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AN ANALOGUE OF THE CARTAN DECOMPOSITION
FOR p-ADIC SYMMETRIC SPACES

OF SPLIT p-ADIC REDUCTIVE GROUPS

PATRICK DELORME AND VINCENT SÉCHERRE

Let k be a nonarchimedean locally compact field of residue characteristic p,
let G be a connected reductive group defined over k, let σ be an involutive
k-automorphism of G, and H an open k-subgroup of the fixed points group
of σ . We denote by Gk and Hk the groups of k-points of G and H. We obtain
an analogue of the Cartan decomposition for the reductive symmetric space
Hk\Gk in the case where G is k-split and p is odd. More precisely, we
obtain a decomposition of Gk as a union of (Hk,K)-double cosets, where
K is the stabilizer of a special point in the Bruhat–Tits building of G over
k. This decomposition is related to the Hk-conjugacy classes of maximal σ -
antiinvariant k-split tori in G. In a more general context, Benoist and Oh
obtained a polar decomposition for any p-adic reductive symmetric space.
In the case where G is k-split and p is odd, our decomposition makes more
precise that of Benoist and Oh, and generalizes results of Offen for GLn.

1. Introduction

Let k be a nonarchimedean locally compact field of odd residue characteristic.
Let G be a connected reductive group defined over k, let σ be an involutive k-
automorphism of G and let H be an open k-subgroup of the fixed points group of
σ . We denote by Gk and Hk the groups of k-points of G and H. Harmonic analysis
on the reductive symmetric space Hk\Gk is the study of the action of Gk on the
space of complex square integrable functions on Hk\Gk . This study is related to the
classification of Hk-distinguished representations of Gk , that is representations hav-
ing a nonzero space of Hk-invariant linear forms. Offen [2004] has investigated the
harmonic analysis of spherical functions in some cases related to GLn . Hironaka
[1988] has described a Cartan decomposition for the pair (GLn, On). Blanc and
Delorme [2008] have studied Hk-distinguishedness for families of parabolically
induced representations of Gk . Lagier [2008], and independently Kato and Takano

MSC2000: 22E35.
Keywords: p-adic reductive group, building, Cartan decomposition, symmetric space.
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2 PATRICK DELORME AND VINCENT SÉCHERRE

[2008], have introduced the notion of relative cuspidality for irreducible Hk-dis-
tinguished representations of Gk and constructed “Jacquet maps” at the level of
invariant linear forms. In this paper, we investigate the geometry of the reductive
symmetric space Hk\Gk .

Connected reductive groups can be considered as reductive symmetric spaces.
Indeed, if G′ is such a group, the map

σ : (x, y) 7→ (y, x)

defines a k-involution of G = G′×G′ whose fixed points group H is the diagonal
image of G′ in G, and the reductive symmetric space Hk\Gk naturally identifies
with G′k via the map (x, y) 7→ x−1 y. Moreover, if K′ is a subgroup of G′k , and if
we set K= K′×K′, then this map induces a bijective correspondence:

{(Hk,K)-double cosets of Gk} ↔ {K′-double cosets of G′k}.

In particular, if K′ is the G′k-stabilizer of a special point in the Bruhat–Tits building
of G′ over k, the decomposition of Hk\Gk into K-orbits corresponds to the Cartan
decomposition of G′k relative to K′ [Bruhat and Tits 1972, Proposition 4.4.3].

In this paper, we obtain an analogue of the Cartan decomposition for Hk\Gk

when the group G is k-split. In a more general context (k any nonarchimedean lo-
cally compact field of odd characteristic and G any connected reductive group over
k), Benoist and Oh [2007] have obtained a polar decomposition for Hk\Gk . In the
case where k has odd residue characteristic and G is k-split, our decomposition is
a refinement of Benoist–Oh’s polar decomposition (see 4.14). This decomposition
can be seen as a p-adic analogue of the Cartan decomposition for real reductive
symmetric spaces [Flensted-Jensen 1978, Theorem 4.1]. It generalizes the decom-
positions obtained by Offen [2004, Proposition 3.1] for G=GL2n in what he called
Cases 1 and 3.

