j

µ2
i + |y|2

.

It is well known that any solution to

(3-4) 1φ+
8µ2

i

(µ2
i + |y|2)2

φ = 0 , |φ| ≤ C(1+ |y|)σ

is a linear combination of z j i for j = 0, 1, 2; see [Chen and Lin 2002, Lemma 2.1].
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Next, we fix a large constant R0 and a nonnegative smooth function χ : R→ R

such that χ(r)= 1 for r ≤ R0, χ(r)= 0 for r > R0+ 1, and 0≤ χ ≤ 1.
For i = 1, . . . , 2k (corresponding to the interior bubble case), we define

χi (y)= χ(|y− ξ ′i |), Z j i (y)= z j i (y− ξ ′i ) for j = 0, 1, 2, i = 1, . . . , 2k.

For i = 2k+ 1, . . . , 2(k+ l) (corresponding to the boundary bubble case), first
we strength the boundary similarly to [del Pino and Wei 2006]. Let us concentrate
on ξi ∈ ∂�. Without loss of generality, we assume that ξi = 0 and the unit outward
normal at ξi is (0,−1). Let P(x1) be the defining function for the boundary ∂� in
a neighborhood Bρ(ξi ), that is,

�∩ Bρ(ξi )= {(x1, x2) | x2 > P(x1), (x1, x2) ∈ Bρ(ξi )},

and then define Fi : Bρ(ξi )∩N→ R2 by Fi = (Fi1, Fi2), where

Fi1 = x1+
x2− P(x1)

1+ |P ′(x1)|2
P ′(x1) and Fi2 = x2− P(x1).

Then we set
Fεi (y)= ε

−1 Fi (εy)

and define

χi (y)=χ(Fεi (y)), Z j i (y)= z j i (Fεi (y)) for j = 0, 1, i = 2k+1, . . . , 2(k+l).

It is important to observe that Fi preserves the Neumann boundary condition and

1Z0i +
8µi

(µ2
i + |y− ξ

′

i |
2)2

Z0i = O
(

εα

(1+|y−ξ ′i |)3
)
.

Let 0< b < 1 and define for all i = 1, . . . , 2(k+ l),

(3-5) Z(y)=
{

min{1/µi − ε
b, Z0i (y)} if |y− ξ ′i |< δ/ε,

1/µi − ε
b if |y− ξ ′i | ≥ δ/ε

and χ =
∑2(k+l)

i=1 χi .

Now let us introduce the norms

‖h‖∞ = sup
y∈�ε
|h(y)| and ‖h‖∗ = sup

y∈�ε

|h(y)|

ε2+
∑2(k+l)

i=1 (1+ |y− ξ ′i |)−2−σ
,

where we fix 0< σ < 1, reserving the precise choice for later. Our main result in
this section is stated as follows:

Proposition 3.1. Let d > 0 and let k, l be nonnegative integers with k + l ≥
1. Then there exists a ε0 such that for any 0 < ε < ε0, any 2(k + l)-points
(ξ1, . . . , ξ2(k+l))∈Md and any h∈ L∞(�ε), there is a unique solution φ∈ L∞(�ε),
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c0, c j i ∈ R to (3-1), with i = 1, . . . , 2(k + l) and j = 1, Ji . Moreover there is a
positive C independent of ε such that

‖φ‖L∞(�ε) ≤ C |log ε|‖h‖∗,

max{|c0|, |c j i |} ≤ C‖h‖∗ for i = 1, . . . , 2(k+ l), j = 1, Ji .

We begin to prove this result by studying a linear problem

(3-6)
{
−1φ = h+Wφ in �ε,
∂φ/∂ν = 0 on ∂�ε,

together with orthogonality conditions (3-2) and (3-3).

Proposition 3.2. Let h ∈ L∞(�ε). For fixed d > 0 there exist ε0 > 0 and C such
that if 0 < ε < ε0, ξ = (ξ1, . . . , ξ2(k+l)) ∈ Md and φ ∈ L∞(�ε) is a solution of
(3-6) such that (3-2) and (3-3) hold, then

‖φ‖L∞(�ε) ≤ C log ε−1
‖h‖∗,

where C is independent of ε.

We will prove this estimate by contradiction assuming that there exist a sequence
ε→ 0, points (ξ1, . . . , ξ2(k+l))∈Md (we omit the dependence on ε in the notation)
and functions h, φ ∈ L∞(�ε) such that

(3-7) ‖φ‖L∞(�ε) = 1 and log ε−1
‖h‖∗ = o(1).

Fix 0< γ < β < 1/2 and consider the function η given by

(3-8) η(r)=


1 if r < ε−γ ,

log ε−β − log r
log ε−β − log ε−γ

if ε−γ < r < ε−β,

0 if r > ε−β .

Let η̃ be a radial smooth cut-off function on R2 such that η̃(r) ≡ 1 for r < ε−β ,
η̃ ≡ 0 for r > 2ε−β , |η̃′(r)| ≤ Cεβ and |η̃′′(r)| ≤ Cε2β . Then we set

η1i (y)=
{
η(|y− ξ ′i |) for i = 1, . . . , 2k,
η(|Fεi (y)|) for i = 2k+ 1, . . . , 2(k+ l);

η2i (y)=
{
η̃(|y− ξ ′i |) for i = 1, . . . , 2k,
η̃(|Fεi (y)|) for i = 2k+ 1, . . . , 2(k+ l);

a0i =
1

µi ((4/ci ) log εγ−1+H(ξi , ξi ))

and also
Ẑ0i (y)= Z0i (y)−µ−1

i + a0i G(εy, ξi ).
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Now define a test function

Z̃0i = η1i Z0i + ε(1− η1i )η2i Ẑ0i .

Given φ satisfying (3-6) and the orthogonality conditions (3-2) and (3-3), let

φ̃ = φ−

2(k+l)∑
i=1

di Z̃0i ,

where the numbers di are chosen so that
∫
�ε
χi Z0i φ̃= 0 for any i = 1, . . . , 2(k+l),

namely di =
∫
�ε
χi Z0iφ/

∫
�ε
χi Z2

0i . Observe that

di = O(1) and ‖φ̃‖L∞(�ε) = O(1).

Moreover, φ̃ satisfies

(3-9)

 −1φ̃ =W φ̃+ h−
2(k+l)∑

i=1

di L(Z̃0i ) in �ε,

∂φ̃/∂ν = 0 on ∂�ε,

and the orthogonality condition

(3-10)
∫
�ε

χi Z j i φ̃ = 0 for all i = 1, . . . , 2(k+ l), j = 0, 1, Ji ,

where L := −1−W.
To reach a contradiction it is sufficient to establish the following:

Lemma 3.3. φ̃→ 0 uniformly in �ε.

Lemma 3.4. di → 0 for all i = 1, . . . , 2(k+ l).

We postpone proofs of these lemmas and mention first some key steps.

Lemma 3.5. For all i = 1, . . . , 2(k+ l) and R > 0, we have

φ̃→ 0 uniformly in �ε ∩ BR(ξ
′

i ).

Proof. Assume that for some R > 0 and i = 1, . . . , 2(k + l) there is a c > 0 such
that supBR(ξ

′

i )
|φ̃| ≥ c > 0 for a subsequence ε→ 0. Let us translate and rotate �ε

so that ξ ′i = 0 and �ε approaches the upper half plane R2
+

. By the elliptic estimate,
φ̃→ φ̃0 uniformly on compact sets and φ̃0 is a nontrivial bounded solution of (3-4).
Then we conclude that φ̃0 is a linear combination of z j i for j = 0, 1, Ji . On the
other hand, we can take the limit in the orthogonality relations (3-10), observing
that the limits of the functions Z j i are just rotations and translations of z j i , and we
find that

∫
R2
+

χφ̃0z j i = 0. This contradicts the fact that φ̃0 6≡ 0. �
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Lemma 3.6. φ̃ ≡ 1
|�ε|

∫
�ε

φ̃→ 0.

Proof. By potential theory we have

φ̃(y)− φ̃ =
∫
�ε

G(εy, εz)
(

W φ̃+ h−
2(k+l)∑

i=1

di L(Z̃0i )
)

dz,

where G is the Green function defined by (1-3).
Note that since ∫

�ε

W φ̃+ h−
2(k+l)∑

i=1

di L(Z̃0i )= 0

and

G(εy, εz)=− 4
ci

log ε− 4
ci

log|y− z| + H(εy, εz),

we have

(3-11) φ̃(y)− φ̃

=
1

8π

∫
�ε

(
H(εy, εz)− 4

ci
log|y− z|

)(
W φ̃+ h−

2(k+l)∑
i=1

di L(Z̃0i )
)

dz.

