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We construct a spectral sequence converging to the homotopy set of maps
from a spectrum to the K (n)-localization of the K (n+ 1)-local sphere. We
also construct a map of spectral sequences from the K (n)-local En-Adams
spectral sequence to the preceding one. Then we compare the map on
E2-terms with a map induced by the inflation maps of continuous coho-
mology groups for Morava stabilizer groups. As an application we show
that ζn in π−1(L K (n)S0) represented by the reduced norm map in the K (n)-
local En-Adams spectral sequence has a nontrivial image under the map
π∗(L K (n)S0)→ π∗(L K (n)L K (n+1)S0).

1. Introduction

The motivation of this note is toward understanding the relationship between the
K (n)-local category and the K (n + 1)-local category. For each prime number p,
the stable homotopy category of p-local spectra has a filtration of full subcate-
gories corresponding to the height filtration of the moduli space of formal groups
[Morava 1985]. The n-th associated graded part of the filtration is equivalent to
the K (n)-local category, that is, the Bousfield localization of the stable homotopy
category with respect to the n-th Morava K -theory spectrum K (n) [Hovey and
Strickland 1999]. So it can be considered that the stable homotopy category of
p-local spectra is built up from the K (n)-local categories for various n. In fact, the
chromatic convergence theorem [Ravenel 1992] says that a p-local finite spectrum
X is homotopy equivalent to the homotopy inverse limit of the chromatic tower
· · · → Ln+1 X → Ln X → · · · → L0 X , where Ln is the Bousfield localization
functor with respect to the wedge of Morava K -theories K (0)∨K (1)∨· · ·∨K (n).
This means that a p-local finite spectrum X can be recovered from {Ln X}n≥0

through the chromatic tower. Furthermore, if the chromatic splitting conjecture
is true, then it implies that the p-completion of a finite spectrum X is a direct
summand of the product

∏
n L K (n)X [Hovey 1995]. This means that it is not nec-

essary to reconstruct the tower but it is sufficient to know all L K (n)X to obtain
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some information of X . Since the chromatic splitting conjecture is concerned with
the relationship among various chromatic pieces, it is important to understand the
relationship between the K (n)-local category and the K (n+ 1)-local category.

Let En be the n-th Morava E-theory spectrum. The K (n)-local En-Adams spec-
tral sequence L K (n)E s,t

r (W ) is a natural spectral sequence for any spectrum W ,

L K (n)E
s,t
2 (W )= H s

c (Gn; E t
n(W ))H⇒ [W, L K (n)S0

]
s+t ,

which converges to [W, L K (n)S0
]
∗ strongly and conditionally; see [Devinatz and

Hopkins 2004, Appendix A]. On the E2-term, Gn is the n-th extended Morava
stabilizer group, and H s

c (Gn; E t
n(W )) is a continuous cohomology group for the

profinite group Gn with coefficients in the profinite module E t
n(W ).

We construct a natural spectral sequence converging to [W, L K (n)L K (n+1)S0
]
∗

by applying the K (n)-localization functor to the K (n+1)-local En+1-Adams reso-
lution of L K (n+1)S0. Let A= L K (n)En+1 be the K (n)-localization of the (n+1)-st
Morava E-theory En+1. We identify the E2-term as a cohomology group based
on the continuous cochain complex for Gn+1 with coefficients in the topologi-
cal module A∗(W ). We call this spectral sequence the K (n)-localization of the
K (n+ 1)-local En+1-Adams spectral sequence for W .

Theorem 4.7. For any spectrum W , there is a natural spectral sequence

L K (n)L K (n+1)E
s,t
2 (W )= H s

c (Gn+1;A
t(W ))H⇒ [W, L K (n)L K (n+1)S0

]
s+t ,

which converges strongly and conditionally.

By the K (n)-localization of the K (n + 1)-localization map S0
→ L K (n+1)S0,

we obtain a map L K (n)S0
→ L K (n)L K (n+1)S0, which induces a map

[W, L K (n)S0
]
∗
→ [W, L K (n)L K (n+1)S0

]
∗

for any spectrum W . We construct in Theorem 6.2 a natural map of spectral se-
quences

ϕr (W ) : L K (n)E s,t
r (W )−→ L K (n)L K (n+1)E s,t

r (W ),

which converges to the map [W, L K (n)S0
]
s+t
→[W, L K (n)L K (n+1)S0

]
s+t . Further-

more, we give an interpretation of the map on E2-terms. We construct a natural
homomorphism

θ(W ) : H∗c (Gn; E∗n(W ))−→ H∗c (Gn+1;A
∗(W )),

which is obtained from some kind of inflation maps (see (7-1)).

Theorem 7.6. The map ϕ2(W ) coincides with θ(W ) for any spectrum W .

By the Hopkins–Miller theorem [Devinatz and Hopkins 2004, Theorem 6], we
know that there is a nontrivial element ζn ∈ π−1(L K (n)S0) which is represented by
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the reduced norm map of Gn in the E2-term of the K (n)-local En-Adams spectral
sequence. Let ωn be the image of ζn under the map

π∗(L K (n)S0)→ π∗(L K (n)L K (n+1)S0).

As an application of our results, we show the following theorem.

Theorem 8.1. The image ωn is nontrivial.

The organization of the remaining sections is as follows: In Section 2 we re-
view the results in [Torii 2010a]. We recall the construction of a commutative
ring spectrum B which is an extension of both of En and En+1, and the action
of the group G = Gn ×0 Gn+1 on B. In Section 3 we introduce a topology
for A∗-modules of certain type, and study modules of continuous maps from a
topological space to such a topological A∗-module. In particular, we show that
the functor Mapc(T,A∗(−)) is a generalized cohomology theory for any compact
space T . In Section 4 we construct the K (n)-localization of the K (n + 1)-local
En+1-Adams spectral sequence by applying the K (n)-localization functor to the
K (n+ 1)-local En+1-Adams resolution of L K (n+1)S0, and prove Theorem 4.7. In
Section 5 we define a cohomology of G with coefficients in B∗(W ) for the purpose
of connecting the cohomology of Gn and that of Gn+1. Then we show that the
inflation map from the cohomology of Gn+1 with coefficients in A∗(W ) to the
cohomology of G with coefficients in B∗(W ) is an isomorphism for any spectrum
W . In Section 6 we construct a map of spectral sequences from the K (n)-local
En-Adams spectral sequence to the K (n)-localization of the K (n+1)-local En+1-
Adams spectral sequence. In Section 7 we construct a homomorphism θ(W ) from
the cohomology group of Gn with coefficients in E∗n(W ) to the cohomology group
of Gn+1 with coefficients in A∗(W ) by using the cohomology of G with coefficients
in B∗(W ) constructed in Section 5. Then we identify this homomorphism with the
map of spectral sequences on E2-terms, and prove Theorem 7.6. In Section 8 we
prove Theorem 8.1 as an application of the results obtained earlier.

2. The ring spectrum B

In this section we review the results in [Torii 2010a]. We recall the construction of
a commutative ring spectrum B and two ring spectrum maps 2 : En+1→ B and
I : En→B. Furthermore, we recall that the action of a profinite group G on B and
the equivariance of 2 and I under the actions of G.

Let p be a prime number, and let n be a positive integer. We fix a finite field F
which contains the finite fields Fpn and Fpn+1 . Note that the minimal field satisfying
the condition is Fpn⊗Fpn+1 ∼= Fpn2+n . We denote by W the ring of Witt vectors with
coefficients in F. We define variants of the n-th Morava E-theory spectrum En

and the (n+ 1)-st Morava E-theory spectrum En+1 such that the coefficient rings
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are given by

E∗n =W [[w1, . . . , wn−1]][w
±1
], E∗n+1 =W [[u1, . . . , un]][u±1

].

There is an associated degree 0 formal group law Fn over E0
n since En is complex

oriented and even-periodic. The formal group law Fn is a universal deformation of
the Honda formal group law Hn of height n over F. Note that we can take Fn as
a p-typical formal group law. The Morava stabilizer group Sn is defined to be the
group of automorphisms of Hn over F. Then the extended Morava stabilizer group
Gn is defined to be the semi-direct product Gn = 0n Sn , where 0 =Gal(F/Fp ) is
the Galois group of F over the prime field Fp . We can identify Gn with the group
of automorphisms of the ring spectrum En in the stable homotopy category. Then
g= (γ, s)∈0n Sn =Gn induces a ring homomorphism g∗ : E∗n→ E∗n . We denote
by Fg

n the formal group law obtained from Fn by the coefficient change along g∗.
Then there is a unique isomorphism t (g) : Fn → Fg

n of formal group laws which
is a lifting of the isomorphism s : Hn→ Hγ

n = Hn . There are projections Gn→ 0

and Gn+1→ 0. We define a profinite group G to be the fiber product of Gn and
Gn+1 over 0

G= Gn ×0 Gn+1.

Let K (n) be the n-th Morava K -theory spectrum at p. We denote by A the
commutative ring spectrum L K (n)En+1, the Bousfield localization of En+1 with
respect to K (n). The coefficient ring of A is given by the following Lemma.

Lemma 2.1. The coefficient ring A∗ is isomorphic to (E∗n+1[u
−1
n ])

∧

In
, the comple-

tion of the localization E∗n+1[u
−1
n ] at the ideal In = (p, u1, . . . , un−1). Hence A∗

is a graded complete Noetherian regular local ring isomorphic to

(W ((un)))
∧

p [[u1, . . . , un−1]][u±1
]

with residue field F((un))[u±1
].

Proof. There is a tower {M(J )}J of generalized Moore spectra of height n as
in [Hovey and Strickland 1999, Proposition 4.2]. If J = (pa0, v

a1
1 , . . . , v

an−1
n−1 ),

then (En+1 ∧ M(J ))∗ = E∗n+1/(p
a0, ua1

1 , . . . , uan−1
n−1 ) since vi = ui u pi

−1 for i =
1, . . . , n − 1. We set X∧In

= holim
←−J X ∧ M(J ) for a spectrum X . Since En+1 is

Landweber exact of height (n+ 1), it satisfies the telescope conjecture at n in the
sense of [Hovey 1997, Definition 1.5.2]. Then L K (n)En+1 ' (En+1[v

−1
])∧In

by
[Hovey 1997, Theorem 1.5.4], where v is a generalized vn-element in E∗n+1 in the
sense of [Hovey 1997, Definition 1.2.2]. We can take vn = unu pn

−1
∈ π2pn−2 En+1

as a generalized vn-element. Since the sequence pa0, ua1
1 , . . . , uan−1

n−1 is regular in
E∗n+1[v

−1
n ]= E∗n+1[u

−1
n ], (En+1[v

−1
n ]∧M(J ))∗= E∗n+1[u

−1
n ]/(p

a0, ua1
1 , . . . , uan−1

n−1 )

if J = (pa0, v
a1
1 , . . . , v

an−1
n−1 ). Then we see that A∗= (L K (n)En+1)

∗ is the completion
of E∗n+1[u

−1
n ] at the ideal In = (p, u1, . . . , un−1): A∗ ∼= (E∗n+1[u

±1
n ])

∧

In
. Since the
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sequence p, u1, . . . , un−1 is regular in E∗n+1[u
±1
n ], and it generates a maximal ideal,

A∗ is a graded regular local ring with maximal ideal generated by p, u1, . . . , un−1

and residue field F((un))[u±1
].