Let {A j
| j ∈ J} be a set of representatives of the Hk-conjugacy classes of maxi-

mal σ -antiinvariant k-split tori of G (called maximal (σ, k)-split tori in [Helminck
1994]; see also Definition 4.2). These tori, as well as related entities, have been
studied in [Helminck 1994; Helminck and Helminck 1998; Helminck and Wang
1993]. In particular, the set J is finite and the A j , j ∈ J, are all conjugate under Gk .
Let S be a σ -stable maximal k-split torus of G containing a maximal (σ, k)-split
torus A. For each j ∈ J, we choose y j ∈ Gk such that y j Ay−1

j = A j . Our main
result is this:

Theorem 1.1 (see Theorem 4.13). Assume G is k-split. Let K be the stabilizer in
Gk of a special point in the apartment attached to S. Then

(1-1) Gk =
⋃
j∈J

Hk y j SkK.
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If one compares with Offen’s decompositions [2004, Proposition 3.1], one sees
that in each of his Cases 1 and 3 (where G=GL2n for n> 1), the set J reduces to a
single element and y j can be chosen to be trivial. In general however, one cannot
avoid having several non-Hk-conjugate maximal σ -antiinvariant k-split tori of G
appearing in (1-1).

To prove Theorem 1.1, we make generous use of Bruhat–Tits theory [1972;
1984a]. First, let G be any connected reductive group over k, and let B be its
Bruhat–Tits building. It is endowed with an action of σ . Then:

Proposition 1.2 (see Proposition 3.8). B is the union of its σ -stable apartments.

Note that in the case where G = G′ × G′ and σ(x, y) = (y, x) as above, the
building B identifies with the product of two copies of the building of G′ over k
and the proposition simply says that two arbitrary points in the building of G′ are
always contained in a common apartment.

When G is k-split, we obtain the following refinement of the proposition above:

Proposition 1.3 (see Proposition 4.8). Assume G is k-split, and let x be a special
point of B. There is a σ -stable maximal k-split torus S of G such that the apartment
corresponding to S contains x and the maximal σ -antiinvariant subtorus of S is a
maximal (σ, k)-split torus of G.

As we will see in 5.13, this is no longer true for nonsplit groups.

Summary. In Section 2, we recall the main properties of the Bruhat–Tits building
attached to a connected reductive group defined over k. In Section 3, we study
the set of all apartments containing a given σ -stable subset of the building, and
we prove Proposition 1.2. In Section 4, we prove our main theorem for G a k-
split group. In Section 5, we study in more detail the case of Gk = GLn(k) and
σ(g)= transpose of g−1, and the case of Gk=GLn(k ′)with k ′ quadratic over k and
id 6= σ ∈Gal(k ′/k). When n = 2 and k ′ is totally ramified over k, the second case
provides an example of a nonsplit group for which Proposition 1.3 is not satisfied.

2. The Bruhat–Tits building

Let k be a nonarchimedean nondiscrete locally compact field, and let ω be its
normalized valuation. In this section, we recall the main properties of the Bruhat–
Tits building attached to a connected reductive group defined over k. The reader
may refer to [Bruhat and Tits 1972; 1984a] or to the more concise presentations
[Landvogt 1995; Schneider and Stuhler 1997; Tits 1979].

If G is a linear algebraic group defined over k, the group of its k-points will be
denoted by Gk or G(k), and its neutral component will be denoted by G◦. If X
is a subset of G, then NG(X) and ZG(X) denote respectively the normalizer and
centralizer of X in G, and, given g ∈ G, we write gX for gXg−1.
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2.1. Let G be a connected reductive group defined over k, and let S be a maximal
k-split torus of G. We denote by X∗(S) = Hom(S,GL1) the group of algebraic
characters, and by X∗(S) = Hom(GL1,S) the group of cocharacters, of S. We
define a map

(2-1) X∗(S)×X∗(S)→ Z

as follows. If λ∈X∗(S) and χ ∈X∗(S), then χ◦λ is an endomorphism of the multi-
plicative group GL1, which corresponds to an endomorphism of the ring Z[t, t−1

].
It is of the form t 7→ tn for some n ∈ Z. This integer n is denoted by 〈λ, χ〉. The
map (2-1) defines a perfect duality [Borel 1991, § 8.6].