Since φ̃(y)→0 uniformly on sets of the form |y−ξ ′i |< R, we can select a sequence
Rε→∞ such that

φ̃(y)→ 0 uniformly for |y− ξ ′i |< Rε.

We can assume Rε→∞ as slowly as we need.
Select a point ym ∈�ε for m=1, . . . , 2k or ym ∈∂�ε for m=2k+1, . . . , 2(k+l),

such that |ym − ξ
′
m | = Rε. We claim that when we evaluate (3-11) at ym , all terms

in the right side of (3-11) converge to zero except for∫
�ε

log|ym − z|L(Z̃0i )dz = 2π
µi
δmi + o(1),

where δmi is Kronecker’s delta.

Claim 1.
∫
�ε

log|ym − z|L(Z̃0i )dz = 2π
µi
δmi + o(1).

This is proved in Appendix B.

Claim 2.
∫
�ε

log|y− z|h(z)dz = o(1) uniformly for y ∈�ε.
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Proof. Observe that log|y− z| = O(log ε−1) for |y− z|> R, where R > 0 is fixed,
and that

∫
�ε∩BR(y)

∣∣log|y− z|
∣∣dz ≤ C . Then∣∣∣∫

�ε

log|y− z|hdz
∣∣∣≤ C log ε−1

‖h‖∗ = o(1). �

Claim 3.
∫
�ε

log|y− z|W φ̃dz = o(1).

Proof. It suffices to show that log ε−1
∫
�ε

W φ̃dz=o(1). Integrating equation (3-9),
we have ∫

�ε

W φ̃+ h−
2(k+l)∑

i=1

di L(Z̃0i )= 0.

The claim then follows from (B-10) and (3-7). �

Claim 4. A ≡
∫
�ε

H(εy, εz)(W φ̃+ h− L(Z̃0i ))= o(1) uniformly for y ∈�ε.

This is proved in Appendix B.
We now return to the proof of Lemma 3.6. From claims above, we get

(3-12) φ̃(yi )− φ̃ =
8πdi

ciµi
+ o(1) for all i = 1, . . . , 2(k+ l).

But the orthogonality condition (3-3) implies that

(3-13)
2(k+l)∑

i=1

di ai = 0, where ai =

∫
�ε

χi Z2
0i > 0.

Multiplying (3-12) by ci aiµi , adding and using (3-13), we find

2(k+l)∑
i=1

ciµi ai φ̃(yi )− aφ̃ = o(1), where a =
2(k+l)∑

i=1

ci aiµi .

Since φ̃(yi )→ 0 and a is bounded away from zero, we get that φ̃ = o(1). �

Proof of Lemma 3.3. Let φ̌ = φ̃(x/ε), with x ∈�. Then φ̌ satisfies{
−1φ̌(x)= ε−2

(
W̌ φ̌+ h+

∑2(k+l)
i=1 di (1Ž0i + W̌ Ž0i )

)
in �,

∂φ̌/∂ν = 0 on ∂� ,

where W̌ (x)=W (x/ε), Ž0i (x)= Z̃0i (x/ε) and ȟ(x)= h(x/ε). For given δ > 0,
let Eδ =� \

⋃2(k+l)
i=1 Bδ(ξi ). Then

1
ε2 ‖ȟ‖L∞(Eδ) ≤ C‖h‖∗→ 0 and 1

ε2 ‖W̌ φ̌‖L∞(Eδ) ≤ Cε2.
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Furthermore, in Eδ we have Ž0i ≡ 0. Recalling ‖φ̌‖L∞(�)≤ 1 and |�|−1
∫
�
φ̌→ 0,

we obtain φ̌→ 0 uniformly in Eδ and this implies

φ̃→ 0 uniformly in �ε \
⋃2(k+l)

i=1 Bδ/ε(ξ ′i ) for any δ > 0.

For a given R1> 0, let Ai = Bδ/ε(ξ ′i )\BR1(ξ
′

i ). Given ε > 0 small enough, there
exist R1 > 1 independent of ε (if necessary we can choose R1 large enough) and
ψi :�ε ∩ Ai → R smooth and positive such that

−1ψi −Wψi ≥ C |y− ξ ′i |
−2−σ

+ ε2 in �ε ∩ Ai ,

∂ψi/∂ν ≥ 0 on ∂�ε ∩ Ai ,

ψi > 0 in �ε ∩ Ai ,

ψi ≥ c > 0 on ∂Ai ∩�ε,

where C, c > 0 can be chosen independent of ε and ψi is bounded uniformly in
�ε ∩ Ai . Let 90 be the unique solution of

190− ε
490+ ε

2
= 0 in �ε, ∂90/∂ν = ε on ∂�ε,

and take ψ1i = 1− r−σ , where r = |y− ξ ′i |. Then we claim that the function

ψi (y)=
4
σ 2 (C90+ψ1i )

satisfies the requirements.
In fact, a simple calculation shows that

−1ψ1i = σ
2r−2−σ .

If ξ ′i ∈�ε, we have
∂ψ1i

∂νε
= O(ε1+σ ) on ∂�ε.

If ξ ′i ∈ ∂�ε and |y− ξ ′i |> R, we have

∂ψ1i

∂νε
= σ

(y− ξ ′i ) · νε
r2+σ on ∂�ε.

As before, we write ∂�ε near ξ ′i as the graph {(y1, y2) | y2 = ε
−1 P(εy1)} with

P(0)= P ′(0)= 0. Then we have

∂ψ1i

∂νε
=

σ

r2+σ

y1 P ′(εy1)− P(εy1)√
1+ P ′(εy1)2

=
σ

r2+σ

O(εr2)√
1+ O(δ2)

= O
(
ε

rσ
)

for all R < r < δ/ε. Thus we see that

∂ψ1i

∂νε
= o(ε) on ∂�ε.
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Therefore, for |y− ξ ′i |> R with i = 1, . . . , 2(k+ l), where R is large, we have by
the definition of ψi and the fact that W ≤ 1/(1+ |y− ξ ′i |

4) that

−1ψi −Wψi =
C
σ 2 (ε

2
− ε490)−

4
σ 2

C90+ψ1i

1+ r4 +
C

r2+σ ≥ ε
2
+

C
r2+σ .

And on ∂�ε,
∂ψi

∂νε
≥ Cε.

This verifies the claim.
Thanks to the barrierψi , we deduce that the following maximum principle holds

in �ε ∩ Ai . If φ ∈ H 1(�ε ∩ Ai ) satisfies{
−1φ−Wφ ≥ 0 in �ε ∩ Ai ,

φ ≥ 0 on ∂�ε ∩ Ai ,

then φ ≥ 0 in �ε ∩ Ai .
Let h be bounded and φ̃ be a solution of (3-9) satisfying (3-10). We first claim

that ‖φ̃‖L∞(�ε∩Ai ) can be controlled in terms of

2(k+l)∑
i=1

|di |‖L(Z̃0i )‖∗, sup
�ε∩∂Ai

|φ̃|, and ‖h‖∗.

Indeed, set

8= C
(

sup
�ε∩∂Ai

|φ̃| + ‖h‖∗+
2(k+l)∑

i=1

|di |‖L(Z̃0i )‖∗

)
ψi .

By the maximum principle above, we have |φ̃| ≤ 8 in �ε ∩ Ai . Since ψi is uni-
formly bounded, we get

|φ̃| ≤ C
(

sup
�ε∩∂BR1 (ξ

′

i )

|φ̃| + sup
�ε∩∂Bδ/ε(ξ ′i )

|φ̃| + ‖h‖∗+
2(k+l)∑

i=1

|di |‖L(Z̃0i )‖∗

)
in �ε ∩ Ai . But ‖h‖∗ = o(1) by the assumption, sup�ε∩∂BR1

(ξ ′i )|φ̃| → 0 by
Lemma 3.5, and sup�ε∩∂Bδ/ε(ξ ′i )

|φ̃| → 0 as shown above. At the same time, we
also know |di | = O(1) and ‖L(Z̃0i )‖∗ = O(ε2γ ) = o(1) from (B-10), this proves
the result. �

Proof of Lemma 3.4. We take Z̃0i as test function to (3-9), obtaining

(3-14)
2(k+l)∑

i=1

di

∫
�ε

L(Z̃0i )Z̃0i =

∫
�ε

φ̃(1Z̃0i +W Z̃0i )+

∫
�ε

h Z̃0i .
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Observe that

(3-15)
∣∣∣∫
�ε

Z̃0i h
∣∣∣≤ ‖h‖∗‖Z̃0i‖L∞(�ε) ≤ C log ε−1

‖h‖∗
1

log ε−1 = o(1) 1
log ε−1 ,

and

(3-16)
∣∣∣∫
�ε

φ̃(1Z̃0i +W Z̃0i )

∣∣∣≤ ‖φ̃‖L∞(�ε)‖L(Z̃0i )‖∗ = o(1) 1
log ε−1 .