The obvious ring homomorphism W [[un]] → A∗ extends to (W ((un)))
∧
p → A∗,

since un is a unit in A∗, and A∗ is p-complete. Furthermore, since A∗ is In-adically
complete, the obvious ring homomorphism (W ((un)))

∧
p [u1, . . . , un−1][u±1

] → A∗

extends to (W ((un)))
∧
p [[u1, . . . , un−1]][u±1

] → A∗. The ring

(W ((un)))
∧

p [[u1, . . . , un−1]][u±1
]

is a graded complete regular local ring with maximal ideal generated by p, u1, . . . ,
un−1 and residue field F((un))[u±1

]. Since the ring homomorphism

(W ((un)))
∧

p [[u1, . . . , un−1]][u±1
] → A∗

is continuous, and it induces an isomorphism on the associated graded rings, we
obtain an isomorphism between A∗ and (W ((un)))

∧
p [[u1, . . . , un−1]][u±1

]. �

Since a complete local ring is Henselian, A∗ is a Henselian ring by Lemma 2.1.

Lemma 2.2 [Milne 1980, Proposition I.4.4]. Let R be a Henselian ring with residue
field k. Then the functor S 7→ S⊗R k induces an equivalence between the category
of finite étale R-algebras and the category of finite étale k-algebras.

Let Fn+1 be the formal group law over F((un)) obtained from Fn+1 by the
reduction E0

n+1→ F((un)). Then the height of Fn+1 is n. Since the isomorphism
classes of formal group laws over a separably closed field are classified by their
height, there is an isomorphism between Fn+1 and the height n Honda formal
group law Hn over the separable closure F((un))

sep. In [Torii 2003, §2.3] we have
constructed an extension field L of F((un)), where L is the minimal extension such
that there is an isomorphism between Fn+1 and Hn . The extension L is Galois over
F((un)) with Galois group isomorphic to Sn . There is a sequence of finite Galois
extensions of F((un))

F((un))= L(−1)→ L(0)→ L(1)→ · · ·(2-1)

such that L =
⋃

i L(i). We denote by Sn(i) the Galois group for F((un))→ L(i).
Then Sn(i) is a finite quotient group of Sn of order (pn

−1)pni , and Sn= lim
←−i Sn(i).

The action of Gn+1 on E0
n+1 induces an action on the residue field F((un)) of A0.

By [Torii 2003, §2.4], there is an action of G on L , which is an extension of the
action of Gn+1 on F((un)) and the action of Sn on L as Galois group. Note that
L(i) is stable under the action of G for all i .
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By Lemma 2.2, the sequence of Galois extensions (2-1) induces a sequence of
graded commutative rings

A∗ = B(−1)∗→ B(0)∗→ B(1)∗→ · · · .

The ring B(i)∗ is an even-periodic graded complete Noetherian regular local ring
with residue field L(i)[u±1

]. Furthermore, A∗ → B(i)∗ is a Galois extension of
graded commutative rings with Galois group Sn(i) in the sense of [Chase et al.
1965; Greither 1992]. Let B(∞)∗ be the direct limit of the sequence: B(∞)∗ =

colim
−→i B(i)∗. Then we define a graded commutative ring B∗ to be the completion

of B(∞)∗ at the ideal In = (p, u1, . . . , un−1)

B∗ = (B(∞)∗)∧In
.

By Lemma 2.2, there is a unique lifting of the action of G on B∗ and B(i)∗ for
0≤ i ≤∞ compatible with canonical inclusions.

By the A∗-algebra structures, we can regard B∗ and B(i)∗ for 0 ≤ i ≤ ∞ as
Landweber exact even-periodic graded commutative rings. We denote the corre-
sponding commutative ring spectra by B and B(i) for 0 ≤ i ≤ ∞, respectively.
Hence we obtain a sequence of commutative ring spectra

A = B(−1)→ B(0)→ B(1)→ · · · .

Then we have B(∞) = hocolim
−→i B(i) and B = L K (n)B(∞). We define a ring

spectrum map 2 : En+1→ B to be the composition

2 : En+1 −→ L K (n)En+1 = A −→ B.

By [Torii 2003, §2.3], the formal group law induced by the ring homomorphism
E0

n → F ↪→ L is isomorphic to the formal group law induced by the ring ho-
momorphism E0

n+1 → F((un)) ↪→ L . By the universality of the formal group
law Fn associated with En , there exists a ring homomorphism E∗n → B∗ and an
isomorphism 8 between the formal group laws Fn and Fn+1 over B0

8 : Fn+1
∼=
−→ Fn.

Note that B0 is the minimal extension ring of both of E0
n and E0

n+1 such that there
exists an isomorphism between Fn and Fn+1. Since En and B are even-periodic
Landweber exact commutative ring spectra, the ring homomorphism E∗n → B∗

extends to a ring spectrum map

I : En −→ B.

By the projection G → Gn , we can consider that G acts on En as automor-
phisms of commutative ring spectrum in the stable homotopy category. Also, by
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the projection G→ Gn+1, we can consider that G acts on En+1 as automorphisms
of commutative ring spectrum.

Proposition 2.3 [Torii 2010a, §4]. The profinite group G acts on the commutative
ring spectrum B in the stable homotopy category. The ring spectrum maps I :
En→ B and 2 : En+1→ B are equivariant with respect to the actions of G.

Remark 2.4 [Torii 2010b]. The ring spectrum B supports a commutative S-algebra
structure and the group G acts on B in the category of commutative S-algebras.
Let T = L K (n)S0

⊗Zp W be the commutative S-algebra obtained from L K (n)S0 by
adjoining a primitive (pm

−1)-st root of unity, where m is the dimension of F over
Fp . Then there is an equivalence B ' L K (n)(En ∧T A) of commutative S-algebras.
In particular, when F = Fpn2+n , there is an equivalence B ' L K (n)(E ′n ∧ E ′n+1) of
commutative S-algebras, where E ′n and E ′n+1 are the standard Morava E-theory
spectra so that π0 E ′n/In = Fpn and π0 E ′n+1/In+1 = Fpn+1 . In this case

Gal(F/Fp )∼= Gal(Fpn/Fp )×Gal(Fpn+1/Fp ) and G∼= G ′n ×G ′n+1,

where G ′n = Gal(Fpn/Fp )n Sn and G ′n+1 = Gal(Fpn+1/Fp )n Sn+1 are the standard
extended Morava stabilizer groups.

3. Mapping space Mapc(T,A∗(W))

To interpret the E2-term of the K (n)-localization of the K (n + 1)-local En+1-
Adams spectral sequence which will be constructed in Section 4 below as a coho-
mology group of Gn+1, we need to give an appropriate topology for A∗-cohomol-
ogy groups. In this section we introduce a topology for A∗-modules of certain
type, and study modules of continuous maps from a topological space to such an
A∗-module.

For a topological space T , and a topological module M , denote by Mapc(T,M)
the module of continuous maps from T to M . Recall the fact that a surjection
between profinite groups has a continuous section of topological spaces [Serre
1994, Proposition I.1.2.1]. This implies that Mapc(T,−) gives an exact functor
from the category of profinite modules to that of abelian groups. The coefficient
ring E∗n+1 is a graded complete Noetherian local ring with maximal ideal In+1 =

(p, u1, . . . , un). Since E∗n+1/I r
n+1 is a graded finite ring for each r , E∗n+1 is a graded

profinite ring. Let N be a finitely generated E∗n+1-module. Then N is a graded
profinite abelian group. In this case there is an easy description for Mapc(T, N ) as
follows.

Lemma 3.1. If N is a finitely generated E∗n+1-module, there is a natural isomor-
phism

Mapc(T, N )∼=Mapc(T, E∗n+1)⊗E∗n+1
N .
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Proof. Since N is finitely generated, there is an exact sequence of profinite modules
N 1
→ N 0

→ N → 0, where N i is finitely generated free for i = 0, 1. This
induces two exact sequences Mapc(T, N 1)→Mapc(T, N 0)→Mapc(T, N )→ 0
and Mapc(T, E∗n+1)⊗ N 1

→Mapc(T, E∗n+1)⊗ N 0
→Mapc(T, E∗n+1)⊗ N → 0.

Since N i is finitely generated free, we have Mapc(T, N i )∼=Mapc(T, E∗n+1)⊗ N i

for i = 0, 1. Hence we obtain that Mapc(T, N )∼=Mapc(T, E∗n+1)⊗ N . �

Corollary 3.2. For an ideal I of E∗n+1 and a finitely generated E∗n+1-module N ,
there is a natural isomorphism

Mapc(T, N/I N )∼=Mapc(T, N )/I Mapc(T, N ).

By Lemma 3.1, it is fundamental to understand Mapc(T, E∗n+1). Recall that a
module over a (graded) regular local ring is called profree if it is isomorphic to the
completion at the maximal ideal of some free module (see [Hovey and Strickland
1999, Theorem A.9] for equivalent conditions of profree modules).

Proposition 3.3. For a topological space T , Mapc(T, E∗n+1) is a profree E∗n+1-
module.

Proof. Put P = Mapc(T, E∗n+1). We have P ∼= lim
←−r Mapc(T, E∗n+1/I r

n+1), since
E∗n+1

∼= lim
←−r E∗n+1/I r

n+1. Then P ∼= lim
←−r P/I r

n+1 P by Corollary 3.2. This shows
that P is L-complete by [Hovey and Strickland 1999, Theorem A.6(a)]. Since
p, u1, . . . , un is a regular sequence on E∗n+1,

0→ E∗n+1/Ik
uk
→ E∗n+1/Ik→ E∗n+1/Ik+1→ 0

is an exact sequence of profinite modules for k = 0, 1, . . . , n. By applying the
functor Mapc(T,−), we obtain an exact sequence

0→ P/Ik P
uk
→ P/Ik P→ P/Ik+1 P→ 0

for k = 0, 1, . . . , n by Corollary 3.2. Hence p, u1, . . . , un is a regular sequence on
P , and P is profree by [Hovey and Strickland 1999, Theorem A.9]. �

Recall that A = L K (n)En+1 and A∗ ∼= E∗n+1[u
−1
n ]
∧

In
= lim
←−r E∗n+1/I r

n [u
−1
n ] by

Lemma 2.1. We denote by Jn the ideal of A∗ generated by p, u1, . . . , un−1, that
is, Jn = InA∗ ⊂ A∗. Then we have A∗/J r

n = E∗n+1/I r
n [u
−1
n ]. Note that A∗/J r

n is
a graded ring of formal Laurent series over an Artinian local ring. To introduce a
topology for A∗-modules of certain type, we first consider the case of such a ring.

