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We show that the inclusion map of the generalized Thompson groups F(ni )

is exponentially distorted in the Thompson–Stein groups F(n1, . . . , nk) for
k>1. One consequence is that F is exponentially distorted in F(n1, . . . , nk)

for k>1 whenever ni =2m for some m (whenever no i, m exist such that ni =

2m, there is no obviously “natural” inclusion map of F into F(n1, . . . , nk)).
This is the first known example in which the natural embedding of one of
the Thompson-type groups into another is not quasi-isometric.

1. Introduction

In this paper, we use some of the motivating ideas behind the proofs of the metric
properties developed in [Wladis 2009] to show that the inclusion map of the gen-
eralized Thompson groups F(ni ) into F(n1, . . . , nk) is exponentially distorted for
k > 1. A quasi-isometric embedding of a subgroup into a larger group induces a
metric on the subgroup that is equivalent to subgroup metric. In contrast, when an
embedding is not quasi-isometric, the subgroup distortion measures the extent to
which this metric is distorted by the embedding map (for formal definitions, see
Section 4).

We give here the first known example of the natural embedding of one Thompson-
type group being distorted inside another. Burillo, Cleary and Stein [Burillo et al.
2001] showed that F(n) is quasi-isometrically embedded into F(m) for all n,m ∈
N−{1}, and along with Taback, that F is quasi-isometrically embedded in Thomp-
son’s group T [Burillo et al. 2009]. Different methods have been used to show that
Fn
× Zm is quasi-isometrically embedded in F for all m, n ∈ N [Burillo 1999;

Cleary and Taback 2003; Guba and Sapir 1999; Guba and Sapir 1997]. Since the
development of the main theorem of this paper, Burillo and Cleary [2010] have
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used similar methods as those described here to prove that the canonical embed-
dings of Thompson’s groups F and V are also distorted in the higher dimensional
Thompson’s group nV .

Robert Thompson introduced the three groups named after him in the early
1960s (see [McKenzie and Thompson 1973]). Denoted by F ⊂ T ⊂ V , they have
provided many interesting group-theoretic counterexamples: T and V were the
first known infinite, simple, finitely presented groups, and F was the first known
example of a torsion-free infinite-dimensional FP∞ group. For more information
see [Cannon et al. 1996].

The groups F(n1, . . . , nk), generalizing F , were first explored in depth by
Melanie Stein [1992]. Related explorations of general classes in this family of
groups, each of which can be considered to be a generalization of the Thompson
groups, include [Higman 1974; Brown and Geoghegan 1984; Brown 1987; Brin
and Guzmán 1998; Brin and Squier 2001; Bieri and Strebel 1985].

Definition 1.1. The Thompson–Stein group F(n1, . . . , nk), where k ∈ N and n1,

. . . , nk ∈{2, 3, 4, . . . } are pairwise relatively prime, is the group of piecewise linear
orientation-preserving homeomorphisms of the closed unit interval with finitely
many breakpoints in Z[ 1

n1···nk
] and slopes in the group 〈n1, n2, . . . , nk〉 in each

linear piece. We abbreviate F(2) by F .

Stein [1992] explored the homological and simplicity properties of F(n1, . . . ,nk)

and showed that they are of type FP∞ and finitely presented, and gave a technique
for computing infinite and finite presentations. In [Wladis 2009], using Stein’s
presentations, we developed the theory of tree-pair diagram representation for el-
ements of F(n1, . . . , nk), gave a unique normal form, and calculated sharp upper
and lower bounds on the metric in terms of the number of leaves in the minimal
tree-pair diagram representative. The proofs in this paper use the normal form
results and some of the same motivating ideas behind the metric approximations
used in our 2009 paper.

The results of this article hold for all groups of the form F(n1, . . . , nk) that
satisfy the condition n1−1|n j−1 for all j ∈ {1, . . . , k}; throughout this paper,
when we refer to the group F(n1, . . . , nk), this divisibility criterion will be im-
plied. Groups not satisfying this criterion will have a significantly different group
presentation, and therefore require alternate normal form and metric techniques
than those presented here or in [Wladis 2009]. Much of the introductory material
in this paper is summarized from that paper, where more detail can be found.

