
Pacific
Journal of
Mathematics

Volume 250 No. 2 April 2011



PACIFIC JOURNAL OF MATHEMATICS
http://www.pjmath.org

Founded in 1951 by
E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

V. S. Varadarajan (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

pacific@math.ucla.edu

Darren Long
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

long@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Alexander Merkurjev
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

merkurev@math.ucla.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

Jonathan Rogawski
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

jonr@math.ucla.edu

PRODUCTION
pacific@math.berkeley.edu

Silvio Levy, Scientific Editor Matthew Cargo, Senior Production Editor

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or www.pjmath.org for submission instructions.

The subscription price for 2011 is US $420/year for the electronic version, and $485/year for print and electronic.
Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Pacific Journal of
Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. Prior back issues are obtainable from Periodicals Service Company,
11 Main Street, Germantown, NY 12526-5635. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt
MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and the Science Citation Index.

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 969 Evans
Hall, Berkeley, CA 94720-3840, is published monthly except July and August. Periodical rate postage paid at Berkeley, CA 94704,
and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA
94704-0163.

PJM peer review and production are managed by EditFLOW™ from Mathematical Sciences Publishers.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS
at the University of California, Berkeley 94720-3840

A NON-PROFIT CORPORATION
Typeset in LATEX

Copyright ©2011 by Pacific Journal of Mathematics

http://www.pjmath.org
mailto:chari@math.ucr.edu
mailto:finn@math.stanford.edu
mailto:liu@math.ucla.edu
mailto:pacific@math.ucla.edu
mailto:long@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:merkurev@math.ucla.edu
mailto:popa@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:jonr@math.ucla.edu
mailto:pacific@math.berkeley.edu
http://www.pjmath.org
http://www.periodicals.com/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.emis.de/ZMATH/
http://www.inist.fr/PRODUITS/pascal.php
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/


PACIFIC JOURNAL OF MATHEMATICS
Vol. 250, No. 2, 2011

REALIZING PROFINITE REDUCED SPECIAL GROUPS

VINCENT ASTIER AND HUGO MARIANO

Special groups are an axiomatization of the algebraic theory of quadratic
forms over fields. It is known that any finite reduced special group is the
special group of some field. We show that any special group that is the
projective limit of a projective system of finite reduced special groups is also
the special group of some field.

1. Introduction

The theory of special groups is an axiomatization of the algebraic theory of qua-
dratic forms, introduced in [Dickmann and Miraglia 2000]. The class of special
groups, together with its morphisms, forms a category. As for other such axioma-
tizations, the main examples of special groups are provided by fields, in this case
by applying the special group functor, which associates to each field F a special
group G(F) describing the theory of quadratic forms over F .

The category of special groups is equivalent to that of abstract Witt rings via
covariant functors, while the category of reduced special groups is equivalent, via
the restriction of the same covariant functors, to the category of reduced abstract
Witt rings (see [Dickmann and Miraglia 2000, 1.25 and 1.26]; recall that the special
group of a field F is reduced if and only if F is formally real and Pythagorean). The
category of reduced special groups is also equivalent, via contravariant functors, to
the category of abstract spaces of orderings; see Chapter 3 of the same reference.

The question whether it is possible to realize every (reduced) special group as
the special group of some (formally real, Pythagorean) field is still open, but the
case of finite reduced special groups (actually of reduced special groups of finite
chain length) has been positively answered by the combination of two results: Kula
[1979], building on techniques introduced in [Bröcker 1977] for the field case,
showed that the product of two finite special groups of (formally real, Pythagorean)
fields is still the special group of some (formally real, Pythagorean) field; then
Marshall [1980] showed that every finite reduced special group can be constructed
from the special group of any real closed field by applying a finite number of times
the operations of product and extension. (Marshall’s result is actually stated and

MSC2000: 03C65, 11E81.
Keywords: quadratic forms, special groups, projective limit, profinite, representation theorems.

257



258 VINCENT ASTIER AND HUGO MARIANO

proved for abstract spaces of orderings.) Since the extension of the special group
of a (formally real, Pythagorean) field is still the special group of a (formally real,
Pythagorean) field, it shows that every finite reduced special group (or reduced
special group of finite chain length) is realized as the special group of a field.

After finite reduced special groups, the simplest objects to consider are prob-
ably projective limits of finite reduced special groups, that is, profinite reduced
special groups. They have already been studied, for example, in [Astier and Tressl
2005; Lira de Lima 1997; Mariano 2003], and notably in [Kula et al. 1984], where
the question of the realization of these special groups by fields is considered and
where it is shown (as Corollary 4.7) that every profinite reduced special group is
isomorphic to a quotient of the reduced special group of some field.

In this paper, we improve on this result by showing that every profinite reduced
special group is isomorphic to the special group of some (necessarily formally real
and Pythagorean) field.

2. Preliminaries

Definition 2.1. Let A, B, A′, B ′ be objects in a category C, and let λ : A→ B,
λ′ : A′ → B ′ be C-morphisms. Then λ, λ′ are said to be naturally identified (in
symbols, λ∼= λ′) if and only if there are C-isomorphisms i A : A→ A′, iB : B→ B ′

such that the following diagram

A
i A //

λ

��

A′

λ′

��
B

iB // B ′

commutes. In this case, we also say that λ and λ′ are naturally identified via i A, iB .

On special groups. We assume some familiarity with the theory of special groups,
as presented in [Dickmann and Miraglia 2000], and only introduce the following
notation:

If G is a special group, Ssat(G) denotes the poset of saturated subgroups of G,
ordered by inclusion. We recall that if1∈ Ssat(G), then G/1 is a reduced special
group if and only if 1( G, if and only if −1 /∈1.

Definition 2.2. A profinite reduced special group is the projective limit of a pro-
jective system of finite reduced special groups.

If (G ′i , f ′i j )i≤ j∈I is a projective system of finite reduced special groups, where
(I,≤) is a downward directed poset, and if G is the projective limit of this system,
the fact that G is indeed a special group (with the structure induced by its inclusion
in the product

∏
i∈I G ′i ) follows immediately from [Dickmann and Miraglia 2003,
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Theorem 3.24]. Moreover, as proved in [Lira de Lima 1997, Proposition 1.9.11],
it is always possible to describe G as the projective limit of a projective system
(Gi , fi j )i≤ j∈I having the following properties:

(1) For every i ∈ I , Gi is G/1i with 1i saturated subgroup of G of finite index;

(2) For every i ≤ j ∈ I , 1i ⊆ 1 j and fi j is the canonical projection of special
groups induced by this inclusion.

We briefly sketch the argument: Let ι : G ↪→
∏

j∈I G ′j be the canonical em-
bedding given by the definition of projective limit, and let πi :

∏
j∈I G ′j → G ′i

be the canonical projection. We define 1i := ker(πi ◦ ι), Gi := G/1i and, for
i ≤ j ∈ I , fi j to be the canonical projection induced by 1i ⊆ 1 j . The system
(Gi , fi j )i≤ j∈I is a projective system, whose projective limit is isomorphic to G,
via the map g ∈ G 7→ (g.1i )i∈I ∈ lim

←−
(G/1i , fi j )i≤ j∈I .

Remark 2.3. If M = (Mi , fi j )i≤ j∈I is any projective system, and if i ′ ∈ I , by
restricting this system to the set I ′ := {i ∈ I | i ≤ i ′} we obtain a new system

M′ := (Mi , fi j )i≤ j∈I ′ .

Since I ′ is coinitial in I , M and M′ have isomorphic projective limits, and M′

possesses the following extra property:

(3) The index set of the projective system has a maximum element.

Definition 2.4. We call adequate a projective system of special groups that satisfies
conditions (1), (2) and (3) above.

We will adhere to the following convention throughout this paper: Let (I,≤)
be a downward directed poset. If (I,≤) has a maximum element, we will denote
it by >, and if (I,≤) has a minimum element (which happens for instance if I is
finite), we will denote it by ⊥.

Let G0,G1 be abstract groups and denote by π0 :G0×G1 � G0 : (g0, g1) 7→ g0,
π1 : G0 × G1 � G1 : (g0, g1) 7→ g1 the canonical projections and by ι0 : G0 �
G0×G1 : g0 7→ (g0, 1), ι1 :G1 � G0×G1 : g1 7→ (1, g1) the canonical injections.

The statements in the next paragraph are straightforward.

Fact 2.5. Let G0,G1 be special groups. Then the canonical map

ψ : Ssat(G0×G1) → Ssat(G0)×Ssat(G1)

1 7→ (ι−1
0 [1], ι

−1
1 [1])= (π0[1], π1[1])

is an order-preserving bijection, whose inverse is (10,11)
ψ−1

7→ 10×11. In partic-
ular, if 1 ∈ Ssat(G0×G1) and (10,11) := (ι

−1
0 [1], ι

−1
1 [1]), then 1=10×11

and 1 is proper if and only if 10 or 11 is proper. Moreover:
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• The canonical surjective morphism of special groups

G0×G1 � G0/10×G1/11

induces a natural isomorphism of special groups1

q̄1 : (G0×G1)/1
∼=
−→ G0/10×G1/11.

• If1⊆1′ ∈Ssat(G0×G1), then the projection (G0×G1)/1� (G0×G1)/1
′

is naturally identified, via the isomorphisms q̄1, q̄1′ , with the (product) pro-
jection G0/10×G1/11 � G0/1

′

0×G1/1
′

1.

On projective systems of (valued) fields. Let (I,≤) be a poset. For each i, j ∈ I
such that i ≤ j we define d(i, j) :=max{length of a chain from i to j} ∈N∪{∞}.
If i � j then we set d(i, j) := −∞. Of course, if i and j are comparable, we have
d(i, j)= d( j, i) if and only if i = j , if and only if d(i, j)= 0.

We will often consider (I,≤) as a directed graph whose vertices are the elements
of I , and where there is an edge from i to j if and only if i ≤ j and d(i, j)= 1.

We first remark that it is possible to describe some projective systems of fields
as projective systems whose morphisms are all inclusions.

Remark 2.6. Let F := (Fi , fi j )i≤ j∈I be a projective system of fields over a down-
ward directed poset (I,≤) with maximum element > ∈ I . Then there is an iso-
morphic projective system of fields F′ = (F ′i , ιi j )i≤ j∈I such that, if i ≤ j ∈ I , then
F ′i ⊆ F ′j and the morphism of fields ιi j : F ′i → F ′j is the inclusion. The projective
limit of the system F is thus isomorphic to the intersection of the fields F ′i , i ∈ I .

We briefly sketch the argument. For each i ∈ I , we define F ′i := fi>[Fi ] ⊆ F>.
Since for i ≤ j ∈ I , fi> = f j> ◦ fi j , we obtain F ′i ⊆ F ′j , so we can define ιi j to be
this inclusion. It follows that F and F′ are isomorphic via the morphisms ( fi>)i∈I .
Therefore: lim

←−
(F j , fi j )i≤ j∈I ∼= lim

←−
(F ′j , ιi j )i≤ j∈I ∼=

⋂
i∈I F ′i ⊆ F ′

>
.

The next results lead to Corollary 2.10, which shows that any finite projective
system of fields of characteristic zero, whose index set has a maximum element,
is isomorphic to the projective system given by the residues of a finite projective
system of valued fields. We first fix some notation:

If (K , v) is a valued field, we denote by Kv or by K (if there is no risk of
confusion about which valuation we consider) the residue field of v, by vK its
value group, by OK the valuation ring associated to v and by MK its maximal ideal
(if there is no ambiguity about the valuation v under consideration). If a ∈ OK ,
we denote by av or ā (once again if there is no risk of confusion) the class of a in
the residue field K . Finally, if v has rank one, K v denotes a completion of K with
respect to v.

1That are reduced if 1 is proper or, otherwise, the trivial special group {1}.
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If F = (Fi , ξi j )i≤ j∈I is a projective system of fields, we denote by G(F) the
system (G(Fi ),G(ξi j ))i≤ j∈I obtained from F by applying the special group func-
tor G.

If F = ((Fi , vi ), ξi j )i≤ j∈I is a projective system of valued fields, we denote by
res F or Fv the induced residue projective system (Fivi , (ξv)i j )i≤ j∈I , where the
(ξv)i j are the induced morphisms of fields.

If a projective system of fields or of valued fields is denoted by (Fi )i∈I or
(Fi , vi )i∈I , without mention of the morphisms, it means that the morphisms are
all inclusions (from a field within all fields with larger index).

Lemma 2.7. Let (K , v) be a henselian valued field of residue characteristic zero
and let L be a subfield of K . Let N be a subfield of K such that L ⊆ N ⊆ K .
Then there is a field M such that L ⊆ M ⊆ K and M = N. Moreover, if [N : L] is
algebraic, respectively finite, then M can be chosen such that [M : L] is algebraic,
respectively finite.

Proof. Write N = L(X)(αi , i ∈ β), where X is a transcendence basis of N over
L and (αi , i ∈ β) is a (possibly infinite) tuple of elements that are algebraic over
L(X), indexed by an ordinal β. Let Y be a set of transcendental elements over L
such that Y = X . By [Engler and Prestel 2005, Corollary 2.2.2], the restriction of
v to L(Y ) is the Gauss extension of v from L to L(Y ). In particular, L(Y )= L(X).

We now proceed by induction on k ∈ β to find elements ai ∈ K , i < k, such that
L(Y )(ai , i < k)= L(X)(αi , i < k).

If k = 0 there is nothing to prove since L(Y )= L(X).
Assume we have found all ai for i < k. Let Nk = L(Y )(ai , i < k) and Mk =

L(X)(αi , i < k). By hypothesis we have N k = Mk . Let P ∈ OK [T ] be a unitary
polynomial such that P is the minimal polynomial of αk over L(X). Let ak be
a root of P in K such that ak = αk (it exists since (K , v) is henselian of residue
characteristic zero). We have Nk(ak) ⊇ Mk(αk) and the fundamental inequality
[Engler and Prestel 2005, Theorem 3.3.4] tells us that

[Nk(ak) : Nk] ≤ [Nk(ak) : Nk](≤ deg P).

Since [Mk(αk) :Mk]=deg P , it follows that Nk(ak)=Mk(αk), which is the desired
result. �

Definition 2.8. Let (K , v) be a valued field and let (Ei )i<n and (Fi )i<n be two
sequences of fields of the same length n. We say that (Fi )i<n is a good residue of
(Ei )i<n in (K , v) if

(1) Ei ⊆ K and Fi ⊆ K for i < n;

(2) For every A ⊆ {0, . . . , n − 1}, 〈Ei , i ∈ A〉 = 〈Fi , i ∈ A〉 (where 〈L i , i ∈ A〉
denotes the compositum of the fields L i ).
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Lemma 2.9. Let (K , v) be a henselian valued field of residue characteristic zero,
and let (Ei )i<n and (Fi )i<n be two sequences of fields of length n such that (Fi )i<n

is a good residue of (Ei )i<n in (K , v). Let (F ′i )i<m be a sequence of subfields of
K , and let, for i ∈ {0, . . .m− 1}

Ai = { j ∈ {0, . . . , n− 1} | F j ⊆ F ′i }.

Then there is a sequence (E ′i )i<m of subfields of K such that

(1) for every i ∈ {0, . . . ,m − 1} and every j ∈ Ai , E j ⊆ E ′i and trdeg E ′i | E j =

trdeg F ′i | F j ;

(2) (F ′i )i<m is a good residue of (E ′i )i<m .

Proof. We will use the following reformulation of Remark 4.1.2(3) in [Engler and
Prestel 2005]:

Fact 1. Let (N , w) be a valued field and let P, Q ∈ ON [T ] and R ∈ N [T ] be such
that P=Q R. Assume that Q is primitive (that is,w′(Q)=0, wherew′ is the Gauss
extension of w to N [T ], i.e., mini≤k w(ai )= 0 if one writes Q = a0+· · ·+ ak T k).
Then R ∈ ON [T ].

Proof. Write P = a P1 and R = cR1 with a, c ∈ N and P1, R1 ∈ N [T ] such that
w′(P1) = w

′(R1) = 0 (so P1, R1 ∈ ON [T ]). Then w(c) = w′(Q)+ w′(cR1) =

w′(QcR1) = w
′(Q R) = w′(P) ≥ 0 since P ∈ ON [T ]. This yields R = cR1 with

w′(R)= w(c)+w′(R1)= w(c)≥ 0, i.e., R ∈ ON [T ]. �

We next fix some notation. For A ⊆ {0, . . . , n − 1} we denote by FA the field
〈Fi , i ∈ A〉 and similarly by E A the field 〈Ei , i ∈ A〉.

For i <m let X i ={xi1, . . . , xiki } be a transcendence basis of F ′i over FAi = EAi ,
and let Yi = {yi1, . . . , yiki } ⊆ K be a set of transcendental elements over EAi such
that Y i = X i . Note that by [Engler and Prestel 2005, corollary 2.2.2], it implies
that the restriction of v to EAi (Yi ) is the Gauss extension of v from EAi to EAi (Yi ).
In particular we have EAi (Yi )= EAi (X i )= FAi (X i ) (the last equality holds because
(Fi )i<n is a good residue of (Ei )i<n).

Write F ′i = FAi (X i )(αi ), where αi = (αi j ) j∈βi is a (possibly infinite) tuple of
elements algebraic over FAi (X i ). For i < m and j ∈ βi let Pi j ∈ OEAi (Yi )[T ] be a
unitary polynomial such that P i j is the minimal polynomial of αi j over EAi (Yi )=

FAi (X i ), and let ai j ∈ OK be a root of Pi j with āi j = αi j (ai j exists since (K , v)
is henselian of residue characteristic zero). We take for E ′i the field EAi (Yi )(ai ),
where ai = (ai j ) j∈βi . The first conclusion of the lemma is obviously satisfied. Let
A ⊆ {0, . . . ,m− 1}.

Claim. Let L be a subfield of K such that (L , v) is henselian, 〈F ′i , i ∈ A〉 ⊆ L , and
〈E j , j ∈ Ai , i ∈ A〉(Yi , i ∈ A)⊆ L. Then ai ∈ L for every i ∈ A, i.e., L⊇〈E ′i , i ∈ A〉.
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Proof. Let i ∈ A and j ∈ βi . Since αi j ∈ L and (L , v) is henselian (of residue
characteristic zero), there is bi j ∈ OL such that b̄i j = αi j and bi j is a root of
Pi j . Assume bi j 6= ai j . Then we can write Pi j (T ) = (T − ai j )(T − bi j )R(T )
in EAi (Yi , ai j , bi j ). But Pi j , (T − ai j ), (T − bi j ) each lie in OEAi (Yi ,ai j ,bi j )[T ] and
(T − ai j )(T − bi j ) is primitive, so by Fact 1 we have R(T ) ∈ OEAi (Yi ,ai j ,bi j )[T ].
Going to the residue field K we get P i j (T ) = (T − αi j )

2 R(T ), so αi j is root of
order at least 2 of P i j , which is impossible since P i j is the minimal polynomial of
αi j and char K = 0. So ai j = bi j ∈ L . End of proof of the claim. �

We have E ′A = 〈E
′

i , i ∈ A〉 = 〈〈E j , j ∈ Ai 〉(Yi )(ai ), i ∈ A〉 = 〈E j , j ∈ Ai , i ∈
A〉(Yi , i ∈ A)(ai , i ∈ A), and

〈E j , j ∈ Ai , i ∈ A〉(Yi , i ∈ A)= 〈E j , j ∈ Ai , i ∈ A〉(X i , i ∈ A)

= 〈F j , j ∈ Ai , i ∈ A〉(X i , i ∈ A).
Moreover,

〈F ′i , i∈A〉=〈〈F j , j∈Ai 〉(X i )(αi ), i∈A〉=〈F j , j∈Ai , i∈A〉(X i , i∈A)(αi , i∈A).

So 〈F ′i , i ∈ A〉 is an algebraic extension of 〈E j , j ∈ Ai , i ∈ A〉(Yi , i ∈ A). In par-
ticular (see Lemma 2.7) there is an algebraic extension E ′′ of

〈E j , j ∈ Ai , i ∈ A〉(Yi , i ∈ A)

(inside K ) such that E ′′ = 〈F ′i , i ∈ A〉. Let Ẽ be the henselian closure of E ′′ in
(K , v). We have Ẽ = 〈F ′i , i ∈ A〉, E ′′ ⊆ Ẽ . By the claim, since Ẽ is henselian and
Ẽ ⊇ 〈F ′i , i ∈ A〉, we have ai ∈ Ẽ for every i ∈ A. It implies E ′A ⊆ Ẽ , which gives,
taking residues E ′A ⊆ Ẽ = 〈F ′i , i ∈ A〉. But by construction of the E ′i we obviously
have E ′A ⊇ 〈F

′

i , i ∈ A〉. It follows that E ′A = 〈F
′

i , i ∈ A〉. �

Corollary 2.10. Let F = (Fi )i∈I be a finite projective system of fields of charac-
teristic zero and let ⊥ be the minimum of I . Assume that (I,≤) has a maximum >
and let (E⊥, v⊥) be a valued field such that E⊥v⊥∼= F⊥. Then there is a projective
system of valued fields (Ei , vi )i∈I such that (Fi )i∈I ∼= res(Ei , vi )i∈I and, for every
i ∈ I , trdeg Ei | E⊥ = trdeg Fi | F⊥. Moreover:

• We can assume that all (Ei , vi ), i ∈ I , are henselian.

• If v⊥ has rank one, then we can choose the valuations vi , i ∈ I , such that they
all have rank one.

Proof. We first show that there is a projective system of fields F′ = (F ′i )i∈I with
F′ ∼= F and there is an extension (K , v) of (E⊥, v⊥) such that K = F ′

>
, and such

that v has rank one if v⊥ has rank one. In particular K ⊇ F ′i for every i ∈ I .
Indeed, write F> = F⊥(X)(ā), where X is a set of elements transcendental

over F⊥ and ā is a sequence of elements algebraic over F⊥(X). Take Y a set of
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indeterminates with the same cardinality as X and consider the Gauss extension
w of v⊥ to E⊥(Y ). Then E⊥(Y ) ∼= F⊥(X). Note that w has rank one if v⊥ has
rank one. Using now for instance [Endler 1963, Satz 1], we find an (algebraic)
extension (K , v) of (E⊥(Y ), w) such that K and F> are isomorphic via a map
which we denote by h : K → F> (and with v of rank one if w has rank one).
Define F ′i := h−1

[Fi ]. This justifies the claim in the first paragraph of the proof.
To keep notation simple, we assume F= F′ as above. We construct the valued

fields (Ei , vi ) (for i 6= ⊥) as subfields of K endowed with the restriction of the
valuation v. Since the valuation will always be v, we only look for the subfields
Ei . Let ⊥ be the minimum of I . We find the fields Ei by induction on d(⊥, i)
(note that d(⊥,>)=max j∈I d(⊥, j)).

For l ∈ {0, . . . , d(⊥,>)}, let Dl = {i ∈ I | d(⊥, i)= l}.
If d(⊥, i) = 0, then, by hypothesis and by the claim above, we already have

the subvalued field (E⊥, v⊥)⊆ (K , v). Note that since D0 = {⊥} the sequence of
fields (Fi )i∈D0 is a good residue of (Ei )i∈D0 in (K , v).

Assume we have found a system of fields (Ei )i∈I,d(⊥,i)≤l such that res(Ei , v �
Ei )= Fi for i ∈ I so that d(⊥, i)≤ l and (Fi )i∈Dl is a good residue of (Ei )i∈Dl in
(K , v). We write Dl+1 = {ik | k < m}, then we apply Lemma 2.9 with (F ′k)k<m =

(Fik )k<m , and obtain in this way a sequence (E ′k)k<m . We define the fields Ei for
i ∈ Dl+1 by (Eik )k<m = (E ′k)k<m .

Finally, we can replace (E>, v>) by one of it henselian closures, and each
(Ei , vi ) by its henselian closure inside (E>, v>). The new residue system is iso-
morphic to the previously defined residue system, which shows that we can assume
that all (Ei , vi ) are henselian. �

3. Main results

Our main result, Corollary 3.3, is a direct consequence of the next two theorems,
whose proofs are given in Sections 4 and 5 respectively.

Theorem 3.1. Let K := (Ki , fi j )i≤ j∈I be a projective system of fields (respectively
formally real Pythagorean fields) such that G(Ki ) is finite for every i ∈ I . Let
(Gi , λi j )i≤ j∈I = G(K) and let G be the projective limit of this projective system
of finite special groups. Then G is isomorphic to the special group of some field
(respectively formally real Pythagorean field).

Theorem 3.2. Let G := (Gi , λi j )i≤ j∈I be an adequate projective system of finite
reduced special groups (see Definition 2.4). Then there is a projective system K

of formally real Pythagorean fields whose morphisms are inclusions, such that
G∼= G(K).

Now consider a profinite reduced special group G. Say it is the projective limit
of the system G = (Gi , fi j )i≤ j∈I of finite reduced special groups. Let i ′ be any
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element in I and consider the system G′ equal to G restricted to indices in I ′ :=
{i ∈ I | i ≤ i ′}. The special group G is the projective limit of the system G′, whose
index set I ′ has a maximum element >= i ′. We can now use the strategy outlined
after Definition 2.2 to express G as an adequate projective system whose index set
is I ′. Applying Theorem 3.2 then Theorem 3.1 now yields:

Corollary 3.3. Every profinite reduced special group is isomorphic to the special
group of some formally real Pythagorean field.

4. Proof of Theorem 3.1

If (I,≤) is a downward directed poset and i ∈ I , then i← denotes { j ∈ I | j ≤ i}
and i→ denotes { j ∈ I | j ≥ i}.

We first assume the following reductions:

(1) I has a maximum > (I =>←).

(2) All the Ki , i ∈ I , are subfields of the field M := K>, and the morphisms
fi j : Ki → K j are inclusions. In particular, the projective limit of the system
K is isomorphic to the intersection of the fields Ki , i ∈ I .

These assumptions can safely be made because for the original projective system
of fields K := (K j , f jk) j≤k∈I and for each i ′ ∈ I fixed,

(i) the set i ′← is a coinitial subset of I , and

(ii) if j ≤ i ′ ∈ I , we can identify K j with the subfield K ′j := f j i ′[K j ] of Ki ′ ,
and the morphisms f jk : K j → Kk are naturally identified with inclusions
ι jk : K ′j ↪→ K ′k .

The reductions above give us

lim
←−
(K j , f jk) j≤k∈I ∼= lim

←−
(K j , f jk) j≤k∈i ′← ∼= lim

←−
(K ′j , ι jk) j≤k∈i ′←

∼=
⋂

j∈i ′←
f j i ′[K j ] ⊆ Ki ′

and
G := lim

←−
(G(K j ),G( f jk)) j≤k∈I ∼= lim

←−
(G(K j ),G( f jk)) j≤k∈i ′←

∼= lim
←−
(G(K ′j ),G(ι jk)) j≤k∈i ′← .

Now consider the language L = L R ∪ {Ri }i∈I , where L R is the language of
rings and the Ri are unary relation symbols. We turn M into an L-structure by
interpreting each Ri in M by the subfield Ki .

Let N be an |I |+-saturated elementary extension of M in the language L . (See
[Chang and Keisler 1990, Chapter 5 and Lemma 5.1.2] or [Hodges 1993, p. 480
and Corollary 10.2.2] for the definition of saturated models and the existence result
we just used. Note that this notion of saturation is not linked to the existing one
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for subgroups of special groups.) Each Fi := RN
i is a subfield of N , and the

fields Fi form a projective system of fields F (since for k ≤ i, j ∈ I the sentence
“Rk ⊆ Ri ∩ R j ” is in the theory of M). Moreover, for every i ∈ I , Ki ↪→ Fi

is an L R-elementary embedding and therefore induces an isomorphism of special
groups

G(Ki )
∼=
−→ G(Fi )

(since the special groups G(Ki ), being finite, are described in the theory of M).
More generally G(K)∼= G(F), so G ∼= lim

←−
G(K)∼= lim

←−
G(F).

Let F :=
⋂

i∈I Fi and define

ξ : G(F) → lim
←−

G(F)

a · Ḟ2
7→ (a · Ḟi

2
)i∈I .

We show that ξ is an isomorphism of special groups, which yields G ∼= G(F) as
needed (in particular, if the fields Ki , i ∈ I , are formally real Pythagorean, then
F =

⋂
i∈I Fi is formally real Pythagorean, since G(F) is a reduced special group).

Step 1. It is clear that ξ is well-defined and is a morphism of groups.

Step 2. ξ is a morphism of special groups. Indeed, it is clear that ξ sends −1 to
−1. Let a · Ḟ2, b · Ḟ2

∈G(F) be such that a · Ḟ2
∈ DG(F)〈1, b · Ḟ2

〉. There are then
c, d ∈ F such that, for all i ∈ I , a= c2

+bd2 in Fi . Then a · Ḟi
2
∈ DG(Fi )〈1, b · Ḟi

2
〉

for every i ∈ I , and therefore ξ(a · Ḟ2) ∈ DG ′〈1, ξ(b · Ḟ2)〉.

Step 3. ξ is surjective: Let a = (ai · Ḟ2
i )i∈I ∈ lim

←−
G(Fi ). So for all i ≤ j ∈ I ,

ai · Ḟ2
j = a j · Ḟ2

j . We want x ∈ N satisfying the set of formulas

1 := {x ∈ Fi }i∈I ∪ {x = ai mod Ḟ2
i }i∈I .

Every finite part of1 is satisfied in N since a= (ai · Ḟ2
i )i∈I ∈ lim

←−
G(Fi ) (it suffices

to take x = ak , where k is less than every one of the indices i ∈ I occurring in this
finite part). By |I |+-saturation, 1 has a solution x in N . Then ξ(x)= (ai · Ḟ2

i ).
The rest of the proof relies on the following lemma.

Lemma 4.1. Let n ∈ N and let P(X1, . . . , Xn) ∈ F[X1, . . . , Xn]. Assume the
equation P(X1, . . . , Xn) = 0 has a solution in every Fi , i ∈ I . Then the same
equation has a solution in F.

Proof. We are looking for x̄ ∈ N such that the set of formulas

6 := {P(x̄)= 0} ∪ {x̄ ∈ Fi }i∈I

is satisfied in N . Since the Fi , together with the inclusions between them, form a
projective system, every finite part of 6 has a solution, and by the |I |+-saturation
of N , 6 has a solution in N . �
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We go back to proving that ξ is an isomorphism:

Step 4. ξ is injective: Let a = a · Ḟ2
∈G(F) be such that ξ(a)= 1, i.e., a ∈ Ḟi

2 for
every i ∈ I , i.e., the polynomial X2

−a has a root in each Fi , i ∈ I . By Lemma 4.1,
X2
− a has a root in F , hence a ∈ Ḟ2.

Step 5. ξ is a monomorphism of special groups: Let a, b ∈ F be such that, for
every i ∈ I , a · Ḟ2

i ∈ D〈1, b · Ḟ2
i 〉. Let P(X, Y ) = a − (X2

+ bY 2) ∈ F[X, Y ].
By hypothesis, P(X, Y ) = 0 has a solution in each Fi , hence a solution in F by
Lemma 4.1, which means a ∈ DG(F)〈1, b〉.

5. Proof of Theorem 3.2

Reducing to a finite projective system. Since G is adequate, the set (I,≤) has a
maximum element >.

In this subsection we show that it is enough to prove Theorem 3.2 when G :=

(Gi , fi j )i≤ j∈I is a finite projective system of special groups such that I has a max-
imum (which we will also denote by >).

Let L be the language {0, 1,−,+, · }∪ {Fi | i ∈ I }∪ {Qg
i | i ∈ I, g ∈ Gi }, where

0, 1 are constant symbols, − is a unary function symbol, +, · are binary function
symbols and Fi , Qg

i are unary predicate symbols, for each i ∈ I and g∈Gi . Denote
by λi the inverse of the bijection g ∈ Gi 7→ Qg

i , i ∈ I . The projective system of
fields we are looking for is a model of the theory � consisting of (first-order)
L-sentences that are informally described in the four items below:

(1) the interpretation of the unary predicate F> is the universe of the L-structure
(i.e., ∀x(F>(x))) and “(F>, 0, 1,+, · ) is a field”;

(2) for every i ≤ j ∈ I :
“Fi ⊆ F j ” and “(Fi , 0, 1,+, · ) is a subfield of the field (F>, 0, 1,+, · )”
(technically speaking, + and · are functional symbols globally defined whose
restrictions to Fi give internal operations on Fi );

(3) for every i ∈ I :
“λi is an isomorphism of special groups G(Fi )→ Gi ”;

(4) for every i ≤ j ∈ I :
“the morphism of special groups induced by the inclusion Fi ⊆ F j is naturally
identified with fi j , via the isomorphisms λi , λ j ”.

It is clear how to describe the expressions in items (1) and (2) by first-order L-
sentences. For the reader’s convenience, we add a more explicit description of the
L-sentences involved in the two remaining items: the hypothesis that the special
groups Gi are all finite ensures that the prescription in item (3) can be encoded by
a set of first-order L-sentences.
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Item (3): for each i ∈ I :

• for each g ∈ Gi , “Qg
i ⊆ Ḟi ” and “Qg

i = aḞ2
i , for some a ∈ Ḟi ”;

• for each g, g′ ∈ Gi such that g 6= g′, “Qg
i ∩ Qg′

i =∅”;

• “Ḟi =
⋃
{Qg

i | g ∈ Gi }” (as Gi is a finite special group, this can be described
by a first-order L-sentence);

• “1 ∈ Q1
i and −1 ∈ Q−1

i ”;

• for each g, g′ ∈Gi , “for each a, a′, if a ∈ Qg
i and a′ ∈ Qg′

i then a ·a′ ∈ Qgg′
i ”;

• for each g, g′ ∈ Gi such that g′ ∈ DGi (1, g), “for each a, a′, if a ∈ Qg
i and

a′ ∈ Qg′
i then there are x, y ∈ Fi such that a′ = x2

+ ay2”;

• for each g, g′ ∈ Gi such that g′ /∈ DGi (1, g), “for each a, a′, if a ∈ Qg
i and

a′ ∈ Qg′
i then for all x, y ∈ Fi , a′ 6= x2

+ ay2”.

Item (4): for each i ≤ j ∈ I :
By the axioms above: since Fi ⊆ F j and we have the partitions

Ḟi/Ḟ2
i = {Q

g
i | g ∈ Gi } and Ḟ j/Ḟ2

j = {Q
g′
j | g

′
∈ G j },

then for each g ∈ Gi there is a unique g′ ∈ G j such that Qg
i ⊆ Qg′

j . In this way
we obtain a function qi j : Ḟi/Ḟ2

i → Ḟ j/Ḟ2
j . Clearly qi j (a.Ḟ2

i ) = a.Ḟ2
j , for every

a ∈ Ḟi , i.e., qi j is the special group morphism induced by the inclusion Fi ⊆ F j .
We add a new list of axioms expressing that λ j ◦qi j = fi j ◦λi . A direct examination
of the equivalent condition qi j = λ

−1
j ◦ fi j ◦ λi shows that these axioms must be

for each g ∈ Gi , “Qg
i ⊆ Q fi j (g)

j ”.

Using now the compactness theorem (see [Chang and Keisler 1990, Theorem
1.3.22] or [Hodges 1993, Theorem 6.1.1]), to find a model of this theory we only
need to find a model of every finite part �0 ⊆�. Let J be the set of elements of I
occurring in this finite part �0, together with >. Since I is downward directed, we
can assume that J is also downward directed (taking a larger set J if necessary),
that is J has a first element⊥. In particular J determines a finite projective system
of special groups whose index set that has a maximum and a minimum.

Description of the proof by induction. We therefore assume from now on that the
index poset (I,≤) is finite and that it has a minimum ⊥ and a maximum >. We
find a finite projective system K of Pythagorean fields of characteristic 0 such that
G∼=G(K) by induction on the construction of G⊥ by products and extensions. For
the purpose of the proof, we allow the (nonreduced) special group {1} to appear in
G.

Recall that since G is an adequate projective system, the morphisms fi j , i≤ j ∈ I ,
are quotients by saturated subgroups (see the paragraph after Definition 2.2).
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If G⊥ ∼= {1}, then all special groups in the system are trivial and all morphisms
are isomorphisms. We can obviously realize such a system by taking Fi = A, i ∈ I ,
where A is any fixed algebraically closed field of characteristic 0.

If G⊥ ∼= Z2, then all special groups in the system are isomorphic to Z2 or to {1}
and all morphisms are isomorphisms or naturally identified with Z2 � {1}. We can
obviously realize such a system by simply selecting a real closed field R and an
algebraically closed field A such that R ⊆ A.

If G⊥ ∼= G ′
⊥
×G ′′

⊥
, since all morphisms and special groups in the systems are

quotients of G⊥ by (larger and larger) saturated subgroups, and using Fact 2.5,
the whole projective system (Gi , fi j )i≤ j∈I splits according to the product G⊥ ∼=
G ′
⊥
×G ′′

⊥
into two adequate projective systems of finite special groups:

(5-1) (G ′i , f ′i j )i≤ j∈I and (G ′′i , f ′′i j )i≤ j∈I .

(Note that, for each i ∈ I , if Gi is reduced, then either both G ′i and G ′′i are reduced or
one of them is the trivial special group {1} and the other is reduced.) By induction
the systems in (5-1) are realized by two projective systems of Pythagorean fields
of characteristic 0: F′ = (F ′i )i∈I and F′′ = (F ′′i )i∈I (where the morphisms are
inclusions), so we just need to “glue” them together. For this we use results from
[Kula 1979], which describe how to realize a finite product of finite special groups
when each one is already realized. This is achieved in the next subsection.

If G⊥ ∼= G ′[H ], as above, the morphisms of special groups in the projective
system are quotients of G⊥ by (larger and larger) saturated subgroups 1i . This
case is dealt with starting on page 279, using results from [Becher 2002].

Gluing, the product case. The next several pages are taken by the proof of the
following result.

Theorem 5.1. Let (I,≤) be a finite downward directed index set with first element
⊥ and last element >. Let F′ = (F ′i )i∈I , F′′ = (F ′′i )i∈I be finite projective systems
of fields of characteristic 0, where the morphisms are inclusions and such that for
every i ∈ I G(F ′i ) and G(F ′′i ) are finite special groups. Then there is a finite
projective system F = (Fi )i∈I of fields of characteristic 0 (where the morphisms
are inclusions) such that

G(F)∼= G(F′)×G(F′′).

Remark 5.2. In this theorem, for each i ∈ I we have:

(a) Fi is Pythagorean if and only if F ′i and F ′′i are Pythagorean.

(b) If Fi is Pythagorean, then Fi is formally real if and only if F ′i or F ′′i is formally
real.

We begin with a reformulation of some results from [Kula 1979].
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Definition 5.3. Let F be a field equipped with n mutually independent valuations
of rank one v1, . . . , vn , and let fi be an embedding of F into Fvi , a completion
of F with respect to vi . We say that (F, f1, . . . , fn) fulfills the global squares
property if, for every a ∈ F ,

a ∈ Ḟ2
⇐⇒ ∀i ∈ {1, . . . , n} fi (a) ∈ (Ḟvi )

2
.

(Note that the left to right implication always holds.)

Theorem 5.4 [Kula 1979, Corollary 2.5]. With notation as in Definition 5.3, as-
sume that (F, f1, . . . , fn) fulfills the global squares property. Then the map

ξF : G(F) →
∏n

i=1 G(Fvi )

aḞ2
7→ ( fi (a) · (Ḟvi )

2
)i=1,...,n

is an isomorphism of special groups.

Theorem 5.5 [Kula 1979, Theorem 2.6]. Let (L i , vi1, . . . , vin)i∈I be a finite pro-
jective system of fields equipped with n mutually independent valuations of rank
one, and such that I has a maximum element >. Then for every i ∈ I there is an
algebraic extension E(L i ) of L i and a morphism of special groups

ηi : G(E(L i ))→
n∏

k=1
G((L i )

vik )

such that

(1) E(L i )⊆ E(L j ) for every j ∈ I , j ≥ i ;

(2) G(E(L i )) ∼=
ηi

∏n
k=1 G((L i )

vik ); and

(3) the morphism of special groups
∏n

k=1 G((L i )
vik )→

∏n
k=1 G((L j )

v jk ), given
by the product of the morphisms of special groups induced by (L i )

vik ⊆ (L j )
v jk

is naturally identified, via the isomorphisms ηi and η j , with the morphism of
special groups G(E(L i ))→ G(E(L j )) induced by E(L i )⊆ E(L j ).

Proof. Since a valuation vik is the restriction on L i of the valuation v>k , we drop
the first index and simply denote it by vk . For k ∈ {1, . . . , n} we fix a completion
Lk
>

of L> with respect to vk and define, for i ∈ I , Lk
i to be the completion of L i in

Lk
>

with respect to vk . The systems (Lk
i )i∈I , for k ∈ {1, . . . , n}, are all projective

systems of fields, where the morphisms are the inclusions (since Lk
i is simply the

set of limits in Lk
>

of vk-Cauchy sequences of elements of L i ).
Let K+ be an algebraic closure of L>. We define the set

L :=
{
projective systems of fields (Ei , ιi1, . . . , ιin)i∈I

such that L i ⊆ Ei ⊆ K+ with Ei | L i algebraic,
equipped with the L i -embeddings of fields ιik : Ei→ Lk

i for k= 1, . . . , n
}
.



REALIZING PROFINITE REDUCED SPECIAL GROUPS 271

(Note that the condition that (Ei , ιi1, . . . , ιin)i∈I is a projective system implies
ιik ⊆ ι jk for i ≤ j ∈ I and k ∈ {1, . . . , n}, which is possible since Lk

i ⊆ Lk
j .) We

equip L with the partial ordering

(Ei , ιi1, . . . , ιin)i∈I ≤ (Fi , κi1, . . . , κin)i∈I

if and only if
for every i ∈ I and k ∈ {1, . . . , n}, Ei ⊆ Fi and ιik ⊆ κik .

By Zorn’s lemma, L has a maximal element (Mi , fi1, . . . , fin)i∈I . We show that,
for j ∈ I , (M j , f j1, . . . , f jn) fulfills the global squares property. Let j ∈ I and let
a ∈ M j \ {0} be such that f jk(a) ∈ (Lk

j )
×2, for k = 1, . . . , n. Assume

√
a 6∈ M j .

Fix a square root
√

a of a and αk ∈ Lk
j such that α2

k = f jk(a). Then each morphism
f jk can be (properly) extended to M ′j :=M j (

√
a) by sending

√
a to αk . Moreover,

with A j := {r ∈ I | r ≥ j}, and since for r ∈ A j we have Lk
j ⊆ Lk

r , the same
reasoning tells us that, for each r ∈ A j and k ∈ {1, . . . , n}, each morphism frk

can be extended to M ′r := Mr (
√

a) by sending
√

a to αk (since αk ∈ Lk
r ). If

r ∈ I \ A j , we take M ′r := Mr . We obtain in this way (M ′i , f ′i , . . . , f ′n)i∈I , a
projective system of fields equipped with n morphisms of fields that is (strictly)
larger than (Mi , fi , . . . , fn)i∈I , a contradiction. It follows that

√
a ∈ M j and thus

that (M j , f j1, . . . , f jn), for j ∈ I , fulfills the global squares property. If we take
E(L i )=Mi for i ∈ I , the first conclusion of the theorem then holds, and the second
follows by Theorem 5.4, with

ηi : G(Mi )
∼=
→

n∏
k=1

G((L i )
k)

a · Ṁ2
i 7→ ( fi (a) · (Lk

i )
×2
)i=1,...,n,

for i ∈ I . The third conclusion is proved in the next lemma. �

Lemma 5.6. Let the notation be as in Theorem 5.5 and its proof.
Let (L , v1, . . . , vn)⊇ (K , v1 � K , . . . , vn � K ) be two fields equipped with n mu-

tually independent valuations of rank one. For m = 1, . . . , n let

• Lm be a completion of L with respect to vm and K m be a completion of K
with respect to vm � K such that K m

⊆ Lm ,

• fm be an embedding of K into K m and gm be an embedding of L into Lm

extending fm .

Assume (K , f1, . . . , fn) and (L , g1, . . . , gn) satisfy the global squares property.
Let λ :

∏n
m=1 G(K m) →

∏n
m=1 G(Lm) be the product of the morphisms of

special groups induced by the inclusions K m
⊆ Lm for m = 1, . . . , n, and let

µ : G(K )→ G(L) be the morphism of special groups induced by K ⊆ L.
Then λ and µ are naturally identified via the isomorphisms ξK and ξL given by

Theorem 5.4.
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Proof. By Theorem 5.4 the isomorphism G(K )∼= G(K 1)× · · ·×G(K n) is

ξK : G(K ) → G(K 1)× · · ·×G(K n)

x · K̇ 2
7→ ( f1(x) · ˙(K 1)

2
, . . . , fn(x) · ˙(K n)

2
).

Similarly, the isomorphism between G(L) and G(L1)× · · ·×G(Ln) is

ξL : G(L) → G(L1)× · · ·×G(Ln)

x · L̇2
7→ (g1(x) · ˙(L1)

2
, . . . , gn(x) · ˙(Ln)

2
).

Thus λ= ξL ◦µ ◦ ξ
−1
K since gm � K = fm for m = 1, . . . , n. �

We now turn our attention to the two finite projective systems of fields F′ =

(F ′i )i∈I and F′′ = (F ′′i )i∈I of characteristic zero introduced in the statement of
Theorem 5.1. We first show that we can assume that the fields in F′ and F′′ are at
most countable and of finite transcendence degree over Q. This is achieved by the
following proposition.

Proposition 5.7 [Kula 1979, Proposition 3.1]. Let L := (L i )i∈I be a finite projec-
tive system of fields of characteristic 0 such that G(L i ) is a finite special group for
all i ∈ I . There is a map F, defined on {L i }i∈I , satisfying the following properties
whenever i ≤ j ∈ I :

(1) F(L i ) is a countable subfield of L i with finite transcendence degree over Q.

(2) If ϕi : F(L i ) ↪→ L i is the inclusion map, then G(ϕi ) : G(F(L i ))→ G(L i ) is
an isomorphism of special groups.

(3) F(L i )⊆ F(L j ).

(4) If λi j : G(L i )→ G(L j ) is the morphism of special groups induced by L i ⊆

L j , then the morphism of special groups G(F(L i ))→ G(F(L j )) induced by
F(L i ) ⊆ F(L j ) is naturally identified with λi j , via the isomorphisms G(ϕi )

and G(ϕ j ).

Proof. The proof is a trivial extension of Kula’s. If L is a field with a finite number
of square classes, a representative system of G(L) is a finite subset R(L)= A∪ B
of L such that

• A ⊆ L̇ and L̇/L̇2
= A/L̇2;

• For every a1, a2 ∈ A with a1 ∈ DL〈1, a2〉, there are b1, b2 ∈ B such that
a1 = b2

1+ a2b2
2.

Claim: For every i ∈ I there is a representative system R(L i ) of L i such that
R(L i )⊆ R(L j ) whenever i ≤ j .

Proof of the claim: Direct by induction on d(⊥, i) (just take a system of repre-
sentatives of L i and add to it all the R(L j ) for ⊥≤ j < i).
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Then, just as in [Kula 1979], take for F(L i ) the algebraic closure of Q(R(L i ))

in L i . �

The following two propositions show that we can assume that atd(F ′i )= atd(F ′′i )
for every i ∈ I , where atd denotes the absolute transcendence degree, i.e., the
transcendence degree over Q.

Proposition 5.8 ([Kula 1979], Lemma 3.2). Let (L i )i∈I be a finite projective sys-
tem of countable fields of finite absolute transcendence degree. There is a map T

defined on {L i }i∈I satisfying the following properties whenever i ≤ j ∈ I :

(1) T(L i ) is a countable field extension of L i .

(2) atd(T(L i ))= atd(L i )+ 1.

(3) If τi : L i ↪→ T(L i ) is the inclusion map, then G(τi ) : G(L i )→ G(T(L i )) is
an isomorphism of special groups.

(4) T(L i )⊆ T(L j ).

(5) If λi j : G(L i )→ G(L j ) is the morphism of special groups induced by L i ⊆

L j , then the morphism of special groups G(T(L i ))→ G(T(L j )) induced by
T(L i )⊆ T(L j ) is naturally identified with λi j (via G(τi ) and G(τ j )).

Proof. For i ∈ I let Ki := L i (x)( 2n√
x)n∈N (x is an indeterminate), and consider on

Ki the unique extension vi of the valuation on L i (x) determined by the irreducible
polynomial x . The Ki , together with their inclusions, form a projective system, and
the sets 8i := {vi } satisfy the hypothesis of Theorem 5.5. We now apply the map
E defined in Theorem 5.5 to the projective system of the Ki and get the projective
system of the T(L i ). Since L i is countable, Ki and T(L i )= E(Ki ) are countable.
Kula’s proof of [Kula 1979, lemma 3.2] shows that the second and third claims of
the proposition hold, and the last two hold by Theorem 5.5. �

Proposition 5.9. There exist finite projective systems K′=(K ′i )i∈I and K′′=(K ′′i )i∈I

of fields of characteristic 0 such that

(1) G(K′)∼=G(F′) and G(K′′)∼=G(F′′), and

(2) for every i∈I , atd(K ′i )=atd(K ′′i )<∞.

Proof. We assume there is some i ∈ I such that atd(F ′i ) 6= atd(F ′′i ) and we proceed
by induction on d(⊥, i), the maximal length of a chain from ⊥ to i .

• d(⊥, i) = 0, i.e., i = ⊥. Let t := max{atd(F ′
⊥
), atd(F ′′

⊥
)}. We then apply

Proposition 5.8 as many times as necessary to the system F′ or F′′ (the one
that does no realize the maximum), and we obtain two new systems F′(0)
and F′′(0) indexed by I , whose fields of index ⊥ have same (finite) absolute
transcendence degree t .
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• d(⊥, i) = n > 0. We now proceed by induction on the number of i’s with
d(⊥, i)= n and atd(F ′i ) 6= atd(F ′′i ). We fix one of them: i1. By induction we
can assume that the projective systems F′ and F′′ satisfy atd(F ′j ) = atd(F ′′j )
for every j ∈ I , d(⊥, j) < n. We consider the systems F′ � i→1 and F′′ � i→1 .
By applying Proposition 5.8, we get two new systems T′ and T′′, indexed by
i→1 whose fields indexed by i1 have same absolute transcendence degree. We
replace, in F′, respectively F′′, the subsystem F′ � i→1 by T′, respectively F′′ �
i→1 by T′′ and we write F′(1), F′′(1) for the new sets of fields. Since every field
has been replaced by a field extension, we still get projective systems of fields
and, moreover, G(F′(1)) ∼= G(F′) and G(F′′(1)) ∼= G(F′′). Now atd(F ′(1)i1

) =

atd(F ′′(1)i1
) <∞, and we proceed by induction. �

So, from now on, we assume that our two finite projective systems of fields F′

and F′′ consist of countable fields having the same finite transcendence degree over
Q at each index.

Remark 5.10. Let K be a field equipped with two independent valuations v1 and
v2 and let (L , w1, w2) be an extension of (K , v1, v2). Then w1 and w2 are inde-
pendent. Indeed, if it were not the case, then w1 and w2 would define the same
topology on L (see [Engler and Prestel 2005, Theorem 2.3.4]), and therefore the
same induced topologies on K , which coincide with the topologies defined by v1

and v2. It shows that v1 and v2 define the same topology on K , a contradiction
since they are independent (again by the theorem just cited).

Lemma 5.11. There are two henselian valued fields (E ′
⊥
, v′) and (E ′′

⊥
, v′′) both

containing Q(X), such that

(1) v′ and v′′ are of rank one,

(2) E ′
⊥
v′ ∼= F ′

⊥
and E ′′

⊥
v′′ ∼= F ′′

⊥
,

(3) atd E ′
⊥
= atd F ′

⊥
+ 1= atd F ′′

⊥
+ 1= atd E ′′

⊥
,

(4) v′E ′
⊥

and v′′E ′′
⊥

are divisible, and

(5) the restrictions of v′ and v′′ to Q(X) are independent.

(In (4), two-divisible is actually enough for our purposes.)

Proof. Let {y1, . . . , yk} be a finite transcendence basis of F ′
⊥

over Q, and let E
be Q(y1, . . . , yk)(X), equipped with the valuation v determined by the irreducible
polynomial X ∈ Q(y1, . . . , yk)[X ]. Then E ∼= Q(y1, . . . , yk), vE = Z and F ′

⊥
is

isomorphic to an algebraic extension of E . By [Endler 1963, Satz 1], there is an
algebraic extension E ′

⊥
of E and an extension v′ of v to E ′

⊥
such that E ′

⊥
= F ′

⊥

and v′E ′
⊥

is divisible of rank one.
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To construct (E ′′
⊥
, v′′), we proceed as above but start with the valuation on

Q(y1, . . . , yk)(X) associated to the irreducible polynomial X − 1. Obviously,
v′′ � Q(X) and v′ � Q(X) are independent over Q(X). �

We now apply Corollary 2.10 twice (with the valued fields (E ′
⊥
, v′) and (E ′′

⊥
, v′′)

given by Lemma 5.11), and get two projective systems of henselian valued fields
E′ = (E ′i , v

′

i )i∈I and E′′ = (E ′′i , v
′′

i )i∈I equipped with valuations of rank one, such
that res(E′) ∼= F′ and res(E′′) ∼= F′′. Up to renaming the transcendental elements,
we can assume that for every i ∈ I there is a finite set X i of transcendental elements
over Q and an algebraic closure Qi of Q(X i ) such that E ′i , E ′′i ⊆ Qi , and such that,
for every i ≤ j ∈ I X i ⊆ X j and Qi ⊆ Q j .

Since, for i ∈ I , E ′i and E ′′i are both subfields of Qi , we can consider the
projective system of valued fields (E ′i ∩ E ′′i , v

′

i , v
′′

i )i∈I . Note that v′i and v′′i are
independent by Remark 5.10 and Lemma 5.11(5). We recall now the following
special case of a result from [Heinemann 1985]:

Theorem 5.12. Let K be a field equipped with two independent valuations v1 and
v2. Fix an algebraic closure K̃ of K . Let (Hi , vi ), for i = 1, 2, be henselian
extensions of (K , vi ) such that H1, H2 ⊆ K̃ and K = H1 ∩ H2.

Then (Hi , vi ) is a henselization of (K , vi ), for i = 1, 2.

Applying this result, we obtain that, for every i ∈ I , (E ′i , v
′

i ) is a henselization
of (E ′i ∩ E ′′i , v

′

i ) and (E ′′i , v
′′

i ) is a henselization of (E ′i ∩ E ′′i , v
′′

i ). In particular:

(1) v′(E ′i ∩ E ′′i ) and v′(E ′i ∩ E ′′i ) are two-divisible;

(2) res(E ′i ∩ E ′′i , v
′

i )i∈I ∼= F′ and res(E ′i ∩ E ′′i , v
′′

i )i∈I ∼= F′′;

(3) v′ and v′′ are independent on E ′i ∩ E ′′i (by Lemma 5.11.(5) and Remark 5.10).

We now apply Theorem 5.5 to the system (E ′i∩E ′′i , v
′

i , v
′′

i )i∈I and get the system
(E(E ′i ∩ E ′′i ))i∈I , which satisfies

G((E(E ′i ∩ E ′′i ))i∈I )∼= (G((E ′i ∩ E ′′i )
v′i )×G((E ′i ∩ E ′′i )

v′′i ), g′i j × g′′i j )i≤ j∈I ,

where g′i j , respectively g′′i j , is the map induced by (E ′i ∩ E ′′i )
v′i ⊆ (E ′j ∩ E ′′j )

v′j ,
respectively by (E ′i ∩ E ′′i )

v′′i ⊆ (E ′j ∩ E ′′j )
v′′j . We claim that this last projective

system of (Pythagorean) fields is isomorphic to (G(F ′i )×G(F ′′i ), f ′i j× f ′′i j )i≤ j∈I . It
suffices to check that, for instance, the projective system (G((E ′i∩E ′′i )

v′i ), g′i j )i≤ j∈I

is isomorphic to (G(F ′i ), f ′i j )i≤ j∈I . This is the content of the remainder of this
section.

Since ((E ′i ∩ E ′′i )
v′i , v′i ) is an immediate extension of (E ′i ∩ E ′′i , v

′

i ), we have
res((E ′i ∩ E ′′i )

v′i , v′i )i∈I ∼= F′, so

G(res((E ′i ∩ E ′′i )
v′i , v′i )i∈I )∼= G(F′)= (G(F ′i ), f ′i j )i≤ j∈I
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and it suffices to show that (G((E ′i∩E ′′i )
v′i , g′i j )i≤ j∈I and G(res((E ′i∩E ′′i )

v′i , v′i )i∈I ))

are isomorphic.
We are now in position to conclude by using the following adaptation of the

Baer-Krull theorem [Dickmann and Miraglia 2000, Theorem 1.33]. Recall that the
functor G is well defined, in general, from the category of unitary commutative
rings into the category of L SG-structures.

Lemma 5.13. Let (K , v) be a valued field, i : OK → K be the inclusion and
q : OK → K be the projection on the quotient (K = OK /MK ). Suppose that
v(2)= 0.

(1) The L SG-structures G(K ) and G(K ) are special groups. The induced L SG-
morphism G(i) :G(OK )→G(K ) is injective and the induced L SG-morphism
G(q) : G(OK )→ G(K ) is surjective.

(2) If (K , v) is 2-henselian and vK = 2vK , then G(i) : G(OK )→ G(K ) and
G(q) : G(OK ) → G(K ) are L SG-isomorphisms. In particular, the L SG-
structure G(OK ) is a special group.

(3) If (K ′, v′) ⊇ (K , v) is a valued field extension, then OK ⊆ OK ′ , MK ⊆ MK ′

and the diagram of special groups below is commutative (where the vertical
arrows are induced by the field extension).

G(K )

��

G(OK )
G(i) //G(q)oo

��

G(K )

��
G(K ′) G(OK ′)

G(i ′) //G(q ′)oo G(K ′)

Proof. (1) Since v(2) = 0, 2 is invertible in the rings K , OK and K , and there-
fore, as K and K are fields, the L SG-structures G(K ) and G(K ) are special
groups ([Dickmann and Miraglia 2000, Theorem 1.32 p.23]). As q : OK → K
is a surjective ring homomorphism, it induces a surjective group homomorphism
ȮK /Ȯ2

K →
˙K/ ˙K

2
and therefore G(q) : G(OK ) → G(K ) is a surjective L SG-

morphism. Now let a ∈ ȮK such that a.K̇ 2
= 1.K̇ 2; i.e.,there is b ∈ K̇ such that

a = b2, then 2v(b) = v(a) = 0 and b ∈ ȮK ; therefore ker(G(i)) = {1.Ȯ2
K } and

G(i) : G(OK )→ G(K ) is an injective L SG-morphism.

(2) We first prove that G(q) is an L SG-isomorphism.
Let a ∈ ȮK such that q(a). ˙K

2
= 1. ˙K

2
then, as q : OK → K is a surjective

ring homomorphism, there is b ∈ ȮK such that q(a) = q(b2). Consider now the
polynomial P(t) = t2

− a in OK [t]: it is a quadratic monic polynomial such that
q(b)∈ K is a root of Pq(t)= t2

−q(a) in K and this root is simple (since q(a) 6= 0
and char(K ) 6= 2). The hypothesis (K , v) 2-henselian then entails that there is
b′ ∈ OK such that q(b′) = q(b) and P(b′) = 0; i.e., a = b′2, for some b′ ∈ ȮK
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(because a ∈ ȮK ). Therefore ker(G(q)) = {1.Ȯ2
K } and G(q) is an injective L SG-

morphism.
We show that whenever a ∈ ȮK , we have

DG(K )〈1,G(q)(aȮ2
K )〉 ⊆ G(q)[DG(OK )〈1, aȮ2

K 〉].

Since q and G(q) are surjective, it is enough to prove that for any z ∈ ȮK such
that there are x, y ∈ OK with q(z)= 1.q(x)2+ q(a).q(y)2, there are z′ ∈ ȮK and
x ′, y′ ∈ OK with z′ = 1.x ′2+ a.y′2 and

q(z′). ˙K 2
= q(z). ˙K 2.

We recall that ȮK = OK \MK and we split the proof into four cases:

• x ∈ MK , y ∈ MK : it is not possible because q(z) 6= 0.

• x ∈ ȮK , y ∈ MK : then q(z) = q(x2) and the quadratic monic polynomial
P(t) = t2

− z over OK has a root in K , and this root is simple (because
q(z) 6= 0 and char(K ) 6= 2). By the hypothesis that (K , v) is 2-henselian, P
has then a root x ′ in OK . Taking this x ′ as well as z′ := z and y′ := 0 proves
the result.

• x ∈ MK , y ∈ ȮK : then q(z) = q(ay2) and the polynomial P(t) = t2
− a−1z

has a root in K and this root is again simple (because q(z), q(a) 6= 0 and
char(K ) 6= 2). Therefore P has a root y′ ∈ OK . Taking this y′ together with
z′ := z and x ′ = 0 proves the result.

• x ∈ ȮK , y ∈ ȮK : then q((x/y)2+ a− zy−2)= 0 and the polynomial P(t)=
t2
+ (a− z′), with z′ := zy−2, is a quadratic monic polynomial in OK [t] such

that q(x/y) ∈ K is a root of Pq(t)= t2
+q(a− z′) in K and we may suppose

this root is simple (because, if not, as char(K ) 6= 2, then q(a − zy−2) = 0
and we can proceed as in the case just above). Then the hypothesis (K , v)
2-henselian entails that there is x ′ ∈ OK such that 0 = P(x ′) = x ′2 + a − z′

and q(x ′)= q(x/y), i.e., such that z′ = 1.x ′2+ a.y′2, with y′ := 1. Therefore
G(q)(z.Ȯ2

K )= G(q)(z′.Ȯ2
K ) ∈ G(q)[DG(OK )〈1, aȮ2

K 〉].

We now prove that G(i) is an L SG-isomorphism.
As vK = 2vK , for any a ∈ K̇ there is c∈ K̇ such that v(ac2)= 0, i.e., ac2

∈ ȮK .
Therefore G(i)(ac2.Ȯ2

K )= a.K̇ 2 and G(i) is surjective.
To finish the proof, we must check that for each a ∈ ȮK , we have

DG(K )〈1,G(i)(aȮ2
K )〉 ⊆ G(i)[DG(OK )〈1, aȮ2

K 〉].

Note that if a=−b2 for some b∈ ȮK then, as 2∈ ȮK , we have DG(OK )〈1, aȮ2
K 〉=

ȮK /Ȯ2
K . Since G(i) is a surjective group homomorphism, we have

G(i)[DG(OK )〈1, aȮ2
K 〉] =

˙K/ ˙K 2
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and therefore DG(K )〈1,G(i)(aȮ2
K )〉⊆G(i)[DG(OK )〈1, aȮ2

K 〉]. Thus we only have
to deal with the case a /∈ −Ȯ2

K and, again as G(i) is a surjective group homomor-
phism, it is enough to prove that for any z ∈ ȮK such that there are x, y ∈ K with
z = 1.x2

+a.y2, there are z′ ∈ ȮK and x ′, y′ ∈ OK such that z′ = 1.x ′2+a.y′2 and
z′.K̇ 2

= z.K̇ 2.
We split the proof into four cases:

• x, y ∈ OK . Then we simply take z′ := z, x ′ := x and y′ := y.

• x ∈ OK and y 6∈ OK . Then y−1
∈ MK and x/y ∈ MK . Thus (x/y)2 ∈ MK

and 1(x/y)2+a= zy−2
∈MK . This implies a ∈MK , a contradiction because

a ∈ ȮK = OK \MK .

• x 6∈ OK and y = 0. Then z = x2
6∈ OK , a contradiction.

• x 6∈OK and y 6=0. Then z= x2(1+a(y/x)2)∈ ȮK and x−1
∈MK . As z∈ ȮK ,

this implies (1+ a(y/x)2) = zx−2
∈ MK , and thus −a(y/x)2 ∈ 1+MK . As

(K , v) is 2-henselian and char(K ) 6= 2, 1+ MK ⊆ O2
K and as y 6= 0, then

−a∈ K 2. But−a∈ ȮK , so−a∈ ȮK∩K 2
= Ȯ2

K , contradicting the hypothesis
a ∈ ȮK \−Ȯ2

K .

(3) It follows directly from the definition of extension of valued fields that the
following diagram of (local) rings and (local) homomorphisms is commutative:

K

��

OK
q //

i
oo

��

K

��
K ′ OK ′

q ′ //
i ′

oo K ′

The result follows by applying the functor G to it. �

Under the hypotheses of Lemma 5.13, the last item gives us in particular the
commutative diagram

G(K )
τK //

��

G(K )

��
G(K ′)

τK ′ // G(K ′)

(5-2)

where the maps τK :=G(q)◦G(i)−1 and τK ′ :=G(q ′)◦G(i ′)−1 are isomorphisms
of special groups whenever (K , v) and (K ′, v′) are 2-henselian with 2-divisible
value groups, and the vertical maps are induced by the field inclusions.

Since, for i ≤ j ∈ I , we have an extension of valued fields ((E ′i ∩ E ′′i )
v′i , v′i ) ⊆

((E ′j ∩ E ′′j )
v′j , v′j ) and these two fields are 2-henselian with divisible value groups,
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we conclude that the diagram

G((E ′i ∩ E ′′i )
v′i )

τi //

��

G((E ′i ∩ E ′′i )
v′i )

��

G((E ′j ∩ E ′′j )
v′j )

τ j // G((E ′j ∩ E ′′j )
v′j )

is commutative, where the maps τi and τ j are the isomorphisms corresponding to
τK and τK ′ in (5-2). This concludes the proof of Theorem 5.1.

Gluing, the extension case. Now assume that G⊥∼=G ′[H ], the last case discussed
on page 269. Here we have Gi ∼= G ′[H ]/1i for every i ∈ I , where H is a fixed
finite group of exponent 2, 1i is a saturated subgroup of G ′[H ] and 1⊥ = {1}.
Furthermore, if i ≤ j ∈ I we have 1i ⊆1 j and fi j is naturally identified with the
canonical projection from G ′[H ]/1i onto G ′[H ]/1 j .

In view of this, the following theorem is a reformulation of the last case in the
induction step (page 269), and this section is devoted to its proof.

Theorem 5.14. Let (I,≤) be a finite downward directed index set with first element
⊥ and last element>. Let G ′ be a reduced special group and assume that whenever
G= (Gi , ηi j )i≤ j∈I is a projective system of reduced special groups with G⊥ = G ′,
then G is realized by a projective system of Pythagorean fields of characteristic
zero (where the morphisms are inclusions).

Let H be a finite group of exponent 2 and let (1i )i∈I be a projective system
of saturated subgroups of G ′[H ], where the morphisms are inclusions. Let G′ be
the projective system indexed by I of the special groups G ′[H ]/1i , where the
morphisms are the canonical projections.

Then G′ is realized by a projective system of Pythagorean fields of characteristic
zero (where the morphisms are inclusions).

Notation: If G is a special group and H is a group of exponent 2, we will
identify G (respectively H ) with the subgroup G × {1} (respectively {1} × H ) in
G[H ] = {(g, h) | g ∈ G, h ∈ H} and write g · h for the pair (g, h).

As H ∼= H1×H2 entails G ′[H ] ∼= (G ′[H1])[H2], we may assume dimF2 H = 1,
i.e., H = {1, h} with h2

= 1 and h 6= 1.
We define, for i ∈ I and i ≤ j ∈ I :

�i :=1i ∩G ′, G ′′i := G ′/�i (note that �i ⊆� j )

qi j : G ′′i → G ′′j the canonical projection,

2i := {(g ·�i ).w ∈ G ′′i [H ] | g.w ∈1i }.

The following fact is then easily checked:
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Fact 5.15. (1) �i is a saturated subgroup of G ′.

(2) 2i is a saturated subgroup of G ′′i [H ] with G ′′i ∩2i = {1}.

(3) The morphism of special groups qi j × Id : G ′′i [H ] → G ′′j [H ] is such that
(qi j × Id)(2i )⊆2 j and (qi j × Id)�2i :2i →2 j is injective.

(4) The map
ωi : G ′[H ]/1i → (G ′/�i )[H ]/2i

(g · h)/1i 7→ ((g/�i ) · h)/2i

is an isomorphism of special groups.

(5) The diagram

G ′[H ]/1i
fi j //

ωi

��

G ′[H ]/1 j

ω j

��
G ′′i [H ]/2i

q̃i j× Id// G ′′j [H ]/2 j

commutes, where q̃i j× Id is the canonical map induced on the quotients.

Note that by hypothesis, since G ′′
⊥
=G ′, the projective system (G ′′i , qi j )i≤ j∈I is

realized by a system of Pythagorean fields (Ki )i∈I of characteristic zero.
To complete the proof, it is then enough to represent the projective system of spe-

cial groups (G ′′i [H ]/2i , q̃i j× Id)i≤ j∈I by some projective system of Pythagorean
fields of characteristic zero; this is the content of the following proposition.

Proposition 5.16. There is a projective system of Pythagorean fields of character-
istic zero (L i )i∈I , where the morphisms are inclusions, such that

(G ′′i [H ]/2i , q̃i j× Id)i≤ j∈I ∼= G((L i )i∈I ).

The rest of this section now consists in the proof of Proposition 5.16.
Let us denote by γi j the morphism of special groups induced by Ki ⊆ K j :

(G(Ki ), γi j )i≤ j∈I ∼= (G ′′i , qi j )i≤ j∈I .

We define Mi = Ki ((t)) for every i ∈ I and record a well known result:

Lemma 5.17. Ṁi/Ṁi
2
= {atk

· Ṁi
2
| a ∈ K̇i , k ∈ {0, 1}}, and the isomorphism of

special groups from G(Mi ) to G(Ki )[H ] is

λi : G(Mi ) → G(Ki )[H ]
atk
· Ṁi

2
7→ (a · K̇i

2
)hk .

Proof. This is exactly [Dickmann and Miraglia 2000, Theorem 1.33], where the
explicit definition of the isomorphism is given at the beginning of the proof on
page 28. �
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It immediately follows that

(5-3) (G(Ki ((t))), γi j × Id)i≤ j∈I ∼= (G ′′i [H ], qi j × Id)i≤ j∈I .

For each i ∈ I , let 0i be the saturated subgroup of G(Ki ((t))) that corresponds, by
the isomorphisms above, to the saturated subgroup 2i of G ′′i [H ]. This then yields

(G(Ki ((t)))/0i , γ̃i j× Id)i≤ j∈I ∼= (G ′′i [H ]/2i , q̃i j× Id)i≤ j∈I

(where γ̃i j× Id denotes the induced map on the quotients), which in turn shows
that we only have to find a projective system of fields realizing the system

(G(Ki ((t)))/0i , γ̃i j× Id)i≤ j∈I .