2.2. Let N and Z denote the normalizer and centralizer of S in G. If we extend the
map (2-1) by R-linearity, there exists a unique group homomorphism

(2-2) ν : Zk→ X∗(S)⊗Z R

such that the condition

〈ν(z), χ〉 = −ω(χ(z))

holds for any z ∈ Zk and any k-rational character χ ∈ X∗(Z)k [Tits 1979, § 1.2].
According to [Landvogt 1995, Proposition 1.2], the kernel of (2-2) is the maximal
compact subgroup of Zk .

2.3. Let C denote the connected center of G and let X∗(C) be the group of its
algebraic cocharacters. It is a subgroup of the free abelian group X∗(S). We denote
by A the space

V= (X∗(S)⊗Z R)/(X∗(C)⊗Z R),

considered as an affine space on itself and by Aff(A) the group of its affine auto-
morphisms. By making V act on A by translations, we can think of V as a subgroup
of Aff(A). It is the kernel of the natural group homomorphism Aff(A)→ GL(V)
which associates to any affine automorphism its linear part.

2.4. The map (2-2) induces a homomorphism

(2-3) Zk→ Aff(A),

which we still denote by ν. Its image is contained in V. An important property
of this homomorphism is that it extends to a homomorphism Nk → Aff(A) [Tits
1979, § 1.2]. It does not extend in a unique way, but two homomorphisms extend-
ing (2-3) to Nk are conjugated by a unique element of Aff(A) [Landvogt 1995,
Proposition 1.8].
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2.5. The affine space A endowed with an action of Nk defined by a group ho-
momorphism ν : Nk → Aff(A) extending the homomorphism (2-3) is called the
(reduced) apartment attached to S. It satisfies these conditions:

A1. A is an affine space on V;

A2. ν is a group homomorphism Nk→Aff(A) extending the canonical homomor-
phism Zk→ V.

It has the following uniqueness property: if (A′, ν ′) satisfies A1 and A2, there is a
unique affine and Nk-equivariant isomorphism from A′ to A.

Remark 2.6. As in [Tits 1979], one obtains the nonreduced apartment Anr by
replacing V by X∗(S)⊗Z R. It is not as canonical as the reduced one: two ho-
momorphisms extending the map νnr : Zk → Aff(Anr) to Nk are conjugated by an
element of Aff(Anr) which is not necessarily unique [Landvogt 1995, Chapter 1,
§ 1; Tits 1979, § 1.2].

2.7. Let 8 = 8(G,S) denote the set of roots of G relative to S. It is a subset of
X∗(S). Therefore, any root a ∈8 can be seen as a linear form on X∗(S)⊗ZR which
is trivial on the subspace X∗(C)⊗Z R, hence as a linear form on V [Landvogt 1995,
Chapter 1, § 1].

For a ∈ 8, we denote by Ua the root subgroup associated to a, which is a
unipotent subgroup of G normalized by Z [Borel 1991, Proposition 21.9], and by
sa the reflection corresponding to a, considered as an element of GL(V)— or, more
precisely, of the quotient of ν(Nk) by ν(Zk).

2.8. Let a ∈8 and u ∈ Ua(k)−{1}. The intersection

(2-4) U−a(k)uU−a(k)∩Nk

consists of a single element, called m(u), whose image by ν is an affine reflection
the linear part of which is sa [Borel and Tits 1965, § 5]. The set Ha,u of fixed points
of ν(m(u)) is an affine hyperplane of A, which is called a wall of A.

A chamber of A is a connected component of the complementary in A of the
union of its walls. Note that a chamber is open in A.

A point x ∈A is said to be special if, for all root a∈8, there is a root b∈8∩R+a
and an element u ∈ Ub(k)− {1} such that x ∈ Hb,u [Landvogt 2000, § 1.2.3; Tits
1979, § 1.9].