2. Representing elements using tree-pair diagrams

The proofs in this paper depend heavily on the representation of elements of F(m)
and F(n1, . . . , nk) by tree-pair diagrams; see [Wladis 2007; 2009] for more details.
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Definition 2.1. An n-ary caret, or caret of type n, is a graph which has n + 1
vertices joined by n edges: one vertex has degree n (the parent) and the rest have
degree 1 (the children).

An (n1, . . . , nk)-ary tree is a graph formed by joining a finite number of carets
by identifying the child vertex of one caret with the parent vertex of another so
that every caret in the tree has a type in {n1, . . . , nk}. An (n1, . . . , nk)-ary tree-
pair diagram is an ordered pair of (n1, . . . , nk)-ary trees with the same number of
leaves.

If a vertex in a tree has degree 1, it is referred to as a leaf.
An (n1, . . . , nk)-ary tree represents a subdivision of [0, 1] using the following

recursive process, which assigns a subinterval of [0, 1] to each leaf in the tree: the
root vertex represents the interval [0, 1]; for a given n-ary caret in the tree with
parent vertex representing [a, b], the n child vertices represent the subintervals[
a, a+ 1

n

]
,
[
a+ 1

n , a+ 2
n

]
, . . . ,

[
b− 1

n , b
]

respectively.
Every element of F(n1, . . . , nk) can be represented by an (n1, . . . , nk)-ary tree-

pair diagram and vice versa. We number the leaves in a tree beginning with zero,
in increasing order from left to right; a leaf’s placement in this order is determined
by the relative position of the subinterval within [0, 1] which it represents. Once
the leaves of each tree in a tree-pair diagram are numbered, then the element of
F(n1, . . . , nk) which it represents is the map which takes the subinterval of [0, 1]
represented by the i th leaf in the domain tree to the subinterval of [0, 1] repre-
sented by the i th leaf in the range tree. Because every element of F(n1, . . . , nk)

is a piecewise linear map with fixed endpoints, it can be determined solely by the
ordered subintervals in the domain and range. For example, the element given in
Figure 1 is just the map

{[
0, 1

2

]
,
[1

2 ,
3
4

]
,
[ 3

4 , 1
]}
→

{[
0, 1

3

]
,
[ 1

3 ,
2
3

]
,
[2

3 , 1
]}

.

Figure 1. An example element of F(2, 3).

Equivalence and minimality of tree-pair diagrams. We will analyze properties of
F(m) and F(n1, . . . , nk) by identifying each group element with an equivalence
class of tree-pair diagrams, so we must have criteria for equivalence. And because
our metric is based on using a minimal tree-pair diagram representative for an
element, we also give minimality criteria.

Definition 2.2. Two trees are equivalent if they represent the same subdivision of
the unit interval; two tree-pair diagrams are equivalent if they represent the same
element of F(n1, . . . , nk).
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An exposed caret pair in a tree-pair diagram is a pair of carets of the same type,
one in each tree, such that all the child vertices of each caret are leaves, and both sets
of leaves have identical leaf index numbers. Exposed caret pairs can be canceled in
a tree-pair diagram to produce an equivalent tree-pair diagram with fewer leaves.
Analogously, we can add a pair of identical carets to a tree-pair diagram to the
leaves with the same index number in each tree and obtain an equivalent tree-pair
diagram.

Definition 2.3. An (n1, . . . , nk)-ary tree-pair diagram is minimal if it has the small-
est number of leaves of any tree-pair diagram in the equivalence class representing
a given element of F(n1, . . . , nk). In F(m), a tree-pair diagram is minimal if and
only if it contains no exposed caret pairs.

Definition 2.4. For any given j ∈ {1, . . . , k}, the n j -valence of a leaf l ∈ T is the
number of n j -ary carets which have an edge on the path from the root vertex to l;
it is denoted by vn j (l). If we refer to just the valence of l, or v(l), this refers to the
vector 〈vn1(l), . . . , vnk (l)〉.

Theorem 2.5 [Wladis 2009]. The (n1, . . . , nk)-ary trees T and S are equivalent if
and only if L(T )= L(S) and v(li )= v(ki ) for all leaves li ∈ T , ki ∈ S.