Therefore, to keep notation simple, we may assume that G(Ki )[H ] = G ′′i [H ],
0i = 2i , γi j × Id = qi j × Id, and that q̃i j× Id is the map from G(Ki )[H ]/2i to
G(K j )[H ]/2 j induced by γi j × Id= qi j × Id.

In this vein, for every i ≤ j ∈ I , we will write G(Mi ) = G ′′i [H ], qi j × Id will
stand for the morphism of special groups induced by the inclusion Mi ⊆ M j , and
the diagram

Ṁi
//

pi

��

Ṁ j

p j

��
G(Mi )

qi j×Id
// G(M j )

(5-4)

is commutative, where pi and p j denote the canonical maps.
Define ni :=dimF2 2i for i ∈ I . Note that dimF2 2i ≤dimF2 H =1, so ni ∈{0, 1}.

Since (qi j × Id)�2i :2i →2 j is injective, we have ni ≤ n j whenever i ≤ j ∈ I .
If ni = 1, write 2i = {1, ai h}, with ai ∈ G ′′i . In this case, and if i ≤ j ∈ I , we have
(qi j × Id)(2i )=2 j , so qi j (ai )= a j .

Lemma 5.18. There is b ∈ Ṁ⊥ such that, for every i ∈ I , 2i ⊆ {1, pi (b)}.

Proof. For every i ≤ j ∈ I , the map qi j is surjective. In particular the map q⊥> is
surjective and, by diagram (5-4) above, p>(Ṁ⊥) = Im(q⊥>× Id) = G(M>). Let
b ∈ Ṁ⊥ be such that {1, p>(b)} =2>. Let now i ∈ I and let x ∈2i . Then

(qi>× Id)(x) ∈2> = {1, p>(b)}.

If (qi>× Id)(x)= 1, we get x = 1∈ {1, pi (b)}, because (qi j× Id)�:2i→2 j is an
injective group homomorphism. If (qi>× Id)(x) = p>(b), since diagram (5-4) is
commutative, we get p>(b)= (qi>×Id)(pi (b)), so (qi>×Id)(x)= (qi>×Id)(pi (b))
and we conclude that x = pi (b). �
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We assume from now on that there is i ∈ I such that ni =1 (equivalently, n>=1).
Otherwise 2 j = {1} for every j ∈ I , and the projective system of fields (Mi )i∈I

realizes the projective system of special groups (G ′′i [H ]/2i , q̃i j× Id)i≤ j∈I .
Recall that an element a of a special group T is called rigid when a 6= 1 and

DT 〈1, a〉 = {1, a} and an element b of T is birigid when b and −b are rigid. If
T = G[H ], then every element in G[H ] \G is birigid (this is essentially the only
way to obtain birigid elements in a special group; see [Dickmann and Miraglia
2000, p. 12, Berman’s Theorem]).

Since we assume that ni = 1 for some i ∈ I (in other words n> = 1), it follows
that the element b produced in Lemma 5.18 is birigid in Mi for every i ∈ I .

The next proposition uses the following notation: If K is a field and a ∈ K then
K ( ∞
√

a) stands for K ( 2n√
a, n ∈ N).

Proposition 5.19 [Becher 2002, Proposition 8.2]. Let F be a field, let a be a birigid
element in F (i.e., a ∈ Ḟ and a.Ḟ2 is birigid in G(F)) and let ϕ be a quadratic
form over F. Let L := F( ∞

√
a). Then

(1) L̇ = Ḟ L̇2 and Ḟ ∩ L̇2
= Ḟ2

∪ aḞ2;

(2) ϕ is isotropic over L if and only if ϕ⊕ aϕ is isotropic over F.

We define, for i ∈ I ,

L i =

{
Mi if ni = 0,
Mi (

∞
√

b) if ni = 1.

Since ni = 1 implies n j = 1 whenever i ≤ j ∈ I , the system (L i )i∈I is a pro-
jective system of fields. Note that the following diagram of fields is obviously
commutative (with the natural inclusions as morphisms):

Mi

��

// M j

��
L i // L j

which implies that the induced diagram of special groups is also commutative:

G(Mi )

µi

��

qi j×Id
// G(M j )

µ j

��
G(L i )

τi j // G(L j )

(5-5)

where µi : G(Mi )→ G(L i ) is the map induced by Mi ⊆ L i and τi j is the map
induced by L i ⊆ L j .
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Lemma 5.20. For i ∈ I , let πi : G(Ki )[H ] → G(Ki )[H ]/2i be the canonical
projection. Then µi is surjective and there is a unique isomorphism of special
groups ξi : G(L i )→ G(Ki )[H ]/2i such that the diagram

G(Mi )
µi //

λi
��

G(L i )

ξi
��

G(Ki )[H ]
πi // G(Ki )[H ]/2i

is commutative. In particular, L i is Pythagorean.

Proof. The case ni = 0 is trivial, so we assume ni = 1. To avoid unnecessary
notational complications, if K is a field and x ∈ K̇ , we simply write x̄ for the
class of x in K̇/K̇ 2. By Proposition 5.19(1) we know that µi is surjective and that
ker(µi ◦ λ

−1
i ) = {1, λi (b̄)} = DG(Ki )[H ]〈1, λi (b̄)〉. In particular, there is a unique

isomorphism of groups ξi :G(L i )→G(Ki )[H ]/{1, λi (b̄)} such that the following
diagram commutes:

G(Ki )[H ]
λ−1

i //

πi

��

G(Mi )
µi // G(L i )

ξiss
G(Ki )[H ]/{1, λi (b̄)}

We show that ξi is an isomorphism of special groups. The image of −1 is clearly
−1. Take µi (c̄), µi (d̄) ∈ G(L i ), where c, d ∈ Ṁi . We have

µi (c̄) ∈ DG(L i )〈1, µi (d̄)〉 ⇔ c ∈ DL i 〈1, d〉

⇔ 〈〈−c, d〉〉 isotropic over L i

⇔ 〈〈−c, d〉〉⊕ b〈〈−c, d〉〉 isotropic over Mi ,

the last equivalence following from Proposition 5.19(2). Recalling that Pfister
forms are isotropic if and only if they are hyperbolic, we continue the chain of
equivalences with

⇔ 〈1, b〉⊗ 〈〈−c, d〉〉 isotropic over Mi

⇔ 〈1, b〉⊗ 〈〈−c, d〉〉 hyperbolic over Mi

⇔ 〈1, λi (b̄)〉⊗ 〈〈−λi (c̄), λi (d̄)〉〉 hyperbolic in G(Ki )[H ]

⇔ 〈1, λi (b̄)〉⊗ 〈〈−λi (c̄), λi (d̄)〉〉 ≡ 〈1, λi (b̄)〉⊗ 〈−1, 1,−1, 1〉 in G(Ki )[H ]

⇔ 〈〈−πi ◦ λi (c̄), πi ◦ λi (d̄)〉〉 ≡ 〈−1, 1,−1, 1〉
in G(Ki )[H ]/D〈1, λi (b̄)〉 = G(Ki )[H ]/{1, λi (b̄)},

the last step following from [Dickmann and Miraglia 2000, Proposition 2.21]. But
this last condition is equivalent to 〈〈−πi ◦ λi (c̄), πi ◦ λi (d̄)〉〉 being hyperbolic in
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G(Ki )[H ]/{1, λi (b̄)}, and so to πi ◦λi (c̄) lying in DG(Ki )[H ]/{1,λi (b̄)}〈1, πi ◦λi (d̄)〉.
This shows that ξi is an isomorphism of special groups. Since λi (b̄) is birigid and
|H |=2, we obtain that G(L i ), being isomorphic to G(Ki )[H ]/{1, λi (b̄)}∼=G(Ki ),
is a reduced special group or {1}, which entails that L i is a Pythagorean field. �

Recall that, using the identifications made after (5-3), we have

(q̃i j× Id)((aK̇i
2
)hk
·2i )= (aK̇ j

2
)hk
·2 j for a ∈ K̇i and k ∈ {0, 1}.

Proposition 5.21. The diagram

G(L i )
τi j //

ξi

��

G(L j )

ξ j

��
G(Ki )[H ]/2i

q̃i j× Id // G(K j )[H ]/2 j

commutes. In particular, G((L i )i∈I )∼= (G ′′i [H ]/2i , q̃i j× Id)i≤ j∈I and

lim
←−

G((L i )i∈I )∼= lim
←−
(Gi , fi j )i≤ j∈I .

Proof. Since µi and µ j are surjective by Lemma 5.20, the commutative diagram
in that same lemma completely determines ξi and ξ j . Let z=µi (atk Ṁi

2
)∈G(L i )

(with a ∈ K̇i and k ∈ {0, 1}). Then

(5-6) ξi (z)= ξi ◦µi (atk Ṁi
2
)=πi ◦λi (atk Ṁi

2
)=πi ((aK̇i

2
)hk)= ((aK̇i

2
)hk)·2i .

where the second equality comes from Lemma 5.20. Applying this, we obtain
(q̃i j× Id) ◦ ξi (z)= (q̃i j× Id)(((aK̇i

2
)hk) ·2i )= (aK̇ j

2
)hk
·2 j and

ξ j ◦ τi j (z)= ξ j ◦ τi j ◦µi (atk Ṁi
2
)

= ξ j ◦µ j ◦ (qi j × Id)(atk Ṁi
2
) by diagram (5-5)

= ξ j ◦µ j (atk Ṁ j
2
) since qi j × Id is induced by Mi ⊆ M j

= (aK̇ j
2
)hk
·2 j by (5-6),

which finishes the proof. �

Acknowledgement

Both authors wish to thank the referee for many detailed and helpful comments.

References

[Astier and Tressl 2005] V. Astier and M. Tressl, “Axiomatization of local-global principles for
pp-formulas in spaces of orderings”, Arch. Math. Logic 44:1 (2005), 77–95. MR 2005k:03088
Zbl 1099.03027



REALIZING PROFINITE REDUCED SPECIAL GROUPS 285

[Becher 2002] K. J. Becher, “Le radical de Kaplansky”, Publ. Mat. de Besançon, Univ. Franche-
Comté, 2002, available at http://www.math.uni-konstanz.de/~becher/art/kap.pdf. MR 2004g:11030
Zbl 1161.11328

[Bröcker 1977] L. Bröcker, “Über die Anzahl der Anordnungen eines kommutativen Körpers”, Arch.
Math. (Basel) 29:5 (1977), 458–464. MR 58 #5613

[Chang and Keisler 1990] C. C. Chang and H. J. Keisler, Model theory, 3rd ed., Studies in Logic and
the Foundations of Math. 73, North-Holland, Amsterdam, 1990. MR 91c:03026 Zbl 0697.03022

[Dickmann and Miraglia 2000] M. A. Dickmann and F. Miraglia, Special groups: Boolean-theoretic
methods in the theory of quadratic forms, Mem. Amer. Math. Soc. 689, Amer. Math. Soc., Provi-
dence, RI, 2000. MR 2000j:11052 Zbl 1052.11027

[Dickmann and Miraglia 2003] M. A. Dickmann and F. Miraglia, “Bounds for the representation of
quadratic forms”, J. Algebra 268:1 (2003), 209–251. MR 2004k:11052 Zbl 1053.11035

[Endler 1963] O. Endler, “Über einen Existenzsatz der Bewertungstheorie”, Math. Ann. 150 (1963),
54–65. MR 26 #3732 Zbl 0142.28302

[Engler and Prestel 2005] A. J. Engler and A. Prestel, Valued fields, Springer, Berlin, 2005. MR
2007a:12005 Zbl 1128.12009

[Heinemann 1985] B. Heinemann, “On finite intersections of “Henselian valued” fields”, Manu-
scripta Math. 52:1-3 (1985), 37–61. MR 87a:12013

[Hodges 1993] W. Hodges, Model theory, Encyclopedia of Mathematics and its Applications 42,
Cambridge University Press, Cambridge, 1993. MR 94e:03002 Zbl 0789.03031

[Kula 1979] M. Kula, “Fields with prescribed quadratic form schemes”, Math. Z. 167:3 (1979),
201–212. MR 80f:10024 Zbl 0388.10017

[Kula et al. 1984] M. Kula, M. A. Marshall, and A. Sładek, “Direct limits of finite spaces of order-
ings”, Pacific J. Math. 112:2 (1984), 391–406. MR 85f:11023 Zbl 0535.10020

[Lira de Lima 1997] A. Lira de Lima, Les groupes spéciaux: aspects algébriques et combinatoires
de la théorie des espaces d’ordres abstraits, Ph.D. thesis, Université de Paris 7, Paris, 1997.

[Mariano 2003] H. L. Mariano, Contribuições à teoria dos grupos especiais, Ph.D. thesis, Universi-
dade de São Paulo, São Paulo, 2003.

[Marshall 1980] M. Marshall, “Spaces of orderings, IV”, Canad. J. Math. 32:3 (1980), 603–627.
MR 81m:10035 Zbl 0433.10009

Received February 1, 2010. Revised September 7, 2010.

VINCENT ASTIER

SCHOOL OF MATHEMATICAL SCIENCES

UNIVERSITY COLLEGE DUBLIN

BELFIELD, DUBLIN 4
IRELAND

vincent.astier@ucd.ie

HUGO MARIANO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DA UNIVERSIDADE DE SÃO PAULO

RUA DO MATÃO, 1010 (CIDADE UNIVERSITÁRIA)
05508-090 SÃO PAULO

BRAZIL

hugomar@ime.usp.br





PACIFIC JOURNAL OF MATHEMATICS
Vol. 250, No. 2, 2011

ON FIBERED COMMENSURABILITY

DANNY CALEGARI, HONGBIN SUN AND SHICHENG WANG

This paper initiates a systematic study of the relation of commensurability
of surface automorphisms, or equivalently, fibered commensurability of 3-
manifolds fibering over S1. We show that every hyperbolic fibered com-
mensurability class contains a unique minimal element. The situation for
toroidal manifolds is more complicated, and we illustrate a range of phe-
nomena that can occur in this context.

1. Introduction

The main purpose of this paper is to study the equivalence relation of commen-
surability of surface automorphisms. Informally, two surface automorphisms are
commensurable if they lift to automorphisms of a finite covering surface that have
nontrivial common powers. Equivalently, a surface automorphism determines a
foliation of a 3-manifold by closed surfaces, and two automorphisms are com-
mensurable if their corresponding 3-manifolds admit common finite covers for
which the pulled-back foliations are isotopic. Thus commensurability of surface
automorphisms is a special case of the study of commensurability of 3-manifolds
equipped with a certain kind of geometric structure; again informally, we call this
commensurability relation fibered commensurability.

The relation of commensurability of 3-manifolds is well-studied; see, for ex-
ample, [Thurston 1979, Chapter 6; Borel 1981; Macbeath 1983; Neumann 1997;
Behrstock and Neumann 2010]. When studying commensurability in a given con-
text, the most important distinction to make is between those commensurability
classes that admit finitely many minimal elements, and those that admit infinitely
many. For example, amongst hyperbolic 3-manifolds, this is precisely the distinc-
tion between nonarithmetic and arithmetic commensurability classes; see [Mar-
gulis 1991; Borel 1981], for instance. This distinction has a cleaner statement if
one is prepared to work in the category of orbifolds: each commensurability class
of nonarithmetic hyperbolic 3-manifolds contains a unique minimal element.

Fibered commensurability is more rigid than ordinary commensurability. How-
ever, a given 3-manifold can fiber in infinitely many different ways. For Seifert

MSC2000: 57M50.
Keywords: commensurability, fibration, 3-manifold, mapping class group.
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manifolds, there is exactly one fibered commensurability class of surface bundles
of all closed (resp. with torus boundary) Seifert fibered manifolds whose fiber has
negative Euler characteristic, and this class contains infinitely many minimal ele-
ments. On the other hand, in the hyperbolic world we obtain:

Theorem 3.1 (Hyperbolic Theorem). Every commensurability class of hyperbolic
fibered pairs contains a unique (orbifold) minimal element.

An immediate corollary is that for a fibered hyperbolic 3-manifold M , each
fibered commensurability class contains at most finitely many fibrations of M ;
hence M has either one fibered commensurability class, or infinitely many fibered
commensurability classes.

The reducible case is more complicated:

Examples 5.3 and 5.5 (Toroidal cases). There are examples of graph manifolds
with infinitely many fibered commensurability classes, and a single graph manifold
can fiber in infinitely many ways in a single commensurability class.

As these results suggest, obstructions to commensurability of surface automor-
phisms arise from their behavior on pseudo-Anosov orbits, and near their reducing
systems. We describe such obstructions in detail.

In Section 2, we give basic definitions and illustrate their meaning, in the special
case of commensurability of spherical and toral automorphisms. We recall the
Nielsen–Thurston classification of surface automorphisms, and discuss a “normal
form” for automorphisms. This standard material may be skipped by the expert.

In Section 3, we study fibered commensurability of hyperbolic manifolds, and
prove Theorem 3.1. We also list some commensurability invariants of pseudo-
Anosov automorphisms (Lemma 3.10 and Proposition 3.15), and describe exam-
ples that illustrate their use.

Finally, Section 4 and Section 5 are devoted to the case of reducible auto-
morphisms, especially of graph manifolds. In Section 4 we define certain nu-
merical commensurability invariants for reducible maps (Theorem 4.3, as well as
Proposition 4.11), and give many examples. In Section 5 we give examples of
graph manifolds with infinitely many incommensurable fibrations, including one
with boundary (Example 5.3) that also admits infinitely many commensurable (but
nonisomorphic) fibrations, and a closed one (Example 5.5) that admits incommen-
surable fibrations of the same genus.

2. Fibered commensurability

Basic definitions. Let F be a compact surface. An automorphism φ of F is an
isotopy class of self-homeomorphisms of F . We use the notation (F, φ) where φ
is an automorphism of F .
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Remark 2.1. When F has boundary, it is more usual to study isotopy classes
of self-homeomorphisms fixed pointwise on the boundary. However, since we
are interested in automorphisms which might permute boundary components, we
adhere to this nonstandard convention.

One surface automorphism can “cover” another in two distinct ways: either
topologically (in the sense that one surface covers the other) or dynamically (in the
sense that one automorphism is a power of another). We consider covering in both
senses in the sequel. More formally, we make the following definition.

Definition 2.2. A pair (F̃, φ̃) covers (F, φ) if there is a finite cover π : F̃→ F and
representative homeomorphisms f̃ and f of φ̃ and φ respectively so that π ◦ f̃ =
f ◦π as maps F̃→ F .

Remark 2.3. The relation of covering is transitive: if (F1, φ1) covers (F2, φ2), and
(F2, φ2) covers (F3, φ3), then (F1, φ1) covers (F3, φ3). This follows by appealing
to a “normal form” for representative homeomorphisms which is compatible with
finite covers. This normal form is well-known, and summarized in Theorem 2.14
and Proposition 2.15 below.

An automorphism φ of F determines an outer automorphism φ∗ of π1(F) pre-
serving peripheral subgroups, and by the well-known theorem of Dehn and Nielsen
[Nielsen 1927], this correspondence is a bijection. A cover F̃ determines a con-
jugacy class of subgroups G of π1(F), and an automorphism φ of F lifts to an
automorphism φ̃ of F̃ if and only if G and φ∗(G) are conjugate in π1(F). However,
a particular lift φ̃ depends on a choice of conjugating element. Thus a finite cover
of surfaces F̃→ F might determine zero, one, or many covers of automorphisms
(F̃, φ̃)→ (F, φ) (even if φ̃ is primitive).

Example 2.4. If F̃ → F is any finite cover, then (F, id) is covered by (F̃, ψ)
where ψ is any element of the deck group of the cover.

Definition 2.5. Two automorphisms (F1, φ1) and (F2, φ2) are commensurable if
there is a surface F̃ , automorphisms φ̃1 and φ̃2 of F̃ , and nonzero integers k1 and
k2, so that (F̃, φ̃i ) covers (Fi , φi ) for i = 1, 2, and if φ̃k1

1 = φ̃k2
2 as automorphisms

of F̃ . Moreover say (F1, φ1) and (F2, φ2) are topologically commensurable if
|k1| = |k2| = 1, and dynamically commensurable if F̃ = F1 = F2.

Commensurability of automorphisms is readily seen to be an equivalence rela-
tion, and is the main object of study in this paper.

Statements about surfaces and automorphisms can usefully be translated into
statements about 3-manifolds with certain types of foliations. These objects —
“fibered pairs”, to be defined below — admit natural generalizations to objects
called orbifold fibered pairs, that are awkward to discuss in the language of surfaces
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and automorphisms. Certain theorems in this paper are more elegantly stated and
proved in this category. A basic reference for the theory of orbifolds is [Thurston
1979, Chapter 13].

Definition 2.6. A fibered pair is a pair (M,F) where M is a compact 3-manifold
with boundary a union of tori and Klein bottles, and F is a foliation by compact
surfaces. More generally, an orbifold fibered pair is a pair (O,G) where O is a
compact 3-orbifold, and G is a foliation of O by compact 2-orbifolds.

At interior points (resp. boundary points) an orbifold fibered pair (O,G) looks
locally like the quotient of an open ball in R3 (resp. a relatively open ball in
a vertical half-space) foliated by horizontal planes by a finite group of smooth
foliation-preserving homeomorphisms.

A surface automorphism (F, φ) determines a fibered pair whose underlying
manifold is an F bundle over S1 with monodromy φ, and whose foliation is the
foliation by surface fibers (which are all homeomorphic to F). If we want to
emphasize its dynamical origin, we use the notation [F, φ] in the sequel to denote
the fibered pair associated to the automorphism (F, φ).

If the underlying orbifold O is good (i.e., it admits a finite manifold cover) then
(O,G) is finitely covered by a pair (M,F) where M is a manifold, and every leaf
of F is a compact surface. After passing to a further 2-fold cover if necessary, we
can assume F is co-orientable, in which case M fibers over S1 in such a way that
the leaves of F are the fibers.

Definition 2.7. A fibered pair (M̃, F̃) covers (M,F) if there is a finite covering
of manifolds π : M̃ → M such that π−1(F) is isotopic to F̃. Two fibered pairs
(M1,F1) and (M2,F2) are commensurable if there is a third fibered pair (M̃, F̃)

that covers both.

If (Mi ,Fi ) for i = 1, 2 are fibered pairs with co-orientable foliations, then they
are commensurable in the sense of Definition 2.7 if and only if the associated
surface automorphisms are commensurable. Thus, the category of fibered pairs
enlarges the category of surface automorphisms in such a way that the definition
of commensurability of a surface automorphism is the same, whichever category
we use.

To stress that the definition of commensurability of fibered pairs depends on
both the underlying 3-manifold and the foliation, we call this equivalence relation
fibered commensurability.

The relation of covering is transitive, but it is not yet a partial order because of
the existence of automorphisms of finite order. We must take such examples into
account in order to define minimal elements with respect to commensurability.
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Definition 2.8. We say that two fibered pairs (M,F) and (N ,G) are covering
equivalent if each covers the other. Call a covering equivalence class minimal
if no representative covers any element of another covering equivalence class.

The relation of covering descends to a transitive relation on covering equivalence
classes, and defines a partial order on such classes. Minimal classes are minimal
with respect to this partial order.

Remark 2.9. Each covering equivalence class of fibered pairs [F, φ] contains ex-
actly one fibered pair unless φ is periodic. In the periodic case, (F, φ) and (G, ψ)
are in the same covering equivalent class if and only if F = G and both φ and ψ
generate the same finite cyclic group. With this understood, in the sequel we are
relaxed in our terminology, and use the word “minimal element” when we really
mean “minimal class”.

Simple cases. For simplicity, we usually restrict attention to the case that F (and
therefore M) is closed. However, because of the nature of the theory of surface
automorphisms, to really understand this case we are forced to consider surfaces
(and 3-manifolds) with boundary, associated to the restrictions of automorphisms
to invariant subsurfaces.

Evidently, the sign of χ(F) is a commensurability invariant of (F, φ). In the
case of fibered pairs (of good orbifolds), all leaves have the same sign, so we can
speak unambiguously about fibered pairs with spherical, Euclidean, or hyperbolic
leaves. We first discuss the situation when χ(F)≥ 0.

Example 2.10 (spherical automorphisms). There is only one commensurability
class, consisting of the bundles S2× S1 and S2×̃S1, each foliated by spheres, and
RP3 # RP3, which can be thought of as an S2 bundle over a mirror orbifold. The
elements S2×̃S1 and RP3 # RP3 are minimal.

Example 2.11 (toral automorphisms). The mapping class group of a torus is iso-
morphic to GL(2,Z), and every automorphism has a linear representative. An
automorphism can be periodic, reducible, or Anosov. From elementary linear al-
gebra, automorphisms in different classes are not commensurable. We discuss each
case in turn.

(1) Periodic case: there is only one commensurability class; moreover there are
exactly two minimal elements, corresponding to the periodic automorphisms
of order 4 and 6 on a square and hexagonal torus respectively.

(2) Reducible case: as automorphisms, each map (T, φ) is represented by a matrix
which can be conjugated into the form

φ ∼±
(

1 n
0 1

)
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where n 6= 0. So there is only one commensurability class and two minimal
elements, corresponding to the conjugacy classes of matrices

φ ∼
(

1 1
0 1

)
or
( −1 1

0 −1

)
(3) Anosov case: the resulting Sol manifolds are commensurable if and only if

they are fibered commensurable, which occurs if and only if the logarithms
of the dilatations of the automorphisms are commensurable as real numbers.
Hence there are infinitely many fibered commensurability classes.

Standard form for surface automorphisms. In the remainder of the paper there-
fore we concentrate on the case of surfaces F with χ(F) < 0. Furthermore, unless
we explicitly say to the contrary, all surfaces F are assumed to be compact and
connected.

A commensurability between automorphisms restricts to a commensurability
between the underlying surfaces. A complete set of commensurability invariants of
compact surfaces are the sign of Euler characteristic, and the property of possessing
(or not possessing) a nonempty boundary.

Lemma 2.12. Let F1 and F2 be compact surfaces with χ < 0. If both or neither
have nonempty boundary, they are commensurable. Otherwise they are incommen-
surable.

The proof is elementary; see [Massey 1974], for example. Since every compact
surface orbifold with χ < 0 is good, the lemma extends to orbifolds.

Notation 2.13. Suppose 0 (resp. F ′) is a union of circles (resp. a compact sub-
surface) in F . Let F \ 0 (resp. F \ F ′) denote the compact surface obtained by
splitting F along 0 (resp. removing intF ′, the interior of F ′).

Recall the Nielsen–Thurston classification of surface automorphisms.

Theorem 2.14 [Thurston 1988; Fathi et al. 1979]. Let φ be an automorphism of
a compact surface F. Then the isotopy class of φ has a representative (which by
abuse of notation we continue to denote by φ) so that either

(1) φ has finite order, and [F, φ] is a Seifert manifold with H2×R geometry; or

(2) φ is pseudo-Anosov — i.e., F admits a pair of transversely measured singular
foliations Fs and Fu with measures µs, µu , and there is a real number λ > 1
called the dilatation so that φ takes each foliation to itself , stretching µu by
λ and compressing µs by 1/λ— and the interior of [F, φ] admits a complete
hyperbolic structure of finite volume; or

(3) φ is reducible — i.e., there is a minimal nonempty embedded 1-manifold 0 in
F with a φ-invariant tubular neighborhood N (0) such that on each φ-orbit
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of F \ N (0) the restriction of φ is either finite order or pseudo-Anosov, and
[F, φ] is a 3-manifold with a JSJ decomposition (whose tori correspond to the
φ orbits of 0) into Seifert fibered and hyperbolic pieces.

In the sequel, we will need more precise control over the normal form of φ near
the boundary of a subsurface on which φ is pseudo-Anosov. We say a representative
pseudo-Anosov map φ on F with boundary is in standard form if it satisfies the
following two conditions:

(1) Near each boundary circle, two p-pronged measured transverse foliations
(Fs, µs) and (Fu, µu) have the form illustrated here (for the case p=3).

Fs

Fu

Figure 1

(2) On each φ-orbit on ∂F , the restriction of φ is periodic.

Proposition 2.15 [Jiang and Guo 1993]. Each reducible map φ as in case (3) of
Theorem 2.14 can be isotoped into a standard form; i.e.:

(1) The restriction of φ to each pseudo-Anosov orbit of F \ N (0) is in standard
form as above.

(2) The restriction of φ to each periodic orbit of F \ N (0) is periodic.

This completely fixes the behavior of φ on the complement of the regions N (0).
In the sequel we assume that each reducible map φ has been isotoped to its standard
form in Proposition 2.15. Then for any such φ, there is some positive integer l so
that φl is the identity on ∂(F \ N (0(φ))) and φ on N (0) are Dehn twists along
each γ ∈ 0(φ) relative to ∂(F \ N (0(φ))).

Definition 2.16. Let φ be a reducible map. Say φ is D-type if it is generated by
Dehn twists along components of 0(φ); say φ is D-type along 0(φ) if φ restricts
to the identity along ∂N (0(φ)).
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Remark 2.17. Note that every φ has a power φl which is D-type along 0(φ).
Moreover, φ is a root of D-type, i.e., some power φl is D-type, if and only if φ
is periodic on each φ-orbit of F \ N (0). Alternatively, every φ is either a root of
D-type or has pseudo-Anosov φ-orbits.

Finally we make the following notational convention. We denote surfaces in
general by F , Fi , G and so on, and use 6g,n to denote the surface of genus g with
n boundary components. We sometimes abbreviate 6g,0 to 6g.

Seifert fibered case. Finite order automorphisms are very easy to understand. Sup-
pose (F1, φ1) and (F2, φ2) have finite order, so that the manifolds [F1, φ1] and
[F2, φ2] are Seifert manifolds with a product geometry. Each [Fi , φi ] is finitely
covered by a product Fi × S1. From Lemma 2.12 we can deduce:

Proposition 2.18. There is exactly one fibered commensurability class of surface
bundles of all closed (resp. with torus boundary) Seifert fibered manifolds whose
fiber has negative Euler characteristic. This class contains infinitely many minimal
elements.

Proof. All that needs to be proved is that the class contains infinitely many minimal
elements. A key observation is that if φ̃ is primitive in MCG(F̃) and has a fixed
point near which it acts as a rotation through order p, the same is true of any
φ ∈ MCG(F) that it covers. This observation lets us construct infinitely many
minimal elements, as follows.

For each genus g>1, let φg be a maximum-order orientation-preserving periodic
map on6g. Then (see [Steiger 1935]) φg has order 4g+2 (indeed there is a unique
Z/(4g + 2)Z subgroup of MCG(6g) up to conjugacy) and has exactly one fixed
point, one periodic orbit of length 2 and one periodic orbit of length 2g+1. Clearly
(6g, φg) is primitive, and (6g, φg) and (6g, ψ) cover each other if and only if
ψ = φq

g for q coprime with 4g + 2. Now suppose (6g, φg) covers (6l, ψ) with
l 6= g. Of course, we must have l < g. On the other hand by the observation above,
ψ must have a fixed point near which it acts as a rotation through order 4g + 2,
which implies that ψ is a periodic map on 6l of order at least 4g + 2, which is
impossible. This completes the proof. �

3. Pseudo-Anosov automorphisms

Minimal elements. The most important fact we prove about commensurability
of pseudo-Anosov automorphisms — equivalently, of fibered commensurability of
hyperbolic fibered pairs — is the existence of finitely many minimal elements in
each commensurability class. In fact, working in the orbifold category, the state-
ment is as clean as it could be:
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Theorem 3.1. Every commensurability class of hyperbolic fibered pairs contains
a unique (orbifold) minimal element.

Remark 3.2. If M is not arithmetic, then the commensurability class of M (in
the usual sense) contains a unique minimal element which is some orbifold O .
However, if M is arithmetic, no such unique minimal element exists, and the com-
mensurator of π1(M) is dense in PSL(2,C); see [Borel 1981; Margulis 1991].

Remark 3.3. Compare with Proposition 2.18 to see that the hypothesis of “hyper-
bolic” is essential here (in fact, the hyperbolic world is essentially the only context
in which there are unique minimal elements in a commensurability class).

Proof of Theorem 3.1. Let (M,F) be a fibered pair, and after passing to a 2-fold
cover if necessary, assume that M fibers over S1 with fibers the leaves of F. Thus
M has the structure of an F-bundle over S1 with monodromy φ, for some compact
surface F , and some pseudo-Anosov homeomorphism φ : F→ F . The suspension
of the product structure gives a pseudo-Anosov flow X transverse to F, with finitely
many closed singular orbits corresponding to the singular points of φ. The interior
of the manifold M admits a unique complete singular Sol metric for which the
leaves of F are Euclidean surfaces with cone singularities on the singular orbits of
X ; see [Thurston 1997] or [Fathi et al. 1979] for details.

Pulling back the singular Sol metric on M gives the interior of the universal
cover (M̃, F̃) the structure of a complete simply connected singular Sol manifold,
for which the leaves of F̃ are singular Euclidean planes, and on which π1(M) acts
as a discrete finite covolume group of isometries. Let 3 denote the full group of
isometries of M̃ with its singular Sol metric.

Claim: 3 is itself a lattice, and it preserves the foliation F̃.

We show how the theorem follows from this Claim. Since π1(M)⊂3 we have
the foliation-preserving covering p : (M,F)= (M̃, F̃)/π1(M)→ (M̃, F̃)/3. Since
(M,F) is a hyperbolic surface bundle of finite volume, we conclude that (M̃, F̃)/3

is an orbifold fiber pair (O,G). Notice that any covering map of fibered pairs
(M̃, F̃)→ (M,F) is isotopic to an isometric covering of the interiors in the singular
Sol metrics. Then it is easy to see that for any pair (M ′,F′) commensurable with
(M,F) the group π1(M ′) embeds into3 in such a way that (M ′,F′) covers (O,G).

Now we prove the Claim. First, it is evident that 3 preserves the stratifica-
tion of M̃ into “ordinary” points (those with a neighborhood isometric to an open
set in Sol) and singular points (those on the lifts of the singular flowlines of X ).
Moreover, any isometry between open subsets of Sol must preserve the foliation
by Euclidean planes, as can be seen by appealing to the well-known structure of
the point stabilizers in Isom(Sol); see [Thurston 1997, Chapter 3], for instance.
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Since 3 is equal to the group of isometries of the nonsingular part of M̃ , it
follows that 3 is a Lie group, by the well-known theorem of Myers and Steenrod
[1939]. Hence if3 is not discrete, it must contain a continuous family of nontrivial
isometries. Such isometries can only act on the singular flowlines as translations.
Let `(t) and `′(t) be two such flowlines, parametrized by length in such a way that
`(t) and `′(t) are contained in the same singular Euclidean leaf of M̃ , for each
t . Assume furthermore that for |t | sufficiently small, the points `(t) and `′(t) can
be joined by a unique (nonsingular) Euclidean geodesic in the singular Euclidean
leaf containing them. Then for small t , the length of this Euclidean geodesic as
a function of t has the form

√
e2t x2+ e−2t y2 for fixed x and y; in particular,

the length of this Euclidean geodesic is not locally constant, and therefore (since
elements of 3 preserve the foliation by singular Euclidean planes) a continuous
family of isometries must fix ` and `′ pointwise. But this implies that M̃ admits
no continuous family of nontrivial isometries, and 3 is discrete. Since it contains
π1(M), it is therefore a lattice, as claimed. �

Remark 3.4. If F is closed, M̃ with its singular Sol metric and with its hyperbolic
metric are quasi-isometric. Consequently if `, `′ are two flowlines, the distance
function d( · , · ) is proper on `×`′ and therefore one obtains another proof that 3
contains no nontrivial continuous family.

Remark 3.5. A fibration of M over a circle is uniquely determined by an element
of H 1(M;Z), which is represented by a unique harmonic 1-form α in the hyper-
bolic metric on M . A cover (M̃, F̃)→ (M,F) pulls back the harmonic 1-form on
M to the corresponding harmonic 1-form on M̃ (up to scale), so one can give a
slightly different proof of Theorem 3.1 by using the pullback of this 1-form to H3

and arguing that its set of (projective) symmetries is discrete. Compare with the
proof of Theorem 0.1 in [Agol 2006].

The following two corollaries are immediate:

Corollary 3.6. For any positive constant C , the set of hyperbolic fibered pairs in a
commensurability class whose underlying 3-manifold has volume bounded above
by C contains only finitely many elements.

Proof. Such a pair corresponds to a finite index subgroup of the orbifold fundamen-
tal group of (O,G) (with notation as in Theorem 3.1) where the index is bounded
by C/vol(O). Since π1(O) is finitely generated, the number of such subgroups is
bounded. �

Corollary 3.7. Suppose M is hyperbolic and fibers over S1, and rank(H1(M))>1.
Then M fibers over S1 in ways representing infinitely many fibered commensura-
bility classes.
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Example 3.8. Suppose (F, φ) is pseudo-Anosov. Let c be an essential simple
closed curve on F , and let τc be a Dehn twist along c. Then the automorphisms
(F, τ l

c ◦ φ) are hyperbolic for all large l, while the volumes of [F, τ l
c ◦ φ] are all

bounded by the volume of the cusped manifold [F, φ]\(c×{0}). By Corollary 3.6,
there are infinitely many commensurability classes among the (F, τ l

c ◦φ) for large
l. Of course, it is easy to see directly in this case that the underlying manifolds
fall into infinitely many commensurability classes (in the usual sense); see [Ander-
son 2002], for instance. We give more substantial examples of incommensurable
pseudo-Anosov automorphisms in the next subsection and after.

Remark 3.9. One trivial way to produce a hyperbolic 3-manifold M with many
nonisotopic but commensurable fibrations is just to choose a 3-manifold with a
large isometry group. We do not know explicit examples of two commensurable
fibrations of a single hyperbolic 3-manifold with different genus.

Commensurability invariants. The following is an incomplete list of elementary
commensurability invariants for pseudo-Anosov automorphisms:

(1) whether the underlying surface is closed or bounded;

(2) the commensurability class of the underlying 3-manifold of [F, φ].
(3) the commensurability class of log(K ) where K is the dilatation;

(4) the set of orders of the singular points of the invariant foliations;

For later use we say a few words about (3) and (4). First we make some def-
initions. For a pseudo-Anosov automorphism (F, φ) with a pair of transversely
measured singular foliations Fs,u , we use λ(φ) > 1 to denote the dilatation of φ,
and δn(φ) to denote the number of singularities of degree n, then define 1(φ) to
be the (infinite) vector whose coordinates are the δn(φ).

The first observation to make is that for pseudo-Anosov automorphisms, λ(∗)
is only affected by dynamical coverings, and 1(∗) is only affected by topological
coverings.

Lemma 3.10. Suppose (F1, φ1), (F2, φ2) are two commensurable pseudo-Anosov
maps. Then for some s, s ′ ∈Q+,

(1) log λ(φ1)= s log λ(φ2), and moreover log λ(φ1)= log λ(φ2) if they are topo-
logically commensurable; and

(2) 1(φ1)= s ′1(φ2), and moreover1(φ1)=1(φ2) if they are dynamically com-
mensurable.

Proof. These facts follow immediately from the definitions (recall Definition 2.5;
also, (1) follows from the proof of Proposition 4.11). �



298 DANNY CALEGARI, HONGBIN SUN AND SHICHENG WANG

Example 3.11 (bounded–unbounded). Remark 4.3 of [Hironaka 2009] gives an
example of a pair of automorphisms φ(1,3) defined on a genus 2 surface with four
boundary components, and φ(3,4) defined on a closed genus 3 surface with the same
dilatation. The commensurability classes of these examples are also distinguished
by the orders of the singular points.

Example 3.12. Explicit examples of incommensurable fibrations of the same hy-
perbolic 3-manifold are straightforward to construct and distinguish by means of
Lemma 3.10. For example, in page 4 of [Hironaka 2009], fibrations of the com-
plement of the link 62

2 in Rolfsen’s tables [1976] are listed, and their singularity
sets do not satisfy the commensurability condition in bullet (2) of Lemma 3.10.

Example 3.13. Incommensurable examples may be obtained by branched covers.
Start with an Anosov automorphism φ of a torus T with dilatation K , and let P
be a finite subset of T permuted by φ. Let F be obtained as a branched cover of
T , branched over P . Then some power of φ lifts to an automorphism of F with
dilatation a power of K . Different choices of branch orders give rise to incommen-
surable automorphisms of closed surfaces with the same dilatations, but usually
incommensurable singular sets.

One may define a more subtle invariant of commensurability as follows. Let
φ be a pseudo-Anosov automorphism of F , with measured foliations Fs,u and
projectively invariant transverse measures µs,u , and singular set S (note that S is
finite). For any pair of points p and q (possibly p = q) in the singular set, and
any homotopy class of paths γ from p to q in the complement F \ S we define a
number `(γ) to be the infimum, over all paths γ′ from p to q which are homotopic
to γ in F \ S rel. endpoints, of the product

`(γ)= inf
γ′
µs(γ

′)µu(γ
′)

This number depends on the choice of measures µs, µu in their projective class,
but is well-defined if we normalize the product of measures so that

∫
F dµsdµu =

−χ(F).
Definition 3.14. Define the spectrum of (F, φ) to be the set of numbers `(γ) as γ
varies over nontrivial homotopy classes of paths in F \ S as above.

Proposition 3.15. With the normalization of the product of measures as above, the
spectrum is a commensurability invariant. Furthermore, it is strictly positive, and
discrete as a subset of R (and is therefore bounded away from zero).

Proof. By multiplicativity of Euler characteristic, the normalization of the product
of measures is compatible under finite covers. Each homotopy class of arcs joining
singular points on F lifts to an arc joining singular points in any cover F̃ , so the
spectrum as defined is a commensurability invariant.
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It remains to show that the spectrum is discrete. By the properties of a pseudo-
Anosov, we have `(γ)= `(φi (γ)) for any homotopy class γ and any integer i . To
show that the spectrum is discrete, it suffices to show that there are only finitely
many φ-orbits of homotopy classes γ with `(γ)≤ C .

Suppose K > 1 is the dilatation of φ, and γ′ is any path between singular points
on F . By the definition of Fs,u , we have µs(φ(γ

′)) = Kµs(γ
′) and µu(φ(γ

′)) =
K−1µu(γ

′). So under the automorphism φ, the difference of their logs changes by
2 log K . It follows that whatever the difference of logs is initially, after a suitable
power of φ the absolute value of the difference can be taken to be at most log(K ).
In other words, there is some integer i so that

|log(µs(φ
i (γ′)))− log(µu(φ

i (γ′)))| ≤ log(K ).

If A and B are positive numbers, a bound on AB and one on |log(A)− log(B)|
let us bound both A and B. It follows that if `(γ)≤C then for some i , the homotopy
class φi (γ) is represented by an arc β = φi (γ′) for which both µs(β) and µu(β)

are bounded, by a constant depending only on C and K . By the discreteness of
S, there are only finitely many such relative homotopy classes φi (γ), and each of
them has a positive ` length. So `(γ) takes only finitely many values in [0,C] (all
of them positive). �

Remark 3.16. If 6 is a Riemann surface, any quadratic holomorphic differential
α on6 defines a pair of singular measured foliations, and we can define a spectrum
as above for a pair (6, α). Multiplying α by a constant also multiplies the spectrum
by a constant, so we can normalize to quadratic differentials with

∫
6
|α| = 1. The

set of such pairs (6, α) can be identified with the unit cotangent bundle in moduli
space. The spectrum (defined as above) is constant on orbits of the Teichmüller
flow (see, e.g., [Masur and Tabachnikov 2002] for a definition), and is discrete (by
Proposition 3.15) for points on closed orbits of the flow. For general quadratic
differentials the spectrum can have accumulation points, or its closure can contain
a perfect set, or it can even be dense.

This invariant gives rise to a new way to distinguish commensurability classes
of automorphisms.

Example 3.17 (different spectrum). As above, let φ be an Anosov automorphism
of a torus T (with a flat metric on the torus of total area 1). The set of periodic
points is dense, so we can choose two periodic points O, P . The stable and unstable
foliations of φ give coordinates on T , at least in a neighborhood of O , so that
O = (0, 0) and P = (x, y).

In a suitable cover of T branched over O and P we obtain an automorphism with
dilatation a power of K for which the smallest term in the spectrum is at most |xy|
times a constant depending only on the combinatorics of the cover. By choosing
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the periodic point P so that |xy| is sufficiently small, we can ensure that the first
term in the spectrum is as close to 0 as we desire, while at the same time fixing the
orders of the singular points. By Proposition 3.15, this construction gives rise to
infinitely many commensurability classes with commensurable log dilatation and
the same combinatorial invariants.

Remark 3.18. Example 3.13 also produces examples of infinitely many (incom-
mensurable) pseudo-Anosov maps with different singular orders but the same spec-
trum. It is not clear if there exists a pair of pseudo-Anosov maps with incommen-
surable log dilatations but the same spectrum.

4. Reducible automorphisms

Commensurability invariants of reducible automorphisms. We have assumed that
each reducible map is in its standard form as described in Proposition 2.15. We
also use the notation from that proposition without comment.

Let A be an oriented annulus A. The mapping class group of A rel. boundary
is isomorphic to Z, generated by a positive Dehn twist τ along the core circle. We
denote the n-th power of such a Dehn twist by τn . Here is an illustration of the
cases n = 1 and n =−2.

1

−2

Remark 4.1. In this and later figures, the orientation of the surface is indicated by
a “cup” shaped arrow, and the numbered circles on the surface indicate the power
of a positive Dehn twist (with respect to the given orientation).

For a reducible map φ, choose l so that φl is the identity on ∂(F \ N (0(φ))).
For each component N (γ) of N (0(φ)), where γ ∈ 0(φ), N (γ) has the induced
orientation and φl |∂N (γ) is the identity. Then the restriction of φl to N (γ) is the
n-th power of a Dehn twist for some integer n. Now define

I (φl, γ); I (φ, γ)= I (φl, γ)/ l; ak(φ)= #{γ ∈ 0(φ)| I (φ, γ)= k}, k ∈Q

Further, define

S(φ)= {S | S a component of F \ N (0(φ))}
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and
�(S)= {γ | γ a component of ∂S \ ∂F}.

For every S ∈ S(φ), define

aS,k(φ)= #{γ ∈�(S) | I (φ, γ)= k}; A(φ, S)=
( ∑

k∈Q+

aS,k(φ)

k
,
∑

k∈Q−

aS,k(φ)

−k

)
.

The following two numerical invariants are easy to compute:

A(φ)= 1
2

∑
S∈S(φ)

A(φ, S)=
( ∑

k∈Q+

ak(φ)

k
,
∑

k∈Q−

ak(φ)

−k

)
,

5(φ)=
{ 1
−χ(S) A(φ, S)

∣∣∣ S ∈ S(φ)
}
.

We say that two sets of ordered pairs of rational numbers {(pi , qi )} and {(p′j , q ′j )}
are equal up to a flip, denoted {(pi , qi )} ∼ {(p′j , q ′j )}, if either they are equal, or
{(pi , qi )} = {(q ′j , p′j )}. Immediately we have:

Lemma 4.2. Reversing the orientation of F preserves A(φ, S), and therefore also
A(φ) and 5(φ), up to a flip.

We can derive commensurability invariants from A( · ) and 5( · ) as follows:

Theorem 4.3. Suppose (F1, φ1), (F2, φ2) are two reducible maps. If they are com-
mensurable, then for some s ∈Q+,

A(φ1)∼ s A(φ2) and 5(φ1)∼ s5(φ2).

We postpone the proof of Theorem 4.3 until page 302.

Remark 4.4. The invariant 5( · ) is typically better than A( · ) at distinguishing
commensurability classes (though not always; see Example 4.13). We say that a
D-type map is definite if it is a product of Dehn twists in the components of 0(φ)
of the same sign. Note that the property of having a power which is definite (along
0(φ)) is a commensurability invariant. The invariant A( · ) can distinguish between
definite and indefinite maps, but can never distinguish different commensurability
classes of definite maps, whereas 5( · ) can.

Remark 4.5. Both A(φ) and5(φ) can be encoded as a polynomial (with fractional
exponents), as follows. For any pair of nonnegative rational numbers (p, q), define

S(φ)(p, q)=
{

S ∈ S(φ)
∣∣∣ A(φ, S)
−χ(S) = (p, q)

}
, λ(φ)(p,q) =

∑
S∈S(φ)(p,q) χ(S)

χ(F)
.

Now define a polynomial pair

P(φ)(x, y)= (P1(φ)(x, y), P2(φ)(x, y))=
∑

(p,q)∈Q2

(p, q)λ(φ)(p,q)x p yq .
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One can recover A( · ) and 5( · ) from this polynomial by the formulae

2
−χ(F) A(φ)=

∑
(p,q)∈Q2

(p, q)λ(φ)(p,q) = P(φ)(1, 1),

5(φ)= {(p, q) | λ(φ)(p,q) 6= 0}.
One can show along lines similar to the proof of Theorem 4.3 (in the next sub-
section) that if two reducible maps (F1, φ1), (F2, φ2) are commensurable, then for
some s ∈Q+, we have

P(φ1)(x, y)∼ s P(φ2)(x s, ys).

Proof of Theorem 4.3. We need some lemmas, which can be verified immediately
from the definitions.

Lemma 4.6. If φ is a reducible map, we have, then for any positive integer k,

(4-1) I (φk, γ)= k I (φ, γ), aS,n(φ
k)= aS,n/k(φ), A(φk, S)= 1

k
A(φ, S).

Lemma 4.7. Suppose two automorphisms φ1 and φ2 on F are isotopic, and two
circles γ1 and γ2 on F are isotopic. If φi is D-type along γi , i = 1, 2, then
I (φ1, γ1)= I (φ2, γ2).

Lemma 4.8. 5(φ) and A(φ) are isotopy invariants.

Proof of Lemma 4.8. This follows from the definitions, from Lemma 4.7 and from
the fact that the reducible system 0 is unique up to isotopy; see Theorem 1 in [Wu
1987], for example. �

Now turning to the proof of Theorem 4.3 proper, suppose (F1, φ1) and (F2, φ2)

are commensurable. Then there is a surface F̃ , automorphisms φ̃1 and φ̃2 of F̃ ,
and nonzero integers k1 and k2, so that (F̃, φ̃i ) covers (Fi , φi ) for i = 1, 2, and
φ̃

k1
1 = φ̃k2

2 as automorphisms of F̃ . Denote the covering F̃ → Fi by pi , i = 1, 2.
By Lemma 4.2, we may assume that the orientations of F̃ , F1 and F2 have been
chosen so that both p1, p2 are orientation-preserving.

Assume that k1 = k2 = 1 for the moment. By Lemma 4.8, we may assume that
φ̃1 = φ̃2 as maps in usual sense (rather than in their isotopy class).

Consider the commutative diagram

∂p−1
1 (N (0(φ1)))

φ̃1
k |−−−→ ∂p−1

1 (N (0(φ1)))

p1|
y yp1|

∂N (0(φ1))
φk

1 |−−−→ ∂N (0(φ1))
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where k is chosen so that φk
1 |∂N (0(φ1)) = id|∂N (0(φ1)). It follows that the restriction

of φ̃1
k

to ∂p−1
1 (N (0(φ1))) is a deck transformation of the covering p1|. Since p1|

is a finite covering, by replacing k by a power if necessary, we can assume that
φ̃1

k
agrees with id on ∂p−1

1 (N (0(φ1))) and consequently maps every component
of p−1

1 (N (0(φ1))) to itself. For such a k, each φk
i , φ̃i

k
, i = 1, 2 are D-type along

their respective reducible systems, where 0(φ̃i
k
)= p−1

i (0(φi )).
For each S1∈ S(φ1) and each component S̃ of p−1

1 (S1), there exists a component
S2 ∈ S(φ2), such that S̃ is a component of p−1

2 (S2). Assume pi | : S̃→ Si are li -
sheeted coverings, for i = 1, 2.

Pick a component γ ∈�(S1). Suppose that {δ1, . . . , δt } = (p1|S̃)−1(γ) and that
p1 : δi → γ is a di -sheeted covering. Then

∑l
i=1 di = l1.

Under an m-fold covering of annuli, a Dehn twist on the covering annulus
projects to the m-th power of a Dehn twist on the image annulus. Consequently
di I (φ̃1

k
, δi )= I (φk

1, γ), and by (4-1) we have

(4-2) I (φ̃1
k
, δi )= k I (φ1, γ)

di

and moreover the I (φ̃1
k
, δi ) all have the same sign as the I (φ1, γ), i = 1, . . . , t

(because p1 preserves orientation and k > 0). Suppose I (φ1, γ) 6= 0. Then by
(4-2),

(4-3)
t∑

i=1

1

I (φ̃1
k
, δi )
=

t∑
i=1

di

k I (φ1, γ)
= l1

k I (φ1, γ)

Now we sum over circles δ ∈�(S̃) with positive I (φ̃1, δ):

∑
l>0

aS̃,l(φ̃1
k
)

l
=
∑
l>0

#{δ ∈�(S′1)|I (φ̃k, δ)= l}
l

=
∑
δ∈�(S̃)

I (φ̃1,δ)>0

1

I (φ̃1
k
, δ)
=

∑
γi∈�(S1)

I (φ1,γi )>0

∑
δ∈(p1|S̃)−1(γi )

1

I (φ̃1
k
, δ)

= l1

k

∑
γi∈�(S1)

I (φ1,γi )>0

1
I (φ1, γi )

= l1

k

∑
l>0

aS1,l(φ1)

l
,

where the penultimate equality follows from (4-3).
By a similar computation, we have

∑
l<0

aS̃,l(φ̃1
k
)

l
= l1

k

∑
l<0

aS1,l(φ1)

l
,
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and therefore

(4-4) A(φ̃i
k
, S̃)= li

k
A(φi , Si ), i = 1, 2.

By (4-1) we have

(4-5) A(φ̃1, S̃)= k A(φ̃1
k
, S̃)= A(φ̃2, S′2).

Since li = χ(S̃)/χ(Si ), by (4-4) and (4-5), we get

(4-6)
A(φ1, S1)

−χ(S1)
= A(φ̃1, S̃)

−χ(S̃) =
A(φ2, S2)

−χ(S2)
.

From the definition of 5( · ) we have 5(φ2) ⊂ 5(φ1). By symmetry we have
5(φ2)=5(φ1). Summing over all 0 in the argument above in place of �(S1), we
get similarly

A(φ1)

χ(F1)
= A(φ2)

χ(F2)
.

From (4-1) we have 5(φk) = 5(φ)/k and A(φk) = A(φ)/k and the proof is
complete. �

From the proof above immediately we have:

Corollary 4.9. If (F1, φ1) and (F2, φ2) are topologically commensurable, then

A(φ1)

χ(F1)
∼ A(φ2)

χ(F2)
and 5(φ1)∼5(φ2).

Remark 4.10. We remind the reader that our invariants are defined for all reducible
maps (and not just D-type examples and their roots). When reducible maps are
not the roots of the D-type maps, then they have pseudo-Anosov orbits, and we
can combine the invariants defined in Sections 3 and 4. For example, see the
proposition below and Example 4.18.

Proposition 4.11. Suppose (F1, φ1), (F2, φ2) are two commensurable reducible
maps. Then for some s ∈Q+,

log λ(φ1)= s log λ(φ2) and 5(φ1)∼ s−15(φ2).

Here we think of λ(φ) for a reducible map φ as a (possibly empty) set of dilata-
tions of the set of restrictions of φ to its pseudo-Anosov orbits.

Proof. From the definition of commensurability, there are positive integers k1 and
k2 such that (F1, φ

k1
1 ) and (F2, φ

k2
2 ) are topologically commensurable, both covered

by (F̃, φ̃). Evidently we have λ(φk1
1 )=λ(φ̃)=λ(φk2

2 ), and therefore k1 log λ(φ1)=
log λ(φk1

1 )= log λ(φk2
2 )= k2 log λ(φ2) and then

log λ(φ1)= k2

k1
log λ(φ2).
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On the other hand, by Corollary 4.9 and (4-1), we have

5(φ1)

k1
=5(φk1

1 )∼5(φk2
2 )=

5(φ1)

k2

and therefore

5(φ1)∼ k1

k2
5(φ1).

The proposition is proved by setting s = k2/k1. �

Examples of reducible automorphisms. In this section we give several examples,
which illuminate the meaning of the invariants defined above. A D-type map on an
oriented F can be indicated pictorially by assigning integers to disjoint essential
simple closed curves on a surface; we use this convention in what follows.

Example 4.12. Dehn twists in separating and nonseparating curves (on the same
surface) are commensurable. In the figure below, let φ̃ be a D-type automorphism
on a surface F of genus 3 generated by full Dehn twists on circles c and c′ as
indicated in the figure.

τ1

τ2

c1
c2

c c
′

F/τ1 F/τ2

F

11

11

Then φ̃ is invariant under both π -rotations along τ1 and τ2. Hence φ̃ induces φi

on F/τi , where φi is the Dehn twist along the circle ci . Since c1 is separating
while c2 not, φ1 and φ2 are not conjugate. But from the construction they are
commensurable.
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Example 4.13. This example show that 5(φ) is not always finer than A(φ). Four
automorphisms are depicted here:

1 −1

(F1, φ1)

1 −1

(F2, φ2)

1

1 −1

(F3, φ3)

1 −3

(F4, φ4)

By computing A(φ) and 5(φ), it can be seen that no pair of them are commensu-
rable. Notice that on one hand A(φ1)= A(φ2)= (1, 1) and {(1, 0), (1

2 ,
1
2), (0,

1
3)}=

5(φ1) 6=5(φ2)= {(1, 0), (1
4 ,

1
4), (0, 1)}, and on the other hand (2, 1)= A(φ3) 6=

A(φ4)= (1, 1
3) and 5(φ3)=5(φ4)= {(1, 0), (1

3 ,
2
9)}.

Example 4.14 (minimal elements). Let φg be a orientation-preserving periodic
map on6g of order 4g+2 which rotates by π/(2g+1) around its unique fixed point
xg (see the proof of Proposition 2.18). Remove a φg-invariant disc at xg from6g to
get 6g,1. Connect 62,1 and 63,1 along their boundaries via an annulus A to form a
closed surface 65 and define φ on F5 by φ|62,1= φ2|62,1 and φ|63,1= φ−1

3 |63,1,
and then extend to A by a continuous family of rotations through angles from π

5
to π

7 . The difference in speeds on the boundary components is 2π
35 , and it follows

that φ35 is a Dehn twist Dc. By the uniqueness of the reducible system and the
argument similar in the proof of Proposition 2.18, one can verify (65, φ) is a
minimal element. One can construct infinitely many minimal elements in such a
way.

Remark 4.15. One can verify that 35 is the largest order of a root of a Dehn
twists on 65. It is amazing that the maximal order of roots of Dehn twist along
nonseparating curves, which is 11 on 65 (and in general is 2g + 1 in 6g), was
determined only very recently by several papers; see [Margalit and Schleimer 2009;
McCullough and Rajeevsarathy 2009; Monden 2009].

Example 4.16. This example will be used in Section 5. 6kn+1 can be presented
as the union of 61,n and n copies of 6k,1 in a in symmetric way so that there is an
action τn,k of order n which acts freely on the triple

(
6kn+1, 61,n,

⋃n
1 6k,1

)
.

Let Dc be the positive Dehn twist along one component c of ∂61,n and let φn,k

be the composition of Dc ◦ τn,k . Then one can verify that Dn,k = φn
n,k is D-type,
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and is given by the product of a positive Dehn twist along each component of
∂61,n . For fixed k, the automorphisms (6kn+1,0, Dn,k) and (6km+1, Dm,k) have
a common cover (6kmn+1, Dmn,k). Therefore for fixed k, (6kn+1, φn,k) are in the
same commensurability class for all n.

On the other hand one can verify by inspection that5(Dn,k)={(1, 0), (1/(2k−
1), 0)}. So (6kn+1, Dn,k) and (6k′m+1, Dm,k′) are not commensurable for k 6= k ′
by Theorem 4.3.

Example 4.17. Each D-type map (F, φ) is commensurable with a D-type map
(F ′, ψ) so that the Dehn twist on each γ ∈ 0(ψ) is a single positive or negative
Dehn twist. We can argue as below:

For simplicity, assume F is closed, S(φ)= {Si , i = 1, . . . , k}, and set

dγ = |I (φ, γ)|.
By replacing φ by a power if necessary, we may assume that dγ is an integer>1 for
each γ ∈0(φ). Then for each i there is a covering qi : S̃i→ Si such that qi | : γ̃→ γ

is of degree dγ for each component γ ∈ ∂S and each component γ̃ in q−1
i (γ). One

quick way to see this is to attach an orbifold disk Dγ of index dγ to each γ ∈ ∂Si .
The result is 2-dimensional orbifold which is good, since χ(Si ) < 0 and each
dγ > 1. This orbifold has a manifold cover (see [Thurston 1979, Chapter 13]), and
the restriction to Si gives the required covering qi : S̃i → Si .

If P is a planar surface of negative Euler characteristic, then for every n ≥ 2
coprime with the number of components of ∂P , there is a cover P̂→ P of degree
n, which restricts to a cover of degree n on each boundary component of P̂ , and
such that P̂ is nonplanar. Moreover, every nonplanar surface with negative Euler
characteristic has a covering of any given degree which is a covering of degree 1
on each boundary component. So after replacing φ by φn , we can find covers

q̂i : Ŝi → S̃i

and a covering of degree n
∏

k 6=i deg(qk) so that the restriction on each component
of ∂ Ŝi is a covering of degree exactly n. The coverings pi = qi ◦ q̂i : Ŝi→ Si match
compatibly to produce a covering p : F̃ = ∪Ŝi → F such that p| : γ̃ → γ is of
degree ndγ for each γ ∈ 0(φ) and each component γ̃ in p−1(γ). Define a D-type
map φ̃ on F̃ with I (φ̃, γ̃)= 1 if I (φ, γ) > 0, and I (φ̃, γ̃)=−1 otherwise, then φ̃
covers φ (see the paragraph before (4-2) in the proof of Theorem 4.3.)

Now we give an application of Proposition 4.11 to reducible maps which are
not roots of D-type maps.

Example 4.18. Let F be a closed oriented surface of genus 2, and c a nonsep-
arating circle in F . Let φ be any pseudo Anosov map on F \ c with dilatation
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λ(φ) = K and twist angle 2πr near c, r ∈ Q, and let τc be a positive Dehn twist
along c. Then:

(1) τ k1 ◦φ and τ k2 ◦φ are commensurable if and only if k1 = k2.

(2) τ ◦φk1 and τ ◦φk2 are commensurable if and only if k1 = k2.

The proofs of (1) and (2) are similar; we only give a proof of (1). Note that

5(τ k ◦φ)=
( 1
(k− r)

, 0
)

and λ(τ k ◦φ)= λ(φ)= K > 1,

where r and K depend only on φ. If τ k1 ◦ φ and τ k2 ◦ φ are commensurable,
by Proposition 4.11 and the fact we are considering the automorphism in the same
oriented surface F , we should have log K = s log K and 1/(k1− r)= s−1/(k2− r)
for some s ∈ Q+. The first equality implies that s = 1, and the second implies
k1 = k2.

5. Commensurable and incommensurable bundles in graph manifolds

In this section we give two more complicated examples. The first (Example 5.3)
is an example of a graph manifold that is the total space of infinitely many incom-
mensurable fibrations, and at the same time fibers in infinitely many ways in the
same commensurability class. The second (Example 5.5) is an example of a graph
manifold that is the total space of infinitely many incommensurable fibrations,
including two incommensurable fibrations with the same genus. Both examples
depend on a construction that we turn to now.

Primary construction. Let F be a compact oriented surface with the induced ori-
entation on ∂F . Let a be an essential oriented arc on F connecting two different
components of ∂F . Let a0 and a1 be the two components of the quadrilateral
∂N (a) \ ∂F such that the direction on a0 induced from the orientation on ∂N (a)
is parallel to that on a:

a0

a1a

Then in F×[0, 1], the surface F×{ i
n } intersects the quadrilateral a j ×[0, 1] in

the arc a j,i = a j ×{ i
n } for each integer n ≥ 2, where j = 0, 1 and i = 0, 1, . . . , n.
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Let A1, . . . , An be n pairwise disjoint quadrilaterals that are properly embedded in
N (a)×[0, 1] so that Ai is a stair connecting a0,i and a1,i+1, as shows in the figure
on the left:

F × 1

F × i+1

n

F × i

n

F × 0

a × 1

a1,i+1

a0,i

Ai

c̃′

c̃′′

c
′

c
′′

φ

a

Let Fi = (F× i
n )\(N (a)×[0, 1]) and build a surface R(a, n)=⋃n

i=0 Fi∪⋃n
l=1 Al

in F×[0, 1]; see right diagram above. A similar surface R(α, n) in F×[0, 1] can
be constructed if we replace a by a disjoint union of essential arcs α on F .

We call the quotient of R(α, n) in F × S1 = [F, id] the n-floor staircase along
α in F × S1, or just n-floor along α for short, and denote it as F(α, n). Note that
the surface F(α, n) is transverse to the S1 fibers. If α is empty, then F(∅, n) is
just n disjoint copies of F in F × S1.

Let S1 have the orientation induced from [0, 1]. Then both F× S1 and ∂F× S1

are oriented. For each component c ∈ ∂F , the torus c× S1 has product coordinates
(c, t). The proof of the following lemma is a routine verification:

Lemma 5.1. Let p : F × S1 → F be the projection. Suppose that α ∩ c ≤ 1 for
each component c ∈ ∂F. Then:

(1) p : F(α, n) → F is a cyclic covering of degree n. Moreover F(α, n) is a
surface of genus 1 − k + n(k − 1 + g) with n(#∂F − 2k) + 2k boundary
components, where k = #α.

(2) p−1(c) is either connected or has n components for each component c of ∂F ,
and p−1(c) is connected if and only if α ∩ c 6= ∅. Moreover suppose a is an
arc in α with tail in c′ and head in c′′, then c̃′= p−1(c′) has slope (n,−1) and
c̃′′ = p−1(c′′) has slope (n, 1).
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(3) Let τ̃ be the 2π/n-rotation of F × S1 along the oriented S1 factor, and let
c̃′ and c̃′′ be as in (2). Then τ , the restriction τ̃ on F(α, n) is a generator
of the deck group of the covering in (1), which rotates c̃′ and c̃′′ through
2π/n in negative and positive directions respectively; see right diagram on
the previous page.

(4) F × S1 = [F, id] = [F(α, n), τ ], and

pα,n : F(α, n)× S1 = [F(α, n), τ n] → F × S1 = [F, id]
is a cyclic covering of degree n.

Remark 5.2. We can perform a similar construction for a nonseparating circle γ in
F , in which case the description of the boundary is much simpler: each component
of ∂F gives rise to precisely n copies of ∂F(γ, n).

Example 5.3. We describe a graph manifold that

(1) admits fibrations representing infinitely many fibered commensurability clas-
ses, and

(2) admits infinitely many fibrations representing the same fibered commensura-
bility class.

First take M = [F1, φ1], where the oriented surface F1 and the monodromy φ1

are as shown here:

S1 S2 S3

1 1

Note that M has two boundary components and φ is D-type and definite.
Another view of M is this:

f g

S1 × S1 S2 × S1 S3 × S1
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Here every component is of the form Si×S1 (depicted in the figure as an Si× I ) for
i = 1, 2, 3, and two pairs of boundary tori are identified by maps f and g expressed
in terms of coordinates by the maps

f (1, 0)= (−1, 0), f (0, 1)= (−1, 1);
g(1, 0)= (−1, 0), g(0, 1)= (−1, 1).

Recall that this notation means that each (1, 0) denotes the homotopy class of some
component of some ∂Si , and each (0, 1) denotes an S1×∗.

Now we construct another surface fibration of the same underlying manifold
M = [F2, φ2] as follows. Pick oriented arcs αi ∈ Si , i = 2, 3 as follows:

2 2 3

S1(φ, 2) S2(α2, 2) S3(α3, 3)

α2

α3

Then construct

S′1 = S1(∅, 2), S′2 = S2(α2, 2), S′3 = S3(α3, 3)

in Si × S1, i = 1, 2, 3.
By Lemma 5.1(1), it is easy to see that S′1 is two copies of S1, that S′2 is a surface

of genus 2 with 4 boundary components, and that S′3 is a surface of genus 3 with
2 boundary components. By Lemma 5.1(2), we see that c̃′2 is of slope (2, 1) in
c′2× S1, and c̃′′3 is of slope (−3, 1) in c′′3 × S1,

Since g sends (2, 1) to (−3, 1), the maps f and g match S′1, S′2 and S′3 together
to produce a new surface F2 in M . Let τi be the generator of the (cyclic) deck group
for the covering pi : S′i→ Si given by Lemma 5.1(3). Then τ1, τ2, τ3 have periods
2, 2, 3 respectively. Now the new surface bundle structures [Si , τi ] in Si×S1 given
by Lemma 5.1(4), i = 1, 2, 3, match to produce a new surface bundle structure of
M , which we denote by [F2, φ2].

The monodromy map φ2 is a virtual D-type automorphism whose restriction
on each S′i is τi . Hence φ2 permutes the two copies of S1 in F2. Moreover un-
der this permutation, each copy also undergoes a half-twist relative to S′2. By
Lemma 5.1(3), τ2 rotates c̃′′2 by π and τ3 rotate c̃′3 by − 2

3π respective along the
directions shown in the first figure on page 310. So the relative twist at S′2 ∩ S′3 is
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π − 2π
3 = 1

3π . Now φ6
2 is a D-type automorphism, as shown here:

S
′
1

S
′
1

S
′
2

S
′
3

3

3
1

A direct computation gives

5(φ1)= {(1, 0), (2
3 , 0), (1

2 , 0)} and 5(φ2)= {(2, 0), (5
3 , 0), (1, 0)}

Consequently there is no s ∈Q so that5(φ1)∼ s5(φ2). By Theorem 4.3, (F1, φ1)

and (F2, φ2) are not commensurable.

If we perform a similar construction starting from S1(∅, n), S2(α2, n), and
S3(α3, n+1) in Si × S1, i = 1, 2, 3, we will get a surface bundle structure [Fn, φn]
on M , where φn is a virtual D-type automorphism and φn(n+1)

n is a D-type automor-
phism, and 5(φn)= {(n, 0), (2n+1

3 , 0), (n
2 , 0)}. So for any positive integers i 6= j ,

the automorphisms (Fi , φi ), (F j , φ j ) are not commensurable. We have verified
that M fibers in infinitely many incommensurable ways.

On the other hand if we start from S1(γ, n), S2(∅, n) and S3(∅, n), where γ is
a nonseparating circle in S1, then by Remark 5.2 and the argument above, we can
produce a fibration of M with monodromy (62n+1,2n, φ2,n), where we adapt the
notations in Example 4.16, and use 62,3= S2∪ S3 in place of 62,1. As observed in
Example 4.16, the automorphisms (62n+1,2n, φ2,n) are commensurable for all n.
So M admits infinitely many distinct but commensurable fibrations, as claimed.