Definition 3.4. Let R be a (graded) Artinian local ring. Then the ring R[[a]] of
formal power series is a Noetherian local ring. Note that the topology of R[[a]]
coincides with the (a)-adic topology since the maximal ideal of R is nilpotent. We
give the ring R((a))= R[[a]][a−1

] of formal Laurent series a R[[a]]-linear topology
such that R[[a]] is an open submodule. Then R((a)) is a union of open submodules
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ar R[[a]] for r ∈ Z: R((a)) =
⋃

r∈Z ar R[[a]]. For an R[[a]]-module N , we give
the (a)-adic topology on N . The localization N [a−1

] is an R((a))-module. Let
N ′ be the image of the localization map N → N [a−1

]. Then N ′ is an R[[a]]-
submodule of N [a−1

]. We give an R[[a]]-linear topology on N [a−1
] such that N ′

is an open submodule. Then N [a−1
] is a union of open submodules ar N ′ for r ∈Z:

N [a−1
] =

⋃
r∈Z ar N ′.

For an R[[a]]-module N , the localization map N → N [a−1
] induces a map

Mapc(T, N )[a−1
]→Mapc(T, N [a−1

]) of R((a))-modules. The following lemma
gives a sufficient condition that this map is an isomorphism.

Lemma 3.5. Let R be a (graded) Artinian local ring with finite residue field, and
let T be a compact space. For an R[[a]]-module N , there is a natural isomorphism

Mapc(T, N [a−1
])∼=Mapc(T, N ′)[a−1

],

where N ′ is the image of the localization map N → N [a−1
]. Furthermore, if N is

(a)-torsion free or finitely generated, then there is a natural isomorphism

Mapc(T, N [a−1
])∼=Mapc(T, N )[a−1

].

Proof. Since N [a−1
] is a union of open submodules ar N ′ for r ∈Z, any continuous

map from T to N [a−1
] factors through ar N ′ for some r . Hence

Mapc(T, N ′)[a−1
]
∼=
→Mapc(T, N [a−1

]).

If N is (a)-torsion free, then N ′ = N . Assume that N is finitely generated. Let K
be the kernel of the surjection N → N ′. Since N [a−1

] ∼= N ′[a−1
], K [a−1

] = 0.
Since K is finitely generated, there is a positive integer m such that am K = 0.
Since R[[a]] is profinite, Mapc(T,−) is an exact functor on the category of finitely
generated R[[a]]-modules. Then the exact sequence 0 → K → N → N ′ → 0
induces an exact sequence 0→Mapc(T, K )→Mapc(T, N )→Mapc(T, N ′)→ 0.
The fact that am K = 0 implies amMapc(T, K )= 0. Hence Mapc(T, K )[a−1

] = 0.
So we obtain that Mapc(T, N )[a−1

] ∼=Mapc(T, N ′)[a−1
]. �

We define a topology for A∗-modules of the form lim
←−r N/I r

n [u
−1
n ] for some

E∗n+1-module N .

Definition 3.6. For an A∗/J r
n -module M , since A∗/J r

n is a graded ring of for-
mal Laurent series over an Artinian local ring, we give a topology on M as in
Definition 3.4. For an E∗n+1-module N , we define an A∗-module A∗N by

A∗N = N [u−1
n ]
∧

In
= lim
←−r N/I r

n N [u−1
n ].

Then N/I r
n [u
−1
n ] is an A∗/J r

n -module. We give A∗N = lim
←−r N/I r

n N [u−1
n ] a topol-

ogy by using the inverse limit topology.
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Note that there is an isomorphism A∗E∗n+1
∼= A∗. If N is a finitely gener-

ated E∗n+1-module, then N [u−1
n ] is finitely generated over the Noetherian ring

E∗n+1[u
−1
n ]. Then the completion of N [u−1

n ] at the ideal In is given by the tensor
product with A∗. Hence there is a natural isomorphism A∗N ∼=A∗⊗E∗n+1

N for any
finitely generated E∗n+1-module N , and the functor A∗(−) is exact on the category
of finitely generated E∗n+1-modules.

In the rest of this section we study the functor Mapc(T,A∗(−))with T compact.

Lemma 3.7. If T is a compact space and N is a finitely generated E∗n+1-module,
then there is a natural isomorphism of A∗-modules

Mapc(T,A∗N )∼= A∗Mapc(T, N ).

Proof. Since A∗N = lim
←−r N/I r

n N [u−1
n ], we have

Mapc(T,A∗N )∼= lim
←−r Mapc(T, N/I r

n N [u−1
n ]).

By Lemma 3.5 and Corollary 3.2,

Mapc(T, N/I r
n N [u−1

n ])
∼=Mapc(T, N )/I r

n Mapc(T, N )[u−1
n ].

Hence Mapc(T,A∗N ) is isomorphic to lim
←−r Mapc(T, N )/I r

n Mapc(T, N )[u−1
n ] =

A∗Mapc(T, N ). �

The basic case is when N = E∗n+1:

Proposition 3.8. For any compact space T , Mapc(T,A∗) is a profree A∗-module.

Proof. By Proposition 3.3, Mapc(T, E∗n+1) is profree over E∗n+1, and is thus a
direct summand of some product

∏
α E∗n+1 by [Hovey and Strickland 1999, Propo-

sition A.13]. Hence it is sufficient to show that A∗(
∏
α E∗n+1) is profree over A∗.

For k = 0, 1, . . . , n − 1, we put M = E∗n+1/Ik and N = E∗n+1/Ik+1. Let Kr be

the kernel of the map M/I r
n M

uk
→ M/I r

n M , and let Lr be the kernel of the map
M/I r

n M→ N/I r
n N . Then there are exact sequences 0→Kr→M/I r

n M→ Lr→0
and 0→ Lr→ M/I r

n M→ N/I r
n N→ 0. Since E∗n+1 is regular, the canonical map

Kr+1→ Kr is 0. Then

lim
←−r((

∏
α

Kr )[u−1
n ])= lim

←−r
1 ((

∏
α

Kr )[u−1
n ])= 0.

Hence we obtain lim
←−r((

∏
α M/I r

n M)[u−1
n ])

∼=
→ lim
←−r((

∏
α Lr )[u−1

n ]), and

0= lim
←−r

1 ((
∏
α

M/I r
n M)[u−1

n ])
∼= lim
←−r

1 ((
∏
α

Lr )[u−1
n ]).

This implies that the sequence

0→ lim
←−r((

∏
α

M/I r
n )[u

−1
n ])

uk
−→ lim

←−r((
∏
α

M/I r
n M)[u−1

n ])−→ lim
←−r((

∏
α

N/I r
n N )[u−1

n ])→ 0
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is exact. This shows that p, u1, . . . , un−1 is a regular sequence on A∗(
∏
α E∗n+1).

Therefore A∗(
∏
α E∗n+1) is profree A∗-module by [Hovey and Strickland 1999,

Theorem A.9]. �

The map from T to the one point space ∗ induces a ring homomorphism A∗ =

Mapc(∗,A∗)→Mapc(T,A∗). Then the composition with the commutative MU∗-
algebra structure map MU∗→A∗ gives Mapc(T,A∗) a commutative MU∗-algebra
structure. Since a profree module over A∗ is Landweber exact, we obtain the
following corollary

Corollary 3.9. If T is a compact space, then Mapc(T,A∗) is Landweber exact.

We have a similar description for Mapc(T,A∗N ) as in Lemma 3.1 when T is a
compact space and N is a finitely generated E∗n+1-module as follows.

Proposition 3.10. If T is a compact space and N is a finitely generated E∗n+1-
module, then there is a natural isomorphism of A∗-modules

Mapc(T,A∗N )∼=Mapc(T,A∗)⊗
A∗

A∗N .

For the proof of Proposition 3.10, we prepare the following (well-known) lem-
mas.

Lemma 3.11 ([Lam 1999, Proposition 4.4]). Let R be a (graded) ring. If M is a
finitely presented module over R, then (

∏
α R)⊗R M ∼=

∏
α M.

Proof. Since M is finitely presented, there is an exact sequence M1
→ M0

→

M→ 0, where M i is finitely generated free for i = 0, 1. Then there are two exact
sequences (

∏
α R)⊗ M1

→ (
∏
α R)⊗ M0

→ (
∏
α R)⊗ M → 0 and

∏
α M1

→∏
α M0

→
∏
α M→ 0. Since M i is finitely generated free, (

∏
α R)⊗M i ∼=

∏
α M i

for i = 0, 1. Hence we obtain (
∏
α R)⊗M ∼=

∏
α M . �

Lemma 3.12. If F is a profree A∗-module and M is a finitely generated A∗-
module, then F ⊗A∗ M is Jn-adically complete.

Proof. Since F is profree, it is a direct summand of some product
∏
α A∗ by [Hovey

and Strickland 1999, Proposition A.13]. Since a direct summand of complete
module is complete, it is sufficient to show that (

∏
α A∗)⊗ M is complete. By

Lemma 3.11, (
∏
α A∗)⊗M ∼=

∏
α M , and

∏
α M is complete. �

Proof of Proposition 3.10. By Lemma 3.1, Mapc(T, N )∼=Mapc(T, E∗n+1)⊗E∗n+1
N .

Then we see that A∗Mapc(T, N ) is the completion of A∗Mapc(T, E∗n+1)⊗A∗ A∗N
at the ideal Jn . By Lemma 3.12, we see that A∗Mapc(T, E∗n+1)⊗A∗ A∗N is Jn-
adically complete. Hence we obtain

A∗Mapc(T, N )∼= A∗Mapc(T, E∗n+1)⊗A∗ A∗N . �
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Let S be the stable homotopy category, and let K be the K (n)-local stable ho-
motopy category. For a K (n)-local spectrum X ∈ K, we define 3′′(X) to be the
full subcategory of the comma category (S↓ X), whose objects are maps X ′′→ X
from finite spectra X ′′ of type at least n. Then3′′(X) is an essentially small filtered
category (see [Hovey and Strickland 1999, §9] and [Hovey et al. 1997, §2.3]). For
a spectrum W ∈ S, we set 3(W ) = 3′′(L K (n)W ). The following lemma gives a
sufficient condition that we can describe a generalized cohomology group of W in
terms of cohomology groups of Wλ for λ ∈3(W ).

Lemma 3.13. Let R be a K (n)-local commutative ring spectrum. Suppose that
the coefficient ring R∗ is even-periodic and R0 is a linearly compact Noetherian
ring. Then there is a natural isomorphism

R∗(W )∼= lim
←−λ

R∗(Wλ)

for any W ∈ S, where the inverse limit is taken over λ ∈3(W ).

