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TRACE-POSITIVE POLYNOMIALS
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In this paper positivity of polynomials in free noncommuting variables in
a dimension-dependent setting is considered. That is, the images of a poly-
nomial under finite-dimensional representations of a fixed dimension are
investigated. It is shown that unlike in the dimension-free case, every trace-
positive polynomial is (after multiplication with a suitable denominator — a
Hermitian square of a central polynomial) a sum of a positive semidefinite
polynomial and commutators. Together with our previous results this yields
the following Positivstellensatz: every trace-positive polynomial is modulo
sums of commutators and polynomial identities a sum of Hermitian squares
with weights and denominators. Understanding trace-positive polynomials
is one of the approaches to Connes’ embedding conjecture.

1. Introduction

Interest in positivity questions involving noncommutative polynomials has been
recently revived by Helton’s seminal paper [2002], in which he proved that a
polynomial is a sum of squares if and only if its values in matrices of any size
are positive semidefinite. Considering polynomials with positive trace, Klep and
Schweighofer [2008, Theorem 1.6] observed that Connes’ embedding conjecture
[1976, Section V, pp. 105–107] on type II1 von Neumann algebras is equivalent to
a problem of describing polynomials whose values at tuples of self-adjoint d × d
matrices (of norm at most 1) have nonnegative trace for every d ≥ 1. This result is
the motivation for the present work. Here we investigate polynomials whose values
at tuples of d×d matrices have nonnegative trace for a fixed d ≥ 1. We show that
such a polynomial is (after multiplication with a Hermitian square of a suitable cen-
tral polynomial) a sum of commutators and of a polynomial whose values at tuples
of d× d matrices are positive semidefinite. The latter were characterized in [Klep
and Unger 2010], leading us to the following Positivstellensatz: every polynomial
with nonnegative trace on d × d matrices is modulo sums of commutators and
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polynomial identities for d × d matrices a sum of Hermitian squares with weights
and denominators. See Section 4 for a precise formulation.

The organization of this paper is as follows: Section 2 introduces the main no-
tions and interprets them in full matrix algebras, Section 3 considers these notions
for free algebras, while Section 4 presents our main results.

2. Basic notions and a motivating example

Let R be an associative ring with 1 and involution a 7→a∗ (that is, (a+b)∗=a∗+b∗,
(ab)∗=b∗a∗ and a∗∗=a for all a, b∈ R). We denote by Sym R := {a ∈ R |a=a∗}
its set of symmetric elements. Elements of the form a∗a and ab − ba (a, b ∈
A) are called Hermitian squares and commutators, respectively. We introduce an
equivalence relation (cyclic equivalence) on R by declaring a

cyc∼ b if and only if
a− b is a sum of commutators in R. For notational convenience we write

62 R :=
{∑

a∗i ai | ai ∈ R
}
⊆ Sym R, 22 R :=

{
a ∈ R | ∃ b ∈62 R : a

cyc∼ b
}

for the sets of (finite) sums of Hermitian squares, and sums of Hermitian squares
and commutators in R, respectively.

Throughout this paper k will denote R or C.

Matrices. For a concrete example of these notions, consider the ring R =Md(k)
of real or complex square matrices of a fixed size d ≥ 1 endowed with the usual
(complex conjugate) transposition of matrices, denoted here by ∗. Using � to
denote the Löwner partial order (that is, A � B if and only if A − B is positive
semidefinite), it is easy to see that for A ∈Md(k), we have

(A) A � 0 if and only if A ∈62 Md(k);

(B) tr(A)= 0 if and only if A
cyc∼ 0 in Md(k);

(C) tr(A)≥ 0 if and only if A ∈22 Md(k).

Let us determine multiplication by which matrices respect these properties.

Lemma 2.1. Suppose A ∈Md(k) is such that for all B ∈Md(k),

(1) B � 0 ⇒ AB � 0.

Then A = λ for some λ ∈ R≥0.

Proof. Using (1) with B = 1, we obtain A � 0. In particular, A = A∗. Again by
(1), A commutes with all positive semidefinite matrices, hence with all symmetric
matrices, which are differences of two positive semidefinite matrices by

B = 1
4(B+ 1)2− 1

4(B− 1)2.