It is not difficult to show as above that∣∣∣∫
�ε

L(Z̃0i )Z̃0i

∣∣∣≥ C
log ε−1 . �

Proof of Proposition 3.1. First we prove that for any φ, c j i , c0 and any solution
to (3-1), we have the bound

(3-17) ‖φ‖L∞(�ε) ≤ C log ε−1
‖h‖∗.

From Proposition 3.2, we obtain that

(3-18) ‖φ‖L∞(�ε) ≤ C log ε−1
(
‖h‖∗+

2(k+l)∑
i=1

Ji∑
j=1

|c j i | + |c0|

)
.

So it suffices to estimate the values of the constants a j i and c0.
To this end, we multiple (3-1) by Z j i and integrate to find

(3-19)
∫
�ε

L(φ)Z j i =

∫
�ε

h Z j i + c j i

∫
�ε

ψi Z2
j i .

Note that Z j i = O(1/(1+ |y− ξi |)) for j 6= 0, so

(3-20)
∫
�ε

h Z j i = O(‖h‖∗)

and

(3-21)
∫
�ε

L(φ)Z j i =

∫
�ε

L(Z j i )φ+

∫
∂�ε

∂Z j i

∂ν
φ = O(ε log ε−1

‖φ‖L∞(�ε)).

Substituting (3-20) and (3-21) into (3-19), we obtain

(3-22) |C j i | = O(‖h‖∗)+ O(ε log ε−1
‖φ‖L∞(�ε)).

On the other hand, multiplying (3-1) by Z we get

(3-23) c0

∫
�ε

χ Z2
=

∫
�ε

L(φ)Z −
∫
�ε

h Z .
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Estimating as before, we have

(3-24)
∫
�ε

h Z = O(‖h‖∗)

and

(3-25)
∫
�ε

L(φ)Z =
∫
�ε

L(Z)φ = O(ε log ε−1
‖φ‖L∞(�ε)).

Thus it follows from (3-23)–(3-25) that

(3-26) |c0| = O(‖h‖∗)+ O(ε log ε−1
‖φ‖L∞(�ε)).

From (3-22) and (3-26) we see that the desired bound holds.
Now consider the Hilbert space

H=
{
φ∈H 1(�ε) :

∫
�ε

χ Zφ=0,
∫
�ε

χi Z j iφ=0 for i=1, . . . , 2(k+l), j=1, Ji

}
with the norm ‖φ‖2H =

∫
�ε
|∇φ|2. Problem (3-1) is equivalent to finding φ ∈ H

such that ∫
�ε

∇φ∇ψ −

∫
�ε

Wφψ =

∫
�ε

hψ for all ψ ∈ H.

By Fredholm’s alternative, this is equivalent to the uniqueness of solutions to this
problem, which is guaranteed by the a priori estimate (3-17). �

Remark. The result of Proposition 3.1 implies that the unique solution φ = T (h)
of (3-1) defines a continuous linear map from L∞(�ε), with norm ‖ · ‖∗, into
L∞(�ε). Moreover, the operator T is differential with respect to the variables ξ ′m .
In fact, computations similar to those used in [Wei et al. 2011] yield the estimate

(3-27) ‖∂ξ ′mφ‖L∞(�ε) ≤ C(log ε−1)2‖h‖∗.

4. The nonlinear problem with constraints

Let us introduce a small parameter τ and consider

(4-1) V1(y)= V (y)+ τ Z(y) for y ∈�ε,

where V and Z are given by (2-16) and (3-5). Then we set

W1 = 2ε4 cosh V1, R1 =1V1+ 2ε4 sinh V1

and
N1(φ1)= 2ε4(sinh(V1+φ1)−φ1 cosh V1− sinh V1).
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Now we consider the following auxiliary nonlinear problem:

(4-2)



1φ1+W1φ1+R1+N1(φ1)+

2(k+l)∑
i=1

Ji∑
j=1

c j iχi Z j i+c0χ Z = 0 in �ε,

∂φ1/∂ν = 0 on ∂�ε,∫
�ε

χ Zφ1 = 0,
∫
�ε

χi Z j iφ1 = 0

for all i = 1, . . . , 2(k+l), j = 1, Ji .

Then we can follow the proofs [Wei et al. 2011, Lemma 4.1 and Theorem 4.2] to
obtain the following results; we omit the details.

Lemma 4.1. Let k+ l ≥ 1, d > 0, α ∈ (0, 1) and τ = O(εθ ) with θ > α/2. Then
there exist ε0>0 and C>0 such that for 0<ε<ε0 and for any ξ1, . . . , ξ2(k+l)∈Md ,
problem (4-2) admits a unique solution φ1, c0, c j i for i = 1, . . . , 2(k+l), j = 1, Ji ,
such that

(4-3) ‖φ1‖L∞(�ε) ≤ Cεα.

Furthermore, the function (τ, ξ ′)→ φ1(τ, ξ
′) ∈ C(�ε) is C1 and

(4-4)
‖Dξ ′φ1‖L∞(�ε) ≤ C |log ε|2(ε+ ε2θ

+ ε2α),

‖Dτφ1‖L∞(�ε) ≤ C(εα + εθ )|log ε|.

Lemma 4.2. Let k + l ≥ 1 and d > 0. For any 0 < α < 1 there exist ε0 > 0 and
C > 0 such that for 0<ε< ε0 and any (ξ1, . . . , ξ2(k+l))∈Md , there exists a unique
τ with |τ | = O(εα) such that problem (4-2) admits a unique solution φ, c0, c j i for
i = 1, . . . , 2(k+ l), j = 1, Ji with c0 = 0 and such that

(4-5) ‖φ‖L∞(�ε) ≤ Cεα.

Furthermore, the function ξ ′ 7→ φ(ξ ′) is C1 and

‖Dξ ′φ‖L∞(�ε) ≤ Cεα|log ε|2.

5. Variational reduction and expansion of the energy

In view of Lemmas 4.1 and 4.2, given ξ = (ξ1, . . . , ξ2(k+l)) ∈Md , we set φ(ξ) and
c j i (ξ) to be the unique solution to (4-2) with c0 = 0 satisfying the bounds (4-3)
and (4-4). Let

Jε(v)=
1
2

∫
�ε

|∇v|2dx − 2ε4
∫
�ε

cosh vdx

and define

(5-1) Fε(ξ)= Jε(V1(ξ
′)+φ(ξ ′)),
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where ξ ′ = ξ/ε and V1(ξ
′)= V (ξ ′)+ τ(ξ ′)Z(ξ ′) with τ(ξ) given by Lemma 4.2.

Lemma 5.1. If ξ = (ξ1, . . . , ξ2(k+l)) ∈Md is a critical point of Fε, then

v = V1(ξ
′)+φ(ξ ′)

is a critical point of Jε, that is, a solution to (2-14).

Proof. A direct computation gives

∂Fε
∂ξm
= ε−1 ∂ Jε(V1(ξ

′)+φ(ξ ′))

∂ξ ′m
= ε−1 D Jε(V1(ξ

′)+φ(ξ ′))
(∂V1(ξ

′)

∂ξ ′m
+
∂φ(ξ ′)

∂ξ ′m

)
.

Since V1(ξ
′)+φ(ξ ′) solves (4-2) with c0 = 0, we have

∂Fε
∂ξm
= ε−1

2(k+l)∑
i=1

Ji∑
j=1

c j i

∫
�ε

χi Z j i

(∂V1(ξ
′)

∂ξ ′m
+
∂φ(ξ ′)

∂ξ ′m

)
.

From the assumption DFε(ξ)= 0, we obtain

2(k+l)∑
i=1

Ji∑
j=1

c j i

∫
�ε

χi Z j i

(∂V1(ξ
′)

∂ξ ′m
+
∂φ(ξ ′)

∂ξ ′m

)
= 0 for all m = 1, . . . , 2(k+ l).