Proof. For W ∈S, we set F∗(W )= lim
←−λ

R∗(Wλ). Note that R∗(W )∼= R∗(L K (n)W )

for any W ∈ S since R is K (n)-local. Then it is sufficient to show that R∗(X) ∼=
F∗(X) for any X ∈ K. By the assumption of the coefficient ring R∗, the functor
R∗(−) on the category of finite spectra takes values in the category of linearly
compact R∗-modules and continuous maps. Then F∗(−) is a cohomology theory
on S by [Hovey et al. 1997, Proposition 2.3.16] and [Hovey and Strickland 1999,
Proposition 9.2]. There is a natural transformation R∗(−)→ F∗(−) of cohomol-
ogy theories, which induces an isomorphism

R∗(X ′′)
∼=
→ F∗(X ′′)

for any finite spectrum X ′′ of type at least n. Since L K (n)F(n) is a graded weak
generator of K for any finite spectrum F(n) of type n ([Hovey and Strickland 1999,
Theorem 7.3]), we obtain that R∗(X)

∼=
→ F∗(X) for any X ∈ K. �

Definition 3.14. For a finite spectrum X of type at least n, E∗n+1(X) is annihi-
lated by a power of In , and A∗(X) ∼= E∗n+1(X)[u

−1
n ] is a module over A∗/J r

n =

E∗n+1/I r
n [u
−1
n ] for some r . We give a topology on A∗(X) as in Definition 3.6. For

a spectrum W , A∗(W )∼= lim
←−λ

A∗(Wλ) by Lemma 3.13, where Wλ are finite spectra
of type at least n. We give a topology on A∗(W ) by the inverse limit topology.

For a compact space T and a finite spectrum X of type at least n,

Mapc(T,A∗(X))∼=Mapc(T,A∗)⊗A∗ A∗(X)

by Proposition 3.10, and Mapc(T,A∗) is profree by Proposition 3.8. To study
the functor Mapc(T,A∗(−)) on the stable homotopy category S, we consider the
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following functor. Let F be a profree A∗-module. We define a functor HF (−)

from the stable homotopy category S to the category of A∗-modules by

HF (W )= lim
←−λ

F ⊗A∗ A∗(Wλ),

where the inverse limit is taken over λ ∈3(W ).

Lemma 3.15. The functor HF (−) is a cohomology theory on S.

Proof. Since F is a direct summand of some product
∏
α A∗ by [Hovey and

Strickland 1999, Proposition A.13], it is sufficient to show that the functor Z 7→
lim
←−λ

(
∏
α A∗)⊗A∗ A∗(Wλ) is a cohomology theory. Since A∗(Wλ) is finitely pre-

sented, (
∏
α A∗)⊗A∗ A∗(Wλ)∼=

∏
α A∗(Wλ) by Lemma 3.11. Hence

lim
←−λ

(
∏
α

A∗)⊗A∗ A∗(Wλ)∼=
∏
α

A∗(W ),

and
∏
α A∗(W ) is a cohomology theory. This completes the proof. �

The following theorem will be used to identify the E2-term of the K (n)-local-
ization of the K (n + 1)-local En+1-Adams spectral sequence to the continuous
cohomology group of Gn+1 in Section 4 below.

Theorem 3.16. For any compact space T , the functor Mapc(T,A∗(−)) is a coho-
mology theory.

Proof. By Proposition 3.10, there is a natural isomorphism

Mapc(T,A∗(W ))∼= lim
←−λ

Mapc(T,A∗)⊗
A∗

A∗(Wλ).

But Mapc(T,A∗) is profree by Proposition 3.8. Therefore the theorem follows
from Lemma 3.15. �

4. Construction of the spectral sequence

We set Ŝ= L K (n)L K (n+1)S0. In this section we construct a spectral sequence which
converges strongly and conditionally to [W, Ŝ]∗ for any spectrum W by applying
the K (n)-localization functor to the K (n + 1)-local En+1-Adams resolution of
L K (n+1)S0. Then we describe the E2-term in terms of the continuous cohomology
group of Gn+1 with coefficients in A∗(W ).

Let E∧s
n be the K (n)-localization of the smash product of s-copies of En

E∧s
n = L K (n)(

s︷ ︸︸ ︷
En ∧ · · · ∧ En ).

The commutative ring spectrum structure on En gives E∧•+1
n = {E∧s+1

n }s≥0 a
cosimplicial K (n)-local commutative ring spectrum structure with augmentation
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L K (n)S0 ε
→ E∧•+1

n . Then the associated cochain complex

∗→ L K (n)S0 ε
−→ En

d
−→ E∧2

n
d
−→ E∧3

n
d
−→ · · ·(4-1)

is a K (n)-local En-Adams resolution of L K (n)S0 in the sense of [Miller 1981;
Devinatz and Hopkins 2004]. We denote the sequence (4-1) by Res(En; L K (n)S0).
There is an associated diagram of exact triangles

L K (n)S0
=Y 0 i
←−−−−−−−−Y 1 i

←−−−−−−−−Y 2 i
←−−−−−−−−Y 3

J
J
JĴ

j







�
k
J
J
JĴ

j







�
k
J
J
JĴ

j







�
k . . . ,

En 6−1 E∧2
n 6−2 E∧3

n

(4-2)

in the K (n)-local stable homotopy category, where k has degree −1 and jk = d .
We denote by Ad(En; L K (n)S0) the diagram of exact triangles (4-2).

For any spectrum W , by applying the functor [W,−]∗ to Ad(En; L K (n)S0) we
obtain a K (n)-local En-Adams spectral sequence

L K (n)E s,t
r (W )H⇒ [W, L K (n)S0

]
s+t

with L K (n)E
s,t
2 (W )∼= H s

c (Gn; E t
n(W )). This spectral sequence converges strongly

and conditionally. Furthermore, since L K (n)S0 is K (n)-local En-nilpotent [Dev-
inatz and Hopkins 2004, Proposition A.3], the filtration (4-2) has the following
property: There exists N > 0 such that Y s+N

→ Y s is null for all s ≥ 0. This prop-
erty implies that there exist positive integers r(n) and s(n), which do not depend
on W , such that L K (n)E

s,∗
r(n)(W )= 0 for s > s(n).

By applying the K (n)-localization functor to Ad(En+1; L K (n+1)S0), we obtain
the following diagram L K (n)Ad(En+1, L K (n+1)S0) of exact triangles

Ŝ=Z0 i
←−−−−−−−−Z1 i

←−−−−−−−− Z2 i
←−−−−−−−− Z3

J
J
JĴ

j







�
k

J
J
JĴ

j







�
k

J
J
JĴ

j







�
k · · · .

L K (n)En+1 6−1L K (n)E∧2
n+1 6−2L K (n)E∧3

n+1

(4-3)

For any spectrum W , applying the functor [W,−]∗ to L K (n)Ad(En+1, L K (n+1)S0),
we obtain a spectral sequence

L K (n)L K (n+1)E s,t
r (W )H⇒ [W, Ŝ]s+t .

We call this spectral sequence the K (n)-localization of the K (n+ 1)-local En+1-
Adams spectral sequence.
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Lemma 4.1. The spectral sequence L K (n)L K (n+1)E s,t
r (W ) H⇒ [W, Ŝ]s+t con-

verges conditionally and strongly for any spectrum W .

Proof. There exists N > 0 such that Y s+N
→ Y s is null for all s ≥ 0. Apply-

ing the K (n)-localization functor, we see that Z s+N
→ Z s is also null for all

s ≥ 0. This implies that the filtration of [W, Ŝ]∗ is finite. Hence the spectral
sequence converges strongly by [Boardman 1999, Definition 5.2]. Also, we obtain
that lim

←−n[W, Zn
]
∗
= lim1

←−n[W, Zn
]
∗
= 0. Hence the spectral sequence converges

conditionally by [Boardman 1999, Definition 5.10]. �

Remark 4.2. Note that there exist positive integers r0 and s0, which do not depend
on W , such that L K (n)L K (n+1)E s,∗

r0
(W )= 0 for s > s0.

In the rest of this section we identify the E2-term of the K (n)-localization of
the K (n+1)-local En+1-Adams spectral sequence L K (n)L K (n+1)E s,t

r (W ) with the
continuous cohomology group of Gn+1 with coefficients in A∗(W ). Let C(s) =
E∧s+1

n+1 . The E1-term of the spectral sequence is given by E s,t
1 = [W, L K (n)C(s)]t .

There is an isomorphism C(s)∗ ∼=Mapc(G
s
n+1, E∗n+1) (see [Devinatz and Hopkins

2004, §2]). Then we see that C(s)∗ is profree over E∗n+1 by Proposition 3.3. The
following lemma gives a similar description for L K (n)C(s)∗.

Lemma 4.3. For s ≥ 0, we have L K (n)C(s)∗ ∼=Mapc(G
s
n+1,A∗).

Proof. There is a tower {M(J )}J of generalized Moore spectra of type n as in
[Hovey and Strickland 1999, Proposition 4.2] such that L K (n)W ' holim

←−J LnW ∧
M(J ) for any spectrum W [Hovey and Strickland 1999, Proposition 7.10(e)]. Since
C(s) is Landweber exact of height (n+1), we obtain that L K (n)C(s)∗ ∼=A∗C(s)∗.
Then A∗C(s)∗ ∼=Mapc(G

s
n+1,A∗) by Lemma 3.7, since

C(s)∗ ∼=Mapc(G
s
n+1, E∗n+1). �

Corollary 4.4. For s ≥ 0, L K (n)C(s)∗ is Landweber exact and profree over A∗.

Proof. This follows from Proposition 3.8 and Corollary 3.9. �

Then we obtain a description for the E1-term [W, L K (n)C(s)]∗ as a module of
continuous maps from Gs

n+1 to A∗(W ).

Proposition 4.5. For any spectrum W , there is a natural isomorphism

[W, L K (n)C(s)]∗ ∼=Mapc(G
s
n+1,A∗(W )).

Proof. By Lemma 4.3 and Corollary 4.4, L K (n)C(s)∗ ∼=Mapc(G
s
n+1,A∗) is Land-

weber exact. Then there is a natural isomorphism

[W, L K (n)C(s)]∗ ∼=Mapc(G
s
n+1,A∗)⊗A∗ A∗(W )

for any finite spectrum W . By Proposition 3.10, the right hand side is isomorphic
to Mapc(G

s
n+1,A∗(W )). Since Mapc(G

s
n+1,A∗) is even concentrated, there is a
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unique extension to a cohomology theory for any spectra by [Hovey and Strickland
1999, Theorem 2.8]. Obviously, [−, L K (n)C(s)]∗ is such an extension. On the
other hand, Mapc(G

s
n+1,A∗(−)) is also an extension by Theorem 3.16. Therefore

[W, L K (n)C(s)]∗ ∼=Mapc(G
s
n+1,A∗(W )) for any spectrum W . �

For a topological group G and a topological G-module M , denote by C∗c (G;M)
the continuous cochain complex of G with coefficients in M . Define H∗c (G;M)
to be the cohomology group of C∗c (G;M), and call it the continuous cohomol-
ogy of G with coefficients in M . Let [W,C(∗)]t be the cochain complex asso-
ciated with the cosimplicial abelian group [W,C(•)]t . Then there is a natural
isomorphism [W,C(∗)]t ∼= C∗c (Gn+1, E t

n+1(W )) of cochain complexes [Devinatz
and Hopkins 2004, §4]. By Proposition 4.5, this implies a natural isomorphism
[W, L K (n)C(∗)]t ∼=C∗c (Gn+1,At(W )) of cochain complexes. Hence we obtain the
following corollary.