So A is scalar and the desired conclusion follows. �
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Lemma 2.2. Suppose A ∈Md(k) is such that for all B ∈Md(k),

(2) tr(B)= 0 ⇒ tr(AB)= 0.

Then A = λ for some λ ∈ k.

Proof. Write A = [ai j ]
d
i, j=1. Let i 6= j . Then B = λEi j has zero trace for every

λ ∈ k. (Here Ei j denotes the d × d matrix unit with a one in position (i, j) and
zeros elsewhere.) By (2), this implies that λai j = tr(AB) = 0. Since λ ∈ k was
arbitrary, ai j = 0.

Now let B = λ(Ei i − E j j ). Clearly, tr(B)= 0 and hence

λ(ai i − a j j )= tr(AB)= 0.

As before, this gives ai i = a j j . �

Lemma 2.3. Suppose A ∈Md(k) is such that for all B ∈Md(k),

(3) tr(B)≥ 0 ⇒ tr(AB)≥ 0.

Then A = λ for some λ ∈ R≥0.

Proof. By Lemma 2.2, A is scalar. In addition to that, ai i = tr(AEi i ) ≥ 0 by (3),
showing that A must be a nonnegative multiple of the identity. �

Likewise we can characterize matrices that map positive semidefinite matrices
into matrices with nonnegative trace:

Lemma 2.4. Suppose A ∈Md(k) is such that for all B ∈Md(k),

(4) B � 0 ⇒ tr(AB)≥ 0.

In the case k = R, assume moreover that A = A∗. Then A � 0.

Proof. This is just a restatement of the well-known self-duality of the cone of all
positive semidefinite matrices. For v ∈ kd , let B = vv∗ � 0. Then

0≤ tr(AB)= tr(Avv∗)= tr(v∗Av)= 〈Av, v〉,

showing A is positive semidefinite. �

Converses of Lemmas 2.1–2.4 hold as well.

3. Positivity in free algebras

Words and polynomials. Fix n ∈ N. Let

X := (X1, . . . , Xn) and X∗ := (X∗1, . . . , X∗n)

denote tuples of n distinct variables (or letters). By 〈X, X∗〉 we denote the free
monoid on {X, X∗} (consisting of words in X, X∗) and let k〈X, X∗〉 be the semi-
group algebra of 〈X, X∗〉 over k (consisting of polynomials in noncommuting
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variables X and X∗ with coefficients in k). We endow k〈X, X∗〉 with the invo-
lution p 7→ p∗ mapping X j 7→ X∗j and extending complex conjugation on k. Thus
k〈X, X∗〉 is the free ∗-algebra on X over k.

Cyclic equivalence. It is well known and easy to see that trace-zero matrices are
sums of commutators, that is, cyclically equivalent to 0. Cyclic equivalence can
also be easily tested in k〈X, X∗〉:

(a) For v,w ∈ 〈X, X∗〉, we have v
cyc∼ w if and only if there are v1, v2 ∈ 〈X, X∗〉

such that v = v1v2 and w = v2v1. That is, v
cyc∼ w if and only if w is a cyclic

permutation of v.

(b) Polynomials

f =
∑

w∈〈X,X∗〉

aww and g =
∑

w∈〈X,X∗〉

bww for aw, bw ∈ k

are cyclically equivalent if and only if for each v ∈ 〈X, X∗〉,

(5)
∑

w∈〈X,X∗〉

w
cyc∼v

aw =
∑

w∈〈X,X∗〉

w
cyc∼v

bw.

Evaluations and representations. Let d ∈N. An n-tuple of matrices A∈ (Md(k))n

gives rise to a ∗-representation

(6) evA : k〈X, X∗〉 →Md(k), p 7→ p(A, A∗).

We are interested in the values of a fixed element f ∈ k〈X, X∗〉 under all these
∗-representations. If the size d of the matrices Ai is free, we talk about dimension-
free properties; otherwise we call them dimension-dependent. We are mostly in-
terested in the latter, but briefly review the former for the sake of completeness.

Dimension-freeness. Free analogs of properties (A) and (B) have been established,
while a free version of (C) is closely related to an important open problem on
operator algebras due to Connes; see below for further details.

Let f ∈ Sym k〈X, X∗〉.