2.9. Let θ(a, u) denote the affine function A→R whose linear part is a and whose
vanishing hyperplane is the wall Ha,u of fixed points of ν(m(u)). We fix a base
point in A, so that A can be identified with the vector space V. For r ∈ R, we set

Ua(k)r =
{
u ∈ Ua(k)−{1} | θ(a, u)(x)> a(x)+ r for all x ∈A

}
∪ {1}.
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Thus we obtain a filtration of Ua(k) by subgroups. If we change the base point in
A, this filtration is only modified by a translation of the indexation.

2.10. Let � be a nonempty subset of A. We set

N� = {n ∈ Nk | ν(n)(x)= x for all x ∈�},

and we denote by U� the subgroup of Gk generated by all the Ua(k)r such that
the affine function x 7→ a(x)+ r is nonnegative on �. According to [Landvogt
1995, § 12], this subgroup is compact in Gk , and we have nU�n−1

= Uν(n)(�) for
n ∈ Nk . In particular, N� normalizes U�. The subgroup P� = N�U� is open in
Gk [Landvogt 1995, Corollary 12.12].

2.11. Let 8=8−∪8+ be a decomposition of 8 into positive and negative roots.
We denote by U+ (U−) the subgroup of Gk generated by the Ua for all a ∈ 8+

(a ∈8−). Then the group P� has the following Iwahori decomposition [Landvogt
1995, Corollary 12.6; Bruhat and Tits 1972, § 7.1.4]:

(2-5) P� = (U� ∩U−) · (U� ∩U+) ·N�.

2.12. Bruhat and Tits [1972; 1984a] associate to the apartment (A, ν) a Gk-set
B=B(G, k) containing A, called the (reduced) building of G over k and satisfying
the following conditions:

B1. The set B is the union of the g ·A for g ∈ Gk .

B2. The subgroup Nk is the stabilizer of A in Gk , and n ·x = ν(n)(x) for all x ∈A

and n ∈ Nk .

B3. For all a ∈ 8 and r ∈ R, the subgroup Ua(k)r defined in 2.9 fixes the subset
{x ∈A | a(x)+ r > 0} pointwise.

The building has the following uniqueness property: if B′ is a Gk-set containing
A and satisfying B1–B3, there is a unique Gk-equivariant bijection from B′ to B

[Tits 1979, § 2.1; Prasad and Yu 2002, § 1.9].

2.13. The subsets of B of the form g · A with g ∈ Gk are called apartments.
According to B1, the building is the union of its apartments. For g ∈ Gk , the
apartment g · A can be naturally endowed with a structure of affine space and
an action of gNk by affine isomorphisms. Up to unique isomorphism, it is the
apartment attached to the maximal k-split torus gS (see 2.5). This defines a unique
Gk-equivariant map

(2-6) S′ 7→A(S′)⊆B

between maximal k-split tori of G and apartments of B, such that S maps to A.
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Note that the building B does not depend on the maximal k-split torus S. Indeed,
let S′ be a maximal k-split torus of G, let (A′, ν ′) be the apartment attached to S′

and B′ be the building of G over k relative to this apartment (see 2.12). If we
identify A′ with the unique apartment of B corresponding to S′ via (2-6), then
B′ =B.

2.14. The building has the following important properties [Bruhat and Tits 1972,
§ 7.4; Landvogt 1995, Chapter 4, § 13]:

(1) Let � be a nonempty subset of A. Then P� is the subgroup of Gk made of
those elements fixing � pointwise.

(2) Let g ∈ Gk . There is n ∈ Nk such that g · x = n · x for any x ∈A∩ g−1
·A.

In particular, (1) together with B2 imply that N� = Nk ∩P�.

2.15. Let σ be a k-automorphism of G. There is a unique bijective map from B to
itself, still denoted σ , such that

(1) the condition

σ(g · x)= σ(g) · σ(x)

holds for any g ∈ Gk and x ∈B; and

(2) the map σ permutes the apartments and, for any apartment A, the restriction
of σ to A is an affine isomorphism from A to σ(A).

This makes (2-6) into a σ -equivariant map. In particular, an apartment is σ -stable
if and only if its corresponding maximal k-split torus of G is σ -stable [Bruhat and
Tits 1984a, § 4.2.12].