Tree-pair diagram composition. To find ba for b, a∈ F(n1, . . . , nk), b= (T−, T+)
and a = (S−, S+), we need to make S+ equivalent to T−. This is accomplished by
adding carets to T− and S+ (and by extension to the leaves with the same index
numbers in T+ and S− respectively) until the valence of all leaves of both T− and
S+ are the same. If we let T ∗

−
, T ∗
+
, S∗
−

S∗
+

denote T−, T+, S−, S+, respectively, after
this addition of carets; then the (possibly nonminimal) product is (S∗

−
, T ∗
+
) (see

Figure 2). The process of tree-pair diagram composition always terminates; see
[Wladis 2009].

Figure 2. Composition of two elements of F(2, 3). Solid lines
indicate the carets present in the original elements a and b, and
dotted lines indicate carets that must be added during composi-
tion. The tree-pair diagram representative of ba is the pair which
contains the domain tree of a and the range tree of b, with both
hatched and solid line carets included.
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3. The metric in F(n) and F(n1, . . . , nk)

Standard presentations. Stein [1992] gave a method for finding the finite presen-
tations for the groups F(n1, . . . , nk); in [Wladis 2009] we computed the exact
finite presentations explicitly. For the sake of simplicity, we give the presentation
for F(2, 3) only here. For presentations for F(n1, . . . , nk) more generally, see
[Wladis 2009].

Theorem 3.1 [Stein 1992; Wladis 2009]. Thompson’s group F(2, 3) admits the
infinite presentation with generators x0, y0, z0, x1, y1, z1, . . . and relators

γj xi = xiγ j+1 and γj zi = ziγ j+2 when i < j for γ = x, y, z;

yi+1zi = yi xi+1xi and xi zi+1zi = zi xi+2xi+1xi for all i.

Figure 3. Infinite generators for F(2, 3).

Theorem 3.2 [Stein 1992; Wladis 2009]. F(2, 3) admits the finite presentation
with generators {x0, x1, y0, y1} and relators

x2x0 = x0x3, y2x0 = x0 y3, x1z0 = z0x3, y1z0 = z0 y3,

x3x1 = x1x4, y3x1 = x1 y4, x2z1 = z1x4, y2z1 = z1 y4,

x0z1z0 = z0x2x1x0, x1z2z1 = z1x3x2x1,

where

x3 = x−1
1 x2x1, y3 = x−1

1 y2x1, z0 = y−1
1 y0x1x0,

x4 = x−1
2 x3x2, y4 = x−1

2 y3x2, z1 = y−1
2 y1x2x1, z2 = y−1

3 y2x3x2.

The standard presentations for F (see [Brown 1987]) are:

Infinite: {x0, x1, x2, · · · | x j xi = xi x j+1 for i < j}

Finite: {x0, x1 | [x0x−1
1 , x−1

0 x1x0], [x0x−1
1 , x−2

0 x1x2
0 ]}

The metric. It is well known that the metric in F and F(n) is quasi-isometric to the
number of carets (or equivalently to the number of leaves) in the minimal tree-pair
diagram representative of a given group element. However, this does not hold for
F(n1, . . . , nk) when k > 1; it is this fact which will be exploited to show that F is
distorted in F(n1, . . . , nk).
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Notation 3.3. The notation |x |F(n) and |x |F(n1,...,nk)
will be used to represent the

length of the element x in F(n) and F(n1, . . . , nk) respectively, with respect to the
standard finite generating set.

Notation 3.4. The notation L(T ), L(T−, T+), and L(x) denotes the number of
leaves in the tree T , in either tree of the tree-pair diagram (T−, T+), and in either
tree of the minimal tree-pair diagram for x respectively.

We note that both trees in a tree-pair diagram have the same number of leaves.

Theorem 3.5 [Fordham and Cleary 2009; Burillo et al. 2001]. For x ∈ F(n),
|x |F(n) is quasi-isometric to L(x) (see Definition 4.1 for formal definition).

Theorem 3.6 [Wladis 2009]. There exist fixed B,C ∈ N such that

logB L(x)≤ |w|F(n1,...,nk)
≤ C L(w) for all x ∈ F(n1, . . . , nk).

These bounds are sharp.