Remark 5.4. One can modify the construction in Example 5.3 to a more general
setting where the arc connecting two boundary components of F passes through the
cores of more than one Dehn twist. For simplicity, consider a D-type map which
is either a single positive or negative Dehn twist on each γ ∈ 0(φ) (compare with
Example 4.17). Then one always gets infinitely many fibered commensurability
classes unless the χ(Si ) satisfy a certain linear equation so that the invariants in
Section 4 fail to distinguish them, where Si ’s are pieces of F \0(φ) meeting the
arc.
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Example 5.5. We now give an example of a closed graph manifold which fibers in
infinitely many incommensurable ways, including two incommensurable fibrations
with fibers of the same genus.

Let M = [F, φ] be the graph manifold with φ as indicated here:

S1 S2 S3

2

−2

−1

1

Our discussion of the bottom figure on page 310 applies mutatis mutandis in
this case, leading to the following diagram, with gluings given by

f1(1,0)=(−1,0), f1(0,1)=(2,1); f2(1,0)=(−1,0), f2(0,1)=(−2,1);
g1(1,0)=(−1,0), g1(0,1)=(−1,1); g2(1,0)=(−1,0), g2(0,1)=(1,1).

f1

f2

g1

g2

S1 × S1 S2 × S1 S3 × S1

First we construct infinitely many commensurability classes of fibrations of M .
Pick oriented arcs αi ∈ Si , i = 1, 2, 3 as follows:

α1

α2 α3

S1(α1, 4) S2(α2, 2) S3(α3, 3)

4

2

3
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Construct S′1 = S1(α1, 4), S′2 = S2(α2, 2), S′3 = S3(α3, 3) in Si × S1, i = 1, 2, 3,
respectively. Then fi and gi , i = 1, 2 paste the boundary of S′i together to produce
another bundle structure on M ; i.e., we have M = [620, φ2], where φ12

2 is a D-
type automorphism on the surface of genus 20. We can check that (620, φ

12
2 ) has

invariant
5(φ2)= {( 1

6 ,
1
6), (

5
4 ,

5
4), (1, 1)}

and is as follows:

S
′
1 S

′
2

S
′
3

3

−3

−2

2

genus 12 genus 3 genus 3

We can perform a similar construction starting from S1(α1, n + 2), S2(α2, n)
and S3(α3, n + 1) in Si × S1, i = 1, 2, 3, and obtain a surface bundle structure
[66n+8, φn] on M , where φn(n+1)(n+2)

n is a D-type automorphism of a surface of
genus 6n+ 8 and

5(φn)= {( n
12 ,

n
12), (

3n+4
8 , 3n+4

8 ), (n
2 ,

n
2 )}.

So for any positive integers i 6= j , (66i+8, φi ), (66 j+8, φ j ) are incommensurable.
Now we construct another surface bundle structure [620, ψ] on M , which is not

commensurable with (620, φ2), where φ2 is the automorphism above.
Pick oriented arcs αi ∈ Si , i = 1, 2, 3 as follows:

φ

α2
α3

S1(φ, 3) S2(α2, 3) S3(α3, 4)

3 3
4

and construct S′1 = S1(∅, 3), S′2 = S2(α2, 3), S′3 = S3(α3, 4) in Si × S1, i = 1, 2, 3,
respectively. Then fi and gi , i = 1, 2 glue the boundary of S′i together to provide
M another structure of surface bundle: M = [620, ψ], where ψ12 is a D-type
automorphism on 620 of genus 20. We can check that (620, ψ

12) has invariants
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5(ψ)= {( 1
4 ,

1
4), (

11
8 ,

11
8 ), (

3
2 ,

3
2)} and is as follows:

genus 3

genus 3

genus 3

genus 3
genus 4

S
′
1

S
′
1

S
′
1

S
′
2

S
′
3

−1

1

-8

-8

-8

8

8

8

By Theorem 4.3 we deduce that (F2, ψ) and (F2, φ2) are not commensurable,
as claimed.
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ON AN OVERDETERMINED ELLIPTIC PROBLEM

LAURENT HAUSWIRTH, FRÉDÉRIC HÉLEIN AND FRANK PACARD

A smooth flat Riemannian manifold is called an exceptional domain if it
admits positive harmonic functions having vanishing Dirichlet boundary
data and constant (nonzero) Neumann boundary data. In analogy with
minimal surfaces, a representation formula is derived and applied to the
classification of exceptional domains. Some interesting open problems are
proposed along the way.

1. Introduction

Given an m-dimensional Riemannian manifold (M, g) and a smooth bounded do-
main � in M , we denote by λ1(�) the first eigenvalue of the Laplace–Beltrami
operator under an identically zero Dirichlet boundary condition. The critical points
of the functional

� 7→ λ1(�)

under the volume constraint Vol� = α, where α ∈ (0,Vol M) is fixed, are called
extremal domains. Smooth extremal domains are characterized by the property
that the eigenfunctions associated with the first eigenvalue of the Laplace–Beltrami
operator have constant Neumann boundary data [Soufi 2007]. In other words, a
smooth domain is extremal if and only if there exists a positive function u1 and a
constant λ1 such that

1gu1+ λ1 u1 = 0

in�with u1=0 and∇nu1 constant on ∂�, where n denotes the inward unit normal
vector to ∂�.

The theory of extremal domains is very reminiscent of the theory of constant
mean curvature surfaces or hypersurfaces. To give some credit to this assertion,
we recall that J. Serrin [1971] proved that the only compact, smooth, extremal
domains in Euclidean space are round balls, paralleling the well-known result of
Alexandrov asserting that round spheres are the only (embedded) compact constant
mean curvature hypersurfaces in Euclidean space. More recently, F. Pacard and

We thank Romain Dujardin and Charles Favre for useful discussions. F. Pacard is partially supported
by the ANR-08-BLANC-0335-01 grant.
MSC2000: primary 35N25, 35J25, 35R35; secondary 53A10.
Keywords: harmonic function, overdetermined elliptic problem, extremal domain, minimal surface.
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P. Sicbaldi [2009] proved the existence of extremal domains close to small geo-
desic balls centered at critical points of the scalar curvature function, paralleling an
earlier result of R. Ye [1991], which provides constant mean curvature topological
spheres (with high mean curvature) close to small geodesic spheres centered at
nondegenerate critical points of the scalar curvature function.

We propose the following:

Definition 1.1. A smooth domain � ⊂ Rm is said to be an exceptional domain if
it supports positive harmonic functions having identically zero Dirichlet boundary
data and constant (nonzero) Neumann boundary data. Any such harmonic function
is called a roof function.

Exceptional domains arise as limits under scaling of sequences of extremal do-
mains, just like minimal surfaces arise as limits under scaling of sequences of
constant mean curvature surfaces. As explained above, there is a formal corre-
spondence between extremal domains and constant mean curvature surfaces. In
this note, we try to explain that there is also a strong analogy between exceptional
domains and minimal surfaces. More generally, we propose:

Definition 1.2. An m-dimensional flat Riemannian manifold M is said to be excep-
tional if it supports positive harmonic functions having identically zero Dirichlet
boundary data and constant (nonzero) Neumann boundary data. Any such har-
monic function is called a roof function.

Our results raise the problem of the classification of (unbounded) smooth m-
dimensional exceptional manifolds. In trying to address this classification problem,
we provide a Weierstrass-type representation formula for exceptional flat surfaces.
When the dimension m = 2, we give nontrivial examples of exceptional domains
that are embedded in R2, and we prove a half-space result for exceptional domains
that are conformal to a half-plane.

2. A nontrivial example of an exceptional domain in R2

The property of being an exceptional domain is preserved under the action of the
group of similarities of Rm (generated by isometries and dilations). We first give
trivial examples of exceptional domains in Rm :

(i) The half-space {x = (x1, . . . , xm) ∈ Rm
: x1 > 0} is an exceptional domain in

Rm , since the function u(x)= x1 is a positive harmonic function with identi-
cally zero Dirichlet boundary data and constant Neumann boundary data.

(ii) The complement of a ball of radius 1 in Rm is an exceptional domain since the
function u defined by u(x) := log|x | when m = 2 and by u(x) := 1− |x |2−m

when m ≥ 3 is positive, harmonic, and has 0 Dirichlet and constant Neumann
data on the unit sphere.
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(iii) The product �×Rk is an exceptional domain in Rm provided � ⊂ Rm−k is
an exceptional domain in Rm−k .

In dimension m=2, there exists (up to a similarity) at least one other exceptional
domain. To describe this domain, we make use of the invariance of the Laplace
operator under conformal transformations. The idea is that there exists a (somehow
natural) unbounded, positive harmonic function U with identically zero Dirichlet
boundary condition on an infinite strip in R2. This function does not have constant
Neumann data, but we can then look for a conformal transformation h which has the
property that the pullback of the harmonic function U by h has constant Neumann
boundary data on the boundary of the image of the strip by h.

To proceed, it is convenient to identify R2 with the complex plane C.

Proposition 2.1. The domain � :=
{
w ∈ C : |Imw| < π/2+ cosh(Rew)

}
is an

exceptional domain.

To prove this result, we define the infinite strip

S :=
{
z ∈ C : Im z ∈ (−π/2, π/2)

}
and the mapping

F(z) := z+ sinh z.

Observe that � = F(S). The proof of Proposition 2.1 follows from the next two
lemmas.

Lemma 2.2. The mapping F is a conformal diffeomorphism from S into �.

Proof. We can write

F(z)− F(z′)= (z− z′)
∫ 1

0

(
1+ cosh(t z+ (1−t)z′)

)
dt.

In particular

(2-1) 〈z− z′, F(z)− F(z′)〉 = |z− z′|2
(

1+
∫ 1

0
Re cosh (t z+ (1− t)z′) dt

)
,

where 〈 · , · 〉 denotes the scalar product in C. Now, for all x + i y ∈ S, we have

Re cosh (x + i y)= cosh x cos y ≥ 0.

This, together with (2-1), implies immediately that F restricted to S is injective.
Also,

|∂z3(z)|2 = |1+ cosh z|2 = (cosh x + cos y)2.

Therefore ∂z F does not vanish in S. Thus F is a local diffeomorphism, and because
the mapping F is holomorphic, it is conformal. �
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We define the real-valued function u on � by the identity

u(F(z))= Re cosh z for all z ∈ S.

Lemma 2.3. The function u is harmonic and positive in �, vanishes and has con-
stant Neumann boundary data on ∂�.

Proof. The function W defined in C by W (z) := Re cosh z is harmonic. Indeed, as
mentioned in the proof of the previous lemma, W (x + i y)= cosh x cos y. Hence
W is both harmonic and positive in S, and vanishes on ∂S. The mapping F being
a conformal diffeomorphism from S to �, we conclude the function u is both
harmonic and positive in �, and vanishes on ∂�. We claim that u has constant
Neumann data on ∂�. Indeed, by definition,

u(F(z))= 1
2(cosh z+ cosh z̄).

Since F is holomorphic, differentiation with respect to z yields

2 ∂zu(F(z))=
sinh z

1+ cosh z
.

Therefore

|∇u|2(F(z))=
cosh x − cos y
cosh x + cos y

,

where z= x+i y. On ∂�, we have y=±π/2 and hence |∇u|≡1. Since we already
know that u = 0 on ∂�, we conclude that u has constant Neumann boundary data.

�

Lemmas 2.2 and 2.3 complete the proof that�= F(S) is an exceptional domain
in R2 with roof function u.

Remark 2.4. We suspect that this example generalizes to any dimension m ≥ 3:
specifically, there should exist a rotationally symmetric exceptional domain in Rm

for all m ≥ 3.

3. Toward a global representation formula

Let M be an exceptional flat surface (an exceptional domain of dimension 2) with
smooth boundary ∂M . Let M̃ be its universal cover and let ∂ M̃ be the preimage of
∂M by the covering map M̃→ M . In the following, we exclude the uninteresting
case where ∂M =∅.

By assumption, M is a flat surface. Hence M̃ is naturally endowed with a flat
Riemannian metric g and hence with an induced complex structure, which is con-
formal to the standard one. Also, there exists an orientation-preserving isometric
immersion F : (M̃, g)→ (C, gC), where gC is the canonical Euclidean metric on
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C; this induces a smooth immersion of ∂ M̃ , Observe that F is holomorphic and
that ‖dF‖g = 1 in M̃ ∪ ∂ M̃ . We define the holomorphic (1, 0)-form

8 := dF = ∂z F dz.

Observe that 8 does not vanish and admits a smooth extension to M̃ ∪ ∂ M̃ .
We let u :M→R+ be a roof function on M and, with a slight abuse of notation,

we denote its lift also by u : M̃→ R+. The roof function u can be normalized so
that

(3-1) ‖∇u‖g = 1

on ∂M . We consider the harmonic conjugate function v : M̃→R (uniquely defined
up to some additive constant) that is the solution of

(3-2) ∂z(u− i v)= 0 (and hence ∂z̄(u+ i v)= 0 ).

We set
U := u+ i v.

Recall that U is a holomorphic function from M̃ into C. The property that u takes
positive values in M and vanishes on ∂M can be translated into the fact that U
maps M̃ to C+ := {w ∈ C : Rew > 0} and ∂ M̃ to i R. Since 8 6= 0 on M̃ , there
exists a unique holomorphic function h on M̃ such that dU = ∂zU dz = h8. We
deduce from the fact that u vanishes on ∂ M̃ and from (3-1) that ∇nU = 1, where
n denotes the inward unit normal vector to ∂ M̃ . Hence

(3-3) ‖∂zU‖g = 1 on ∂ M̃ .

Now, condition (3-1) translates into the fact that ‖8‖g = ‖dF‖g = 1= ‖dU‖g on
∂ M̃ . Clearly, this is equivalent to the fact that |h| = 1 on ∂ M̃ . Therefore, we end
up with the following data:

(i) An oriented, simply connected complex surface M̃ with smooth boundary
∂ M̃ .

(ii) A holomorphic function U , defined on M̃ , which takes values in C+ and maps
∂ M̃ into i R.

(iii) A holomorphic function h, defined on M̃ , such that |h| = 1 on ∂ M̃ , and for
which the 1-form 8 defined by 8 := (1/h)dU does not vanish on M̃ .

By analogy with the theory of minimal surfaces, we call these data the Weierstrass-
type representation formula for exceptional flat surfaces.

Conversely, given a set of such data, we can define the map F : M̃ → C by
integrating dF = 8. Thanks to (iii), this map is an immersion and its image is
an immersed exceptional flat surface with roof function given by u = Re U . In
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Section 4, we will give some explicit examples of such constructions when ∂ M̃
is equal to ∂D \ {α1, . . . , αn}, where α1, . . . , αn is a finite collection of points on
∂D = S1.

Example 3.1. Here is a (rather pathological) illustration of this Weierstrass-type
formula. Consider M = C+, the function U (z)= z and

F(z)=
∫ z

0
e− sinh ζ dζ.

Note that ∂z F is 2iπ -periodic, and this implies that F(z+2iπ)= F(z)+C , where
the constant C is given explicitly by

C := i
∫ 2π

0
e−i sin s ds.

Moreover, for x > 0,

F(x + iy)= F(iy)+
∫ x

0
e− sinh(s+iy) ds

converges to+∞ as x→+∞ if y=0, but this quantity is bounded if |y−π |<π/2,
and even admits a finite limit as x→+∞.

Hence, in addition to the regular boundary F(i R), which is a smooth periodic
curve, the image of F has a singular boundary: the set of limits of F(x + i y) as
u tends to +∞, for the values of y for which this limit exists. The roof function
tends to infinity along this singular boundary.

4. Examples of exceptional flat surfaces

Thanks to the Weierstrass-type representation in the previous section, we can give
many nontrivial examples of exceptional flat surfaces. We keep the notation from
that section.

The construction makes use of an integer n ∈ N \ {0} and the Riemann surface
D = {z ∈ C : |z|< 1}. On D, we define the holomorphic functions

h(z)= zn−1 and U (z) :=
1+ zn

1− zn .

The 1-form 8 is given by

8(z) :=
2n

(1− zn)2
dz.

Both U and 8 have singularities at the n-th roots of unity. The function F is then
obtained by integrating 8, and the roof function u is defined by u = Re U .
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(i) When n = 1, we can take

F(z)= 1+z
1−z

.

In this case, we simply have F(D) = C+, and we recover the fact that the
half-plane is an exceptional domain. This is the counterpart of the plane in
the framework of minimal surfaces.

(ii) When n = 2, we can take

F(z)=
2z

1− z2 + log
z+ 1
z− 1

.

In this case, the exceptional flat surface found can be isometrically embedded
in C, and hence F(D) is an exceptional domain. In fact, F(D) corresponds
(up to some similarity) to the domain�, which was defined in Proposition 2.1.
This exceptional domain is the counterpart of the catenoid.

(iii) Finally when n ≥ 3, the exceptional flat surfaces we find cannot be isometri-
cally embedded in C anymore. They are counterparts of the minimal n-noids
described in [Jorge and Meeks 1983].

Let us analyze this example further. The function U can be written as

U (z)=−1
n

n∑
k=1

z+αk

z−αk ,

where α := e i2π/n . In particular, Re U is nothing but a multiple of the sum of the
Poisson kernel on the unit disc with poles at 1, α, . . . , αn−1. Next,

dU = zn−1 2n
(1− zn)2

dz,

so the function h is cooked up to counterbalance the zero of dU and ensure that 8
does not vanish in the unit disk, while keeping the condition |dU |2 = |8|2 on ∂D.

To generalize the example, consider n distinct points α1, . . . , αn ∈ S1
⊂ C and

a1, . . . , an > 0. We define

(4-1) U (z) := −
n∑

k=1

ak
z+αk

z−αk
.

It is easy to check that Re U is positive (since each function z 7→− z+αk
z−αk

maps D
to C+) and vanishes on ∂D \ {α1, . . . , αn}. We have

n∏
k=1

(z−αk)
2 dU = P(z) dz,



326 LAURENT HAUSWIRTH, FRÉDÉRIC HÉLEIN AND FRANK PACARD

where P is a polynomial that depends on the choice of points α1, . . . , αn and
weights a1, . . . , an . Assume that P does not vanish on ∂D and denote by z1, . . . , zl

the roots of P in the unit disc, counted with multiplicity. We simply define

h(z) :=
l∏

j=1

z − z j

z z̄ j − 1

and the 1-form 8 by 8 := (1/h) dU . Integration of 8 yields a 2n-dimensional
family of exceptional flat surfaces immersed in C.

5. A global Weierstrass-type representation

In this section, we show that exceptional flat surfaces whose immersion in C have
finitely many regular ends and are locally finite coverings of C are precisely the
examples in the previous section. We use the notations introduced in Section 3,
and we set

M̂ := M ∪ ∂M.

We further assume that M is simply connected and that ∂M 6=∅. In particular, M
has the conformal type of the unit disk D, and without loss of generality, we can
assume that M is indeed equal to D and consider D̄ as a natural compactification of
M . We denote by F an orientation preserving, holomorphic, isometric immersion
F : (M̂, g)→ (C, gC). Recall that ‖dF‖g = 1 on ∂M . Some natural hypotheses
are needed:

(H-1) M has finitely many ends. This means that

∂M = ∂D \
n⋃

j=1
E j =

n⋃
j=1

I j ,

where each E j ⊂ S1 is a closed arc and I j ⊂ S1 is an open arc.

(H-2) F is proper. This means that F(w) tends to infinity as w tends to
⋃n

j=1 E j .

(H-3) Each end of M is regular. This means the image of I j := (θ
−

j , θ
+

j ) by F
is a curve 0 j asymptotically parallel to fixed directions at infinity. In other
words, there exist two unit vectors τ−j and τ+j ∈ S1

⊂ C such that

lim
θ∈I j , θ→θ

±

j

F(eiθ )

|F(eiθ )|
= τ±j .

This is the case, for example, if we assume each 0 j has finite total curvature.

(H-4) The mapping F is a locally finite covering. This means there exists d ∈ N∗

such that, for any z ∈ C, the cardinal of {ζ ∈ M : F(ζ )= z} is at most d .

We now state the main result of this section.
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Theorem 5.1. Assume that M is a simply connected exceptional flat surface and
let F : M→C be an isometric immersion. Further assume that (H-1)–(H-4) holds
and identify M with D. Then there exist µ ∈ R, n distinct points α1, . . . , αn ∈ S1

and n constants a1, . . . , an > 0 such that

dF = eiµ
m∏

k=1

z̄k z− 1
z− zk

dU,

where z1, . . . , zm ∈ D̄ denote the zeros of dU , counted with multiplicity, and where

U (z) := −
n∑

j=1

a j
z+α j

z−α j
in D̄.

The proof is divided into a few lemmas and propositions. We start by analyzing
the ends E j and show that they reduce to isolated points α1, . . . , αn . Next we
analyze the behavior of F near the points α j and show that F does not have any
essential singularity there. Then we proceed with the analysis of the function U
and show that it has the expected form. The proof is completed with the study of
the function h.

As promised, we first analyze the sets E j :

Lemma 5.2. Under the assumptions of Theorem 5.1, there exists a finite number
of points α1, . . . , αn ∈ ∂D = S1 such that M̂ = D̄ \ {α1, . . . , αn}.

Proof. We need to show that each interval E j is reduced to a point. This essentially
follows from the fact that the capacity of E j vanishes.

Suppose, for a contradiction, that E j is an arc of positive arc length for some
j , and take some l ∈ (0, π/2) and an arc E ⊂ E j of length l. Our problem being
invariant under the action of fractional linear transformations of the unit disk, we
can assume without loss of generality that E is the image of [−l/2, l/2] under
s 7→ eis . Reducing l if necessary, we can also assume that the opposite arc −E ,
the image of [−l/2, l/2] under s 7→ −eis , is contained in S1

\
⋃n

j=1 E j .
Recall that for any smooth function defined on (a, b) which satisfies f (b) = 1

and f (a)= 0, we have

1= f (b)− f (0)=
∫ b

a
f ′(s) ds ≤

(∫ b

a
( f ′)2(s) ds

)1/2√
b− a.

If in addition, b− a ≤ 2, we conclude that∫ b

a
( f ′)2(s) ds ≥ 1

2 .
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Now assume that we are given a smooth function f : D→ R such that f = 1 on
E and f = 0 on −E . Using the previous inequality, we can write

(5-1)
∫

D
‖∇ f ‖2

gC
dx dy ≥

∫
D∩{|x |<sin(l/2)}

|∂y f |2 dx dy ≥
∫
|x |≤sin(l/2)

1
2 dx = sin l

2
.

Given R > r > 0, define χ : C→ R by

χ(z)=


0 if |z| ≤ r,

log(|z|/r)
log(|z|/R)

if r ≤ |z| ≤ R,

1 if R ≤ |z|,

and we define f : D→ R by f := χ ◦ F . Since F is conformal, we can write∫
D
‖∇ f ‖2gC

dx dy =
∫

D
‖∇ f ‖2g d volg .

Now, using (H-4), we conclude that

(5-2)
∫

D
‖∇ f ‖2g d volg ≤ d

∫
C

‖∇χ‖2gC
dx dy = d

2π
log(R/r)

.

Fixing r > 0 large enough, we can ensure that f is identically equal to 0 on−E .
Using (H-2), we see that f is identically equal to 1 on each E j , and in particular
on E . Therefore f can be used in (5-1), which together with (5-2) yields

2π d ≥ sin l
2

log R
r

independently of R > r . Letting R tend to infinity, we get a contradiction, and the
proof is complete. �

Therefore, we now know that E j := {α j }. Without loss of generality, we can
assume that α1, . . . , αn are arranged counterclockwise along S1. We agree that
α0 := αn and αn+1 := α1, and that for each j = 1, . . . , n, the arc I j is positively
oriented and joins α j to α j+1. We now analyze the singularities of F close to α j .

Given j = 1, . . . , n, we denote by S(α j , r) the circle of radius r > 0 centered
at α j . We define

γ j := D̄ ∩ S(α j , r),

which we assume to be oriented clockwise. The angle θ j ∈ R at α j is defined by

θ j := − lim
r→0

∫
γk

F∗dθ,

where dθ := Im dz/z. Thanks to (H-3), θ j is well defined, and we have

τ−j = eiθ j τ+j−1.
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Lemma 5.3. Under the assumption of Theorem 5.1, the function

H j (z) := (z−α j )
θ j/π F(z)

is holomorphic in a neighborhood of α j in D̄ \ {α j }, and H j (α j ) 6= 0.

Proof. Without loss of generality, we can assume that α j = 1. By right composing
F with the conformal transformation z 7→ (1− z)/(1+ z), we can replace D by
C+. Now we define

G(z) := F(z)−π/θ j .

Observe that G(0)=0 by (H-2). Moreover, (H-3) and the definition of θ j imply that
the image by G of a neighborhood of 0 in i R is a C1-curve, and hence analytic. In
particular, there exists some conformal transformation T such that, for some r > 0,
the image by T ◦G of i (−r, r) is a straight line segment in i R. Then it is possible
to extend T ◦G to a function G̃ defined on a neighborhood of 0 in C by setting

G̃(z)=
{

T (G(z)) if Im z ≥ 0,
−T (G(−z̄)) if Im z ≤ 0.

The resulting G̃ is bounded in a neighborhood of 0 in C and holomorphic away
from 0. It is well known that the singularity is then removable and hence it is
holomorphic. Therefore G̃ is actually holomorphic in a neighborhood of 0. In
particular, we can write

G(z)= zk H(z)

near 0, where H is a holomorphic function that does not vanish at 0. Going back
to the definition of G, this implies that

F(z)= (z−α j )
−k θ j/π H j (z),

where H j is holomorphic in a neighborhood of α j and does not vanish at α j . But
the definition of θ j readily implies that k = 1. This completes the proof. �

As a corollary, we conclude that

(5-3) H(z) := F(z)
n∏

j=1

(z−α j )
θ j/π

is a bounded holomorphic function in D. Moreover, since F tends to infinity as z
approaches α j , this implies that θ j > 0.

We now make use of the fact that M is an exceptional domain, and hence there
is a roof function u : M̂ → [0,+∞). We can define the holomorphic function
U := u+ i v, where v : M̂→ R is the (real-valued) harmonic conjugate of u. The
purpose of the next result is to show that U is precisely given by (4-1).



330 LAURENT HAUSWIRTH, FRÉDÉRIC HÉLEIN AND FRANK PACARD

Lemma 5.4. Under the assumptions of Theorem 5.1, there exist n constants a1,

. . . , an > 0 such that

U (z)=−
n∑

j=1

a j
z+α j

z−α j
.

Proof. First, it is possible to extend the function U to all C \ {α1, . . . , αn} by
defining V to be equal to U in D \ {α1, . . . , αn}, and

V (z) := −U (1/z̄)

when z ∈C\D. The key observation is that, since Re U = 0 on ∂D \{α1, . . . , αn},
the function V is continuous and in fact holomorphic on C \ {α1, . . . , αn}. More-
over, V converges to V (∞) := −U (0) at infinity.

We proceed with the proof that the function V has no essential singularity at
any α j ; it will follow from Picard’s theorem. By definition, Re V vanishes on I j

and is positive in D. Therefore the outward normal derivative of Re V on I j is
negative. This implies that the tangential derivative of Im V on I j does not vanish
and hence that Im V is strictly monotone on each I j . This shows that there exists
some neighborhood V of α j in C such that any element of i R is achieved by V at
most twice in V (that is, at most once on I j and at most once on I j−1 and certainly
not in V\∂D, since V takes values in C\i R away from ∂D). Picard’s big theorem
[Conway 1978] then implies that α j is not an essential singularity of V . Hence α j

is either a removable singularity of V or a pole.
Since ‖∇u‖g ≡ 1 on ∂M , this forces |∂zU | = |∂z F | on ∂M , and since |∂z F |

tends to +∞ at α j , so does |∂zU |. Hence all α j are poles of V .
We are now interested in the zeros of V . Since Re V takes positive values in

D and negative values in (C∪ {∞}) \ D, we already know that the only possible
zeros of V are on ∂D. We have already seen that, along I j , the function V equals
i v, where v is strictly monotone. Further, since α j−1 and α j are poles of this
function, |V | must converge to +∞ as we approach either α j−1 or α j . Because
of the continuity of v along each I j it follows that v vanishes exactly at one point
β j on each I j . Moreover, this zero is simple: if it had order k > 1, the zero set
of Re V near β j would contain k curves intersecting at β j , and this would force
Re V = Re U to vanish in D, in contradiction with our hypothesis.

Finally, we prove that V has only simple poles. We know that V extends mero-
morphically to a map on CP1

=C∪{∞} with neither a pole nor a zero at infinity.
Furthermore, V has exactly n simple zeros and n poles; hence these poles must be
simple. To summarize, V can be written as a linear combination of the constant
function and functions of the form z 7→ 1/(z−α j ). Without loss of generality, this
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amounts to saying that V can be written as

V (z)= a−
n∑

j=1

a j
z+α j

z−α j
,

where a and the a j are complex numbers. Using the fact that, by construction,
V (1/z̄)=−V (z), we conclude that a ∈ i R and also that a j ∈ R. Moreover, since
Re U is positive, this implies that the a j are positive real numbers. This completes
the proof, since U is defined up to the addition of some element of i R. �

We are now in a position to complete our analysis of the function F . Since F
is an immersion, dF 6= 0 on M̂ . Hence there exists a unique holomorphic function
h on M̂ such that

(5-4) ∂zU = h ∂z F

on M̂ . Moreover, since ‖∇u‖g ≡ 1 on ∂M , this implies that |h| ≡ 1 on ∂M . We
now analyze the function h, which will complete the proof of Theorem 5.1.

Lemma 5.5. Under the assumptions of Theorem 5.1, there exists a constant e iµ
∈R

such that the function h defined by (5-4) has the form

h(z)= e−iµ
m∏

k=1

z− zk

z̄kz− 1
,

where z1, . . . zm are the zeros of ∂zU in D counted with multiplicity.

Proof. The function h is holomorphic in D and satisfies |h|=1 on ∂D\{α1, . . . , αn}.
We can extend h to a holomorphic function H , defined on (C∪{∞})\{α1, . . . , αn}

by setting H(z) := h(z) for all z ∈ D \ {α1, . . . , αn} and

(5-5) H(z) :=
1

h(1/z̄)

for all z ∈ C \ D. Clearly H is locally bounded in D \ {α1, . . . , αn}, and its only
singularities in (C∪{∞})\D are poles that are the images by z 7→1/z̄ of the zeros of
h; hence H is meromorphic outside {α1, . . . , αn}. But Lemma 5.3 and (5-3) imply
that, near α j , |H | is bounded by a constant times |z − α j |

−k j for some k j > 0.
Therefore α j is not an essential singularity of H , and hence H is meromorphic in
C∪ {∞}.

Observe that |H(z)| = 1 on ∂D \ {α1, . . . , αn}, and this implies that the points
α j are not poles of H . Therefore, the singularities α j of H are removable. Also,
we have

1 |H |2 = 4∂z∂z̄ |H |2 = 4 |∂z H |2 ≥ 0,

and since |H | = 1 on ∂D, the maximum principle implies that |H | ≤ 1 in D.
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Since H is bounded in D, it does not have poles in this set. This also implies that
H has no zeroes in (C∪{∞})\D, because otherwise H would have poles in D by
(5-5). Therefore, if z1, . . . , zm ∈ D denote the zeros of H (counted with multiplic-
ity), the poles of H are given by 1/z̄1, . . . , 1/z̄m (also counted with multiplicity).
It is then a simple exercise to check that H is of the form

H(z)= C
m∏

k=1

z− zk

z̄k z− 1

for some constant C ∈ C. Finally, the condition that |H(z)| = 1 on ∂D forces
|C | = 1. This completes the proof. �

6. A Bernstein type result for two-dimensional exceptional domains

We prove the following Bernstein type result for two-dimensional exceptional do-
mains.

Proposition 6.1. Assume that � is a two-dimensional exceptional domain confor-
mal to C+, and let u be a roof function on �. We further assume that ∂x u > 0 in
�. Then � is a half-plane.

Proof. Since we have assumed that � is conformal to C+, there exists a holomor-
phic map 9 : C+ 7→�. We then define

H := (∂zu) ◦9.

The function H is holomorphic in C+ and does not vanish, since we have assumed
that ∂x u 6= 0. Moreover, |H | ≡ 1 on ∂C+. We can write H = ei2, where 2 is a
holomorphic function defined in C+ that is real valued on the imaginary axis. This
means that Im2= 0 when Re z= 0. Since we have assumed that ∂x u > 0, we also
conclude that Re2 ∈ (−π/2, π/2).

We can extend 2 as a holomorphic function 2̃ in C as follows:

2̃(z) :=
{
2(z) if Re z ≥ 0,
2(−z̄) if Re z < 0.

It is easy to check that 2̃ is a holomorphic function: in fact, the real part of 2 is
extended as an even function of Re z, while the imaginary part of 2 is extended
as an odd function of Re z. That 2̃ is C1 is then a consequence of the fact that
Im2 = 0 on the imaginary axis, while the holomorphicity of 2 follows from the
fact that ∂x Re2= 0 on the imaginary axis of C.

The real part of 2̃, being a bounded harmonic function, must be constant. Then
2̃, being holomorphic, must itself be constant. But this implies that the gradient
of u is constant, and hence the level sets of u are straight lines. This implies that
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u only depends on one variable, and hence it is an affine function. This completes
the proof. �

Corollary 6.2. There is no exceptional domain contained in a wedge

�⊂ {z ∈ C : Re z ≥ κ |Im z|}

for any κ > 0.

Proof. The proof is by contradiction. If � were such an exceptional domain, there
would exist on � a roof function u. One can apply the moving plane method
[Serrin 1971; Gidas et al. 1979] to prove that ∂x u > 0 and hence that ∂� is a
graph over the y-axis. Since � is contained in a half-plane, there is no bounded,
positive, harmonic function on � having 0 boundary data on ∂�; otherwise one
could use an affine function as a barrier to obtain a contradiction. Certainly,�∪∂�
is conformal to D̄\E , where D is the unit disc and E is a closed arc included in S1.
Necessarily, E is reduced to a point, since otherwise we can construct bounded,
positive, harmonic functions on E that have 0 boundary data on S1

\ E , and these
would lift to bounded, positive, harmonic function on �, with 0 boundary data, a
contradiction. Therefore, we conclude that� is conformal to C+. The assumptions
of Lemma 5.5 are fulfilled, and hence we conclude that � is a half-plane, which is
a contradiction. �

7. Open problems

We have no nontrivial example of an exceptional domain in higher dimensions
Rm for m ≥ 3, besides the ones described in Section 2. In dimension m = 2, it
is tempting to conjecture that (up to similarity) the only exceptional domains that
can be embedded in R2 are half-spaces, the complement of a ball and the example
discussed in Section 2.
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MINIMAL SETS OF A RECURRENT DISCRETE FLOW

HATTAB HAWETE

S. G. Dani, giving a counterexample to a result in a paper of Knight, showed
that recurrent transitive flows can admit multiple minimal sets. Here we
show that such a phenomenon occurs on a wider scale.

Let (X, T ) be a discrete flow, where X is a compact metric space and T is a
self-homeomorphism of X . For x ∈ X , the set {T n(x) : n ∈Z} is called the orbit of
x and is denoted by O(x, T ). A set W is a minimal set of (X, T ) if for all x ∈ W
we have O(x, T ) = W . The study of minimal sets of such a system is a central
question in topological dynamics. Zorn’s lemma ensures the existence of at least
a minimal set of (X, T ). If X is a minimal set, (X, T ) is called a minimal flow.

A point x of X is recurrent if T nk (x)→ x for some sequence nk→+∞. When
each point of X is recurrent we say that (X, T ) is a recurrent flow. All periodic
points are recurrent. The standard example of a nonperiodic recurrent point is
any point in the irrational flow on the circle S1. Every point in a minimal set is
recurrent, so the existence of minimal sets implies the existence of recurrent points.

Knight [1987] purported to prove that, if X is a compact recurrent orbit closure
in (X, T ), then any pair of orbit closures intersect and, in particular, X contains a
unique compact minimal set. Dani [1991] pointed out with a counterexample that
this statement is false.

In Theorem 0.1 below we enlarge the class of known counterexamples. More
specifically, for any weakly mixing, minimal, uniformly rigid system (X, T ) the
system (X×X, T×T ), defined by (T×T )(x1, x2)= (T (x1), T (x2)) for (x1, x2)∈

X× X , is a recurrent and transitive system with multiple minimal sets.
(Recall that the a discrete flow (X, T ) is called

• transitive if there exists x0 ∈ X with a dense orbit;

• ergodic if for all two open subsets U and V there exits n such that T nU ∩V
is nonempty;

• weakly mixing if the discrete flow (X× X, T ×T ) is ergodic;

MSC2010: 54H20.
Keywords: minimal set, discrete flow, uniformly rigid, weakly mixing.
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• uniformly rigid if there exists a sequence nk→+∞ such that

lim
nk→+∞

sup
x∈X

d(T nk x; x)= 0,

where d is the metric on X .)

Minimal uniformly rigid weakly mixing systems exist; see [Glasner and Maon
1989, Proposition 6.5].

Theorem 0.1. Let (X, T ) be a minimal uniformly rigid weakly mixing system.
Then (X×X, T×T ) is transitive and recurrent, and admits infinitely many minimal
sets.

Proof. Let (X, T ) be a minimal uniformly rigid weakly mixing system.

Step 1: (X×X, T×T ) is transitive. Since (X, T ) is weakly mixing, (X×X, T×T )

is ergodic. But for discrete flows on compact spaces, ergodicity is equivalent to
transitiveness; see [de Vries 1993], for example. Because X× X is compact, this
means that (X× X, T ×T ) is transitive.

Step 2: (X× X, T ×T ) is recurrent. Since (X, T ) is a uniformly rigid flow, there
is a sequence nk→+∞ such that

lim
nk→+∞

sup
x∈X

d(T nk x, x)= 0.

For each point (x, y) point of X× X we have

lim
nk→+∞

(T ×T )nk (x, y)= lim
nk→+∞

(T nk x, T nk y)= (x, y).

Thus (x, y) is a recurrent point and so (X×X, T ×T ) is a recurrent discrete flow.

Step 3: There are infinitely many minimal sets of (X× X, T ×T ). Define Dn =

{(x, T n(x)) : x ∈ X}. Then Dn is an invariant closed set of (X× X, T ×T ). If F
is a nonempty closed (T×T )-invariant subset of Dn , then so is its projection, say
p1(F), on the first factor. By the minimality of T we get p1(F) = X , and hence
F = Dn . Thus Dn is minimal for every n. Since (X, T ) is minimal it follows that
the Dn are pairwise distinct. �

Remark 0.2. The discrete flow (X×X, T×T ) does not have fixed points because
we chose (X, T ) as a minimal discrete flow.
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TRACE-POSITIVE POLYNOMIALS

IGOR KLEP

In this paper positivity of polynomials in free noncommuting variables in
a dimension-dependent setting is considered. That is, the images of a poly-
nomial under finite-dimensional representations of a fixed dimension are
investigated. It is shown that unlike in the dimension-free case, every trace-
positive polynomial is (after multiplication with a suitable denominator — a
Hermitian square of a central polynomial) a sum of a positive semidefinite
polynomial and commutators. Together with our previous results this yields
the following Positivstellensatz: every trace-positive polynomial is modulo
sums of commutators and polynomial identities a sum of Hermitian squares
with weights and denominators. Understanding trace-positive polynomials
is one of the approaches to Connes’ embedding conjecture.

1. Introduction

Interest in positivity questions involving noncommutative polynomials has been
recently revived by Helton’s seminal paper [2002], in which he proved that a
polynomial is a sum of squares if and only if its values in matrices of any size
are positive semidefinite. Considering polynomials with positive trace, Klep and
Schweighofer [2008, Theorem 1.6] observed that Connes’ embedding conjecture
[1976, Section V, pp. 105–107] on type II1 von Neumann algebras is equivalent to
a problem of describing polynomials whose values at tuples of self-adjoint d × d
matrices (of norm at most 1) have nonnegative trace for every d ≥ 1. This result is
the motivation for the present work. Here we investigate polynomials whose values
at tuples of d×d matrices have nonnegative trace for a fixed d ≥ 1. We show that
such a polynomial is (after multiplication with a Hermitian square of a suitable cen-
tral polynomial) a sum of commutators and of a polynomial whose values at tuples
of d× d matrices are positive semidefinite. The latter were characterized in [Klep
and Unger 2010], leading us to the following Positivstellensatz: every polynomial
with nonnegative trace on d × d matrices is modulo sums of commutators and

Supported by the Slovenian Research Agency (project no. J1-3608 and program no. P1-0222).
MSC2000: primary 16W10, 13J30; secondary 11E25, 16R50.
Keywords: free algebra, noncommutative polynomial, central simple algebra, (reduced) trace,

polynomial identity, involution, central polynomial, quadratic form, free positivity.
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polynomial identities for d × d matrices a sum of Hermitian squares with weights
and denominators. See Section 4 for a precise formulation.

The organization of this paper is as follows: Section 2 introduces the main no-
tions and interprets them in full matrix algebras, Section 3 considers these notions
for free algebras, while Section 4 presents our main results.

2. Basic notions and a motivating example

Let R be an associative ring with 1 and involution a 7→a∗ (that is, (a+b)∗=a∗+b∗,
(ab)∗= b∗a∗ and a∗∗=a for all a, b∈ R). We denote by Sym R := {a ∈ R |a=a∗}
its set of symmetric elements. Elements of the form a∗a and ab − ba (a, b ∈
A) are called Hermitian squares and commutators, respectively. We introduce an
equivalence relation (cyclic equivalence) on R by declaring a

cyc∼ b if and only if
a− b is a sum of commutators in R. For notational convenience we write

62 R :=
{∑

a∗i ai | ai ∈ R
}
⊆ Sym R, 22 R :=

{
a ∈ R | ∃ b ∈62 R : a

cyc∼ b
}

for the sets of (finite) sums of Hermitian squares, and sums of Hermitian squares
and commutators in R, respectively.

Throughout this paper k will denote R or C.

Matrices. For a concrete example of these notions, consider the ring R =Md(k)
of real or complex square matrices of a fixed size d ≥ 1 endowed with the usual
(complex conjugate) transposition of matrices, denoted here by ∗. Using � to
denote the Löwner partial order (that is, A � B if and only if A − B is positive
semidefinite), it is easy to see that for A ∈Md(k), we have

(A) A � 0 if and only if A ∈62 Md(k);

(B) tr(A)= 0 if and only if A
cyc∼ 0 in Md(k);

(C) tr(A)≥ 0 if and only if A ∈22 Md(k).

Let us determine multiplication by which matrices respect these properties.

Lemma 2.1. Suppose A ∈Md(k) is such that for all B ∈Md(k),

(1) B � 0 ⇒ AB � 0.

Then A = λ for some λ ∈ R≥0.

Proof. Using (1) with B = 1, we obtain A � 0. In particular, A = A∗. Again by
(1), A commutes with all positive semidefinite matrices, hence with all symmetric
matrices, which are differences of two positive semidefinite matrices by

B = 1
4(B+ 1)2− 1

4(B− 1)2.

So A is scalar and the desired conclusion follows. �
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Lemma 2.2. Suppose A ∈Md(k) is such that for all B ∈Md(k),

(2) tr(B)= 0 ⇒ tr(AB)= 0.

Then A = λ for some λ ∈ k.

Proof. Write A = [ai j ]
d
i, j=1. Let i 6= j . Then B = λEi j has zero trace for every

λ ∈ k. (Here Ei j denotes the d × d matrix unit with a one in position (i, j) and
zeros elsewhere.) By (2), this implies that λai j = tr(AB) = 0. Since λ ∈ k was
arbitrary, ai j = 0.

Now let B = λ(Ei i − E j j ). Clearly, tr(B)= 0 and hence

λ(ai i − a j j )= tr(AB)= 0.

As before, this gives ai i = a j j . �

Lemma 2.3. Suppose A ∈Md(k) is such that for all B ∈Md(k),

(3) tr(B)≥ 0 ⇒ tr(AB)≥ 0.

Then A = λ for some λ ∈ R≥0.

Proof. By Lemma 2.2, A is scalar. In addition to that, ai i = tr(AEi i ) ≥ 0 by (3),
showing that A must be a nonnegative multiple of the identity. �

Likewise we can characterize matrices that map positive semidefinite matrices
into matrices with nonnegative trace:

Lemma 2.4. Suppose A ∈Md(k) is such that for all B ∈Md(k),

(4) B � 0 ⇒ tr(AB)≥ 0.

In the case k = R, assume moreover that A = A∗. Then A � 0.

Proof. This is just a restatement of the well-known self-duality of the cone of all
positive semidefinite matrices. For v ∈ kd , let B = vv∗ � 0. Then

0≤ tr(AB)= tr(Avv∗)= tr(v∗Av)= 〈Av, v〉,

showing A is positive semidefinite. �

Converses of Lemmas 2.1–2.4 hold as well.

3. Positivity in free algebras

Words and polynomials. Fix n ∈ N. Let

X := (X1, . . . , Xn) and X∗ := (X∗1, . . . , X∗n)

denote tuples of n distinct variables (or letters). By 〈X, X∗〉 we denote the free
monoid on {X, X∗} (consisting of words in X, X∗) and let k〈X, X∗〉 be the semi-
group algebra of 〈X, X∗〉 over k (consisting of polynomials in noncommuting



342 IGOR KLEP

variables X and X∗ with coefficients in k). We endow k〈X, X∗〉 with the invo-
lution p 7→ p∗ mapping X j 7→ X∗j and extending complex conjugation on k. Thus
k〈X, X∗〉 is the free ∗-algebra on X over k.

Cyclic equivalence. It is well known and easy to see that trace-zero matrices are
sums of commutators, that is, cyclically equivalent to 0. Cyclic equivalence can
also be easily tested in k〈X, X∗〉:

(a) For v,w ∈ 〈X, X∗〉, we have v
cyc∼ w if and only if there are v1, v2 ∈ 〈X, X∗〉

such that v = v1v2 and w = v2v1. That is, v
cyc∼ w if and only if w is a cyclic

permutation of v.

(b) Polynomials

f =
∑

w∈〈X,X∗〉

aww and g =
∑

w∈〈X,X∗〉

bww for aw, bw ∈ k

are cyclically equivalent if and only if for each v ∈ 〈X, X∗〉,

(5)
∑

w∈〈X,X∗〉

w
cyc∼v

aw =
∑

w∈〈X,X∗〉

w
cyc∼v

bw.

Evaluations and representations. Let d ∈N. An n-tuple of matrices A∈ (Md(k))n

gives rise to a ∗-representation

(6) evA : k〈X, X∗〉 →Md(k), p 7→ p(A, A∗).

We are interested in the values of a fixed element f ∈ k〈X, X∗〉 under all these
∗-representations. If the size d of the matrices Ai is free, we talk about dimension-
free properties; otherwise we call them dimension-dependent. We are mostly in-
terested in the latter, but briefly review the former for the sake of completeness.

Dimension-freeness. Free analogs of properties (A) and (B) have been established,
while a free version of (C) is closely related to an important open problem on
operator algebras due to Connes; see below for further details.

Let f ∈ Sym k〈X, X∗〉.

(A)fr f (A, A∗)�0 for all d ∈N and all A∈Md(k)n if and only if f ∈62 k〈X, X∗〉;

(B)fr tr
(

f (A, A∗)
)
= 0 for all d ∈ N and all A ∈Md(k)n if and only if f

cyc∼ 0 in
k〈X, X∗〉.

Part (A)fr is due to Helton [2002] (see also [McCullough 2001; McCullough
and Putinar 2005]), and (B)fr is Theorem 2.1 of [Klep and Schweighofer 2008].
(This reference will henceforth be abbreviated as [KS 2008].) See also [Collins and
Dykema 2008, Lemma 2.9] for a proof inspired by free probability. For a recent
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study of trace-positive polynomials in a dimension-free setting see also [Netzer
and Thom 2010].

The obvious extension of (C) fails: there are f ∈ Sym k〈X, X∗〉 with positive
trace everywhere, but still not cyclically equivalent to a sum of Hermitian squares.
The following is a variant of the noncommutative Motzkin polynomial from Ex-
ample 4.4 of [KS 2008] given in free (nonsymmetric) variables.

Example 3.1. Let X denote a single free variable and set

M0 :=

3X4
− 3(XX∗)2− 4X5 X∗− 2X3 X∗3+ 2X2 X∗XX∗2+ 2X2 X∗2 XX∗+ 2(XX∗)3.

Then the noncommutative Motzkin polynomial is

M := 1+M0+M∗0 ∈ Sym k〈X, X∗〉.

It is trace-nonnegative everywhere since

M ′ := Y Z4Y + ZY 4 Z − 3Y Z2Y + 1
cyc∼ M

(
Y + iZ

2
,

Y − iZ
2

)
∈ k〈Y, Z〉

is trace-nonnegative on symmetric matrices; see Example 4.4 of [KS 2008]. Al-
ternatively, M(X3, (X∗)3) ∈ 22k〈X, X∗〉. On the other hand, M /∈ 22k〈X, X∗〉.
(Some of these computations were done with the aid of the computer algebra sys-
tems NCSOStools [Cafuta et al. 2010] and NCAlgebra [Helton et al. 2010].)

Connes’ embedding conjecture [1976, Section V, pp. 105–107] states that every
separable II1-factor is embeddable in an ultrapower of the hyperfinite II1-factor.
Understanding trace-positive polynomials in the dimension-free setting is the key
to this problem, because it is equivalent, by Theorem 1.6 of [KS 2008], to Conjec-
ture 1.5 of the same reference, which we repeat here for convenience:

Conjecture 3.2 (algebraic version of Connes’ conjecture). For f ∈ Sym k〈X, X∗〉
the following are equivalent:

(i) tr
(

f (A, A∗)
)
≥ 0 for all d ∈ N and all tuples of contractions A ∈Md(k)n;

(ii) for every ε ∈ R>0, f + ε is cyclically equivalent to an element of the form∑
j

s∗j s j +
∑
i, j

p∗i j (1− X∗i X i )pi j ,

where s j , pi j ∈ k〈X, X∗〉.

In the sequel we indicate an approach to this problem “from below”. That is,
we abandon the dimension-free setting and solve a Hilbert 17-type problem char-
acterizing polynomials with nonnegative trace in a dimension-dependent setting.
It is our belief that this might constitute an important step towards (a positive or
negative resolution of) Connes’ embedding conjecture.
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4. Dimension-dependent positivity

The properties (A) and (B) for free algebras in a dimension-dependent setting are
well understood due to our previous work. Roughly speaking, a trace-zero poly-
nomial is cyclically equivalent to a polynomial identity [Brešar and Klep 2009,
Section 4], and a positive semidefinite polynomial is a sum of Hermitian squares
with denominators and weights [Klep and Unger 2010, Section 5]. In this sec-
tion property (C) is explored and we present our main result, a Positivstellensatz
characterizing polynomials with nonnegative trace on all tuples of d × d matrices
for fixed d . This is done in Section 4C. Before that we recall generic matrices
and universal division algebras with involution in Section 4A and take a look at
polynomial preservers of the various notions of positivity in Section 4B.

4A. Generic matrices and universal division algebras. We assume the reader is
familiar with the theory of polynomial identities as presented, e.g., in [Procesi
1973; Rowen 1980]. We review the notion of generic matrices and universal di-
vision algebras with involution and refer the reader to [Procesi 1976; Procesi and
Schacher 1976] for details.

Let ζ := (ζ (`)i j | 1≤ i, j ≤ d, 1≤ `≤ n) and ζ̄ := (ζ̄ (`)i j | 1≤ i, j ≤ d, 1≤ `≤ n)
denote commuting variables. To keep the notation uniform, let

ζ :=

{
ζ if k = R,

(ζ, ζ̄ ) if k = C.

Form the polynomial ∗-algebra k[ζ ] that endowed with the involution that extends
complex conjugation on k and fixes ζ (`)i j pointwise (if k = R) or sends ζ (`)i j to ζ̄ (`)i j
(if k = C).

Consider the d × d matrices

Y` :=
[
ζ
(`)
i j

]
1≤i, j≤d ∈Md(k[ζ ]) for ` ∈ N.

Each Y` is called a generic matrix. The (unital) k-subalgebra of Md(k[ζ ]) generated
by the Y` and their (complex conjugate) transposes is the ring of generic matrices
with involution GMd(k). Equivalently,

GMd(k)∼= k〈X, X∗〉/td ,

where td ⊆ k〈X, X∗〉 is the T-ideal of polynomial identities for d × d matrices.
For d ≥ 2, the ring GMd(k) is a prime PI algebra (see [Procesi and Schacher

1976, Section II]). Hence its central localization is a central simple algebra UDd(k)
with involution, which we call (by an abuse of notation) the universal division
algebra. Relating these notions to ∗-representations of the free ∗-algebra is the
following commutative diagram: for d ∈N and A ∈Md(k)n , let RA denote all the



TRACE-POSITIVE POLYNOMIALS 345

elements of UDd(k) that are regular at A. Then:

k〈X, X∗〉
evA

//

π

����

Md(k)

RA

OO

� _

��
GMd(k)

( �

66

� � ι // UDd(k)

For a more geometric viewpoint of the ring of generic matrices and the universal
division algebra we refer the reader to [Procesi 1976; Saltman 1999]. The standard
textbook on central simple algebras with involution is [Knus et al. 1998].

4B. Polynomial preservers. In this subsection we present versions of Lemmas
2.1–2.4 in the context of free ∗-algebras. To avoid trivialities, we assume through-
out that d ≥ 2.

Lemma 4.1. Suppose f ∈ k〈X, X∗〉 is such that for all g ∈ k〈X, X∗〉,

(7) g � 0 on d × d matrices ⇒ f g � 0 on d × d matrices.

Then f is a central polynomial positive semidefinite on d × d matrices.

Proof. Using (7) with g = 1, we see f is positive semidefinite on d × d matrices.
Thus there is no harm in assuming f = f ∗.

Again by (7), f g− g f vanishes on all d × d matrices for all polynomials g of
the form g = h∗h. That is, [ f, g] is a polynomial identity of d × d matrices. Now
the same holds true for all symmetric g, since

2[ f, g] + [ f, g2
] = [ f, (1+ g)2]

is then a polynomial identity. Hence f commutes (modulo the T-ideal of identities)
with all symmetric polynomials.

Every element of UDd(k) can be represented as rs−1 for some r, s ∈ GMd(k)
with s = s∗ ∈ Z(GMd(k)). Such an element is symmetric if and only if r = r∗. So
π( f ) commutes with all symmetric elements of UDd(k). By Dieudonné’s theorem
[1952, Lemma 1], the latter generate UDd(k). Hence π( f ) ∈ Z(UDd(k)) and f is
indeed a central polynomial.

(Note: once we have established that f commutes with all symmetric polynomi-
als, an easier argument is available if k = C. In this case one immediately obtains
that f also commutes with all skew symmetric polynomials as these are all of the
form ig for symmetric g.) �
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Lemma 4.2. Suppose f ∈ k〈X, X∗〉 is such that for all g ∈ k〈X, X∗〉,

(8) tr(g)= 0 on d × d matrices ⇒ tr( f g)= 0 on d × d matrices.

Then f is a central polynomial.

Proof. Let g = [h1, h2] for some hi ∈ k〈X, X∗〉. Then

(9) f g = f [h1, h2] = [ f, h1h2] + [h1, f h2] + h1[h2, f ].

Since tr(g) = 0 on all d × d matrices, this implies tr(h1[h2, f ]) = 0 on d × d
matrices. Fix h2 and denote r := [h2, f ]. Then r satisfies

tr(pr)= 0 on d × d matrices

for all p ∈ k〈X, X∗〉. Taking p =−r∗ leads to − tr(r∗r)= 0, and hence r = 0 on
all d × d matrices. That is, r is an identity of d × d matrices. As r = [h2, f ] and
h2 was arbitrary, this implies f is a central polynomial. �

Lemma 4.3. Suppose f ∈ k〈X, X∗〉 is such that for all g ∈ k〈X, X∗〉,

(10) tr(g)≥ 0 on d × d matrices ⇒ tr( f g)≥ 0 on d × d matrices.

Then f is a central polynomial positive semidefinite on d × d matrices.

Proof. If tr(g) = 0, then by (10), tr( f g) ≥ 0 and tr(− f g) ≥ 0 on d × d matrices.
That is, tr( f g)= 0. Now by Lemma 4.2, f is a central polynomial.

Applying (10) with g=1 yields f (A, A∗)= tr
(

f (A, A∗)
)
≥0 for all A∈Md(k)n ,

showing f is positive semidefinite on d × d matrices. �

Likewise we can characterize polynomials that map positive semidefinite poly-
nomials into trace-nonnegative ones. At the same time this indicates how to build
examples of trace-nonnegative polynomials. As we shall see in the next subsection,
the procedure is essentially exhaustive.

Lemma 4.4. Suppose f ∈ Sym k〈X, X∗〉 is such that for all g ∈ k〈X, X∗〉,

(11) g � 0 on d × d matrices ⇒ tr( f g)≥ 0 on d × d matrices.

Then f is positive semidefinite on d × d matrices.

Proof. Assume f is not positive semidefinite on d× d matrices. Then there exists
an n-tuple A = (A1, . . . , An) ∈Md(k)n with

(12) f (A, A∗) 6� 0.

Let A ⊆ Md(k) denote the ∗-subalgebra generated by the A1, . . . , An . Since the
Hermitian square of a nonzero matrix is not nilpotent, A is semisimple. By the
Artin–Wedderburn theorem, A is ∗-isomorphic to a direct sum of full matrix alge-
bras. We distinguish two cases.
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CASE 1: If k = C, there is a ∗-isomorphism

(13) A∼=

s⊕
j=1

Md j (C)

for some d j ∈ C, and
∑

j d j ≤ d . This induces a block diagonalization

A j =

A j,1
. . .

A j,s

 , with A j,k ∈Mdk (C).

By (12), there is a j such that A( j) = (A1, j , . . . , An, j ) ∈Md j (C)
n satisfies

f (A( j), A∗( j)) 6� 0.

Choose u ∈ Cd j with

(14)
〈
f (A( j), A∗( j))u, u

〉
< 0.

There is a B ∈ Md j (C) with Bei,d j = u for all i = 1, . . . , d j . (Here ei,d j are the
standard basis vectors for Cd j .) By the construction of A and (13), there is an
h ∈ C〈X, X∗〉 with h(A( j), A∗( j))= B. Let g = hh∗. Then

(15) tr(( f g)(A( j), A∗( j)))= tr((h∗ f h)(A( j), A∗( j)))

=

d j∑
i=1

〈
h∗(A( j), A∗( j)) f (A( j), A∗( j))h(A( j), A∗( j))ei,d j , ei,d j

〉
=

d j∑
i=1

〈
f (A( j), A∗( j))Bei,d j , Bei,d j

〉
=

d j∑
i=1

〈
f (A( j), A∗( j))u, u

〉
< 0.

As this contradicts our assumption (11), we conclude that f � 0 on d×d matrices.

CASE 2: If k = R, the reasoning is the same with a minor technical modification.
Let

(16) A∼=
s⊕

j=1
Md j (R)⊕

r⊕
k=1

Mek (C)⊕
p⊕̀
=1

M f`(H)

for some d j , ek , f` ∈ N.
If there is a tuple A ∈Md j (R)

n with f (A, A∗) 6� 0, we proceed as in Case 1. If
there is an A ∈Mek (C)

n with 0 6� f (A, A∗) ∈Mek (C), we proceed as follows. Let
V be the invariant subspace of Rd corresponding to the action of Mek (C). There is
a u ∈ V with 〈 f (A, A∗)u, u〉 < 0. Pick a basis {v1, . . . , vek } of V over C, and let
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B ∈Mek (C) satisfy Bv j = u for all j . Choose h ∈ R〈X, X∗〉 with h(A, A∗) = B
and g = hh∗. Then the complex trace z of ( f g)(A, A∗) is negative by the same
computation as in (15). Hence the real trace satisfies

tr
(
( f g)(A, A∗)

)
=

z+ z̄
2

< 0.

The remaining case of quaternion matrices is dealt with similarly. We leave this
as an exercise for the reader. �

It is clear that converses of Lemmas 4.1–4.4 hold true. Also, with the exception
of (11), which is satisfied when f is a sum of Hermitian squares, there are no
nonconstant dimension-free polynomial preservers.

4C. The dimension-dependent tracial Positivstellensatz. Our main tool for de-
scribing trace-nonnegative polynomials is the following proposition deduced from
the properties of the reduced trace [Knus et al. 1998, Section 1] on UDd(k).

Proposition 4.5. For every f ∈ k〈X, X∗〉 and d ∈ N there exists a nonvanishing
central polynomial for d × d matrices, denoted by c ∈ k〈X, X∗〉, such that c f is
cyclically equivalent to a central polynomial. That is,

(17) c f
cyc∼ c′

for some central polynomial c′.

Proof. Consider F := ι(π( f )) ∈ UDd(k). So Trd(F) ∈ Z(UDd(k)), and there is a
nonvanishing central polynomial c0 ∈ k〈X, X∗〉 and a central polynomial c′0 with

(18) Trd(F)= π(c′0)π(c0)
−1.

Since Trd is Z(UDd(k))-linear, this yields Trd(π(c0 f −c′0))= 0. By [Amitsur and
Rowen 1994, Theorem 2.4], π(c0 f − c′0)

cyc∼ 0 in UDd(k). Clearing denominators
shows

(19) π(c f − c′′)
cyc∼ 0

in GMd(k) for a nonvanishing central polynomial c and a central polynomial c′′.
Lifting (19) to k〈X, X∗〉 gives the desired conclusion: c f

cyc∼ c′. �

Remark 4.6. Instead of the Amitsur–Rowen result used in this proof, we can
apply the tracial Nullstellensatz [Brešar and Klep 2009, Theorem 5.2]: once we
have established that Trd(π(co f − c′0)) = 0, by clearing denominators we obtain
tr(π(c0c′′ f − c′0c′′)) = 0 for some nonvanishing central polynomial c′′. Hence
π(c0c′′ f − c′c′′)

cyc∼ 0 in GMd(k) by [Brešar and Klep 2009, Theorem 5.2]. As
before, lifting this relation to k〈X, X∗〉 yields the desired conclusion.
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We are now ready to give our main results characterizing trace-nonnegative
polynomials.

Theorem 4.7. Let k ∈ {R,C} and suppose f ∈ Sym k〈X, X∗〉 satisfies

(20) tr
(

f (A, A∗)
)
≥ 0

for all A ∈ Md(k)n . Then there is a nonvanishing central polynomial for d × d
matrices, denoted by c ∈ k〈X, X∗〉, such that c f c∗ is cyclically equivalent to a
polynomial g ∈ k〈X, X∗〉 that is positive semidefinite on d × d matrices:

(21) c f c∗
cyc∼ g and g � 0 on d × d matrices.

Proof. This is a consequence of Proposition 4.5. Indeed, there is a nonvanishing
central polynomial c with

(22) c f
cyc∼ c′

for a central polynomial c′. Multiplying (22) with c∗ (from the right) shows

(23) c f c∗
cyc∼ c′c∗.

For any A ∈Md(k)n ,

(24) 0≤ tr
(
c(A, A∗) f (A, A∗)c(A, A∗)∗

)
= tr

(
c′(A, A∗)c(A, A∗)∗

)
= tr

(
(c′c∗)(A, A∗)

)
= (c′c∗)(A, A∗).

So g := c′c∗ is a (central) polynomial positive semidefinite on d × d matrices
satisfying

c f c∗
cyc∼ g. �

Remark 4.8. The proof shows that g in Theorem 4.7 can actually be taken to be
a central polynomial.

Combining Theorem 4.7 with the dimension-dependent Positivstellensatz for
positive semidefinite polynomials ([Procesi and Schacher 1976, Theorem 5.4] or
[Klep and Unger 2010, Theorem 5.4]) yields:

Corollary 4.9. Choose α1, . . . , αm ∈ k〈X, X∗〉 whose images in GMd(k) form a
diagonalization of the quadratic form Trd(x∗x) on UDd(k). For f ∈Sym k〈X, X∗〉,
the following are equivalent:

(i) tr
(

f (A, A∗)
)
≥ 0 for every A ∈Md(k)n .

(ii) There exists a nonvanishing central polynomial c ∈ k〈X, X∗〉, a polynomial
identity h ∈ k〈X, X∗〉 for d × d matrices, and pi,ε ∈ k〈X, X∗〉 with

(25) c f c∗
cyc∼ h+

∑
ε∈{0,1}m

αε
∑

i

p∗i,ε pi,ε.
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Remark 4.10. For experts we mention that, by applying the reduced trace, we can
reformulate (25) as

(26) c f c∗
cyc∼ h+ t,

where c and h are as above, and t belongs to the preordering in Z(UDd(k)) gen-
erated by the α j .

If d = 2, the weights α j are superfluous since the reduced trace of a Hermitian
square is a sum of Hermitian squares in this case (see [Procesi and Schacher 1976,
p. 405] or [Klep and Unger 2010, Section 4]), and Corollary 4.9 simplifies as
follows:

Corollary 4.11. For f ∈ Sym k〈X, X∗〉, the following are equivalent:

(i) tr
(

f (A, A∗)
)
≥ 0 for every A ∈M2(k)n .

(ii) There exists a nonvanishing central polynomial c ∈ k〈X, X∗〉, and a polyno-
mial identity h ∈ k〈X, X∗〉 for 2× 2 matrices, such that

(27) c f c∗ ∈ h+22 k〈X, X∗〉.

Example 4.12. We finish this presentation with an example showing denominators
are necessary for these results to hold. First, the Motzkin polynomial M from
Example 3.1 is not cyclically equivalent to a sum of Hermitian squares modulo a
T-ideal of identities. Indeed, suppose that

(28) M
cyc∼ h+

∑
g∗j g j

for some g j ∈ k〈X, X∗〉 and a polynomial identity h ∈ k〈X, X∗〉 for d×d matrices
(d ≥ 2). Then

Mcc = tr
(

M
([

Y/2 Z/2
−Z/2 Y/2

]))
=

∑
tr
(
(g∗j g j )

([
Y/2 Z/2
−Z/2 Y/2

]))
,

where Mcc ∈R[Y, Z ] denotes the commutative collapse Y 4 Z2
+Y 2 Z4

−3Y 2 Z2
+1

of the noncommutative variant M ′ of the Motzkin polynomial (in symmetric vari-
ables). Since Mcc is not a sum of squares in R[Y, Z ], and the trace of a Hermitian
square is a sum of squares, M does not satisfy a relation of the form (28). Hence
a denominator is needed in Corollaries 4.9 and 4.11.

A little more work is required to show the necessity of the denominator in
Theorem 4.7. Let d ∈ N be sufficiently large (at least 127, the dimension of
the vector space of all polynomials in X, X∗ of degree at most 6). Suppose M
is cyclically equivalent to a polynomial g that is positive semidefinite on d × d
matrices. Without loss of generality, g ∈ Sym k〈X, X∗〉. Choose g of the smallest
possible degree. If this degree is greater than 6, then the highest homogeneous
component g(∞) of g is positive semidefinite on d × d matrices and at the same
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time g(∞)
cyc∼ 0. Hence tr(g(∞)) = 0 on d × d matrices, implying that g(∞) is a

polynomial identity. Then
M

cyc∼ (g− g(∞)),

with g− g(∞) positive semidefinite and of degree smaller than g. This contradicts
the minimality of g, so deg(g)≤ 6.

Now g is positive semidefinite on d × d matrices for some d ≥ 127 and is thus
a sum of Hermitian squares by Helton’s sum of squares theorem [2002]. But M
is not cyclically equivalent to a sum of Hermitian squares by the first part of this
example.
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REMARKS ON THE PRODUCT OF HARMONIC FORMS

LIVIU ORNEA AND MIHAELA PILCA

A metric is formal if all products of harmonic forms are again harmonic.
The existence of a formal metric implies Sullivan formality of the manifold,
and hence formal metrics can exist only in the presence of a very restricted
topology. We show that a warped product metric is formal if and only if the
warping function is constant and derive further topological obstructions to
the existence of formal metrics. In particular, we determine the necessary
and sufficient conditions for a Vaisman metric to be formal.

1. Introduction

A fundamental problem in algebraic topology is the reading of the homotopy type
of a space in terms of cohomological data. A precise definition of this property
was given by Sullivan [1977] and called formality. As concerns manifolds, it is
known, for example, that all compact Riemannian symmetric spaces and all com-
pact Kähler manifolds are formal. For a recent survey of topological formality, see
[Papadima and Suciu 2009].

Sullivan also observed that if a compact manifold admits a metric such that
the wedge product of any two harmonic forms is again harmonic, then, by Hodge
theory, the manifold is formal. This motivated the following definition:

Definition 1.1 [Kotschick 2001]. A closed manifold is called geometrically formal
if it admits a formal Riemannian metric.

In particular, the length of any harmonic form with respect to a formal metric is
(pointwise) constant. This larger class of metrics having all harmonic (one-)forms
of constant length naturally appears in other geometric contexts, for instance in
the study of certain systolic inequalities, and has been investigated in [Nagy 2006;
Nagy and Vernicos 2004].

Classical examples of geometrically formal manifolds are compact symmetric
spaces. In [Kotschick and Terzić 2003; 2011] more general examples are provided,

Both authors are partially supported by CNCSIS grant PNII IDEI contract 529/2009. M. Pilca also
acknowledges partial support from SFB/TR 12.
MSC2000: primary 53C25; secondary 53C55, 58A14.
Keywords: formality, harmonic form, warped product, Vaisman manifold, Betti numbers.
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both of geometrically formal and of formal but nongeometrically formal homoge-
neous manifolds.

Geometric formality imposes strong restrictions on the (real) cohomology of the
manifold. For example, it is proven in [Kotschick 2001] that a manifold admits a
nonformal metric if and only if it is not a rational homology sphere.

In this note, we shall obtain further obstructions to formality. We shall see
(Section 2) that if a compact manifold with b1= p≥ 1 admits a formal metric, and
if there exist two vanishing Betti numbers such that the distance between them is
not larger than p + 2, then all the intermediary Betti numbers must be zero too.
Also, a conformal class of metrics on an even-dimensional compact manifold with
nonzero middle Betti number can contain no more than one formal metric.

Our main concern will be the formality of warped products (Section 2). We will
show that a warped product metric on a compact manifold is formal if and only if
the warping function is constant. On the way, we shall also provide a proof for the
fact (stated in [Kotschick 2001], for instance) that a product of formal metrics is
formal.

Unlike Kähler manifolds, which are known to be formal, for the time being,
nothing is known about the Sullivan formality of locally conformally Kähler (in
particular Vaisman) manifolds. In Section 3 of this note, we shall discuss compact
Vaisman manifolds, whose universal cover is a special type of warped product,
a Riemannian cone to be precise, and we shall find obstructions to the metric
formality of a Vaisman metric. Several computational facts and their proofs are
gathered in the Appendix.