Since

‖∂ξ ′mφ(ξ
′)‖L∞(�ε) ≤ Cεα|log ε|2 and ∂ξ ′m V (ξ ′)= (−1)m Z jm + o(1)

for j = 1, Ji , where o(1) is in the L∞-norm as a direct consequence of (4-1), it
follows that

2(k+l)∑
i=1

Ji∑
j=1

c j i

∫
�ε

χi Z j i ((−1)m Z jm + o(1))= 0 for all m = 1, . . . , 2(k+ l),

which is a strictly diagonal dominant system. This implies that c j i = 0 for all
i = 1, . . . , 2(k+ l), j = 1, Ji . �

A key step in seeking the critical points of the functional Fε is finding its ex-
pected closeness to the functional Jε(V1(ξ)). The procedure is completely similar
to that of [Wei et al. 2011, Theorem 5.2], so we omit it here.

Lemma 5.2. The expansion

Fε(ξ)= Jε(V )+ θε(ξ)

holds with |θε(ξ)| + |∇θε(ξ)| = o(1) uniformly on points in Md .

Now we will give an asymptotic estimate of Jε(V ), where V is defined by (2-16)
and Jε is given as above.
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Lemma 5.3. Let k + l ≥ 1, let d > 0, let µi be given by (2-21) and let V be the
function defined in (2-16). Then the expansion

(5-2) Jε(V )=−
1
2

2(k+l)∑
i=1

ci

(
ci H(ξi , ξi )+

∑
j, j 6=i

(−1) j+i c j G(ξ j , ξi )
)

+ 2
2(k+l)∑

i=1

ci log ε−1
+

2(k+l)∑
i=1

ci (log 8− 2)+ O(εα).

holds uniformly on points ξ = (ξ1, . . . , ξ2(k+l)) ∈Md .

Proof. Recall the definition of V (y)=
∑2(k+l)

i=1 (−1)i−1(ui (εy)+H ε
i (εy)). We find

that it satisfies

(5-3)

 −1V = ε4
2(k+l)∑

i=1

(−1)i−1
(

eui (εy)
−

1
|�ε|

∫
�ε

eui (εy)
)

in �ε,

∂V/∂ν = 0 on ∂�ε.

We will compute the two terms in Jε(V ).
First, by (5-3) we have∫
�ε

|∇V |2 =
∫
�ε

(−1V )V

=

∫
�ε

(
ε4

2(k+l)∑
j=1

(−1) j−1
(

eu j (εy)
−

1
|�ε|

∫
�ε

eu j (εy)
))

×

(2(k+l)∑
i=1

(−1)i−1
(

ui (εy)+ H ε
i (εy)

))
= ε4

∑
j,i

(−1) j+i
∫
�ε

(
ui (εy)+ H ε

i (εy)
)

eu j (εy)

−
ε4

|�ε|

(2(k+l)∑
j=1

(−1) j−1
∫
�ε

eu j (εy)
)(∫

�ε

2(k+l)∑
i=1

(−1)i−1
(

ui (εy)+ H ε
i (εy)

))
= ε4

∑
j,i

(−1) j+i
∫
�ε

(ui (εy)+ H ε
i (εy))eu j (εy)

+ O(ε),

where the last equality is due to the fact ε4∑2(k+l)
j=1 (−1) j−1

∫
�ε

eu j (εy)
= O(ε4),

which can be easily deduced from (2-7).
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For j 6= i, we have by a calculation similar to (2-23)

(5-4)

∫
�ε

ε4(ui (εy)+ H ε
i (εy))eu j (εy)

=

(∫
�1
ε

+

∫
�2
ε

)
(ε4(ui (εy)+ H ε

i (εy))eu j (εy))

=

∫
�1
ε |ξ ′j=0

8
(1+y2)2

(
log|ξi − ξ j |

−4
+ ci H(ξ j , ξi )

)
+ O(εα)

= c j ci G(ξ j , ξi )+ O(εα).

where �1
ε := Bδ/(εµ j )(ξ

′

j )∩ (�ε/µi ) and �2
ε := (�ε/µi ) \�

1
ε . For j = i, we have

ε4
∫
�ε

(ui (εy)+ H ε
i (εy))eui (εy)

=

∫
�ε

8µ2
i

(µ2
i + |y− ξ

′

i |
2)2

(
log

8µ2
i

(ε2µ2
i + |εy− ξi |

2)2
+ ci H(ξi , ξi )

− log(8µ2
i )+ O(εα)+ O(ε|y− ξ ′i |)

)
= 4ci log ε−1

+ ci (ci H(ξi , ξi )− 2 log 8µ2
i )+ 2ci (log 8− 1)+ O(εα).

So from the choice of µi (see (2-21)), we get

(5-5) ε4
∫
�ε

(ui (εy)+ H ε
i (εy))eui (εy)

= 4ci log ε−1
+ 2ci (log 8− 1)

− ci

(
ci H(ξi , ξi )+ 2

∑
m,m 6=i

(−1)m+i cmG(ξm, ξi )
)
+ O(εα).

Combining (5-4) and (5-5), we have

(5-6) 1
2

∫
�ε

|∇V |2 =−1
2

2(k+l)∑
i=1

ci

(
ci H(ξi , ξi )+

∑
j, j 6=i

(−1) j+i c j G(ξ j , ξi )
)

+ 2
2(k+l)∑

i=1

ci log ε−1
+ (log 8− 1)

2(k+l)∑
i=1

ci + O(εα).

Next, let us compute the second term in Jε(V ). Let�1
i = Bδ/ε(ξ ′i )∩(�ε/µi ). Then

2ε4
∫
�ε

cosh V = 2ε4
2(k+l)∑

i=1

∫
�1

i

cosh V + O(ε2).
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Suppose first i is odd. Then

2ε4
∫
�1

i

cosh V = ε4
∫
�1

i

eV
+ O(ε)

=

∫
�1

i

ε4eui (εy) exp
(

H ε
i +

∑
m 6=i

(−1)m−1(um + H ε
m)
)
+ O(ε)

= ci + O(ε).

Therefore

(5-7) 2ε4
∫
�1

i

cosh V = ci + O(ε).

Similarly for i even, we also have (5-7). So we obtain

(5-8) 2ε4
∫
�ε

cosh V =
2(k+l)∑

i=1

ci + O(ε).

Finally, from (5-6) and (5-8) we conclude that (5-2) holds. �

6. Proof of main theorems

Proof of Theorem 1.2. Let

v(y)= V1(ξ
′)(y)+φ(ξ ′)(y) for y ∈�ε,

where V1 is given by (4-1) and φ is the unique solution to problem (4-2) with
c0 = 0, whose existence and properties are established in Lemma 4.2. According
to Lemma 4.1, v is a solution to problem (2-14) if we adjust ξ so that it is a critical
point of the function Fε(ξ) defined in (5-1), or equivalently, so that it is a critical
point of

(6-1) F̃ε(ξ)= 2
(

2
2(k+l)∑

i=1

ci log ε−1
+

2(k+l)∑
i=1

ci (log 8− 2)− Fε(ξ)
)
.

From Lemmas 5.2 and 5.3 it follows that for ξ ∈Md ,

(6-2) F̃ε(ξ)= ϕ2(k+l)(ξ)+ ε2ε(ξ),

where2ε and ∇ξ2ε are uniformly bounded in the considered region as ε→ 0. On
the other hand, F̃ε→ ϕ2(k+l) uniformly on compact sets of Md as ε goes to 0. Now
by Definition 1.1, we deduce that if ε is small enough, there exists a critical point
ξε ∈Md of F̃ε such that F̃ε→ϕ2(k+l)(ξ

∗). Moreover, up to subsequence, ξε→ ξ as
ε tends to 0, with ϕ2(k+l)(ξ)= ϕ2(k+l)(ξ

∗). The function uε(x)= v(y) is therefore
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a solution to (1-2) with the qualitative properties predicted by the theorem, as can
be easily shown. �

Proof of Theorem 1.3. First, we recall here some facts about the regular part of the
Green function H(x, y) defined by (1-4). If y ∈ � is a point close to ∂�, we let
y∗ be its uniquely determined reflection with respect to ∂�. Now, we consider the
auxiliary function

H∗(x, y)=− 1
2π

log 1
|x−y∗|

,

and set

ψ(x, y)= H(x, y)− H∗(x, y)

Then from the equation corresponding to H(x, y) and the elliptic regularity theory,
it is not difficult to verify ψ(x, y) is bounded in �×� and hence one can derive
the estimates

(6-3) H(x, y)=− 1
2π

log 1
|x−y∗|

+ O(1) for all x ∈� uniformly.

