Vol. 251, No. 1, 2011

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
An analogue of the Cartan decomposition for p-adic symmetric spaces of split p-adic reductive groups

Patrick Delorme and Vincent Sécherre

Vol. 251 (2011), No. 1, 1–21
Abstract

Let k be a nonarchimedean locally compact field of residue characteristic p, let G be a connected reductive group defined over k, let σ be an involutive k-automorphism of G, and H an open k-subgroup of the fixed points group of σ. We denote by Gk and Hk the groups of k-points of G and H. We obtain an analogue of the Cartan decomposition for the reductive symmetric space HkGk in the case where G is k-split and p is odd. More precisely, we obtain a decomposition of Gk as a union of (Hk,K)-double cosets, where K is the stabilizer of a special point in the Bruhat–Tits building of G over k. This decomposition is related to the Hk-conjugacy classes of maximal σ-antiinvariant k-split tori in G. In a more general context, Benoist and Oh obtained a polar decomposition for any p-adic reductive symmetric space. In the case where G is k-split and p is odd, our decomposition makes more precise that of Benoist and Oh, and generalizes results of Offen for GLn.

Keywords
p-adic reductive group, building, Cartan decomposition, symmetric space
Mathematical Subject Classification 2000
Primary: 22E35
Milestones
Received: 18 January 2010
Accepted: 8 July 2010
Published: 22 April 2011
Authors
Patrick Delorme
Université de la Mediterranée
Institut de Mathématiques de Luminy, UMR 6206
Campus de Luminy, Case 907
13288 Marseille, Cedex 9
France
http://iml.univ-mrs.fr/fiche/Patrick_Delorme.html
Vincent Sécherre
Université de Versailles Saint-Quentin
Laboratoire de Mathématiques de Versailles
45, avenue des États-Unis
78035 Versailles Cedex
France