2. Geometric formality of warped product metrics

For completeness, and as a first step in the study of geometrically formal warped
products, we provide a proof for the formality of Riemannian product formal met-
rics.

Proposition 2.1. If (M1, g1) and (M2, g2) are two compact Riemannian manifolds
with formal metrics, then the metric g = g1 + g2 on the product manifold M =
M1×M2 is also formal.

Proof. Let γ∈�p M and γ′∈�q M be two harmonic forms on M . By Lemma A.2, γ
and γ′ are given by linear combinations with real coefficients of the basis elements
in (A-3). Thus, it is enough to check that the exterior product of any two such basis
elements is a harmonic form on M . But(

π∗1 (α)∧π
∗

2 (β)
)
∧
(
π∗1 (α

′)∧π∗2 (β
′)
)
= (−1)|α

′
||β|π∗1 (α∧α

′)∧π∗2 (β ∧β
′),

which is g-harmonic on M by Lemma A.2 and by the formality of g1 and g2 (as
α∧α′ is again a g1-harmonic form and β ∧β ′ a g2-harmonic form). �
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We now pass to the setting we are mainly interested in, warped products.

Theorem 2.2. Let (Bn, gB) and (Fm, gF ) be two compact Riemannian manifolds
with formal metrics. Then the warped product metric g=π∗(gB)+(ϕ◦π)

2σ ∗(gF )

on B× ϕF is formal if and only if the warping function ϕ is constant.

Proof. Let β ∈ �p(F) be a gF -harmonic form on F (as bm(F) = 1, there exists
at least a harmonic m-form on F). From the equalities (A-4) in the Appendix,
it follows that σ ∗β is a g-harmonic form on the warped product B ×ϕ F . If we
assume the warped metric g to be formal, it follows in particular that the length of
σ ∗β is constant. As gF is also assumed to be formal, the length of β is constant
as well. On the other hand,

(2-1) g(σ ∗β, σ ∗β)= (ϕ ◦π)2pgF (β, β) ◦ σ,

showing that the function ϕ must be constant.
Conversely, if ϕ is constant, then the warped product reduces to the Riemann-

ian product between the Riemannian manifolds (B, gB) and (F, ϕ2gF ), which is
geometrically formal by Proposition 2.1. �

Remark 2.3. From the above proof we see that Theorem 2.2 holds more generally
for metrics having all harmonic forms of constant length.

An interesting question regarding the formal metrics is their existence in a given
conformal class. Under a weak topological assumption, we prove that there may
exist at most one such formal metric. More precisely, we have

Proposition 2.4. Let M2n be an even-dimensional compact manifold whose middle
Betti number bn(M) is nonzero. Then, in any conformal class of metrics there is at
most one formal metric (up to homothety).

Proof. Let [g] be a class of conformal metrics on M and suppose there are two
formal metrics g1 and g2= e2 f g1 in [g]. The main observation is that in the middle
dimension the kernel of the codifferential is invariant at conformal changes of the
metric, so that there are the same harmonic forms for all metrics in a conformal
class: Hn(M, g1)=Hn(M, g2). As bn(M)≥1 there exists a nontrivial g1-harmonic
(and thus also g2-harmonic) n-form α on M . The length of α must then be constant
with respect to both metrics, which are assumed to be formal and thus we get

g2(α, α)= e2n f g1(α, α),

which shows that f must be constant. �

Using the product construction to ensure that the middle Betti number is nonzero,
one can build such examples of formal metrics which are unique in their conformal
class.
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Other examples are provided by manifolds with “big” first Betti number, as
follows from the following property of “propagation” of Betti numbers on geomet-
rically formal manifolds proven in [Kotschick 2001, Theorem 7]: if b1(M)= p≥1,
then bq(M)≥

(p
q

)
, for all 1≤q≤ p. In particular, if b1(M2n)≥n, then bn(M2n)≥1.

Another property of the Betti numbers of geometrically formal manifolds is this:

Proposition 2.5. Let Mn be a compact geometrically formal manifold such that
b1(M)= p ≥ 1. If there exist two vanishing Betti numbers bk(M)= bk+l(M)= 0,
for some k and l with 0< k+ l < n and 0< l ≤ p+ 1, then all intermediary Betti
numbers must vanish: bi (M) = 0, for k ≤ i ≤ k + l. In particular, if there exists
k ≥ (n− p− 1)/2 such that bk(M)= 0, then bi (M)= 0 for all k ≤ i ≤ n− k.

Proof. Let {θ1, . . . , θp} be an orthogonal basis of g-harmonic 1-forms, where g is
a formal metric on M . We first notice that here is no ambiguity in considering the
orthogonality with respect to the global scalar product or to the pointwise inner
product, because, when restricting ourselves to the space of harmonic forms of
a formal metric, these notions coincide. This is mainly due to [Kotschick 2001,
Lemma 4], which states that the inner product of any two harmonic forms is a
constant function. Thus, if two harmonic forms α and β are orthogonal with respect
to the global product, we get

0= (α, β)=
∫

M〈α, β〉 dvolg = 〈α, β〉 vol(M),

showing that their pointwise inner product is the zero-function.
It is enough to show that bk+1(M) = 0 and then use induction on i . Let α be

a harmonic (k + 1)-form. By formality, θ1 ∧ θ2 ∧ · · · ∧ θl−1 ∧ α is a harmonic
(k+ l)-form and thus must vanish, since bk+l(M)= 0. On the other hand,

θ
]
jyα = (−1)k(n−k−1)

∗ (θ j ∧∗α)

is a harmonic k-form, again by formality. Since bk(M) = 0, it follows that θ ]jyα
vanishes for 1≤ j ≤ p. Then, since {θ1, . . . , θp} are also orthogonal, we obtain

0= θ ]1y · · ·yθ
]

l−1y(θ1 ∧ · · · ∧ θl−1 ∧α)=±|θ1|
2
· · · |θl−1|

2α,

which implies that α= 0, because each θ j has nonzero constant length. This shows
that bk+1(M)= 0. �

3. Geometric formality of Vaisman metrics

A Vaisman manifold is a particular type of locally conformal Kähler (LCK) mani-
fold. It is defined as a Hermitian manifold (M, J, g), of real dimension n=2m≥4,
whose fundamental 2-form ω satisfies the conditions

dω = θ ∧ω, ∇θ = 0.
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Here θ is a (closed) 1-form, called the Lee form, and ∇ is the Levi-Civita connec-
tion of the LCK metric g (we always consider θ 6= 0, to not include the Kähler
manifolds among the Vaisman ones).

Locally, θ = d f and the local metric e− f g is Kähler, hence the name LCK.
When lifted to the universal cover, these local metrics glue to a global one, which
is Kähler and acted on by homotheties by the deck group of the covering.

In the Vaisman case, the universal cover is a Riemannian cone. In fact, compact
Vaisman manifolds are closely related to Sasakian ones, as the following structure
theorem shows:

Theorem 3.1 [Ornea and Verbitsky 2003]. Compact Vaisman manifolds are map-
ping tori over S1. More precisely, the universal cover M̃ is a metric cone N×R>0,
with N compact Sasakian manifold and the deck group is isomorphic with Z, gen-
erated by

(x, t) 7→ (λ(x), t + q)

for some λ ∈ Aut(N ), q ∈ R>0.

This puts compact Vaisman manifolds into the framework of warped products
and motivates their consideration here.

Vaisman manifolds are abundant. Any Hopf manifold (quotient of CN
\ {0} by

the cyclic group generated by a semisimple operator with subunitary eigenvalues)
is such, as are its compact complex submanifolds [Verbitsky 2004, Proposition
6.5]. A complete list of compact Vaisman surfaces is given in [Belgun 2000].

On the other hand, examples of LCK manifolds (satisfying only the condition
dω = θ ∧ ω for a closed θ ) which cannot admit any Vaisman metric are also
known: for example, one type of Inoue surface and the nondiagonal Hopf surface;
see [Belgun 2000]. The nondiagonal Hopf surface is particularly relevant for our
discussion because it is topologically formal, as are all manifolds having the same
cohomology ring as a product of odd spheres.

Being parallel and Killing [Dragomir and Ornea 1998], the Lee field θ ] is real
holomorphic and, together with Jθ ], generates a complex one-dimensional totally
geodesic Riemannian foliation F. Note that F is transversally Kähler, meaning
that the transversal part of the Kähler form is closed (for a proof of this result, see
[Vaisman 1982, Theorem 3.1]).

In the sequel, the terms basic ( foliate) and horizontal refer to F. We recall that a
form is called horizontal with respect to a foliation F if its interior product with any
vector field tangent to the foliation vanishes and is called basic if in addition its Lie
derivative along a vector field tangent to the foliation also vanishes. Moreover, we
shall use the basic versions of the standard operators acting on �∗B(M), the space
of basic forms: 1B is the basic Laplace operator, L B is the exterior multiplication
with the transversal Kähler form and 3B its adjoint with respect to the transversal
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metric. For details on these operators and their properties we refer the reader to
[Tondeur 1988, Chapter 12].

Here is the main result of this section. It puts severe restrictions on formal
Vaisman metrics.

Theorem 3.2. Let (M2m, g, J ) be a compact Vaisman manifold. The metric g is
geometrically formal if and only if bp(M)= 0 for

2≤ p ≤ 2m− 2, b1(M)= b2m−1(M)= 1,

that is, M is a cohomological Hopf manifold.

Proof. Let γ ∈�p(M) be a harmonic form on M for some p, 1 ≤ p ≤ m− 1. By
[Vaisman 1982, Theorem 4.1], γ has the form

(3-1) γ = α+ θ ∧β,

with α and β basic, transversally harmonic and transversally primitive.
Since α is basic, Jα is also a basic p-form that is transversally harmonic and

transversally primitive:

1B(Jα)= 0, 3B(Jα)= 0,

because 1B and 3B both commute with the transversal complex structure J (as
the foliation is transversally Kähler). Again from the theorem just cited, by taking
β = 0, it follows that Jα is a harmonic form on M : 1(Jα)= 0.

The assumption that g is geometrically formal implies that α∧ Jα is harmonic
on M , so that in particular it is coclosed: δ(α ∧ Jα) = 0. By [Vaisman 1982]
(where the term transversally effective is used instead of transversally primitive),
this implies that α∧ Jα is transversally primitive: 3B(α∧ Jα)= 0.

Otherwise, by [Grosjean and Nagy 2009, Proposition 2.2], for primitive forms
η, µ ∈3pV , where (V, g, J ) is any Hermitian vector space, the algebraic relation

(3-2) (3)p(η∧µ)= (−1)(p(p−1))/2 p〈η, Jµ〉,

holds, where J is the extension of the complex structure to 3∗V defined by

(Jη)(v1, . . . , vp) := η(Jv1, . . . , Jvp), for all η ∈3pV, v1, . . . , vp ∈ V .

We apply the formula above to the transversal Kähler geometry and conclude that
α vanishes everywhere:

0= (3B)
p(α∧ Jα)= (−1)(p(p+1))/2 p〈α, α〉.

The same argument as above applied to β ∈�p−1
B (M) shows that β is identically

zero if p ≥ 2. Thus, γ = 0 for 2≤ p ≤ m− 1, which proves that

b2(M)= · · · = bm−1(M)= 0.
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If p= 1, then β is a basic function, which is transversally harmonic, so that β is
a constant. Thus γ is a multiple of θ , showing that the space of harmonic 1-forms
on M is 1-dimensional: b1(M)= 1.

It remains to show that the Betti number in the middle dimension, bm(M), also
vanishes. This follows from Proposition 2.5 applied to p= 1, k =m−1 and l = 2.

The converse is clear, since the space of harmonic forms with respect to the
Vaisman metric g is spanned by {1, θ, ∗θ, dvolg} and thus the only product of
harmonic forms which is not trivial is θ ∧∗θ = g(θ, θ) dvolg, which is harmonic
because θ has constant length, being a parallel 1-form. �

Remark 3.3. (i) There exist Vaisman manifolds that do not admit any formal Vais-
man metric. Indeed, let f : N ↪→ CPn be an embedded curve of genus g > 1 and
let M be the total space of the induced Hopf bundle f ∗(S1

× S2n+1). Then M is
Vaisman and b1(M)> 1 [Vaisman 1982], hence, according to 3.2, it does not admit
any formal Vaisman metric. Other examples can be found in [Belgun 2000].

(ii) On the other hand, we do not have an example of a topologically formal
complex compact manifold, which admits Vaisman metrics, but does not admit
geometrically formal Vaisman metrics. This seems to be a difficult open problem.

(iii) In complex dimension 2 the Vaisman condition in Theorem 3.2 is not nec-
essary. Due to the results of Kotschick [2001], the existence of any geometrically
formal metric on a non-Kähler surface implies that b1 = 1 and b2 = 0.

(iv) Theorem 3.2 may be considered as an analogue of the following result on
the geometric formality of Sasakian manifolds.

Theorem 3.4 [Grosjean and Nagy 2009, Theorem 2.1]. Let (M2n+1, g) be a com-
pact Sasakian manifold. If the metric g is geometrically formal, then bp(M) = 0
for 1≤ p ≤ 2n, that is, M is a real cohomology sphere.

Appendix: Auxiliary results

Lemma A.1 (characterization of geometric formality). Let α and β be two har-
monic forms on a compact Riemannian manifold (Mn, g). Then α∧β is harmonic
if and only if

(A-1)
n∑

i=1
(eiyα)∧∇eiβ =−(−1)|α||β|

n∑
i=1
(eiyβ)∧∇eiα,

where {ei }i=1,n is a local orthonormal basis of vector fields. Thus, the metric g is
formal if and only if (A-1) holds for any two g-harmonic forms.

Proof. Since M is compact, α ∧ β is harmonic if and only if it is closed and
coclosed. As α ∧ β is closed, we have to show that (A-1) is equivalent to α ∧ β
being coclosed. This is implied by the following:
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δ(α∧β)

=−

n∑
i=1

eiy∇ei (α∧β)=−
n∑

i=1
eiy(∇eiα∧β +α∧∇eiβ)

= δα∧β − (−1)|α|
n∑

i=1
∇eiα∧ (eiyβ)−

n∑
i=1
(eiyα)∧∇eiβ + (−1)|α|α∧ δβ

=−(−1)|α||β|
n∑

i=1
(eiyβ)∧∇eiα−

n∑
i=1
(eiyα)∧∇eiβ. �

Riemannian products. Let (Mn+m, g) = (Mn
1 , g1) × (Mm

2 , g2). We denote by
πi : M → Mi the natural projections, which are totally geodesic Riemannian
submersions.

One may describe the bundle of p-forms on M as follows:

(A-2) 3p M =
p⊕

k=0
π∗1 (3

k M1)⊗ π
∗

2 (3
p−k M2).

This identification also works for the space of harmonic forms, namely the har-
monic forms on (M, g) can be described in terms of the harmonic forms on the
factors (M1, g1) and (M2, g2). To this end let Hk(Mi , gi ) be the space of harmonic
k-forms on Mi and let bk(Mi ) be the Betti numbers of Mi , i = 1, 2.

Lemma A.2. Let {αk
1, . . . , α

k
bk(M1)

} be a basis of Hk(M1, g1) and {βk
1 , . . . , β

k
bk(M2)

}

a basis of Hk(M2, g2)). Then the forms

(A-3)
{
π∗1 (α

k
s )∧π

∗

2 (β
p−k
l ) | 1≤ s ≤ bk(M1), 1≤ l ≤ bp−k(M2), 0≤ k ≤ p

}
form a basis of the space of Hp(M, g), for each 0≤ p ≤ m+ n.

For a proof, see [Griffiths and Harris 1978, page 105].

Warped products. Let (Bn, gB) and (Fm, gF ) be two Riemannian manifolds and
ϕ > 0 be a smooth function on B. Then M = B×ϕ F denotes the warped product
with the metric g = π∗(gB)+ (ϕ ◦π)

2σ ∗(gF ), where π : M→ B and σ : M→ F
are the natural projections.

Let {ei }i=1,n be a local orthonormal basis on B and let { f j } j=1,m be a local
orthonormal basis on F , which we lift to M and thus obtain a local orthonormal
basis of M : {

ẽi ,
1

ϕ ◦π
f̃ j

}
i=1,n; j=1,m

.

Consider the decomposition δ = δ1+ δ2 of the codifferential on M , where

δ1 := −
n∑

i=1
ẽiy∇ẽi , δ2 := −

1
(ϕ ◦π)2

m∑
j=1

f̃ jy∇ f̃ j
.

We first determine the commutation relations between the pullback of forms on
B and F with δ1 and δ2.
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Lemma A.3. For α ∈�∗(B) and β ∈�∗(F), we have

δ1(σ
∗(β))= 0, δ2(σ

∗(β))=
1

(ϕ ◦π)2
σ ∗(δgF (β)),(A-4)

δ1(π
∗(α))= π∗(δgB (α)), δ2(π

∗(α))=−
m
ϕ ◦π

grad(ϕ ◦π)yπ∗(α).(A-5)

Proof. Let β ∈�p+1(F). For any tangent vector fields X1, . . . , X p to M we obtain

δ1(σ
∗(β))(X1, . . . , X p)

=−

n∑
i=1
(ẽiy∇ẽi (σ

∗β))(X1, . . . , X p)

=−

n∑
i=1

ẽi
(
β(σ∗ẽi , σ∗X1, . . . , σ∗X p)◦σ

)
+

n∑
i=1
β(σ∗(∇ẽi ẽi ), σ∗X1, . . . , σ∗X p)

+

n∑
i=1

(
β
(
σ∗ẽi , σ∗(∇ẽi X1), . . . , σ∗X p

)
+· · ·+β

(
σ∗ẽi , σ∗X1, . . . , σ∗(∇ẽi X p)

))
= 0,

since σ∗ẽi = 0, because ẽi is the lift of a vector field on B and also

σ∗(∇ẽi ẽi )= σ∗(∇̃
gB
ei ei )= 0.

This proves that δ1(σ
∗(β))= 0.

The commutation rule in (A-4) is shown as follows:

(ϕ ◦π)2δ2(σ
∗(β))(X1, . . . , X p)

=−

m∑
j=1
( f̃ jy∇ f̃ j

(σ ∗β))(X1, . . . , X p)

=−

m∑
j=1

f̃ j (β(σ∗ f̃ j ,σ∗X1,...,σ∗X p)◦σ)+
m∑

j=1
β(σ∗(∇ f̃ j

f̃ j ),σ∗X1,...,σ∗X p)◦σ

+

m∑
j=1

(
β(σ∗ f̃ j , σ∗(∇ f̃ j

X1), . . . , σ∗X p)

+· · ·+β(σ∗ f̃ j , σ∗X1, . . . , σ∗(∇ f̃ j
X p))

)
◦σ

=−

m∑
j=1

f j (β( f j , σ∗X1, . . . , σ∗X p))◦σ

+

m∑
j=1
β(σ∗(∇̃

gF
f j

f j−
g( f̃ j , f̃ j )

ϕ ◦π
grad(ϕ ◦π)), σ∗X1, . . . , σ∗X p)◦σ

+

m∑
j=1

(
β( f j ,σ∗(∇ f̃ j

X1), . . . ,σ∗X p)+·· ·+β( f j ,σ∗X1, . . . ,σ∗(∇ f̃ j
X p))

)
◦σ,
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where we may again assume, without loss of generality, that X i are lifts of vector
fields Zi on F : X i = Z̃i for i = 1, . . . , p. For a tangent vector field Y to B, each
of the above terms vanishes, since σ∗(Y )= 0. We then get

(ϕ ◦π)2δ2(σ
∗(β))(X1, . . . , X p)

=−

m∑
j=1

f j (β( f j , Z1, . . . , Z p)) ◦ σ +
m∑

j=1
β(∇

gF
f j

f j , Z1, . . . , Z p) ◦ σ

+

m∑
j=1
[β( f j ,∇

gF
f j

Z1, . . . , σ∗X p)+ · · ·+β( f j , Z1, . . . ,∇
gF
f j

Z p)] ◦ σ

= σ ∗(δgF (β))(X1, . . . , X p).

The relations (A-5) can be obtained by similar computations, which we omit
here. �
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STEINBERG REPRESENTATION OF GSp(4):
BESSEL MODELS AND INTEGRAL REPRESENTATION

OF L-FUNCTIONS

AMEYA PITALE

We obtain explicit formulas for the test vector in the Bessel model, and
derive the criteria for existence and uniqueness of Bessel models for the
unramified quadratic twists of the Steinberg representation π of GSp4(F),
where F is a nonarchimedean local field of characteristic zero. We also give
precise criteria for the Iwahori spherical vector in π to be a test vector. We
apply the formulas for the test vector to obtain an integral representation of
the local L-function of π , twisted by any irreducible admissible representa-
tion of GL2(F). Using results of Furusawa and of Pitale and Schmidt, we
derive from this an integral representation for the global L-function of the
irreducible cuspidal automorphic representation of GSp4(A) obtained from
a Siegel cuspidal Hecke newform, with respect to a Borel congruence sub-
group of square-free level, twisted by any irreducible cuspidal automorphic
representation of GL2(A). A special-value result for this L-function, in the
spirit of Deligne’s conjecture, is obtained.

1. Introduction

It is known that the representation of the symplectic group obtained from a Siegel
modular form is nongeneric, which means that it does not have a Whittaker model.
Consequently, one cannot use in this case the techniques or results for generic
representations. In such a situation, one introduces the notion of a generalized
Whittaker model, now called a Bessel model. These Bessel models have been
used to obtain integral representations of L-functions. It is known that, if A is
the ring of adeles of a number field, an automorphic representation of GSp4(A)

obtained from a Siegel modular form always has some global Bessel model. For
the purposes of local calculations, it is often very important to know the precise
criteria for the existence of local Bessel models and have explicit formulas. In
this paper, we wish to investigate Bessel models for unramified quadratic twists of

MSC2000: primary 11F46; secondary 11F66, 11F67, 11F70.
Keywords: Steinberg representation, Siegel modular forms, L-functions, special values of

L-functions.
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the Steinberg representation π of GSp4(F), where F is any nonarchimedean local
field of characteristic zero.

We first briefly explain what a Bessel model is (detailed definitions will be given
in Section 3). Let F be a nonarchimedean local field of characteristic zero. Let
U (F) be the unipotent radical of the Siegel parabolic subgroup of GSp4(F), and
θ be any nondegenerate character of U (F). The group GL2(F), embedded in the
Levi subgroup of the Siegel parabolic subgroup, acts on U (F) by conjugation and,
hence, on characters of U (F). Let T (F)=StabGL2(F)(θ); then, T (F) is isomorphic
to the units of a quadratic algebra L over F . The group R(F) = T (F)U (F) is
called the Bessel subgroup of GSp4(F) (depending on θ ). Let 3 be any character
of T (F), and denote by 3⊗ θ the character obtained on R(F). Let (π, V ) be any
irreducible admissible representation of GSp4(F). A linear functional β : V → C,
satisfying β(π(r)v) = (3 ⊗ θ)(r)β(v) for any r ∈ R(F) and v ∈ V , is called
a (3, θ)-Bessel functional for π . We say that π has a (3, θ)-Bessel model if
π is isomorphic to a subspace of smooth functions B : GSp4(F)→ C such that
B(rh) = (3⊗ θ)(r)B(h) for all r ∈ R(F) and h ∈ GSp4(F). The existence of
a nontrivial Bessel functional is equivalent to the existence of a Bessel model for
a representation. If π has a nontrivial (3, θ)-Bessel functional β, then a vector
v ∈ V such that β(v) 6= 0 is called a test vector for β.

Prasad and Takloo-Bighash [2007] have obtained, for any irreducible admissible
representation π of GSp4(F), the criteria to be satisfied by 3 for the existence of
a (3, θ)-Bessel functional for π . Their method involves the use of theta lifts and
distributions. The uniqueness of Bessel functionals has been obtained in [Novo
–dvorsky and Piatetski-Shapiro 1973] for many cases; in particular, for any π with
a trivial central character. In [Sugano 1985], a test vector is obtained when both the
representation π and the character 3 are unramified. In [Saha 2009], a test vector
is obtained when F =Qp, where p is odd and inert in the quadratic field extension
L corresponding to T (Qp), the representation π is an unramified quadratic twist of
the Steinberg representation, and 3 has conductor 1+ poL . The explicit formulas
of the test vector in the above two cases have been used in [Furusawa 1993; Saha
2009] to obtain an integral representation of the GSp4 ×GL2 L-function, where
the GL2 representation is either unramified or Steinberg.

The main goal of this paper is to obtain explicit formulas for a test vector, when-
ever a Bessel model for the unramified quadratic twist of the Steinberg representa-
tion of GSp4(F) exists. In addition to obtaining these formulas, we in fact obtain
an independent proof of the criteria for the existence and uniqueness of the Bessel
models. We also give precise conditions on the character 3, so that the Iwahori
spherical vector in π is a test vector. This is achieved in:

Theorem 3.18. Let π = �StGSp4
be the Steinberg representation of GSp(F),

twisted by an unramified quadratic character �. Let 3 be a character of L×
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such that 3|F× ≡ 1. If L is a field, then π has a (3, θ)-Bessel model if and only
if 3 6= � ◦ NL/F . If L is not a field, then π always has a (3, θ)-Bessel model.
In case π has a (3, θ)-Bessel model, it is unique. In addition, if π has a (3, θ)-
Bessel model, then the Iwahori spherical vector of π is a test vector for the Bessel
functional if and only if

i) 3 is trivial on 1+P (see (2-1) for the definition of P), and

ii) in case L = F ⊕ F and 3 is unramified, we have 3((1,$)) 6=�($), where
$ is the uniformizer in the ring of integers of F.

The criterion for the existence of the Bessel model obtained in this theorem is
the same as in [Prasad and Takloo-Bighash 2007]. However, the methods used
to prove it are very different from those in that paper and in [Novo–dvorsky and
Piatetski-Shapiro 1973].

When the Iwahori spherical vector is a test vector, we use the explicit formula
for the test vector to obtain in Theorem 4.3 an integral representation of the local
L-function L(s, π × τ) of the Steinberg representation π of GSp4(F), twisted by
any irreducible admissible representation τ of GL2(F). This integral involves a
function B in the Bessel model of π , and a Whittaker function W # in a certain
induced representation of GU(2, 2) related to τ . We wish to remark that, in this
paper as well as in other works [Furusawa 1993; Pitale and Schmidt 2009b; 2009c;
Saha 2009], the Bessel function B is always chosen to be a “distinguished” vector
(spherical if π is unramified, and Iwahori spherical if π is Steinberg) that has
the additional property of being a test vector. With this choice of B, we have
a systematic way of choosing W # (see [Pitale and Schmidt 2009c]) so that the
integral is nonzero and gives an integral representation of the L-function. The
work so far suggests that, to obtain an integral representation for the L-function
with a general irreducible admissible representation π of GSp4(F), we will have
to choose B to be both a “distinguished” vector in the Bessel model of π and
a test vector for the Bessel functional. This further highlights the importance of
obtaining more information and explicit formulas for test vectors for Bessel models
of GSp4(F). This is a topic of ongoing work.

Using the local computation mentioned above, together with the archimedean
and p-adic calculations from [Furusawa 1993; Pitale and Schmidt 2009c], we ob-
tain in Theorem 5.2 an integral representation of the global L-function L(s, π×τ)
of an irreducible cuspidal automorphic representation π of GSp4(A), obtained
from a Siegel cuspidal newform with respect to the Borel congruence subgroup of
square-free level, twisted by any irreducible cuspidal automorphic representation
τ of GL2(A). When τ corresponds to an elliptic cusp form in Sl(N , χ), we obtain
in Theorem 5.3 algebraicity results for special values of the twisted L-function, in
the spirit of Deligne’s conjecture [1979].
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2. Steinberg representation of GSp4

Nonarchimedean setup. Let F be a nonarchimedean local field of characteristic
zero. Let o, p,$ , q be the ring of integers, prime ideal, uniformizer and cardinality
of the residue class field o/p, respectively. We fix three elements a, b, c ∈ F such
that d := b2

− 4ac 6= 0. Let

L =
{

F(
√

d) if d /∈ F×2,

F ⊕ F if d ∈ F×2.

In the case when L = F ⊕ F , we consider F diagonally embedded. If L is a
field, we denote by x̄ the Galois conjugate of x ∈ L over F . If L = F ⊕ F , let
(x, y) = (y, x). In every case, we let N (x) = x x̄ and tr(x) = x + x̄ . We shall
assume that a, b ∈ o and c ∈ o×. In addition, we assume that d is the generator of
the discriminant of L/F if d 6∈ F×2 and d ∈ o× if d ∈ F×2.

The Legendre symbol
( L

p

)
is set to

( L
p

)
=


−1 if d 6∈ F×2 and d 6∈ p (the inert case),

0 if d 6∈ F×2 and d ∈ p (the ramified case),
1 if d ∈ F×2 (the split case).

If L is a field, then let oL be its ring of integers. If L = F⊕ F , then let oL = o⊕o.
Let $L be the uniformizer of oL if L is a field, and set $L = ($, 1) if L is not a
field. Note that, if

( L
p

)
6= −1, then N ($L) ∈$o×. Let α ∈ oL be defined by

α :=


b+
√

d
2c

if L is a field,

(b+
√

d
2c

,
b−
√

d
2c

)
if L = F ⊕ F .

We fix in oL the ideal

(2-1) P := poL =


pL if

( L
p

)
=−1,

p2
L if

( L
p

)
= 0,

p⊕ p if
( L

p

)
= 1.

Here, when L is a field extension, pL is the maximal ideal of oL . Note that P is
prime only if

( L
p

)
=−1. We have

Pn
∩ o= pn for all n ≥ 0.

Lemma 2.1 [Pitale and Schmidt 2009b, Lemma 3.1.1]. With the notation above,
the elements 1 and α constitute an integral basis of L/F. There does not exists any
x ∈ o such that α+ x ∈P.
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Steinberg representation. We define the symplectic group H = GSp4 by

H(F) :=
{
g ∈ GL4(F) : tg Jg = µ2(g)J, µ2(g) ∈ F×

}
, where J =

[
12

−12

]
.

The maximal compact subgroup is denoted by

K H
:= GSp4(o).

We define the Iwahori subgroup by

I :=

g ∈ K H
: g ≡

 ∗ 0 ∗ ∗
∗ ∗ ∗ ∗

0 0 ∗ ∗
0 0 0 ∗

 (mod p)

 .
Let � be an unramified quadratic character of F×. Let π be the Steinberg

representation of H(F), twisted by the character�. This representation is denoted
by �StGSp4

. Since we have assumed that � is quadratic, we see that π has trivial
central character. The Steinberg representation has the property that it is the only
representation of H(F) which has a unique (up to a constant) Iwahori fixed vector.
The Iwahori Hecke algebra acts on the space of I-invariant vectors. We will next
describe the Iwahori Hecke algebra.

Iwahori Hecke algebra. The Iwahori Hecke algebra HI of H(F) is the convolu-
tion algebra of left and right I-invariant functions on H(F). We refer the reader
to [Schmidt 2005, §2.1] for details on the Iwahori Hecke algebra. Here, we recall
the two projection operators (projecting onto the Siegel and Klingen parabolic sub-
groups) and the Atkin–Lehner involution. The unique (up to a constant) Iwahori
fixed vector v0 in π is annihilated by the projection operators and is an eigenvector
of the Atkin–Lehner involution.

(2-2)
∑
w∈o/p

π

 1 w
1

1
−w 1

 v0+π(s1)v0 = 0, π(η0)v0 = ωv0,

∑
y∈o/p

π

 1
1

y 1
1

 v0+π(s2)v0 = 0.

Here,

s1 =

 1
1

1
1

 , s2 =

 1
1

−1
1

 , η0 =

 1
1

$
$

 , ω=−�($).

3. Existence and uniqueness of Bessel models
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for the Steinberg representation

We fix an additive character ψ of F , with conductor o. Let a, b ∈ o and c ∈ o× be
as in Section 2, and set

S =

[
a b

2
b
2 c

]
.

Then, ψ defines a character θ on

U (F)=
{[

12 X
12

]
:

tX = X
}

by θ

([
1 X

1

])
= ψ(tr(SX)).

Let

(3-1) T (F) :=
{
g ∈ GL2(F) : tgSg = det(g)S

}
.

Set

ξ =

[ b
2 c
−a b

2

]
and F(ξ)= {x + yξ : x, y ∈ F}.

It can be checked that T (F) equals F(ξ)× and is isomorphic to L×, with the
isomorphism given by

(3-2)
[

x + b
2 y cy

−ay x − b
2 y

]
7→

{
x + y

√
d

2 if L is a field;(
x + y

√
d

2 , x − y
√

d
2

)
if L = F ⊕ F.

We consider T (F) as a subgroup of H(F) via

T (F) 3 g 7−→
[

g
det(g) tg−1

]
∈ H(F).

Let R(F)= T (F)U (F). We call R(F) the Bessel subgroup of H(F) (with respect
to the given data a, b, c). Let 3 be any character on L× that is trivial on F×. We
will consider3 as a character on T (F). We have θ(t−1u t)= θ(u) for all u ∈U (F)
and t ∈ T (F). Hence, the map tu 7→ 3(t)θ(u) defines a character of R(F). We
denote this character by 3⊗ θ .

As mentioned in the introduction, a linear functional β : V → C, satisfying
β(π(r)v)= (3⊗θ)(r)β(v) for any r ∈ R(F) and v ∈ V , is called a (3, θ)-Bessel
functional for π . We say that π has a (3, θ)-Bessel model if π is isomorphic to a
subspace of smooth functions B : H(F)→ C satisfying

(3-3) B(tuh)=3(t)θ(u)B(h) for all t ∈ T (F), u ∈U (F), h ∈ H(F).

The existence of a nonzero (3, θ)-Bessel functional for π is equivalent to the exis-
tence of a nontrivial (3, θ)-Bessel model for π . If π has a nonzero (3, θ)-Bessel
functional β, then the space {Bv : v ∈ π, Bv(h) := β(π(h)v)} gives a nontrivial
(3, θ)-Bessel model for π . Conversely, if π has a nontrivial (3, θ)-Bessel model
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{Bv : v ∈ π} then the linear functional β(v) := Bv(1) is a nonzero (3, θ)-Bessel
functional for π . We say that v ∈ π is a test vector for a Bessel functional β
if β(v) 6= 0. Note that a vector v ∈ π is a test vector for β if and only if the
corresponding function Bv in the Bessel model satisfies Bv(1) 6= 0.

Define the space B(3, θ)I of smooth functions B on H(F) which are right I-
invariant, satisfy (3-3) and the following conditions, for any h ∈ H(F), obtained
from (2-2),

∑
w∈o/p

B

h

 1 w
1

1
–w 1

+ B(hs1)= 0,(3-4)

B(hη0)= ωB(h),(3-5)

∑
y∈o/p

B

h

 1
1

y 1
1

+ B(hs2)= 0.(3-6)

Our aim is to obtain the criteria for existence and uniqueness for (3, θ)-Bessel
models for π . We state the steps we take to obtain this.

i) Since a function B in B(3, θ)I is right I-invariant and satisfies (3-3) we
see that the values of B are completely determined by its values on dou-
ble coset representatives R(F)\H(F)/I. We obtain these representatives in
Proposition 3.3.

ii) In Proposition 3.8, we use the I-invariance of B and (3-3)–(3-6) to obtain nec-
essary conditions to be satisfied by the values of functions in B(3, θ)I on dou-
ble coset representatives for R(F)\H(F)/I. This gives us dim(B(3, θ)I)≤ 1
in Corollary 3.9.

iii) In Proposition 3.10, we show that the function B with the given values at
double coset representatives for R(F)\H(F)/I (obtained in Proposition 3.8)
is well-defined. We show that B satisfies (3-4), (3-5) and (3-6) for all values
of h ∈ H(F) and obtain the criteria for dim(B(3, θ)I)= 1 in Theorem 3.11.

iv) Suppose 3 is such that dim(B(3, θ)I) = 1. If 3 is unitary then we use 0 6=
B ∈ B(3, θ)I to generate a Hecke module VB . We define an inner product
on VB and show in Proposition 3.15 that VB is irreducible and provides a
(3, θ)-Bessel model for π . If 3 is not unitary (this can happen only if L is a
split extension of F), then we show that any irreducible, generic, admissible
representation of H(F) has a split (3, θ)-Bessel model. Since π is generic
in the split case, we obtain in Theorem 3.18 the precise criteria for existence
and uniqueness of a (3, θ)-Bessel model for π .
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3.1. Double coset decomposition. From [Furusawa 1993, (3.4.2)], we have the
disjoint double coset decomposition

H(F)=
⊔
l∈Z

⊔
m≥0

R(F)h(l,m)K H , h(l,m)=

$ 2m+l

$m+l

1
$m

 .
It follows from the Bruhat decomposition for Sp(4, o/p) that

K H
= I t

⊔
x∈o/p

 1
x 1

1 –x
1

s1I t
⊔

x∈o/p

 1 x
1

1
1

s2I

t

⊔
x,y∈o/p


1
x 1 y

1 –x
1

s1s2I t
⊔

x,y∈o/p


1 x y

1 y
1

1

s2s1I

t

⊔
x,y,z∈o/p


1 y
x 1 y xy+z

1 –x
1

s1s2s1I t
⊔

x,y,z∈o/p


1 x y

1 y z
1

1

s2s1s2I

t

⊔
w,x,y,z∈o/p


1 x y
w 1 wx+y wy+z

1 –w
1

s1s2s1s2I.

Let W ={1, s1, s2, s1s2, s2s1, s1s2s1, s2s1s2, s1s2s1s2} be the Weyl group of Sp4(F)
and let the representatives for {1, s1} \W be given by W (1)

= {1, s2, s2s1, s2s1s2}.
Observing that

h(l,m)

 1 o o
1 o o

1
1

 h(l,m)−1

is contained in R(F), we get a preliminary (nondisjoint) decomposition

(3-7) R(F)h(l,m)K H
=

⋃
s∈W (1)

w∈o/p

(
R(F)h(l,m)sI ∪ R(F)h(l,m)Wws1sI

)
,

with Ww :=

 1
w 1

1 –w
1

.
The next lemma gives the condition under which the two double cosets of the form
R(F)h(l,m)sI and R(F)h(l,m)Wws1sI are the same.

Lemma 3.1. For w ∈ o/p and m ≥ 0, set βm
w := a$ 2m

+ b$mw + cw2. Let
s ∈W (1). Then R(F)h(l,m)sI= R(F)h(l,m)Wws1sI if and only if βm

w ∈ o×.
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Proof. Suppose βm
w ∈ o×. Take y =$m, x =$mb/2+ cw and set

g =
[

x + b
2 y cy

−ay x − b
2 y

]
.

Then [
g

det(g)tg−1

]
h(l,m)= h(l,m)Wws1k,

where

k =


−βm

w

b$m
+cw c

−c b$m
+cw
βm
w

 ∈ I.

Note that for any s ∈W (1), we have s−1k s ∈ I. Using

rh(l,m)s = h(l,m)Wws1s(s−1ks),

we obtain R(F)h(l,m)sI = R(F)h(l,m)Wws1sI, as required. The computation
of the converse is straightforward. �

The next lemma describes for which w ∈ o/p we have βm
w ∈ o×.

Lemma 3.2. For w ∈ o/p and m ≥ 0, set βm
w := a$ 2m

+ b$mw+ cw2 as above.

i) If m > 0, then βm
w ∈ o× if and only if w ∈ (o/p)×.

ii) Let m = 0.

a) If
( L

p

)
=−1, then β0

w ∈ o× for every w ∈ o/p.

b) Let
( L

p

)
= 0. Let w0 be the unique element of o/p such that α+w0 ∈ pL ,

the prime ideal of oL . Then β0
w ∈ o× if and only if w 6= w0. In case #(o/p)

is odd, one can take w0 =−b/(2c).

c) Let
( L

p

)
= 1. Then β0

w ∈ o× if and only if w 6= −b+
√

d
2c

,
−b−
√

d
2c

.

Proof. Part (i) is clear. For the rest of the lemma, we need the equivalence

(3-8) β0
w ∈ o× ⇐⇒ α+w ∈ o×L .

This follows from the identity

(3-9) a+ bw+ cw2
=−c(α+w)(ᾱ+w)=−cN (α+w).

If
( L

p

)
=−1, then pL =P and Lemma 2.1 implies that α+w ∈ o×L for all w ∈ o/p.

The equivalence (3-8) gives (ii-a) of the lemma. Let us now assume that
( L

p

)
= 0.

In this case, the injective map ι : o ↪→ oL gives an isomorphism between the fields
o/p' oL/pL . Letw0=−ι

−1(α) be the unique element in o/p such that α+w0 ∈pL .
In case #(o/p) is odd, then one can take w0 = −b/(2c) ∈ o since

√
d ∈ pL . Then
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for any w ∈ o/p, w 6= w0, we have α + w ∈ o×L . Now (3-8) gives (ii-b) of the
lemma. Next assume that

( L
p

)
= 1. Since

√
d ∈ o× by assumption, we have α 6∈P.

If α +w 6∈ o×L for some w ∈ o, then we have one of (b ±
√

d)/(2c)+w lies in
p. Hence, we see that the only choices of w = (w,w) such that α +w 6∈ o×L are
w = (−b±

√
d)/(2c). Note that

√
d ∈ o× implies that (−b±

√
d)/(2c) are not

equal modulo p. This completes the proof of the lemma. �

In the case
( L

p

)
= 0, (3-9) implies that β0

w0
∈ p but β0

w0
6∈ p2 by Lemma 2.1. The

disjointness of all the relevant double cosets can be checked easily. We summarize
in the following proposition.

Proposition 3.3. Let W be the Weyl group of Sp4(F) and set

W (1)
= {1, s2, s2s1, s2s1s2}.

If
( L

p

)
= 0, let w0 be the unique element of o/p such that α+w0 ∈ pL . If #(o/p) is

odd, then take w0 =−b/(2c). We have the disjoint double coset decomposition

R(F)h(l,m)K H
=

⊔
s∈W

R(F)h(l,m)sI if m > 0;⊔
s∈W (1)

R(F)h(l, 0)sI if m = 0,
( L

p

)
=−1;⊔

s∈W (1)

(
R(F)h(l, 0)sIt R(F)h(l, 0)Ww0s1sI

)
if m = 0,

( L
p

)
= 0;⊔

s∈W (1)

(
R(F)h(l, 0)sIt R(F)h(l, 0)W

−b+
√

d
2c

s1s t R(F)h(l, 0)W
−b−
√

d
2c

s1sI
)

if m = 0,
( L

p

)
= 1.

3.2. Necessary conditions for values of B ∈ B(3, θ)I. We will now obtain the
necessary conditions on the values of B ∈ B(3, θ)I on the double coset represen-
tatives from Proposition 3.3 using the I-invariance of B and (3-3)–(3-6).

Conductor of 3: We define

(3-10) c(3)=min{m ≥ 0 :3|(1+Pm)∩o×L
≡ 1}.

Note that (1+Pm)∩ o×L = 1+Pm if m ≥ 1 and (1+Pm)∩ o×L = o×L if m = 0.
Also, c(3) is the conductor of 3 only if

( L
p

)
=−1. We set c(3)=m0. Since 3 is

trivial on F×, we see that 3|(o×+Pm0 )∩o×L
≡ 1. Observe that if L is a field, then we

have L×= 〈$L〉.o
×

L . If
( L

p

)
=−1 and m0= 0, then we have that 3($L)= 1, since

$L ∈ $o×L . In case
( L

p

)
= 0 and m0 = 0, we see that 3($L) = ±1. In general,

if L is a field, we see that 3 is a unitary character since m0 is finite. On the other
hand, if L is not a field, then L× = F×⊕ F× and 3((x, y))=31(x)32(y), where
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31,32 are two characters of F× satisfying 31.32 ≡ 1. In this case, m0 is the
conductor of both 31,32 and the character 3 need not be unitary.

In the next lemma, we will describe some coset representatives, which will be
used in the evaluation of certain sums involving the character 3.

Lemma 3.4. Let m ≥ 1. A set of coset representatives for

((o×+Pm−1)∩ o×L )/(o
×
+Pm)

is given by {w+α$m−1
:w ∈ (o/p)×}∪{1} if m ≥ 2 and {w+α :w ∈ o/p, w+α ∈

o×L } ∪ {1} if m = 1.

Proof. Let x+α$m−1 y ∈ (o×+Pm−1)∩o×L , with x, y ∈ o. If m ≥ 2, then x ∈ o×.
If y ∈ p, then x + α$m−1 y ∈ (o× + Pm), and hence corresponds to the coset
representative 1. Now, we assume that y ∈ o×. Then, using y ∈ o×+Pm , we see
that x + α$m−1 y is equivalent to x/y + α$m−1 modulo (o× +Pm). Note that
x/y+α$m−1

∈ o×L implies that, modulo p, the element x/y lies in

(3-11)


(o/p)× if m ≥ 2,

o/p if m = 1,
( L

p

)
=−1

o/p−{w0} if m = 1,
( L

p

)
= 0,

o/p−{(−b±
√

d)/(2c)} if m = 1,
( L

p

)
= 1.

This follows from the proof of Lemma 3.2. A calculation shows that if w,w′ are
equivalent, modulo p, to (not necessarily the same) elements in the sets defined in
(3-11), then

w ≡ w′ (mod p) if and only if (w+α$m−1)/(w′+α$m−1) ∈ o×+Pm .

This completes the proof of the lemma. �

Depending on the c(3) = m0, certain values of B have to be zero. This is
obtained in the next lemma.

Lemma 3.5. For any l ∈ Z, we have B(h(l,m)s) = 0, if any of the following
conditions are satisfied.

i) m ≤ m0− 2, m0 ≥ 2, s = 1;

ii) m = 0,
( L

p

)
= 1, m0 ≥ 1, s ∈ {Wws1 : w = (−b±

√
d)/(2c)};

iii) m = 0,
( L

p

)
= 0, 3=� ◦ NL/F , m0 = 0, s =Ww0s1s2;

iv) m = 0,
( L

p

)
=−1, m0 = 0, s = 1.

Proof. We illustrate the proof of (i) here. Let m ≤ m0− 2. Let

1+ x +αy ∈ 1+Pm+1, with x, y ∈ pm+1,
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be such that 3(1+ x +αy) 6= 1. Let

k =


c(1+x)+by cy$−m

−ay$m c(1+x)
c(1+x) ay$m

−cy$−m c(1+x)+by

 ∈ I.

Then

B(h(l,m))= B(h(l,m)k)

= B




c(1+x)+by cy
−ay c(1+x)

c(1+x) ay
−cy c(1+x)+by

 h(l,m)


=3(1+x+αy)B(h(l,m)),

which implies that B(h(l,m)) = 0, as required. The other cases are computed in
a similar manner. �

From Lemmas 3.4 and 3.5(i), we obtain information on certain character sums
involving 3:

Lemma 3.6. For any l, we have∑
w∈(o/p)×

3(w+α$m)B(h(l,m))+B(h(l,m))=
{

0 if 0< m < m0,

q B(h(l,m)) if m ≥ m0, m> 0;∑
w∈o/p
w+α∈o×L

3(w+α)B(h(l, 0))+ B(h(l, 0))=
{

0 if m0 ≥ 1,(
q −

( L
p

))
B(h(l, 0)) if m0 = 0.

Conductor of ψ . Since the conductor of ψ is o, we obtain the following further
vanishing conditions on the values of B.

Lemma 3.7. For m≥0, we have B(h(l,m)s)=0 if one of the following conditions
are satisfied:

i) l < 0, s ∈ {1, s1, s2, s2s1};

ii) l <−1, s ∈ {s1s2, s1s2s1, s2s1s2, s1s2s1s2}.

For w ∈ o, we have B(h(l, 0)Wws) = 0 if one of the following conditions are
satisfied:

i) l < 0, s = s1;

ii) l <−1, s ∈ {s1s2, s1s2s1, s1s2s1s2}.

If
( L

p

)
= 1 and w = −b±

√
d

2c
, then B(h(−1, 0)Wws1s2)= 0.
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Proof. We illustrate the proof for the case m ≥ 0, l < 0, s ∈ {1, s1, s2, s2s1}. For
any ε ∈ o×, set

kεs =

 1
1 ε

1
1

 if s = 1, s2 and kεs =

 1 ε
1

1
1

 if s = s1, s2s1.

Then, for s ∈ {1, s1, s2, s2s1} and ε ∈ o×, we obtain

B(h(l,m)s)= B(h(l,m)skεs )

= B




1
1 ε$ l

1
1

 h(l,m)s

= ψ(cε$ l)B(h(l,m)s).

Since the conductor of ψ is o, we conclude that B(h(l,m)s)= 0 if l < 0. The other
cases are computed in a similar manner. �

Values of B using (3-4). Substituting h = h(l,m)s1 in (3-4) and using Lemmas
3.1, 3.2 and 3.6, we get, for any l,

B(h(l,m)s1)=

{
0 if m < m0 and m > 0,
−q B(h(l,m)) if m ≥ m0 and m > 0;

(3-12)

B(h(l, 0)Ww0s1)=

{
0 if m0 ≥ 1,
−q B(h(l, 0)) if m0 = 0;

(3-13)

B
(
h(l, 0)W

−b+
√

d
2c

s1
)
+ B

(
h(l, 0)W

−b−
√

d
2c

s1
)
=−(q − 1)B(h(l, 0))

if m0 = 0.
(3-14)

Substituting h = h(l,m)s2s1 in (3-4) and using that the conductor of ψ is o, we
get for any l,m

(3-15) B(h(l,m)s2s1)=−
1
q

B(h(l,m)s2).

Substituting h = h(l,m)s1s2s1 in (3-4) and using that the conductor of ψ is o,
we get for any m > 0 and l

(3-16) B(h(l,m)s1s2s1)=−
1
q

B(h(l,m)s1s2).

Let
( L

p

)
= 0. Substituting h = h(−1, 0)Ww0s1s2s1 in (3-4) and using that the

conductor of ψ is o and b +2cw0 ∈ p, we get

B(h(−1, 0)Ww0s1s2s1)=−
1
q

B(h(−1, 0)Ww0s1s2).
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Let
( L

p

)
= 1 and w = (−b±

√
d)/(2c). Substituting h = h(l, 0)Wws1s2s1 in (3-4)

and using that the conductor of ψ is o and
√

d ∈ o×, we get for l 6= −1

(3-17) B(h(l,m)Wws1s2s1)=−
1
q

B(h(l,m)Wws1s2).

Values of B using (3-6). Substituting h = h(l,m)s2 in (3-6) and using that the
conductor of ψ is o, we get for any l,m

(3-18) B(h(l,m)s2)=−
1
q

B(h(l,m)).

Substituting h = h(l,m)s2s1s2 in (3-6) and using that the conductor of ψ is o,
we get for l 6= −1

(3-19) B(h(l,m)s2s1s2)=−
1
q

B(h(l,m)s2s1).

Set

w =


0 if m > 0,
w0 if m = 0,

( L
p

)
= 0,

−b±
√

d
2c

if m = 0,
( L

p

)
= 1.

Substituting h= h(l,m)Wws1s2 in (3-6) and using that the conductor of ψ is o, we
get for l 6= −1

(3-20) B(h(l,m)Wws1s2)=−
1
q

B(h(l,m)Wws1).

Substituting h = h(l,m)Wws1s2s1s2 in (3-6) and using that the conductor of ψ is
o, we get for all l,m

(3-21) B(h(l,m)Wws1s2s1s2)=−
1
q

B(h(l,m)Wws1s2s1).

Values of B using (3-5). For any l,m, w we have the matrix identities

h(l,m)s2s1η0 = h(l−1,m+1)s1s2s1

 1
−1
−1

1

,(3-22)

h(l,m)Wws1s2s1s2η0 = h(l+1,m)Wws1

 1
1
−1
−1

,(3-23)

h(l,m)s2s1s2η0 = h(l+1,m)

 1
1
−1
−1

.(3-24)
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Hence, by (3-5), we have

B(h(l,m)s2s1)= ωB(h(l−1,m+1)s1s2s1),(3-25)

B(h(l,m)Wws1s2s1s2)= ωB(h(l+1,m)Wws1),(3-26)

B(h(l,m)s2s1s2)= ωB(h(l+1,m)).(3-27)

Using (3-24) we see that

B
(
h(l, 0)W

−b+
√

d
2c

s1s2
)
= ωB

(
h(l, 0)W

−b+
√

d
2c

s1s2η0
)

= ωB

h(l, 0)W
−b+
√

d
2c

 1
$
$

1

s2

 .
Let x =

√
d/2+$ , y = 1, g =

[
x+by/2 cy
−ay x−by/2

]
, and r =

[
g

det(g)tg−1

]
.

We have the matrix identity

rh(l, 0)W
−b−
√

d
2c

s1s2 = h(l, 0)W
−b+
√

d
2c

 1
$
$

1

s2k,

with k =


√

d/c −1
−
√

d/c 1
$ c

−$ −c

 ∈ I.

This gives us

(3-28) B
(
h(l, 0)W

−b+
√

d
2c

s1s2
)
= ω3((

√
d+$,$))B

(
h(l, 0)W

−b−
√

d
2c

s1s2
)
.

Summary. Using (3-15), (3-18), (3-19) and (3-27) we get for l,m ≥ 0

(3-29) B(h(l + 1,m))=−
ω

q3 B(h(l,m)).

Using (3-12), (3-15), (3-16), (3-18), (3-20), (3-25) and (3-29), we get for l ≥ 0 and
m ≥ m0− 1

(3-30) B(h(l,m+ 1))=
1
q4 B(h(l,m)).

Hence, we conclude that

(3-31) B(h(l,m))=
0 if l ≤−1 or 0≤ m ≤ m0−2,

q−4(m−m0+1)(−ωq−3)l B(h(0,m0−1)) if l ≥ 0 and m ≥ m0−1> 0,

q−4m(−ωq−3)l B(1) if l ≥ 0 and m ≥ m0 = 0, 1.
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Let
( L

p

)
= 1 and w = (−b±

√
d)/(2c). Using (3-17), (3-20), (3-21) and (3-26),

we get for l ≥ 0, B(h(l + 1, 0)Wws1)= (−ωq−3)B(h(l, 0)Wws1), which gives us

B(h(l, 0)Wws1)= (−ωq−3)l B(Wws1).

In addition, if m0 = 0 and ω3((1,$))=−1, using (3-14), (3-20) and (3-28), we
get for all l ≥ 0

B(h(l, 0))= 0.

Summarizing the calculations of the values of B, we obtain

Proposition 3.8. Let c(3)= m0. For l,m ∈ Z,m ≥ 0, we set

Al,m :=

{
q−4(m−m0+1)(−ωq−3)l if m0 ≥ 1,
q−4m(−ωq−3)l if m0 = 0,

Cm0 :=

{
B(h(0,m0− 1)) if m0 ≥ 1,
B(1) if m0 = 0.

We have the following necessary conditions on the values of B ∈ B(3, θ)I.

i) For m ≥ 0 and any m0,

a) B(h(l,m))=
{

0 if l ≤−1 or m ≤ m0− 2,
Al,mCm0 if l ≥ 0 and m ≥ m0− 1.

b) B(h(l,m)s2)=

{
0 if l ≤−1 or m ≤ m0− 2,
−q−1 Al,mCm0 if l ≥ 0 and m ≥ m0− 1.

c) B(h(l,m)s2s1)=

{
0, if l ≤−1 or m ≤ m0− 2,
q−2 Al,mCm0, if l ≥ 0 and m ≥ m0− 1.

d) B(h(l,m)s2s1s2)=


0, if l ≤−2 or m ≤ m0− 2,
ωA0,mCm0, if l =−1 and m ≥ m0− 1,
−q−3 Al,mCm0, if l ≥ 0 and m ≥ m0− 1.

ii) For m > 0 and any m0,

a) B(h(l,m)s1)=

{
0 if l ≤−1 or m ≤ m0− 1,
−q Al,mCm0 if l ≥ 0 and m ≥ m0.

b) B(h(l,m)s1s2)=


0 if l ≤−2 or m ≤ m0− 1,
−ωq3 A0,mCm0, if l =−1 and m ≥ m0,

Al,mCm0, if l ≥ 0 and m ≥ m0.

c) B(h(l,m)s1s2s1)=


0 if l ≤−2 or m ≤ m0− 1,
ωq2 A0,mCm0 if l =−1 and m ≥ m0,

−q−1 Al,mCm0, if l ≥ 0 and m ≥ m0.
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d) B(h(l,m)s1s2s1s2)=


0 if l ≤−2 or m ≤ m0− 1,
−ωq A0,mCm0 if l =−1 and m ≥ m0,

q−2 Al,mCm0, if l ≥ 0 and m ≥ m0.

iii) Let m0 ≥ 1.

a) If
( L

p

)
= 0 and s ∈ {1, s2, s2s1, s2s1s2}, then, for all l,

B(h(l, 0)Ww0s1s)= 0.

b) If
( L

p

)
= 1, s ∈ {1, s2, s2s1, s2s1s2} and w = −b±

√
d

2c
, then, for all l,

B(h(l, 0)Wws1s)= 0.

iv) Let m0 = 0.

a) If
( L

p

)
=−1 then C0 = 0.

b) Suppose
( L

p

)
= 0. Then

1) B(h(l, 0)Ww0s1)=

{
0 if l ≤−1,
−q Al,0C0 if l ≥ 0.

2) B(h(l, 0)Ww0s1s2)=


0 if l ≤−2,
−ωq3C0 if l =−1,
Al,0C0, if l ≥ 0.

3) B(h(l, 0)Ww0s1s2s1)=

{
0 if l ≤−2,
ωq2 Al+1,0C0, if l ≥−1.

4) B(h(l, 0)Ww0s1s2s1s2)=

{
0 if l ≤−2,
−ωq Al+1,0C0, if l ≥−1.

c) Suppose
( L

p

)
= 0 and 3=� ◦ NL/F . Then C0 = 0.

d) Suppose
( L

p

)
= 1. Then for s ∈ {1, s2, s2s1, s2s1s2}

B
(
h(l, 0)W

−b−
√

d
2c

s1s
)
=

1
ω3((1,$))

B
(
h(l, 0)W

−b+
√

d
2c

s1s
)
.

e) Suppose
( L

p

)
= 1 and ω3((1,$))=−1.

1) C0 = 0.

2) B
(
h(l, 0)W

−b+
√

d
2c

s1
)
=

{
0 if l ≤−1,
Al,0 B(W

−b+
√

d
2c

s1) if l ≥ 0.

3) B
(
h(l, 0)W

−b+
√

d
2c

s1s2
)
=

{
0 if l ≤−1,
−

1
q Al,0 B

(
W
−b+
√

d
2c

s1
)

if l ≥ 0.
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4) B
(
h(l, 0)W

−b+
√

d
2c

s1s2s1
)
=

{
0 if l≤−2,
−ωq Al+1,0 B

(
W
−b+
√

d
2c

s1
)

if l≥−1.

5) B
(
h(l, 0)W

−b+
√

d
2c

s1s2s1s2
)
=

{
0 if l ≤−2,
ωAl+1,0 B

(
W
−b+
√

d
2c

s1
)

if l ≥−1.

f) Suppose
( L

p

)
= 1 and ω3((1,$)) 6= −1. Set ν = q−1

1+ω3((1,$))
.

1) B
(
h(l, 0)W

−b+
√

d
2c

s1
)
=

{
0 if l ≤−1,
−νAl,0C0, if l ≥ 0.

2) B
(
h(l, 0)W

−b+
√

d
2c

s1s2
)
=

{
0 if l ≤−1,
q−1νAl,0C0, if l ≥ 0.

3) B
(
h(l, 0)W

−b+
√

d
2c

s1s2s1
)
=

{
0 if l ≤−2,
ωqνAl+1,0C0, if l ≥−1.

4) B
(
h(l, 0)W

−b+
√

d
2c

s1s2s1s2
)
=

{
0 if l ≤−2,
−ωνAl+1,0C0 if l ≥−1.

Corollary 3.9. For any character 3, we have

dim
(
B(3, θ)I

)
≤ 1.

3.3. Well-definedness of B. In this section, we will show that a function B on
H(F), which is right I-invariant, satisfies (3-3) and with values on the double
coset representatives of R(F)\H(F)/I given by Proposition 3.8, is well defined.
Hence, we have to show that

r1sk1 = r2sk2 ⇒ B(r1sk1)= B(r2sk2)

for r1, r2 ∈ R(F), k1, k2 ∈ I and any double coset representative s. This is obtained
in the following proposition.

Proposition 3.10. Let s be any double coset representative from Proposition 3.3
and the values B(s) be as in Proposition 3.8. Let t ∈ T (F), u ∈ U (F) such that
s−1tus ∈ I. Then

3(t)θ(u)= 1 or B(s)= 0.

Proof. Let

t =
[

g
det(g)tg−1

]
and u =

[
1 X

1

]
,

with

g =
[

x + by/2 cy
−ay x − by/2

]
and X = t X.
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First let s = h(l,m). Observe that

x + y

√
d

2
= x −

by
2
+ cyα.(

In the split case, we consider the same identity with (x + y
√

d/2, x − y
√

d/2)
)
.

We assume s−1tus ∈ I. We see that x ± by/2 ∈ o×, y ∈ pm+1 and x +
√

d y/2 ∈
o×+Pm+1. Hence, we conclude that g ∈ GL2(o). This gives us

X ∈
[
pl+2m pl+m

pl+m pl

]
.

Now looking at the values of B(h(l,m)) from Proposition 3.8, we get that either
B(s)= 0 or 3(t)= θ(u)= 1.

We will illustrate one other case, s = h(l, 0)Ww0s1s2, since it is the most com-
plicated. Here, w0 is the unique element of o/p such that w0+ α 6∈ o×L . If m0 ≥ 1
or l ≤ −2, then we have B(s) = 0. Hence, assume that m0 = 0 and l ≥ −1. Note
that x+ y

√
d/2= x−by/2− cw0 y+ c(w0+α)y and a+bw0+ cw2

0 ∈ p. We see
that s−1tus ∈ I implies that

y ∈ o and x ±
(b

2
+ cw0

)
y ∈ o×.

Hence, we see that x+ y
√

d
2 ∈ o×L . This implies that g ∈GL2(o) and 3(t)= 1. We

have [
1
−w0 1

]
gX

[
1 −w0

1

]
∈

[
pl pl

pl pl+1

]
.

If l ≥ 0, then we get θ(u)= 1, as required. If l =−1, then let[
1
−w0 1

]
gX

[
1 −w0

1

]
=

[
x1 x2

x3 x4

]
, with x1, x2, x3 ∈$

−1o, x4 ∈ o.

Set ε1 = x + (b/2 + cw0)y, ε2 = x − (b/2 + cw0)y. Using the fact that X is
symmetric and β0

w0
∈ p, we conclude that x3ε1− x2ε2 ∈ o. Now θ(u)=ψ(tr(SX))

is equal to

ψ

(
1

det(g)

(
a
((

x −
by
2

)
x1− yc(x3+w0x1)

)
+ b

(
yax1+

(
x +

by
2

)
(x3+w0x1)

)
+ c(ya(x2+w0x1)+

(
x +

by
2

)
(w2

0x1+w0(x2+ x3)+ x4)
)))

= ψ

(
1

det(g)

((
x +

by
2

)
(x1β

0
w0
+ cx4)+ x2β

0
w0

yc− x3β
0
w0

yc

+ (x2ε2− x3ε1)cw0+ x3ε1(b+ 2cw0)
))

= 1.
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Here, we have used that x3ε1− x2ε2 ∈ o, b+ 2cw0 ∈ p, and ψ is trivial on o. The
other cases are computed in a similar manner. �

3.4. Criterion for dim(B(3, θ)I)=1. In the previous sections, we have explicitly
obtained a well-defined function B, which is right I-invariant and satisfies (3-3).
The values of B on the double coset representatives of R(F)\H(F)/I were ob-
tained, in Proposition 3.8, using one or more of the conditions (3-4)–(3-6). To
show that the function B is actually an element of B(3, θ)I, we have to show
that the conditions (3-4)–(3-6) are satisfied by B for every h ∈ H(F). In fact, it
is sufficient to show that B satisfies these conditions when h is any double coset
representative of R(F)\H(F)/I. The computations for checking this are long but
not complicated. We will describe the calculation for h = h(l,m) below.

B(h(l,m)η0)= B

h(l,m)

$$
$
$

h(−1, 0)s2s1s2


= B(h(l − 1,m)s2s1s2)= ωB(h(l,m)).

Here, we have used Proposition 3.8 and the identities Al−1,m= (−ωq3)Al,m . Using
the matrix identity 1

w 1
1 –w

1

 =
 1 w−1

1
1

–w−1 1

 s1

–w
–w−1

–w−1

–w

 1 w−1

1
1

–w−1 1


for w ∈ o, w 6= 0, Lemmas 3.1, 3.2, 3.6 and Proposition 3.8, we get∑

w∈o/p

B(h(l,m)s1Wws1)+ B(h(l,m)s1)= 0.

Using the matrix identity 1
1

y 1
1

=
 1 y−1

1
1

1

 s2

−y
1
−y−1

1

 1 y−1

1
1

1


for y ∈ o, y 6= 0 and Proposition 3.8, we obtain

∑
y∈o/p

B

h(l,m)

 1
1

y 1
1

+ B(h(l,m)s2)= 0

This shows that, for h = h(l,m), the function B satisfies (3-4)–(3-6), as required.
The calculation for other values of h follows in a similar manner. Hence, we get
the following theorem.
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Theorem 3.11. Let 3 be a character of L×. Let B(3, θ)I be the space of smooth
functions on H(F), which are right I-invariant, satisfy (3-3) and the Hecke condi-
tions (3-4) - (3-6). Then

dim
(
B(3, θ)I

)
=

{
0 if 3=� ◦ NL/F and

( L
p

)
∈ {−1, 0},

1 otherwise.

The condition on 3, in the case
( L

p

)
∈ {−1, 0}, follows from cases (iv-a) and

(iv-c) of Proposition 3.8.

3.5. Existence of a Bessel model. We now obtain the existence of a (3, θ)-Bessel
model for π . When 3 is a unitary character, we act with the Hecke algebra of
H(F) on a nonzero function in B(3, θ)I. We define an inner product on this
Hecke module and also show that the Hecke module has a unique, up to a constant,
function which is right I-invariant (the same function that we started with). This
leads to the proof that the Hecke module is irreducible and is isomorphic to π , thus
giving a (3, θ)-Bessel model for π .

When 3 is not unitary (this can happen only if L = F⊕ F), we obtain a Bessel
model for π using the Whittaker model.

The Hecke module. The Hecke algebra H of H(F) is the space of all complex-
valued functions on H(F) that are locally constant and compactly supported, with
the convolution product defined by

( f1 ∗ f2)(g) :=
∫

H(F)
f1(h) f2(h−1g) dh for f1, f2 ∈H, g ∈ H(F).

We refer the reader to [Cartier 1979] for details on Hecke algebras of p-adic groups
and Hecke modules. Let 3 be a character of L× such that B(3, θ)I 6= 0. Let
B ∈ B(3, θ)I be the unique, up to a constant, function whose values are described
in Proposition 3.8. Define the action of f ∈H on B by

(R( f )B)(g) :=
∫

H(F)
f (h)B(gh) dh.

This is a finite sum and hence converges for all f . Let

(3-32) VB := {R( f )B : f ∈H}.

Since R( f1)R( f2)B = R( f1 ∗ f2)B, we see that VB is a Hecke module. Note that
every function in VB transforms on the left according to 3⊗ θ .

Inner product on Hecke module. We now assume that 3 is a unitary character.
Note that, by the comments in the beginning of Section 3.2, if L is a field, then 3
is always unitary. In this case, we will define an inner product on the space VB .

Lemma 3.12. The norm 〈B, B〉 :=
∫

R(F)\H(F)
|B(h)|2 dh is finite.
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Proof. We have

〈B, B〉 =
∑

s∈R(F)\H(F)/I

∫
R(F)\R(F)sI

|B(h)|2dh

=

∑
s∈R(F)\H(F)/I

|B(s)|2
∫

Is\I
dh =

∑
s∈R(F)\H(F)/I

|B(s)|2
vol(I)
vol(Is)

.

Here Is := s−1R(F)s∩ I. To get the last equality, we argue as in [Pitale and Schmidt
2009b, Lemma 3.7.1]. The volume of Is can be computed by similar methods to
Sections 3.7.1 and 3.7.2 of the same reference. Now, using the values of B(s) from
Proposition 3.8 and geometric series, we get the result. �

Let

L2(R(F)\H(F),3⊗θ) :=

ϕ : H(F)→ C such that ϕ is smooth,
ϕ(rh)=(3⊗ θ)(r)ϕ(h) for r ∈ R(F), h∈H(F),

and
∫

R(F)\H(F) |ϕ(h)|
2 dh <∞.


The previous lemma tells us that B∈ L2

(
R(F)\H(F),3⊗θ

)
. It is an easy exercise

to see that, in fact, for any f ∈H, we have

R( f )B ∈ L2(R(F)\H(F),3⊗ θ).
Now, we see that VB inherits the inner product from L2

(
R(F)\H(F),3⊗θ

)
. For

f1, f2 ∈H, we obtain

(3-33) 〈R( f1)B, R( f2)B〉 =
∫

R(F)\H(F)
(R( f1)B)(g) (R( f2)B)(g) dg.

Lemma 3.13. For f ∈ H, define f ∗ ∈ H by f ∗(g) = f (g−1). Then, for any
B1, B2 ∈ VB ,

〈B1, R( f )B2〉 = 〈R( f ∗)B1, B2〉.

Proof. The lemma follows by a formal calculation. �

Irreducibility of VB .

Lemma 3.14. Let V I
B be the subspace of functions in VB that are right I-invariant.

Then
dim(V I

B)= 1.

Proof. We know that V I
B is not trivial since B ∈ V I

B . Let χI ∈H be the characteristic
function of I and set fI := vol(I)−1χI. Then, by definition, any B ′ ∈ V I

B , satisfies
R( fI)B ′ = B ′. Let f ∈H be such that B ′ = R( f )B = R( f ∗ fI)B. Here, we have
used that B ∈ V I

B . Then

B ′ = R( fI)B ′ = R( fI)
(
R( f ∗ fI)B

)
= R( fI ∗ f ∗ fI)B.
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But fI ∗ f ∗ fI ∈ HI, the Iwahori Hecke algebra. Since B is an eigenfunction of
HI, we see that B ′ ∈ CB. Hence, dim(V I

B)= 1, as required. �

Proposition 3.15. Let π = �StGSp4
be the Steinberg representation of H(F),

twisted by an unramified quadratic character �. Let 3 be a character of L×

such that dim(B(3, θ)I) = 1. Let VB be as in (3-32). If 3 is unitary, then VB is
irreducible and isomorphic to π .