If y ∈ ∂�, note that H(x, y) satisfies
1H(x, y)= 1

|�|
in �,

∂H
∂ν
(x, y)=

1
π

(x − y) · ν(x)
|x − y|2

on ∂�.

With this and (2-10), we obtain that x 7→ H(x, y) ∈ C1,α(�). On the other hand,
by the continuity of the boundary term with respect to y in L∞(∂�), we can get
H(x, y) ∈ C(�, ∂�). In particular, H(x, x) is in C(∂�).

Now, we prove the result. It suffices to show the existence of critical points of
the function ϕ2+2(ξ1, . . . , ξ4) in Md . In this case,

(6-4) ϕ2+2(ξ1, . . . , ξ4)= 16π2(4H(ξ1, ξ1)+4H(ξ2, ξ2)+H(ξ3, ξ3)+H(ξ4, ξ4)

− 4G(ξ1, ξ2)+ 2G(ξ1, ξ3)− 2G(ξ1, ξ4)

− 2G(ξ2, ξ3)+ 2G(ξ2, ξ4)−G(ξ3, ξ4)
)
.

We will look for a solution to problem (1-2) with the concentration points ξ given
by

ξ1 = (−λ, 0), ξ2 = (λ, 0), ξ3 = (1, 0), and ξ4 = (−1, 0) for λ ∈ (0, 1).

Using results obtained in the previous sections (or from the proof of Theorem 1.2),
we reduce the problem of finding solution to (1-2) to that finding critical points of
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the function ϕ2+2(λ) : (0, 1)→ R defined by

ϕ2+2(λ) := ϕ2+2(ξ(λ))

= 16π2
(

H(ξ3, ξ3)+ H(ξ4, ξ4)−
4
π

log 1
2−λ

+ O(1)

−
2
π

log 1
2λ
−

4
π

log 1
1−λ

+
4
π

log 1
1+λ

−
1
π

log 1
2

− H(ξ1, ξ2)+ H(ξ1, ξ3)− H(ξ1, ξ4)− H(ξ2, ξ3)+ H(ξ2, ξ4)− H(ξ3, ξ4)
)

= 32π(2 log(2− λ)+ log λ+ 2 log(1− λ)− 2 log(1+ λ))+ O(1).

Here, we have used the fact that H(x, y) ∈ C(B̄, ∂B) and (6-3). Now there exists
a λ0 ∈ (0, 1) such that ϕ2+2(λ0) = maxλ∈(0,1) ϕ2+2(λ), since limλ→0+ ϕ2+2(λ) =

limλ→1− ϕ2+2(λ)=−∞. Then λ0 is a C0-stable critical point of ϕ2+2, and so the
function F̃ε(ξ) defined by (6-1) has a critical point. This proves our result. �

Appendix A.

Proof of (2-22) and (2-23). By Lemma 2.1 and the fact that H is C1 in �, we have

H ε
j (εy)= c j H(εy, ξ j )− log(8µ2

j )+ O(εα)

= c j H(ξi , ξ j )− log(8µ2
j )+ O(εα)+ O(ε|y− ξ ′i |).

Let us fix a small constant δ > 0. For |y− ξ ′i | ≤ δ/ε,

(−1)i−1 H ε
i (εy)+

∑
j 6=i

(−1) j−1
(

log
8µ2

j

(ε2µ2
i + |εy− εξ ′j |2)2

+ H ε
j (εy)

)
= (−1)i−1(ci H(ξi , ξi )− log(8µ2

i )
)

+

∑
j 6=i

(−1) j−1
(

log
8µ2

j

|ξi − ξ j |
4 + c j H(ξi , ξ j )− log(8µ2

j )

)
+ O(εα)+ O(ε|y− ξ ′i |)

= (−1)i−1(ci H(ξi , ξi )− log(8µ2
i ))

+

∑
j 6=i

(−1) j−1c j G(ξi , ξ j )+ O(εα)+ O(ε|y− ξ ′i |)

which is equal to O(εα)+ O(ε|y− ξ ′i |); here first equality follows because

ε2µ2
j + ε

2
|y− ξ ′j |

2
=
(
|ξ j − ξi | + O(|εy− ξi |)

)2
+ ε2µ2

j

= |ξ j − ξi |
2
(

1+ O
(
|εy− ξi |

2

|ξ j − ξi |
2

)
+

ε2µ2
j

|ξ j − ξi |
2

)
= |ξ j − ξi |

2(1+ O(ε2
|y− ξ ′i |

2)+ O(ε2)
)
.
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First, we estimate W . For |y− ξ ′i | ≤ δ/ε, a direct computation shows

W = 2ε4 cosh V

= ε4 exp
(2(k+l)∑

i=1

(−1)i−1(ui + H ε
i )
)
+ ε4 exp

(2(k+l)∑
i=1

(−1)i (ui + H ε
i )
)

= ε4
(

8µ2
i

ε4(µ2
i + |y− ξ

′

i |
2)2

)(−1)i−1

×exp
(
(−1)i−1 H ε

i (εy)+
∑
j 6=i

(−1) j−1
(

log
8µ2

j

(ε2µ2
j+ε

2|y−ξ ′j |2)2
+H ε

j (εy)
))

+ ε4
( 8µ2

i

ε4(µ2
i + |y− ξ

′

i |
2)2

)(−1)i

× exp
(
(−1)i H ε

i (εy)+
∑
j 6=i

(−1) j
(

log
8µ2

j

(ε2µ2
j + ε

2|y− ξ ′j |2)2
+ H ε

j (εy)
))

= ε4
(( 8µ2

i

ε4(µ2
i + |y− ξ

′

i |
2)2

)(−1)i−1

+

( 8µ2
i

ε4(µ2
i + |y− ξ

′

i |
2)2

)(−1)i)
× exp

[
O(εα)+ O(ε|y− ξ ′i |)

]
=

8µ2
i

(µ2
i + |y− ξ

′

i |
2)2

(
1+ O(εα)+ O(ε|y− ξ ′i |)

)
+ O(ε4).

Therefore

(A-1) W (y)=
8µ2

i

(µ2
i + |y− ξ

′

i |
2)2
(1+ O(εα)+ O(ε|y− ξ ′i |))

for all |y− ξ ′i |< δ/ε.

Similarly, for |y− ξ ′i |< δ/ε we have

(A-2)

2ε4 sinh V

= ε4
(( 8µ2

i

ε4(µ2
i + |y− ξ

′

i |
2)2

)(−1)i−1

−

( 8µ2
i

ε4(µ2
i + |y− ξ

′

i |
2)2

)(−1)i)
× exp

(
O(εα)+ O(ε|y− ξ ′i |)

)
= (−1)i−1 8µ2

i

(µ2
i + |y− ξ

′

i |
2)2

(
1+ O(εα)+ O(ε|y− ξ ′i |)

)
+ O(ε4).

On the other hand, for |y − ξ ′i | ≥ δ/ε, it is easy to see that W (y) = O(ε4) and
2ε4 sinh V = O(ε4). This, together with (A-1), implies (2-23) and (2-24).



250 JUNCHENG WEI, LONG WEI AND FENG ZHOU

Next, by our definitions,

1V =
2(k+l)∑

i=1

(−1)i−1(ε21ui (εy)+ ε21H ε
i (εy)

)
=

2(k+l)∑
i=1

(−1)i−1
(
−ε4eui (εy)

+
ε4

|�|

∫
�

eui (x)dx
)

=

2(k+l)∑
i=1

(−1)i−1
(
−

8µ2
i

(µ2
i + |y− ξ

′

i |
2)2

)
+

2(k+l)∑
i=1

(−1)i−1 ε
4

|�|

∫
�

eui (x)dx .

The last term in the above equality can be controlled by O(ε4) since from (2-7),
we have

ε2
2(k+l)∑

i=1

(−1)i−1
∫
�

eui = O(ε2
|µi −µ j |),

Combining this with (A-2), we get (2-22). �

Appendix B.

Proof of Claim 1. Since η′(r) has a jump at r = ε−γ and r = ε−β and is otherwise
smooth, we see that L(Z̃0i ) is a measure.