(A)fr f (A, A∗)�0 for all d ∈N and all A∈Md(k)n if and only if f ∈62 k〈X, X∗〉;

(B)fr tr
(

f (A, A∗)
)
= 0 for all d ∈ N and all A ∈Md(k)n if and only if f

cyc∼ 0 in
k〈X, X∗〉.

Part (A)fr is due to Helton [2002] (see also [McCullough 2001; McCullough
and Putinar 2005]), and (B)fr is Theorem 2.1 of [Klep and Schweighofer 2008].
(This reference will henceforth be abbreviated as [KS 2008].) See also [Collins and
Dykema 2008, Lemma 2.9] for a proof inspired by free probability. For a recent
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study of trace-positive polynomials in a dimension-free setting see also [Netzer
and Thom 2010].

The obvious extension of (C) fails: there are f ∈ Sym k〈X, X∗〉 with positive
trace everywhere, but still not cyclically equivalent to a sum of Hermitian squares.
The following is a variant of the noncommutative Motzkin polynomial from Ex-
ample 4.4 of [KS 2008] given in free (nonsymmetric) variables.

Example 3.1. Let X denote a single free variable and set

M0 :=

3X4
− 3(XX∗)2− 4X5 X∗− 2X3 X∗3+ 2X2 X∗XX∗2+ 2X2 X∗2 XX∗+ 2(XX∗)3.

Then the noncommutative Motzkin polynomial is

M := 1+M0+M∗0 ∈ Sym k〈X, X∗〉.

It is trace-nonnegative everywhere since

M ′ := Y Z4Y + ZY 4 Z − 3Y Z2Y + 1
cyc∼ M

(
Y + iZ

2
,

Y − iZ
2

)
∈ k〈Y, Z〉

is trace-nonnegative on symmetric matrices; see Example 4.4 of [KS 2008]. Al-
ternatively, M(X3, (X∗)3) ∈ 22k〈X, X∗〉. On the other hand, M /∈ 22k〈X, X∗〉.
(Some of these computations were done with the aid of the computer algebra sys-
tems NCSOStools [Cafuta et al. 2010] and NCAlgebra [Helton et al. 2010].)

Connes’ embedding conjecture [1976, Section V, pp. 105–107] states that every
separable II1-factor is embeddable in an ultrapower of the hyperfinite II1-factor.
Understanding trace-positive polynomials in the dimension-free setting is the key
to this problem, because it is equivalent, by Theorem 1.6 of [KS 2008], to Conjec-
ture 1.5 of the same reference, which we repeat here for convenience:

Conjecture 3.2 (algebraic version of Connes’ conjecture). For f ∈ Sym k〈X, X∗〉
the following are equivalent:

(i) tr
(

f (A, A∗)
)
≥ 0 for all d ∈ N and all tuples of contractions A ∈Md(k)n;

(ii) for every ε ∈ R>0, f + ε is cyclically equivalent to an element of the form∑
j

s∗j s j +
∑
i, j

p∗i j (1− X∗i X i )pi j ,

where s j , pi j ∈ k〈X, X∗〉.

In the sequel we indicate an approach to this problem “from below”. That is,
we abandon the dimension-free setting and solve a Hilbert 17-type problem char-
acterizing polynomials with nonnegative trace in a dimension-dependent setting.
It is our belief that this might constitute an important step towards (a positive or
negative resolution of) Connes’ embedding conjecture.
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4. Dimension-dependent positivity

The properties (A) and (B) for free algebras in a dimension-dependent setting are
well understood due to our previous work. Roughly speaking, a trace-zero poly-
nomial is cyclically equivalent to a polynomial identity [Brešar and Klep 2009,
Section 4], and a positive semidefinite polynomial is a sum of Hermitian squares
with denominators and weights [Klep and Unger 2010, Section 5]. In this sec-
tion property (C) is explored and we present our main result, a Positivstellensatz
characterizing polynomials with nonnegative trace on all tuples of d × d matrices
for fixed d. This is done in Section 4C. Before that we recall generic matrices
and universal division algebras with involution in Section 4A and take a look at
polynomial preservers of the various notions of positivity in Section 4B.

4A. Generic matrices and universal division algebras. We assume the reader is
familiar with the theory of polynomial identities as presented, e.g., in [Procesi
1973; Rowen 1980]. We review the notion of generic matrices and universal di-
vision algebras with involution and refer the reader to [Procesi 1976; Procesi and
Schacher 1976] for details.