Proof. We assume, to the contrary, that VB is reducible. Let W be an H-invariant
subspace. Let W⊥ be the complement of W in VB with respect to the inner product
〈 , 〉 given in (3-33). Using Lemma 3.13, we see that W⊥ is also H-invariant.
Write B = B1 + B2, with B1 ∈ W, B2 ∈ W⊥. Let fI be as defined in the proof
of Lemma 3.14. Since W,W⊥ are H-invariant, we see that R( fI)B1 ∈ W and
R( fI)B2 ∈ W⊥. Since B is right I-invariant, we see that B1 = R( fI)B1 and B2 =

R( fI)B2. By Lemma 3.14, we obtain, either B = B1 or B = B2. Since VB is
generated by B, we have either W = VB or W = 0. Hence, we see that VB is
an irreducible Hecke module, which contains a unique, up to a constant, vector
which is right I-invariant. This uniquely characterizes the Steinberg representation
of H(F), and hence, VB is isomorphic to π . �

Generic representations have split Bessel models. We now assume that 3 is not
a unitary character. This can happen only if L = F ⊕ F . In this case, we will
use the fact that �StGSp4

is a generic representation. We will now show that any
irreducible admissible generic representation of H(F) has a split Bessel model.
We believe that this result is known to the experts (for example, see the proof of
[Takloo-Bighash 2000, Theorem 2.1]) but we present the details of the proof here.

Let
S =

[
a b

2
b
2 c

]
be such that b2

− 4ac is a square in F×. One can find a matrix A ∈ GL2(o) such
that

S′ := tA S A =
[ 1

2
1
2

]
.

In this case, TS′(F) := {g ∈GL2(F) : tgS′g= det(g)S′} = A−1T (F) A. The group
TS′(F) embedded in H(F) is given by

 x
y

y
x

 : x, y ∈ F×

 .
Let θ ′ be the character of U (F) obtained from S′ and3′ be the character of TS′(F)
obtained from 3. Then it is easy to see that π has a (3, θ)-Bessel model if and
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only if it has a (3′, θ ′)-Bessel model. So, we will assume that

S =
[ 1

2
1
2

]
.

Let (π, V ) be an irreducible admissible representation of H(F). For c1, c2∈ F×,
consider the character ψc1,c2 of the unipotent radical N1(F) of the Borel subgroup
given by

ψc1,c2

 1 x ∗ ∗
1 ∗ y

1
–x 1

= ψ(c1x + c2 y).

The representation π of H(F) is called generic if HomN1(F)(π, ψc1,c2) 6= 0. In this
case there is an associated Whittaker model W(π, ψc1,c2) consisting of functions
H(F)→ C that transform on the left according to ψc1,c2 . For W ∈W(π, ψc1,c2),
there is an associated zeta integral

Z(s,W )=

∫
F×

∫
F

W

 y
y

1
x 1

 |y|s−3/2 dx d×y.

This integral is convergent for Re(s) > s0, where s0 is independent of W [Roberts
and Schmidt 2007, Proposition 2.6.3]. More precisely, the integral converges to
an element of C(q−s), and therefore has meromorphic continuation to all of C.
Moreover, there exists an L-factor of the form

L(s, π)=
1

Q(q−s)
, Q(X) ∈ C[X ], Q(0)= 1,

such that

(3-34)
Z(s,W )

L(s, π)
∈ C[q−s, qs

] for all W ∈W(π, ψc1,c2).

(This is proved in [Roberts and Schmidt 2007, Proposition 2.6.4] for π with trivial
central character. Also see [Takloo-Bighash 2000, §3.1])

Lemma 3.16. Let (π, V ) be an irreducible admissible generic representation of
H(F) with trivial central character. Let σ be a unitary character of F×, and let
s ∈ C be arbitrary. Then there exists a nonzero functional fs,σ : V → C with the
following properties.

i) For all x, y, z ∈ F and v ∈ V ,

(3-35) fs,σ

π
 1 x y

1 y z
1

1

 v
= ψ(c1 y) fs,σ (v).
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ii) For all x ∈ F× and v ∈ V ,

(3-36) fs,σ

π
 x

1
1

x

 v
= σ(x)−1

|x |−s+1/2 fs,σ (v).

Proof. We may assume that V =W(π, ψc1,c2). Let s0 ∈ R be such that Z(s,W ) is
absolutely convergent for Re(s) > s0. Then the integral

Zσ (s,W )=

∫
F×

∫
F

W

 y
y

1
x 1

 |y|s−3/2σ(y) dx d×y

is also absolutely convergent for Re(s) > s0, since σ is unitary. Note that these
are the zeta integrals for the twisted representation σπ . Therefore, by (3-34), the
quotient Zσ (s,W )/L(s, σπ) is in C[q−s, qs

] for all W ∈W(π, ψc1,c2). Now, for
Re(s) > s0, we define

(3-37) fs,σ (W )=
Zσ (s, π(w)W )

L(s, σπ)
, where w =

 1
1

1
–1

 .
Straightforward calculations show that (3-35) and (3-36) are satisfied. For general
s, since the quotient (3-37) is entire, we can define fs,σ by analytic continuation.

�

Proposition 3.17. Let (π, V ) be an irreducible admissible generic representation
of H(F) with trivial central character. Then π admits a split Bessel functional
with respect to any character 3 of T (F) that satisfies 3

∣∣
F× ≡ 1.

Proof. As mentioned earlier, we can take

S =
[ 1

2
1
2

]
.

Let s ∈ C and σ be a unitary character of F× such that

3

 x
1

1
x

= σ(x)−1
|x |−s+1/2 for all x ∈ F×.

Let fs,σ be as in Lemma 3.16. We may assume that c1 = 1, so that fs,σ (π(u)v)=
θ(u)v for all u ∈U (F) by (3-35). We have

fs,σ

π
 x

1
1

x

 v
=3(x) fs,σ (v) for all x ∈ F×,
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by (3-36). Since 3
∣∣

F× ≡ 1 we in fact obtain fs,σ(π(t)v) = 3(t) fs,σ (v) for all
t ∈ T (F). Hence fs,σ is a Bessel functional as desired. �

We remark here that, in the split case, for values of s ∈ C outside the range of
convergence of the zeta integral, we do not have an explicit formula for the Bessel
functional. This, in turn, is also reflected in the fact that, when 3 is not unitary,
it is not very easy to define an inner product on the space VB defined in (3-32),
although it is known that the Steinberg representation is square-integrable.

Main result on existence and uniqueness of Bessel models.

Theorem 3.18. Let π =�StGSp4
be the Steinberg representation of H(F), twisted

by an unramified quadratic character �. Let 3 be a character of L× such that
3|F× ≡ 1. If L is a field, then π has a (3, θ)-Bessel model if and only if 3 6=
� ◦ NL/F . If L is not a field, then π always has a (3, θ)-Bessel model. In case π
has a (3, θ)-Bessel model, it is unique.

In addition, if π has a (3, θ)-Bessel model, then the Iwahori spherical vector
of π is a test vector for the Bessel functional if and only if3 satisfies the following
conditions.

i) 3|1+P ≡ 1, i.e., c(3)≤ 1 (see (3-10) for definition of c(3)).

ii) If
( L

p

)
= 1 and 3 is unramified, then 3((1,$)) 6=�($).

Proof. If π has a (3, θ)-Bessel model, then it contains a unique vector in B(3, θ)I.
By Theorem 3.11, the dimension of B(3, θ)I is one, which gives us the uniqueness
of Bessel models.

Now we will show the existence of the Bessel model. Let 3 be a character
of L×, with 3|F× ≡ 1, such that, if L is a field, 3 6= � ◦ NL/F . We know, by
Theorem 3.11, that dim(B(3, θ)I) = 1. If 3 is unitary, Proposition 3.15 tells us
that VB is a (3, θ)-Bessel model for π . If3 is not unitary, we use the fact that π is
a generic representation in the split case. Then Proposition 3.17 gives us the result.

The statement regarding the test vector can be deduced from Proposition 3.8
and the fact that a Bessel function B corresponds to a test vector if and only if
B(1) 6= 0. �

4. Integral representation of the nonarchimedean local L-function

Using the explicit values of the Bessel function obtained in Proposition 3.8, we
will now obtain an integral representation of the L-function for the Steinberg rep-
resentation π of H(F) twisted by any irreducible admissible representation τ of
GL2(F). For this, we will use the integral obtained in [Furusawa 1993]. We briefly
describe the setup.
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4.1. The unitary group, parabolic induction and the local integral. Let G =
GU(2, 2; L) be the unitary similitude group, whose F-points are given by

G(F) :=
{
g ∈ GL4(L) : t ḡ Jg = µ2(g)J, µ2(g) ∈ F×

}
where J =

[
12

−12

]
.

Note that H(F)=G(F)∩GL4(F). As a minimal parabolic subgroup we choose the
subgroup of all matrices that become upper triangular after switching the last two
rows and last two columns. Let P be the standard maximal parabolic subgroup of
G(F)with a nonabelian unipotent radical. Let P=M N be the Levi decomposition
of P . We have M = M (1)M (2), where

M (1)(F)=


 ζ

1
ζ̄−1

1

 : ζ ∈ L×

 ,(4-1)

M (2)(F)=


 1

α β
µ

γ δ

 ∈ G(F)

 ,(4-2)

N (F)=


 1 z

1
1

–z̄ 1

 1 w y
1 ȳ

1
1

 : w ∈ F, y, z ∈ L

 .(4-3)

The modular factor of the parabolic P is given by

δP

 ζ
1
ζ̄−1

1

 1
α β
µ

γ δ

= ∣∣N (ζ )µ−1∣∣3 (µ= ᾱδ−βγ̄ ),

where | · | is the normalized absolute value on F . Let (τ, Vτ ) be an irreducible
admissible representation of GL2(F), and let χ0 be a character of L× such that
χ0
∣∣

F× coincides with ωτ , the central character of τ . We assume that Vτ is the
Whittaker model of τ with respect to the character ψ−c (we assume that c 6= 0).
Then the representation (λ, g) 7→ χ0(λ)τ (g) of L× × GL2(F) factors through
{(λ, λ−1) : λ ∈ F×}, and consequently defines a representation of M (2)(F) on the
same space Vτ . Let χ be a character of L×, considered as a character of M (1)(F).
Extend the representation χ × χ0 × τ of M(F) to a representation of P(F) by
setting it to be trivial on N (F). If s is a complex parameter, set I (s, χ, χ0, τ ) =

IndG(F)
P(F)(δ

s+1/2
P ×χ ×χ0× τ).

Let (π, Vπ ) be the twisted Steinberg representation of H(F). We assume that
Vπ is a Bessel model for π with respect to a character 3⊗ θ of R(F). Let the
characters χ, χ0 and 3 be related by χ(ζ ) = 3(ζ̄ )−1χ0(ζ̄ )

−1. Let W #( · , s) be
an element of I (s, χ, χ0, τ ) for which the restriction of W #( · , s) to the standard
maximal compact subgroup of G(F) is independent of s, i.e., W #( · , s) is a “flat
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section” of the family of induced representations I (s, χ, χ0, τ ). By [Pitale and
Schmidt 2009b, Lemma 2.3.1], it is meaningful to consider the integral

(4-4) Z(s)=
∫

R(F)\H(F)
W #(ηh, s)B(h) dh, η =

 1
α 1

1 –ᾱ
1

 .
This is the local component of the global integral considered in Section 5.2 below.

4.2. The GL2 newform. We define K (0)(p0)= GL2(o) and, for n > 0,

(4-5) K (0)(pn)= GL2(o)∩

[
1+ pn o

pn o×

]
.

As above, let (τ, Vτ ) be a generic, irreducible admissible representation of GL2(F)
such that Vτ is theψ−c-Whittaker model of τ . It is well known that Vτ has a unique
(up to a constant) vector W (1), called the newform, that is right-invariant under
K (0)(pn) for some n≥ 0. We then say that τ has conductor pn . We normalize W (1)

so that W (1)(1)= 1. We will need the values of W (1) evaluated at[
$ l

1

]
,

for l ≥ 0. The following table gives these values (refer to [Schmidt 2002, §2.4]).

τ W (1)
([
$ l

1

])
α×β with α and β unramified, αβ−1

6= | · |
±1 q−l/2α($

l+1)−β($ l+1)

α($)−β($)

α×β with α unramified, β ramified, αβ−1
6= | · |

±1 ωτ ($
l) α($−l) q−l/2

supercuspidal OR ramified twist of Steinberg 1 if l = 0
OR α×β with α, β ramified, αβ−1

6= | · |
±1

} {
0 if l > 0

�′ StGL2, with �′ unramified �′($ l) q−l

We extend W (1) to a function on M (2)(F) via W (1)(ag)=χ0(a)W (1)(g) for a∈ L×,
g ∈ GL2(F).

4.3. Choice of 3 and W#. We will choose a character 3 of L× such that π has a
(3, θ)-Bessel model and the Iwahori spherical vector is a test vector for the Bessel
functional. Noting that3|F× is the central character of π and using Theorem 3.18,
we impose the following conditions on 3:

i) 3|F× ≡ 1.

ii) c(3)≤ 1.
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iii) 3 6=� ◦ NL/F in case L is a field.

iv) ω3((1,$)) 6= −1 in case L is not a field and c(3)= 0.

Note that this implies that 3|o×+P ≡ 1. For n ≥ 1, let 0(Pn) be the principal
congruence subgroup of the maximal compact subgroup K G

:= G(o) of G(F),
defined by

0(Pn) := {g ∈ K G
: g ≡ 1 (mod Pn)}.

The next lemma will be crucial for the well-definedness of W # below.

Lemma 4.1. Let (τ, Vτ ) be a generic, irreducible admissible representation of
GL2(F) with conductor pn, n ≥ 0. Set n0 =max{1, n} and let

m̂ =

 ζ
a′ b′
µζ̄−1

c′ d ′

 ∈ M(F) and n̂ =

 1 z
1

1
–z̄ 1

 1 w y
1 ȳ

1
1

 ∈ N (F).

Suppose that A := η−1m̂n̂η lies in I0(Pn0). Then

i) c′ ∈Pn0 and a′ζ̄−1
∈ 1+Pn0 , and

ii) for any
[

a′1 b′1
c′1 d ′1

]
∈ GU(1, 1; L)(F), we have

χ(ζ )W (1)
([

a′1 b′1
c′1 d ′1

] [
a′ b′

c′ d ′

])
=W (1)

([
a′1 b′1
c′1 d ′1

])
.

Proof. Using Lemma 2.1, it is easy to show that for n ≥ 0

(4-6) x ∈ o+Pn and αx ∈ o+Pn
⇒ x ∈Pn.

First note that I0(Pn0)⊂ M4(o+Pn0). Looking at the (4, 1), (4, 2) coefficient of
A, we see that c′, αc′ ∈ o+Pn0 . By (4-6), we obtain c′ ∈Pn0 , as required.

Observe that m̂n̂ ∈ K G and c′ ∈Pn0 ⊂P implies that ζ, a′, d ′ ∈ o×L . The upper
left 2× 2 block of A is given by[

ζ +αzζ zζ
αa′−α(ζ +αzζ )) a′−αzζ

]
.

We will repeatedly use the following fact:

If x ∈ o+Pn0, then x ≡ x̄ (mod (α− ᾱ)Pn0).

Applying this to the matrix entries of A, we get zζ ≡ z̄ζ̄ (mod (α− ᾱ)Pn0), and
then

(4-7)
a′− ā′ ≡ (α− ᾱ)zζ (mod (α− ᾱ)Pn0),

ζ − ζ̄ ≡ (ᾱ−α)zζ (mod (α− ᾱ)Pn0).
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Using ζ + αzζ ≡ ζ̄ + ᾱz̄ζ̄ (mod (α − ᾱ)Pn0) and (4-7), we get from the (2, 1)
coefficient of A that

(a′− ζ̄ )(α− ᾱ)≡ 0 (mod (α− ᾱ)Pn0).

Hence a′ − ζ̄ ≡ 0 (mod Pn0), so that a′ζ̄−1
∈ 1+Pn0 , as required. This proves

part (i) of the lemma.
Looking at the (1, 2) coefficient of A, we see that zζ ∈P. Looking at the (1, 1)

coefficient of A, we see that ζ ∈ o×+P.

χ(ζ )W (1)
([

a′1 b′1
c′1 d ′1

] [
a′ b′

c′ d ′

])
= χ(ζ )χ0(a′)W (1)

([
a′1 b′1
c′1 d ′1

] [
1 b′/a′

c′/a′ d ′/a′

])
=3(ζ̄−1)χ0(ζ̄

−1)χ0(a′)W (1)
([

a′1 b′1
c′1 d ′1

] [
1 b′/a′

c′/a′ d ′/a′

])
=W (1)

([
a′1 b′1
c′1 d ′1

])
.

Here we have used the fact that 3 is trivial on o×+P, χ0 is trivial on 1+Pn0 and
the matrix [

1 b′/a′

c′/a′ d ′/a′

]
lies in K (0)(pn0). �

Let n0 = max{1, n}, as above. Given a complex number s, define the function
W #( · , s) : G(F)→ C as follows.

i) If g /∈ M(F)N (F)ηI0(Pn0), then W #(g, s)= 0.

ii) If g=mnηkγ with m ∈M(F), n ∈ N (F), k ∈ I, γ ∈0(Pn0), then W #(g, s)=
W #(mη, s).

iii) For ζ ∈ L× and
[

a′ b′

c′ d ′

]
∈ M (2)(F),

(4-8) W #

 ζ

1
ζ̄−1

1

 1
a′ b′
µ

c′ d ′

η, s


=
∣∣N (ζ ) ·µ−1∣∣3(s+1/2)

χ(ζ )W (1)
([

a′ b′

c′ d ′

])
,

where µ= ā′d ′− b′c̄′.

By Lemma 4.1, we see that W # is well-defined. It is an element of I (s, χ, χ0, τ ).

4.4. Support of W#. We choose W # as above and B as in Proposition 3.8, with
B(1) = 1. Note that B(1) 6= 0 by the comments in the beginning of Section 4.3.
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Then the integral (4-4) becomes

(4-9) Z(s)=
∑
l∈Z
m≥0

∑
t

W #(ηh(l,m)t, s) B(h(l,m)t) V l,m
t ,

where t runs through the double coset representatives from Proposition 3.3 and

V l,m
t = vol

(
R(F) \ R(F) h(l,m)t I

)
.

To compute (4-9), we need to find out for what values of l,m, t is ηh(l,m)t in the
support of W #. Write ηh(l,m)= h(l,m)ηm , where

ηm =


1

$mα 1
1 –$m ᾱ

1

 .
Since h(l,m) ∈ M(F), we need to know for which values of m, t is ηm t in the
support of W #. This is done in the following lemma.

Lemma 4.2. Let t be any double coset representative from Proposition 3.3. Then
ηm t lies in the support, M Nη I0(Pn0), of W # if and only if m = 0 and t = 1.

Proof. We first consider the case m > 0. Note that it is enough to show that ηm t /∈
M Nη I0(P). For any double coset representative t , we have t−1ηm t ≡ 1 (mod P)

and hence t−1ηm t ∈ 0(P). So it is enough to show that t /∈ M Nη I0(P) for any t .
Suppose there are m̂ ∈M, n̂ ∈ N such that A= η−1m̂n̂t ∈ I0(P). Using m̂, n̂ ∈ K G

and

(4-10) I0(P)⊂


o+P P o+P o+P

o+P o+P o+P o+P

P P o+P o+P

P P P o+P


we get a contradiction for every t ∈W . We now consider the case m = 0. First let
t = 1. Taking m̂ = n̂ = 1, we easily see that η ∈ M Nη I0(Pn0), as required. Now
assume that t 6= 1. Suppose, there are m̂ ∈ M, n̂ ∈ N such that A = η−1m̂n̂ηt ∈
I0(P). Again, using m̂, n̂ ∈ K G and (4-10) we get a contradiction for t 6= 1. This
completes the proof of the lemma. �

4.5. Integral computation. From Lemma 4.2, we see that the integral (4-9) is
equal to

(4-11) Z(s)=
∑
l≥0

W #(ηh(l, 0), s) B(h(l, 0)) V l,0
1 .



396 AMEYA PITALE

Arguing as in [Furusawa 1993, §3.5], we get

V l,0
1 =

(
1−

( L
p

)
q−1

)
q

(1+ q)2(1+ q2)
q3l .

From Proposition 3.8 and (4-8), we get B(h(l, 0))= (−ωq−3)l and

W #(ηh(l, 0), s)= q−3(s+1/2)lωτ ($
−l)W (1)

([
$ l

1

])
.

We set

C =

(
1−

( L
p

)
q−1

)
q

(1+ q)2(1+ q2)
.

We have

(4-12) Z(s)= C
∑
l≥0

(−ω)l q−3(s+1/2)lωτ ($
−l)W (1)

([
$ l

1

])
.

We will now substitute the value of W (1), from the table obtained in Section 4.2,
into (4-12) for all possible GL2 representations τ .
(4-13)

Z(s)=



C
(
1+ωα($−1)q−3s−2)−1(1+ωβ($−1)q−3s−2)−1

if τ = α×β, α, β unramified, αβ−1
6= | · |

±1
;

C
(
1+ωα($−1)q−3s−2)−1

if τ = α×β, α unramified, β ramified αβ−1
6= | · |

±1
;

C
(
1+ω�′($−1)q−3s−5/2)−1

if τ =�′StGL2, �
′ unramified;

C otherwise.

Let τ̃ denote the contragredient of the representation τ . We get the following
theorem on the integral representation of L-functions.

Theorem 4.3. Let
π =�StGSp4

be the Steinberg representation of GSp4(F) twisted by an unramified quadratic
character �. Let τ be any irreducible admissible representation of GL2(F). Let
Z(s) be the integral defined in (4-4). Choose B as in Section 3 and W # as in
Section 4.3. Then we have

(4-14) Z(s)= Y ′(s)L
(
3s+ 1

2 , π × τ̃
)
,

where

Y ′(s)=
{

C
(
1−�($)�′($−1)q−3s−3/2

)
if τ =�′ StGL2, �

′ unramified;
C otherwise.
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Here,

C =

(
1−

( L
p

)
q−1

)
q

(1+ q)2(1+ q2)
.

Proof. This follows from (4-13) and from the following definition of L-functions
for the representation π =�StGSp4

, with� unramified and quadratic, twisted by τ̃ :

L(s, π× τ̃ )=



(
1−�($) α($−1)q−s−3/2)−1(1−�($) β($−1)q−s−3/2)−1

if τ = α×β, α, β unramified, αβ−1
6= | · |

±1
;(

1−�($) α($−1)q−s−3/2)−1

if τ = α×β, α unramified, β ramified αβ−1
6= | · |

±1
;(

1−�($)�′($−1)q−s−1)−1(1−�($)�′($−1)q−s−2)−1

if τ =�′StGL2, �
′ unramified;

1 otherwise. �

5. Global theory

In the previous section, we computed the nonarchimedean integral representation
of the L-function L(s, π × τ̃ ) for the Steinberg representation of GSp4 twisted by
any GL2 representation. In [Furusawa 1993], the integral has been computed for
both π and τ unramified. In [Pitale and Schmidt 2009c], the integral has been
calculated for an unramified representation π twisted by any ramified GL2 repre-
sentation τ . In the same paper, the archimedean integral was computed for π∞
a holomorphic (or limit of holomorphic) discrete series representation with scalar
minimal K -type, and τ∞ any representation of GL2(R). In this section, we will
put together all the local computations and obtain an integral representation of a
global L-function. We will start with a Siegel cuspidal newform F of weight l with
respect to the Borel congruence subgroup of square-free level. We will obtain an
integral representation of the L-function of F twisted by any irreducible cuspidal
automorphic representation τ of GL2(A). When τ is obtained from a holomorphic
cusp form of the same weight l as F , we obtain a special value result for the L-
function, in the spirit of Deligne’s conjectures.

5.1. Siegel modular form and Bessel model. Let M be a square-free positive in-
teger and l be any positive integer. Set

B(M) :=

g ∈ Sp4(Z) : g ≡

 ∗ 0 ∗ ∗
∗ ∗ ∗ ∗

0 0 ∗ ∗
0 0 0 ∗

 (mod M)

 .
Let F be a Siegel newform of weight l with respect to B(M). We refer the reader
to [Saha 2009, §8] or [Schmidt 2005] for definition and details on newforms with
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square-free level. The Fourier expansion of F is given by

F(Z)=
∑
T>0

A(T ) e2π i tr(T Z),

where T runs over all semi-integral, symmetric, positive definite 2× 2 matrices.
We obtain a well-defined function 8=8F on H(A), where A is the ring of adeles
of Q, by

8(γ h∞k0)= µ2(h∞)l det(J (h∞, i12))
−l F(h∞〈i12〉),

where γ ∈ H(Q), h∞ ∈ H+(R), k0 ∈
∏

p-M H(Zp)
∏

p|M Ip. Let VF be the space
generated by the right translates of8F and let πF be one of the irreducible compo-
nents. Then πF =⊗πp, where π∞ is a holomorphic discrete series representation
of H(R) of lowest weight (l, l), for a finite prime p - M , πp is an irreducible,
unramified representation of H(Qp), and for p|M , πp is a twist �pStGSp4

of the
Steinberg representation of H(Qp) by an unramified quadratic character �p.

For a positive integer D ≡ 0, 3 (mod 4), set

S(−D)=



[
1
4 D 0
0 1

]
if D ≡ 0 (mod 4),

[
1
4(1+D) 1

2
1
2 1

]
if D ≡ 3 (mod 4).

Let L=Q(
√
−D) and T (A)'A×L be the adelic points of the group defined in (3-1).

Let R(A)= T (A)U (A) be the Bessel subgroup of H(A). Let 3 be a character of

(5-1) T (A)/T (Q) T (R)
∏
p-M

T (Zp)
∏
p|M

T 0
p ,

where T (Zp)= T (Qp)∩GL2(Zp) and T 0
p = T (Zp)∩0

0
p. Here

00
p =

{
g ∈ GL2(Zp) : g ≡

[
∗ 0
∗ ∗

]
(mod pZp)

}
.

Note that, under the isomorphism (3-2), T 0
p corresponds to Z×p+ poL p , where oL p is

the ring of integers of the two dimensional algebra L⊗Q Qp. Let ψ be a character
of Q \A that is trivial on Zp for all primes p and satisfies ψ(x) = e−2π i x for all
x ∈ R. We define the global Bessel function of type (3, θ) associated to 8̄ by

B8̄(h)=
∫

Z H (A)R(Q)\R(A)
(3⊗ θ)(r)−18̄(rh)dr,

where

θ

([
1 X

1

])
= ψ(tr(SX)) and 8̄(h)=8(h).
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If B8̄ is nonzero, then Bϕ̄ is nonzero for any ϕ ∈ πF . We say that πF has a global
Bessel model of type (3, θ) if B8̄ 6= 0. We shall make the following assumption
on the representation πF .

Assumption. πF has a global Bessel model of type (3, θ) such that

A1. −D is the fundamental discriminant of Q(
√
−D).

A2. 3 is a character of (5-1).

A3. For p|M , if L ⊗Qp is split and 3p is unramified, then

�p($p)3p((1,$p)) 6= 1.

Remark 5.1. In [Furusawa 1993; Pitale and Schmidt 2009b; 2009c; Saha 2009],
nonvanishing of a suitable Fourier coefficient of F is assumed, while in [Pitale and
Schmidt 2009a], the existence of a suitable global Bessel model for πF is assumed.
We explain the relation of the assumption above to nonvanishing of certain Fourier
coefficients of F . Let {t j } be a set of representatives for (5-1). One can take
t j ∈ GL2(Af). Write

t j = γ j m jκ j ,

with γ j ∈ GL2(Q),m j ∈ GL+2 (R) and κ j ∈
∏

p-M GL2(Zp)
∏

p|M 0
0
p. Set

S j := det(γ j )
−1 tγ j S(−D)γ j .

Note that {S j } j is a subset of the set of representatives of 00(M) equivalence
classes of primitive, semi-integral positive definite 2× 2 matrices of discriminant
−D.

From [Saha 2009] or [Sugano 1985], we have, for h∞ ∈ H+(R),

(5-2) B8̄(h∞)=µ2(h∞)l det(J (h∞, I ))−l e−2π i tr(S(−D) h∞〈I 〉 )
∑

j
3(t j )

−1 A(S j ),

and B8̄(h∞)= 0 for h∞ 6∈ H+(R). Suppose that there is a semi-integral, symmet-
ric, positive definite 2× 2 matrix T satisfying

i) −D = det(2T ) is the fundamental discriminant of L =Q(
√
−D).

ii) T is 00(M) equivalent to one of the S j .

iii) The Fourier coefficient A(T ) 6= 0.

Then it is clear from (5-2) that one can choose a 3 such that parts A1 and A2 of
the assumption are satisfied. If M = 1 (as in [Furusawa 1993; Pitale and Schmidt
2009b; 2009c]) or, every prime p|M is inert in L (as in [Saha 2009]), then {S j } j

is the complete set of representatives of 00(M) equivalence classes and hence,
condition (i) above implies condition (ii) to give the assumption from [Furusawa
1993; Pitale and Schmidt 2009b; 2009c] and [Saha 2009]. We have to include part
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A3 of the assumption to guarantee that the Iwahori spherical vector in πp, for p|M ,
is a test vector for the Bessel functional.

We abbreviate a(3)=
∑
3(t j ) A(S j ). For h ∈ H(A), we have

B8̄(h)= a(3)
∏

p

Bp(h p),

where B∞ is as defined in [Pitale and Schmidt 2009c], for a finite prime p - M ,
Bp is the spherical vector in the (3p, θp)-Bessel model for πp, and for p|M , Bp

is the vector in the (3p, θp)-Bessel model for πp defined by Proposition 3.8 and
3.10. For p <∞, we have normalized the Bp so that Bp(1)= 1.

5.2. Global induced representation and global integral. Let τ =
⊗
τp be an irre-

ducible cuspidal automorphic representation of GL2(A) with central character ωτ .
For every prime p <∞, let pn p be the conductor of τp. For almost all p, we have
n p = 0. Set N =

∏
p pn p . Choose l1 to be any weight occurring in τ∞. Let χ0 be

a character of A×L such that χ0|A× = ωτ and χ0,∞(ζ ) = ζ
l2 for any ζ ∈ S1. Here,

l2 depends on l1 and l by the formula

l2 =

{
l1− 2l if l ≤ l1,

−l1 if l ≥ l1,

as in [Pitale and Schmidt 2009c]. The existence of such a character is guaranteed
by Lemma 5.3.1 of that reference. Define another character χ of A×L by

χ(ζ )= χ0(ζ̄ )
−13(ζ̄ )−1.

Let I (s, χ0, χ, τ ) be the induced representation of G(A) obtained in an analogous
way to the local situation in Sect. 4.1. We will now define a global section f3(g, s).
We realize the representation τ as a subspace of L2

(
GL2(Q) \GL2(A)

)
and let f̂

be the automorphic cusp form such that the space of τ is generated by the right
translates of f̂ . The function f̂ corresponds to a cuspidal Hecke newform on the
complex upper half plane. Then, f̂ is factorizable. Write f̂ =⊗ f̂ p such that f̂∞ is
the function of weight l1 in τ∞. For p <∞, f̂ p is the unique newform in τp with
f̂ p(1)= 1. Using χ0, extend f̂ to a function of GU(1, 1; L)(A).

For a finite prime p, set

K G
p :=


G(Zp) if p - M N ;
I0((poL p)

n p,0) if p|M;
H(Zp)0((poL p)

n p) if p|N , p - M.

Here, in the second case, n p,0 =max(1, n p). Set K G(M, N )=
∏

p<∞ K G
p and let

K∞ be the maximal compact subgroup of G(R). Let η be the element of G(Q)
defined in (4-4). Let ηM,N be the element of G(A) such that the p-component is
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given by η for p|M N and by 1 for p - M N . For s ∈ C, define f3( · , s) on G(A)
by

i) f3(g, s)= 0 if g 6∈ M(A)N (A) ηM,N K∞K G(M, N ).

ii) If m=m1m2, mi ∈M (i)(A), n ∈ N (A), k= k0k∞, k0 ∈ K G(M, N ), k∞ ∈ K∞,
then

(5-3) f3(mnηM,N k, s)= δ1/2+s
P (m) χ(m1) f̂ (m2) f (k∞).

Recall that δP(m1m2)=
∣∣NL/Q(m1)µ1(m2)

−1
∣∣3.

Here, M (1)(A), M (2)(A), N (A) are the adelic points of the algebraic groups defined
by (4-1)–(4-3) and f is the function on K∞ defined in [Pitale and Schmidt 2009c].
As in [Pitale and Schmidt 2009c], it can be checked that f3 is well-defined. For
Re(s) large enough we can form the Eisenstein series

E(g, s; f3) :=
∑

γ∈P(Q)\G(Q)

f3(γ g, s).

In fact, E(g, s; f3) has a meromorphic continuation to the entire plane. In [Furu-
sawa 1993], Furusawa studied integrals of the form

(5-4) Z(s, f3, ϕ)=
∫

H(Q)Z H (A)\H(A)
E(h, s; f3) ϕ(h) dh,

where ϕ ∈ Vπ . Theorem 2.4 of [Furusawa 1993], the “basic identity”, states that

(5-5) Z(s, f3, ϕ)=
∫

R(A)\H(A)
W f3(ηh, s) Bϕ(h) dh,

where Bϕ is the Bessel function corresponding to ϕ and W f3 is the function defined
by

W f3(g)=
∫

Q\A

f3

 1
1 x

1
1

 g

ψ(cx) dx, g ∈ G(A).

The function W f3 is a pure tensor and we can write

W f3(g, s)=
∏

p

W #
p(gp, s).

Then we see that W #
∞

is as defined in [Pitale and Schmidt 2009c]. For a finite
prime p - M , the W #

p is the function defined in Section 4.5 of that reference. For
p|M , the W #

p is as in Section 4.3. It follows from (5-5) that

Z(s, f3, 8̄)=
∏
p≤∞

Z p(s,W #
p, Bp),
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where

Z p(s,W #
p, Bp)=

∫
R(Qp)\H(Qp)

W #
p(ηh, s) Bp(h) dh.

When p - M N , p < ∞, the integral Z p is evaluated in [Furusawa 1993]. For
p =∞ or p|N , p - M , the integral Z p is calculated in [Pitale and Schmidt 2009c,
Theorems 3.5.1 and 4.4.1]. For p|M , the integral Z p is calculated in Theorem 4.3.
Putting all of this together we get the following global theorem.

Theorem 5.2. Let F be a Siegel cuspidal newform of weight l with respect to
B(M), where l is any positive integer and M is square-free, satisfying the assump-
tion stated in Section 5.1. Let 8 be the adelic function corresponding to F , and
let πF be an irreducible component of the cuspidal automorphic representation
generated by 8. Let τ be any irreducible cuspidal automorphic representation of
GL2(A). Let the global characters χ , χ0 and 3, as well as the global section
f3 ∈ I (s, χ, χ0, τ ), be chosen as above. Then the global integral (5-4) is given by

(5-6) Z(s, f3, 8̄)=
(∏

p≤∞

Yp(s)
) L(3s+ 1/2, π × τ̃ )

L(6s+ 1, ω−1
τ )L(3s+ 1, τ̃ ×AI(3))

with

(5-7) Y∞(s)= a(3) i l+l2
a+

2
πD−3s−l/2

·
(4π)−3s+3/2−l

6s+ 2l + l2− 1
0
(
3s+ l − 1+ (ir)/2

)
0
(
3s+ l − 1− (ir)/2

)
0(3s+ l − l1/2− 1/2)

.

Here, AI(3) is the automorphic representation of GL2(A) obtained from 3 via
automorphic induction. The factor Yp(s) is one for p - M N. For p - M, p|N ,
the factor Yp(s) is given in [Pitale and Schmidt 2009c, Theorem 3.5.1]. For p|M ,
we have Yp(s) = L p(6s + 1, ω−1

τp
) L
(
3s + 1, τ̃p ×AI(3p)

)
Y ′p(s), where Y ′p(s) is

given in Theorem 4.3. The number r and a+ are as in the archimedean calculation
in [Pitale and Schmidt 2009c], and the constant a(3) is defined in Section 5.1.

5.3. Special values of L-functions. In this section, we will use Theorem 5.2 to
obtain a special value result for the L-function in the case that τ corresponds to
a holomorphic cusp form of the same weight as F . Let 9 ∈ Sl(N , χ ′), the space
of holomorphic cusp forms on the complex upper half plane h1 of weight l with
respect to 00(N ) and nebentypus χ ′. Here N =

∏
p pn p is any positive integer and

χ ′ is a Dirichlet character modulo N . We have as a Fourier expansion

9(z)=
∞∑

n=1

bne2π inz.



STEINBERG REPRESENTATION OF GSp(4) 403

We will assume that 9 is primitive, which means that 9 is a newform, a Hecke
eigenform and is normalized so that b1 = 1. Let ω =

⊗
ωp be the character of

A×/Q× corresponding to χ ′. Let K (0)(N ) :=
∏

p|N K (0)(pn p)
∏

p-N GL2(Zp)with
the local congruence subgroups

K (0)(pn)= GL2(Zp)∩

[
1+ pnZp Zp

pnZp Zp

]
as in (4-5). Let K0(N ) :=

∏
p|N K0(p

n p)
∏

p-N GL2(Zp), where

K0(p
n)= GL2(Zp)∩

[
Zp Zp

pnZp Zp

]
.

Evidently, K (0)(N )⊂ K0(N ). Let λ be the character of K0(N ) given by

λ

([
a b
c d

])
:=

∏
p|N

ωp(ap).

With these notations, we now define the adelic function f9 by

f9(γ0mk)= λ(k)
det(m)l/2

(γ i + δ)l
9
(αi +β
γ i + δ

)
,

where γ0 ∈ GL2(Q),
m =

[
α β

γ δ

]
∈ GL+2 (R)

and k ∈ K0(N ). Define a character χ0, as in the previous section, with l2 = −l.
Using χ0, extend f9 to a function on GU(1, 1; L)(A). We can take f̂ = f9 in
(5-3) and obtain the section f3. Now, [Pitale and Schmidt 2009c, Lemma 5.4.2]
gives us that, for g ∈ G+(R), the function

µ2(g)−l det(J (g, i12))
l E(g, s; f3)

only depends on Z = g〈i12〉. We define the function E on

H2 := {Z ∈ M2(C) : i( tZ̄ − Z ) is positive definite}

by the formula

E(Z , s)= µ2(g)−l det
(
J (g, i12)

)l E
(

g,
s
3
+

l
6
−

1
2
; f3

)
,

where g ∈ G+(R) is such that g〈i12〉 = Z . The series that defines E(Z , s) is
absolutely convergent for Re(s) > 3− l/2 (see [Klingen 1967]). We assume that
l > 6. Now, we can set s = 0 and obtain a holomorphic Eisenstein series E(Z , 0)
on H2. Let

0G(M, N ) := G(Q)∩G+(R)K G(M, N ).
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We have

0G(M, N )∩ H(Q)= B(M).

Then E(Z , 0) is a modular form of weight l with respect to 0G(M, N ). Its restric-
tion to h2, the Siegel upper half space, is a modular form of weight l with respect
to B(M). By [Harris 1984], we know that the Fourier coefficients of E(Z , 0) are
algebraic.

Set

V (M) :=
[
Sp4(Z) : B(M)

]−1

and define, for any two Siegel modular forms F1, F2 of weight l with respect to
B(M), the Petersson inner product by

〈F1, F2〉 =
1
2 V (M)

∫
B(M)\h2

F(Z) F2(Z) (det(Y ))l−3d X dY.

Arguing as in [Pitale and Schmidt 2009c, Lemma 5.6.2] or [Saha 2009, Proposi-
tion 9.0.5], we get

(5-8) Z
( 1

6 l − 1
2 , f3, 8̄

)
=
〈
E(Z , 0), F

〉
.

Let

0(2)(M) := {g ∈ Sp4(Z) : g ≡ 1 (mod M)}

be the principal congruence subgroup of Sp4(Z). We denote the space of all Siegel
cusp forms of weight l with respect to 0(2)(M) by Sl(0

(2)(M)). For a Hecke
eigenform F ∈ Sl(0

(2)(M)), let Q(F) be the subfield of C generated by all the
Hecke eigenvalues of F . From [Garrett 1992, p. 460], we see that Q(F) is a
totally real number field. Let Sl(0

(2)(M),Q(F)) be the subspace of Sl(0
(2)(M))

consisting of cusp forms whose Fourier coefficients lie in Q(F). Again by [Gar-
rett 1992, p. 460], Sl(0

(2)(M)) has an orthogonal basis {Fi } of Hecke eigen-
forms Fi ∈ Sl(0

(2)(M),Q(Fi )). In addition, if F is a Hecke eigenform such that
F ∈ Sl(0

(2)(M),Q(F)), then one can take F1 = F in the above basis. Hence, we
assume that the Siegel newform F of weight l with respect to B(M) considered in
the previous section satisfies F ∈ Sl(0

(2)(M),Q(F)). Then, arguing as in [Pitale
and Schmidt 2009b, Lemma 5.4.3], we have

(5-9)

〈
E(Z , 0), F

〉
〈F, F〉

∈ Q̄,

where Q̄ is the algebraic closure of Q in C. Let

〈9,9〉1 :=
(
SL2(Z) : 01(N )

)−1
∫
01(N )\h1

|9(z)|2 yl−2dx dy,
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where

01(N ) :=
{[

a b
c d

]
∈ 00(N ) : a, d ≡ 1 (mod N )

}
.

We have the following generalization of [Furusawa 1993, Theorem 4.8.3].

Theorem 5.3. Let l,M be positive integers such that l > 6 and M is square-free.
Let F be a cuspidal Siegel newform of weight l with respect to B(M) such that F ∈
Sl(0

(2)(M),Q(F)), satisfying the assumption from Sect. 5.1. Let 9 ∈ Sl(N , χ ′)
be a primitive form, with N =

∏
pn p , any positive integer, and χ ′, any Dirich-

let character modulo N. Let πF and τ9 be the irreducible cuspidal automorphic
representations of GSp4(A) and GL2(A) corresponding to F and 9. Then

(5-10)
L
( l

2
− 1, πF × τ̃9

)
π5l−8〈F, F〉〈9,9〉1

∈ Q̄.

Proof. Arguing as in the proof of [Pitale and Schmidt 2009c, Theorem 5.7.1],
together with (5-8) and (5-9), we get the theorem. �

Special value results like the one above have been obtained in [Böcherer and
Heim 2006; Furusawa 1993; Pitale and Schmidt 2009b; 2009c; Saha 2009].

Acknowledgments

We thank Ralf Schmidt for all his help, and in particular for explaining how to
obtain a Bessel model from a Whittaker model in the split case. We also thank
Abhishek Saha for several fruitful discussions.

References

[Böcherer and Heim 2006] S. Böcherer and B. E. Heim, “Critical values of L-functions on GSp2×
GL2”, Math. Z. 254:3 (2006), 485–503. MR 2007f:11053 Zbl 1197.11059

[Cartier 1979] P. Cartier, “Representations of p-adic groups: a survey”, pp. 111–155 in Automorphic
forms, representations and L-functions, I (Corvallis, OR, 1977), edited by A. Borel and W. Cas-
selman, Proc. Sympos. Pure Math. 33, Amer. Math. Soc., Providence, R.I., 1979. MR 81e:22029
Zbl 0421.22010

[Deligne 1979] P. Deligne, “Valeurs de fonctions L et périodes d’intégrales”, pp. 313–346 in Au-
tomorphic forms, representations and L-functions, Part 2 (Oregon State Univ., Corvallis, Ore.,
1977), edited by A. Borel and W. Casselman, Proc. Sympos. Pure Math. XXXIII, Amer. Math.
Soc., Providence, R.I., 1979. MR 81d:12009 Zbl 0449.10022

[Furusawa 1993] M. Furusawa, “On L-functions for GSp(4)×GL(2) and their special values”, J.
Reine Angew. Math. 438 (1993), 187–218. MR 94e:11057 Zbl 0770.11025

[Garrett 1992] P. B. Garrett, “On the arithmetic of Siegel–Hilbert cuspforms: Petersson inner prod-
ucts and Fourier coefficients”, Invent. Math. 107:3 (1992), 453–481. MR 93e:11060

[Harris 1984] M. Harris, “Eisenstein series on Shimura varieties”, Ann. of Math. (2) 119:1 (1984),
59–94. MR 85j:11052 Zbl 0589.10030



406 AMEYA PITALE

[Klingen 1967] H. Klingen, “Zum Darstellungssatz für Siegelsche Modulformen”, Math. Z. 102
(1967), 30–43. MR 36 #2555

[Novo–dvorsky and Piatetski-Shapiro 1973] M. E. Novo–dvorsky and I. I. Piatetski-Shapiro, “Gener-
alized Bessel models for the symplectic group of rank 2”, Mat. Sb. (N.S.) 90 (132) (1973), 246–256,
326. In Russian; translated in Math. USSR-Sb. 19 (1972), 243–255. MR 49 #3045

[Pitale and Schmidt 2009a] A. Pitale and R. Schmidt, “Bessel models for lowest weight repre-
sentations of GSp(4,R)”, Int. Math. Res. Notices 2009:7 (2009), 1159–1212. MR 2010h:11084
Zbl 05553685

[Pitale and Schmidt 2009b] A. Pitale and R. Schmidt, “Integral representation for L-functions for
GSp4 × GL2”, J. Number Theory 129:6 (2009), 1272–1324. MR 2010f:11079 Zbl 05559081
arXiv 0807.3522

[Pitale and Schmidt 2009c] A. Pitale and R. Schmidt, “Integral representation for L-functions for
GSp4×GL2, II”, preprint, 2009. Zbl 05559081 arXiv 0908.1611

[Prasad and Takloo-Bighash 2007] D. Prasad and R. Takloo-Bighash, “Bessel models for GSp(4)”,
preprint, 2007. arXiv 0712.2092

[Roberts and Schmidt 2007] B. Roberts and R. Schmidt, Local newforms for GSp(4), Lecture Notes
in Mathematics 1918, Springer, Berlin, 2007. MR 2008g:11080 Zbl 1126.11027

[Saha 2009] A. Saha, “L-functions for holomorphic forms on GSp(4) × GL(2) and their special
values”, Int. Math. Res. Not. 2009:10 (2009), 1773–1837. MR 2010g:11088 Zbl 05565833

[Schmidt 2002] R. Schmidt, “Some remarks on local newforms for GL(2)”, J. Ramanujan Math.
Soc. 17:2 (2002), 115–147. MR 2003g:11056 Zbl 0997.11040

[Schmidt 2005] R. Schmidt, “Iwahori-spherical representations of GSp(4) and Siegel modular forms
of degree 2 with square-free level”, J. Math. Soc. Japan 57:1 (2005), 259–293. MR 2005i:11065
Zbl 1166.11325

[Sugano 1985] T. Sugano, “On holomorphic cusp forms on quaternion unitary groups of degree 2”,
J. Fac. Sci. Univ. Tokyo Sect. IA Math. 31:3 (1985), 521–568. MR 86f:11040 Zbl 0559.10020

[Takloo-Bighash 2000] R. Takloo-Bighash, “L-functions for the p-adic group GSp(4)”, Amer. J.
Math. 122:6 (2000), 1085–1120. MR 2001k:11090 Zbl 0978.22017

Received September 30, 2009.

AMEYA PITALE

AMERICAN INSTITUTE OF MATHEMATICS

360 PORTAGE AVENUE

PALO ALTO, CA 94306-2244
UNITED STATES

pitale@aimath.org



PACIFIC JOURNAL OF MATHEMATICS
Vol. 250, No. 2, 2011

AN INTEGRAL EXPRESSION OF THE FIRST NONTRIVIAL
ONE-COCYCLE OF THE SPACE OF LONG KNOTS IN R3

KEIICHI SAKAI

Our main object of study is a certain degree-one cohomology class of the
space K3 of long knots in R3. We describe this class in terms of graphs
and configuration space integrals, showing the vanishing of some anomalous
obstructions. To show that this class is not zero, we integrate it over a cycle
studied by Gramain. As a corollary, we establish a relation between this
class and (R-valued) Casson’s knot invariant. These are R-versions of the
results which were previously proved by Teiblyum, Turchin and Vassiliev
over Z/2 in a different way from ours.

1. Introduction

A long knot in Rn is an embedding f : R1 ↪→ Rn that agrees with the standard
inclusion ι(t) = (t, 0, . . . , 0) outside [−1, 1]. We denote by Kn the space of long
knots in Rn equipped with C∞-topology.

In [Cattaneo et al. 2002] a cochain map I : D∗ → �∗DR(Kn) from a certain
graph complex D∗ was constructed for n > 3. The cocycles of Kn corresponding
to trivalent graph cocycles via I generalize an integral expression of finite type
invariants for (long) knots in R3 [Altschuler and Freidel 1997; Bott and Taubes
1994; Kohno 1994; Volić 2007]. In [Sakai 2008] the author found a nontrivalent
graph cocycle 0 ∈ D∗ and proved that, when n > 3 is odd, it gives a nonzero
cohomology class [I (0)] ∈ H 3n−8

DR (Kn). On the other hand, when n = 3, some
obstructions to I being a cochain map (called anomalous obstructions; see for
example [Volić 2007, Section 4.6]) may survive, so even the closedness of I (0)
was not clear. However, the obstructions for trivalent graph cocycles X (of “even
orders”) in fact vanish [Altschuler and Freidel 1997], hence the map I still yields
closed zero-forms I (X) of K3 (they are finite type invariants). This raises our hope

The author is partially supported by Grant-in-Aid for Young Scientists (B) 21740038, the Sumit-
omo Foundation, the Iwanami Fujukai Foundation, and a Research Fellowship for Young Scientists
(228006) from the Japan Society for the Promotion of Science Research.
MSC2000: primary 58D10; secondary 55P48, 57M25, 57M27, 81Q30.
Keywords: the space of long knots, configuration space integrals, nontrivalent graphs, an action of

little cubes, Gramain cycles, Casson’s knot invariant.
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that all obstructions for any graphs may vanish and hence the map I could be a
cochain map even when n = 3.

In this paper we will show (in Theorem 2.4) that the obstructions for the non-
trivalent graph cocycle 0 mentioned above also vanish, hence the map I yields the
first example of a closed one-form I (0) of K3. To show that [I (0)] ∈ H 1

DR(K3)

is not zero, we will study in part how I (0) fits into a description of the homotopy
type of K3 given in [Budney 2010; 2007; Budney and Cohen 2009]. It is known
that on each component K3( f ) that contains f ∈ K3, there exists a one-cycle G f

called the Gramain cycle [Gramain 1977; Budney 2010; Turchin 2006; Vassiliev
2001]. The Kronecker pairing gives an isotopy invariant V : f 7→ 〈I (0), G f 〉. We
show in Theorem 3.1 that V coincides with Casson’s knot invariant v2, which is
characterized as the coefficient of z2 in the Alexander–Conway polynomial. This
result will be generalized in Theorem 3.6 for one-cycles obtained by using an action
of little two-cubes operad on the space K̃3 of framed long knots [Budney 2007].

Closely related results have appeared in [Turchin 2006; Vassiliev 2001], where
the Z/2-reduction of a cocycle v1

3 of Kn (n ≥ 3), appearing in the E1-term of Vas-
siliev’s spectral sequence [Vassiliev 1992], was studied. A natural quasi-isomor-
phism D∗→ E0 ⊗R maps our cocycle 0 to v1

3 . In this sense, our results can be
seen as “lifts” of those in [Turchin 2006; Vassiliev 2001] to R.

The invariant v2 can also be interpreted as the linking number of colinearity
manifolds [Budney et al. 2005]. Notice that in each formulation (including the one
in this paper) the value of v2 is computed by counting some colinearity pairs on
the knot.

2. Construction of a close differential form

Configuration space integral. We review briefly how we can construct (closed)
forms of Kn from graphs. For full details see [Cattaneo et al. 2002; Volić 2007].

Let X be a graph in the sense of those references (see Figure 1 for examples).
Let vi and vf be the numbers of the interval vertices (or i-vertices for short; those
on the specified oriented line) and the free vertices (or f-vertices; those which are
not interval vertices) of X , respectively. With X we associate a configuration space

CX :=

{
( f ; x1, . . . , xvi; xvi+1, . . . , xvi+vf)

∈ Kn ×Conf (R1, vi)×Conf (Rn, vf)

∣∣∣∣ f (xi ) 6= x j for any
1≤ i ≤ vi < j ≤ vi+ vf

}
,

where Conf (M, k) := M×k
\
⋃

1≤i< j≤k{xi = x j } for a space M .
Let e be the number of the edges of X . Define ωX ∈�

(n−1)e
DR (CX ) as the wedge

of closed (n − 1)-forms ϕ∗αvolSn−1 , where ϕα : CX → Sn−1 is the Gauss map,
which assigns a unit vector determined by two points in Rn corresponding to the
vertices adjacent to an edge α of X (for an i-vertex corresponding to xi ∈ R1, we
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consider the point f (xi ) ∈Rn). Here we assume that volSn−1 is “(anti)symmetric”,
namely i∗volSn−1 = (−1)nvolSn−1 for the antipodal map i : Sn−1

→ Sn−1. Then
I (X) ∈�(n−1)e−vi−nvf

DR (Kn) is defined by

I (X) := (πX )∗ωX ,

the integration along the fiber of the natural fibration πX :CX→Kn . This fiber is a
subspace of Conf (R1, vi)×Conf (Rn, vf). Such integrals converge, since the fiber
can be compactified in such a way that the forms ϕ∗αvolSn−1 are still well-defined on
the compactification [Bott and Taubes 1994, Proposition 1.1]. We extend I linearly
onto D∗, a cochain complex spanned by graphs. The differential δ of D∗ is defined
as a signed sum of graphs obtained by “contracting” the edges one at a time.

One of the results of [Cattaneo et al. 2002] states that I : D∗→ �∗DR(Kn) is a
cochain map if n > 3. The proof is outlined as follows. By the generalized Stokes
theorem, d I (X)=±(π∂X )∗ωX , where π∂X is the restriction of πX to the codimension
one strata of the boundary of the (compactified) fiber of πX . Each codimension
one stratum corresponds to a collision of subconfigurations in CX , or equivalently
to A⊂ V (X)∪{∞} (here V (X) is the set of vertices of X ) with a consecutiveness
property: if two i-vertices p, q are in A, then all the other i-vertices between p and
q are in A. Here “∞∈ A” means that the points xl (l ∈ A) escape to infinity. When
∞ 6∈ A, the interior Int6A of the corresponding stratum 6A to A is described by
the pullback square

(2-1)

Int6A //

��

π
∂A
X

||

B̂A

ρA

��
Kn CX/X A DA

//
πX/X A

oo BA

Here

• X A is the maximal subgraph of X with V (X A) = A, and X/X A is a graph
obtained by collapsing the subgraph X A to a single vertex vA;

• BA = Sn−1 if A contains at least one i-vertex, and BA = {∗} otherwise;

• if A consists of i-vertices i1, . . . , is (s > 0) and f-vertices is+1, . . . , is+t , then

B̂A :=

{
(v; (xi1, . . . , xis ; xis+1, . . . , xis+t ))

∈ Sn−1
×Conf (R1, s)×Conf (Rn, t)

∣∣∣∣ xi pv 6= xiq for any
1≤ p≤ s< q ≤ s+t

}/
∼ ,

where ∼ is defined by(
v; (xi1, . . . , xis ; xis+1, . . . , xis+t )

)
∼(

v; (a(xi1 + r), . . . , a(xis + r); a(xis+1 + rv), . . . , a(xis+t + rv))
)
,
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for any a ∈ R>0 and r ∈ R (if A consists only of t f-vertices, then

B̂A := Conf (Rn, t)/(R1
>0 o Rn),

where R1
>0 o Rn acts on Conf (Rn, t) by scaling and translation);

• ρA is the natural projection;

• when A contains at least one i-vertex, DA : CX/X A → Sn−1 maps ( f ; (xi )) to
f ′(xvA)/| f

′(xvA)|.

We omit the case∞∈ A; see [Cattaneo et al. 2002, Appendix].
By properties of fiber integrations and pullbacks, the integration of ωX along

Int6A can be written as (πX/X A)∗(ωX/X A∧D∗A(ρA)∗ω̂X A), where ω̂X A ∈�
∗

DR(B̂A)

is defined similarly to ωX ∈�
∗

DR(CX ).
The stratum 6A is called principal if |A| = 2, hidden if |A| ≥ 3, and infinity if
∞ ∈ A. Since two-point collisions correspond to contractions of edges, we have
d I (X) = I (δX) modulo the integrations along hidden and infinity faces. When
n > 3, the hidden/infinity contributions turn out to be zero; in fact (ρA)∗ω̂X A = 0
if n > 3 and if A is not principal; see [Cattaneo et al. 2002, Appendix] or the next
example. This proves that the map I is a cochain map if n > 3.

Example 2.1. Here we show one example of vanishing of an integration along a
hidden face 6A. Let X be the seventh graph in Figure 1 and A := {1, 4, 5}. Then
in (2-1), BA = Sn−1 since A contains an i-vertex 1, and

B̂A = {(v; x1; x4, x5) ∈ Sn−1
×R1

×Conf (Rn, 2) | x1v 6= x4, x5}/∼,

where (v; x1; x4, x5) ∼ (v; a(x1 + r); a(x4 + rv), a(x5 + rv)) for any a > 0 and
r ∈ R1. The subgraph X A consists of three vertices 1, 4, 5 and three edges 14, 15
and 45. The open face Int6A, where three points f (x1), x4 and x5 collide with each
other, is a hidden face and is described by the square (2-1). Then the integration
of ωX along Int6A is (πX/X A)∗(ωX/X A ∧ D∗A(ρA)∗ω̂X A), where

ω̂X A = ϕ
∗

14volSn−1 ∧ϕ∗15volSn−1 ∧ϕ∗45volSn−1 ∈�
3(n−1)
DR (B̂A),

ϕ1 j :=
x j − x1v

|x j − x1v|
( j = 4, 5), ϕ45 :=

x5− x4

|x5− x4|
.

In this case we can prove that (ρA)∗ω̂X A = 0, hence the integration of ωX along
Int6A vanishes. Indeed a fiberwise involution χ : B̂A→ B̂A defined by

χ(v; x1; x4, x5) := (v; x1; 2x1v− x4, 2x1v− x5)

preserves the orientation of the fiber but χ∗ω̂X A =−ω̂X A (here we use that volSn−1

is antisymmetric), hence we have (ρA)∗ω̂X A =−(ρA)∗ω̂X A .
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Figure 1. A graph cocycle 0.

Nontrivalent cocycle. It is shown in [Cattaneo et al. 2002] that, when n > 3, the
induced map I on cohomology restricted to the space of trivalent graph cocycles is
injective. In [Sakai 2008], the author gave the first example of a nontrivalent graph
cocycle 0 (Figure 1) which also gives a nonzero class [I (0)] ∈ H 3n−8

DR (Kn) when
n > 3 is odd.

In Figure 1, nontrivalent vertices and trivalent f-vertices are marked by × and
•, respectively, and other crossings are not vertices. Here we say an i-vertex v
is trivalent if there is exactly one edge emanating from v other than the specified
oriented line. Each edge i j (i < j) is oriented so that i is the initial vertex.

Remark 2.2. An analogous nontrivalent graph cocycle for the space of embed-
dings S1 ↪→ Rn for even n ≥ 4 can be found in [Longoni 2004].

If n= 3, integrations along some hidden faces (called anomalous contributions)
might survive, so the map I might fail to be a cochain map. However, nonzero
anomalous contributions arise from limited hidden faces.

Theorem 2.3. Let X be a graph and A ⊂ V (X) ∪ {∞} be such that 6A is not
principal. When n = 3, the integration of ωX along 6A can be nonzero only if the
subgraph X A is trivalent.

Our main theorem is proved by using Theorem 2.3.

Theorem 2.4. I (0) ∈�1
DR(K3) is a closed form.

Proof. We call the nine graphs in Figure 1 01, . . . , 09, respectively. The graphs
0i , i 6= 3, 4, 9, do not contain trivalent subgraphs X A satisfying the consecutive
property; see the paragraph just before (2-1). So d I (0i ) = I (d0i ) for i 6= 3, 4, 9
by Theorem 2.3.

Possibly the integration of ω0i (i = 3, 4, 9) along 6A (A := {2, . . . , 5}) might
survive, since the corresponding subgraph X A is trivalent. However, we can prove
(ρA)∗ω̂X A = 0 (and hence d I (0i ) = I (d0i )) as follows: (ρA)∗ω̂X A = 0 for 03,
because there is a fiberwise free action of R>0 on B̂A given by translations of x2

and x4 [Volić 2007, Proposition 4.1] which preserves ω̂X A . Thus (ρA)∗ω̂X A= 0
by dimensional reason. The proof for 04 has appeared in [Bott and Taubes 1994,
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page 5271]; ω̂X A=0 on B̂A since the image of the Gauss map ϕ : BA→ (S2)3 corre-
sponding to three edges of X A is of positive codimension. As for 09, (ρA)∗ω̂X A=0
follows from deg(ρA)∗ω̂X A = 4 which exceeds dim BA (in fact BA = {∗} in this
case). �

Proof of Theorem 2.3. Let A be a subset of V (X) with |A| ≥ 3 or∞∈ A, and X A is
nontrivalent. We must show the vanishing of the integrations along the nonprincipal
face6A of the fiber of CX→K3. To do this it is enough to show (ρA)∗ω̂X A =0. By
dimensional arguments [Cattaneo et al. 2002, (A.2)] the contributions of infinite
faces vanish. So below we consider the hidden faces 6A with |A| ≥ 3.

If X A has a vertex of valence ≤ 2, then (ρA)∗ω̂X A = 0 is proved by dimensional
arguments or existence of a fiberwise symmetry of BA which reverses the orien-
tation of the fiber of ρA : B̂A→ BA but preserves the integrand ω̂X A (like χ from
Example 2.1, see also [Cattaneo et al. 2002, Lemmas A.7–A.9]).

Next, consider the case that there is a vertex of X A of valence ≥ 4. Let e, s and
t be the numbers of the edges, the i-vertices and the f-vertices of X A, respectively.
Then deg ω̂X A = 2e and the dimension of the fiber of ρA is s + 3t − k, where
k = 2 or 4 according to whether s > 0 or s = 0 [Cattaneo et al. 2002, (A.1)].
Thus (ρA)∗ω̂X A ∈ �

∗

DR(BA) is of degree 2e − s − 3t + k. It is not difficult to
see 2e− s − 3t > 0 because at least one vertex of X A is of valence ≥ 4. Hence
deg(ρA)∗ω̂X A exceeds dim BA (= 0 or 2) and hence (ρA)∗ω̂X A = 0.

Thus only the integrations along 6A with X A trivalent can survive. �

Remark 2.5. Every finite type invariant v for long knots in R3 can be written
as a sum of I (0v) (0v is a trivalent graph cocycle) and some “correction terms”
which kill the contributions of hidden faces corresponding to trivalent subgraphs
[Altschuler and Freidel 1997; Bott and Taubes 1994; Kohno 1994; Volić 2007].
So by Theorem 2.3 the problem whether I : D∗→ �∗DR(K3) is a cochain map or
not is equivalent to the problem whether one can eliminate all the correction terms
from integral expressions of finite type invariants.

3. Evaluation on some cycles

Here we will show that [I (0)] ∈ H 1
DR(K3) restricted to some components of K3 is

not zero.
We introduce two assumptions to simplify computations.

Assumption 1. The support of (antisymmetric) volS2 is contained in a sufficiently
small neighborhood of the poles (0, 0,±1) as in [Sakai 2008]. So only the configu-
rations with the images of the Gauss maps lying in a neighborhood of (0, 0,±1) can
nontrivially contribute to various integrals below. Presumably [I (0)] ∈ H 1

DR(K3)

may be independent of choices of volS2 [Cattaneo et al. 2002, Proposition 4.5].
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Assumption 2. Every long knot in R3 is contained in xy-plane except for over-arc
of each crossing, and each over-arc is in {0≤ z ≤ h} for a sufficiently small h > 0
so that the projection onto xy-plane is a regular diagram of the long knot.

The Gramain cycle. For any f ∈ K3, we denote by K3( f ) the component of K3

which contains f . Regarding S1
= R/2πZ and fixing f , we define the map

G f : S1
→ K3( f ), called the Gramain cycle, by G f (s)(t) := R(s) f (t), where

R(s) ∈ SO(3) is the rotation by the angle s fixing the “long axis” (the x-axis).
G f generates an infinite cyclic subgroup of π1(K3( f )) if f is nontrivial [Gramain
1977]. The homology class [G f ] ∈ H1(K3( f )) is independent of the choice of
f in the connected component; if ft ∈ K3 (0 ≤ t ≤ 1) is an isotopy connecting
f0 and f1, then G ft : [0, 1] × S1

→ K3 gives a homotopy between G f0 and G f1 .
Therefore the Kronecker pairing gives an isotopy invariant V ( f ) := 〈I (0), G f 〉

for long knots.

Theorem 3.1. The invariant V is equal to Casson’s knot invariant v2.

Corollary 3.2. [I (0)|K3( f )] ∈ H 1
DR(K3( f )) is not zero if v2( f ) 6= 0. �

We will prove two statements that characterize Casson’s knot invariant: V is of
finite type of order two and V (31) = 1, where 31 is the long trefoil knot. To do
this, we will represent G f using a Browder operation, as in [Sakai 2008].

Little cubes action. Let K̃n be the space of framed long knots in Rn (embeddings
f̃ : R1

× Dn−1 ↪→ Rn that are standard outside [−1, 1] × Dn−1). There is a
homotopy equivalence 8 : K̃3 ' K3 × Z [Budney 2007] that maps f̃ to the pair
( f̃ |R1×{(0,0)}, fr f̃ ), where the framing number fr f̃ is defined as the linking number
of f̃ |R1×{(0,0)} with f̃ |R1×{(1,0)}. Since fr f̃ is additive under the connected sum,
8 is a homotopy equivalence of H-spaces. In general, K̃n ' Kn ×�SO(n−1) as
H-spaces, where � stands for the based loop space functor.

In [Budney 2007] an action of the little two-cubes operad on the space K̃n was
defined. Its second stage gives a map S1

× (K̃n)
2
→ K̃n up to homotopy, which

is given as “shrinking one knot f and sliding it along another knot g by using
the framing, and repeating the same procedure with f and g exchanged” [Budney
2007, Figure 2]. Fixing a generator of H1(S1), we obtain the Browder operation
λ : Hp(K̃n)⊗ Hq(K̃n)→ Hp+q+1(K̃n), which is a graded Lie bracket satisfying
the Leibniz rule with respect to the product induced by the connected sum. The
author proved in [Sakai 2008] that 〈I (0), r∗λ(e, v)〉 = 1 when n> 3 is odd, where
r : K̃n → Kn is the forgetting map, e ∈ Hn−3(K̃n) comes from the space of fram-
ings, and v ∈ H2(n−3)(K̃n) is the first nonzero class of Kn represented by a map
(Sn−3)×2

→ Kn (see below).
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Figure 2. The cycles e and v = v(T ).

The case n = 3. In [Sakai 2008] the assumption n > 3 was used only to deduce
the closedness of I (0) from the results of Cattaneo et al. [2002]. The cycles e and
v are defined even when n = 3:

• Under the homotopy equivalence K̃3 ' K3 × Z, the zero-cycle e is given by
(ι, 1) where ι is the trivial long knot (ι(t)= (t, 0, 0) for any t ∈ R1).

• The zero-cycle v = v(T ) is given by
∑

εi=±1 ε1ε2Tε1,ε2 , where T = 31 and
Tε1,ε2 is T with its crossing pi , for i = 1, 2 changed to be positive if εi =+1
and negative if εi =−1 (see Figure 2).

Notice that, for any f ∈ K3 and any pair (p1, p2) of its crossings, an analogous
zero-cycle v = v( f ; p1, p2) can be defined.

Regard f ∈ K3 as a zero-cycle of K̃3 (with fr f = 0) and consider r∗λ(e, f ).
During a knot f “going through” e, f rotates once around the x-axis. Thus the
one-cycle r∗λ(e, f ) is homologous to the Gramain cycle G f . This leads us to
the fact that, for v = v( f ; p1, p2), the one-cycle r∗λ(e, v) is homologous to the
sum

∑
εi=±1 ε1ε2G fε1,ε2 . This is why we can apply the method in [Sakai 2008] to

compute

D2V ( f ) :=
∑

ε j=±1
ε1ε2V ( fε1,ε2)=

∑
ε j=±1

ε1ε2〈I (0), G fε1,ε2 〉=〈I (0), r∗λ(e, v( f ))〉.

Recall that our graph cocycle 0 is a sum of nine graphs 01, . . . , 09 (see Figure 1).
By Assumption 1, the integration 〈I (0i ), G f 〉 can be computed by “counting” the
configurations with all the images of the Gauss maps corresponding to edges of
0i being around the poles of S2. Lemma 3.4 below was proved in such a way in
[Sakai 2008] when n> 3. Since [v( f )] ∈ H0(K3( f )) is independent of small h> 0
(see Assumption 2), we may compute D2V ( f ) in the limit h→ 0.

Definition 3.3. We say that a pair (p1, p2) of crossings of f respects the diagram
if there exist t1 < t2 < t3 < t4 where f (t1) and f (t3) correspond to p1,

while f (t2) and f (t4) correspond to p2. The notion of (p1, p2) respecting
or is defined analogously.

Lemma 3.4 [Sakai 2008]. Suppose that (p1, p2) respects . Then, in the
limit h→ 0, Pi ( f ) :=

∑
ε j=±1ε1ε2〈I (0i ), G fε1,ε2 〉 converges to zero for i 6= 2, and

P2( f ) converges to 1. Thus D2V ( f )= 1.
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Outline of proof. Let Ĉ0i → S1 be the pullback of C0i →K3 via G f , and let Ĝ f :

Ĉ0i →C0i be the lift of G f . By the properties of pullbacks and fiber integrations,

(3-1) Pi ( f )=
∑

εi=±1
ε1ε2

∫
Ĉ0i

Ĝ∗fε1,ε2ω0i .

Let t1 < · · · < t4 be such that f (t1) and f (t3) correspond to p1, while f (t2)
and f (t4) correspond to p2. Define the subspace C ′0i

⊂ Ĉ0i as consisting of
(G f (s); (x j )) (s ∈ S1) such that, for each j =1, 2, there is a pair (l,m) of i-vertices
of 0i such that xl is on the over-arc of p j , xm is on the under-arc of p j , and there
is a sequence of edges in 0i from l to m.