L(Z̃0i )= (−1−W )
(
η1i Z0i + ε(1− η1i )η2i Ẑ0i

)
=−(Z0i − εη2i Ẑ0i )

(
[η′1i (ε

−γ )]µε−γ + [η
′

1i (ε
−β)]µε−β

)
− 2∇η1i (∇Z0i − ε Ẑ0i∇η2i − εη2i∇ Ẑ0i )− η1i (1Z0i +W Z0i )

− ε(1− η1i )(Ẑ0i1η2i + η2i1Ẑ0i + 2∇η2i∇ Ẑ0i +Wη2i Ẑ0i )

where [η′1i (r)] = η
′

1i (r
+) − η′1i (r

−) denotes the jump of η′1i at r , and µr is the
1-dimensional measure on the circle of radius r .

Let us consider first the case m = i :

(B-1)
∫
�ε

log|yi − z|L(Z̃0i )=

∫
�ε

(log|yi − z| − log|ξ ′i − z|)L(Z̃0i )dz

+

∫
�ε

log|ξ ′i − z|L(Z̃0i )dz.

Let r = |z−ξ ′i |, and note that 1η2i = O(ε2β) and ∇η2i = O(εβ). For r < ε−β , we
have

(B-2)

η1i (1Z0i +W Z0i )= η1i (1Z0i + evi (1+ θε)Z0i )

≤
8µ2

i

(µ2
i + |z− ξ

′

i |
2)2

O(εα + ε|z− ξ ′i |)+ O
(

εα

(1+|y−ξ ′i |)3
)
.
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Thus

(B-3)

∣∣∣∫
�ε

η1i (1Z0i +W Z0i ) log|z− ξ ′i |
∣∣∣

≤

∫
�ε

η1i

(
8µ2

i O(εα + ε|z− ξ ′i |)

(µ2
i + |z− ξ

′

i |
2)2

+ O
(

εα

(1+|y−ξ ′i |)3
))

log|z− ξ ′i |

≤ C
∫ ε−β

0

(
εα

(1+ r)3
+
εα + εr
(1+ r2)2

)
r log rdr

= O
(
(εα + ε1−β) log ε−1

)
= o(1).

For ε−γ < r < ε−β ,

(B-4)

1
µi
− a0i G(εz, ξi )=

1
µi
−

4 log ε−1
− 4 log|z− ξ ′i | + ci H(εz, ξi )

µi [4(1− γ ) log ε−1+ ci H(ξi , ξ j )]

=
log r − γ log ε−1

+ εr
(1− γ )µi log ε−1 (1+ O(ε)).

Therefore,

(B-5)

∫
�ε

(1− η1i )W (µ−1
i − a0i G) log|z− ξ ′i |dz

=

∫
r>ε−γ

O
( log r − γ log ε−1

+ εr
(1− γ )µi log ε−1

)
O(r−4r ) log rdr

= O(ε2γ log ε−1)

and

(B-6)

∫
�ε

∇η1i (∇Z0i − ε Ẑ0i∇η2i − εη2i∇ Ẑ0i ) log|z− ξ ′i |dz

= 2π
∫ ε−β

ε−γ

−r−1

(β − γ ) log ε−1

×

(
O(r−3)+ O(ε1+β)+ O

(
ε

log ε−1 (r
−1
+C)

))
r log rdr

= O(ε2γ )+ O(
ε1−β

log ε−1 ).

For r > ε−γ ,

Ẑ0i1η2i + η2i1Ẑ0i + 2∇η2i∇ Ẑ0i +Wη2i Ẑ0i

= Ẑ0i1η2i + 2∇η2i∇ Ẑ0i + η2i (1Z0i +W Z0i + a0i1G−Wµ−1
i +Wa2i G).



252 JUNCHENG WEI, LONG WEI AND FENG ZHOU

So, recalling (B-5), we have

ε

∫
�ε

(1− η1i )(Ẑ0i1η2i + η2i1Ẑ0i + 2∇η2i∇ Ẑ0i +Wη2i Ẑ0i ) log|z− ξ ′i |dz

= ε

∫ 2ε−β

ε−β
O(ε2β)r log rdr + ε

∫ 2ε−β

ε−β
O(εβ)O

(
r−3
+

ε

log ε−1 (C + r−1)
)

r log rdr

+ ε

∫ 2ε−β

ε−γ

(
O
(
εα+εr

r4

)
+ O

(
εα

(1+r)3
)
+ O

(
ε2

log ε−1

))
r log rdr

− ε

∫
�ε

(1− η1i )W (µ−1
i − a0i G) log|z− ξ ′i |dz,

which is equal to O(ε log ε−1). A direct computation shows∫
�ε

[η′1i (ε
−γ )]µε−γ (Z0i − εη2i Ẑ0i ) log|z− ξ ′i |dz

=
−εγ

(β − γ ) log ε−1

∫
r=ε−γ

(Z0i − ε Ẑ0i ) log|z− ξ ′i |

=
−εγ

(β − γ ) log ε−1 ×
1+ O(ε2γ )

µi
× 2πε−γ log ε−γ

=
−2πγ

µi (β − γ )
+ O(ε2γ ).

Similarly,∫
�ε

[η′1i (ε
−β)]µε−β (Z0i − εη2i Ẑ0i ) log|z− ξ ′i |dz =

2πβ
µi (β − γ )

+ O(ε2β).

Hence ∫
�ε

L(Z̃0i ) log|z− ξ ′i |dz =
2π
µi
+ o(1).

For the first integral in the right side of (B-1), we can assume Rε→+∞ slowly
enough so that εγ Rε→ 0. Then

(B-7)
∣∣log|yi − z| − log|ξ ′i − z|

∣∣= ∣∣∣log
|yi − z|

r

∣∣∣≤ ∣∣∣log
|yi − ξ

′

i | + r
r

∣∣∣
for r = |ξ ′i − z|; therefore we have from (B-2)

(B-8)

∣∣∣∫
�ε

(log|yi − z| − log|ξ ′i − z|)η1i (1Z0i +W Z0i )dz
∣∣∣

≤ C
∫ ε−β

0
log(Rεr−1

+ 1)
(

O
(
εα+εr
(1+r2)2

)
+ O

(
εα

(1+r)3
))

rdr

= O(εα(Rε + log ε−1)).
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On the other hand, from (B-7), for ε−γ ≤ r = |z− ξ ′i | ≤ ε
−β we have∣∣log|yi − z| − log|ξ ′i − z|

∣∣≤ C |yi − ξ
′

i |/ε
−γ

and it follows that∣∣∣∫
�ε

(log|yi − z| − log|ξ ′i − z|)
(
L(Z̃0i )+ η1i (1Z0i +W Z0i )

)
dz
∣∣∣= O(εγ Rε).

Thus, from this and (B-8), we obtain

(B-9)
∣∣∣∫
�ε

(
log|yi − z| − log|ξ ′i − z|

)
L(Z̃0i )

∣∣∣= o(1).

Next, we show that if m 6= i , then∫
�ε

log|ym − z|L(Z̃0i )dz = o(1).

In fact,∫
�ε

log|ym − z|L(Z̃0i )dz

=

∫
�ε

(log|ym − z| − log|ym − ξ
′

i |)L(Z̃0i )dz+
∫
�ε

log|ym − ξ
′

i |L(Z̃0i )dz.

We assume that Rε < ε−γ /2, so that∣∣log|ym − z| − log|ym − ξ
′

i |
∣∣≤ log

(
1+
|z− ξ ′i |
|ym − ξ

′

i |

)
= O(ε|z− ξ ′i |).

Thus ∣∣∣∫
�ε

(log|ym − z| − log|ym − ξ
′

i |)L(Z̃0i )dz
∣∣∣= O

(
ε1−β

log ε−1

)
.

Finally,

(B-10)
∫
�ε

L(Z̃0i )dz = O(ε2γ ).

This implies ∫
�ε

log|ym − ξ
′

i |L(Z̃0i )dz = o(1).

Therefore Claim 1 holds. �

Proof of Claim 4. Let

ζ(r)=


1 if r < ε−1/2,

(log(δ/ε)− log r)/(log(δ/ε)− log ε−1/2) if ε−1/2 < r < δ/ε,
0 if r > δ/ε,
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and set

ψ(z)=
2(k+l)∑

i=1

H(εy, ξi )ζ(|z− ξ ′i |).

Testing (3-9) by ψ and integrating by parts, we obtain∫
�ε

(
W φ̃+ h−

2(k+l)∑
i=1

di L(Z̃0i )
)
ψ +

∫
�ε

φ̃1ψ −

∫
∂�ε

φ̃
∂ψ

∂ν
= 0.