3. Existence of σ -stable apartments

From now on, k will be a nonarchimedean locally compact field of odd residue
characteristic. Let G be connected reductive group defined over k and let σ be a
k-involution on G. According to 2.15, the building B of G over k is endowed with
an action of σ . In this section, we prove that, given x ∈B, there exists a σ -stable
apartment containing x . We keep using notation of Section 2.

3.1. Let � be a nonempty σ -stable subset of B contained in some apartment, and
let Ap(�) be the set of all apartments of B containing �. It is a nonempty set on
which the group P� acts transitively [Landvogt 1995, Corollary 13.7]. Because �
is σ -stable, both P� and Ap(�) are σ -stable. Note that the σ -stable apartments
containing � are exactly the σ -fixed points in Ap(�).
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3.2. Let us fix an apartment A ∈Ap(�) and an element u ∈ P� such that σ(A)=
u ·A. Let N denote the normalizer in G of the maximal k-split torus of G corre-
sponding to A. As σ is involutive, we have

(3-1) σ(u)u ∈ P� ∩Nk = N�.

The map ρ : g 7→ g·A induces a P�-equivariant bijection between the homogeneous
spaces P�/N� and Ap(�). The automorphism

θ : x 7→ u−1σ(x)u

of the group Gk stabilizes P� and N�. Indeed σ(Nk)= uNku−1, and

θ(N�)= u−1σ(P� ∩Nk)u = P� ∩ u−1σ(Nk)u = N�.

Note that the condition (3-1) implies that θ ◦ θ is conjugation by some element of
N�. As N� is θ -stable, the map

(σ, gN�) 7→ uθ(gN�), g ∈ P�,

defines an action of σ on P�/N�, making ρ into a σ -equivariant bijection. Note
that this action differs from the natural action of σ on P�/N� (which obviously
has fixed points).

3.3. Let � be a nonempty σ -stable subset of B contained in some apartment.

Proposition 3.4. Assume that � contains a point of a chamber of B. Then � is
contained in some σ -stable apartment.

Proof. We describe the quotient P�/N� as a projective limit of finite σ -sets. Ac-
cording to [Cartier 1979, § 1.2], Example ( f ), the group Gk is locally compact and
totally disconnected. Therefore we can choose a decreasing filtration (Qi )i>0 of
the open subgroup P� of Gk satisfying the following properties:

(A) The intersection of the Qi is reduced to {1}.

(B) For any i > 0, the subgroup Qi is compact open and normal in P�.

Lemma 3.5. Consider the decreasing filtration of P� formed by the subgroups
P�,i = N�Qi ∩ θ(N�Qi ), for i > 0.

(1) The intersection of the P�,i is reduced to N�.

(2) For any i > 0, the subgroup P�,i is θ -stable and of finite index in P�.

Proof. As N� is θ -stable, it is contained in the intersection of the P�,i . Let g
be in this intersection. For any i > 0, there exist ni ∈ N� and qi ∈ Qi such that
g = ni qi . Because of (A) above, qi converges to 1. Therefore ni converges to a
limit contained in the closed subgroup N�, and this limit is g. This proves (1).
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Now recall that θ ◦ θ is conjugation by some element of N�. This implies that
P�,i is θ -stable. As P�,i is open in P� and contains N�, the quotient P�/P�,i can
be identified with the quotient of U�, which is compact, by some open subgroup.
This gives (2). �

Because of Lemma 3.5(2), the map

(σ, gP�,i ) 7→ uθ(gP�,i ), g ∈ P�,

defines an action of σ on the finite quotient P�/P�,i , which gives us a projec-
tive system (P�/P�,i )i>0 of finite σ -sets. Since P� is complete, and thanks to
Lemma 3.5(1), the natural σ -equivariant map from P�/N� to the projective limit
of the P�/P�,i is bijective.

Lemma 3.6. Let (Xi )i>0 be a projective system of finite σ -sets. For all i > 0,
assume the transition maps ϕi : Xi+1 → Xi to be surjective and Xi to have odd
cardinality. Then the projective limit X has a σ -fixed point.