First observation: The integration over Ĉ0i \C ′0i
does not essentially contribute

to Pi ( f ) in the limit h→ 0. This is because, over Ĉ0i \C ′0i
, the integrals in (3-1)

are well defined and continuous even when h = 0 (p j becomes a double point),
so two terms in Pi ( f ) corresponding to ε j = ±1 cancel each other. This implies
limh→0 Pi ( f )= 0 for i = 7, 8, 9, since C ′0i

=∅ if ]{i-vertices} ≤ 3.
Second observation: Consider the configurations (xi ) ∈ C ′0i

such that, for any
pair (l,m) of i-vertices of 0i with xl on the over-arc of p j and xm on the under-arc
of p j , all the points xk (k is in a sequence in 0i from l to m) are not near p j .
Such configurations also do not essentially contribute to Pi ( f ) in the limit h→ 0,
by the same reason as above. This implies limh→0 Pi ( f ) = 0 for i = 4, 5, 6; the
configurations (xl)∈C ′0i

(4≤ i ≤ 6) must be such that the point xl ∈R1 (1≤ l ≤ 4)
is near tl . By the second observation, the “free point” x5 must be near p1 or p2.
But then ω0i =0, since at least one Gauss map ϕl5 has its image outside the support
of volS2 (see Assumption 1). Thus limh→0 Pi ( f )= 0.

Finally consider the Pi ( f ), for i = 1, 2, 3. For i = 1 we have ω01 = 0 over C ′01
,

since the Gauss map corresponding to the edge 12 has its image outside of the
support of volS2 . The same reasoning, using the loop edge 11, shows that ω03 = 0
over C ′03

. Only P2( f ) survives, since the configurations with x1 near t1, x2 near
t2, x3 and x4 near t3, and x5 near t4, contribute nontrivially to the integral [Sakai
2008, Lemma 4.6]. �

Lemma 3.5. If (p1, p2) respects or , then D2V ( f )= 0.

Proof. For i = 4, . . . , 9, we see in the same way as in Lemma 3.4 that Pi ( f )
approaches 0 as h→ 0. That limh→0 Pi ( f ) for i = 2, 3 and the -case for
i = 1 is proved by the first observation in the proof of Lemma 3.4.

In the -case for P1( f ) over C ′01
only the configurations with x j near t j ,

with j = 1, 2, 3, and x5 near t4 may essentially contribute to P1( f ); in this case the
edges 12 and 35 join the over/under arcs of p1 and p2 respectively. However, the
Gauss map ϕ14 cannot have its image in the support of volS2 , so ω01 vanishes. �
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Proof of Theorem 3.1. For three crossings (p1, p2, p3) of f ∈ K3, consider the
third difference

D3V ( f ) :=
∑

ε j=±1
ε1ε2ε3V ( fε1,ε2,ε3)= D2V (g+1)− D2V (g−1),

where g±1 := f+1,+1,±1 and D2V (g±1) are taken with respect to (p1, p2). Since
the pair (p1, p2) of g+1 respects the same diagram as (p1, p2) of g−1, we have
D2V (g+1)=D2V (g−1) by the above Lemmas 3.4, 3.5. Thus D3V =0 and hence V
is finite type of order two. Moreover V (ι)= 0 for the trivial long knot ι since K3(ι)

is contractible [Hatcher 1983]; therefore Gι∼ 0, and V (31)= 1 by Lemma 3.4 and
V (ι)= 0. These properties uniquely characterize Casson’s knot invariant v2. �

The Browder operations. We denote a framed long knot corresponding to ( f, k)
under the equivalence K̃3 ' K3 × Z by f k

∈ K̃3 (unique up to homotopy). As
mentioned above, the Gramain cycle can be written as [G f ]= [r∗λ( f k, ι1)] (k may
be arbitrary). Below we will evaluate I (0) on more general cycles r∗λ( f k, gl) of
K3 for any nontrivial f, g ∈ K3 and k, l ∈ Z. This generalizes Theorem 3.1.

Theorem 3.6. We have 〈I (0), r∗λ( f k, gl)〉 = lv2( f )+ kv2(g) for any f, g ∈ K3

and k, l ∈ Z.

Corollary 3.7. If at least one of v2( f ) and v2(g) is not zero, then

[I (0)|K3( f ]g)] ∈ H 1
DR(K3( f ]g)) 6= 0,

where ] stands for the connected sum.

Proof. This is because r∗λ( f k, gl) is a one-cycle of K3( f ]g) for any k, l ∈Z. Since
v2( f ) or v2(g) is not zero, there exist some k, l such that lv2( f )+ kv2(g) 6= 0, so
〈I (0), r∗λ( f k, gl)〉 6= 0 by Theorem 3.6. �

Remark 3.8. If v2( f ) = −v2(g), then v2( f ]g) = 0 since it is known that v2 is
additive under ]. Hence we cannot deduce [I (0)|K3( f ]g)] 6= 0 from Corollary 3.2.
Moreover if v2( f )=−v2(g) 6= 0, then Corollary 3.7 implies [I (0)|K3( f ]g)] 6= 0.

To prove Theorem 3.6, first we remark that f m
∼ f 0]ιm . Since λ satisfies the

Leibniz rule, λ( f k, gl) is homologous to

λ( f 0, g0)]ιk+l
+ λ( f 0, ιl)]gk

+ λ(ιk, g0)] f l
+ λ(ιk, ιl)] f 0]g0.

Since by definition r∗λ( f k, ιm)∼ mG f (k,m ∈ Z) and Gι ∼ 0,

(3-2) r∗λ( f k, gl)∼ r∗λ( f 0, g0)+ lG f ]g+ k f ]Gg.

Notice that ] makes K3 an H-space and induces a coproduct 1 on H∗DR(K3).

Lemma 3.9. 1([I (0)])= 1⊗[I (0)] + [I (0)]⊗ 1 ∈ H∗DR(K3)
⊗2.
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Figure 3. Graph cocycles 0′ and 0′′.

Proof. D also admits1 defined as a “separation” of the graphs by removing a point
from the specified oriented line [Cattaneo et al. 2005, Section 3.2]. Theorem 6.3
of [Cattaneo et al. 2005] shows, without using n > 3, that (I ⊗ I )1(X)=1I (X)
if X satisfies d I (X)= I (δX).

As for our graphs in Figure 1, 10i = 1⊗0i +0i ⊗ 1 (i 6= 3, 4) and

1(03−04)= 1⊗ (03−04)+ (03−04)⊗ 1+0′⊗0′′+0′′⊗0′,

where 0′ and 0′′ are as shown in Figure 3. Thus

1I (0)= 1⊗ I (0)+ I (0)⊗ 1+ I (0′)⊗ I (0′′)+ I (0′′)⊗ I (0′).

But in fact 0′ = δ00 where 00 = , and I (0′) = d I (00) since there is no
hidden face in the boundary of the fiber of π00 . �

By (3-2), Lemma 3.9 and Theorem 3.1,

〈I (0), r∗λ( f k, gl)〉 = 〈I (0), r∗λ( f 0, g0)〉+ lv2( f )+ kv2(g).

Thus it suffices to prove Theorem 3.6 in the case k = l = 0.

Proof of Theorem 3.6. Fix g and regard 〈I (0), r∗λ( f 0, g0)〉 as an invariant Vg( f )
of f . We choose two crossings p1 and p2 from the diagram of f in xy-plane, and
compute D2Vg( f ) :=

∑
ε1,ε2

ε1ε2〈I (0), r∗λ( f 0
ε1,ε2

, g0)〉 in the limit h→ 0 as on
page 414. If this is zero for any (p1, p2), then the arguments similar to that in the
proof of Theorem 3.1 show that Vg is of order two and takes the value zero for the
trefoil knot, thus identically Vg = 0 for any g. This will complete the proof.

We will compute each P ′i :=
∑

ε=±1〈I (0i ), r∗λ( f 0
ε1,ε2

, g0)〉 (1 ≤ i ≤ 9) in the
limit h→ 0. The two observations appearing in the proof of Lemma 3.4 allow us
to conclude P ′i → 0 for 4 ≤ i ≤ 9 in the same way as before, so we compute P ′i
for i = 1, 2, 3 below. We may concentrate on the integration over C ′0i

by the first
observation. Recall C ′0i

⊂ S1
×Conf (R1, s)×Conf (R3, t) by definition. We take

the S1-parameter α ∈ S1
= R1/2πZ so that g goes through f during 0 ≤ α ≤ π ,

and f goes through g during π ≤ α ≤ 2π .
First consider the integration over 0≤α≤π . We may shrink g sufficiently small.

Then the sliding of g through f does not affect the integration, so almost all the
integrations converge to zero for the same reasons as in Lemmas 3.4 and 3.5. Only
the configurations (xi ) ∈ C ′01

with x1 and x2 near p1 may essentially contribute
to P ′1 when g comes around p1; the form ϕ∗12volS2 may detect the knotting of g.
However, the two terms for ε1 =±1 cancel each other.
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Figure 4. When f comes near an under-arc of g.

Next consider the integration over π ≤ α ≤ 2π . There may be two types of
contributions to P ′i . One type comes from the configurations in which all the points
on the knot concentrate in a neighborhood of f . Such a contribution depends only
on the framing number fr g of g, not on the global knotting of g. Since fr g0

= 0
here, such configurations do not essentially contribute to P ′i .

The other possible contributions arise when f comes near the crossings of g.
For example, consider the case that (p1, p2) respects . When f comes
near a crossing of g, a configuration (x1, . . . , x5) ∈ C01 as in Figure 4 is certainly
in C ′01

, so it may contribute to P ′1.
However, such contributions converge to zero in the limit h → 0, because x1

cannot be near p1 (see the second observation in the proof of Lemma 3.4). For 03,
we should take the configuration (x1, . . . , x5) with x j (2 ≤ j ≤ 5) near t j−1 into
account; but in this case the Gauss map ϕ11 cannot have the image in the support
of volS2 . In such ways we can check that all such contributions of 0i (i = 1, 2, 3)
can be arbitrarily small. �
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BURGHELEA–HALLER ANALYTIC TORSION
FOR TWISTED DE RHAM COMPLEXES

GUANGXIANG SU

We extend the Burghelea–Haller analytic torsion to the twisted de Rham
complexes, and compare it with the twisted refined analytic torsion defined
by Huang. Finally, we briefly discuss the Cappell–Miller analytic torsion.

1. Introduction

Let E be a unitary flat vector bundle on a closed Riemannian manifold M . Ray
and Singer [1971] defined an analytic torsion associated to (M, E) and proved that
it does not depend on the Riemannian metric on M . Moreover, they conjectured
that this analytic torsion coincides with the classical Reidemeister torsion defined
using a triangulation on M (see [Milnor 1966]). This conjecture was later proved
in two celebrated papers [Cheeger 1979; Müller 1978]. Müller [1993] generalized
this result to the case when E is a unimodular flat vector bundle on M . Inspired by
the considerations of Quillen [1985], Bismut and Zhang [1992] reformulated the
above Cheeger–Müller theorem as an equality between the Reidemeister and Ray–
Singer metrics defined on the determinant of cohomology, and proved an extension
of it to the case of general flat vector bundle over M . The method used by Bismut
and Zhang is different from that of Cheeger and Müller in that it makes use of
a deformation by Morse functions introduced by Witten [1982] on the de Rham
complex.

Braverman and Kappeler [2007b; 2007c; 2008] defined the refined analytic tor-
sion for a flat vector bundle over an odd dimensional manifold and showed that it
equals the Turaev torsion [1989] (see also [Farber and Turaev 2000]) up to multipli-
cation by a complex number of absolute value one. Burghelea and Haller [2007;
2008], following a suggestion of Müller, defined a generalized analytic torsion
associated to a nondegenerate symmetric bilinear form on a flat vector bundle over
an arbitrary dimensional manifold and make an explicit conjecture between this
generalized analytic torsion and the Turaev torsion. This conjecture was proved
up to sign in [Burghelea and Haller 2010] and in full generality in [Su and Zhang
2008]. Cappell and Miller [2010] used non-self-adjoint Laplace operators to define

MSC2000: primary 58J52; secondary 19K56.
Keywords: analytic torsion, symmetric bilinear form, de Rham complex.
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another complex-valued analytic torsion and used the method in [Su and Zhang
2008] to prove an extension of the Cheeger–Müller theorem.

Mathai and Wu [2008; 2010b] generalized the classical Ray–Singer analytic
torsion to the twisted de Rham complex with an odd degree closed differential
form H . In [Mathai and Wu 2010a], they defined and studied analytic torsion of Z2-
graded elliptic complexes. Huang [2010a] generalized Braverman and Kappeler’s
refined analytic torsion to the twisted de Rham complex, proved a duality theorem
and compared it with the twisted Ray–Singer metric.

In this paper, supposing there exists a nondegenerate symmetric bilinear form
on the flat vector bundle E , we generalize the Burghelea–Haller analytic torsion to
the twisted de Rham complex. For the odd dimensional manifold, we also compare
it with the twisted refined analytic torsion and the twisted Ray–Singer metric.

The rest of this paper is organized as follows. In Section 2, supposing there
exists a Z2-graded nondegenerate symmetric bilinear form on a Z2-graded finite
dimensional complex, we define a symmetric bilinear torsion on it. In Section 3, we
generalize the Burghelea–Haller analytic torsion to the twisted de Rham complex.
In Section 4, when the dimension of the manifold is odd, we show that the twisted
Burghelea–Haller analytic torsion is independent of the Riemannian metric g, the
symmetric bilinear form b and the representative H in the cohomology class [H ].
In Section 5, we compare this new torsion with the twisted refined analytic torsion.
In Section 6, we briefly discuss the Cappell–Miller analytic torsion on the twisted
de Rham complex of an odd dimensional manifold.

2. Symmetric bilinear torsion on a finite dimensional Z2-graded complex

Consider a cochain complex

0−→ C0 d0
−−−→ C1 d1

−−−→ · · ·
dn−1
−−−→ Cn

−→ 0

of finite dimensional complex vector space. Set

Ck
=

⊕
i = k mod 2

C i , k = 0, 1.

Let

(2-1) (C•, d) : · · ·
d1̄
−−−→ C0 d0

−−−→ C 1̄ d1̄
−−−→ C0 d0

−−−→ · · ·

be a Z2-graded cochain complex. Denote its cohomology by H k, k = 0, 1. Set

det(C•, d)= det C0
⊗ (det C 1̄)−1, det(H•, d)= det H 0

⊗ (det H 1̄)−1.

Then we have a canonical isomorphism between the determinant lines

(2-2) φ : det(C•, d)→ det(H•, d).
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Suppose that there is a nondegenerate symmetric bilinear form on Ck , k = 0, 1.
Then it induces a nondegenerate symmetric bilinear form bdet H•(C•,d) on the de-
terminant line det(H•, d) via the isomorphism (2-2). Let d#

k
be the adjoint of dk

with respect to the nondegenerate symmetric bilinear form and define

1b,k = d#
k dk + d

k+1d#
k+1.

Let λ be the generalized eigenvalue of 1b,k and let Ck
b(λ) be the generalized λ-

eigenspace of 1b,k . Then we have a b-orthogonal decomposition

(2-3) Ck
=

⊕
λ

Ck
b(λ)

and the inclusion Ck
b(0)→ Ck induces an isomorphism in cohomology. Particu-

larly, we obtain a canonical isomorphism

(2-4) det H•(C•b(0))∼= det H•(C•).

Proposition 2.1. The following identity holds:

(2-5) bdet H•(C•,d)

= bdet H•(C•b (0),d) · det(d#
0 d0|C

0,⊥
b (0)∩im d#

0
)−1
· det(d#

1̄ d1̄|C
1̄,⊥
b (0)∩im d#

1̄
),

where Ck,⊥
b (0)=

⊕
λ 6=0 Ck

b(λ), k = 0, 1.

Proof. Same as [Burghelea and Haller 2007, Lemma 3.3]. Suppose (C•1 , b1)

and (C•2 , b2) are finite-dimensional Z2-graded complexes equipped with Z2-graded
nondegenerate symmetric bilinear forms. Clearly, H•(C•1 ⊕ C•2) = H•(C•1) ⊕
H•(C•2) and we obtain a canonical isomorphism of determinant lines

det H•(C•1 ⊕C•2)= det H•(C•1)⊗ det H•(C•2).
Then we have

bdet H•(C•1⊕C•2 ) = bdet H•(C•1 )⊗ bdet H•(C•2 ).

In view of the b-orthogonal decomposition (2-3) we may therefore without loss of
generality assume ker1b,k = 0, k = 0, 1. Then by the lemma just cited we have

Ck
= im dk+1⊕ im d#

k .

This decomposition is b-orthogonal and invariant under 1b. Thus we have the
exact complexes

0−→ C0
∩ im d#

0

d0
−−−→ C 1̄

∩ im d0 −→ 0,

0−→ C 1̄
∩ im d#

1̄

d1̄
−−−→ C0

∩ im d1̄ −→ 0.

Then from [Burghelea and Haller 2007, Example 3.2], we get the proposition. �
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3. Symmetric bilinear torsion on the twisted de Rham complexes

In this section, we suppose that there is a fiberwise nondegenerate symmetric bi-
linear form on E . Then we define a symmetric bilinear torsion on the determinant
line of the twisted de Rham complex.

Twisted de Rham complexes. In this section, we review the twisted de Rham com-
plexes from [Mathai and Wu 2008].

Let M be a closed Riemannian manifold and E→ M be a complex flat vector
bundle with flat connection ∇. Let H be an odd-degree closed differential form
on M . We set �0

= �even(M, E), �1̄
= �odd(M, E) and ∇H

= ∇ + H∧. We
define the twisted de Rham cohomology groups as

H k(M, E, H)=
ker
(
∇

H
:�k(M, E)→�k+1(M, E)

)
im
(
∇H :�k+1(M, E)→�k(M, E)

) , k = 0, 1.

Suppose H is replaced by H ′ = H − d B for some B ∈ �0(M), then there is an
isomorphism εB = eB

∧ · :�•(M, E)→�•(M, E) satisfying

εB ◦∇
H
=∇

H ′
◦ εB .

Therefore εB induces an isomorphism

εB : H•(M, E, H)→ H•(M, E, H ′)

on the twisted de Rham cohomology.

The construction of the symmetric bilinear torsion. Suppose that there exists a
nondegenerate symmetric bilinear form on E . To simplify notation, let Ck

=

�k(X, E) and let dk = d E,H
k

be the operator ∇H acting on Ck (k = 0, 1). Then
d1̄d0 = d0d1̄ = 0 and we have a complex

(3-1)
· · ·

d1̄
−−−→ C0 d0

−−−→ C 1̄ d1̄
−−−→ C0 d0

−−−→ · · · .

The metric gM and the symmetric bilinear form b determine together a symmetric
bilinear form on �•(M, E) such that if u = α f , v = βg ∈ �•(M, E) such that
α, β ∈�•(M), f, g ∈ 0(E), then

(3-2) βg,b(u, v)=
∫

M
(α∧∗β)b( f, g),

where ∗ is the Hodge star operator. Denote by d#
k

the adjoint of dk with respect to
the nondegenerate symmetric bilinear form (3-2). Then we define the Laplacians

1b,k = d#
k dk + d

k+1d#
k+1, k = 0, 1.
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If λ is in the spectrum of 1b,k , then the image of the associated spectral projection
is finite dimensional and contains smooth forms only. Referring to this image as
the (generalized) λ-eigenspace of 1b,k and denoting it by �k

{λ}(M, E), there exists
Nλ ∈ N such that

(1b,k − λ)
Nλ |�k

{λ}(M,E) = 0.

Therefore for different generalized eigenvalues λ,µ, the spaces �k
{λ}(M, E) and

�k
{µ}(M, E) are βg,b-orthogonal.
For any a ≥ 0, set

�k
[0,a](M, E)=

⊕
0≤|λ|≤a

�k
{λ}(M, E).

Then �k
[0,a](M, E) is finite dimensional and one gets a nondegenerate symmetric

bilinear form
bdet H•(�•

[0,a],d) on det H•(�•
[0,a], d).

Let �k
(a,+∞)(M, E) denote the βg,b-orthogonal complement to �k

[0,a](M, E).
For the subcomplexes (�k+1

(a,+∞)(M, E), d), since the operators dkd#
k

and1b,k+1
are equal and invertible on im(dk)∩�

k+1
(a,+∞)(M, E), we have

(3-3) Pk := d#
k (dkd#

k )
−1dk = d#

k (1b,k+1)
−1dk

is a pseudodifferential operator of order 0 and satisfies

P2
k = Pk .

By definition we have

ζ(s, d#
k dk |im d#

k
∩�k

(a,+∞)(M,E))= Tr(1−s
b,k

Pk |�
k
(a,+∞)(M,E))(3-4)

= Tr(Pk1
−s
b,k
|�k

(a,+∞)(M,E)).

Then ζ(s, d#
k
d

k
|im d#

k
∩�k

(a,+∞)(M,E)) has a meromorphic extension to the whole com-
plex plane and, by [Wodzicki 1984, Section 7], it is regular at 0. So by [Wodzicki
1984; Grubb and Seeley 1995], we have the following analogue of [Mathai and
Wu 2008, Theorem 2.1].

Theorem 3.1. For k = 0, 1, ζ(s, d#
k
d

k
|im d#

k
∩�•(a,+∞)(M,E)) is holomorphic in the half

plane for Re(s) > n/2 and extends meromorphically to C with possible poles at
{(n− l)/2, l = 0, 1, 2, . . . } only, and is holomorphic at s = 0.

Then for k = 0, 1 and any a ≥ 0, the regularized zeta determinant

(3-5) det′(d#
k dk |�

k
(a,+∞)(M,E)) := exp

(
−ζ ′(0, d#

k dk |im d#
k
∩�k

(a,+∞)(M,E))
)
.

is well defined.
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Proposition 3.2. The symmetric bilinear form on det H•(�•(M,E,H),d) given by

(3-6) bdet H•(�•
[0,a](M,E),d) · det′(d#

0 d0|�
0
(a,+∞)(M,E))

−1
·
(
det′(d#

1̄ d1̄|�
1̄
(a,+∞)(M,E))

)
is independent of the choice of a ≥ 0.

Proof. Let 0≤ a < c <∞. We have

(�k
[0,c](M, E), dk)= (�

k
[0,a](M, E), dk)⊕ (�

k
(a,c](M, E), dk),(3-7)

(�k
(a,+∞)(M, E), dk)= (�

k
(a,c](M, E), dk)⊕ (�

k
(c,+∞)(M, E), dk).(3-8)

By the definition of the determinant,

(3-9) det′(d#
k dk |�

k
(a,+∞)(M,E))= det′(d#

k dk |�
k
(a,c](M,E)) · det′(d#

k dk |�
k
(c,+∞)(M,E)).

Applying Proposition 2.1 to (3-7),

bdet H•(�•
[0,c])
= bdet H•(�•

[0,a])
· det′(d#

0 d0|�
0
(a,c](M,E))

−1
·
(
det′(d#

1̄ d1̄|�
1̄
(a,c](M,E))

)
.

Then we get the proposition. �

Definition 3.3. The symmetric bilinear form defined by (3-6) is called the Ray–
Singer symmetric bilinear torsion on det H•(�•(M, E, H), d) and is denoted by
τb,∇,H .

4. Symmetric bilinear torsion under metric and flux deformations

In this section, we will use the methods in [Mathai and Wu 2008] to study the
dependence of the torsion on the metric g, the symmetric bilinear form b and the
flux H .

Variation of the torsion with respect to the metric and symmetric bilinear form.
We assume that M is a closed compact oriented manifold of odd dimension. Sup-
pose the pair (gu, bu) is deformed smoothly along a one-parameter family with pa-
rameter u∈R. Let Qk be the spectral projection onto�k

[0,a](M, E) and5k=1−Qk
be the spectral projection onto �k

(a,+∞)(M, E). Let

α = ∗−1
u
∂∗u

∂u
+ b−1

u
∂bu

∂u
.

Lemma 4.1. Under the assumptions above,

(4-1)
∂

∂u
log

(
det′(d#

0 d0|�
0
(a,+∞)(M,E))

−1
·
(
det′(d#

1̄ d1̄|�
1̄
(a,+∞)(M,E))

))
=−

∑
k=0,1

(−1)k Tr(αQk).
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Proof. While dk is independent of u, we have

∂d#
k

∂u
=−[α, d#

k ].

Using P
k
d#

k
= d#

k
, dk Pk = dk and P2

k
= P

k
, we get d#

k
d

k
P

k
= P

k
d#

k
d

k
= d#

k
d

k
and

Pk
∂Pk

∂u
Pk = 0.

Following the Z-graded case, we set

f (s, u)=
∑

k=0,1

(−1)k
∫
+∞

0
t s−1 Tr(e−td#

k
dk Pk |�

k
(a,+∞)(M,E)) dt(4-2)

= 0(s)
∑

k=0,1

(−1)kζ(s, d#
k dk |�

k
(a,+∞)(M,E)).

Using the above identities on Pk , the trace property and by an application of
Duhamel’s principal, we get

(4-3)
∂ f
∂u
=

∑
k=0,1

(−1)k
∫
+∞

0
t s−1 Tr

(
t[α, d#

k ]dke−td#
k

dk5k+e−td#
k

dk
∂Pk

∂u
Pk5k

)
dt

=

∑
k=0,1

(−1)k
∫
+∞

0
t s−1 Tr

(
tα[d#

k , dke−td#
k

dk ]5k+Pke−td#
k

dk
∂Pk

∂u
5k

)
dt

=

∑
k=0,1

(−1)k
∫
+∞

0
t s−1 Tr

(
tα(e−td#

k
dk d#

k dk − e−tdkd#
k dkd#

k )5k

+ e−td#
k

dk Pk
∂Pk

∂u
5k

)
dt

=

∑
k=0,1

(−1)k
∫
+∞

0
t s Tr

(
αe−t1b,k1b,k5k

)
dt

=−

∑
k=0,1

(−1)k
∫
+∞

0
t s ∂

∂t
Tr
(
α(e−t1b,k5k)

)
dt.

Integrating by parts, we have

(4-4)
∂ f
∂u
= s

∑
k=0,1

(−1)k
∫
+∞

0
t s−1 Tr

(
α(e−t1b,k5k)

)
dt

= s
∑

k=0,1

(−1)k
(∫ 1

0
+

∫
+∞

1

)
t s−1 Tr

(
αe−t1b,k (1− Qk)

)
dt.

Since α is a smooth tensor and n is odd, the asymptotic expansion as t ↓ 0 for
Tr(αe−t1b,k ) does not contain a constant term. Therefore

∫ 1
0 t s−1 Tr(αe−t1b,k ) dt
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does not have a pole at s = 0. On the other hand, because of the exponential decay
of Tr(αe−t1b,k5k) for large t ,∫

+∞

1
t s−1 Tr(αe−t1b,k5k)

is an entire function in s. So

(4-5)
∂ f
∂u

∣∣∣∣
s=0
=−s

∑
k=0,1

(−1)k
∫ 1

0
t s−1 Tr(αQk) dt

∣∣
s=0 =−

∑
k=0,1

(−1)k Tr(αQk)

and hence

(4-6)
∂

∂u

∑
k=0,1

(−1)kζ(0, d#
k dk |�

k
(a,+∞)(M,E))= 0.

Finally, from (4-5), (4-6), we have

(4-7) det′(d#
0 d0|�

0
(a,+∞)(M,E))

−1
·
(
det′(d#

1̄ d1̄|�
1̄
(a,+∞)(M,E))

)
= exp

(
lim
s→0

(
f (s, u)−

1
s

∑
k=0,1

(−1)kζ
(
0, d#

k dk |�
k
(a,+∞)(M,E)

)))
,

and the result follows. �

Lemma 4.2. Under the same assumptions, along any one-parameter deformation
of (gu, bu), we have

(4-8)
∂

∂w

∣∣∣∣
u

(bw,det H•(�•
[0,a](M,E),d)

bu,det H•(�•
[0,a](M,E),d)

)
=

∑
k=0,1

(−1)k Tr(αQk).

Proof. For sufficiently small w− u, the restriction of the spectral projection

Qk |�
k
u,[0,a](M,E) :�

k
u,[0,a](M, E)→�k

w,[0,a](M, E)

is an isomorphism of complexes. Then for sufficiently small w− u, we have

(4-9)
bw,det H•(�•

[0,a](M,E),d)

bu,det H•(�•
[0,a](M,E),d)

= det
(
(βgu ,bu |�

0
u,[0,a](M,E))

−1(Q0|�
0
u,[0,a](M,E))

∗

· (βgw,bw |�0
w,[0,a](M,E))

)
· det

(
(βgu ,bu |�

1̄
u,[0,a](M,E))

−1(Q 1̄|�
1̄
u,[0,a](M,E))

∗

· (βgw,bw |�1̄
w,[0,a](M,E))

)−1
.

Then similarly to [Burghelea and Haller 2007], we get (4-8). �

Combining Lemma 4.1 and Lemma 4.2, we have:
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Theorem 4.3. Let M be a closed, compact manifold of odd dimension, E be a flat
vector bundle over M , and H be a closed differential form on M of odd degree.
Then the symmetric bilinear torsion τb,∇,H on the twisted de Rham complex does
not depend on the choices of the Riemannian metric on M and the symmetric bilin-
ear form b in a same homotopy class of nondegenerate symmetric bilinear forms
on E.

Variation of analytic torsion with respect to the flux in a cohomology class. We
continue to assume that dim M is odd and use the same notation as above. Suppose
the (real) flux form H is deformed smoothly along a one-parameter family with
parameter v ∈R in such a way that the cohomology class [H ] ∈ H 1̄(M,R) is fixed.
Then ∂H/∂v =−d B for some form B ∈�0(M) that depends smoothly on v; let

β = B ∧ · .

Lemma 4.4. Under the above assumptions,

(4-10)
∂

∂v
log

(
det′(d#

0 d0|�
0
(a,+∞)(M,E))

−1
·
(
det′(d#

1̄ d1̄|�
1̄
(a,+∞)(M,E))

))
=−2

∑
k=0,1

(−1)k Tr(βQk).

Proof. As in the proof of Lemma 4.1, we set

f (s, v)=
∑

k=0,1

(−1)k
∫
+∞

0
t s−1 Tr(e−td#

k
dk Pk |�k

(a,+∞)(M,E)) dt.

We note that B, hence β is real. Using

∂dk

∂v
= [β, dk],

∂d#
k

∂v
=−[β#, d#

k ], P2
k = Pk = P#

k , Pk
∂Pk

∂v
Pk = 0

and Duhamel’s principle, similarly to [Mathai and Wu 2008, Lemma 3.5], we get

(4-11)
∂ f
∂v
=−2

∑
k=0,1

(−1)k
∫
+∞

0
t s ∂

∂t
Tr(βe−t1b,k5k) dt.

The rest is similar to the proof of Lemma 4.1. �

Lemma 4.5. Under the same assumptions, along any one-parameter deformation
of H that fixes the cohomology class [H ], we have

(4-12)
∂

∂w

∣∣∣∣
v

(bdet H•(�•
[0,a](M,E,H

w),d)

bdet H•(�•
[0,a](M,E,H

v),d)

)
= 2

∑
k=0,1

(−1)k Tr(βQk),

where we identify det H•(M, E, H) along the deformation.
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Proof. For sufficiently small w− v, we have

QkεB :�
k
[0,a](M, E, H v)→�k

[0,a](M, E, Hw)

is an isomorphism of complexes and the induced symmetric bilinear form on the
determinant line det H•(�•

[0,a](M, E, H v), d) is

(4-13)
((

det(QkεB)
∗bdet H•(�•

[0,a](M,E,H
w),d)

))
( · , · )

= bdet H•(�•
[0,a](M,E,H

w),d)
(
det(QkεB) · , det(QkεB) ·

)
,

where

det(QkεB) : det H•
(
�∗
[0,a](M, E, H v)

)
→ det H•

(
�∗
[0,a](M, E, Hw)

)
is the induced isomorphism on the determinant lines. Then we can compare it with
bdet H•(�•

[0,a](M,E,H
u),d), and similarly to [Mathai and Wu 2008, Lemma 3.7], we

get (4-12). �

Combining Lemma 4.4 and Lemma 4.5, we have:

Theorem 4.6. Let M be a closed, compact manifold of odd dimension, E be a flat
vector bundle over M. Suppose H and H ′ are closed differential forms on M of
odd degrees representing the same de Rham cohomology class, and let B be an
even form so that H ′ = H − d B. Then the symmetric bilinear torsion satisfies
(det εB)

∗τb,∇,H ′ = τb,∇,H .

5. Compare with the refined analytic torsion

In this section, we will compare the symmetric bilinear torsion τb,∇,H with the
refined analytic torsion ρan(∇

H ) defined in [Huang 2010a]. The main theorem of
this section is the following.

Theorem 5.1. Let M be a closed odd dimensional manifold, E be a complex vector
bundle over M with connection ∇, H be a closed odd-degree differential form
on M. Suppose there exists a nondegenerate symmetric bilinear form on E. Then

(5-1) τb,∇,H
(
ρan(∇

H )
)
=±e−2π i(η(∇H )−rank E ·ηtrivial).

(Here η(∇H ) and ηtrivial are defined in [Huang 2010a].)

We will use the method in [Braverman and Kappeler 2007a] to prove the theorem
and the proof will be given later.

Let h be a Hermitian metric on E . One can construct the Ray–Singer analytic
torsion as an inner product on det H•(M, E, H), or equivalently as a metric on the
determinant line; see [Huang 2010a, (6.13)]. We denote the resulting inner product
by τh,∇,H . Then by our Theorem 5.1 and Theorem 6.2 of the same reference,
we get:
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Corollary 5.2. If dim M is odd,
∣∣∣∣τb,∇,H

τh,∇,H

∣∣∣∣= 1.

The dual connection. Let M be an odd dimensional closed manifold and E be
a flat vector bundle over M , with flat connection ∇. Assume that there exists a
nondegenerate symmetric bilinear form b on E . The dual connection ∇ ′ to ∇ on E
with respect to the form b is defined by the formula

db(u, v)= b(∇u, v)+ b(u,∇ ′v), u, v ∈ 0(M, E).

We denote by E ′ the flat vector bundle (E,∇ ′).

Choices of the metric and the spectral cut. Until the end of this section we fix a
Riemannian metric g on M and set BH

= B(∇H , g) = 0∇H
+∇

H0 and B′H =

B′(∇ ′H , g) = 0∇ ′H +∇ ′H0, where 0 : �•(M, E)→ �•(M, E) is the chirality
operator defined by

0ω = i (n+1)/2
∗ (−1)q(q+1)/2ω, ω ∈�q(M, E).

We also fix θ ∈ (−π/2, 0) such that both θ and θ+π are Agmon angles for the
odd signature operator BH . One easily checks that

(5-2) (∇H )# = 0∇ ′H0, (∇ ′H )# = 0∇H0, and (BH )# =B′H .

As BH and (BH )# have the same spectrum it then follows that

(5-3) η(B′H )= η(BH ) and Detgr,θ (B
′H )= Detgr,θ (B

H ).

Proof of Theorem 5.1. The symmetric bilinear form βg,b induces a nondegenerate
symmetric bilinear form

H j (M, E ′)⊗ H n− j (M, E)→ C, j = 0, . . . , n,

and, hence, identifies H j (M, E ′) with the dual space of H n− j (M, E). Using the
construction of [Huang 2010a, Section 5.1] (with τ : C→ C be the identity map)
we obtain a linear isomorphism

(5-4) α : det H•(M, E, H)→ det H•(M, E ′, H).

Lemma 5.3. Let E → M be a complex vector bundle over a closed oriented odd
dimensional manifold M endowed with a nondegenerate bilinear form b and let ∇
be a flat connection on E. Let ∇ ′ denote the connection dual to ∇ with respect
to b. Let H be a closed odd-degree differential form on M. Then

(5-5) α
(
ρan(∇

H )
)
= ρan(∇

′H ).
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The proof is that of [Huang 2010a, Theorem 5.3] and will be omitted. (Actually,
it is simpler, since BH and B′H have the same spectrum, so there is no complex
conjugation involved.)

For simplicity, we set

τb,∇,H,(a,+∞) = det′(d#
0 d0|�

0
(a,+∞)(M,E))

−1
· (det′(d#

1̄ d1̄|�
1̄
(a,+∞)(M,E))).

Setting 1′H = (∇ ′H )#∇ ′H +∇ ′H (∇ ′H )#, we then have

1′H = 01H0.

Lemma 5.4. τb,∇,H,(a,+∞) = τb,∇ ′,H,(a,+∞).

Proof. Applying (5-2) and using the fact that

∇
′H
:�k

(a,+∞)(M, E, H)∩ im(∇ ′H )#→�k+1
(a,+∞)(M, E, H)∩ im∇ ′H

is an isomorphism, we get

τb,∇,H,(a,+∞) =
∏

k=0,1

det′
(
(∇H )#∇H

|
�k
(a,+∞)(M,E,H)

)(−1)k+1

(5-6)

=

∏
k=0,1

det′
(
0∇ ′H (∇ ′H )#0|

�k
(a,+∞)(M,E,H)

)(−1)k+1

=

∏
k=0,1

det′
(
∇
′H (∇ ′H )#|

�k
(a,+∞)(M,E,H)

)(−1)k

=

∏
k=0,1

det′
(
(∇ ′H )#∇ ′H |

�k
(a,+∞)(M,E,H)

)(−1)k+1

= τb,∇ ′,H ,

which completes the proof. �

Then for any h ∈ det H•(M, E, H), we have

(5-7) τb,∇,H (h)= τb,∇ ′,H (α(h)).

Hence, by (5-5) and (5-7),

(5-8) τb,∇,H
(
ρan(∇

H )
)
= τb,∇ ′,H

(
ρan∇

′H ) .
Let

∇̃ =

(
∇ 0
0 ∇ ′

)
, ∇̃H

=

(
∇

H 0
0 ∇

′H

)
.

Then, for any a ≥ 0,

τb,∇̃,H,(a,+∞) = τb,∇,H,(a,+∞) · τb,∇ ′,H,(a,+∞),

τb,∇̃,H

(
ρan(∇̃

H )
)
= τb,∇,H

(
ρan(∇

H )
)
· τb,∇ ′,H

(
ρan(∇

′H )
)
.
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Combining the latter equality with (5-8) shows that

τb,∇̃,H

(
ρan(∇̃

H )
)
= τb,∇,H

(
ρan(∇

H )
)2
.

Hence, (5-1) is equivalent to the equality

(5-9) τb,∇̃,H

(
ρan(∇̃

H )
)
= e−4π i(η(∇H )−rank E · ηtrivial).

By a slight modification of the deformation argument in [Braverman and Kappeler
2007a, Section 4.7] where the untwisted case was treated, we obtain (5-9). This
concludes the proof of Theorem 5.1. �

6. On the Cappell–Miller analytic torsion

In this section, we briefly discuss the extension of the Cappell–Miller analytic
torsion to the twisted de Rham complexes. Let dim M be odd.

In the notation above, we have the twisted de Rham complex ∇H
:�k(M, E)→

�k+1(M, E) and the chirality operator 0 : �k(M, E)→ �k+1(M, E), k = 0, 1.
Define

d[k = 0dk0 :�
k(M, E)→�k+1(M, E).

Then consider the non-self-adjoint Laplacian

1[k = (dk + d[k)
2
:�k(M, E)→�k(M, E).

For any a ≥ 0, let �[,k
[0,a](M, E) (�[,k(a,+∞)(M, E)) denote the span in �k(M, E) of

the generalized eigensolutions of 1[
k

with generalized eigenvalues with absolute
value in [0, a] ((a,+∞)). Then we have the decomposition of the complex

(�•(M, E), d)= (�[,•
[0,a](M, E), d)⊕ (�[,•(a,+∞)(M, E), d).

The subcomplex (�[,•
[0,a](M, E), d) is a Z2-graded finite dimensional complex.

Then we can define the torsion element ρ[0[0,a]⊗ρ
[
0[0,a]
∈det H•(�[,•

[0,a](M, E), d)2∼=
det H•(M, E, H)2, where ρ[0[0,a] defined by [Huang 2010a, (2.22)]. On the other
hand, for the subcomplex (�[,•(a,+∞)(M, E), d), the following zeta-regularized de-
terminant is well defined (see (3-5)):

(6-1) det′(d[kdk |�
k
(a,+∞)(M,E)) := exp

(
−ζ ′(0, d[kdk |im d[

k
∩�[,k(a,+∞)(M,E))

)
.

Considering the square of the graded determinant defined in [Huang 2010a, (2.38)],
for the Z2-graded finite dimensional complex �[,•(a,c](M, E), 0 ≤ a < c <∞, we
find that

det′(d[0d0|�
[,0
(a,c](M,E)) · det′(d[1̄d1̄|�

[,1̄
(a,c](M,E))

−1
=
(
Detgr(B0|�

[,•
(a,c](M,E))

)2
.

Then by [Huang 2010a, Proposition 2.7], we easily get:
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Proposition 6.1. The torsion element defined by

(6-2) ρ[0[0,a] ⊗ ρ
[
0[0,a]
·

∏
k=0,1

(
det′(d[kdk |�

k
(a,+∞)(M,E))

)(−1)k
∈ det H•(M, E, H)2

is independent of the choice of a ≥ 0.

Definition 6.2. The torsion element in det H•(M, E, H)2 defined by (6-2) is called
the twisted Cappell–Miller analytic torsion for the twisted de Rham complex and
is denoted by τ∇,H .

Next we study the torsion τ∇,H under metric and flux deformations. Since the
methods are the same as the cases in the twisted refined analytic torsion [Huang
2010a] and the twisted Burghelea–Haller analytic torsion above, we only briefly
outline the results.

Theorem 6.3 (Metric independence). Let M be a closed odd dimensional mani-
fold, E be a complex vector bundle over M with flat connection ∇ and H be a
closed odd-degree differential form on M. Then the torsion τ∇,H is independent of
the choice of the Riemannian metric g.

Proof. By the definition of τ∇,H and the observation on the determinants, this
theorem follows easily from Proposition 2.4 and Equations (3.18) and (4.14) of
[Huang 2010a]. �

Theorem 6.4 (Flux representative independence). Let M be a closed odd dimen-
sional manifold and E be a complex vector bundle over M with flat connection ∇.
Suppose H and H ′ are closed differential forms on M of odd degrees represent-
ing the same de Rham cohomology class, and let B be an even form so that
H ′ = H − d B. Then we have τ∇,H ′ = det(εB)τ∇,H .

Proof. From the above observation, this follows easily from Lemmas 4.6 and 4.7
of [Huang 2010a]. �

From the definition in (6-2), we see that the twisted Cappell–Miller analytic
torsion is closely related to the twisted refined analytic torsion ρan(∇

H ). Explicitly:

Theorem 6.5 (compare [Huang 2010b, Theorem 4.5]). In det H•(M, E, H)2,

(6-3) ρan(∇
H )⊗ ρan(∇

H )= τ∇,H e−2π i(η(∇H )−rank E · ηtrivial).

Proof. The twisted refined analytic torsion [Huang 2010a, (4.15)] is defined by

ρan(∇
H )= Detgr,θ (B

H
0,(λ,∞)) · ρ0[0,λ] · e

iπ(rank E)ηtrivial .
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By [Huang 2010a, (5.31)], we have

(6-4) ρan(∇
H )⊗ ρan(∇

H )

= ρ0[0,λ] ⊗ ρ0[0,λ] · exp(2ξλ(∇H , gM , θ))

· exp
(
−2iπηλ(∇H )− iπ

∑
k=0,1

(−1)kd−
k,λ
+ 2iπ(rank E)ηtrivial

)
,

where ηλ(∇H ), ξλ(∇H , gM , θ), and d−
k,λ

are defined in equations (3.17), (3.18),
and (3.19) of [Huang 2010a]. By (6-2) and (6-4), we find that

(6-5) ρan(∇
H )⊗ ρan(∇

H )

= τ∇,H exp(−2iπηλ(∇H )− iπ
∑

k=0,1

(−1)kd−
k,λ
+ 2iπ(rank E)ηtrivial).

From [Huang 2010a, (5.28)], we get

(6-6) 2ηλ(∇H )+
∑

k=0,1

(−1)kd−
k,λ
≡ 2η(∇H ) mod 2Z.

Then (6-5) and (6-6) imply (6-3). �

Theorem 5.1 and Theorem 6.5 give the relation between the twisted Burghelea–
Haller analytic torsion τb,∇,H and the twisted Cappell–Miller analytic torsion τ∇,H
if there is a nondegenerate symmetric bilinear form the bundle E .

Corollary 6.6. If there is a nondegenerate symmetric bilinear form on E and
dim M is odd, we have

τb,∇,H (τ∇,H )=±1.

Remark 6.7. Almost at the same time of the preprint [Su 2010] of this paper,
Huang [2010b] defined and studied the twisted Cappell–Miller torsion both for
holomorphic and analytic cases.
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K (n)-LOCALIZATION OF THE K (n+ 1)-LOCAL
En+1-ADAMS SPECTRAL SEQUENCES

TAKESHI TORII

We construct a spectral sequence converging to the homotopy set of maps
from a spectrum to the K (n)-localization of the K (n+ 1)-local sphere. We
also construct a map of spectral sequences from the K (n)-local En-Adams
spectral sequence to the preceding one. Then we compare the map on
E2-terms with a map induced by the inflation maps of continuous coho-
mology groups for Morava stabilizer groups. As an application we show
that ζn in π−1(L K (n)S0) represented by the reduced norm map in the K (n)-
local En-Adams spectral sequence has a nontrivial image under the map
π∗(L K (n)S0)→ π∗(L K (n)L K (n+1)S0).

1. Introduction

The motivation of this note is toward understanding the relationship between the
K (n)-local category and the K (n + 1)-local category. For each prime number p,
the stable homotopy category of p-local spectra has a filtration of full subcate-
gories corresponding to the height filtration of the moduli space of formal groups
[Morava 1985]. The n-th associated graded part of the filtration is equivalent to
the K (n)-local category, that is, the Bousfield localization of the stable homotopy
category with respect to the n-th Morava K -theory spectrum K (n) [Hovey and
Strickland 1999]. So it can be considered that the stable homotopy category of
p-local spectra is built up from the K (n)-local categories for various n. In fact, the
chromatic convergence theorem [Ravenel 1992] says that a p-local finite spectrum
X is homotopy equivalent to the homotopy inverse limit of the chromatic tower
· · · → Ln+1 X → Ln X → · · · → L0 X , where Ln is the Bousfield localization
functor with respect to the wedge of Morava K -theories K (0)∨K (1)∨· · ·∨K (n).
This means that a p-local finite spectrum X can be recovered from {Ln X}n≥0

through the chromatic tower. Furthermore, if the chromatic splitting conjecture
is true, then it implies that the p-completion of a finite spectrum X is a direct
summand of the product

∏
n L K (n)X [Hovey 1995]. This means that it is not nec-

essary to reconstruct the tower but it is sufficient to know all L K (n)X to obtain

MSC2000: primary 55T25, 55P42; secondary 55Q51, 55N22, 55N20.
Keywords: Adams spectral sequence, K (n)-localization, Morava E-theory.
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some information of X . Since the chromatic splitting conjecture is concerned with
the relationship among various chromatic pieces, it is important to understand the
relationship between the K (n)-local category and the K (n+ 1)-local category.

Let En be the n-th Morava E-theory spectrum. The K (n)-local En-Adams spec-
tral sequence L K (n)E s,t

r (W ) is a natural spectral sequence for any spectrum W ,

L K (n)E
s,t
2 (W )= H s

c (Gn; E t
n(W ))H⇒ [W, L K (n)S0

]
s+t ,

which converges to [W, L K (n)S0
]
∗ strongly and conditionally; see [Devinatz and

Hopkins 2004, Appendix A]. On the E2-term, Gn is the n-th extended Morava
stabilizer group, and H s

c (Gn; E t
n(W )) is a continuous cohomology group for the

profinite group Gn with coefficients in the profinite module E t
n(W ).

We construct a natural spectral sequence converging to [W, L K (n)L K (n+1)S0
]
∗

by applying the K (n)-localization functor to the K (n+1)-local En+1-Adams reso-
lution of L K (n+1)S0. Let A= L K (n)En+1 be the K (n)-localization of the (n+1)-st
Morava E-theory En+1. We identify the E2-term as a cohomology group based
on the continuous cochain complex for Gn+1 with coefficients in the topologi-
cal module A∗(W ). We call this spectral sequence the K (n)-localization of the
K (n+ 1)-local En+1-Adams spectral sequence for W .

Theorem 4.7. For any spectrum W , there is a natural spectral sequence

L K (n)L K (n+1)E
s,t
2 (W )= H s

c (Gn+1;A
t(W ))H⇒ [W, L K (n)L K (n+1)S0

]
s+t ,

which converges strongly and conditionally.

By the K (n)-localization of the K (n + 1)-localization map S0
→ L K (n+1)S0,

we obtain a map L K (n)S0
→ L K (n)L K (n+1)S0, which induces a map

[W, L K (n)S0
]
∗
→ [W, L K (n)L K (n+1)S0

]
∗

for any spectrum W . We construct in Theorem 6.2 a natural map of spectral se-
quences

ϕr (W ) : L K (n)E s,t
r (W )−→ L K (n)L K (n+1)E s,t

r (W ),

which converges to the map [W, L K (n)S0
]
s+t
→[W, L K (n)L K (n+1)S0

]
s+t . Further-

more, we give an interpretation of the map on E2-terms. We construct a natural
homomorphism

θ(W ) : H∗c (Gn; E∗n(W ))−→ H∗c (Gn+1;A
∗(W )),

which is obtained from some kind of inflation maps (see (7-1)).

Theorem 7.6. The map ϕ2(W ) coincides with θ(W ) for any spectrum W .

By the Hopkins–Miller theorem [Devinatz and Hopkins 2004, Theorem 6], we
know that there is a nontrivial element ζn ∈ π−1(L K (n)S0) which is represented by
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the reduced norm map of Gn in the E2-term of the K (n)-local En-Adams spectral
sequence. Let ωn be the image of ζn under the map

π∗(L K (n)S0)→ π∗(L K (n)L K (n+1)S0).

As an application of our results, we show the following theorem.

Theorem 8.1. The image ωn is nontrivial.

The organization of the remaining sections is as follows: In Section 2 we re-
view the results in [Torii 2010a]. We recall the construction of a commutative
ring spectrum B which is an extension of both of En and En+1, and the action
of the group G = Gn ×0 Gn+1 on B. In Section 3 we introduce a topology
for A∗-modules of certain type, and study modules of continuous maps from a
topological space to such a topological A∗-module. In particular, we show that
the functor Mapc(T,A∗(−)) is a generalized cohomology theory for any compact
space T . In Section 4 we construct the K (n)-localization of the K (n + 1)-local
En+1-Adams spectral sequence by applying the K (n)-localization functor to the
K (n+ 1)-local En+1-Adams resolution of L K (n+1)S0, and prove Theorem 4.7. In
Section 5 we define a cohomology of G with coefficients in B∗(W ) for the purpose
of connecting the cohomology of Gn and that of Gn+1. Then we show that the
inflation map from the cohomology of Gn+1 with coefficients in A∗(W ) to the
cohomology of G with coefficients in B∗(W ) is an isomorphism for any spectrum
W . In Section 6 we construct a map of spectral sequences from the K (n)-local
En-Adams spectral sequence to the K (n)-localization of the K (n+1)-local En+1-
Adams spectral sequence. In Section 7 we construct a homomorphism θ(W ) from
the cohomology group of Gn with coefficients in E∗n(W ) to the cohomology group
of Gn+1 with coefficients in A∗(W ) by using the cohomology of G with coefficients
in B∗(W ) constructed in Section 5. Then we identify this homomorphism with the
map of spectral sequences on E2-terms, and prove Theorem 7.6. In Section 8 we
prove Theorem 8.1 as an application of the results obtained earlier.

2. The ring spectrum B

In this section we review the results in [Torii 2010a]. We recall the construction of
a commutative ring spectrum B and two ring spectrum maps 2 : En+1→ B and
I : En→B. Furthermore, we recall that the action of a profinite group G on B and
the equivariance of 2 and I under the actions of G.

Let p be a prime number, and let n be a positive integer. We fix a finite field F
which contains the finite fields Fpn and Fpn+1 . Note that the minimal field satisfying
the condition is Fpn⊗Fpn+1 ∼= Fpn2+n . We denote by W the ring of Witt vectors with
coefficients in F. We define variants of the n-th Morava E-theory spectrum En

and the (n+ 1)-st Morava E-theory spectrum En+1 such that the coefficient rings
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are given by

E∗n =W [[w1, . . . , wn−1]][w
±1
], E∗n+1 =W [[u1, . . . , un]][u±1

].

There is an associated degree 0 formal group law Fn over E0
n since En is complex

oriented and even-periodic. The formal group law Fn is a universal deformation of
the Honda formal group law Hn of height n over F. Note that we can take Fn as
a p-typical formal group law. The Morava stabilizer group Sn is defined to be the
group of automorphisms of Hn over F. Then the extended Morava stabilizer group
Gn is defined to be the semi-direct product Gn = 0n Sn , where 0 =Gal(F/Fp ) is
the Galois group of F over the prime field Fp . We can identify Gn with the group
of automorphisms of the ring spectrum En in the stable homotopy category. Then
g= (γ, s)∈0n Sn =Gn induces a ring homomorphism g∗ : E∗n→ E∗n . We denote
by Fg

n the formal group law obtained from Fn by the coefficient change along g∗.
Then there is a unique isomorphism t (g) : Fn → Fg

n of formal group laws which
is a lifting of the isomorphism s : Hn→ Hγ

n = Hn . There are projections Gn→ 0

and Gn+1→ 0. We define a profinite group G to be the fiber product of Gn and
Gn+1 over 0

G= Gn ×0 Gn+1.

Let K (n) be the n-th Morava K -theory spectrum at p. We denote by A the
commutative ring spectrum L K (n)En+1, the Bousfield localization of En+1 with
respect to K (n). The coefficient ring of A is given by the following Lemma.

Lemma 2.1. The coefficient ring A∗ is isomorphic to (E∗n+1[u
−1
n ])

∧

In
, the comple-

tion of the localization E∗n+1[u
−1
n ] at the ideal In = (p, u1, . . . , un−1). Hence A∗

is a graded complete Noetherian regular local ring isomorphic to

(W ((un)))
∧

p [[u1, . . . , un−1]][u±1
]

with residue field F((un))[u±1
].

Proof. There is a tower {M(J )}J of generalized Moore spectra of height n as
in [Hovey and Strickland 1999, Proposition 4.2]. If J = (pa0, v

a1
1 , . . . , v

an−1
n−1 ),

then (En+1 ∧ M(J ))∗ = E∗n+1/(p
a0, ua1

1 , . . . , uan−1
n−1 ) since vi = ui u pi

−1 for i =
1, . . . , n − 1. We set X∧In

= holim
←−J X ∧ M(J ) for a spectrum X . Since En+1 is

Landweber exact of height (n+ 1), it satisfies the telescope conjecture at n in the
sense of [Hovey 1997, Definition 1.5.2]. Then L K (n)En+1 ' (En+1[v

−1
])∧In

by
[Hovey 1997, Theorem 1.5.4], where v is a generalized vn-element in E∗n+1 in the
sense of [Hovey 1997, Definition 1.2.2]. We can take vn = unu pn

−1
∈ π2pn−2 En+1

as a generalized vn-element. Since the sequence pa0, ua1
1 , . . . , uan−1

n−1 is regular in
E∗n+1[v

−1
n ]= E∗n+1[u

−1
n ], (En+1[v

−1
n ]∧M(J ))∗= E∗n+1[u

−1
n ]/(p

a0, ua1
1 , . . . , uan−1

n−1 )

if J = (pa0, v
a1
1 , . . . , v

an−1
n−1 ). Then we see that A∗= (L K (n)En+1)

∗ is the completion
of E∗n+1[u

−1
n ] at the ideal In = (p, u1, . . . , un−1): A∗ ∼= (E∗n+1[u

±1
n ])

∧

In
. Since the
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sequence p, u1, . . . , un−1 is regular in E∗n+1[u
±1
n ], and it generates a maximal ideal,

A∗ is a graded regular local ring with maximal ideal generated by p, u1, . . . , un−1

and residue field F((un))[u±1
].

The obvious ring homomorphism W [[un]] → A∗ extends to (W ((un)))
∧
p → A∗,

since un is a unit in A∗, and A∗ is p-complete. Furthermore, since A∗ is In-adically
complete, the obvious ring homomorphism (W ((un)))

∧
p [u1, . . . , un−1][u±1

] → A∗

extends to (W ((un)))
∧
p [[u1, . . . , un−1]][u±1

] → A∗. The ring

(W ((un)))
∧

p [[u1, . . . , un−1]][u±1
]

is a graded complete regular local ring with maximal ideal generated by p, u1, . . . ,
un−1 and residue field F((un))[u±1

]. Since the ring homomorphism

(W ((un)))
∧

p [[u1, . . . , un−1]][u±1
] → A∗

is continuous, and it induces an isomorphism on the associated graded rings, we
obtain an isomorphism between A∗ and (W ((un)))

∧
p [[u1, . . . , un−1]][u±1

]. �

Since a complete local ring is Henselian, A∗ is a Henselian ring by Lemma 2.1.

Lemma 2.2 [Milne 1980, Proposition I.4.4]. Let R be a Henselian ring with residue
field k. Then the functor S 7→ S⊗R k induces an equivalence between the category
of finite étale R-algebras and the category of finite étale k-algebras.

Let Fn+1 be the formal group law over F((un)) obtained from Fn+1 by the
reduction E0

n+1→ F((un)). Then the height of Fn+1 is n. Since the isomorphism
classes of formal group laws over a separably closed field are classified by their
height, there is an isomorphism between Fn+1 and the height n Honda formal
group law Hn over the separable closure F((un))

sep. In [Torii 2003, §2.3] we have
constructed an extension field L of F((un)), where L is the minimal extension such
that there is an isomorphism between Fn+1 and Hn . The extension L is Galois over
F((un)) with Galois group isomorphic to Sn . There is a sequence of finite Galois
extensions of F((un))

F((un))= L(−1)→ L(0)→ L(1)→ · · ·(2-1)

such that L =
⋃

i L(i). We denote by Sn(i) the Galois group for F((un))→ L(i).
Then Sn(i) is a finite quotient group of Sn of order (pn

−1)pni , and Sn= lim
←−i Sn(i).

The action of Gn+1 on E0
n+1 induces an action on the residue field F((un)) of A0.

By [Torii 2003, §2.4], there is an action of G on L , which is an extension of the
action of Gn+1 on F((un)) and the action of Sn on L as Galois group. Note that
L(i) is stable under the action of G for all i .
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By Lemma 2.2, the sequence of Galois extensions (2-1) induces a sequence of
graded commutative rings

A∗ = B(−1)∗→ B(0)∗→ B(1)∗→ · · · .

The ring B(i)∗ is an even-periodic graded complete Noetherian regular local ring
with residue field L(i)[u±1

]. Furthermore, A∗ → B(i)∗ is a Galois extension of
graded commutative rings with Galois group Sn(i) in the sense of [Chase et al.
1965; Greither 1992]. Let B(∞)∗ be the direct limit of the sequence: B(∞)∗ =

colim
−→i B(i)∗. Then we define a graded commutative ring B∗ to be the completion

of B(∞)∗ at the ideal In = (p, u1, . . . , un−1)

B∗ = (B(∞)∗)∧In
.

By Lemma 2.2, there is a unique lifting of the action of G on B∗ and B(i)∗ for
0≤ i ≤∞ compatible with canonical inclusions.

By the A∗-algebra structures, we can regard B∗ and B(i)∗ for 0 ≤ i ≤ ∞ as
Landweber exact even-periodic graded commutative rings. We denote the corre-
sponding commutative ring spectra by B and B(i) for 0 ≤ i ≤ ∞, respectively.
Hence we obtain a sequence of commutative ring spectra

A = B(−1)→ B(0)→ B(1)→ · · · .

Then we have B(∞) = hocolim
−→i B(i) and B = L K (n)B(∞). We define a ring

spectrum map 2 : En+1→ B to be the composition

2 : En+1 −→ L K (n)En+1 = A −→ B.

By [Torii 2003, §2.3], the formal group law induced by the ring homomorphism
E0

n → F ↪→ L is isomorphic to the formal group law induced by the ring ho-
momorphism E0

n+1 → F((un)) ↪→ L . By the universality of the formal group
law Fn associated with En , there exists a ring homomorphism E∗n → B∗ and an
isomorphism 8 between the formal group laws Fn and Fn+1 over B0

8 : Fn+1
∼=
−→ Fn.

Note that B0 is the minimal extension ring of both of E0
n and E0

n+1 such that there
exists an isomorphism between Fn and Fn+1. Since En and B are even-periodic
Landweber exact commutative ring spectra, the ring homomorphism E∗n → B∗

extends to a ring spectrum map

I : En −→ B.

By the projection G → Gn , we can consider that G acts on En as automor-
phisms of commutative ring spectrum in the stable homotopy category. Also, by
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the projection G→ Gn+1, we can consider that G acts on En+1 as automorphisms
of commutative ring spectrum.

Proposition 2.3 [Torii 2010a, §4]. The profinite group G acts on the commutative
ring spectrum B in the stable homotopy category. The ring spectrum maps I :
En→ B and 2 : En+1→ B are equivariant with respect to the actions of G.

Remark 2.4 [Torii 2010b]. The ring spectrum B supports a commutative S-algebra
structure and the group G acts on B in the category of commutative S-algebras.
Let T = L K (n)S0

⊗Zp W be the commutative S-algebra obtained from L K (n)S0 by
adjoining a primitive (pm

−1)-st root of unity, where m is the dimension of F over
Fp . Then there is an equivalence B ' L K (n)(En ∧T A) of commutative S-algebras.
In particular, when F = Fpn2+n , there is an equivalence B ' L K (n)(E ′n ∧ E ′n+1) of
commutative S-algebras, where E ′n and E ′n+1 are the standard Morava E-theory
spectra so that π0 E ′n/In = Fpn and π0 E ′n+1/In+1 = Fpn+1 . In this case

Gal(F/Fp )∼= Gal(Fpn/Fp )×Gal(Fpn+1/Fp ) and G∼= G ′n ×G ′n+1,

where G ′n = Gal(Fpn/Fp )n Sn and G ′n+1 = Gal(Fpn+1/Fp )n Sn+1 are the standard
extended Morava stabilizer groups.

3. Mapping space Mapc(T,A∗(W))

To interpret the E2-term of the K (n)-localization of the K (n + 1)-local En+1-
Adams spectral sequence which will be constructed in Section 4 below as a coho-
mology group of Gn+1, we need to give an appropriate topology for A∗-cohomol-
ogy groups. In this section we introduce a topology for A∗-modules of certain
type, and study modules of continuous maps from a topological space to such an
A∗-module.

For a topological space T , and a topological module M , denote by Mapc(T,M)
the module of continuous maps from T to M . Recall the fact that a surjection
between profinite groups has a continuous section of topological spaces [Serre
1994, Proposition I.1.2.1]. This implies that Mapc(T,−) gives an exact functor
from the category of profinite modules to that of abelian groups. The coefficient
ring E∗n+1 is a graded complete Noetherian local ring with maximal ideal In+1 =

(p, u1, . . . , un). Since E∗n+1/I r
n+1 is a graded finite ring for each r , E∗n+1 is a graded

profinite ring. Let N be a finitely generated E∗n+1-module. Then N is a graded
profinite abelian group. In this case there is an easy description for Mapc(T, N ) as
follows.

Lemma 3.1. If N is a finitely generated E∗n+1-module, there is a natural isomor-
phism

Mapc(T, N )∼=Mapc(T, E∗n+1)⊗E∗n+1
N .
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Proof. Since N is finitely generated, there is an exact sequence of profinite modules
N 1
→ N 0

→ N → 0, where N i is finitely generated free for i = 0, 1. This
induces two exact sequences Mapc(T, N 1)→Mapc(T, N 0)→Mapc(T, N )→ 0
and Mapc(T, E∗n+1)⊗ N 1

→Mapc(T, E∗n+1)⊗ N 0
→Mapc(T, E∗n+1)⊗ N → 0.

Since N i is finitely generated free, we have Mapc(T, N i )∼=Mapc(T, E∗n+1)⊗ N i

for i = 0, 1. Hence we obtain that Mapc(T, N )∼=Mapc(T, E∗n+1)⊗ N . �

Corollary 3.2. For an ideal I of E∗n+1 and a finitely generated E∗n+1-module N ,
there is a natural isomorphism

Mapc(T, N/I N )∼=Mapc(T, N )/I Mapc(T, N ).

By Lemma 3.1, it is fundamental to understand Mapc(T, E∗n+1). Recall that a
module over a (graded) regular local ring is called profree if it is isomorphic to the
completion at the maximal ideal of some free module (see [Hovey and Strickland
1999, Theorem A.9] for equivalent conditions of profree modules).

Proposition 3.3. For a topological space T , Mapc(T, E∗n+1) is a profree E∗n+1-
module.

Proof. Put P = Mapc(T, E∗n+1). We have P ∼= lim
←−r Mapc(T, E∗n+1/I r

n+1), since
E∗n+1

∼= lim
←−r E∗n+1/I r

n+1. Then P ∼= lim
←−r P/I r

n+1 P by Corollary 3.2. This shows
that P is L-complete by [Hovey and Strickland 1999, Theorem A.6(a)]. Since
p, u1, . . . , un is a regular sequence on E∗n+1,

0→ E∗n+1/Ik
uk
→ E∗n+1/Ik→ E∗n+1/Ik+1→ 0

is an exact sequence of profinite modules for k = 0, 1, . . . , n. By applying the
functor Mapc(T,−), we obtain an exact sequence

0→ P/Ik P
uk
→ P/Ik P→ P/Ik+1 P→ 0

for k = 0, 1, . . . , n by Corollary 3.2. Hence p, u1, . . . , un is a regular sequence on
P , and P is profree by [Hovey and Strickland 1999, Theorem A.9]. �

Recall that A = L K (n)En+1 and A∗ ∼= E∗n+1[u
−1
n ]
∧

In
= lim
←−r E∗n+1/I r

n [u
−1
n ] by

Lemma 2.1. We denote by Jn the ideal of A∗ generated by p, u1, . . . , un−1, that
is, Jn = InA∗ ⊂ A∗. Then we have A∗/J r

n = E∗n+1/I r
n [u
−1
n ]. Note that A∗/J r

n is
a graded ring of formal Laurent series over an Artinian local ring. To introduce a
topology for A∗-modules of certain type, we first consider the case of such a ring.

Definition 3.4. Let R be a (graded) Artinian local ring. Then the ring R[[a]] of
formal power series is a Noetherian local ring. Note that the topology of R[[a]]
coincides with the (a)-adic topology since the maximal ideal of R is nilpotent. We
give the ring R((a))= R[[a]][a−1

] of formal Laurent series a R[[a]]-linear topology
such that R[[a]] is an open submodule. Then R((a)) is a union of open submodules
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ar R[[a]] for r ∈ Z: R((a)) =
⋃

r∈Z ar R[[a]]. For an R[[a]]-module N , we give
the (a)-adic topology on N . The localization N [a−1

] is an R((a))-module. Let
N ′ be the image of the localization map N → N [a−1

]. Then N ′ is an R[[a]]-
submodule of N [a−1

]. We give an R[[a]]-linear topology on N [a−1
] such that N ′

is an open submodule. Then N [a−1
] is a union of open submodules ar N ′ for r ∈Z:

N [a−1
] =

⋃
r∈Z ar N ′.

For an R[[a]]-module N , the localization map N → N [a−1
] induces a map

Mapc(T, N )[a−1
]→Mapc(T, N [a−1

]) of R((a))-modules. The following lemma
gives a sufficient condition that this map is an isomorphism.

Lemma 3.5. Let R be a (graded) Artinian local ring with finite residue field, and
let T be a compact space. For an R[[a]]-module N , there is a natural isomorphism

Mapc(T, N [a−1
])∼=Mapc(T, N ′)[a−1

],

where N ′ is the image of the localization map N → N [a−1
]. Furthermore, if N is

(a)-torsion free or finitely generated, then there is a natural isomorphism

Mapc(T, N [a−1
])∼=Mapc(T, N )[a−1

].

Proof. Since N [a−1
] is a union of open submodules ar N ′ for r ∈Z, any continuous

map from T to N [a−1
] factors through ar N ′ for some r . Hence

Mapc(T, N ′)[a−1
]
∼=
→Mapc(T, N [a−1

]).

If N is (a)-torsion free, then N ′ = N . Assume that N is finitely generated. Let K
be the kernel of the surjection N → N ′. Since N [a−1

] ∼= N ′[a−1
], K [a−1

] = 0.
Since K is finitely generated, there is a positive integer m such that am K = 0.
Since R[[a]] is profinite, Mapc(T,−) is an exact functor on the category of finitely
generated R[[a]]-modules. Then the exact sequence 0 → K → N → N ′ → 0
induces an exact sequence 0→Mapc(T, K )→Mapc(T, N )→Mapc(T, N ′)→ 0.
The fact that am K = 0 implies amMapc(T, K )= 0. Hence Mapc(T, K )[a−1

] = 0.
So we obtain that Mapc(T, N )[a−1

] ∼=Mapc(T, N ′)[a−1
]. �

We define a topology for A∗-modules of the form lim
←−r N/I r

n [u
−1
n ] for some

E∗n+1-module N .

Definition 3.6. For an A∗/J r
n -module M , since A∗/J r

n is a graded ring of for-
mal Laurent series over an Artinian local ring, we give a topology on M as in
Definition 3.4. For an E∗n+1-module N , we define an A∗-module A∗N by

A∗N = N [u−1
n ]
∧

In
= lim
←−r N/I r

n N [u−1
n ].

Then N/I r
n [u
−1
n ] is an A∗/J r

n -module. We give A∗N = lim
←−r N/I r

n N [u−1
n ] a topol-

ogy by using the inverse limit topology.
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Note that there is an isomorphism A∗E∗n+1
∼= A∗. If N is a finitely gener-

ated E∗n+1-module, then N [u−1
n ] is finitely generated over the Noetherian ring

E∗n+1[u
−1
n ]. Then the completion of N [u−1

n ] at the ideal In is given by the tensor
product with A∗. Hence there is a natural isomorphism A∗N ∼=A∗⊗E∗n+1

N for any
finitely generated E∗n+1-module N , and the functor A∗(−) is exact on the category
of finitely generated E∗n+1-modules.

In the rest of this section we study the functor Mapc(T,A∗(−))with T compact.

Lemma 3.7. If T is a compact space and N is a finitely generated E∗n+1-module,
then there is a natural isomorphism of A∗-modules

Mapc(T,A∗N )∼= A∗Mapc(T, N ).

Proof. Since A∗N = lim
←−r N/I r

n N [u−1
n ], we have

Mapc(T,A∗N )∼= lim
←−r Mapc(T, N/I r

n N [u−1
n ]).

By Lemma 3.5 and Corollary 3.2,

Mapc(T, N/I r
n N [u−1

n ])
∼=Mapc(T, N )/I r

n Mapc(T, N )[u−1
n ].