Corollary 4.6. For any spectrum W , there is a natural isomorphism

H s([W, L K (n)C(∗)]t)∼= H s
c (Gn+1;A

t(W )).

As a summary we obtain the following theorem.

Theorem 4.7. For any spectrum W , there is a natural spectral sequence

L K (n)L K (n+1)E s,t
r (W )

which converges strongly and conditionally to [W, Ŝ]∗:

L K (n)L K (n+1)E
s,t
2 (W )H⇒ [W, Ŝ]s+t .

The E2-term is given by

L K (n)L K (n+1)E
s,t
2 (W )∼= H s

c (Gn+1;A
t(W )).

Furthermore, there exist positive integers r0 and s0 such that

L K (n)L K (n+1)E s,∗
r0
(W )= 0

for s > s0, where r0 and s0 do not depend on W .

5. The cohomology group H∗c (G;B∗(W))

In this section we introduce a cohomology group H∗c (G;B∗(W )) of G with coeffi-
cients in B∗(W ) for a spectrum W . Then we show that H∗c (G;B∗(W )) is naturally
isomorphic to the continuous cohomology group H∗c (Gn+1;A

∗(W )) of Gn+1 with
coefficients in A∗(W ). The cohomology group H∗c (G;B∗(W )) will be used to
connect the E2-term of the K (n)-local En-Adams spectral sequence for W and
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the E2-term of the K (n)-localization of the K (n+ 1)-local En+1-Adams spectral
sequence for W in Section 7 below.

First we introduce a topology for modules of continuous maps from a profinite
group to an A∗-module of certain type. Then we study a continuous cohomol-
ogy group of a profinite group with coefficients in such a topological module of
mappings.

Definition 5.1. Let G be a profinite group. Suppose that M = lim
←−λ

A∗Nλ with the
inverse limit topology, where {Nλ}λ∈3 is a cofiltered system of finitely generated
E∗n+1-modules. By Lemma 3.7, there is an isomorphism

Mapc(G,M)∼= lim
←−λ

A∗Mapc(G, Nλ).

We give a topology on A∗Mapc(G, Nλ) as in Definition 3.6. Then we give a
topology on Mapc(G,M) by the inverse limit topology. For any spectrum W ,
A∗(W ) ∼= lim

←−λ
A∗E∗n+1(Wλ) by Lemma 3.13, where Wλ are finite spectra of type

at least n. We give a topology on Mapc(G,A∗(W )) as above.

The following lemma shows that the mapping spaces have an expected adjunc-
tion property.

Lemma 5.2. Let G and H be profinite groups. Suppose that M = lim
←−λ

A∗Nλ with
the inverse limit topology, where {Nλ}λ∈3 is a cofiltered system of finitely generated
E∗n+1-modules. Then there is an isomorphism

Mapc(G,Mapc(H,M))∼=Mapc(G× H,M).

Proof. We have

Mapc(G,Mapc(H,M)= lim
←−λ

Mapc(G,Mapc(H,A∗Nλ),

Mapc(G× H,M)= lim
←−λ

Mapc(G× H,A∗Nλ).

Hence it is sufficient to show that the lemma holds when M = A∗N with finitely
generated N . Suppose that N is a finitely generated E∗n+1-module. Let Nr be the
image of the localization map N/I r

n N→ N/I r
n N [u−1

n ], and let Lr =Mapc(H, Nr ).
Note that Nr and Lr are (un)-torsion free. By Lemma 3.5, Mapc(H,A∗N ) =
lim
←−r Lr [u−1

n ]. Then Mapc(G,Mapc(H,A∗N )) = lim
←−r Mapc(G, Lr [u−1

n ]). Again
by Lemma 3.5, we have Mapc(G, Lr [u−1

n ]) = Mapc(G, Lr )[u−1
n ]. The fact that

Nr is a profinite module implies that Mapc(G, Lr ) = Mapc(G × H, Nr ). By
Lemma 3.5, we obtain lim

←−r Mapc(G× H, Nr )[u−1
n ] =Mapc(G× H,A∗N ). �

Corollary 5.3. Let G and H be profinite groups. For any spectrum W , there is a
natural isomorphism

Mapc(G,Mapc(H,A∗(W ))))∼=Mapc(G× H,A∗(W )).
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Suppose that a profinite group G continuously acts on a topological module M
from the right. For q > 0, we define a right G-action on Mapc(G,M) by

ϕg(h1, . . . , hq)= ϕ(h1g−1, . . . , hq g−1)g,

where ϕ ∈ Mapc(G
q ,M) and g, h1, . . . , hq ∈ G. Then Mapc(G

q ,M) is a topo-
logical G-module. The following proposition shows that the coinduced module
Mapc(G

q ,M) is acyclic with respect to H∗c (G;−).

Proposition 5.4. Let G be a profinite group. Suppose that M= lim
←−λ

A∗Nλ with the
inverse limit topology, where {Nλ}λ∈3 is a cofiltered system of finitely generated
E∗n+1-modules. Furthermore, suppose that G continuously acts on M. For p > 0
and q > 0, we have H p

c (G;Mapc(G
q ,M)) = 0, and H 0

c (G;Mapc(G
q ,M)) =

Mapc(G
q ,M)G .

Proof. Set

C−1
c (G;Mapc(G

q ,M))=Mapc(G
q ,M)G, C p,q

= C p
c (G;Mapc(G

q ,M)).

Then C p,q ∼= Mapc(G
q
× G p+1,M)G by Lemma 5.2. The boundary map d p

:

C p,q
→ C p+1,q is given by

d p f (h1, . . . , hq; g0, . . . , gp+1)

=

p+1∑
i=0
(−1)i f (h1, . . . , hq; g0, . . . , gi−1, gi+1, . . . , gp+1).

We define s p
: C p,q

→ C p−1,q by

s p f (h1, . . . , hq; g0, . . . , gp−1)= f (h1, . . . , hq; hq , g0, . . . , gp−1).

Then we can verify that s p+1d p( f )+ d p−1s p( f )= f for any f ∈ C p,q . �

Corollary 5.5. Let p > 0 and q > 0. Then H p
c (Gn+1;Mapc(G

q
n+1,A∗(W ))) = 0

and H 0
c (Gn+1;Mapc(G

q
n+1,A∗(W ))) = Mapc(G

q
n+1,A∗(W ))Gn+1 for any spec-

trum W .

Next we define a cohomology group H∗c (G;B∗(W )). For this purpose, we in-
troduce a topology on B(i)∗(W ).

Definition 5.6. For a spectrum W , B(i)∗(W ) is a product of finite many copies
of A∗(W ) since B(i)∗ is finitely generated free over A∗. We give a topology on
B(i)∗(W ) by the product topology.

Recall that the group G = Gn+1 ×0 Gn acts on the cohomology theory B∗(−)

as multiplicative cohomology operations by Proposition 2.3. For i ≥ −1, we set
G(i) = Gn+1 ×0 Gn(i), where Gn(i) = 0 n Sn(i). Then G(i) acts on B(i)∗(W )

naturally and continuously. Note that we can write B(i)∗(W ) = lim
←−λ

A∗Nλ with
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finitely generated E∗n+1-modules Nλ since B(i)∗ is finitely generated free over
A∗. Then Mapc(G(i)

p+1,B(i)∗(W )) is a topological module for any p ≥ 0 as
in Definition 5.1.

Definition 5.7. For a spectrum W , we define a cochain complex C∗c (G;B∗(W ))

by

C∗c (G;B
∗(W ))= lim

←−λ
lim
−→i C∗c (G(i);B(i)

∗(Wλ)),

where the inverse limit is taken over λ ∈ 3(W ). Then we define a cohomology
group H∗c (G;B∗(W )) of G with coefficients in B∗(W ) to be the cohomology group
of C∗c (G;B∗(W ))

H∗c (G;B
∗(W ))= H∗(C∗c (G;B

∗(W ))).

Note that both of C∗c (G;B∗(W )) and H∗c (G;B∗(W )) are not functors of B∗(W ) in
spite of their notation.

For a continuous cochain complex C∗c (Gn+1;A
∗(W )) of Gn+1 with coefficients

in A∗(W ), there is an isomorphism

C∗c (Gn+1;A
∗(W ))∼= lim

←−λ
C∗c (Gn+1;A

∗(Wλ)).

The canonical maps A∗(Wλ)→B(i)∗(Wλ) and the projections G(i)→Gn+1 define
a cochain map

C∗c (Gn+1;A
∗(W ))−→ C∗c (G;B

∗(W )).

We call the induced map on cohomology groups an inflation map

H∗c (Gn+1;A
∗(W ))−→ H∗c (G;B

∗(W )).(5-1)

In the rest of this section we prove the following theorem.

Theorem 5.8. The inflation map H∗c (Gn+1;A
∗(W ))→ H∗c (G;B∗(W )) is an iso-

morphism for any spectrum W .

By definition, H∗c (G;B∗(W )) is the cohomology group of the inverse limit of
the cochain complexes lim

−→i C∗c (G(i);B(i)
∗(Wλ)). For the cohomology group of

the inverse limit of cochain complexes {C∗λ}λ∈3, we have a spectral sequence to
describe it in terms of the cohomology groups of C∗λ under suitable circumstances.

Lemma 5.9. Let {C∗λ}λ∈3 be a system of cochain complexes indexed by a small
category 3. We assume that lim

←−λ
j C∗λ = 0 for j > 0. Then there is a spectral

sequence

E s,t
2 = lim

←−λ

s H t(C∗λ)H⇒ H s+t(lim
←−λ

C∗λ).
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Proof. Let
∏
∗ C∗λ be the double complex associated to the cosimplicial replacement

[Bousfield and Kan 1972, XI.5] of {C∗λ}. Then we have two spectral sequences

lim
←−λ

s H t(C∗λ) H⇒ H s+t(
∏
∗ C∗λ),

H s(lim
←−λ

t C∗λ) H⇒ H s+t(
∏
∗ C∗λ).

By the assumption, the second spectral sequence collapses to give H∗(lim
←−λ

C∗λ)∼=
H∗(

∏
∗C∗λ). Hence the first spectral sequence gives the desired one. �

The next lemma gives a sufficient condition for all the higher inverse limits to
vanish.

Lemma 5.10. Let F be a profree A∗-module. Then lim
←−λ

j F ⊗A∗ A∗(Wλ) = 0 for
j > 0.

Proof. Since F is a direct summand of some product of (suspensions of) A∗ by
[Hovey and Strickland 1999, Proposition A.13], we may assume that F =

∏
α A∗.