Proof. For each i > 0, the set Xσ
i of σ -fixed points of Xi is nonempty, since Xi has

odd cardinality. This defines a projective system (Xσ
i )i>0 whose transition maps

may not be surjective. For each i > 0, let Yi denote the intersection in Xi of the
images of the Xσ

i+n , for n > 0. Then Yi is nonempty, and the transition maps
ϕi : Yi+1→ Yi are surjective. Therefore, the projective limit Y = Xσ

⊆ X of the
system (Yi )i>0 is nonempty. �

Let p denote the residue characteristic of k.

Lemma 3.7. Let K be a normal subgroup of finite index in P� containing N�.
Then the index of K in P� is a power of p.

Proof. Let S be the maximal k-split torus associated to A, let 8 be the set of roots
of G relative to S and let 8=8−∪8+ be a decomposition of 8 into positive and
negative roots. According to (2-5), the group P� has the Iwahori decomposition

P� = (U� ∩U−) · (U� ∩U+) ·N�.

That � contains a point of a chamber of B implies that the group N� is reduced
to Ker(ν), hence normalizes the groups V+ = U� ∩U+ and V− = U� ∩U−. The
index of K in P� can be decomposed as

(P� : K)= (P� : V+K) · (V+K : K).

On the one hand, the index

(V+K : K)= (V+ : V+ ∩K)

is a power of p, since V+ is a pro-p-group. On the other hand, the index

(P� : V+K)= (V− : V− ∩V+K)
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is a power of p, since V− is a pro-p-group. The result follows. �

According to Lemma 3.7, the cardinality of each P�/P�,i , with i > 0, is odd
(recall that p is different from 2). Proposition 3.4 follows from Lemma 3.6. �

We now prove the first main result of this section.

Proposition 3.8. For any x ∈B, there exists a σ -stable apartment containing x.

Proof. Let x be a point in B, and let y be a point of a chamber of B whose closure
contains x . The set�={y, σ (y)} is a σ -stable subset of B satisfying the conditions
of Proposition 3.4. Hence we get a σ -stable apartment of B containing y. Such an
apartment contains the closure of the chamber of y. In particular, it contains x . �

3.9. Let S be a σ -stable maximal k-split torus, and let N and Z denote the normal-
izer and centralizer of S in G. Let X=X(S) denote the set of all g ∈Gk such that
g−1σ(g) ∈ Nk , let A denote the σ -stable apartment corresponding to S and, given
x ∈A, let Px denote the subgroup P� (see 2.11) with �= {x}.

Proposition 3.10. X is a finite union of (Hk,Zk)-double cosets and Gk = XPx .

Proof. Let us fix a minimal parabolic k-subgroup P of G containing the torus S.
According to Helminck and Wang [1993, Proposition 6.8], the map g 7→Hk gPk in-
duces a bijection between the (Hk,Zk)-double cosets in X and the (Hk,Pk)-double
cosets in Gk . The first part of the proposition then follows from [Helminck and
Wang 1993, Corollary 6.16].

Note that we have g ∈ X if and only if g ·A is σ -stable. For g ∈ Gk , we set
x ′= g ·x . According to Proposition 3.8, there is a σ -stable apartment A′ containing
x ′. Let g′ ∈X be such that A′ = g′ ·A. According to Property (2) in 2.14, there is
n ∈Nk such that we have g′−1g · x = n · x . Hence we get g ∈XNkPx . As XNk =X,
we obtain the expected result. �

4. Decomposition of Hk\Gk

In all this section, we assume that G is k-split. Let H be an open k-subgroup of the
fixed points group Gσ . Equivalently, H is a k-subgroup of Gσ containing (Gσ )◦.

4.1. If T is a σ -stable torus in G, we write T+ for the neutral component of T∩H
and T− for the neutral component of the subgroup {t ∈ T | σ(t)= t−1

}. The torus
T is the almost direct product of T+ and T−, that is T= T+T− and the intersection
T+ ∩T− is finite [Borel 1991, xi].

Definition 4.2 [Helminck and Wang 1993, § 4.4]. A σ -stable torus T of G is said
to be (σ, k)-split if it is k-split and if T= T−.

By Proposition 10.3 of the same reference, two arbitrary maximal (σ, k)-split
tori of G are Gk-conjugated.
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4.3. Let DG denote the derived subgroup of G, and recall that C denotes the con-
nected center of G. This latter subgroup is a k-split torus of G.