Hence Mapc(T,A∗N ) is isomorphic to lim
←−r Mapc(T, N )/I r

n Mapc(T, N )[u−1
n ] =

A∗Mapc(T, N ). �

The basic case is when N = E∗n+1:

Proposition 3.8. For any compact space T , Mapc(T,A∗) is a profree A∗-module.

Proof. By Proposition 3.3, Mapc(T, E∗n+1) is profree over E∗n+1, and is thus a
direct summand of some product

∏
α E∗n+1 by [Hovey and Strickland 1999, Propo-

sition A.13]. Hence it is sufficient to show that A∗(
∏
α E∗n+1) is profree over A∗.

For k = 0, 1, . . . , n − 1, we put M = E∗n+1/Ik and N = E∗n+1/Ik+1. Let Kr be

the kernel of the map M/I r
n M

uk
→ M/I r

n M , and let Lr be the kernel of the map
M/I r

n M→ N/I r
n N . Then there are exact sequences 0→Kr→M/I r

n M→ Lr→0
and 0→ Lr→ M/I r

n M→ N/I r
n N→ 0. Since E∗n+1 is regular, the canonical map

Kr+1→ Kr is 0. Then

lim
←−r((

∏
α

Kr )[u−1
n ])= lim

←−r
1 ((

∏
α

Kr )[u−1
n ])= 0.

Hence we obtain lim
←−r((

∏
α M/I r

n M)[u−1
n ])

∼=
→ lim
←−r((

∏
α Lr )[u−1

n ]), and

0= lim
←−r

1 ((
∏
α

M/I r
n M)[u−1

n ])
∼= lim
←−r

1 ((
∏
α

Lr )[u−1
n ]).

This implies that the sequence

0→ lim
←−r((

∏
α

M/I r
n )[u

−1
n ])

uk
−→ lim

←−r((
∏
α

M/I r
n M)[u−1

n ])−→ lim
←−r((

∏
α

N/I r
n N )[u−1

n ])→ 0
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is exact. This shows that p, u1, . . . , un−1 is a regular sequence on A∗(
∏
α E∗n+1).

Therefore A∗(
∏
α E∗n+1) is profree A∗-module by [Hovey and Strickland 1999,

Theorem A.9]. �

The map from T to the one point space ∗ induces a ring homomorphism A∗ =

Mapc(∗,A∗)→Mapc(T,A∗). Then the composition with the commutative MU∗-
algebra structure map MU∗→A∗ gives Mapc(T,A∗) a commutative MU∗-algebra
structure. Since a profree module over A∗ is Landweber exact, we obtain the
following corollary

Corollary 3.9. If T is a compact space, then Mapc(T,A∗) is Landweber exact.

We have a similar description for Mapc(T,A∗N ) as in Lemma 3.1 when T is a
compact space and N is a finitely generated E∗n+1-module as follows.

Proposition 3.10. If T is a compact space and N is a finitely generated E∗n+1-
module, then there is a natural isomorphism of A∗-modules

Mapc(T,A∗N )∼=Mapc(T,A∗)⊗
A∗

A∗N .

For the proof of Proposition 3.10, we prepare the following (well-known) lem-
mas.

Lemma 3.11 ([Lam 1999, Proposition 4.4]). Let R be a (graded) ring. If M is a
finitely presented module over R, then (

∏
α R)⊗R M ∼=

∏
α M.

Proof. Since M is finitely presented, there is an exact sequence M1
→ M0

→

M→ 0, where M i is finitely generated free for i = 0, 1. Then there are two exact
sequences (

∏
α R)⊗ M1

→ (
∏
α R)⊗ M0

→ (
∏
α R)⊗ M → 0 and

∏
α M1

→∏
α M0

→
∏
α M→ 0. Since M i is finitely generated free, (

∏
α R)⊗M i ∼=

∏
α M i

for i = 0, 1. Hence we obtain (
∏
α R)⊗M ∼=

∏
α M . �

Lemma 3.12. If F is a profree A∗-module and M is a finitely generated A∗-
module, then F ⊗A∗ M is Jn-adically complete.

Proof. Since F is profree, it is a direct summand of some product
∏
α A∗ by [Hovey

and Strickland 1999, Proposition A.13]. Since a direct summand of complete
module is complete, it is sufficient to show that (

∏
α A∗)⊗ M is complete. By

Lemma 3.11, (
∏
α A∗)⊗M ∼=

∏
α M , and

∏
α M is complete. �

Proof of Proposition 3.10. By Lemma 3.1, Mapc(T, N )∼=Mapc(T, E∗n+1)⊗E∗n+1
N .

Then we see that A∗Mapc(T, N ) is the completion of A∗Mapc(T, E∗n+1)⊗A∗ A∗N
at the ideal Jn . By Lemma 3.12, we see that A∗Mapc(T, E∗n+1)⊗A∗ A∗N is Jn-
adically complete. Hence we obtain

A∗Mapc(T, N )∼= A∗Mapc(T, E∗n+1)⊗A∗ A∗N . �
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Let S be the stable homotopy category, and let K be the K (n)-local stable ho-
motopy category. For a K (n)-local spectrum X ∈ K, we define 3′′(X) to be the
full subcategory of the comma category (S↓ X), whose objects are maps X ′′→ X
from finite spectra X ′′ of type at least n. Then3′′(X) is an essentially small filtered
category (see [Hovey and Strickland 1999, §9] and [Hovey et al. 1997, §2.3]). For
a spectrum W ∈ S, we set 3(W ) = 3′′(L K (n)W ). The following lemma gives a
sufficient condition that we can describe a generalized cohomology group of W in
terms of cohomology groups of Wλ for λ ∈3(W ).

Lemma 3.13. Let R be a K (n)-local commutative ring spectrum. Suppose that
the coefficient ring R∗ is even-periodic and R0 is a linearly compact Noetherian
ring. Then there is a natural isomorphism

R∗(W )∼= lim
←−λ

R∗(Wλ)

for any W ∈ S, where the inverse limit is taken over λ ∈3(W ).

Proof. For W ∈S, we set F∗(W )= lim
←−λ

R∗(Wλ). Note that R∗(W )∼= R∗(L K (n)W )

for any W ∈ S since R is K (n)-local. Then it is sufficient to show that R∗(X) ∼=
F∗(X) for any X ∈ K. By the assumption of the coefficient ring R∗, the functor
R∗(−) on the category of finite spectra takes values in the category of linearly
compact R∗-modules and continuous maps. Then F∗(−) is a cohomology theory
on S by [Hovey et al. 1997, Proposition 2.3.16] and [Hovey and Strickland 1999,
Proposition 9.2]. There is a natural transformation R∗(−)→ F∗(−) of cohomol-
ogy theories, which induces an isomorphism

R∗(X ′′)
∼=
→ F∗(X ′′)

for any finite spectrum X ′′ of type at least n. Since L K (n)F(n) is a graded weak
generator of K for any finite spectrum F(n) of type n ([Hovey and Strickland 1999,
Theorem 7.3]), we obtain that R∗(X)

∼=
→ F∗(X) for any X ∈ K. �

Definition 3.14. For a finite spectrum X of type at least n, E∗n+1(X) is annihi-
lated by a power of In , and A∗(X) ∼= E∗n+1(X)[u

−1
n ] is a module over A∗/J r

n =

E∗n+1/I r
n [u
−1
n ] for some r . We give a topology on A∗(X) as in Definition 3.6. For

a spectrum W , A∗(W )∼= lim
←−λ

A∗(Wλ) by Lemma 3.13, where Wλ are finite spectra
of type at least n. We give a topology on A∗(W ) by the inverse limit topology.

For a compact space T and a finite spectrum X of type at least n,

Mapc(T,A∗(X))∼=Mapc(T,A∗)⊗A∗ A∗(X)

by Proposition 3.10, and Mapc(T,A∗) is profree by Proposition 3.8. To study
the functor Mapc(T,A∗(−)) on the stable homotopy category S, we consider the
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following functor. Let F be a profree A∗-module. We define a functor HF (−)

from the stable homotopy category S to the category of A∗-modules by

HF (W )= lim
←−λ

F ⊗A∗ A∗(Wλ),

where the inverse limit is taken over λ ∈3(W ).

Lemma 3.15. The functor HF (−) is a cohomology theory on S.

Proof. Since F is a direct summand of some product
∏
α A∗ by [Hovey and

Strickland 1999, Proposition A.13], it is sufficient to show that the functor Z 7→
lim
←−λ

(
∏
α A∗)⊗A∗ A∗(Wλ) is a cohomology theory. Since A∗(Wλ) is finitely pre-

sented, (
∏
α A∗)⊗A∗ A∗(Wλ)∼=

∏
α A∗(Wλ) by Lemma 3.11. Hence

lim
←−λ

(
∏
α

A∗)⊗A∗ A∗(Wλ)∼=
∏
α

A∗(W ),

and
∏
α A∗(W ) is a cohomology theory. This completes the proof. �

The following theorem will be used to identify the E2-term of the K (n)-local-
ization of the K (n + 1)-local En+1-Adams spectral sequence to the continuous
cohomology group of Gn+1 in Section 4 below.

Theorem 3.16. For any compact space T , the functor Mapc(T,A∗(−)) is a coho-
mology theory.

Proof. By Proposition 3.10, there is a natural isomorphism

Mapc(T,A∗(W ))∼= lim
←−λ

Mapc(T,A∗)⊗
A∗

A∗(Wλ).

But Mapc(T,A∗) is profree by Proposition 3.8. Therefore the theorem follows
from Lemma 3.15. �

4. Construction of the spectral sequence

We set Ŝ= L K (n)L K (n+1)S0. In this section we construct a spectral sequence which
converges strongly and conditionally to [W, Ŝ]∗ for any spectrum W by applying
the K (n)-localization functor to the K (n + 1)-local En+1-Adams resolution of
L K (n+1)S0. Then we describe the E2-term in terms of the continuous cohomology
group of Gn+1 with coefficients in A∗(W ).

Let E∧s
n be the K (n)-localization of the smash product of s-copies of En

E∧s
n = L K (n)(

s︷ ︸︸ ︷
En ∧ · · · ∧ En ).

The commutative ring spectrum structure on En gives E∧•+1
n = {E∧s+1

n }s≥0 a
cosimplicial K (n)-local commutative ring spectrum structure with augmentation
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L K (n)S0 ε
→ E∧•+1

n . Then the associated cochain complex

∗→ L K (n)S0 ε
−→ En

d
−→ E∧2

n
d
−→ E∧3

n
d
−→ · · ·(4-1)

is a K (n)-local En-Adams resolution of L K (n)S0 in the sense of [Miller 1981;
Devinatz and Hopkins 2004]. We denote the sequence (4-1) by Res(En; L K (n)S0).
There is an associated diagram of exact triangles

L K (n)S0
=Y 0 i
←−−−−−−−−Y 1 i

←−−−−−−−−Y 2 i
←−−−−−−−−Y 3

J
J
JĴ

j







�
k
J
J
JĴ

j







�
k
J
J
JĴ

j







�
k . . . ,

En 6−1 E∧2
n 6−2 E∧3

n

(4-2)

in the K (n)-local stable homotopy category, where k has degree −1 and jk = d .
We denote by Ad(En; L K (n)S0) the diagram of exact triangles (4-2).

For any spectrum W , by applying the functor [W,−]∗ to Ad(En; L K (n)S0) we
obtain a K (n)-local En-Adams spectral sequence

L K (n)E s,t
r (W )H⇒ [W, L K (n)S0

]
s+t

with L K (n)E
s,t
2 (W )∼= H s

c (Gn; E t
n(W )). This spectral sequence converges strongly

and conditionally. Furthermore, since L K (n)S0 is K (n)-local En-nilpotent [Dev-
inatz and Hopkins 2004, Proposition A.3], the filtration (4-2) has the following
property: There exists N > 0 such that Y s+N

→ Y s is null for all s ≥ 0. This prop-
erty implies that there exist positive integers r(n) and s(n), which do not depend
on W , such that L K (n)E

s,∗
r(n)(W )= 0 for s > s(n).

By applying the K (n)-localization functor to Ad(En+1; L K (n+1)S0), we obtain
the following diagram L K (n)Ad(En+1, L K (n+1)S0) of exact triangles

Ŝ=Z0 i
←−−−−−−−−Z1 i

←−−−−−−−− Z2 i
←−−−−−−−− Z3

J
J
JĴ

j







�
k

J
J
JĴ

j







�
k

J
J
JĴ

j







�
k · · · .

L K (n)En+1 6−1L K (n)E∧2
n+1 6−2L K (n)E∧3

n+1

(4-3)

For any spectrum W , applying the functor [W,−]∗ to L K (n)Ad(En+1, L K (n+1)S0),
we obtain a spectral sequence

L K (n)L K (n+1)E s,t
r (W )H⇒ [W, Ŝ]s+t .

We call this spectral sequence the K (n)-localization of the K (n+ 1)-local En+1-
Adams spectral sequence.
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Lemma 4.1. The spectral sequence L K (n)L K (n+1)E s,t
r (W ) H⇒ [W, Ŝ]s+t con-

verges conditionally and strongly for any spectrum W .

Proof. There exists N > 0 such that Y s+N
→ Y s is null for all s ≥ 0. Apply-

ing the K (n)-localization functor, we see that Z s+N
→ Z s is also null for all

s ≥ 0. This implies that the filtration of [W, Ŝ]∗ is finite. Hence the spectral
sequence converges strongly by [Boardman 1999, Definition 5.2]. Also, we obtain
that lim

←−n[W, Zn
]
∗
= lim1

←−n[W, Zn
]
∗
= 0. Hence the spectral sequence converges

conditionally by [Boardman 1999, Definition 5.10]. �

Remark 4.2. Note that there exist positive integers r0 and s0, which do not depend
on W , such that L K (n)L K (n+1)E s,∗

r0
(W )= 0 for s > s0.

In the rest of this section we identify the E2-term of the K (n)-localization of
the K (n+1)-local En+1-Adams spectral sequence L K (n)L K (n+1)E s,t

r (W ) with the
continuous cohomology group of Gn+1 with coefficients in A∗(W ). Let C(s) =
E∧s+1

n+1 . The E1-term of the spectral sequence is given by E s,t
1 = [W, L K (n)C(s)]t .

There is an isomorphism C(s)∗ ∼=Mapc(G
s
n+1, E∗n+1) (see [Devinatz and Hopkins

2004, §2]). Then we see that C(s)∗ is profree over E∗n+1 by Proposition 3.3. The
following lemma gives a similar description for L K (n)C(s)∗.

Lemma 4.3. For s ≥ 0, we have L K (n)C(s)∗ ∼=Mapc(G
s
n+1,A∗).

Proof. There is a tower {M(J )}J of generalized Moore spectra of type n as in
[Hovey and Strickland 1999, Proposition 4.2] such that L K (n)W ' holim

←−J LnW ∧
M(J ) for any spectrum W [Hovey and Strickland 1999, Proposition 7.10(e)]. Since
C(s) is Landweber exact of height (n+1), we obtain that L K (n)C(s)∗ ∼=A∗C(s)∗.
Then A∗C(s)∗ ∼=Mapc(G

s
n+1,A∗) by Lemma 3.7, since

C(s)∗ ∼=Mapc(G
s
n+1, E∗n+1). �

Corollary 4.4. For s ≥ 0, L K (n)C(s)∗ is Landweber exact and profree over A∗.

Proof. This follows from Proposition 3.8 and Corollary 3.9. �

Then we obtain a description for the E1-term [W, L K (n)C(s)]∗ as a module of
continuous maps from Gs

n+1 to A∗(W ).

Proposition 4.5. For any spectrum W , there is a natural isomorphism

[W, L K (n)C(s)]∗ ∼=Mapc(G
s
n+1,A∗(W )).

Proof. By Lemma 4.3 and Corollary 4.4, L K (n)C(s)∗ ∼=Mapc(G
s
n+1,A∗) is Land-

weber exact. Then there is a natural isomorphism

[W, L K (n)C(s)]∗ ∼=Mapc(G
s
n+1,A∗)⊗A∗ A∗(W )

for any finite spectrum W . By Proposition 3.10, the right hand side is isomorphic
to Mapc(G

s
n+1,A∗(W )). Since Mapc(G

s
n+1,A∗) is even concentrated, there is a
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unique extension to a cohomology theory for any spectra by [Hovey and Strickland
1999, Theorem 2.8]. Obviously, [−, L K (n)C(s)]∗ is such an extension. On the
other hand, Mapc(G

s
n+1,A∗(−)) is also an extension by Theorem 3.16. Therefore

[W, L K (n)C(s)]∗ ∼=Mapc(G
s
n+1,A∗(W )) for any spectrum W . �

For a topological group G and a topological G-module M , denote by C∗c (G;M)
the continuous cochain complex of G with coefficients in M . Define H∗c (G;M)
to be the cohomology group of C∗c (G;M), and call it the continuous cohomol-
ogy of G with coefficients in M . Let [W,C(∗)]t be the cochain complex asso-
ciated with the cosimplicial abelian group [W,C(•)]t . Then there is a natural
isomorphism [W,C(∗)]t ∼= C∗c (Gn+1, E t

n+1(W )) of cochain complexes [Devinatz
and Hopkins 2004, §4]. By Proposition 4.5, this implies a natural isomorphism
[W, L K (n)C(∗)]t ∼=C∗c (Gn+1,At(W )) of cochain complexes. Hence we obtain the
following corollary.

Corollary 4.6. For any spectrum W , there is a natural isomorphism

H s([W, L K (n)C(∗)]t)∼= H s
c (Gn+1;A

t(W )).

As a summary we obtain the following theorem.

Theorem 4.7. For any spectrum W , there is a natural spectral sequence

L K (n)L K (n+1)E s,t
r (W )

which converges strongly and conditionally to [W, Ŝ]∗:

L K (n)L K (n+1)E
s,t
2 (W )H⇒ [W, Ŝ]s+t .

The E2-term is given by

L K (n)L K (n+1)E
s,t
2 (W )∼= H s

c (Gn+1;A
t(W )).

Furthermore, there exist positive integers r0 and s0 such that

L K (n)L K (n+1)E s,∗
r0
(W )= 0

for s > s0, where r0 and s0 do not depend on W .

5. The cohomology group H∗c (G;B∗(W))

In this section we introduce a cohomology group H∗c (G;B∗(W )) of G with coeffi-
cients in B∗(W ) for a spectrum W . Then we show that H∗c (G;B∗(W )) is naturally
isomorphic to the continuous cohomology group H∗c (Gn+1;A

∗(W )) of Gn+1 with
coefficients in A∗(W ). The cohomology group H∗c (G;B∗(W )) will be used to
connect the E2-term of the K (n)-local En-Adams spectral sequence for W and
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the E2-term of the K (n)-localization of the K (n+ 1)-local En+1-Adams spectral
sequence for W in Section 7 below.

First we introduce a topology for modules of continuous maps from a profinite
group to an A∗-module of certain type. Then we study a continuous cohomol-
ogy group of a profinite group with coefficients in such a topological module of
mappings.

Definition 5.1. Let G be a profinite group. Suppose that M = lim
←−λ

A∗Nλ with the
inverse limit topology, where {Nλ}λ∈3 is a cofiltered system of finitely generated
E∗n+1-modules. By Lemma 3.7, there is an isomorphism

Mapc(G,M)∼= lim
←−λ

A∗Mapc(G, Nλ).

We give a topology on A∗Mapc(G, Nλ) as in Definition 3.6. Then we give a
topology on Mapc(G,M) by the inverse limit topology. For any spectrum W ,
A∗(W ) ∼= lim

←−λ
A∗E∗n+1(Wλ) by Lemma 3.13, where Wλ are finite spectra of type

at least n. We give a topology on Mapc(G,A∗(W )) as above.

The following lemma shows that the mapping spaces have an expected adjunc-
tion property.

Lemma 5.2. Let G and H be profinite groups. Suppose that M = lim
←−λ

A∗Nλ with
the inverse limit topology, where {Nλ}λ∈3 is a cofiltered system of finitely generated
E∗n+1-modules. Then there is an isomorphism

Mapc(G,Mapc(H,M))∼=Mapc(G× H,M).

Proof. We have

Mapc(G,Mapc(H,M)= lim
←−λ

Mapc(G,Mapc(H,A∗Nλ),

Mapc(G× H,M)= lim
←−λ

Mapc(G× H,A∗Nλ).

Hence it is sufficient to show that the lemma holds when M = A∗N with finitely
generated N . Suppose that N is a finitely generated E∗n+1-module. Let Nr be the
image of the localization map N/I r

n N→ N/I r
n N [u−1

n ], and let Lr =Mapc(H, Nr ).
Note that Nr and Lr are (un)-torsion free. By Lemma 3.5, Mapc(H,A∗N ) =
lim
←−r Lr [u−1

n ]. Then Mapc(G,Mapc(H,A∗N )) = lim
←−r Mapc(G, Lr [u−1

n ]). Again
by Lemma 3.5, we have Mapc(G, Lr [u−1

n ]) = Mapc(G, Lr )[u−1
n ]. The fact that

Nr is a profinite module implies that Mapc(G, Lr ) = Mapc(G × H, Nr ). By
Lemma 3.5, we obtain lim

←−r Mapc(G× H, Nr )[u−1
n ] =Mapc(G× H,A∗N ). �

Corollary 5.3. Let G and H be profinite groups. For any spectrum W , there is a
natural isomorphism

Mapc(G,Mapc(H,A∗(W ))))∼=Mapc(G× H,A∗(W )).
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Suppose that a profinite group G continuously acts on a topological module M
from the right. For q > 0, we define a right G-action on Mapc(G,M) by

ϕg(h1, . . . , hq)= ϕ(h1g−1, . . . , hq g−1)g,

where ϕ ∈ Mapc(G
q ,M) and g, h1, . . . , hq ∈ G. Then Mapc(G

q ,M) is a topo-
logical G-module. The following proposition shows that the coinduced module
Mapc(G

q ,M) is acyclic with respect to H∗c (G;−).

Proposition 5.4. Let G be a profinite group. Suppose that M= lim
←−λ

A∗Nλ with the
inverse limit topology, where {Nλ}λ∈3 is a cofiltered system of finitely generated
E∗n+1-modules. Furthermore, suppose that G continuously acts on M. For p > 0
and q > 0, we have H p

c (G;Mapc(G
q ,M)) = 0, and H 0

c (G;Mapc(G
q ,M)) =

Mapc(G
q ,M)G .

Proof. Set

C−1
c (G;Mapc(G

q ,M))=Mapc(G
q ,M)G, C p,q

= C p
c (G;Mapc(G

q ,M)).

Then C p,q ∼= Mapc(G
q
× G p+1,M)G by Lemma 5.2. The boundary map d p

:

C p,q
→ C p+1,q is given by

d p f (h1, . . . , hq; g0, . . . , gp+1)

=

p+1∑
i=0
(−1)i f (h1, . . . , hq; g0, . . . , gi−1, gi+1, . . . , gp+1).

We define s p
: C p,q

→ C p−1,q by

s p f (h1, . . . , hq; g0, . . . , gp−1)= f (h1, . . . , hq; hq , g0, . . . , gp−1).

Then we can verify that s p+1d p( f )+ d p−1s p( f )= f for any f ∈ C p,q . �

Corollary 5.5. Let p > 0 and q > 0. Then H p
c (Gn+1;Mapc(G

q
n+1,A∗(W ))) = 0

and H 0
c (Gn+1;Mapc(G

q
n+1,A∗(W ))) = Mapc(G

q
n+1,A∗(W ))Gn+1 for any spec-

trum W .

Next we define a cohomology group H∗c (G;B∗(W )). For this purpose, we in-
troduce a topology on B(i)∗(W ).

Definition 5.6. For a spectrum W , B(i)∗(W ) is a product of finite many copies
of A∗(W ) since B(i)∗ is finitely generated free over A∗. We give a topology on
B(i)∗(W ) by the product topology.

Recall that the group G = Gn+1 ×0 Gn acts on the cohomology theory B∗(−)

as multiplicative cohomology operations by Proposition 2.3. For i ≥ −1, we set
G(i) = Gn+1 ×0 Gn(i), where Gn(i) = 0 n Sn(i). Then G(i) acts on B(i)∗(W )

naturally and continuously. Note that we can write B(i)∗(W ) = lim
←−λ

A∗Nλ with
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finitely generated E∗n+1-modules Nλ since B(i)∗ is finitely generated free over
A∗. Then Mapc(G(i)

p+1,B(i)∗(W )) is a topological module for any p ≥ 0 as
in Definition 5.1.

Definition 5.7. For a spectrum W , we define a cochain complex C∗c (G;B∗(W ))

by

C∗c (G;B
∗(W ))= lim

←−λ
lim
−→i C∗c (G(i);B(i)

∗(Wλ)),

where the inverse limit is taken over λ ∈ 3(W ). Then we define a cohomology
group H∗c (G;B∗(W )) of G with coefficients in B∗(W ) to be the cohomology group
of C∗c (G;B∗(W ))

H∗c (G;B
∗(W ))= H∗(C∗c (G;B

∗(W ))).

Note that both of C∗c (G;B∗(W )) and H∗c (G;B∗(W )) are not functors of B∗(W ) in
spite of their notation.

For a continuous cochain complex C∗c (Gn+1;A
∗(W )) of Gn+1 with coefficients

in A∗(W ), there is an isomorphism

C∗c (Gn+1;A
∗(W ))∼= lim

←−λ
C∗c (Gn+1;A

∗(Wλ)).

The canonical maps A∗(Wλ)→B(i)∗(Wλ) and the projections G(i)→Gn+1 define
a cochain map

C∗c (Gn+1;A
∗(W ))−→ C∗c (G;B

∗(W )).

We call the induced map on cohomology groups an inflation map

H∗c (Gn+1;A
∗(W ))−→ H∗c (G;B

∗(W )).(5-1)

In the rest of this section we prove the following theorem.

Theorem 5.8. The inflation map H∗c (Gn+1;A
∗(W ))→ H∗c (G;B∗(W )) is an iso-

morphism for any spectrum W .

By definition, H∗c (G;B∗(W )) is the cohomology group of the inverse limit of
the cochain complexes lim

−→i C∗c (G(i);B(i)
∗(Wλ)). For the cohomology group of

the inverse limit of cochain complexes {C∗λ}λ∈3, we have a spectral sequence to
describe it in terms of the cohomology groups of C∗λ under suitable circumstances.

Lemma 5.9. Let {C∗λ}λ∈3 be a system of cochain complexes indexed by a small
category 3. We assume that lim

←−λ
j C∗λ = 0 for j > 0. Then there is a spectral

sequence

E s,t
2 = lim

←−λ

s H t(C∗λ)H⇒ H s+t(lim
←−λ

C∗λ).
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Proof. Let
∏
∗ C∗λ be the double complex associated to the cosimplicial replacement

[Bousfield and Kan 1972, XI.5] of {C∗λ}. Then we have two spectral sequences

lim
←−λ

s H t(C∗λ) H⇒ H s+t(
∏
∗ C∗λ),

H s(lim
←−λ

t C∗λ) H⇒ H s+t(
∏
∗ C∗λ).

By the assumption, the second spectral sequence collapses to give H∗(lim
←−λ

C∗λ)∼=
H∗(

∏
∗C∗λ). Hence the first spectral sequence gives the desired one. �

The next lemma gives a sufficient condition for all the higher inverse limits to
vanish.

Lemma 5.10. Let F be a profree A∗-module. Then lim
←−λ

j F ⊗A∗ A∗(Wλ) = 0 for
j > 0.

Proof. Since F is a direct summand of some product of (suspensions of) A∗ by
[Hovey and Strickland 1999, Proposition A.13], we may assume that F =

∏
α A∗.

For a finite spectrum Wλ, F ⊗ A∗(Wλ) ∼=
∏
α A∗(Wλ) since A∗(Wλ) is a finitely

presented A∗-module. Then we have lim
←−λ

j ∏
α A∗(Wλ)∼=

∏
α lim
←−λ

j A∗(Wλ). The
lemma follows from the fact that lim

←−λ
j A∗(Wλ) = 0 for j > 0 since A∗(Wλ) is a

linearly compact A∗-module for all λ. �

By Proposition 3.8, Mapc(G
q+1
n+1;A

∗) and Mapc(G(i)
q+1,B(i)∗) are profree A∗-

modules. Then the completion of lim
−→i C∗c (G(i);B(i)

∗) at In is also a profree
A∗-module. By Lemma 5.10, we obtain that lim

←−λ
j C∗c (Gn+1;A

∗(Wλ)) = 0 and
lim
←−λ

j lim
−→i C∗c (G(i);B(i)

∗(Wλ)) = 0 for j > 0. Hence, by Lemma 5.9, we obtain
two spectral sequences

I E s,t
2 = lim

←−λ

s H t
c (Gn+1;A

∗(Wλ)) H⇒ H∗c (Gn+1;A
∗(W )),

II E s,t
2 = lim

←−λ

s lim
−→i H t

c (G(i);B(i)
∗(Wλ)) H⇒ H∗c (G;B

∗(W )).

The system of cochain maps

{C∗c (Gn+1;A
∗(Wλ))}λ −→ {lim−→i C∗c (G(i);B(i)

∗(Wλ))}λ

induces a morphism of spectral sequences

fr : I E∗,∗r −→ II E∗,∗r(5-2)

which converges to the inflation map (5-1).
We show that this morphism of spectral sequences is an isomorphism from the

E2-terms onward. For this purpose, it is sufficient to show that the inflation map
H∗c (Gn+1;A

∗(W ))→ H∗c (G(i);B(i)
∗(W )) is an isomorphism for i ≥ 0. We shall

construct two acyclic resolutions I ∗(W ) and J ∗(i,W ) of A∗(W ) with respect to
H∗c (Gn+1;−) so that

I ∗(W )Gn+1 ∼= C∗c (Gn+1;A
∗(W )) and J ∗(i,W )Gn+1 ∼= C∗c (G(i);B(i)

∗(W )).
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We shall enlarge the complexes C∗c (Gn+1;A
∗(W )) and C∗c (G(i);B(i)

∗(W )) to
double complexes C∗c (Gn+1; I ∗(W )) and C∗c (Gn+1; J (i,W )). We shall construct a
map of double complexes C∗c (Gn+1; I ∗(W ))→C∗c (Gn+1; J (i,W )), which induces
the inflation map H∗c (Gn+1;A

∗(W ))→ H∗c (G(i);B(i)
∗(W )). Then we shall show

that the map of double complexes induces an isomorphism on cohomology groups.
First, we construct an acyclic resolution I ∗(W ) of A∗(W ). We set

I q(W )=Mapc(G
q+1
n+1,A∗(W ))

the topological A∗-module of all continuous maps from Gq+1
n+1 to A∗(W ). Define a

map dq
: I q(W )→ I q+1(W ) by

dq( f )(g0, . . . , gq+1)=
q+1∑
j=0
(−1) j f (g0, . . . , g j−1, g j+1, . . . , gq+1).

Then I ∗(W )= {I q(W ), dq
}q≥−1 forms an augmented cochain complex satisfying

I−1(W )= A∗(W ). The group Gn+1 acts on the cochain complex I ∗(W ) and

I ∗(W )Gn+1 ∼= C∗c (Gn+1;A
∗(W )).

Lemma 5.11. For p > 0 and q ≥ 0, we have

H p
c (Gn+1; I q(W ))= 0 and H 0

c (Gn+1; I q(W ))= Cq
c (Gn+1;A

∗(W )).

The sequence 0→ A∗(W )
d−1

→ I 0(W )
d1

→ I 1(W )
d2

→ · · · is a split exact sequence
of topological A∗-modules. Hence I ∗(W ) is an acyclic resolution of A∗(W ) with
respect to H∗c (Gn+1;−).

Proof. Since I q(W ) = Mapc(G
q+1
n+1,A∗(W )), the first assertion is a consequence

of Corollary 5.5. We define sq
: I q(W )→ I q−1(W ) by sq( f )(g0, . . . , gq−1) =

f (e, g0, . . . , gq−1). Then we can verify that {sq
}q≥0 gives a desired splitting. �

Next we construct another acyclic resolution J ∗(i,W ) of A∗(W ). We set

J q(i,W )=Mapc(G(i)
q+1,B(i)∗(W ))Sn(i).

the topological A∗-module of all Sn(i)-equivariant continuous maps from G(i)q+1

to B(i)∗(W ). Define a map dq
: J q(i,W )→ J q+1(i,W ) by

dq f (g0, . . . , gp+1)=
p+1∑
j=0
(−1) j f (g0, . . . , g j−1, g j , . . . , gp+1).

Then J ∗(i,W ) = {J q(i,W ), dq
}q≥−1 forms an augmented cochain complex with

J−1(i,W )= A∗(W ). The group Gn+1 acts on J ∗(i,W ) and

J ∗(i,W )Gn+1 ∼= C∗c (G(i);B(i)
∗(W )).
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We compare J ∗(i,W ) with I ∗(W ). Let D∗ = C∗(Sn(i);B(i)∗) be the cochain
complex of Sn(i)with coefficients in B(i)∗. Since A∗→B(i)∗ is a Galois extension
with Galois group Sn(i), there is an isomorphism Dq ∼= B(i)∗⊗(q+1). Then the
differential dq

: Dq
→ Dq+1 corresponds to dq

:B(i)∗(q+1)
→B(i)∗(q+2) given by

dq(b0⊗ · · ·⊗ bq)=

q∑
j=0

(−1) j b0⊗ · · ·⊗ b j−1⊗ 1⊗ b j ⊗ · · ·⊗ bq

for b0, . . . , bq ∈ B(i)∗. Since G(i)∼= Gn+1× Sn(i) as an Sn(i)-space, and Dq is a
finitely generated free A∗-module, we see that J q(i,W )∼= I q(W )⊗ Dq . Then the
differential dq

: J q(i,W )→ J q+1(i,W ) corresponds to

dq
: I q(i,W )⊗B(i)∗⊗(q+1)

→ I q+1(i,W )⊗B(i)∗⊗(q+2)

given by

dq( f ⊗ b0⊗ · · ·⊗ bq)(g0, . . . , qq+1)

=

q+1∑
j=0
(−1) j f (g0, . . . , g j−1, g j+1, . . . , gq+1)⊗b0⊗· · ·⊗b j−1⊗1⊗b j⊗· · ·⊗bq .

Proposition 5.12. For p > 0 and q ≥ 0, we have

H p
c (Gn+1; J q(i,W ))= 0 and H 0

c (Gn+1; J q(i,W ))= Cq
c (Gn+1;A

∗(W )).

The sequence 0→A∗(W )
d−1

→ J 0(i,W )
d0

→ J 1(i,W )
d2

→· · · is a split exact sequence
of topological A∗-modules. Hence J ∗(i,W ) is an acyclic resolution of A∗(W ) with
respect to H∗c (Gn+1;−).

Proof. Let M = Map(Sn(i)q ,B(i)∗(W )). We have an isomorphism J q(i,W ) ∼=

Mapc(G
q+1
n+1,M) of topological Gn+1-modules. Since M is a product of finite many

copies of A∗(W ), we can write M = lim
←−λ

A∗Nλ with finitely generated Nλ. Then
the first assertion follows from Proposition 5.4. There is a continuous map ε :
B∗(i)→ A∗ of topological A∗-modules such that ε ◦η= 1, where η : A∗→ B∗(i)
is the unit. Define a map sq

: I q(i,W )⊗B(i)∗⊗(q+1)
→ I q−1(i,W )⊗B(i)∗⊗q by

sq( f ⊗ b0⊗ · · ·⊗ bq)(g0, . . . , gq−1)= f (e, g0, . . . , gq−1)⊗ ε(b0)b1⊗ · · ·⊗ bq .

Then we can verify that {sq
}q≥0 gives a desired splitting. �

We consider the double complexes C∗c (Gn+1; I ∗(W )) and C∗c (Gn+1; J ∗(i,W )).
The canonical inclusion A∗(W ) → B(i)∗(W ) and the projection G(i) → Gn+1

induce a cochain map I ∗(W )→ J ∗(i,W ), which is equivariant under the actions
of Gn+1. Hence we obtain a map of double complexes

(5-3) C∗c (Gn+1; I ∗(W ))−→ C∗c (Gn+1; J ∗(i,W )).
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We denote by Tot∗C∗,∗ the total cochain complex of a double complex C∗,∗.

Lemma 5.13. The cochain map

Tot∗C∗c (Gn+1; I ∗(W ))→ Tot∗C∗c (Gn+1; J ∗(i,W ))

is a quasi-isomorphism.

Proof. This follows from the fact that the map (5-3) induces an isomorphism on
cohomology groups on the second index by Lemma 5.11 and Proposition 5.12. �

Since the invariant subcomplex I ∗(W )Gn+1 is isomorphic to C∗c (Gn+1;A
∗(W )),

there is a cochain map

C∗c (Gn+1;A
∗(W ))−→ Tot∗C∗c (Gn+1; I ∗(W )).

Since the invariant subcomplex J ∗(i,W )Gn+1 is isomorphic to C∗c (G(i);B(i)
∗(W )),

there is a cochain map

C∗c (G(i);B(i)
∗(W ))−→ Tot∗C∗c (Gn+1; J ∗(i,W )).

Then we obtain the commutative diagram of cochain complexes

C∗c (Gn+1;A
∗(W )) −−−−−−→ C∗c (G(i);B(i)

∗(W ))y y
Tot∗C∗c (Gn+1; I ∗(W )) −−−−−−→ Tot∗C∗c (Gn+1; J ∗(i,W )),

(5-4)

where the top horizontal arrow induces the inflation map

H∗c (Gn+1;A
∗(W ))−→ H∗c (G(i);B(i)

∗(W )).

Lemma 5.14. The vertical arrows in the diagram (5-4) are quasi-isomorphisms.

Proof. By Lemma 5.11, the cohomology group of C∗c (Gn+1; I ∗(W )) on the first
index is isomorphic to C∗c (Gn+1;A

∗(W )). Hence the left vertical arrow is a quasi-
isomorphism. By Proposition 5.12, the cohomology group of C∗c (Gn+1; J ∗(i,W ))

on the first index is isomorphic to C∗c (G(i);B(i)
∗(W )). Hence the right vertical

arrow is a quasi-isomorphism. �

Corollary 5.15. The inflation map H∗c (Gn+1;A
∗(W )) −→ H∗c (G(i);B(i)

∗(W ))

is an isomorphism for any spectrum W and any i ≥ 0.

Proof of Theorem 5.8. Corollary 5.15 implies that the morphism (5-2) of spec-
tral sequences is an isomorphism from the E2-terms onward. Hence the inflation
map (5-1) is an isomorphism. �
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Remark 5.16. Let 3 be an essentially small cofiltered category. For a system
{Nλ}λ∈3 of finitely generated twisted E∗n+1-Gn+1-modules, we set M = lim

←−λ
A∗Nλ

and B∗M = lim
←−λ

B∗ ⊗A∗ A∗Nλ. By the same method as above, we can define
H∗c (G;B∗M) and show that there is an isomorphism

H∗c (Gn+1;M)
∼=
→ H∗c (G;B

∗M).

6. Morphism of spectral sequences

In this section we construct a natural morphism of spectral sequences from the
K (n)-local En-Adams spectral sequence to the K (n)-localization of the K (n+1)-
local En+1-Adams spectral sequence.

Let BP be the Brown–Peterson spectrum at p. We denote by BP∧s the smash
product of s copies of BP:

BP∧s
=

s︷ ︸︸ ︷
BP ∧ · · · ∧ BP .

The commutative ring spectrum structure on BP makes BP∧•+1
= {BP∧s+1

}s≥0

a cosimplicial object in the p-local stable homotopy category with augmentation
S0
(p)

ε
→ BP∧•+1. Then the associated cochain complex

∗→ S0
(p)

ε
−→ BP

d
−→ BP∧2 d

−→ BP∧3 d
−→ · · ·(6-1)

is a p-local BP-Adams resolution of S0
(p) in the sense of [Miller 1981; Dev-

inatz and Hopkins 2004]. We denote by Res(BP; S0
(p)) the sequence (6-1). Then

Res(BP; S0
(p)) gives us a diagram of exact triangles

S0
(p) =X0 i

←−−−−−−−−X1 i
←−−−−−−−−X2 i

←−−−−−−−−X3

J
J
JĴ

j







�
k
J
J
JĴ

j







�
k
J
J
JĴ

j







�
k . . . ,

BP 6−1 BP∧2 6−2 BP∧3

(6-2)

where k has degree −1 and jk = d. We denote by Ad(BP; S0
(p)) the diagram of

exact triangles (6-2).
By applying the K (n)-localization functor to the augmented cosimplicial com-

mutative ring spectrum S0
(p)

ε
→ BP∧•+1, we obtain an augmented cosimplicial

K (n)-local commutative ring spectrum L K (n)S0 ε
→ L K (n)BP∧•+1, and the associ-

ated augmented cochain complex

(6-3) ∗→ L K (n)S0 ε
−→ L K (n)BP

d
−→ L K (n)BP∧2 d

−→ L K (n)BP∧3 d
−→ · · · .
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We denote by L K (n)Res(BP; S0
(p)) the sequence (6-3).

Proposition 6.1. The sequence L K (n)Res(BP; S0
(p)) is a K (n)-local En-Adams

resolution of L K (n)S0.

Proof. To prove the proposition, it suffices to show that L K (n)BP∧s is En-injective
for s> 0 and the sequence (6-3) is En-exact. By [Hovey and Sadofsky 1999, Theo-
rem B], L K (n)BP is a coproduct of (suspensions of) L K (n)E(n)’s in the K (n)-local
category. Since L K (n)E(n) is a direct summand of En , L K (n)BP is En-injective.
Hence L K (n)BP∧s is En-injective for s > 0. To prove that the sequence (6-3) is
En-exact, it is sufficient to show that the sequence (6-3) smashing with En is a split
exact sequence. There is a canonical ring spectrum map η : L K (n)BP→ En . Then
the following map

L K (n)(En∧BP∧s+1)
1∧η∧1∧s

−−−−−−→ L K (n)(En∧En∧BP∧s)
m∧1∧s

−−−−−−→ L K (n)(En∧BP∧s)

for s ≥ 0 gives a splitting, where m is the multiplication of En . �

The K (n)-localization functor gives a map of cosimplicial objects BP•+1
→

E•+1
n covering the map S0

(p)→ L K (n)S0. This induces a map

L K (n)Res(BP; S0
(p))→ Res(En; L K (n)S0)

of cochain complexes and a map L K (n)Ad(BP; S0)→ Ad(En; L K (n)S0) of dia-
grams of exact triangles. By Proposition 6.1, the map

L K (n)Res(BP; S0
(p))→ Res(En; L K (n)S0)

is a cochain homotopy equivalence. Hence L K (n)Ad(BP; S0)→Ad(En; L K (n)S0)

is an equivalence of diagram of exact triangles in an appropriate sense.
The canonical ring spectrum map BP → En+1 induces a map of diagrams of

exact triangles

Ad(BP; S0
(p))−→ L K (n+1)Ad(BP; S0

(p))
'
−→ Ad(En+1; L K (n+1)S0).

By applying the K (n)-localization functor to this map, we obtain a map of diagrams
of exact triangles

L K (n)Ad(BP; S0
(p))−→ L K (n)Ad(En+1; L K (n+1)S0).

Then this map of exact triangles implies the following theorem.

Theorem 6.2. For any spectrum W , there is a natural morphism of spectral se-
quences

ϕr (W ) : L K (n)E s,t
r (W )−→ L K (n)L K (n+1)E s,t

r (W ),

which converges to [W, L K (n)S0
]
∗
→ [W, Ŝ]∗.
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7. The inflation map

In Section 6 we constructed a natural morphism

ϕr (W ) : L K (n)E∗,∗r (W )→ L K (n)L K (n+1)E∗,∗r (W )

of spectral sequences for any spectrum W . In this section we construct a natu-
ral map θ(W ) : H∗c (Gn; E∗n(W )) → H∗c (Gn+1;A

∗(W )) by using the cohomol-
ogy group H∗c (G;B∗(W )) in Section 5. Then we show that θ(W ) coincides with
ϕ2(W ).

For a spectrum W , define cochain complexes C∗,∗BP (W ) and L K (n)C
∗,∗
BP (W ) by

C s,∗
BP(W ) = [W, BP∧s+1

]
∗,

L K (n)C
s,∗
BP(W ) = [W, L K (n)(BP∧s+1)]∗.

The ring spectrum maps BP→ L K (n)BP→ En induce cochain maps

C∗,∗BP (W )→ L K (n)C
∗,∗
BP (W )→ C∗c (Gn; E∗n(W )).

We shall describe the cochain map C∗,∗BP (W )→ C∗c (Gn; E∗n(W )) in terms of for-
mal group laws. The universal deformation Fn over E0

n induces a graded ring
homomorphism BP∗→ En∗. Recall that, for g = (γ, s) ∈ 0n Sn = Gn , there is a
unique isomorphism t (g) : Fn→ Fg

n over E0
n , which is a lifting of the isomorphism

s : Hn→ Hγ
n = Hn over F. For g, h ∈Gn , we set t (g, h)= t (h)◦t (g)−1

: Fg
n → Fh

n .
For a sequence g = (g0, g1, . . . , gs) of elements in Gn , we define a graded ring
homomorphism

t (g) : BP∗(BP)⊗(s+1)
−→ En∗

to be the map representing the following string of isomorphisms of formal group
laws

Fn
t (g0)
−−−→ Fg0

n
t (g0,g1)
−−−→ Fg1

n
t (g1,g2)
−−−→ · · ·

t (gs−1,gs)
−−−−→ Fgs

n .

For a spectrum W , we denote by ev(g) : C s
c(Gn; E∗n(W ))→E∗n(W ) the evaluation

map at g = (g0, g1, . . . , gs). If W is a finite spectrum, we denote its S-dual by
DW . Then there are natural isomorphisms BP−∗(W )∼= BP∗(DW ) and E−∗n (W )∼=

En∗(DW )∼= BP∗(DW )⊗BP∗ En∗. In particular, we have

C s,−∗
BP (W )∼= BP∗(DW )⊗BP∗ BP∗(BP)⊗s .

Lemma 7.1. Let W be a finite spectrum. For a sequence g = (g0, g1, . . . , gs) of

elements in Gn , the composition C s,−∗
BP (W ) −→ C s

c(Gn; E−∗n (W ))
ev(g)
−−→ E−∗n (W )
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is given by

BP∗(DW )⊗BP∗ BP∗(BP)⊗s ψ⊗1⊗s

−−−−−−→ BP∗(DW )⊗BP∗ BP∗(BP)⊗(s+1)

1⊗t (g)
−−−−−−→ BP∗(DW )⊗BP∗ En∗,

where ψ is the BP∗(BP)-comodule structure map of BP∗(DW ).

Proof. For g ∈ Gn , the ring spectrum map g : En → En induces a map g−∗ :
E−∗n (W )→ E−∗n (W ). This map g−∗ is given by the composition

BP∗(DW )⊗BP∗ En∗
ψ⊗1

−−−−−−−−→ BP∗(DW )⊗BP∗ BP∗(BP)⊗BP∗ En∗

1⊗t (g)⊗g∗
−−−−−−−−→ BP∗(DW )⊗BP∗ En∗.

Next we consider the map g0 ∧ · · · ∧ gs : E∧s+1
n → E∧s+1

n . This induces a map
(g0 ∧ · · · ∧ gs)

−∗
: (E∧s+1

n )−∗(W ) → (E∧s+1
n )−∗(W ). Note that there is a nat-

ural isomorphism (E∧s+1
n )−∗(W ) ∼= BP∗(DW )⊗BP∗ π∗E

∧s+1
n since π∗E∧s+1

n is
Landweber exact. Then (g0 ∧ · · · ∧ gs)

−∗ is given by

BP∗(DW )⊗BP∗ π∗E
∧s+1
n

ψ⊗1
−−−→ BP∗(DW )⊗BP∗ BP∗(BP)⊗BP∗ π∗E

∧s+1
n

1⊗t (g0)⊗π∗(g0∧···∧gs)
−−−−−−−−−−−−−→ BP∗(DW )⊗BP∗ En∗⊗En∗ π∗E

∧s+1
n

∼= BP∗(DW )⊗BP∗ π∗E
∧s+1
n .

The lemma follows from the fact that the composition

C s,−∗
BP (W )−→ C s

c(Gn; E−∗n (W ))
ev(g)
−−→ E−∗n (W )

is induced by the map BP∧s+1
→ E∧s+1

n
g0∧···∧gs
−−−−−−→ E∧s+1

n
m
−→ En , where m is the

multiplication map of the ring spectrum En . �

Next we construct a cochain map C∗c (Gn; E∗n(W )) −→ C∗c (G;B∗(W )), which
induces a map H∗c (Gn; E∗n(W ))−→ H∗c (G;B∗(W )).

Lemma 7.2. The ring spectrum map I : En → B and the projection G → Gn

induce a cochain map C∗c (Gn; E∗n(W ))−→ C∗c (G;B∗(W )) for any spectrum W .

Proof. There are isomorphisms

C∗c (Gn; E∗n(W )) ∼= lim
←−λ

lim
−→i C∗c (G(i), E∗n(Wλ)),

C∗c (G;B∗(W )) ∼= lim
←−λ

lim
−→i C∗c (G(i),B(i)∗(Wλ)).

Then the canonical maps E∗n(Wλ)→B(i)∗(Wλ) and the projections G(i)→Gn(i)
induce the desired cochain map. �
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Remark 7.3. Let 3 be an essentially small cofiltered category. For a system
{Nλ}λ∈3 of finitely generated twisted E∗n -Gn-modules annihilated by a power of
the ideal In , we set N = lim

←−λ
Nλ and B∗N = lim

←−λ
B∗⊗E∗n Nλ. By the same method

as above, we can obtain a cochain map C∗c (Gn; N )→ C∗c (G;B∗N ).

Recall that in Section 5 we defined a cochain map C∗c (Gn+1;A
∗(W )) −→

C∗c (G;B∗(W )), which induces an isomorphism of cohomology groups

H∗c (Gn+1;A
∗(W ))

∼=
→ H∗c (G;B

∗(W ))

by Theorem 5.8. We define a map

(7-1) θ(W ) : H∗c (Gn; E∗n(W ))−→ H∗c (Gn+1;A
∗(W ))

by the composition

H∗c (Gn; E∗n(W ))−→ H∗c (G;B
∗(W ))

∼=
←− H∗c (Gn+1;A

∗(W )),

where the first map is induced by the cochain map in Lemma 7.2.
In the rest of this section we compare θ(W ) to ϕ2(W ). The ring spectrum maps

BP→ L K (n)BP→ L K (n)En+1 = A induce cochain maps

C∗,∗BP (W )→ L K (n)C
∗,∗
BP (W )→ C∗c (Gn+1;A

∗(W )).

We consider the following diagram of cochain complexes

C∗,∗BP (W ) −→ C∗c (Gn+1;A
∗(W ))y y

C∗c (Gn; E∗n(W )) −→ C∗c (G;B∗(W )).

(7-2)

This diagram is not commutative but we shall show that it is cochain homotopy
commutative for finite spectra W by constructing a natural cochain homotopy.

Lemma 7.4. If W is a finite spectrum, then the diagram (7-2) is cochain homotopy
commutative.

Proof. Let π : G → Gn be the projection. For g, h ∈ G, we have an isomor-
phism of formal group laws t (π(g), π(h)) : Fπ(g)n → Fπ(h)n over E0

n . If we regard
t (π(g), π(h)) as a power series over B0, then we obtain an isomorphism of formal
group laws t (g, h) : Fg

n → Fh
n over B0. In the same way we obtain an isomor-

phism of formal group laws u(g, h) : Fg
n+1→ Fh

n+1 over B0. Recall that there is
an isomorphism of formal group laws 8 : Fn+1 → Fn over B0. For a sequence
g = (g0, g1, . . . , gs) of elements in G, consider the following diagram of formal



K (n)-LOCALIZATION OF K (n+ 1)-LOCAL En+1-ADAMS SPECTRAL SEQUENCES 467

groups laws and isomorphisms over B0

Fn+1
u(g0)
−−−→ Fg0

n+1
u(g0,g1)
−−−→ Fg1

n+1 −→ · · · −→ Fgi
n+1y8gi

Fgi
n

t (gi ,gi+1)
−−−−→ Fgi+1

n −→ · · · −→ Fgs
n .

This diagram induces a graded ring homomorphism Ti (g) : BP∗(BP)⊗(s+2)
→B∗.

We fix an isomorphism between B−∗(W ) and BP∗(DW )⊗BP∗ B∗, where B∗ is a
BP∗-module through the graded ring homomorphism BP∗ → B∗ classifying the
p-typical formal group law Fn+1. We define a map C s+1,−∗

BP (W )→ B−∗(W ) by

BP∗(DW )⊗BP∗ BP∗(BP)⊗(s+1) ψ⊗1⊗(s+1)

−−−−−−→ BP∗(DW )⊗BP∗ BP∗(BP)⊗(s+2)

1⊗Ti (g)
−−−−−−→ BP∗(DW )⊗BP∗ B∗.

This map extends to a map

Si : C
s+1,∗
BP (W )−→ lim

−→i Mapc(G(i)
s+1,B(i)∗(W ))G(i) = Cs

c(G;B
∗(W )).

We shall verify that
∑s

i=0(−1)i Si is a desired cochain homotopy. First note that
the map E−∗n (W )→ B−∗(W )∼= BP∗(DW )⊗BP∗ B∗ is given by

BP∗(DW )⊗BP∗ En∗
ψ⊗1

−−−−−−→ BP∗(DW )⊗BP∗ BP∗(BP)⊗BP∗ En∗

1⊗8⊗I∗
−−−−−−→ BP∗(DW )⊗BP∗ B∗,

where8 : BP∗(BP)→B∗ is the graded ring homomorphism classifying the isomor-
phism 8 : Fn+1→ Fn , and I∗ : En∗→B∗ is the induced map by the ring spectrum
map I . Let a∗ be the cochain map C∗,∗BP (W )→C∗c (Gn; E∗n(W ))→ C∗c (G;B∗(W ))

and let b∗ be the cochain map C∗,∗BP (W )→C∗c (Gn+1; E∗n+1(W ))→C∗c (G;B∗(W )).
We see that ev(g) ◦ as is given by

BP∗(DW )⊗BP∗ BP∗(BP)⊗s ψ⊗1⊗s

−−−→ BP∗(DW )⊗BP∗ BP∗(BP)⊗(s+1)

1⊗U (g)
−−−→ BP∗(DW )⊗BP∗ B∗,

where U (g) is the graded ring homomorphism classifying the following string of
isomorphisms of formal group laws

Fn+1
t (g0)◦8
−−−→ Fg0

n
t (g0,g1)
−−−→ Fg1

n
t (g1,g2)
−−−→ · · ·

t (gs−1,gs)
−−−−→ Fgs

n .
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In the cosimplicial module C•,∗BP (W ), the map di : C s,−∗
BP (W ) → C s+1,−∗

BP (W ) is
given by

di =


ψ ⊗ 1⊗s if i = 0,

1⊗ 1⊗(i−1)
⊗1⊗ 1⊗(s−i) if 1≤ i ≤ s,

1⊗ 1⊗s
⊗ ηL if i = s+ 1,

where 1 : BP∗(BP) → BP∗(BP)⊗2 is the comultiplication, and ηL : BP∗ →
BP∗(BP) is the left unit. Then we see that

S0 ◦ d0 = as,

Si ◦ d j = d j ◦ Si−1 for 0≤ j < i ≤ s,

Si−1 ◦ di = Si ◦ di for 0< i ≤ s,

Si ◦ d j = d j−1 ◦ Si for 0≤ i < j − 1≤ s,

Ss ◦ ds+1 = bs .

This implies that

s∑
i=0

(−1)i Si ◦

s+1∑
j=0

(−1) j d j +

s∑
j=0

(−1) j d j ◦

s−1∑
i=0

(−1)i Si = as
− bs .

This completes the proof. �

For a spectrum W , we have a similar diagram of cochain complexes

L K (n)C
∗,∗
BP (W ) −→ C∗c (Gn+1;A

∗(W ))y y
C∗c (Gn; E∗n(W )) −→ C∗c (G;B∗(W )).

(7-3)

When W is a finite spectrum, we let S(W ) : C∗,∗BP (W )→ C∗−1
c (G;B∗(W )) be the

cochain homotopy constructed in the proof of Lemma 7.4. Then S(W ) extends
to a cochain homotopy L K (n)S(W ) : L K (n)C

∗,∗
BP (W )→ C∗−1

c (G;B∗(W )), which
makes the diagram (7-3) homotopy commutative.

Proposition 7.5. For any spectrum W , the diagram (7-3) is cochain homotopy
commutative.

Proof. Since the cochain homotopy L K (n)S(W ) is natural for finite spectra W , we
obtain a cochain homotopy

lim
←−λ

L K (n)S(Wλ) :

lim
←−λ

L K (n)C
∗,∗
BP (Wλ)−→ lim

←−λ
C∗−1

c (G;B∗(Wλ))= C∗−1
c (G;B∗(W )),
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where the inverse limits are taken over λ ∈ 3(W ). Then the composition with
the cochain map L K (n)C

∗,∗
BP (W )−→ lim

←−λ
L K (n)C

∗,∗
BP (Wλ) makes the diagram (7-3)

cochain homotopy commutative. �

Theorem 7.6. The map

θ(W ) : H∗c (Gn; E∗n(W ))→ H∗c (Gn+1; E∗n+1(W ))

coincides with the map ϕ2(W ) for any spectrum W .

Proof. In the diagram (7-3) the left vertical arrow is a quasi-isomorphism by
Proposition 6.1. So is the right vertical arrow, by Theorem 5.8. The theorem
follows because the top horizontal arrow induces the map ϕ2(W ) and the bottom
horizontal arrow induces the map θ(W ). �

8. Nontriviality of the image of ζn

In this section we prove Theorem 8.1 as an application of the results in this note. By
the Hopkins–Miller theorem [Devinatz and Hopkins 2004, Theorem 6], we know
that there exists a nontrivial element ζn ∈ π−1(L K (n)S0), which is represented by
the reduced norm map of Gn in the E2-term of the K (n)-local En-Adams spectral
sequence. The K (n)-localization of the K (n+1)-localization map S0

→ L K (n+1)S0

induces a map L K (n)S0
→ L K (n)L K (n+1)S0. In this section we show that the im-

age of ζn under the map π∗(L K (n)S0)→ π∗(L K (n)L K (n+1)S0) is nontrivial as an
application of Theorems 4.7 and 5.8.

By Theorem 6.2, we have a morphism of spectral sequences

ϕr = ϕr (S0) : L K (n)E∗,∗r (S0)−→ L K (n)L K (n+1)E∗,∗r (S0),

which converges to π∗(L K (n)S0)→ π∗(L K (n)L K (n+1)S0). Then ϕ2 is identified
with the inflation map

θ = θ(S0) : H∗c (Gn; E∗n)−→ H∗c (Gn+1;A
∗)

by Theorem 5.8. The reduced norm map of Gn defines an element zn ∈H 1
c (Gn; E0

n)

which represents ζn ∈ π−1(L K (n)S0). We set wn = θ(zn) ∈ H 1
c (Gn+1;A

0), and
denote by ωn the image of ζn under the map π∗(L K (n)S0)→π∗(L K (n)L K (n+1)S0).
Then wn is a permanent cycle and it represents ωn .

Theorem 8.1. ωn ∈ π−1(L K (n)L K (n+1)S0) is nontrivial.

Proof. In [Torii 2003] we constructed a map

θ ′ : H∗c (Gn; F[w±1
])−→ H∗c (Gn+1; F((un))[u±1

]).
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Then there exists a commutative diagram

H∗c (Gn; E∗n)
θ

−−−−−−→ H∗c (Gn+1;A
∗)

π

y yπ
H∗c (Gn; F[w±1

])
θ ′

−−−−−−→ H∗c (Gn+1; F((un))[u±1
]),

where the vertical arrows π are canonical reduction maps. In [Torii 2005] we
calculated the image of θ ′ : H 1

c (Gn; F[w±1
])→ H 1

c (Gn+1; F((un))[u±1
]), and we

showed that θ ′(π(zn)) is nontrivial. This implies that θ(zn) ∈ H 1
c (Gn+1;A

0) is
nontrivial. Since θ(zn) is a permanent cycle and lies in the 1-line of the spectral
sequence, it represents a nontrivial element in π−1(L K (n)L K (n+1)S0). �
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THOMPSON’S GROUP IS DISTORTED
IN THE THOMPSON–STEIN GROUPS

CLAIRE WLADIS

We show that the inclusion map of the generalized Thompson groups F(ni )

is exponentially distorted in the Thompson–Stein groups F(n1, . . . , nk) for
k>1. One consequence is that F is exponentially distorted in F(n1, . . . , nk)

for k>1 whenever ni =2m for some m (whenever no i, m exist such that ni =

2m, there is no obviously “natural” inclusion map of F into F(n1, . . . , nk)).
This is the first known example in which the natural embedding of one of
the Thompson-type groups into another is not quasi-isometric.

1. Introduction

In this paper, we use some of the motivating ideas behind the proofs of the metric
properties developed in [Wladis 2009] to show that the inclusion map of the gen-
eralized Thompson groups F(ni ) into F(n1, . . . , nk) is exponentially distorted for
k > 1. A quasi-isometric embedding of a subgroup into a larger group induces a
metric on the subgroup that is equivalent to subgroup metric. In contrast, when an
embedding is not quasi-isometric, the subgroup distortion measures the extent to
which this metric is distorted by the embedding map (for formal definitions, see
Section 4).

We give here the first known example of the natural embedding of one Thompson-
type group being distorted inside another. Burillo, Cleary and Stein [Burillo et al.
2001] showed that F(n) is quasi-isometrically embedded into F(m) for all n,m ∈
N−{1}, and along with Taback, that F is quasi-isometrically embedded in Thomp-
son’s group T [Burillo et al. 2009]. Different methods have been used to show that
Fn
× Zm is quasi-isometrically embedded in F for all m, n ∈ N [Burillo 1999;

Cleary and Taback 2003; Guba and Sapir 1999; Guba and Sapir 1997]. Since the
development of the main theorem of this paper, Burillo and Cleary [2010] have

This work was supported in part by a grant from The City University of New York PSC-CUNY
Research Award Program and the CUNY Scholar Incentive Award. The author would also like to
thank the Technische Universität Berlin for its hospitality during the writing of this paper.
MSC2000: 20F65.
Keywords: Thompson’s group, piecewise linear homeomorphism, Stein group, Higman group,

quasi-isometrically embedded subgroup, distorted subgroup.
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used similar methods as those described here to prove that the canonical embed-
dings of Thompson’s groups F and V are also distorted in the higher dimensional
Thompson’s group nV .

Robert Thompson introduced the three groups named after him in the early
1960s (see [McKenzie and Thompson 1973]). Denoted by F ⊂ T ⊂ V , they have
provided many interesting group-theoretic counterexamples: T and V were the
first known infinite, simple, finitely presented groups, and F was the first known
example of a torsion-free infinite-dimensional FP∞ group. For more information
see [Cannon et al. 1996].

The groups F(n1, . . . , nk), generalizing F , were first explored in depth by
Melanie Stein [1992]. Related explorations of general classes in this family of
groups, each of which can be considered to be a generalization of the Thompson
groups, include [Higman 1974; Brown and Geoghegan 1984; Brown 1987; Brin
and Guzmán 1998; Brin and Squier 2001; Bieri and Strebel 1985].

Definition 1.1. The Thompson–Stein group F(n1, . . . , nk), where k ∈ N and n1,

. . . , nk ∈{2, 3, 4, . . . } are pairwise relatively prime, is the group of piecewise linear
orientation-preserving homeomorphisms of the closed unit interval with finitely
many breakpoints in Z[ 1

n1···nk
] and slopes in the group 〈n1, n2, . . . , nk〉 in each

linear piece. We abbreviate F(2) by F .

Stein [1992] explored the homological and simplicity properties of F(n1, . . . ,nk)

and showed that they are of type FP∞ and finitely presented, and gave a technique
for computing infinite and finite presentations. In [Wladis 2009], using Stein’s
presentations, we developed the theory of tree-pair diagram representation for el-
ements of F(n1, . . . , nk), gave a unique normal form, and calculated sharp upper
and lower bounds on the metric in terms of the number of leaves in the minimal
tree-pair diagram representative. The proofs in this paper use the normal form
results and some of the same motivating ideas behind the metric approximations
used in our 2009 paper.

The results of this article hold for all groups of the form F(n1, . . . , nk) that
satisfy the condition n1−1|n j−1 for all j ∈ {1, . . . , k}; throughout this paper,
when we refer to the group F(n1, . . . , nk), this divisibility criterion will be im-
plied. Groups not satisfying this criterion will have a significantly different group
presentation, and therefore require alternate normal form and metric techniques
than those presented here or in [Wladis 2009]. Much of the introductory material
in this paper is summarized from that paper, where more detail can be found.

2. Representing elements using tree-pair diagrams

The proofs in this paper depend heavily on the representation of elements of F(m)
and F(n1, . . . , nk) by tree-pair diagrams; see [Wladis 2007; 2009] for more details.
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Definition 2.1. An n-ary caret, or caret of type n, is a graph which has n + 1
vertices joined by n edges: one vertex has degree n (the parent) and the rest have
degree 1 (the children).

An (n1, . . . , nk)-ary tree is a graph formed by joining a finite number of carets
by identifying the child vertex of one caret with the parent vertex of another so
that every caret in the tree has a type in {n1, . . . , nk}. An (n1, . . . , nk)-ary tree-
pair diagram is an ordered pair of (n1, . . . , nk)-ary trees with the same number of
leaves.

If a vertex in a tree has degree 1, it is referred to as a leaf.
An (n1, . . . , nk)-ary tree represents a subdivision of [0, 1] using the following

recursive process, which assigns a subinterval of [0, 1] to each leaf in the tree: the
root vertex represents the interval [0, 1]; for a given n-ary caret in the tree with
parent vertex representing [a, b], the n child vertices represent the subintervals[
a, a+ 1

n

]
,
[
a+ 1

n , a+ 2
n

]
, . . . ,

[
b− 1

n , b
]

respectively.
Every element of F(n1, . . . , nk) can be represented by an (n1, . . . , nk)-ary tree-

pair diagram and vice versa. We number the leaves in a tree beginning with zero,
in increasing order from left to right; a leaf’s placement in this order is determined
by the relative position of the subinterval within [0, 1] which it represents. Once
the leaves of each tree in a tree-pair diagram are numbered, then the element of
F(n1, . . . , nk) which it represents is the map which takes the subinterval of [0, 1]
represented by the i th leaf in the domain tree to the subinterval of [0, 1] repre-
sented by the i th leaf in the range tree. Because every element of F(n1, . . . , nk)

is a piecewise linear map with fixed endpoints, it can be determined solely by the
ordered subintervals in the domain and range. For example, the element given in
Figure 1 is just the map

{[
0, 1

2

]
,
[ 1

2 ,
3
4

]
,
[ 3

4 , 1
]}
→

{[
0, 1

3

]
,
[ 1

3 ,
2
3

]
,
[ 2

3 , 1
]}

.

Figure 1. An example element of F(2, 3).

Equivalence and minimality of tree-pair diagrams. We will analyze properties of
F(m) and F(n1, . . . , nk) by identifying each group element with an equivalence
class of tree-pair diagrams, so we must have criteria for equivalence. And because
our metric is based on using a minimal tree-pair diagram representative for an
element, we also give minimality criteria.

Definition 2.2. Two trees are equivalent if they represent the same subdivision of
the unit interval; two tree-pair diagrams are equivalent if they represent the same
element of F(n1, . . . , nk).
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An exposed caret pair in a tree-pair diagram is a pair of carets of the same type,
one in each tree, such that all the child vertices of each caret are leaves, and both sets
of leaves have identical leaf index numbers. Exposed caret pairs can be canceled in
a tree-pair diagram to produce an equivalent tree-pair diagram with fewer leaves.
Analogously, we can add a pair of identical carets to a tree-pair diagram to the
leaves with the same index number in each tree and obtain an equivalent tree-pair
diagram.

Definition 2.3. An (n1, . . . , nk)-ary tree-pair diagram is minimal if it has the small-
est number of leaves of any tree-pair diagram in the equivalence class representing
a given element of F(n1, . . . , nk). In F(m), a tree-pair diagram is minimal if and
only if it contains no exposed caret pairs.

Definition 2.4. For any given j ∈ {1, . . . , k}, the n j -valence of a leaf l ∈ T is the
number of n j -ary carets which have an edge on the path from the root vertex to l;
it is denoted by vn j (l). If we refer to just the valence of l, or v(l), this refers to the
vector 〈vn1(l), . . . , vnk (l)〉.

Theorem 2.5 [Wladis 2009]. The (n1, . . . , nk)-ary trees T and S are equivalent if
and only if L(T )= L(S) and v(li )= v(ki ) for all leaves li ∈ T , ki ∈ S.

Tree-pair diagram composition. To find ba for b, a∈ F(n1, . . . , nk), b= (T−, T+)
and a = (S−, S+), we need to make S+ equivalent to T−. This is accomplished by
adding carets to T− and S+ (and by extension to the leaves with the same index
numbers in T+ and S− respectively) until the valence of all leaves of both T− and
S+ are the same. If we let T ∗

−
, T ∗
+
, S∗
−

S∗
+

denote T−, T+, S−, S+, respectively, after
this addition of carets; then the (possibly nonminimal) product is (S∗

−
, T ∗
+
) (see

Figure 2). The process of tree-pair diagram composition always terminates; see
[Wladis 2009].

Figure 2. Composition of two elements of F(2, 3). Solid lines
indicate the carets present in the original elements a and b, and
dotted lines indicate carets that must be added during composi-
tion. The tree-pair diagram representative of ba is the pair which
contains the domain tree of a and the range tree of b, with both
hatched and solid line carets included.
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3. The metric in F(n) and F(n1, . . . , nk)

Standard presentations. Stein [1992] gave a method for finding the finite presen-
tations for the groups F(n1, . . . , nk); in [Wladis 2009] we computed the exact
finite presentations explicitly. For the sake of simplicity, we give the presentation
for F(2, 3) only here. For presentations for F(n1, . . . , nk) more generally, see
[Wladis 2009].

Theorem 3.1 [Stein 1992; Wladis 2009]. Thompson’s group F(2, 3) admits the
infinite presentation with generators x0, y0, z0, x1, y1, z1, . . . and relators

γj xi = xiγ j+1 and γj zi = ziγ j+2 when i < j for γ = x, y, z;

yi+1zi = yi xi+1xi and xi zi+1zi = zi xi+2xi+1xi for all i.

Figure 3. Infinite generators for F(2, 3).