Normal form. A unique normal form exists for F(n1, . . . , nk) with respect to the
standard infinite presentations. This normal form essentially provides an algorithm
for converting a tree-pair diagram into an algebraic expression in the normal form
and vice versa. For the main proofs of this paper, we will introduce several elements
for which we will give both an algebraic expression in the normal form and a tree-
pair diagram representative. To understand the proofs that follow, one need only
consider the tree-pair diagrams, and one need not see explicitly how the algebraic
expression comes from the tree-pair diagram representative, so for the sake of space
and simplicity of presentation, we have omitted a full explanation of how to write
out the normal form for a given element in F(n1, . . . , nk); however, full details on
this algorithm can be found in [Wladis 2009].

4. Quasi-isometry and subgroup distortion

A quasi-isometrically embedded subgroup has a metric that is equivalent to the
induced metric within the larger group. In contrast, an embedding which is not
quasi-isometric can be said to be distorted, and the type of this distortion measures
the extent to which the metric is distorted by the embedding map.

Definition 4.1. The groups X and Y are quasi-isometric if there exist fixed c1, c2>

0 and an embedding f : X→ Y such that

1
c1
|x |X − c2 ≤ | f (x)|Y ≤ c1|x |X + c2,

where |x |X and |x |Y are the lengths of x ∈ X and x ∈ Y respectively, with respect
to a fixed finite generating set. When X ⊂ Y , the embedding f will be assumed to
be the inclusion map, so we often omit explicit mention of the embedding itself.
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Let x ∈ X ⊂ Y . The distortion function is defined by

D(r)= 1
r

max
{
|x |X , |x |Y

∣∣ |x |Y < r
}
.

For finitely generated groups, the distortion function is bounded if and only if
the inclusion map of X into Y is a quasi-isometric embedding. When D(r) is a
function that grows without bound as r→∞, then we say that X is distorted in Y ;
the function type of D(r) determines the type of the distortion (i.e. we say that a
subgroup with exponential D(r) is exponentially distorted). We use the notation∼
to denote quasi-isometry. The property of quasi-isometry is transitive: whenever
X ∼ Y and Y ∼ Z , X ∼ Z .

F is exponentially distorted in F(n1, . . . , nk). We begin by proving that the in-
clusion map of F(ni ) is exponentially distorted in F(n1, . . . , nk) whenever there
exists j ∈ {1, . . . , k} such that ni−1|n j−1 by constructing a distorted element in
F(ni ) explicitly. In the next section, we generalize this result to all i ∈ {1, . . . , l}.

Definition 4.2. We say that a tree is balanced if v(li )=v(lj ) for all leaves li , lj ∈T .

Theorem 4.3. F(ni ) is exponentially distorted in F(n1, . . . , nk) for k > 1 when-
ever there exists n j such that j ∈ {1, . . . , k}, i 6= j , and ni−1|n j−1.

Proof. For the sake of readability, we will restrict all the explicit details of this
proof to the canonical embedding of F into F(2, 3) since this is the simplest
case. However, this proof holds for all F(ni ) that meet the stated conditions of
the theorem; at key points in this proof, we will indicate what adjustments need to
be made to generalize the results to the general case.

We will show that w = y−n
0 x0 yn

0 is such that |w|F ≥
1
A 3n for some A ∈ N by

showing that L(w)≥ 1
A 3n . We consider the product of the representative tree-pair

diagrams given in Figure 4.

Figure 4. The product w = y−n
0 x0 yn

0 .

In order to perform this composition, a binary caret must be added to every leaf
in Sn

−
and Sn

+
, to produce (Sn

−
)1 and (Sn

+
)1 respectively. Then a second binary

caret must be added to the leaves with index numbers 3n, . . . , 2 · 3n
− 1 in both

(Sn
−
)1 and (Sn

+
)1 to produce (Sn

−
)2 and (Sn

+
)2 respectively. Then a balanced n-level

ternary tree (identical to Sn
+

) must be added to each leaf of T− and T+. And finally,
a binary caret must be added to each leaf in S−n

− and S−n
+ to produce (S−n

− )
1 and

(S−n
+ )

1 respectively, and then another binary caret must be added to the leaves
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with index numbers 0, . . . , 3n
− 1 in (S−n

− )
1 and (S−n

+ )
1 to produce (S−n

− )
2 and

(S−n
+ )

2 respectively. It is clear then that
(
(Sn
−
)2, (S−n

+ )
2
)

is a tree-pair diagram
for w whose number of leaves is 2 · 3n

− 1. However,
(
(Sn
−
)2, (S−n

+ )
2
)

may not be
minimal. In fact, there exist exposed caret pairs in

(
(Sn
−
)2, (S−n

+ )
2
)
, but not enough

to significantly reduce the number of leaves in the tree-pair diagram; to see this,
we list the leftmost leaf index number of every exposed caret in