Lemma 4.4. Let T be a k-split torus of G.

(1) There is a k-subtorus T′ of C such that the groups T · DG and T′ · DG are
equal.

(2) If T is (σ, k)-split, any T′ satisfying (1) is (σ, k)-split.

(3) Assume that DG is contained in H and T is (σ, k)-split. Then any T′ satisfying
(1) is (σ, k)-split and has the same dimension as T.

Proof. We set G̃ = G/DG and, for any k-subgroup K of G, we write K̃ for the
image of K in G̃. According to [Borel 1991, Proposition 14.2], the group G is the
almost direct product of C and DG, which means that G is equal to the product
C ·DG and that the intersection C∩DG is finite. This implies that C̃ = G̃. Let f
denote the k-rational map C→ C̃. It is surjective with finite kernel. Hence G̃ is
a k-split torus, and we denote by σ̃ the involutive k-automorphism of G̃ induced
by σ . We now prove each conclusion claim in the lemma.

(1) By [Borel 1991, Proposition 8.2(c)], the neutral component of the inverse image
f −1(T̃) is a k-split subtorus of C which we denote by T′. It has finite index in
f −1(T̃). The image f (T′) is then a subtorus of finite index in the connected group
T̃, so that T̃′ = T̃.

(2) Assume that T is (σ, k)-split, and let T′ satisfy (1). Let us consider the map
t 7→ tσ(t) from T′ to itself. As T̃′ = T̃ is a (σ̃ , k)-split torus, the image of this map
is a connected k-subgroup contained in the kernel of f , which is finite.

(3) Assume that DG is contained in H and T is (σ, k)-split. Then the map T→ T̃
has finite kernel, which implies that T and T̃ have the same dimension. Now let
T′ satisfy (1). According to (2), such a torus is (σ, k)-split, and it has the same
dimension as T̃′ = T̃. �

4.5. Let S be a σ -stable maximal (k-split) torus of G, let A be the apartment
corresponding to S and let 8 be the set of roots of G relative to S. Let x ∈ A be
a special point (see 2.8), and write Ux for U� (see 2.11) with �= {x}. Let a ∈8
be a σ -invariant root, which means that a ◦ σ = a.

Lemma 4.6. Assume that U−a(k) is contained in {g ∈ Gk | σ(g) = g−1
}. Then

there are n ∈Nk and c ∈Ux such that n = c−1σ(c) and ν(n) is the affine reflection
of A which let x invariant and whose linear part is sa .
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Proof. We fix a base point in the apartment A, so that it can be identified with the
vector space V. For any b ∈ 8, this defines a filtration of the group Ub(k) (see
2.9). For u ∈Ub(k)−{1}, we denote by ϕb(u) the greatest real number r ∈R such
that u ∈ Ub(k)r . Let us choose w ∈ U−a(k)− {1} such that x is contained in the
wall H−a,w. Thus ν(m(w)) is the affine reflection of A which fixes x and whose
linear part is sa , and we can set

n = m(w) ∈ Nk .

Moreover θ(−a, w), which is the unique affine function from A to R whose linear
part is −a and whose vanishing hyperplane is H−a,w, vanishes on x . Therefore it
is equal to

y 7→ −a(y)+ a(x),

which implies that ϕ−a(w) = a(x). According to B3 (see 2.12), it follows that w
fixes x .

The group U−a(k) is isomorphic to the additive group of k. Thus, for r ∈ R,
the subgroup U−a(k)r corresponds through this isomorphism to a nontrivial sub-O-
module of k, where O denotes the ring of integers of k [Landvogt 1995, Proposition
7.7]. Therefore, there is a unique element v ∈ U−a(k) such that w = v2 and
ϕ−a(v)= ϕ−a(w), hence v ∈ Ux .