Theorem 3.2 [Stein 1992; Wladis 2009]. F(2, 3) admits the finite presentation
with generators {x0, x1, y0, y1} and relators

x2x0 = x0x3, y2x0 = x0 y3, x1z0 = z0x3, y1z0 = z0 y3,

x3x1 = x1x4, y3x1 = x1 y4, x2z1 = z1x4, y2z1 = z1 y4,

x0z1z0 = z0x2x1x0, x1z2z1 = z1x3x2x1,

where

x3 = x−1
1 x2x1, y3 = x−1

1 y2x1, z0 = y−1
1 y0x1x0,

x4 = x−1
2 x3x2, y4 = x−1

2 y3x2, z1 = y−1
2 y1x2x1, z2 = y−1

3 y2x3x2.

The standard presentations for F (see [Brown 1987]) are:

Infinite: {x0, x1, x2, · · · | x j xi = xi x j+1 for i < j}

Finite: {x0, x1 | [x0x−1
1 , x−1

0 x1x0], [x0x−1
1 , x−2

0 x1x2
0 ]}

The metric. It is well known that the metric in F and F(n) is quasi-isometric to the
number of carets (or equivalently to the number of leaves) in the minimal tree-pair
diagram representative of a given group element. However, this does not hold for
F(n1, . . . , nk) when k > 1; it is this fact which will be exploited to show that F is
distorted in F(n1, . . . , nk).
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Notation 3.3. The notation |x |F(n) and |x |F(n1,...,nk)
will be used to represent the

length of the element x in F(n) and F(n1, . . . , nk) respectively, with respect to the
standard finite generating set.

Notation 3.4. The notation L(T ), L(T−, T+), and L(x) denotes the number of
leaves in the tree T , in either tree of the tree-pair diagram (T−, T+), and in either
tree of the minimal tree-pair diagram for x respectively.

We note that both trees in a tree-pair diagram have the same number of leaves.

Theorem 3.5 [Fordham and Cleary 2009; Burillo et al. 2001]. For x ∈ F(n),
|x |F(n) is quasi-isometric to L(x) (see Definition 4.1 for formal definition).

Theorem 3.6 [Wladis 2009]. There exist fixed B,C ∈ N such that

logB L(x)≤ |w|F(n1,...,nk)
≤ C L(w) for all x ∈ F(n1, . . . , nk).

These bounds are sharp.

Normal form. A unique normal form exists for F(n1, . . . , nk) with respect to the
standard infinite presentations. This normal form essentially provides an algorithm
for converting a tree-pair diagram into an algebraic expression in the normal form
and vice versa. For the main proofs of this paper, we will introduce several elements
for which we will give both an algebraic expression in the normal form and a tree-
pair diagram representative. To understand the proofs that follow, one need only
consider the tree-pair diagrams, and one need not see explicitly how the algebraic
expression comes from the tree-pair diagram representative, so for the sake of space
and simplicity of presentation, we have omitted a full explanation of how to write
out the normal form for a given element in F(n1, . . . , nk); however, full details on
this algorithm can be found in [Wladis 2009].

4. Quasi-isometry and subgroup distortion

A quasi-isometrically embedded subgroup has a metric that is equivalent to the
induced metric within the larger group. In contrast, an embedding which is not
quasi-isometric can be said to be distorted, and the type of this distortion measures
the extent to which the metric is distorted by the embedding map.

Definition 4.1. The groups X and Y are quasi-isometric if there exist fixed c1, c2>

0 and an embedding f : X→ Y such that

1
c1
|x |X − c2 ≤ | f (x)|Y ≤ c1|x |X + c2,

where |x |X and |x |Y are the lengths of x ∈ X and x ∈ Y respectively, with respect
to a fixed finite generating set. When X ⊂ Y , the embedding f will be assumed to
be the inclusion map, so we often omit explicit mention of the embedding itself.
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Let x ∈ X ⊂ Y . The distortion function is defined by

D(r)= 1
r

max
{
|x |X , |x |Y

∣∣ |x |Y < r
}
.

For finitely generated groups, the distortion function is bounded if and only if
the inclusion map of X into Y is a quasi-isometric embedding. When D(r) is a
function that grows without bound as r→∞, then we say that X is distorted in Y ;
the function type of D(r) determines the type of the distortion (i.e. we say that a
subgroup with exponential D(r) is exponentially distorted). We use the notation∼
to denote quasi-isometry. The property of quasi-isometry is transitive: whenever
X ∼ Y and Y ∼ Z , X ∼ Z .

F is exponentially distorted in F(n1, . . . , nk). We begin by proving that the in-
clusion map of F(ni ) is exponentially distorted in F(n1, . . . , nk) whenever there
exists j ∈ {1, . . . , k} such that ni−1|n j−1 by constructing a distorted element in
F(ni ) explicitly. In the next section, we generalize this result to all i ∈ {1, . . . , l}.

Definition 4.2. We say that a tree is balanced if v(li )=v(lj ) for all leaves li , lj ∈T .

Theorem 4.3. F(ni ) is exponentially distorted in F(n1, . . . , nk) for k > 1 when-
ever there exists n j such that j ∈ {1, . . . , k}, i 6= j , and ni−1|n j−1.

Proof. For the sake of readability, we will restrict all the explicit details of this
proof to the canonical embedding of F into F(2, 3) since this is the simplest
case. However, this proof holds for all F(ni ) that meet the stated conditions of
the theorem; at key points in this proof, we will indicate what adjustments need to
be made to generalize the results to the general case.

We will show that w = y−n
0 x0 yn

0 is such that |w|F ≥
1
A 3n for some A ∈ N by

showing that L(w)≥ 1
A 3n . We consider the product of the representative tree-pair

diagrams given in Figure 4.

Figure 4. The product w = y−n
0 x0 yn

0 .

In order to perform this composition, a binary caret must be added to every leaf
in Sn

−
and Sn

+
, to produce (Sn

−
)1 and (Sn

+
)1 respectively. Then a second binary

caret must be added to the leaves with index numbers 3n, . . . , 2 · 3n
− 1 in both

(Sn
−
)1 and (Sn

+
)1 to produce (Sn

−
)2 and (Sn

+
)2 respectively. Then a balanced n-level

ternary tree (identical to Sn
+

) must be added to each leaf of T− and T+. And finally,
a binary caret must be added to each leaf in S−n

− and S−n
+ to produce (S−n

− )
1 and

(S−n
+ )

1 respectively, and then another binary caret must be added to the leaves
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with index numbers 0, . . . , 3n
− 1 in (S−n

− )
1 and (S−n

+ )
1 to produce (S−n

− )
2 and

(S−n
+ )

2 respectively. It is clear then that
(
(Sn
−
)2, (S−n

+ )
2
)

is a tree-pair diagram
for w whose number of leaves is 2 · 3n

− 1. However,
(
(Sn
−
)2, (S−n

+ )
2
)

may not be
minimal. In fact, there exist exposed caret pairs in

(
(Sn
−
)2, (S−n

+ )
2
)
, but not enough

to significantly reduce the number of leaves in the tree-pair diagram; to see this,
we list the leftmost leaf index number of every exposed caret in

(
(Sn
−
)2, (S−n

+ )
2
)
:

(Sn
−
)2 : 0, 2, 4, . . . , 3n

− 3, (even)

3n, 3n
+2, 3n

+4, . . . ,2 · 3n
−1, 2 · 3n

+ 1, 2 · 3n
+ 3, . . . , 3 · 3n

− 2 (odd)

(Sn
+
)2 : 0, 2, 4, . . . , 3n

− 3, 3n
−1, 3n

+1, 3n
+3, . . . , 2 · 3n

−2, (even)

2 · 3n
+ 1, 2 · 3n

+ 3, 2 · 3n
+ 5, . . . , 3 · 3n

− 2 (odd)

It is clear that all exposed carets with leftmost leaf number in bold cannot cancel,
because these leaves in the domain tree have odd index numbers and these leaves
in the range tree have even index numbers. So

L(w)≥ (2 · 3n
− 2)− (3n

− 1)= 3n
+ 1,

and because the metric in F is quasi-isometric to the number of leaves in the
minimal tree-pair diagram representative of an element, there exists A ∈ N such
that |w|F ≥

1
A 3n . However, clearly |w|F(2,3) ≤ 2n+ 1.

To generalize this proof for F(ni ) in F(n1, . . . , nk), we begin
by defining the element Yi, j as the element with tree-pair diagram
of the form given on the right. (In the case i = 1, we simply have
Yi, j = (yj )0.)

We define Zi as the element with the tree-pair diagram given in Figure 5. We
consider the product

wi, j,n = Y−n
i, j Zi Y n

i, j

given in that figure the same way that we considered yn
0 x0 y−n

0 for F in F(2, 3) in
Figure 4. After adding all carets to each tree-pair diagram in Figure 5, as necessary
in order for composition to take place, the resulting diagram

(
(Sn
−
)2, (S−n

+ )
2
)

for
wi, j,n will have exposed carets whose leftmost leaf index numbers are as follows,

Figure 5. The product Y−n
i, j Zi Y n

i, j . Solid carets are ni -ary and
dotted carets are n j -ary (also in inset above).
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where c = bnn
j /nic and ∗ denotes “not divisible by ni ”:

(Sn
−
)2 : 0, ni , 2ni , 3ni , . . . , (c−1)ni , (divisible by ni )

(ni−1)nn
j , (ni−1)nn

j +ni , (ni−1)nn
j+2ni , . . . , (∗)

(2ni−1)nn
j−(c+2)ni , 2(ni−1)nn

j −(c+1)ni , . . . , (2ni−1)nn
j −ni (∗)

(Sn
+
)2 : 0, ni , 2ni , 3ni , . . . , (c−1)ni , cni , . . . , (nn

j−1)ni , (divisible by ni )

2(ni−1)nn
j −(c+1)ni , 2(ni−1)nn

j −cni , . . . , (2ni−1)nn
j −ni (∗)

Because ni and n j are relatively prime, the carets with leftmost leaf numbers in
bold will not cancel. Thus

L(wi, j,n)≥ [(2ni − 1)nn
j − (c+ 2)ni ] − [cni ]

= (2ni − 1)nn
j − (2c− 2)ni

> (2ni − 3)nn
j − 2ni

> nn
j − 2ni ,

the last inequality being a consequence of cni < nn
j and ni ≥ 2. However, if we let

A = |Yi, j |F(n1,...,nk)
and B = |Zi |F(n1,...,nk)

, we have

|wi, j,n|F(n1,...,nk)
≤ |Y−n

i, j |F(n1,...,nk)
+ |Zi |F(n1,...,nk)

+ |Y n
i, j |F(n1,...,nk)

≤ An+ B+ An = 2An+ B. �

F(ni ) is exponentially distorted in F(n1, . . . , nk). We now extend the results
of the last two pages to all ni such that i ∈ {1, . . . , k}. We will again do this
by explicitly constructing a product in F(n1, . . . , nk) that produces an element in
F(ni ) so that the number of leaves in the product is logarithmic with respect to the
number of factors in F(n1, . . . , nk). Without the added condition that ni−1|n j−1
for some j ∈ {1, . . . , k}, this product will have to be more complex than the one
constructed in the last section; however, the underlying structure will be similar.
We begin by defining elements of F(n1, . . . , nk) which will occur in our product.
As in the previous section, for the sake of clarity we give our detailed proof for the
embedding of F(3) into F(2, 3), including notes indicating how this can be gener-
alized for any F(ni ) into F(n1, . . . , nk) that meet the conditions of Theorem 4.5.

Notation 4.4. For a fixed i ∈ {1, . . . , k} we define Ai , Zi , λi as follows:

i = 2 arbitrary i

A2 = x0 y−1
0 (see Figure 9)

Z2 = y1z1 y−1
3 y−1

1 (see Figure 9)
λ2 = x0 y−1

1 (see Figure 6)

Ai has the form seen in Figure 7, left
Zi has the form seen in Figure 7, middle
λi has the form seen in Figure 7, right
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Figure 6. The elements λ2 and λn
2 in F(2, 3). Level i from the

top in Sn
−

has 2i−2 ternary carets.

For readability, the theorem and proof that follow are restricted to the case
F(2, 3), which is illustrated in Figure 6. However, the proof can be extended to all
cases by using the generalized elements given in Figure 7. Particular examples of
more complicated λi can be seen in Figure 8.

Figure 7. The elements Ai , Zi , and λi in F(n1, . . . , nk). Solid
carets are n1-ary and dotted carets are ni -ary. On the right, S is
a balanced n1-ary tree where L(S) ≤ ni , while T1, . . . , Tn1−1 are
(possibly empty) n1-ary subtrees of D(S) levels or less, chosen as
needed in order to make L(S−)= L(S+). For simplicity, we fill in
the subtrees T1, . . . , Tn1−1 from left to right, but this is not strictly
necessary. For specific examples, see Figure 8.

Theorem 4.5. The canonical embedding of F(ni ) is exponentially distorted in
F(n1, . . . , nk) for all i ∈ {1, . . . , k}.

Proof. We will establish this by showing that the product W2,n= (λ
n
2 A2)

−1z2(λ
n
2 A2)

is an element of F(3), and that it has a minimal tree-pair diagram representative
whose number of leaves is of the order Bn for some fixed B > 1. All of the
following steps generalize in a straightforward way to show the same result for
F(ni ) in F(n1, . . . , nk) by simply replacing all the elements A2, λ2, Z2 with their
general formulations.

It is clear that |W2,n|F(2,3)< 4n+8 while |W2,n|F(3)∼ L(W2,n). Straightforward
computation of the product W2,n , illustrated in Figure 9, shows that we must do
the following:

(i) Add n levels of binary carets to each leaf in the trees T− and T+ of Z2.
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Figure 8. More complex examples of λi ∈ F(n1, . . . , nk). Left
column: The element λ2 in F(3, 5), F(3, 7) and F(3, 11). Right:
the element λn

2 in F(3, 5); level i from the top in Sn
−

has 3i−2

quinary (5-ary) carets, and T n
1 , T n

2 are ternary subtrees.

(ii) Add a ternary caret to the 2n rightmost leaves of Sn
+

and S−n
− (and by extension

to the 2n rightmost leaves of Sn
−

and S−n
+ ), and then add a ternary caret to the

rightmost 2n leaves of these added ternary carets in Sn
+

(and Sn
−

respectively)
and to the leftmost 2n leaves of these added ternary carets in S−n

− (and S−n
+

respectively).

We can then see that the (not necessarily minimal) tree-pair diagram of the
resulting product λ−n

2 Z2λ
n
2 has 3 · 2n+1 leaves, and the only nonternary carets in

each tree are the root carets. Conjugating this product by A2 then produces a tree-
pair diagram for W2,n with (3 ·2n+1

+1) leaves consisting entirely of ternary carets
(so clearly W2,n ∈ F(3)).

Figure 9. The product (λn
2 A2)

−1 Z2(λ
n
2 A2).
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Now we need only show that a significant number of these leaves will not cancel.
Using a similar argument to that in the proof of Theorem 4.3 where we tracked the
leaf numbers and their divisors, it is easy to show that less than 2n+1 leaves will
cancel, so we can conclude that L(W2,n)≥ 2n+1. �
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PARABOLIC MEROMORPHIC FUNCTIONS

ZHENG JIAN-HUA

Following the definition of parabolic rational functions and in view of the
behavior of transcendental meromorphic functions, we give the definition of
parabolic transcendental meromorphic functions. We discuss their dynam-
ical behavior and prove the existence of conformal measures and invari-
ant measures over their Julia sets, thus extending Denker and Urbański’s
work on parabolic rational functions. However, our method for proving
the existence of the conformal measures differs in that we use the Perron–
Frobenius–Ruelle operator.

1. Introduction and notations

Let f (z) be a meromorphic function that is transcendental or rational with degree
at least two. Let f n(z) be the n-th iterate of f (z), let F( f ) be the Fatou set of f (z),
and let Ĵ( f )= Ĉ\F( f ), which is the Julia set of f (z). If f is transcendental, then
∞ ∈ Ĵ( f ), and set J( f ) = Ĵ( f ) \ {∞} and J∞( f ) =

⋃
∞

n=0 f −n(∞). If J∞( f )
contains at least three points, then J( f ) = J∞( f ) and so f is analytic on F( f ).
F( f ) is open and consists of at most a countable number of components, which are
called Fatou components. Since F( f ) is completely invariant, the image of every
Fatou component under f is contained in a Fatou component. A Fatou component
U is called periodic if f m(U )⊂U for some m ≥ 1 and the least such m is called
its period; U is preperiodic if f m(U ) is periodic for some m ≥ 1 but U is not
periodic; U is wandering if f n(U )∩ f m(U ) = ∅ for m 6= n. The periodic Fatou
components are classified into five types: attracting domain, parabolic domain,
Siegel disk, Herman ring and Baker domain. The Baker domain and wandering
domain are possible only for transcendental meromorphic functions.

By sing( f −1) we mean the closure of the set of all finite critical and asymp-
totic values of f (z) in the complex plane C and by ŝing( f −1) the closure of the
set of all critical and asymptotic values of f (z) in the extended complex plane
Ĉ= C∪{∞}. Hence if f (z) has multiple poles, then∞ is a critical value of f (z)
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and ∞ ∈ ŝing( f −1). If ∞ is an asymptotic value of f (z), then ∞ ∈ ŝing( f −1),
but in any case,∞ 6∈ sing( f −1). Then∞ 6∈ ŝing( f −1) if and only if f (z) has no
multiple poles and no∞ as an asymptotic value and∞ is not a limit point of finite
singular values of f (z). We denote by P( f ) the postsingular set defined to be the
closure in Ĉ of

∞⋃
n=0

f n
(

sing( f −1)
∖ n−1⋃

j=0
f − j (∞)

)
and set P̂( f )= P( f )∪ ŝing( f −1).

In [Zheng 2008] we proved that for a hyperbolic meromorphic function on the
complex plane, the Hausdorff dimension of the radial Julia set Jr ( f ) is equal to
the Poincaré exponent s( f ) of f over J( f ). Actually, the proof showed that

dimh J( f )= dimH Jr ( f )= s( f ),

where dimh J( f ) is the hyperbolic dimension of J( f ). The first equality above
was proved in [Rempe 2009] for the general case. For a hyperbolic meromorphic
function on the Riemann sphere, the author proved that

dimh J( f )= dimH J( f )= λ( f )= s( f ),

where λ( f ) is the exponent of conformal measure of f over J( f ), and there ex-
ists the invariant Gibbs measure that is equivalent to the λ( f )-conformal measure
which extends the results in [Kotus and Urbański 2002]. Here, we say a probability
measure µ over J( f ) is a s-conformal measure for f if f ×(z)s is the Jacobian of
f over J( f ) with respect to µ, that is, for any Borel subset A of J( f ) such that f
is injective on A, we have

µ( f (A))=
∫

A
f ×(z)sdµ.

In this paper, we investigate parabolic meromorphic functions. The papers
[Denker and Urbański 1991a; 1991b; Aaronson et al. 1993] are careful inves-
tigations of the Hausdorff dimension, conformal measure and invariant measure
of parabolic rational functions. The definition of a parabolic rational function is
clear: we know that a rational function f with degree at least two is called parabolic
if Ĵ( f )∩ ŝing( f −1)=∅ and f has at least one rational indifferent periodic point.
However, the transcendental case is more complicated.

Definition 1.1. Let f be a transcendental meromorphic function in C. We say that
f is parabolic on the complex plane if P( f )∩J( f ) is finite and nonempty, each
point in P( f )∩J( f ) is a rational indifferent periodic point of f , and sing( f −1) is
contained in F( f ). We say f is parabolic on the Riemann sphere (or with respect
to the spherical metric) if f is parabolic on the complex plane and∞ 6∈ P̂( f ).
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We denote by P(C) and P(Ĉ) the set of all parabolic transcendental meromor-
phic functions on C and Ĉ, respectively. A rational function has only a finite
number of rational indifferent periodic points, while a transcendental meromorphic
function may have infinitely many rational indifferent periodic points. Since every
rational indifferent periodic point must be in P( f )∩J( f ), a parabolic meromorphic
function on the complex plane has only finitely many rational indifferent periodic
points. In Definition 1.1, we need to stress the condition that sing( f −1) ⊂ F( f ):
although a rational indifferent periodic point cannot be a critical point, it may be a
critical value, and for transcendental case it may be an asymptotic value. This can
be explained by considering the functions z(z−1)2 and zez . The point 0 is a rational
indifferent fixed point of z(z−1)2, which is also a critical value, and of zez , which
is also an asymptotic value. The functions z(z−1)2 and zez satisfy the conditions
for parabolicity on the complex plane (Definition 1.1) except for the requirement
that sing( f −1) ⊂ F( f ). Hence they are not parabolic on the complex plane. If
∞ 6∈ P̂( f ), then f is of bounded type, that is, in class B. Clearly, a parabolic
meromorphic function on the Riemann sphere is in class B, that is, P(Ĉ)⊂B.

Let f be a transcendental meromorphic function in class S, so that sing( f −1)

is finite. If sing( f −1) ⊂ F( f ) (resp. ŝing( f −1) ⊂ F( f )), then f is hyperbolic
whenever it has no rational indifferent periodic points; otherwise it is parabolic
on the complex plane (resp. on the Riemann sphere). This is because f has only
attracting domains and/or parabolic domains. For a general case, see Theorem 3.1
and Theorem 3.2 below. A simple calculation yields that tan z is in P(Ĉ).

In the papers cited above, Denker, Urbański, and Aaronson obtained the ex-
istence of a conformal measure and an invariant measure, and showed they are
equivalent for parabolic rational functions. Using the results attained in [Zheng
2009] by developing Walters’ theory, we extend some of the Denker and Urbański’s
results to the parabolic transcendental meromorphic function, and establish:

Theorem 1.2. Let f (z) be a parabolic meromorphic function on the Riemann
sphere. Then f (z) has a s-conformal measure µs and P( f, s)= 0.

Here P( f, t) is the pressure of f at t , whose definition is given in Lemma 3.8.
Applying a result from [Martens 1992] we determine conditions about the existence
of µs-equivalent, f -invariant measure:

Theorem 1.3. Let f (z) be a parabolic meromorphic function on the Riemann
sphere. Assume that s-conformal measure µs is atomless. Then f (z) has a µs-
equivalent, f -invariant measure if for some a ∈ J( f ) \

⋃
∞

n=0 f −n(�), where
�= P( f )∩J( f ), we have

∞∑
n=0

Ln
s (1)(a)=∞.
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Here we say a measure m is f -invariant if m( f −1(A)) = m(A) for any Borel
subset A of J( f ). Actually, � is the set of all rational indifferent periodic points
of f (z) and Ls(1) = L−s log f ×(1) is the Perron–Frobenius–Ruelle operator for
−s log f ×(z) over J( f ) and please see the statements before Lemma 3.8 for its
definition.

Question 1.4. For f ∈ P(Ĉ), is dimH J( f ) always equal to s?

We conjecture the answer is affirmative.

2. Conformal measures and expansiveness of covering maps

To discuss the existence of conformal measures of parabolic meromorphic func-
tions, we need some results from [Zheng 2009] on the existence of conformal
measures for covering maps. Let (X̂ , d) be a compact metric space and X be an
open and dense subset of X̂ and X0 an open and dense subset of X . For a point
x ∈ X̂ , B(x, δ) is the ball centered at x with radius δ. C(3) will denote the set
of all real-valued continuous functions on 3 = X̂ , X or X0. Let T : X0→ X be
continuous and ϕ ∈ C(X0).

Definition 2.1. An ordered pair (T, ϕ) is called admissible if:

(1a) For each x ∈ X , the set T−1(x) is at most countable.

(1b) T has the uniform covering property: there exists a δ > 0 such that for each
x ∈ X , T−1(BX (x, δ)) can be written uniquely as a disjoint union of a finite
or countable number of open subsets Ai (x) (1 ≤ i ≤ N ≤∞) of X0 and for
each i , T is a homeomorphism of Ai (x) onto BX (x, δ), where BX (x, δ) =
B(x, δ) ∩ X . For simplicity, we will call Ai (x) the injective component of
T−1 over BX (x, δ) and δ the injectivity radius.

(1c) The inverse of T is locally uniformly continuous: ∀ε > 0, ∃δ0 with 0<δ0<δ

such that for each x ∈ X and each y ∈ X0 with T (y)= x , once d(x, x ′) < δ0

for x ′ ∈ X , we have d(T−1
y (x), T−1

y (x ′)) < ε, where T−1
y is the branch of the

inverse of T which sends x to y. That is to say, every injective component of
T−1 over BX (x, δ0) has diameter less than ε.

(1d) ϕ ∈ C(X0) is summable on X , that is to say,

sup
{ ∑

T (y)=x

expϕ(y) : x ∈ X
}
<+∞.

(1e) For all ε > 0, there exists a 0< δ1 < δ such that for any pair x, x ′ ∈ X , once
d(x, x ′) < δ1, we have∑

T (y)=x

∣∣expϕ(T−1
y (x))− expϕ(T−1

y (x ′))
∣∣< ε,
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that is,
∑

T (y)=x

∣∣expϕ(T−1
y (x))−expϕ(T−1

y (x ′))
∣∣→0 uniformly as d(x, x ′) goes

to 0.

We now give a condition under which (1b) implies (1c).

Lemma 2.2 [Zheng 2009, Lemma 2.1 and following remark]. Let T satisfy (1b)
with X = X̂ . The inverse of T is locally uniformly continuous, that is, T satisfies
(1c), if one of following statements holds:

(1) For arbitrary ε > 0, we have a 0<η≤ ε such that for each x ∈ X , ∂B(x, η)⊂
X0.

(2) all limit points of T−1(x) for each x ∈ X lie in X \ X0 and (1) holds only for
x ∈ X \ X0.

We can define for a summable function ϕ on X0 the Perron–Frobenius–Ruelle
operator by setting

Lϕ( f )(x) :=
∑

T (y)=x

f (y) expϕ(y) for x ∈ X.

Obviously, Lϕ( f )(x) is a bounded real-valued function on X when f is a bounded
real-valued function on X0. Sometimes, we write Lϕ,T for Lϕ to emphasize T . It
is obvious that T n is a continuous mapping of T−n+1 X0 to X . Set

Snϕ(y)=
n−1∑
i=0

ϕ(T i (y)) for y ∈ T−n+1 X0.

Noting that T−n+1 X0 ⊆ X0, we easily deduce that

(2-1) Ln
ϕ,T ( f )(x)= LSnϕ,T n ( f )(x)=

∑
T n(y)=x

f (y) exp(Snϕ(y)) for x ∈ X.

(Here and throughout the paper we denote by Ln
ϕ,T the n-th iterate of Lϕ,T .) We

want to get the desired probability measure on X̂ through the dual operator of the
Lϕ over M(X̂), here M(X̂) denotes the set of all probability measures over X̂ .

Theorem 2.3. Let (T, ϕ) be admissible.

(1) For each fixed positive integer N , (T N , SNϕ) is admissible.

(2) Lϕ can be extended to a linear operator of C(X̂) to itself , which is still de-
noted by Lϕ .

(3) There exists a µ ∈ M(X̂) such that L∗ϕ(µ) = λµ, λ = L∗ϕ(µ)(1) > 0, where
L∗ϕ is the dual operator of Lϕ , and the following statements hold:

(3a) λ exp(−ϕ) is the Jacobian of T with respect to µ.
(3b) µ is positively nonsingular and nonsingular for T , that is, µ◦T �µ and

µ ◦ T−1
� µ.
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With the exception of part (1), this theorem is a modification of the main result
from [Walters 1978] (in which the expanding property is stressed; compare [Zheng
2009, Theorem 2.1 and following remark]). Obviously, the λ in Theorem 2.3 sat-
isfies

λn
= L∗nϕ(µ)(1)= µ(L

n
ϕ(1))

and therefore

(2-2) inf
x∈X
{Ln

ϕ(1)(x)} ≤ λ
n
≤ sup

x∈X
{Ln

ϕ(1)(x)}.

Lemma 2.4. Let T, ϕ, λ and µ be as in Theorem 2.3. Assume that there exist a
sequence of positive number {Kn} such that, for any x, x ′ ∈ X ,

(2-3) e−Kn Ln
ϕ(1)(x

′)≤ Ln
ϕ(1)(x)≤ eKn Ln

ϕ(1)(x
′)

and Kn/n→ 0 as n→∞. Then

log λ= lim
n→∞

1
n

log Ln
ϕ(1)(x)

and the limit exists uniformly on X.

Indeed, the inequality (2-3) holds if

|Snϕ(y)− Snϕ(y′)| ≤ Kn,

whenever y and y′ are in a component of T−n(BX (x, δ)), for any x ∈ X . This is
proved by noting that X̂ is compact and a finite number of such disks BX (x, δ)
cover X .

We have pointed out that the existence of a conformal measure does not require
expansiveness; however the existence of an equivalent invariant measure seems to
depend on this property, from Walters theory. In the second part of this section, we
consider the expansiveness of a continuous map of X̂ from X0 preparing for the
discussion of a parabolic meromorphic function on its Julia set. Since a transcen-
dental meromorphic function is not a self-mapping of a compact metric space, this
forces us to analyze carefully the definition of expansiveness.

Definition 2.5. A continuous map T : X̂→ X̂ of a compact metric space (X̂ , d) is
called expansive if there exists δ>0 such that we have x= y if d(T n(x), T n(y))<δ
for all n ≥ 0.

This definition of an expansive self-mapping of a compact metric space is not
suitable to the case when T is a continuous map from X0 into X̂ , where X0 is
a dense open subset of X̂ . For example, if there exist a point w ∈ X̂ \ X0 and
two points x, y ∈ X0 such that T n(x) → w and T n(y) → w as n → ∞ and
T n(x) 6= T n(y), then d(T n(x), T n(y))→ 0 as n→∞. Thus such a continuous
map can never satisfy Definition 2.5; in particular, according to this definition,
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no transcendental meromorphic function is expansive over its Julia set, since its
escape set to infinity is nonempty.

Neither is Definition 2.5 suitable to the case when T is an infinite-to-one con-
tinuous map from X0 to X̂ . Indeed, take a point a ∈ X̂ such that T−1(a) contains
a countable sequence xn→ x ∈ X̂ and then d(xn, xn+1)→ 0.

Let us analyze Definition 2.5 a bit further. Assume T is expansive. Given x 6= y,
there exist two possibilities: either T m(x)= T m(y) and T m−1(x) 6= T m−1(y), for
some m ≥ 1; or T n(x) 6= T n(y) for each n. In the first case, we have

(2-4) d(T m−1(x), T m−1(y)) > δ,

that is, y 6∈ T−m+1(B(T m−1(x), δ)) and x 6∈ T−m+1(B(T m−1(y), δ)) with T m(x)=
T m(y). In the second case, we have d(T nk (x), T nk (y)) > δ for a increasing se-
quence of natural numbers {nk} with nk→∞, that is, y 6∈ T−nk (B(T nk (x), δ)) and
x 6∈ T−nk (B(T nk (y), δ)). If T is not homeomorphism, then T−nk (B(T nk (y), δ))
may contain two disjoint components A j

nk ( j = 1, 2) such that T nk maps A j
nk onto

B(T nk (y), δ), while the definition above of expansive maps does not allow x be-
ing in any component A j

nk . We note that the crucial point of expansiveness is in
the component A j

nk (y) which contains y and that T nk : A j
nk (y) → B(T nk (y), δ)

expands the distance. From this point of view, we can extend the above definition
of expansive maps to the case when T is a continuous map from X0 to X̂ , where
X0 is a dense open subset of X̂ . Generally, the component of the preimage of a set
B by a map T containing y will be denoted by T−1

y (B).

Definition 2.6. A continuous map T : X0 → X̂ is called precisely expansive if
there exists δ > 0 such that for x 6= y in X̂ , one of the following statements holds:

(1) For some s≥0, at least one of T s(x) and T s(y) is in X̂\X0 and T s(x) 6=T s(y);

(2) For some m ≥ 1 with T m(x)= T m(y) ∈ X̂ but T m−1(x) 6= T m−1(y), we have
y 6∈ T−m

x (B(T m(x), δ)) and x 6∈ T−m
y (B(T m(y), δ));

(3) For a sequence of natural numbers {nk} with nk < nk+1→∞,

y 6∈ T−nk
x (B(T nk (x), δ)) and x 6∈ T−nk

y (B(T nk (y), δ)).

We call this δ the expansive constant for T . Note that item (2) in Definition 2.6
implies the uniform covering property (1b) of T with injectivity radius at least
δ/2. Generally, we cannot require that T m−1(x) and T m−1(y) have a distance with
positive infimum, but if T−1(a) is finite for each a ∈ X̂ , such a positive infimum
for the distance exists; see (2-4).

Obviously, the property of precise expansiveness implies that two points x and
y will coincide if for every n, y ∈ T−n

x (B(T n(x), δ)) and x ∈ T−n
y (B(T n(y), δ)).
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A continuous map T : X̂ → X̂ is precisely expansive if it is expansive. (For such
an expansive map T , the set T−1(x) is finite for each x ∈ X̂ .)

When one considers a homeomorphism T : X̂ → X̂ , there exists an equivalent
definition of expansiveness, namely, the existence of a generator. An open cover
α of X̂ is called a one-sided generator for T if

⋂
∞

n=0 T−n An contains at most one
point for any choice of {An} from α. We set α = {A : A ∈ α}. We will consider a
similar result for a precisely expansive map.

If α and β are two sets of subsets of X̂ , we denote by α∨β the set of all subsets
with the form A∩ B, for all A ∈ α and B ∈ β. Further, we set

diamα = sup{diam A : A ∈ α}.

Definition 2.7. A finite cover α of X̂ is called a one-sided generator for a con-
tinuous map T : X0→ X̂ , if each element of

∨
∞

n=0 T−nα has at most one point.
Equivalently, the cover α is a one-sided generator for T if and only if

diam
n∨

j=0
T− jα→ 0 as n→∞.

Theorem 2.8. A continuous map T : X0→ X̂ is precisely expansive if and only if
there exists a one-sided generator for T and T has the uniform covering property
(1b) with a fixed injectivity radius.

Proof. Suppose that T is precisely expansive with expansive constant δ. The uni-
form covering property (1b) of T follows from (2) in Definition 2.6. Therefore,
we only need to prove the existence of a one-sided generator.

Take a finite cover α of X̂ by open balls with radius δ/2. Let

E =
∞⋂

n=0

T−n
0 (An)

be an element of
∨
∞

n=0 T−nα, where each An lies in α and T−n
0 (An) is a component

of T−n(An). Suppose that x, y ∈ E . Then for every n, we have x, y ∈ T−n
0 (An) and

T n(x), T n(y)∈ An = B̄(xn, δ/2) for a point xn ∈ X̂ . Obviously, An ⊂ B(T n(x), δ)
and An ⊂ B(T n(y), δ). From this it follows that y ∈ T−n

x (B(T n(x), δ)) and x ∈
T−n

y (B(T n(y), δ)). Then x = y, which shows that E contains at most one point.
We have proved that α is a one-sided generator.

Now suppose that there exists a one-sided generator α for T and T has the
uniform covering property (1b) with injective radius δ. Let η be a positive number
less than the Lebesgue number of α and δ. Given two distinct points x, y ∈ X̂ , we
assume that ∀ n, T n(x), T n(y) ∈ X0. Suppose that (3) in Definition 2.6 does not
hold for η and therefore, there exists a m ≥ 1 such that for all n ≥m, we have y ∈
T−n

x (B(T n(x), η)) and x ∈ T−n
y (B(T n(y), η)) and T m(y) ∈ T m T−n

x (B(T n(x), η))
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and T m(x) ∈ T m T−n
y (B(T n(y), η)) and clearly, T m(y) ∈ T−n+m

T m(x) (B(T
n(x), η))

and T m(x) ∈ T−n+m
T m(y) (B(T

n(y), η)). Since η is less than the Lebesgue number of
α, B(T n(x), η)⊂ An−m for some An−m ∈α and for n≥m. Thus T m(x) and T m(y)
are in an element of

∨
∞

n=0 T−nα. It follows that T m(x)= T m(y).
Now we can assume that T m(x) = T m(y) ∈ X̂ but T m−1(x) 6= T m−1(y). It

follows from the uniform covering property (1b) of T that

T m−1(y) 6∈ T−1
T m−1(x)(B(T

m(x), δ)) and T m−1(x) 6∈ T−1
T m−1(y)(B(T

m(y), δ)).

Obviously, y 6∈ T−m
x (B(T m(x), δ)) and x 6∈ T−m

y (B(T m(y), δ)). Therefore, T is
precisely expansive. �

3. Dynamical properties of parabolic meromorphic functions

A meromorphic function is a map from the complex plane C into the extended
complex plane Ĉ. In this section, we consider two metrics: the euclidean metric d
on C and the spherical metric d∞ on Ĉ. The metric space (C, d) is noncompact,
but the metric space (Ĉ, d∞) is compact. And (C, d∞) is a subspace of (Ĉ, d∞).
We are in (C, d∞) and (Ĉ, d∞) to consider the situation of conformal measures.
Set B(a, δ) = {z : d(z, a) < δ} for a ∈ C and B∞(a, δ) = {z : d∞(z, a) < δ} for
a ∈ Ĉ.

We begin with basic dynamical properties of parabolic meromorphic functions.

Theorem 3.1. Let f be a parabolic meromorphic function on C and in Class B.
Then it has finitely many and at least one parabolic domain and at most finitely
many attracting domains without other types of stable domains and furthermore,
P( f ) is bounded.

Proof. Clearly, f (z) has at least one but only finitely many rational indifferent
periodic points, and the number of its parabolic domains is finite and positive.
Notice that f (z) is in Class B and if f (z) has a Baker domain U , then { f n

} in
U has a finite limit point. By Theorem 2.2 of [Zheng 2003], the limit point is
in P( f )∩ J( f ) and so it is a rational indifferent periodic point. A contradiction
is derived as every f n(z) is analytic at it. This implies that f (z) has no Baker
domains at all. By Theorem 2.1 of the same reference, all limit points of { f n

}

in a wandering domain are in P( f ) ∩ J( f ) and if a limit point is finite and not
prepoles, then there exist infinitely many limit points. Thus f (z) has no wandering
domains. Since the boundaries of Siegel disks and Herman rings are contained in
P( f ) ∩ J( f ), f (z) therefore has no Siegel disks and Herman rings. Obviously,
f (z)may have attracting domains. Suppose that f (z) has infinitely many attracting
domains. Since every cycle of attracting domains contains at least a singular value,
we take a singular value from every cycle of attracting domains to form a sequence
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of singular values which has a finite limit point, and clearly the limit point is in
J( f ). This implies that sing( f −1)∩J( f ) 6=∅. A contradiction is derived.

It is obvious that P( f ) is bounded. �

Theorem 3.2. Let f be a transcendental meromorphic function satisfying the par-
abolic condition on the complex plane in Definition 1.1, except for sing( f −1) ⊂

F( f ). If P( f ) is bounded, then it has finitely many and at least one parabolic
domain and at most finitely many attracting domains without other types of stable
domains.

Proof. From the proof of Theorem 3.1, it is sufficient to prove that the number
of attracting domains is finite. Suppose that f (z) has infinitely many attracting
domains. Let {an} be the sequence of all distinct attracting periodic points of f
and let E be the set of all limit points of {an}. It is clear that E ⊂ J( f ). Since
every an is in the derived set of P( f ), we have E ⊂ P( f ), and every point in
E is a rational indifferent periodic point of f (z). Hence E is finite and we write
E = {b1, b2, . . . , bq}. Obviously, f (E)⊆ E . We choose a δ > 0 and a η > δ such
that f (B(b j , δ))⊂ B( f (b j ), η) ( j = 1, . . . , q) and f is univalent on each B(b j , δ)

and {B(b j , η)} are disjoint. For all n ≥ N , we have an ∈
⋃q

j=1 B(b j , δ). We can
take a cycle of attracting periodic points {a, f (a), . . . , f p−1(a)} in

⋃q
j=1 B(b j , δ).

Assume that a ∈ B(b1, δ) and f (a) ∈ B( f (b1), η) so that f (a) ∈ B( f (b1), δ).
Thus {a, f (a), . . . , f p−1(a)} ⊂

⋃m−1
j=0 B( f j (b1), δ), where m is the period of b1,

and p = km for a positive integer k. This implies that in B(b1, δ), f km(a) = a.
However, it is impossible for sufficiently small δ in view of the expansiveness in a
neighborhood of rational indifferent periodic cycles. �

The following describes equivalently the function in P(Ĉ).

Theorem 3.3. A meromorphic function is parabolic on the Riemann sphere if and
only if it has finitely many and at least one parabolic domain and at most finitely
many attracting domains without other types of stable domains and ŝing( f −1) ⊂

F( f ).

Proof. We just need to prove the “only if”. That ŝing( f −1) ⊂ F( f ) implies
that ∞ 6∈ ŝing( f −1) and sing( f −1) is bounded. Since f (z) has only finitely
many attracting and parabolic domains without other types of stable domains,⋃
∞

n=0 f n(sing( f −1))⊂F( f ) and the limit points of
⋃
∞

n=0 f n(sing( f −1)) on J( f )
are rational indifferent periodic points of f . Thus f is parabolic on the Riemann
sphere. �

Denker and Urbański [1991a] investigated such properties of parabolic rational
functions as the convergent speed of backward orbits of points in a small neighbor-
hood of rational indifferent periodic points and expansive property over the Julia
set, which we attempt to extend to transcendental case. The local properties of
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rational indifferent periodic points, for example, the Fatou’s flower theorem, can
be directly transferred to transcendental case. For convenience, we collect some of
them.

Let f (z) be a parabolic meromorphic function on the Riemann sphere and let
� be the set of all rational indifferent periodic points of f (z). The following result
is basic.

Lemma 3.4. For every θ >0 there exists δ= δ(θ)>0 such that for every a∈ Ĵ( f )\
B(�, θ), we have B∞(a, 2δ) ∩ P( f ) = ∅. In particular, all analytic branches
of the inverse of f n are well defined on B∞(a, 2δ) and B∞( f (a), 2δ) for every
n = 1, 2, . . . .

The dynamical behavior in a neighborhood of a rational indifferent periodic
point was discussed in [Denker and Urbański 1991a] in view of the Fatou’s Flower
Theorem. Some of their results are extracted as follows.

Lemma 3.5. Let ω be a rational indifferent periodic point of a meromorphic func-
tion f (z) with period p and ( f p)′(ω) = 1. Then there exists 0 < η < 1 such
that

|( f −p
ω )′(z)|< 1 and | f −p

ω (z)−ω|< |z−ω|

for every z ∈ B(ω, η)∩J( f ) \ {ω}, where f −p
ω is the branch of the inverse of f p

sending ω to ω. And the branch f −np
ω of f −np sending ω to ω is well defined and

is an analytical homemophism from B(ω, η)∩J( f ) into B(ω, η)∩J( f ).

We stress that f −np
ω is not conformal on B(ω, η)∩J( f ) (the definition of con-

formality can be found in [Zheng 2009]), as it has no bounded distortions over
there. f np is not expanding near ω.

Lemma 3.6. Let f (z) be a meromorphic function which is precisely expansive
from J( f ) to Ĵ( f ). Then ŝing( f −1) ⊂ F( f ) and f n is precisely expansive from
Ĵ( f ) \

⋃n−1
j=0 f − j (∞) to Ĵ( f ).

Proof. Suppose that ŝing( f −1)∩ Ĵ( f ) 6=∅. From this intersecting set, take a point
a. Let δ be an arbitrary small fixed positive number. If a is a critical value of f (z),
for a 0<η<δ we have a component U of f −1(B∞(a, η)) with diam∞U <δ such
that f : U → B∞(a, η) has covering number at least 2. There exist two distinct
points z1 and z2 in U such that f (z1) = f (z2). This contradicts the precisely
expansive property of f . Assume that a is an asymptotic value and U is a tract of
f over B∞(a, η). Then there exists a sequence of points {zn} such that zn →∞

and f (zn) = b ∈ B∞(a, η). Thus for all sufficiently large n, d∞(zn, zn+1) < δ

and this contradicts the precisely expansive property of f . It is obvious that f n is
precisely expansive. �

We remark that the condition ŝing( f −1)⊂ F( f ) may not imply that f is para-
bolic or hyperbolic, but it does when f is rational.
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Theorem 3.7. A parabolic meromorphic function f on the Riemann sphere is pre-
cisely expansive over Ĵ( f ).

Proof. Take two distinct points x and y in J( f ). Assume without any loss of
generality that f n(x) 6=∞ and f n(y) 6=∞ for every n, or f n(x)= f n(y)=∞ for
some n. According to Definition 2.6, we need to treat the two cases, as follows.

(I) For some m, f m(x) = f m(y) = a ∈ Ĵ( f ) but f m−1(x) 6= f m−1(y). Take a
number 2 such that 0 < 2 < dist(sing( f −1),J( f )). If a 6∈ B(�,2), then f m is
univalent from f −m

x (B∞(a, δ)) onto B∞(a, δ) with δ = δ(2) (by Lemma 3.4), so
y 6∈ f −m

x (B∞(a, δ)). If a ∈ B(�,2), then f is univalent from f −1
f m−1(x)(B∞(a, δ))

onto B∞(a, δ) so that f m−1(y) 6∈ f −1
f m−1(x)(B∞(a, δ)) and furthermore, y 6∈ f −m+1

x ◦

f −1
f m−1(x)(B∞(a, δ))= f −m

x (B∞(a, δ)).

(II) for each n, f n(x) 6= f n(y). If for a sequence of positive integers {nk} tending
to ∞ such that f nk (x) 6∈ B(�,2), then f −nk

x is a single-valued function over
B∞( f nk (x), δ) and therefore diam f −nk

x (B∞( f nk (x), δ)) → 0 as k → ∞. This
implies that for all sufficiently large k, y 6∈ f −nk

x (B∞( f nk (x), δ). Now assume
that for all n ≥ N , f n(x) ∈ B(�,2) and f n(y) ∈ B(�,2). When 2 is suffi-
ciently small, we have for some m, f m(x), f m(y) ∈ �. Then f m(x) and f m(y)
are distinct rational indifferent periodic points of f (z) so that B∞( f n(x), δ) is
disjoint from B∞( f n(y), δ) for all n≥m. Obviously, y 6∈ f −n

x (B∞( f n(x), δ)) and
x 6∈ f −n

y (B∞( f n(y), δ)). �

That a rational function is parabolic if and only if it is expansive with at least
one rational indifferent periodic point is proved in [Denker and Urbański 1991a].
In view of Theorem 2.8, Theorem 3.7 implies that f (z) has a one-sided generator
over Ĵ( f ). Actually, we can also use the existence of a one-sided generator to
show the precisely expansive property of a parabolic meromorphic function on the
Riemann sphere, as in view of Lemma 3.5, for each n, f n(z) has the uniformly
covering property (1b) over Ĵ( f ) with a fixed injectivity radius.

In what follows, let us discuss the existence of conformal measures of parabolic
meromorphic functions on the Riemann sphere. We shall use the results in Section
2 to attain our purpose. Let f (z) be a parabolic meromorphic function on the
Riemann sphere and let d∞ be the Riemann spherical metric. Hence (Ĵ( f ), d∞) is
a compact metric space. Consider the continuous map f :J( f )→ Ĵ( f ) under the
Riemann spherical metric. This map is not conformal, so we cannot use Theorem
3.1 of [Zheng 2009] to achieve our purpose. We take a different approach.

Define the pressure P( f, t) for a parabolic meromorphic function f over Ĵ( f )
as follows. Define ϕt : J( f )→ R by ϕt(z) = −t log f ×(z), and set Lt = Lϕt .
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Thus, for a fixed value a ∈ Ĵ( f ) and g ∈ C(J( f )), we have

Lt(g)(a)=
∑

f (z)=a

g(z)
f ×(z)t

.

Obviously, Ln
t (1)(a)=

∑
f n(z)=a

( f n)×(z)−t . Set

Pa( f, t)= lim sup
n→∞

1
n

log Ln
t (1)(a);

then the pressure is

P̂( f, t)= sup{Pa( f, t) : a ∈ Ĵ( f )}.

Lemma 3.8. Let f be a parabolic meromorphic function on the Riemann sphere.

(1) P̂( f, t)≥ 0.

(2) Pa( f, t)= Pb( f, t) whenever a, b ∈ Ĵ( f ) \�.

We write P( f, t) for Pa( f, t) for a ∈ Ĵ( f ) \�.

Proof. (1) Take a point a ∈ � with period p. For each n, ( f np)×(a) = 1 and
L

np
t (1)(a) > 1. This implies that P̂( f, t)≥ 0.

(2) Assume that Pa( f, t) <∞. For arbitrarily small ε > 0 and for all sufficiently
large n, we have

en(Pa( f,t)+ε)
≥ Ln

t (1)(a)

=

∑
f n(z)=a

( f n)×(z)−t

=

∑
f p(w)=a

∑
f n−p(z)=w

( f p)×(w)−t( f n−p)×(z)−t

≥ ( f p)×(w)−t
∑

f n−p(z)=w

( f n−p)×(z)−t ,

wherew∈ f −p(a). Since a, b 6∈�, we have a δ>0 such that B∞(a, 2δ)∩P( f )=∅
and B∞(b, 2δ)∩P( f )=∅. We can choose a p such that f −p(a)∩ B∞(b, δ) 6=∅
and therefore by the Koebe distortion theorem for the Riemann spherical metric,
for an absolute constant K we have

en(Pa( f,t)+ε)
≥ ( f p)×(w)−t

∑
f n−p(z)=b

K−t( f n−p)×(z)−t .

This yields that Pa( f, t) + ε ≥ Pb( f, t) and so Pa( f, t) ≥ Pb( f, t). The same
argument implies that Pb( f, t)≥ Pa( f, t). Hence Pb( f, t)= Pa( f, t). �

Set τ( f ) = inf{t ≥ 0 : P( f, t) <∞} and s( f ) = inf{t ≥ 0 : P( f, t) ≤ 0}. We
call s( f ) the Poincaré exponent.
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Lemma 3.9. Let f be a parabolic meromorphic function on the Riemann sphere.

(I) τ( f )≤ s( f )≤ 2.

(II) P( f, t) is strictly decreasing and convex in t ∈ (τ ( f ),+∞).

(III) If t≥ s( f ), then ϕt(z)=−t log f ×(z) is summable, and P( f, s)=0= P̂( f, t).

Proof. (I) Take a point a ∈ J( f ) and r > 0 such that B∞(a, 2r)∩ P̂( f )=∅. Let
f −n
z be the analytic branch of f −n over B∞(a, r) sending a to z with f n(z) = a.

Set U (z) = f −n
z (B∞(a, r)). By the Koebe covering theorem for the spherical

metric, we have
U (z)⊇ B∞(z, Kr( f −n

z )×(a))

for an absolute constant K . Thus, noting that U (z) is disjoint for distinct z ∈
f −n(a), we have∑

f n(z)=a

π(Kr( f −n
z )×(a))2 ≤

∑
f n(z)=a

spherical area of(U (z))≤ π,

and furthermore, using ( f −n
z )×(a)= ( f n)×(z))−1, we obtain∑
f n(z)=a

1
(( f n)×(z))2

≤ (Kr)−2.

This implies that P( f, 2)= Pa( f, 2)≤ 0 and hence s( f )≤ 2.

(II) Take a point a ∈J( f ) and a δ > 0 such that B∞(a, δ)∩P( f )=∅. Then there
exists an integer N such that for n ≥ N

d∞( f n(x), f n(y))≥ λCnd∞(x, y),

with C > 1 and λ > 0, whenever x and y are in an injective component of
f −n(B∞(a, δ)) and ( f n)×(w) > λCn,∀w ∈ f −n(a). This easily implies that
P( f, t)= Pa( f, t) is strictly decreasing and convex in t . (See the proof of Theorem
2.3 of [Zheng 2008]).

(III) For arbitrary t > s( f ), P( f, t) < 0. For a fixed a ∈ Ĵ( f ) \�, Ln
t (1)(a)→ 0

as n → ∞ and hence for n ≥ m, Ln
t (a) < 1. Take z j (1 ≤ j ≤ q) such that

Ĵ( f ) ⊂
⋃q

j=1 B∞(z j , δ/2), where δ is chosen such that for each j , B∞(z j , 2δ)∩
sing( f −1) = ∅. Take a positive integer N such that for arbitrary pair of j and i ,
B∞(z j , δ)∩ f −N+1(zi ) 6=∅. For a P , we have LP N

t (1)(a) < 1. This implies that
LN

t (1)(b) < 1 for some b ∈ Ĵ( f )\�. Then b ∈ B∞(z j0, δ/2) for some j0. We find
M =M( j0) disks B∞(bi , η) (1≤ i ≤M) covering the B∞(z j0, δ/2) such that each
disk B∞(bi , 2η) does not intersect sing( f −N ). In view of the Koebe distortion
theorem, we have

LN
t (1)(z j0)≤ K Mt LN

t (1)(b) < K Mt ,



PARABOLIC MEROMORPHIC FUNCTIONS 501

where K is an absolute constant.
For each j ∈ {1, 2, . . . , q}, f −N+1(z j0)∩B∞(z j , δ/2) 6=∅, from which we take

a point w j
j0 . We have

LN
t (1)(z j0)=

∑
f N (z)=z j0

( f N )×(z)−t
=

∑
f N−1(w)=z j0

( f N−1)×(w)−t
∑

f (z)=w

f ×(z)−t

≥ ( f N−1)×(w
j
j0)
−t

∑
f (z)=w j

j0

f ×(z)−t

= ( f N−1)×(w
j
j0)
−t Lt(1)(w

j
j0);

equivalently,

Lt(1)(w
j
j0)≤ ( f N−1)×(w

j
j0)

t LN
t (1)(z j0)

< ( f N−1)×(w
j
j0)

t K Mt .

Set
C =max{( f N−1)×(wvj )K

M( j)
: 1≤ j, v ≤ q}.

For each w ∈ Ĵ( f ) we have w ∈ B∞(z j , δ/2), so w ∈ B∞(w
j
j0, δ) for some j . By

the Koebe distortion theorem,

Lt(1)(w)≤ L t Lt(1)(w
j
j0) < L tC t

for an absolute constant L > 0. This yields that ϕt is summable. Letting t approach
s( f ) from above, we have

Ls(1)(w)≤ LsC s .

We have proved that ϕs = −s log f ×(z) with s = s( f ) is summable on Ĵ( f ) so
that P( f, s)≤ 0. This immediately implies that P( f, s)= 0.

Now we prove that P̂( f, t) = 0. For t > s( f ), we know that P( f, t) < 0.
Therefore, we want to calculate Pa( f, t) = 0 for a ∈ �. It suffices to prove that
Ln

t (1)(a) is uniformly bounded in n and t for a ∈�. Assume without loss that the
period of a is 1. We take η>0 such that B∞(w, η)∩P( f )=∅ forw∈ f −1(a)\{a}
and B∞(∞, η)∩P( f )=∅. We can take finitely many w j , for 1≤ j ≤ q , such that
w j ∈ f −1(a)\{a} and {B∞(w j , η/2)} together with B∞(∞, η/2) form a covering
of f −1(a)\{a}. By the Koebe distortion theorem, for some c with P( f, t)< c< 0,
we have for n ≥ N

Ln
t (1)(w)≤ enc for w ∈ f −1(a) \ {a}.

Set ∑
f (w)=a
w 6=a

f ×(w)−t
= Kt .
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We have

(3-1) Ln
t (1)(a)=

∑
f n(z)=a

( f n)×(z)−t

= ( f n)×(a)−t
+

∑
f n(z)=a

z 6=a

( f n)×(z)−t

= 1+
∑

f (w)=a

∑
f n−1(z)=w

z 6=a

f ×(w)−t( f n−1)×(z)−t

≤ 1+ e(n−1)c
∑

f (w)=a
w 6=a

f ×(w)−t
+

∑
f n−1(z)=a

z 6=a

( f n−1)×(z)−t

≤ 1+ Kt e(n−1)c
+

∑
f n−1(z)=a,z 6=a

( f n−1)×(z)−t

≤ Kt(1+ ec
+ · · ·+ e(n−1)c)+

∑
f N (z)=a

z 6=a

( f N )×(z)−t

< Kt
1

1− ec +
∑

f N (z)=a
z 6=a

( f N )×(z)−t .

This implies that P̂( f, t)=maxa∈� Pa( f, t)= 0.
For the case when s = s( f ), for arbitrarily small ε > 0 it follows from the above

implication that there exists N = N (ε) such that

Ln
s (1)(a)≤ Ks

enε
− 1

eε − 1
+

∑
f N (z)=a

z 6=a

( f N )×(z)−s .

This implies that P̂( f, s)≤ ε and hence P̂( f, s)= 0. �

The next result reflects the expansiveness of a parabolic meromorphic function
over Ĵ( f ). Its idea comes from [Rippon and Stallard 1999].

Lemma 3.10. Let f (z) be a parabolic meromorphic function on C and in class B.
There exists c > 0 such that for each n and z ∈ J( f ) \

⋃n−1
j=0 f − j (∞), we have

(3-2) |( f n)′(z)|> c
| f n(z)| + 1
|z| + 1

.

Let Mm be the set of all points z ∈ J( f )\J∞( f ) for which there exists a sequence
{sk} with sk ∈ [km, (k+1)m] and f sk (z) 6∈ B(�, θ) for some constant θ > 0. There



PARABOLIC MEROMORPHIC FUNCTIONS 503

exist constants c > 0 and λ > 1 such that

(3-3) |( f n)′(z)|> cλn | f
n(z)| + 1
|z| + 1

for z ∈ Mm .

Proof. Assume without loss of generality that {z : |z| < 1} ⊂ F( f ). In view
of Theorem 3.1, take a R > 1 such that P( f ) ⊂ B(0, R) and | f n(0)| < R for all
n ∈N. In view of the result in [Rippon and Stallard 1999] (compare [Zheng 2003]),
we have

(3-4) |( f n)′(z)|>
| f n(z)|(log | f n(z)| − log R)

4|z|

for z ∈ J( f ) \J∞( f ); furthermore, for z ∈ J( f ) \J∞( f ) with | f n(z)| ≥ e2 R, we
have

|( f n)′(z)|>
| f n(z)| + 1
4(|z| + 1)

.

We first prove (3-2) for n = 1. Since d(J( f ), sing( f −1)) > 0, we can take a
positive number A ≥ 1 such that

B
(

z,
|z| + 1

A

)
∩ sing( f −1)=∅

for any z ∈ J( f ) and

B(0, 1)* f −1
(

B
(

f (z),
| f (z)| + 1

A

))
for z ∈ J( f ) \ f −1(∞) with | f (z)| < e2 R. Then for a fixed z ∈ J( f ) \ f −1(∞),
we have

B
(

f (z),
| f (z)| + 1

A

)
∩ sing( f −1)=∅

and f −1
z is a single-valued analytic branch on B( f (z), (| f (z)| + 1)/A) tending

f (z) to z. Let U be the component of f −1(B( f (z), (| f (z)| + 1)/A)) containing
z. Then f :U → B( f (z), (| f (z)| + 1)/A)= B (say) is univalent and U is simply
connected. In view of the hyperbolic metric principle, we have

λU (z)= λB( f (z))| f ′(z)| =
2A| f ′(z)|
| f (z)| + 1

.

For z∈J( f )\ f −1(∞)with | f (z)|<e2 R, B(0, 1)*U . If 0 6∈U , then |z|λU (z)≥
1
4 ; If 0 ∈U , then for a with |a| ≤ 1, |z− a|λU (z)≥ 1

4 . Therefore, we always have
(|z| + 1)λU (z)≥ 1

4 . These imply that

(3-5) | f ′(z)| ≥
1

8A
| f (z)| + 1
|z| + 1

.

This proves (3-2) for n = 1 with c = 1
8A .
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Suppose (3-2) is not true. Then there exist a sequence of positive integers {mk}

and a sequence of points zk ∈ J( f ) \
⋃mk−1

j=0 f − j (∞) such that

εk =
|( f mk )′(zk)|(|zk | + 1)
|( f mk )(zk)| + 1

→ 0 as k→∞.

We can take a positive number C such that for z ∈ J( f ) \ B(�, θ),

(3-6) B
(

z, 2
|z| + 1

C

)
∩ P̂( f )=∅.

If f mk (zk) 6∈ B(�, θ), a single-valued analytic branch gk of f −mk sending f mk (zk)

to zk exists on B( f mk (zk), 2(| f mk (zk)| + 1)/C). By the Koebe covering theorem,
we have

(3-7) gk

(
B
(

f mk (zk),
| f mk (zk)| + 1

C

))
⊇ B

(
zk,
| f mk (zk)| + 1

4C
|g′k( f mk (zk))|

)
= B

(
zk,
|zk | + 1
4Cεk

)
⊇ B

(
0,
|zk | + 1
4Cεk

− |zk |

)
.

Now assume that f j (zk)∈ B(�, θ), pk ≤ j ≤mk and f pk−1(zk) 6∈ B(�, θ). By
Lemma 3.5, we have |( f mk−pk )′( f pk (zk))| ≥ 1 and so for a positive constant a,

|( f mk−pk )′( f pk (zk))| ≥ a
| f mk (zk)| + 1
| f pk (zk)| + 1

.

Thus

| f ′( f pk−1(zk))||( f pk−1)′(zk)| = |( f pk )′(zk)|

=
|( f mk )′(zk)|

|( f mk−pk )′( f pk (zk))|

≤
|( f mk )′(zk)|

| f mk (zk)| + 1
| f pk (zk)| + 1

a

=
εk(| f pk (zk)| + 1)

a(|zk | + 1)

and in view of (3-5), we have

| f ′( f pk−1(zk))| ≥
1

8A
| f pk (zk)| + 1
| f pk−1(zk)| + 1

.

Combining the above two inequalities implies that

(3-8) |( f pk−1)′(zk)| ≤
εk8A(| f pk−1(zk)| + 1)

a(|zk | + 1)
.
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Since f pk−1(zk) 6∈ B(�, θ), from (3-8) we have

hk

(
B
(

f pk−1(zk),
| f pk−1(zk)| + 1

C

))
⊇ B

(
0,

a(|zk | + 1)
32ACεk

− |zk |

)
,

where hk is the analytic branch of f −pk+1 which sends f pk−1(zk) to zk . This
together with (3-7) shows the existence of a sequence of positive integers {nk}

such that

f −nk
zk

(
B
(

f nk (zk),
| f nk (zk)| + 1

C

))
⊇ B

(
0,

a(|zk | + 1)
32ACεk

− |zk |

)
.

But this gives
a(|zk | + 1)
32ACεk

− |zk | → +∞

as k→∞, and a contradiction is derived. We have proved (3-2).
Now we prove (3-3). Let z ∈ Mm . In view of (3-4), there exists an R0 > R such

that

(3-9) |( f n)′(z)|> 2(1+ c−1)
| f n(z)| + 1
|z| + 1

, for n ∈ N, | f n(z)|> R0

where c is the constant in (3-2). Using the same argument as in the proof of (3-2),
we can also attain (3-9) for n ≥ N ≥ m, z ∈ (J( f ) \

⋃n−1
j=0 f − j (∞)) ∩ B(0, R0)

with f n(z) 6∈ B(�, θ).
For any 0 ≤ p < 2N , we treat two cases. If | f 2N+p(z)| > R0, from (3-9) we

have

|( f 2N+p)′(z)|> 2
| f 2N+p(z)| + 1
|z| + 1

;

If | f 2N+p(z)| ≤ R0, for some N ≤ N1 ≤ 2N+ p we have either | f N1(z)| ≤ R0 and
f N1(z) 6∈ B(�, θ) or | f N1(z)|> R0. Therefore from (3-2) and (3-9) we have

|( f 2N+p)′(z)| = |( f 2N+p−N1)′( f N1(z))||( f N1)′(z)|

> c
| f 2N+p(z)| + 1
| f N1(z)| + 1

2c−1 | f
N1(z)| + 1
|z| + 1

= 2
| f 2N+p(z)| + 1
|z| + 1

.

For n ≥ 2N , we write n = 2q N + p with 0≤ p < 2N and thus

|( f n)′(z)|> 2q | f
n(z)| + 1
|z| + 1

>
1
2
(2

1
2N )n
| f n(z)| + 1
|z| + 1

.

For 1≤ n < 2N , we use (3-2). �

The next result confirms the existence of a measure that becomes s-conformal.
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Lemma 3.11. Let f (z) be a parabolic meromorphic function on the Riemann
sphere. Then ( f, ϕs) is admissible over Ĵ( f ).

Proof. We check the conditions in Definition 2.1. Obviously, for f , (1a) and (1b)
hold, and (1d) holds by virtue of Lemma 3.9(III). In view of Lemma 2.2, (1c) is
true for f . We state (1e) for ( f, ϕs) as follows: for all ε > 0, there exists δ1 ∈ (0, δ)
such that for any pair a, b ∈ Ĵ( f ), the condition d∞(a, b) < δ1 implies∑

f (z)=a

∣∣expϕs( f −1
z (a))− expϕs( f −1

z (b))
∣∣< ε;

that is,

(3-10)
∑

f (z)=a

∣∣∣∣ 1
f ×(z)s

−
1

f ×(z′)s

∣∣∣∣< ε,
where z′= f −1

z (b). From Lemma 3.2 of [Zheng 2009], noting that ϕs is summable,
(3-10) follows from

(3-11)
∣∣∣∣1− f ×(z)s

f ×(z′)s

∣∣∣∣≤ Csd∞(a, b),

whenever d∞(a, b) < δ. And (3-11) can be proved via the same argument used in
the proof of Lemma 3.1 of [Zheng 2008] and the inequality (3-2). �

Now we are in the position to prove Theorem 1.2, which, as we recall, states
that any f in P(Ĉ) has a s-conformal measure with P( f, s)= 0.

Proof of Theorem 1.2. In view of Lemma 3.11 and Theorem 2.3, there exists a
probability measure µ with L∗s (µ)= λµ, λ= L∗s (µ)(1), satisfying the conditions
in Theorem 2.3(3). We calculate λ using (2-2), and obtain

λn
= µ(Ln

s (1))≤ sup{Ln
s (1)(x) : x ∈ Ĵ( f )}.

Using the same argument as in the proof of (3-1), for arbitrarily small ε > 0, we
have for n ≥ N

sup{Ln
s (1)(x) : x ∈ Ĵ( f )} ≤ K nenε,

so log λ≤ 0.
If µ({a}) > 0 for a point a ∈ Ĵ( f ), then λn

≥ µ({a})Ln
s (1)(a) and so log λ ≥

P( f, s)= 0. Now assume that µ is atomless and we can find a disk B∞(a, η) with
µ(B∞(a, η)) > 0 which does not intersect P( f ). Thus

λn
≥ µ(B∞(a, η)) inf{Ln

s (1)(x) : x ∈ B∞(a, η)∩ Ĵ( f )}

≥ µ(B∞(a, η))K−sLn
s (1)(a)

so that log λ ≥ P( f, s) = 0. Therefore, we have proved that λ = 1 and µ is a
s-conformal measure of f (z) over Ĵ( f ). �
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In what follows, we consider the existence of a f -invariant measure equivalent
to the s-conformal measure µs . We cannot get such an invariant measure from
Walters’ result. Therefore, we will complete our discussion in light of the results
of Martens.

Lemma 3.12 [Martens 1992, Proposition 2.6]. Let µ be a σ -finite Borel measure
on a σ -compact space X and f : X → X a measurable map. Then f has a µ-
equivalent, σ -finite invariant measure m, if the following statements hold:

(1) There exist a countable collection of pairwise disjoint Borel sets G = {I j : j ∈
N} of X such that each I j is σ -compact, 0<µ(I j ) <∞, µ(X \

⋃
∞

j=1 I j )= 0
and for all pair Ii and I j , for some n ≥ 0, µ( f −n(Ii )∩ I j ) > 0.

(2) There exists a σ -finite measure ν having properties that for each I ∈ G there
exists a K > 0 such that K−1

≤ ν(I )≤ K , supn≥0 ν( f −n(I )) <∞, and

1
K
µ(A)
µ(I )

≤
ν( f −n(A))
ν( f −n(I ))

≤ K
µ(A)
µ(I )

.

for all measurable sets A ⊂ I and all n ∈ N.

(3)
∑
∞

n=0 ν( f −n( Î ))=∞ for some Î ∈ G.

Actually, m is a weakly convergent limit of {Qn(ν)} on each I ∈ G, where

Qn(ν)=

∑n−1
j=0 f i

∗
ν∑n−1

j=0 f i
∗
ν( Î )

and for a Borel measurable map g, g∗ν = ν ◦ g−1.
Let f (z) be a parabolic meromorphic function in P(Ĉ) and let µs be the s-

conformal measure determined in Theorem 1.2. Assume that µs is atomless. Set
X0=J( f )\

⋃
∞

n=0 f −n(�) and X= Ĵ( f )\
⋃
∞

n=0 f −n(�). Thenµs(X0)=µs(X)=
1 and we can construct a countable collection of disjoint Borel sets G={I j : j ∈N}

of X such that for each j , I j ⊂ B∞(a j , δ j ) and B∞(a j , 2δ j )∩ P̂( f )=∅ for some
a j ∈ I j and which satisfies (1) in Lemma 3.12. In view of the Koebe distortion
theorem for the spherical metric and the definition of s-conformal measure, we
easily prove (2) in Lemma 3.12 for f and G with respect to µs and ν = µs .
Therefore, the crucial point is in (3) in Lemma 3.12. We have

µs( f −n(I j ))=
∑

f n(z)=a j

µs( f −n
z (I j )) =

∑
f n(z)=a j

∫
I j

( f −n
z )×(w)sµs(w)

≥

∑
f n(z)=a j

K−s( f −n
z )×(a j )

sµs(I j )= K−sµs(I j )L
n
s (1)(a j )

and
µs( f −n(I j ))≤ K sµs(I j )L

n
s (1)(a j ),
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where K is the Koebe distortion constant. Thus we have

K−sµs(I j )

∞∑
n=0

Ln
s (1)(a j )≤

∞∑
n=0

µs( f −n(I j ))≤ K sµs(I j )

∞∑
n=0

Ln
s (1)(a j ).

In view of Lemma 3.12, f (z) has an f -invariant, σ -finite measure m which is
equivalent to µs if

∑
∞

n=0 Ln
s (1)(a)=∞ for some a ∈ J( f ) \

⋃
∞

n=0 f −n(�).
In view of the statements above, we have actually proved Theorem 1.3.
On the other hand, assume that f (z) has an f -invariant, σ -finite measure ms

which is equivalent to µs . Take an a ∈ J( f ) \
⋃
∞

n=0 f −n(�), and B∞(a, 2δ) ∩
P( f ) = ∅ for some δ > 0. Set I = B∞(a, δ) ∩ J( f ). Then µs(I ) > 0, and
ms(I ) > 0 and for each n, ms( f −n(I ))= ms(I ). This implies that

∞∑
n=0

ms( f −n(I ))=∞.

Then if the Radon–Nikodym derivative dms/dµs of ms with respect to µs is
bounded, we have

∑
∞

n=0 Ln
s (1)(a)=∞.
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