(
(Sn
−
)2, (S−n

+ )
2
)
:

(Sn
−
)2 : 0, 2, 4, . . . , 3n

− 3, (even)

3n, 3n
+2, 3n

+4, . . . ,2 · 3n
−1, 2 · 3n

+ 1, 2 · 3n
+ 3, . . . , 3 · 3n

− 2 (odd)

(Sn
+
)2 : 0, 2, 4, . . . , 3n

− 3, 3n
−1, 3n

+1, 3n
+3, . . . , 2 · 3n

−2, (even)

2 · 3n
+ 1, 2 · 3n

+ 3, 2 · 3n
+ 5, . . . , 3 · 3n

− 2 (odd)

It is clear that all exposed carets with leftmost leaf number in bold cannot cancel,
because these leaves in the domain tree have odd index numbers and these leaves
in the range tree have even index numbers. So

L(w)≥ (2 · 3n
− 2)− (3n

− 1)= 3n
+ 1,

and because the metric in F is quasi-isometric to the number of leaves in the
minimal tree-pair diagram representative of an element, there exists A ∈ N such
that |w|F ≥

1
A 3n . However, clearly |w|F(2,3) ≤ 2n+ 1.

To generalize this proof for F(ni ) in F(n1, . . . , nk), we begin
by defining the element Yi, j as the element with tree-pair diagram
of the form given on the right. (In the case i = 1, we simply have
Yi, j = (yj )0.)

We define Zi as the element with the tree-pair diagram given in Figure 5. We
consider the product

wi, j,n = Y−n
i, j Zi Y n

i, j

given in that figure the same way that we considered yn
0 x0 y−n

0 for F in F(2, 3) in
Figure 4. After adding all carets to each tree-pair diagram in Figure 5, as necessary
in order for composition to take place, the resulting diagram

(
(Sn
−
)2, (S−n

+ )
2
)

for
wi, j,n will have exposed carets whose leftmost leaf index numbers are as follows,

Figure 5. The product Y−n
i, j Zi Y n

i, j . Solid carets are ni -ary and
dotted carets are n j -ary (also in inset above).
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where c = bnn
j /nic and ∗ denotes “not divisible by ni ”:

(Sn
−
)2 : 0, ni , 2ni , 3ni , . . . , (c−1)ni , (divisible by ni )

(ni−1)nn
j , (ni−1)nn

j +ni , (ni−1)nn
j+2ni , . . . , (∗)

(2ni−1)nn
j−(c+2)ni , 2(ni−1)nn

j −(c+1)ni , . . . , (2ni−1)nn
j −ni (∗)

(Sn
+
)2 : 0, ni , 2ni , 3ni , . . . , (c−1)ni , cni , . . . , (nn

j−1)ni , (divisible by ni )

2(ni−1)nn
j −(c+1)ni , 2(ni−1)nn

j −cni , . . . , (2ni−1)nn
j −ni (∗)

Because ni and n j are relatively prime, the carets with leftmost leaf numbers in
bold will not cancel. Thus

L(wi, j,n)≥ [(2ni − 1)nn
j − (c+ 2)ni ] − [cni ]

= (2ni − 1)nn
j − (2c− 2)ni

> (2ni − 3)nn
j − 2ni

> nn
j − 2ni ,

the last inequality being a consequence of cni < nn
j and ni ≥ 2. However, if we let

A = |Yi, j |F(n1,...,nk)
and B = |Zi |F(n1,...,nk)

, we have

|wi, j,n|F(n1,...,nk)
≤ |Y−n

i, j |F(n1,...,nk)
+ |Zi |F(n1,...,nk)

+ |Y n
i, j |F(n1,...,nk)

≤ An+ B+ An = 2An+ B. �

F(ni ) is exponentially distorted in F(n1, . . . , nk). We now extend the results
of the last two pages to all ni such that i ∈ {1, . . . , k}. We will again do this
by explicitly constructing a product in F(n1, . . . , nk) that produces an element in
F(ni ) so that the number of leaves in the product is logarithmic with respect to the
number of factors in F(n1, . . . , nk). Without the added condition that ni−1|n j−1
for some j ∈ {1, . . . , k}, this product will have to be more complex than the one
constructed in the last section; however, the underlying structure will be similar.
We begin by defining elements of F(n1, . . . , nk) which will occur in our product.
As in the previous section, for the sake of clarity we give our detailed proof for the
embedding of F(3) into F(2, 3), including notes indicating how this can be gener-
alized for any F(ni ) into F(n1, . . . , nk) that meet the conditions of Theorem 4.5.