For a finite spectrum Wλ, F ⊗ A∗(Wλ) ∼=
∏
α A∗(Wλ) since A∗(Wλ) is a finitely

presented A∗-module. Then we have lim
←−λ

j ∏
α A∗(Wλ)∼=

∏
α lim
←−λ

j A∗(Wλ). The
lemma follows from the fact that lim

←−λ
j A∗(Wλ) = 0 for j > 0 since A∗(Wλ) is a

linearly compact A∗-module for all λ. �

By Proposition 3.8, Mapc(G
q+1
n+1;A

∗) and Mapc(G(i)
q+1,B(i)∗) are profree A∗-

modules. Then the completion of lim
−→i C∗c (G(i);B(i)

∗) at In is also a profree
A∗-module. By Lemma 5.10, we obtain that lim

←−λ
j C∗c (Gn+1;A

∗(Wλ)) = 0 and
lim
←−λ

j lim
−→i C∗c (G(i);B(i)

∗(Wλ)) = 0 for j > 0. Hence, by Lemma 5.9, we obtain
two spectral sequences

I E s,t
2 = lim

←−λ

s H t
c (Gn+1;A

∗(Wλ)) H⇒ H∗c (Gn+1;A
∗(W )),

II E s,t
2 = lim

←−λ

s lim
−→i H t

c (G(i);B(i)
∗(Wλ)) H⇒ H∗c (G;B

∗(W )).

The system of cochain maps

{C∗c (Gn+1;A
∗(Wλ))}λ −→ {lim−→i C∗c (G(i);B(i)

∗(Wλ))}λ

induces a morphism of spectral sequences

fr : I E∗,∗r −→ II E∗,∗r(5-2)

which converges to the inflation map (5-1).
We show that this morphism of spectral sequences is an isomorphism from the

E2-terms onward. For this purpose, it is sufficient to show that the inflation map
H∗c (Gn+1;A

∗(W ))→ H∗c (G(i);B(i)
∗(W )) is an isomorphism for i ≥ 0. We shall

construct two acyclic resolutions I ∗(W ) and J ∗(i,W ) of A∗(W ) with respect to
H∗c (Gn+1;−) so that

I ∗(W )Gn+1 ∼= C∗c (Gn+1;A
∗(W )) and J ∗(i,W )Gn+1 ∼= C∗c (G(i);B(i)

∗(W )).
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We shall enlarge the complexes C∗c (Gn+1;A
∗(W )) and C∗c (G(i);B(i)

∗(W )) to
double complexes C∗c (Gn+1; I ∗(W )) and C∗c (Gn+1; J (i,W )). We shall construct a
map of double complexes C∗c (Gn+1; I ∗(W ))→C∗c (Gn+1; J (i,W )), which induces
the inflation map H∗c (Gn+1;A

∗(W ))→ H∗c (G(i);B(i)
∗(W )). Then we shall show

that the map of double complexes induces an isomorphism on cohomology groups.
First, we construct an acyclic resolution I ∗(W ) of A∗(W ). We set

I q(W )=Mapc(G
q+1
n+1,A∗(W ))

the topological A∗-module of all continuous maps from Gq+1
n+1 to A∗(W ). Define a

map dq
: I q(W )→ I q+1(W ) by

dq( f )(g0, . . . , gq+1)=
q+1∑
j=0
(−1) j f (g0, . . . , g j−1, g j+1, . . . , gq+1).

Then I ∗(W )= {I q(W ), dq
}q≥−1 forms an augmented cochain complex satisfying

I−1(W )= A∗(W ). The group Gn+1 acts on the cochain complex I ∗(W ) and

I ∗(W )Gn+1 ∼= C∗c (Gn+1;A
∗(W )).

Lemma 5.11. For p > 0 and q ≥ 0, we have

H p
c (Gn+1; I q(W ))= 0 and H 0

c (Gn+1; I q(W ))= Cq
c (Gn+1;A

∗(W )).

The sequence 0→ A∗(W )
d−1

→ I 0(W )
d1

→ I 1(W )
d2

→ · · · is a split exact sequence
of topological A∗-modules. Hence I ∗(W ) is an acyclic resolution of A∗(W ) with
respect to H∗c (Gn+1;−).

Proof. Since I q(W ) = Mapc(G
q+1
n+1,A∗(W )), the first assertion is a consequence

of Corollary 5.5. We define sq
: I q(W )→ I q−1(W ) by sq( f )(g0, . . . , gq−1) =

f (e, g0, . . . , gq−1). Then we can verify that {sq
}q≥0 gives a desired splitting. �

Next we construct another acyclic resolution J ∗(i,W ) of A∗(W ). We set

J q(i,W )=Mapc(G(i)
q+1,B(i)∗(W ))Sn(i).

the topological A∗-module of all Sn(i)-equivariant continuous maps from G(i)q+1

to B(i)∗(W ). Define a map dq
: J q(i,W )→ J q+1(i,W ) by

dq f (g0, . . . , gp+1)=
p+1∑
j=0
(−1) j f (g0, . . . , g j−1, g j , . . . , gp+1).

Then J ∗(i,W ) = {J q(i,W ), dq
}q≥−1 forms an augmented cochain complex with

J−1(i,W )= A∗(W ). The group Gn+1 acts on J ∗(i,W ) and

J ∗(i,W )Gn+1 ∼= C∗c (G(i);B(i)
∗(W )).
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We compare J ∗(i,W ) with I ∗(W ). Let D∗ = C∗(Sn(i);B(i)∗) be the cochain
complex of Sn(i)with coefficients in B(i)∗. Since A∗→B(i)∗ is a Galois extension
with Galois group Sn(i), there is an isomorphism Dq ∼= B(i)∗⊗(q+1). Then the
differential dq

: Dq
→ Dq+1 corresponds to dq

:B(i)∗(q+1)
→B(i)∗(q+2) given by

dq(b0⊗ · · ·⊗ bq)=

q∑
j=0

(−1) j b0⊗ · · ·⊗ b j−1⊗ 1⊗ b j ⊗ · · ·⊗ bq

for b0, . . . , bq ∈ B(i)∗. Since G(i)∼= Gn+1× Sn(i) as an Sn(i)-space, and Dq is a
finitely generated free A∗-module, we see that J q(i,W )∼= I q(W )⊗ Dq . Then the
differential dq

: J q(i,W )→ J q+1(i,W ) corresponds to

dq
: I q(i,W )⊗B(i)∗⊗(q+1)

→ I q+1(i,W )⊗B(i)∗⊗(q+2)

given by

dq( f ⊗ b0⊗ · · ·⊗ bq)(g0, . . . , qq+1)

=

q+1∑
j=0
(−1) j f (g0, . . . , g j−1, g j+1, . . . , gq+1)⊗b0⊗· · ·⊗b j−1⊗1⊗b j⊗· · ·⊗bq .

Proposition 5.12. For p > 0 and q ≥ 0, we have

H p
c (Gn+1; J q(i,W ))= 0 and H 0

c (Gn+1; J q(i,W ))= Cq
c (Gn+1;A

∗(W )).

The sequence 0→A∗(W )
d−1

→ J 0(i,W )
d0

→ J 1(i,W )
d2

→· · · is a split exact sequence
of topological A∗-modules. Hence J ∗(i,W ) is an acyclic resolution of A∗(W ) with
respect to H∗c (Gn+1;−).

Proof. Let M = Map(Sn(i)q ,B(i)∗(W )). We have an isomorphism J q(i,W ) ∼=

Mapc(G
q+1
n+1,M) of topological Gn+1-modules. Since M is a product of finite many

copies of A∗(W ), we can write M = lim
←−λ

A∗Nλ with finitely generated Nλ. Then
the first assertion follows from Proposition 5.4. There is a continuous map ε :
B∗(i)→ A∗ of topological A∗-modules such that ε ◦η= 1, where η : A∗→ B∗(i)
is the unit. Define a map sq

: I q(i,W )⊗B(i)∗⊗(q+1)
→ I q−1(i,W )⊗B(i)∗⊗q by

sq( f ⊗ b0⊗ · · ·⊗ bq)(g0, . . . , gq−1)= f (e, g0, . . . , gq−1)⊗ ε(b0)b1⊗ · · ·⊗ bq .

Then we can verify that {sq
}q≥0 gives a desired splitting. �

We consider the double complexes C∗c (Gn+1; I ∗(W )) and C∗c (Gn+1; J ∗(i,W )).
The canonical inclusion A∗(W ) → B(i)∗(W ) and the projection G(i) → Gn+1

induce a cochain map I ∗(W )→ J ∗(i,W ), which is equivariant under the actions
of Gn+1. Hence we obtain a map of double complexes

(5-3) C∗c (Gn+1; I ∗(W ))−→ C∗c (Gn+1; J ∗(i,W )).
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We denote by Tot∗C∗,∗ the total cochain complex of a double complex C∗,∗.

Lemma 5.13. The cochain map

Tot∗C∗c (Gn+1; I ∗(W ))→ Tot∗C∗c (Gn+1; J ∗(i,W ))

is a quasi-isomorphism.

Proof. This follows from the fact that the map (5-3) induces an isomorphism on
cohomology groups on the second index by Lemma 5.11 and Proposition 5.12. �

Since the invariant subcomplex I ∗(W )Gn+1 is isomorphic to C∗c (Gn+1;A
∗(W )),

there is a cochain map

C∗c (Gn+1;A
∗(W ))−→ Tot∗C∗c (Gn+1; I ∗(W )).

Since the invariant subcomplex J ∗(i,W )Gn+1 is isomorphic to C∗c (G(i);B(i)
∗(W )),

there is a cochain map

C∗c (G(i);B(i)
∗(W ))−→ Tot∗C∗c (Gn+1; J ∗(i,W )).

Then we obtain the commutative diagram of cochain complexes

C∗c (Gn+1;A
∗(W )) −−−−−−→ C∗c (G(i);B(i)

∗(W ))y y
Tot∗C∗c (Gn+1; I ∗(W )) −−−−−−→ Tot∗C∗c (Gn+1; J ∗(i,W )),

(5-4)

where the top horizontal arrow induces the inflation map

H∗c (Gn+1;A
∗(W ))−→ H∗c (G(i);B(i)

∗(W )).

Lemma 5.14. The vertical arrows in the diagram (5-4) are quasi-isomorphisms.

Proof. By Lemma 5.11, the cohomology group of C∗c (Gn+1; I ∗(W )) on the first
index is isomorphic to C∗c (Gn+1;A

∗(W )). Hence the left vertical arrow is a quasi-
isomorphism. By Proposition 5.12, the cohomology group of C∗c (Gn+1; J ∗(i,W ))

on the first index is isomorphic to C∗c (G(i);B(i)
∗(W )). Hence the right vertical

arrow is a quasi-isomorphism. �

Corollary 5.15. The inflation map H∗c (Gn+1;A
∗(W )) −→ H∗c (G(i);B(i)

∗(W ))

is an isomorphism for any spectrum W and any i ≥ 0.

Proof of Theorem 5.8. Corollary 5.15 implies that the morphism (5-2) of spec-
tral sequences is an isomorphism from the E2-terms onward. Hence the inflation
map (5-1) is an isomorphism. �
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Remark 5.16. Let 3 be an essentially small cofiltered category. For a system
{Nλ}λ∈3 of finitely generated twisted E∗n+1-Gn+1-modules, we set M = lim

←−λ
A∗Nλ

and B∗M = lim
←−λ

B∗ ⊗A∗ A∗Nλ. By the same method as above, we can define
H∗c (G;B∗M) and show that there is an isomorphism

H∗c (Gn+1;M)
∼=
→ H∗c (G;B

∗M).