Let ζ := (ζ (`)i j | 1≤ i, j ≤ d, 1≤ `≤ n) and ζ̄ := (ζ̄ (`)i j | 1≤ i, j ≤ d, 1≤ `≤ n)
denote commuting variables. To keep the notation uniform, let

ζ :=

{
ζ if k = R,

(ζ, ζ̄ ) if k = C.

Form the polynomial ∗-algebra k[ζ ] that endowed with the involution that extends
complex conjugation on k and fixes ζ (`)i j pointwise (if k = R) or sends ζ (`)i j to ζ̄ (`)i j
(if k = C).

Consider the d × d matrices

Y` :=
[
ζ
(`)
i j

]
1≤i, j≤d ∈Md(k[ζ ]) for ` ∈ N.

Each Y` is called a generic matrix. The (unital) k-subalgebra of Md(k[ζ ]) generated
by the Y` and their (complex conjugate) transposes is the ring of generic matrices
with involution GMd(k). Equivalently,

GMd(k)∼= k〈X, X∗〉/td ,

where td ⊆ k〈X, X∗〉 is the T-ideal of polynomial identities for d × d matrices.
For d ≥ 2, the ring GMd(k) is a prime PI algebra (see [Procesi and Schacher

1976, Section II]). Hence its central localization is a central simple algebra UDd(k)
with involution, which we call (by an abuse of notation) the universal division
algebra. Relating these notions to ∗-representations of the free ∗-algebra is the
following commutative diagram: for d ∈N and A ∈Md(k)n , let RA denote all the
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elements of UDd(k) that are regular at A. Then:

k〈X, X∗〉
evA

//

π

����

Md(k)

RA

OO

� _

��
GMd(k)

( �

66

� � ι // UDd(k)

For a more geometric viewpoint of the ring of generic matrices and the universal
division algebra we refer the reader to [Procesi 1976; Saltman 1999]. The standard
textbook on central simple algebras with involution is [Knus et al. 1998].

4B. Polynomial preservers. In this subsection we present versions of Lemmas
2.1–2.4 in the context of free ∗-algebras. To avoid trivialities, we assume through-
out that d ≥ 2.

Lemma 4.1. Suppose f ∈ k〈X, X∗〉 is such that for all g ∈ k〈X, X∗〉,

(7) g � 0 on d × d matrices ⇒ f g � 0 on d × d matrices.

Then f is a central polynomial positive semidefinite on d × d matrices.

Proof. Using (7) with g = 1, we see f is positive semidefinite on d × d matrices.
Thus there is no harm in assuming f = f ∗.

Again by (7), f g− g f vanishes on all d × d matrices for all polynomials g of
the form g = h∗h. That is, [ f, g] is a polynomial identity of d × d matrices. Now
the same holds true for all symmetric g, since

2[ f, g] + [ f, g2
] = [ f, (1+ g)2]

is then a polynomial identity. Hence f commutes (modulo the T-ideal of identities)
with all symmetric polynomials.

Every element of UDd(k) can be represented as rs−1 for some r, s ∈ GMd(k)
with s = s∗ ∈ Z(GMd(k)). Such an element is symmetric if and only if r = r∗. So
π( f ) commutes with all symmetric elements of UDd(k). By Dieudonné’s theorem
[1952, Lemma 1], the latter generate UDd(k). Hence π( f ) ∈ Z(UDd(k)) and f is
indeed a central polynomial.

(Note: once we have established that f commutes with all symmetric polynomi-
als, an easier argument is available if k = C. In this case one immediately obtains
that f also commutes with all skew symmetric polynomials as these are all of the
form ig for symmetric g.) �



346 IGOR KLEP

Lemma 4.2. Suppose f ∈ k〈X, X∗〉 is such that for all g ∈ k〈X, X∗〉,

(8) tr(g)= 0 on d × d matrices ⇒ tr( f g)= 0 on d × d matrices.

Then f is a central polynomial.

Proof. Let g = [h1, h2] for some hi ∈ k〈X, X∗〉. Then

(9) f g = f [h1, h2] = [ f, h1h2] + [h1, f h2] + h1[h2, f ].