Notation 4.4. For a fixed i ∈ {1, . . . , k} we define Ai , Zi , λi as follows:

i = 2 arbitrary i

A2 = x0 y−1
0 (see Figure 9)

Z2 = y1z1 y−1
3 y−1

1 (see Figure 9)
λ2 = x0 y−1

1 (see Figure 6)

Ai has the form seen in Figure 7, left
Zi has the form seen in Figure 7, middle
λi has the form seen in Figure 7, right
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Figure 6. The elements λ2 and λn
2 in F(2, 3). Level i from the

top in Sn
−

has 2i−2 ternary carets.

For readability, the theorem and proof that follow are restricted to the case
F(2, 3), which is illustrated in Figure 6. However, the proof can be extended to all
cases by using the generalized elements given in Figure 7. Particular examples of
more complicated λi can be seen in Figure 8.

Figure 7. The elements Ai , Zi , and λi in F(n1, . . . , nk). Solid
carets are n1-ary and dotted carets are ni -ary. On the right, S is
a balanced n1-ary tree where L(S) ≤ ni , while T1, . . . , Tn1−1 are
(possibly empty) n1-ary subtrees of D(S) levels or less, chosen as
needed in order to make L(S−)= L(S+). For simplicity, we fill in
the subtrees T1, . . . , Tn1−1 from left to right, but this is not strictly
necessary. For specific examples, see Figure 8.

Theorem 4.5. The canonical embedding of F(ni ) is exponentially distorted in
F(n1, . . . , nk) for all i ∈ {1, . . . , k}.

Proof. We will establish this by showing that the product W2,n= (λ
n
2 A2)

−1z2(λ
n
2 A2)

is an element of F(3), and that it has a minimal tree-pair diagram representative
whose number of leaves is of the order Bn for some fixed B > 1. All of the
following steps generalize in a straightforward way to show the same result for
F(ni ) in F(n1, . . . , nk) by simply replacing all the elements A2, λ2, Z2 with their
general formulations.

It is clear that |W2,n|F(2,3)< 4n+8 while |W2,n|F(3)∼ L(W2,n). Straightforward
computation of the product W2,n , illustrated in Figure 9, shows that we must do
the following:

(i) Add n levels of binary carets to each leaf in the trees T− and T+ of Z2.
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Figure 8. More complex examples of λi ∈ F(n1, . . . , nk). Left
column: The element λ2 in F(3, 5), F(3, 7) and F(3, 11). Right:
the element λn

2 in F(3, 5); level i from the top in Sn
−

has 3i−2

quinary (5-ary) carets, and T n
1 , T n

2 are ternary subtrees.

(ii) Add a ternary caret to the 2n rightmost leaves of Sn
+

and S−n
− (and by extension

to the 2n rightmost leaves of Sn
−

and S−n
+ ), and then add a ternary caret to the

rightmost 2n leaves of these added ternary carets in Sn
+

(and Sn
−

respectively)
and to the leftmost 2n leaves of these added ternary carets in S−n

− (and S−n
+

respectively).

We can then see that the (not necessarily minimal) tree-pair diagram of the
resulting product λ−n

2 Z2λ
n
2 has 3 · 2n+1 leaves, and the only nonternary carets in

each tree are the root carets. Conjugating this product by A2 then produces a tree-
pair diagram for W2,n with (3 ·2n+1

+1) leaves consisting entirely of ternary carets
(so clearly W2,n ∈ F(3)).

Figure 9. The product (λn
2 A2)

−1 Z2(λ
n
2 A2).
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Now we need only show that a significant number of these leaves will not cancel.
Using a similar argument to that in the proof of Theorem 4.3 where we tracked the
leaf numbers and their divisors, it is easy to show that less than 2n+1 leaves will
cancel, so we can conclude that L(W2,n)≥ 2n+1. �
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