6. Morphism of spectral sequences

In this section we construct a natural morphism of spectral sequences from the
K (n)-local En-Adams spectral sequence to the K (n)-localization of the K (n+1)-
local En+1-Adams spectral sequence.

Let BP be the Brown–Peterson spectrum at p. We denote by BP∧s the smash
product of s copies of BP:

BP∧s
=

s︷ ︸︸ ︷
BP ∧ · · · ∧ BP .

The commutative ring spectrum structure on BP makes BP∧•+1
= {BP∧s+1

}s≥0

a cosimplicial object in the p-local stable homotopy category with augmentation
S0
(p)

ε
→ BP∧•+1. Then the associated cochain complex

∗→ S0
(p)

ε
−→ BP

d
−→ BP∧2 d

−→ BP∧3 d
−→ · · ·(6-1)

is a p-local BP-Adams resolution of S0
(p) in the sense of [Miller 1981; Dev-

inatz and Hopkins 2004]. We denote by Res(BP; S0
(p)) the sequence (6-1). Then

Res(BP; S0
(p)) gives us a diagram of exact triangles

S0
(p) =X0 i

←−−−−−−−−X1 i
←−−−−−−−−X2 i

←−−−−−−−−X3

J
J
JĴ

j







�
k
J
J
JĴ

j







�
k
J
J
JĴ

j







�
k . . . ,

BP 6−1 BP∧2 6−2 BP∧3

(6-2)

where k has degree −1 and jk = d . We denote by Ad(BP; S0
(p)) the diagram of

exact triangles (6-2).
By applying the K (n)-localization functor to the augmented cosimplicial com-

mutative ring spectrum S0
(p)

ε
→ BP∧•+1, we obtain an augmented cosimplicial

K (n)-local commutative ring spectrum L K (n)S0 ε
→ L K (n)BP∧•+1, and the associ-

ated augmented cochain complex

(6-3) ∗→ L K (n)S0 ε
−→ L K (n)BP

d
−→ L K (n)BP∧2 d

−→ L K (n)BP∧3 d
−→ · · · .
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We denote by L K (n)Res(BP; S0
(p)) the sequence (6-3).

Proposition 6.1. The sequence L K (n)Res(BP; S0
(p)) is a K (n)-local En-Adams

resolution of L K (n)S0.

Proof. To prove the proposition, it suffices to show that L K (n)BP∧s is En-injective
for s> 0 and the sequence (6-3) is En-exact. By [Hovey and Sadofsky 1999, Theo-
rem B], L K (n)BP is a coproduct of (suspensions of) L K (n)E(n)’s in the K (n)-local
category. Since L K (n)E(n) is a direct summand of En , L K (n)BP is En-injective.
Hence L K (n)BP∧s is En-injective for s > 0. To prove that the sequence (6-3) is
En-exact, it is sufficient to show that the sequence (6-3) smashing with En is a split
exact sequence. There is a canonical ring spectrum map η : L K (n)BP→ En . Then
the following map

L K (n)(En∧BP∧s+1)
1∧η∧1∧s

−−−−−−→ L K (n)(En∧En∧BP∧s)
m∧1∧s

−−−−−−→ L K (n)(En∧BP∧s)

for s ≥ 0 gives a splitting, where m is the multiplication of En . �

The K (n)-localization functor gives a map of cosimplicial objects BP•+1
→

E•+1
n covering the map S0

(p)→ L K (n)S0. This induces a map

L K (n)Res(BP; S0
(p))→ Res(En; L K (n)S0)

of cochain complexes and a map L K (n)Ad(BP; S0)→ Ad(En; L K (n)S0) of dia-
grams of exact triangles. By Proposition 6.1, the map

L K (n)Res(BP; S0
(p))→ Res(En; L K (n)S0)

is a cochain homotopy equivalence. Hence L K (n)Ad(BP; S0)→Ad(En; L K (n)S0)

is an equivalence of diagram of exact triangles in an appropriate sense.
The canonical ring spectrum map BP → En+1 induces a map of diagrams of

exact triangles

Ad(BP; S0
(p))−→ L K (n+1)Ad(BP; S0

(p))
'
−→ Ad(En+1; L K (n+1)S0).

By applying the K (n)-localization functor to this map, we obtain a map of diagrams
of exact triangles

L K (n)Ad(BP; S0
(p))−→ L K (n)Ad(En+1; L K (n+1)S0).

Then this map of exact triangles implies the following theorem.

Theorem 6.2. For any spectrum W , there is a natural morphism of spectral se-
quences

ϕr (W ) : L K (n)E s,t
r (W )−→ L K (n)L K (n+1)E s,t

r (W ),

which converges to [W, L K (n)S0
]
∗
→ [W, Ŝ]∗.
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7. The inflation map

In Section 6 we constructed a natural morphism

ϕr (W ) : L K (n)E∗,∗r (W )→ L K (n)L K (n+1)E∗,∗r (W )

of spectral sequences for any spectrum W . In this section we construct a natu-
ral map θ(W ) : H∗c (Gn; E∗n(W )) → H∗c (Gn+1;A

∗(W )) by using the cohomol-
ogy group H∗c (G;B∗(W )) in Section 5. Then we show that θ(W ) coincides with
ϕ2(W ).

For a spectrum W , define cochain complexes C∗,∗BP (W ) and L K (n)C
∗,∗
BP (W ) by

C s,∗
BP(W ) = [W, BP∧s+1

]
∗,

L K (n)C
s,∗
BP(W ) = [W, L K (n)(BP∧s+1)]∗.

The ring spectrum maps BP→ L K (n)BP→ En induce cochain maps

C∗,∗BP (W )→ L K (n)C
∗,∗
BP (W )→ C∗c (Gn; E∗n(W )).

We shall describe the cochain map C∗,∗BP (W )→ C∗c (Gn; E∗n(W )) in terms of for-
mal group laws. The universal deformation Fn over E0

n induces a graded ring
homomorphism BP∗→ En∗. Recall that, for g = (γ, s) ∈ 0n Sn = Gn , there is a
unique isomorphism t (g) : Fn→ Fg

n over E0
n , which is a lifting of the isomorphism

s : Hn→ Hγ
n = Hn over F. For g, h ∈Gn , we set t (g, h)= t (h)◦t (g)−1

: Fg
n → Fh

n .
For a sequence g = (g0, g1, . . . , gs) of elements in Gn , we define a graded ring
homomorphism

t (g) : BP∗(BP)⊗(s+1)
−→ En∗

to be the map representing the following string of isomorphisms of formal group
laws

Fn
t (g0)
−−−→ Fg0

n
t (g0,g1)
−−−→ Fg1

n
t (g1,g2)
−−−→ · · ·

t (gs−1,gs)
−−−−→ Fgs

n .

For a spectrum W , we denote by ev(g) : C s
c(Gn; E∗n(W ))→E∗n(W ) the evaluation

map at g = (g0, g1, . . . , gs). If W is a finite spectrum, we denote its S-dual by
DW . Then there are natural isomorphisms BP−∗(W )∼= BP∗(DW ) and E−∗n (W )∼=

En∗(DW )∼= BP∗(DW )⊗BP∗ En∗. In particular, we have

C s,−∗
BP (W )∼= BP∗(DW )⊗BP∗ BP∗(BP)⊗s .

Lemma 7.1. Let W be a finite spectrum. For a sequence g = (g0, g1, . . . , gs) of

elements in Gn , the composition C s,−∗
BP (W ) −→ C s

c(Gn; E−∗n (W ))
ev(g)
−−→ E−∗n (W )
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is given by

BP∗(DW )⊗BP∗ BP∗(BP)⊗s ψ⊗1⊗s

−−−−−−→ BP∗(DW )⊗BP∗ BP∗(BP)⊗(s+1)

1⊗t (g)
−−−−−−→ BP∗(DW )⊗BP∗ En∗,

where ψ is the BP∗(BP)-comodule structure map of BP∗(DW ).

Proof. For g ∈ Gn , the ring spectrum map g : En → En induces a map g−∗ :
E−∗n (W )→ E−∗n (W ). This map g−∗ is given by the composition

BP∗(DW )⊗BP∗ En∗
ψ⊗1

−−−−−−−−→ BP∗(DW )⊗BP∗ BP∗(BP)⊗BP∗ En∗

1⊗t (g)⊗g∗
−−−−−−−−→ BP∗(DW )⊗BP∗ En∗.

Next we consider the map g0 ∧ · · · ∧ gs : E∧s+1
n → E∧s+1

n . This induces a map
(g0 ∧ · · · ∧ gs)

−∗
: (E∧s+1

n )−∗(W ) → (E∧s+1
n )−∗(W ). Note that there is a nat-

ural isomorphism (E∧s+1
n )−∗(W ) ∼= BP∗(DW )⊗BP∗ π∗E

∧s+1
n since π∗E∧s+1

n is
Landweber exact. Then (g0 ∧ · · · ∧ gs)

−∗ is given by

BP∗(DW )⊗BP∗ π∗E
∧s+1
n

ψ⊗1
−−−→ BP∗(DW )⊗BP∗ BP∗(BP)⊗BP∗ π∗E

∧s+1
n

1⊗t (g0)⊗π∗(g0∧···∧gs)
−−−−−−−−−−−−−→ BP∗(DW )⊗BP∗ En∗⊗En∗ π∗E

∧s+1
n

∼= BP∗(DW )⊗BP∗ π∗E
∧s+1
n .

The lemma follows from the fact that the composition

C s,−∗
BP (W )−→ C s

c(Gn; E−∗n (W ))
ev(g)
−−→ E−∗n (W )

is induced by the map BP∧s+1
→ E∧s+1

n
g0∧···∧gs
−−−−−−→ E∧s+1

n
m
−→ En , where m is the

multiplication map of the ring spectrum En . �

Next we construct a cochain map C∗c (Gn; E∗n(W )) −→ C∗c (G;B∗(W )), which
induces a map H∗c (Gn; E∗n(W ))−→ H∗c (G;B∗(W )).

Lemma 7.2. The ring spectrum map I : En → B and the projection G → Gn

induce a cochain map C∗c (Gn; E∗n(W ))−→ C∗c (G;B∗(W )) for any spectrum W .

Proof. There are isomorphisms

C∗c (Gn; E∗n(W )) ∼= lim
←−λ

lim
−→i C∗c (G(i), E∗n(Wλ)),

C∗c (G;B∗(W )) ∼= lim
←−λ

lim
−→i C∗c (G(i),B(i)∗(Wλ)).

Then the canonical maps E∗n(Wλ)→B(i)∗(Wλ) and the projections G(i)→Gn(i)
induce the desired cochain map. �
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Remark 7.3. Let 3 be an essentially small cofiltered category. For a system
{Nλ}λ∈3 of finitely generated twisted E∗n -Gn-modules annihilated by a power of
the ideal In , we set N = lim

←−λ
Nλ and B∗N = lim

←−λ
B∗⊗E∗n Nλ. By the same method

as above, we can obtain a cochain map C∗c (Gn; N )→ C∗c (G;B∗N ).