Since tr(g) = 0 on all d × d matrices, this implies tr(h1[h2, f ]) = 0 on d × d
matrices. Fix h2 and denote r := [h2, f ]. Then r satisfies

tr(pr)= 0 on d × d matrices

for all p ∈ k〈X, X∗〉. Taking p =−r∗ leads to − tr(r∗r)= 0, and hence r = 0 on
all d × d matrices. That is, r is an identity of d × d matrices. As r = [h2, f ] and
h2 was arbitrary, this implies f is a central polynomial. �

Lemma 4.3. Suppose f ∈ k〈X, X∗〉 is such that for all g ∈ k〈X, X∗〉,

(10) tr(g)≥ 0 on d × d matrices ⇒ tr( f g)≥ 0 on d × d matrices.

Then f is a central polynomial positive semidefinite on d × d matrices.

Proof. If tr(g) = 0, then by (10), tr( f g) ≥ 0 and tr(− f g) ≥ 0 on d × d matrices.
That is, tr( f g)= 0. Now by Lemma 4.2, f is a central polynomial.

Applying (10) with g=1 yields f (A, A∗)= tr
(

f (A, A∗)
)
≥0 for all A∈Md(k)n ,

showing f is positive semidefinite on d × d matrices. �

Likewise we can characterize polynomials that map positive semidefinite poly-
nomials into trace-nonnegative ones. At the same time this indicates how to build
examples of trace-nonnegative polynomials. As we shall see in the next subsection,
the procedure is essentially exhaustive.

Lemma 4.4. Suppose f ∈ Sym k〈X, X∗〉 is such that for all g ∈ k〈X, X∗〉,

(11) g � 0 on d × d matrices ⇒ tr( f g)≥ 0 on d × d matrices.

Then f is positive semidefinite on d × d matrices.

Proof. Assume f is not positive semidefinite on d× d matrices. Then there exists
an n-tuple A = (A1, . . . , An) ∈Md(k)n with

(12) f (A, A∗) 6� 0.

Let A ⊆ Md(k) denote the ∗-subalgebra generated by the A1, . . . , An . Since the
Hermitian square of a nonzero matrix is not nilpotent, A is semisimple. By the
Artin–Wedderburn theorem, A is ∗-isomorphic to a direct sum of full matrix alge-
bras. We distinguish two cases.
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CASE 1: If k = C, there is a ∗-isomorphism

(13) A∼=

s⊕
j=1

Md j (C)

for some d j ∈ C, and
∑

j d j ≤ d . This induces a block diagonalization

A j =

A j,1
. . .

A j,s

 , with A j,k ∈Mdk (C).

By (12), there is a j such that A( j) = (A1, j , . . . , An, j ) ∈Md j (C)
n satisfies

f (A( j), A∗( j)) 6� 0.

Choose u ∈ Cd j with

(14)
〈
f (A( j), A∗( j))u, u

〉
< 0.

There is a B ∈ Md j (C) with Bei,d j = u for all i = 1, . . . , d j . (Here ei,d j are the
standard basis vectors for Cd j .) By the construction of A and (13), there is an
h ∈ C〈X, X∗〉 with h(A( j), A∗( j))= B. Let g = hh∗. Then

(15) tr(( f g)(A( j), A∗( j)))= tr((h∗ f h)(A( j), A∗( j)))

=

d j∑
i=1

〈
h∗(A( j), A∗( j)) f (A( j), A∗( j))h(A( j), A∗( j))ei,d j , ei,d j

〉
=

d j∑
i=1

〈
f (A( j), A∗( j))Bei,d j , Bei,d j

〉
=

d j∑
i=1

〈
f (A( j), A∗( j))u, u

〉
< 0.

As this contradicts our assumption (11), we conclude that f � 0 on d×d matrices.

CASE 2: If k = R, the reasoning is the same with a minor technical modification.
Let

(16) A∼=
s⊕

j=1
Md j (R)⊕

r⊕
k=1

Mek (C)⊕
p⊕̀
=1

M f`(H)

for some d j , ek , f` ∈ N.
If there is a tuple A ∈Md j (R)

n with f (A, A∗) 6� 0, we proceed as in Case 1. If
there is an A ∈Mek (C)

n with 0 6� f (A, A∗) ∈Mek (C), we proceed as follows. Let
V be the invariant subspace of Rd corresponding to the action of Mek (C). There is
a u ∈ V with 〈 f (A, A∗)u, u〉 < 0. Pick a basis {v1, . . . , vek } of V over C, and let
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B ∈Mek (C) satisfy Bv j = u for all j . Choose h ∈ R〈X, X∗〉 with h(A, A∗) = B
and g = hh∗. Then the complex trace z of ( f g)(A, A∗) is negative by the same
computation as in (15). Hence the real trace satisfies

tr
(
( f g)(A, A∗)

)
=

z+ z̄
2

< 0.