Thus

A =
∫
�ε

(H(εy, εz)−ψ)
(

W φ̃+ h−
2(k+l)∑

i=1

di L(Z̃0i )
)
−

∫
�ε

φ̃1ψ +

∫
∂�ε

φ̃
∂ψ

∂ν
.

Since H, ψ and φ̃ are bounded,

(B-11)
∣∣∣∫
�ε

(H(εy, εz)−ψ)hdz
∣∣∣≤ C‖h‖∗ = o(1)

and

(B-12)
∣∣∣∫
�ε

(H(εy, εz)−ψ)L(Z̃0i )

∣∣∣≤ C
∣∣∣∫
�ε

L(Z̃0i )dz
∣∣∣= o(1).

Also, it is not difficult to show that

(B-13)
∫
�ε

φ̃1ψ = O
( 1

log(δ/ε)

)
= o(1),

∫
∂�ε

φ̃
∂ψ

∂ν
= O

( 1
log(δ/ε)

)
= o(1).

For instance, the first integer in (B-13) can be estimated as∣∣∣∫
�ε

φ̃1ψ

∣∣∣≤ ‖φ̃‖L∞(�ε)

∫
�ε

|1ψ |.

But 1ψ is a measure with support on the arcs r = ε−1/2 and r = δ/ε, where
r = |z− ξ ′i |, and∫

�ε

|1ψ | = O
(
ε−1/2 1

ε−1/2 log ε−1 +
δ

ε

1
(δ/ε) log ε−1

)
= O

( 1
log(δ/ε)

)
= o(1).

Note that for |z−ξ ′i |> δ/ε, we have W = O(r−4), and H and φ̃ are bounded; thus

(B-14)
∫
�ε\(

⋃
i Bδ/ε(ξ ′i ))

(H(εy, εz)−ψ)W φ̃ = o(1).
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On the other hand, for |z−ξ ′i |≤ δ/ε, we have H(εy, εz)−H(εy, ξi )= O(ε|z−ξ ′i |)
and W = O((r2

+ 1)−2). So

(B-15)

∣∣∣∫
�ε∩B

ε−1/2 (ξ
′

i )

(H(εy, εz)−ψ(z))W φ̃dz
∣∣∣

=

∣∣∣∫
�ε∩B

ε−1/2 (ξ
′

i )

(H(εy, εz)− H(εy, ξi ))W φ̃dz
∣∣∣

≤ Cε
∫ ε−1/2

0

r2

(r2+1)2
dr = O(ε1/2)= o(1).

In the region ε−1/2< r =|z−ξ ′i |<δ/ε, noting the fact that H , ζ and φ̃ are bounded
and that W = O(r−4), we find

(B-16)
∣∣∣∫
�ε∩Bδ/ε(ξ ′i )\B1/

√
ε(ξ
′

i )

(H(εy, εz)−ψ(z))W φ̃dz
∣∣∣≤ C

∫ δ/ε

1/
√
ε

r−3dr = o(1).

Therefore, Claim 4 follows from (B-10)–(B-16). �

References

[Bartolucci and Pistoia 2007] D. Bartolucci and A. Pistoia, “Existence and qualitative properties of
concentrating solutions for the sinh-Poisson equation”, IMA J. Appl. Math. 72:6 (2007), 706–729.
MR 2008k:35130 Zbl 1154.35072

[Brezis and Coron 1984] H. Brezis and J.-M. Coron, “Multiple solutions of H -systems and Rellich’s
conjecture”, Comm. Pure Appl. Math. 37:2 (1984), 149–187. MR 85i:53010

[Chen and Lin 2002] C.-C. Chen and C.-S. Lin, “Sharp estimates for solutions of multi-bubbles in
compact Riemann surfaces”, Comm. Pure Appl. Math. 55:6 (2002), 728–771. MR 2003d:53056
Zbl 1040.53046

[Chow et al. 1998] K. W. Chow, N. W. M. Ko, R. C. K. Leung, and S. K. Tang, “Inviscid two-
dimensional vortex dynamics and a soliton expansion of the sinh-Poisson equation”, Phys. Fluids
10:5 (1998), 1111–1119. MR 99a:76020 Zbl 1185.35184

[Dávila et al. 2005] J. Dávila, M. del Pino, and M. Musso, “Concentrating solutions in a two-
dimensional elliptic problem with exponential Neumann data”, J. Funct. Anal. 227:2 (2005), 430–
490. MR 2006g:35083 Zbl 02231228

[Esposito et al. 2006] P. Esposito, A. Pistoia, and J. Wei, “Concentrating solutions for the Hénon
equation in R2”, J. Anal. Math. 100 (2006), 249–280. MR 2009b:35106 Zbl 1173.35504

[Gurarie and Chow 2004] D. Gurarie and K. W. Chow, “Vortex arrays for sinh-Poisson equation of
two-dimensional fluids: equilibria and stability”, Phys. Fluids 16:9 (2004), 3296–3305. MR 2005b:
76026 Zbl 1187.76196

[Jost et al. 2008] J. Jost, G. Wang, D. Ye, and C. Zhou, “The blow up analysis of solutions of
the elliptic sinh-Gordon equation”, Calc. Var. Partial Differential Equations 31:2 (2008), 263–276.
MR 2009h:35131 Zbl 1137.35061

[Kuvshinov and Schep 2000] B. N. Kuvshinov and T. J. Schep, “Double-periodic arrays of vortices”,
Phys. Fluids 12:12 (2000), 3282–3284. MR 2001k:76020 Zbl 1184.76305

[Mallier and Maslowe 1993] R. Mallier and S. A. Maslowe, “A row of counter-rotating vortices”,
Phys. Fluids A 5:4 (1993), 1074–1075. MR 94a:76018 Zbl 0778.76022

http://dx.doi.org/10.1093/imamat/hxm012
http://dx.doi.org/10.1093/imamat/hxm012
http://www.ams.org/mathscinet-getitem?mr=2008k:35130
http://www.emis.de/cgi-bin/MATH-item?1154.35072
http://dx.doi.org/10.1002/cpa.3160370202
http://dx.doi.org/10.1002/cpa.3160370202
http://www.ams.org/mathscinet-getitem?mr=85i:53010
http://dx.doi.org/10.1002/cpa.3014
http://dx.doi.org/10.1002/cpa.3014
http://www.ams.org/mathscinet-getitem?mr=2003d:53056
http://www.emis.de/cgi-bin/MATH-item?1040.53046
http://dx.doi.org/10.1063/1.869636
http://dx.doi.org/10.1063/1.869636
http://www.ams.org/mathscinet-getitem?mr=99a:76020
http://www.emis.de/cgi-bin/MATH-item?1185.35184
http://dx.doi.org/10.1016/j.jfa.2005.06.010
http://dx.doi.org/10.1016/j.jfa.2005.06.010
http://www.ams.org/mathscinet-getitem?mr=2006g:35083
http://www.emis.de/cgi-bin/MATH-item?02231228
http://dx.doi.org/10.1007/BF02916763
http://dx.doi.org/10.1007/BF02916763
http://www.ams.org/mathscinet-getitem?mr=2009b:35106
http://www.emis.de/cgi-bin/MATH-item?1173.35504
http://dx.doi.org/10.1063/1.1772331
http://dx.doi.org/10.1063/1.1772331
http://www.ams.org/mathscinet-getitem?mr=2005b:76026
http://www.ams.org/mathscinet-getitem?mr=2005b:76026
http://www.emis.de/cgi-bin/MATH-item?1187.76196
http://dx.doi.org/10.1007/s00526-007-0116-7
http://dx.doi.org/10.1007/s00526-007-0116-7
http://www.ams.org/mathscinet-getitem?mr=2009h:35131
http://www.emis.de/cgi-bin/MATH-item?1137.35061
http://dx.doi.org/10.1063/1.1321262
http://www.ams.org/mathscinet-getitem?mr=2001k:76020
http://www.emis.de/cgi-bin/MATH-item?1184.76305
http://dx.doi.org/10.1063/1.858622
http://www.ams.org/mathscinet-getitem?mr=94a:76018
http://www.emis.de/cgi-bin/MATH-item?0778.76022


256 JUNCHENG WEI, LONG WEI AND FENG ZHOU

[Ohtsuka and Suzuki 2006] H. Ohtsuka and T. Suzuki, “Mean field equation for the equilibrium
turbulence and a related functional inequality”, Adv. Differential Equations 11:3 (2006), 281–304.
MR 2007a:53082 Zbl 1109.26014

[del Pino and Wei 2006] M. del Pino and J. Wei, “Collapsing steady states of the Keller–Segel
system”, Nonlinearity 19:3 (2006), 661–684. MR 2007b:35130 Zbl 1137.35007

[del Pino et al. 2005] M. del Pino, M. Kowalczyk, and M. Musso, “Singular limits in Liouville-
type equations”, Calc. Var. Partial Differential Equations 24:1 (2005), 47–81. MR 2006h:35089
Zbl 1088.35067

[Probstein 1994] R. F. Probstein, Physicochemical Hydrodynamics: An Introduction, Wiley, New
York, 1994.