Recall that in Section 5 we defined a cochain map C∗c (Gn+1;A
∗(W )) −→

C∗c (G;B∗(W )), which induces an isomorphism of cohomology groups

H∗c (Gn+1;A
∗(W ))

∼=
→ H∗c (G;B

∗(W ))

by Theorem 5.8. We define a map

(7-1) θ(W ) : H∗c (Gn; E∗n(W ))−→ H∗c (Gn+1;A
∗(W ))

by the composition

H∗c (Gn; E∗n(W ))−→ H∗c (G;B
∗(W ))

∼=
←− H∗c (Gn+1;A

∗(W )),

where the first map is induced by the cochain map in Lemma 7.2.
In the rest of this section we compare θ(W ) to ϕ2(W ). The ring spectrum maps

BP→ L K (n)BP→ L K (n)En+1 = A induce cochain maps

C∗,∗BP (W )→ L K (n)C
∗,∗
BP (W )→ C∗c (Gn+1;A

∗(W )).

We consider the following diagram of cochain complexes

C∗,∗BP (W ) −→ C∗c (Gn+1;A
∗(W ))y y

C∗c (Gn; E∗n(W )) −→ C∗c (G;B∗(W )).

(7-2)

This diagram is not commutative but we shall show that it is cochain homotopy
commutative for finite spectra W by constructing a natural cochain homotopy.

Lemma 7.4. If W is a finite spectrum, then the diagram (7-2) is cochain homotopy
commutative.

Proof. Let π : G → Gn be the projection. For g, h ∈ G, we have an isomor-
phism of formal group laws t (π(g), π(h)) : Fπ(g)n → Fπ(h)n over E0

n . If we regard
t (π(g), π(h)) as a power series over B0, then we obtain an isomorphism of formal
group laws t (g, h) : Fg

n → Fh
n over B0. In the same way we obtain an isomor-

phism of formal group laws u(g, h) : Fg
n+1→ Fh

n+1 over B0. Recall that there is
an isomorphism of formal group laws 8 : Fn+1 → Fn over B0. For a sequence
g = (g0, g1, . . . , gs) of elements in G, consider the following diagram of formal
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groups laws and isomorphisms over B0

Fn+1
u(g0)
−−−→ Fg0

n+1
u(g0,g1)
−−−→ Fg1

n+1 −→ · · · −→ Fgi
n+1y8gi

Fgi
n

t (gi ,gi+1)
−−−−→ Fgi+1

n −→ · · · −→ Fgs
n .

This diagram induces a graded ring homomorphism Ti (g) : BP∗(BP)⊗(s+2)
→B∗.

We fix an isomorphism between B−∗(W ) and BP∗(DW )⊗BP∗ B∗, where B∗ is a
BP∗-module through the graded ring homomorphism BP∗ → B∗ classifying the
p-typical formal group law Fn+1. We define a map C s+1,−∗

BP (W )→ B−∗(W ) by

BP∗(DW )⊗BP∗ BP∗(BP)⊗(s+1) ψ⊗1⊗(s+1)

−−−−−−→ BP∗(DW )⊗BP∗ BP∗(BP)⊗(s+2)

1⊗Ti (g)
−−−−−−→ BP∗(DW )⊗BP∗ B∗.

This map extends to a map

Si : C
s+1,∗
BP (W )−→ lim

−→i Mapc(G(i)
s+1,B(i)∗(W ))G(i) = Cs

c(G;B
∗(W )).

We shall verify that
∑s

i=0(−1)i Si is a desired cochain homotopy. First note that
the map E−∗n (W )→ B−∗(W )∼= BP∗(DW )⊗BP∗ B∗ is given by

BP∗(DW )⊗BP∗ En∗
ψ⊗1

−−−−−−→ BP∗(DW )⊗BP∗ BP∗(BP)⊗BP∗ En∗

1⊗8⊗I∗
−−−−−−→ BP∗(DW )⊗BP∗ B∗,

where8 : BP∗(BP)→B∗ is the graded ring homomorphism classifying the isomor-
phism 8 : Fn+1→ Fn , and I∗ : En∗→B∗ is the induced map by the ring spectrum
map I . Let a∗ be the cochain map C∗,∗BP (W )→C∗c (Gn; E∗n(W ))→ C∗c (G;B∗(W ))

and let b∗ be the cochain map C∗,∗BP (W )→C∗c (Gn+1; E∗n+1(W ))→C∗c (G;B∗(W )).
We see that ev(g) ◦ as is given by

BP∗(DW )⊗BP∗ BP∗(BP)⊗s ψ⊗1⊗s

−−−→ BP∗(DW )⊗BP∗ BP∗(BP)⊗(s+1)

1⊗U (g)
−−−→ BP∗(DW )⊗BP∗ B∗,

where U (g) is the graded ring homomorphism classifying the following string of
isomorphisms of formal group laws

Fn+1
t (g0)◦8
−−−→ Fg0

n
t (g0,g1)
−−−→ Fg1

n
t (g1,g2)
−−−→ · · ·

t (gs−1,gs)
−−−−→ Fgs

n .
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In the cosimplicial module C•,∗BP (W ), the map di : C s,−∗
BP (W ) → C s+1,−∗

BP (W ) is
given by

di =


ψ ⊗ 1⊗s if i = 0,

1⊗ 1⊗(i−1)
⊗1⊗ 1⊗(s−i) if 1≤ i ≤ s,

1⊗ 1⊗s
⊗ ηL if i = s+ 1,

where 1 : BP∗(BP) → BP∗(BP)⊗2 is the comultiplication, and ηL : BP∗ →
BP∗(BP) is the left unit. Then we see that

S0 ◦ d0 = as,

Si ◦ d j = d j ◦ Si−1 for 0≤ j < i ≤ s,

Si−1 ◦ di = Si ◦ di for 0< i ≤ s,

Si ◦ d j = d j−1 ◦ Si for 0≤ i < j − 1≤ s,

Ss ◦ ds+1 = bs .

This implies that

s∑
i=0

(−1)i Si ◦

s+1∑
j=0

(−1) j d j +

s∑
j=0

(−1) j d j ◦

s−1∑
i=0

(−1)i Si = as
− bs .

This completes the proof. �

For a spectrum W , we have a similar diagram of cochain complexes

L K (n)C
∗,∗
BP (W ) −→ C∗c (Gn+1;A

∗(W ))y y
C∗c (Gn; E∗n(W )) −→ C∗c (G;B∗(W )).

(7-3)

When W is a finite spectrum, we let S(W ) : C∗,∗BP (W )→ C∗−1
c (G;B∗(W )) be the

cochain homotopy constructed in the proof of Lemma 7.4. Then S(W ) extends
to a cochain homotopy L K (n)S(W ) : L K (n)C

∗,∗
BP (W )→ C∗−1

c (G;B∗(W )), which
makes the diagram (7-3) homotopy commutative.

Proposition 7.5. For any spectrum W , the diagram (7-3) is cochain homotopy
commutative.

Proof. Since the cochain homotopy L K (n)S(W ) is natural for finite spectra W , we
obtain a cochain homotopy

lim
←−λ

L K (n)S(Wλ) :

lim
←−λ

L K (n)C
∗,∗
BP (Wλ)−→ lim

←−λ
C∗−1

c (G;B∗(Wλ))= C∗−1
c (G;B∗(W )),
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where the inverse limits are taken over λ ∈ 3(W ). Then the composition with
the cochain map L K (n)C

∗,∗
BP (W )−→ lim

←−λ
L K (n)C

∗,∗
BP (Wλ) makes the diagram (7-3)

cochain homotopy commutative. �

Theorem 7.6. The map

θ(W ) : H∗c (Gn; E∗n(W ))→ H∗c (Gn+1; E∗n+1(W ))

coincides with the map ϕ2(W ) for any spectrum W .

Proof. In the diagram (7-3) the left vertical arrow is a quasi-isomorphism by
Proposition 6.1. So is the right vertical arrow, by Theorem 5.8. The theorem
follows because the top horizontal arrow induces the map ϕ2(W ) and the bottom
horizontal arrow induces the map θ(W ). �

8. Nontriviality of the image of ζn

In this section we prove Theorem 8.1 as an application of the results in this note. By
the Hopkins–Miller theorem [Devinatz and Hopkins 2004, Theorem 6], we know
that there exists a nontrivial element ζn ∈ π−1(L K (n)S0), which is represented by
the reduced norm map of Gn in the E2-term of the K (n)-local En-Adams spectral
sequence. The K (n)-localization of the K (n+1)-localization map S0

→ L K (n+1)S0

induces a map L K (n)S0
→ L K (n)L K (n+1)S0. In this section we show that the im-

age of ζn under the map π∗(L K (n)S0)→ π∗(L K (n)L K (n+1)S0) is nontrivial as an
application of Theorems 4.7 and 5.8.

By Theorem 6.2, we have a morphism of spectral sequences

ϕr = ϕr (S0) : L K (n)E∗,∗r (S0)−→ L K (n)L K (n+1)E∗,∗r (S0),

which converges to π∗(L K (n)S0)→ π∗(L K (n)L K (n+1)S0). Then ϕ2 is identified
with the inflation map

θ = θ(S0) : H∗c (Gn; E∗n)−→ H∗c (Gn+1;A
∗)

by Theorem 5.8. The reduced norm map of Gn defines an element zn ∈H 1
c (Gn; E0

n)

which represents ζn ∈ π−1(L K (n)S0). We set wn = θ(zn) ∈ H 1
c (Gn+1;A

0), and
denote by ωn the image of ζn under the map π∗(L K (n)S0)→π∗(L K (n)L K (n+1)S0).
Then wn is a permanent cycle and it represents ωn .

Theorem 8.1. ωn ∈ π−1(L K (n)L K (n+1)S0) is nontrivial.

Proof. In [Torii 2003] we constructed a map

θ ′ : H∗c (Gn; F[w±1
])−→ H∗c (Gn+1; F((un))[u±1

]).
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Then there exists a commutative diagram

H∗c (Gn; E∗n)
θ

−−−−−−→ H∗c (Gn+1;A
∗)

π

y yπ
H∗c (Gn; F[w±1

])
θ ′

−−−−−−→ H∗c (Gn+1; F((un))[u±1
]),

where the vertical arrows π are canonical reduction maps. In [Torii 2005] we
calculated the image of θ ′ : H 1

c (Gn; F[w±1
])→ H 1

c (Gn+1; F((un))[u±1
]), and we

showed that θ ′(π(zn)) is nontrivial. This implies that θ(zn) ∈ H 1
c (Gn+1;A

0) is
nontrivial. Since θ(zn) is a permanent cycle and lies in the 1-line of the spectral
sequence, it represents a nontrivial element in π−1(L K (n)L K (n+1)S0). �
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