The remaining case of quaternion matrices is dealt with similarly. We leave this
as an exercise for the reader. �

It is clear that converses of Lemmas 4.1–4.4 hold true. Also, with the exception
of (11), which is satisfied when f is a sum of Hermitian squares, there are no
nonconstant dimension-free polynomial preservers.

4C. The dimension-dependent tracial Positivstellensatz. Our main tool for de-
scribing trace-nonnegative polynomials is the following proposition deduced from
the properties of the reduced trace [Knus et al. 1998, Section 1] on UDd(k).

Proposition 4.5. For every f ∈ k〈X, X∗〉 and d ∈ N there exists a nonvanishing
central polynomial for d × d matrices, denoted by c ∈ k〈X, X∗〉, such that c f is
cyclically equivalent to a central polynomial. That is,

(17) c f
cyc∼ c′

for some central polynomial c′.

Proof. Consider F := ι(π( f )) ∈ UDd(k). So Trd(F) ∈ Z(UDd(k)), and there is a
nonvanishing central polynomial c0 ∈ k〈X, X∗〉 and a central polynomial c′0 with

(18) Trd(F)= π(c′0)π(c0)
−1.

Since Trd is Z(UDd(k))-linear, this yields Trd(π(c0 f −c′0))= 0. By [Amitsur and
Rowen 1994, Theorem 2.4], π(c0 f − c′0)

cyc∼ 0 in UDd(k). Clearing denominators
shows

(19) π(c f − c′′)
cyc∼ 0

in GMd(k) for a nonvanishing central polynomial c and a central polynomial c′′.
Lifting (19) to k〈X, X∗〉 gives the desired conclusion: c f

cyc∼ c′. �

Remark 4.6. Instead of the Amitsur–Rowen result used in this proof, we can
apply the tracial Nullstellensatz [Brešar and Klep 2009, Theorem 5.2]: once we
have established that Trd(π(co f − c′0)) = 0, by clearing denominators we obtain
tr(π(c0c′′ f − c′0c′′)) = 0 for some nonvanishing central polynomial c′′. Hence
π(c0c′′ f − c′c′′)

cyc∼ 0 in GMd(k) by [Brešar and Klep 2009, Theorem 5.2]. As
before, lifting this relation to k〈X, X∗〉 yields the desired conclusion.
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We are now ready to give our main results characterizing trace-nonnegative
polynomials.

Theorem 4.7. Let k ∈ {R,C} and suppose f ∈ Sym k〈X, X∗〉 satisfies

(20) tr
(

f (A, A∗)
)
≥ 0

for all A ∈ Md(k)n . Then there is a nonvanishing central polynomial for d × d
matrices, denoted by c ∈ k〈X, X∗〉, such that c f c∗ is cyclically equivalent to a
polynomial g ∈ k〈X, X∗〉 that is positive semidefinite on d × d matrices:

(21) c f c∗
cyc∼ g and g � 0 on d × d matrices.

Proof. This is a consequence of Proposition 4.5. Indeed, there is a nonvanishing
central polynomial c with

(22) c f
cyc∼ c′

for a central polynomial c′. Multiplying (22) with c∗ (from the right) shows

(23) c f c∗
cyc∼ c′c∗.

For any A ∈Md(k)n ,

(24) 0≤ tr
(
c(A, A∗) f (A, A∗)c(A, A∗)∗

)
= tr

(
c′(A, A∗)c(A, A∗)∗

)
= tr

(
(c′c∗)(A, A∗)

)
= (c′c∗)(A, A∗).

So g := c′c∗ is a (central) polynomial positive semidefinite on d × d matrices
satisfying

c f c∗
cyc∼ g. �

Remark 4.8. The proof shows that g in Theorem 4.7 can actually be taken to be
a central polynomial.