[Spruck 1988] J. Spruck, “The elliptic sinh Gordon equation and the construction of toroidal soap
bubbles”, pp. 275–301 in Calculus of variations and partial differential equations (Trento, 1986),
edited by S. Hildebrandt et al., Lecture Notes in Math. 1340, Springer, Berlin, 1988. MR 90i:35265
Zbl 0697.35044

[Steffen 1986] K. Steffen, “On the nonuniqueness of surfaces with constant mean curvature spanning
a given contour”, Arch. Rational Mech. Anal. 94:2 (1986), 101–122. MR 87i:53012 Zbl 0678.49036

[Struwe 1986] M. Struwe, “Nonuniqueness in the Plateau problem for surfaces of constant mean
curvature”, Arch. Rational Mech. Anal. 93:2 (1986), 135–157. MR 87c:53014 Zbl 0603.49027

[Wei 2009] L. Wei, “On the number of nodal bubbling solutions to a sinh-Poisson equation”, Hous-
ton J. Math. 35:1 (2009), 291–326. MR 2010b:35141 Zbl 1171.35054

[Wei et al. 2011] J. C. Wei, L. Wei, and F. Zhou, “Concentrating solutions for some Neumann
problem with equilibrium vortices”, preprint, 2011.

[Wente 1986] H. C. Wente, “Counterexample to a conjecture of H. Hopf”, Pacific J. Math. 121:1
(1986), 193–243. MR 87d:53013 Zbl 0586.53003

Received January 3, 2010.

JUNCHENG WEI

DEPARTMENT OF MATHEMATICS

THE CHINESE UNIVERSITY OF HONG KONG

ROOM 220, LADY SHAW BUILDING

SHATIN, HONG KONG

HONG KONG

wei@math.cuhk.edu.hk

LONG WEI

INSTITUTE OF APPLIED MATHEMATICS AND ENGINEERING COMPUTATIONS

HANGZHOU DIANZI UNIVERSITY

HANGZHOU, ZHEJIANG 310018
CHINA

alongwei@gmail.com

FENG ZHOU

DEPARTMENT OF MATHEMATICS

EAST CHINA NORMAL UNIVERSITY

SHANGHAI 200062
CHINA

fzhou@math.ecnu.edu.cn

http://www.ams.org/mathscinet-getitem?mr=2007a:53082
http://www.emis.de/cgi-bin/MATH-item?1109.26014
http://dx.doi.org/10.1088/0951-7715/19/3/007
http://dx.doi.org/10.1088/0951-7715/19/3/007
http://www.ams.org/mathscinet-getitem?mr=2007b:35130
http://www.emis.de/cgi-bin/MATH-item?1137.35007
http://dx.doi.org/10.1007/s00526-004-0314-5
http://dx.doi.org/10.1007/s00526-004-0314-5
http://www.ams.org/mathscinet-getitem?mr=2006h:35089
http://www.emis.de/cgi-bin/MATH-item?1088.35067
http://dx.doi.org/10.1007/BFb0082902
http://dx.doi.org/10.1007/BFb0082902
http://www.ams.org/mathscinet-getitem?mr=90i:35265
http://www.emis.de/cgi-bin/MATH-item?0697.35044
http://dx.doi.org/10.1007/BF00280429
http://dx.doi.org/10.1007/BF00280429
http://www.ams.org/mathscinet-getitem?mr=87i:53012
http://www.emis.de/cgi-bin/MATH-item?0678.49036
http://dx.doi.org/10.1007/BF00279957
http://dx.doi.org/10.1007/BF00279957
http://www.ams.org/mathscinet-getitem?mr=87c:53014
http://www.emis.de/cgi-bin/MATH-item?0603.49027
http://www.ams.org/mathscinet-getitem?mr=2010b:35141
http://www.emis.de/cgi-bin/MATH-item?1171.35054
http://projecteuclid.org/euclid.pjm/1102702809
http://www.ams.org/mathscinet-getitem?mr=87d:53013
http://www.emis.de/cgi-bin/MATH-item?0586.53003
mailto:wei@math.cuhk.edu.hk
mailto:alongwei@gmail.com
mailto:fzhou@math.ecnu.edu.cn


Guidelines for Authors

Authors may submit manuscripts at pjm.math.berkeley.edu/about/journal/submissions.html
and choose an editor at that time. Exceptionally, a paper may be submitted in hard copy to
one of the editors; authors should keep a copy.

By submitting a manuscript you assert that it is original and is not under consideration
for publication elsewhere. Instructions on manuscript preparation are provided below. For
further information, visit the web address above or write to pacific@math.berkeley.edu or
to Pacific Journal of Mathematics, University of California, Los Angeles, CA 90095–1555.
Correspondence by email is requested for convenience and speed.

Manuscripts must be in English, French or German. A brief abstract of about 150 words or
less in English must be included. The abstract should be self-contained and not make any
reference to the bibliography. Also required are keywords and subject classification for the
article, and, for each author, postal address, affiliation (if appropriate) and email address if
available. A home-page URL is optional.

Authors are encouraged to use LATEX, but papers in other varieties of TEX, and exceptionally
in other formats, are acceptable. At submission time only a PDF file is required; follow
the instructions at the web address above. Carefully preserve all relevant files, such as
LATEX sources and individual files for each figure; you will be asked to submit them upon
acceptance of the paper.

Bibliographical references should be listed alphabetically at the end of the paper. All ref-
erences in the bibliography should be cited in the text. Use of BibTEX is preferred but not
required. Any bibliographical citation style may be used but tags will be converted to the
house format (see a current issue for examples).

Figures, whether prepared electronically or hand-drawn, must be of publication quality.
Figures prepared electronically should be submitted in Encapsulated PostScript (EPS) or
in a form that can be converted to EPS, such as GnuPlot, Maple or Mathematica. Many
drawing tools such as Adobe Illustrator and Aldus FreeHand can produce EPS output.
Figures containing bitmaps should be generated at the highest possible resolution. If there
is doubt whether a particular figure is in an acceptable format, the authors should check
with production by sending an email to pacific@math.berkeley.edu.

Each figure should be captioned and numbered, so that it can float. Small figures occupying
no more than three lines of vertical space can be kept in the text (“the curve looks like
this:”). It is acceptable to submit a manuscript will all figures at the end, if their placement
is specified in the text by means of comments such as “Place Figure 1 here”. The same
considerations apply to tables, which should be used sparingly.

Forced line breaks or page breaks should not be inserted in the document. There is no point
in your trying to optimize line and page breaks in the original manuscript. The manuscript
will be reformatted to use the journal’s preferred fonts and layout.

Page proofs will be made available to authors (or to the designated corresponding author)
at a website in PDF format. Failure to acknowledge the receipt of proofs or to return
corrections within the requested deadline may cause publication to be postponed.

http://pjm.math.berkeley.edu/about/journal/submissions.html
mailto:pacific@math.berkeley.edu
mailto:pacific@math.berkeley.edu


PACIFIC JOURNAL OF MATHEMATICS

Volume 250 No. 1 March 2011

1Nonconventional ergodic averages and multiple recurrence for von
Neumann dynamical systems

TIM AUSTIN, TANJA EISNER and TERENCE TAO

61Principal curvatures of fibers and Heegaard surfaces
WILLIAM BRESLIN

67Self-improving properties of inequalities of Poincaré type on s-John
domains

SENG-KEE CHUA and RICHARD L. WHEEDEN

109The orbit structure of the Gelfand–Zeitlin group on n × n matrices
MARK COLARUSSO

139On Maslov class rigidity for coisotropic submanifolds
VIKTOR L. GINZBURG

163Dirac cohomology of Wallach representations
JING-SONG HUANG, PAVLE PANDŽIĆ and VICTOR PROTSAK
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