Combining Theorem 4.7 with the dimension-dependent Positivstellensatz for
positive semidefinite polynomials ([Procesi and Schacher 1976, Theorem 5.4] or
[Klep and Unger 2010, Theorem 5.4]) yields:

Corollary 4.9. Choose α1, . . . , αm ∈ k〈X, X∗〉 whose images in GMd(k) form a
diagonalization of the quadratic form Trd(x∗x) on UDd(k). For f ∈Sym k〈X, X∗〉,
the following are equivalent:

(i) tr
(

f (A, A∗)
)
≥ 0 for every A ∈Md(k)n .

(ii) There exists a nonvanishing central polynomial c ∈ k〈X, X∗〉, a polynomial
identity h ∈ k〈X, X∗〉 for d × d matrices, and pi,ε ∈ k〈X, X∗〉 with

(25) c f c∗
cyc∼ h+

∑
ε∈{0,1}m

αε
∑

i

p∗i,ε pi,ε.
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Remark 4.10. For experts we mention that, by applying the reduced trace, we can
reformulate (25) as

(26) c f c∗
cyc∼ h+ t,

where c and h are as above, and t belongs to the preordering in Z(UDd(k)) gen-
erated by the α j .

If d = 2, the weights α j are superfluous since the reduced trace of a Hermitian
square is a sum of Hermitian squares in this case (see [Procesi and Schacher 1976,
p. 405] or [Klep and Unger 2010, Section 4]), and Corollary 4.9 simplifies as
follows:

Corollary 4.11. For f ∈ Sym k〈X, X∗〉, the following are equivalent:

(i) tr
(

f (A, A∗)
)
≥ 0 for every A ∈M2(k)n .

(ii) There exists a nonvanishing central polynomial c ∈ k〈X, X∗〉, and a polyno-
mial identity h ∈ k〈X, X∗〉 for 2× 2 matrices, such that

(27) c f c∗ ∈ h+22 k〈X, X∗〉.

Example 4.12. We finish this presentation with an example showing denominators
are necessary for these results to hold. First, the Motzkin polynomial M from
Example 3.1 is not cyclically equivalent to a sum of Hermitian squares modulo a
T-ideal of identities. Indeed, suppose that

(28) M
cyc∼ h+

∑
g∗j g j

for some g j ∈ k〈X, X∗〉 and a polynomial identity h ∈ k〈X, X∗〉 for d×d matrices
(d ≥ 2). Then

Mcc = tr
(

M
([

Y/2 Z/2
−Z/2 Y/2

]))
=

∑
tr
(
(g∗j g j )

([
Y/2 Z/2
−Z/2 Y/2

]))
,

where Mcc ∈R[Y, Z ] denotes the commutative collapse Y 4 Z2
+Y 2 Z4

−3Y 2 Z2
+1

of the noncommutative variant M ′ of the Motzkin polynomial (in symmetric vari-
ables). Since Mcc is not a sum of squares in R[Y, Z ], and the trace of a Hermitian
square is a sum of squares, M does not satisfy a relation of the form (28). Hence
a denominator is needed in Corollaries 4.9 and 4.11.

A little more work is required to show the necessity of the denominator in
Theorem 4.7. Let d ∈ N be sufficiently large (at least 127, the dimension of
the vector space of all polynomials in X, X∗ of degree at most 6). Suppose M
is cyclically equivalent to a polynomial g that is positive semidefinite on d × d
matrices. Without loss of generality, g ∈ Sym k〈X, X∗〉. Choose g of the smallest
possible degree. If this degree is greater than 6, then the highest homogeneous
component g(∞) of g is positive semidefinite on d × d matrices and at the same
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time g(∞)
cyc∼ 0. Hence tr(g(∞)) = 0 on d × d matrices, implying that g(∞) is a

polynomial identity. Then
M

cyc∼ (g− g(∞)),

with g− g(∞) positive semidefinite and of degree smaller than g. This contradicts
the minimality of g, so deg(g)≤ 6.

Now g is positive semidefinite on d × d matrices for some d ≥ 127 and is thus
a sum of Hermitian squares by Helton’s sum of squares theorem [2002]. But M
is not cyclically equivalent to a sum of Hermitian squares by the first part of this
example.
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