The map Ua(k)×Ua(k)→ Gk defined by (u, u′) 7→ uwu′ is injective and the
intersection given by (2-4) consists of a single element, which is n. If we choose
u, u′ ∈ Ua(k) such that uwu′ = n, then the element

σ(u′)−1wσ(u)−1
= σ(n)−1

is contained in the intersection (2-4). Hence σ(n)−1 is equal to n, and the unique-
ness property implies that u′ = σ(u)−1. Moreover, according to [Landvogt 1995,
Lemma 7.4(ii)], the real numbers ϕa(u) and ϕa(σ (u)) are both equal to −ϕ−a(w).
This implies that u and σ(u) are contained in Ux . Since v is σ -antiinvariant and
w = v2, we get the expected result by choosing c = (uv)−1. �

Remark 4.7. Note that σ(c)∈Ux . Indeed we have σ(v)=v−1
∈Ux and σ(u)∈Ux .

Hence n = c−1σ(c) ∈ Nk ∩U�, which is contained in N� with �= {x, σ (x)}.

Let B denote the building of G over k.

Proposition 4.8. Let x be a special point of B. There is a σ -stable maximal k-split
torus S of G such that the apartment corresponding to S contains x and such that
S− is a maximal (σ, k)-split torus of G.
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Remark 4.9. In 5.13, we give an example of a nonsplit k-group G such that
Proposition 4.8 does not hold.

Proof. Let A be a σ -stable apartment containing x (see Proposition 3.8) and let S
be the corresponding maximal k-split torus of G. Assume that A has been chosen
such that the dimension of the (σ, k)-split torus S− is maximal. If it is a maximal
(σ, k)-split torus of G, then Proposition 4.8 is proved. Assume that this is not the
case, and let A be a maximal (σ, k)-split torus of G containing S−. The dimension
of A is greater than dim S− (if not, the containment S− ⊆ A would imply that
S− = A). Let G′ be the neutral component of the centralizer of S− in G. It is a
k-split connected reductive subgroup of G containing S and A, which is naturally
endowed with a nontrivial action of σ . Let C′ denote the connected center of G′.

Lemma 4.10. There is a ∈8(G′,S) such that the corresponding root subgroup U′a
is not contained in H, and such a root is σ -invariant.

Proof. Assume that U′a ⊆ H for each root a ∈ 8(G′,S). Then the derived sub-
group DG′, which is generated by the U′a for a ∈ 8(G′,S), is contained in H
[Humphreys 1975, Theorem 27.5(e)]. According to Lemma 4.4(iii), there exists
a (σ, k)-subtorus A′ of C′ such that A ·DG′ = A′ ·DG′ and dim(A) = dim(A′).
The subgroup generated by C′ and S is a k-torus of G′. As G′ is k-split, S is a
maximal torus of G′, hence it contains C′. Therefore S− contains A′ which has the
same dimension as A, and this dimension is greater than dim S−. This gives us a
contradiction.

Now let a be a root in 8(G′,S) such that U′a is not contained in H. The root a
and its conjugate a◦σ coincide on S+ and are both trivial on S−. As S is the almost
direct product of S+ and S− (see 4.1), they are equal. Therefore a is σ -invariant.
This ends the proof of Lemma 4.10. �

Let a ∈8(G′,S) as in Lemma 4.10. If we think of a as a root in 8(G,S), then
Ua is σ -stable and is not contained in H. Moreover:

Lemma 4.11. Ua(k) is contained in {g ∈ Gk | σ(g)= g−1
}.

Proof. As G is k-split, Ua is k-isomorphic to the additive group. Thus the action
of σ on Ua(k) corresponds to an involutive automorphism of the k-algebra k[t]. It
has the form t 7→ λt for some λ ∈ k× with λ2

= 1. As Ua is not contained in H,
we have λ=−1. This gives us the expected result. �

According to Lemma 4.6, there are n ∈ Nk and c ∈ Ux such that n = c−1σ(c)
and ν(n) is the affine reflection of A which let x invariant and whose linear part is
sa . For any t ∈ S, note that

σ(ctc−1)= cnσ(t)n−1c−1
= csa(σ (t))c−1.
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Let A′ denote the apartment c ·A and let S′ = cS be the corresponding maximal
k-split torus of G. Then A′ contains x and is σ -stable. Moreover, since the root
a is trivial on S− and sa fixes the kernel of a pointwise, the conjugate c(S−) is a
(σ, k)-split subtorus of S′. Thus S′− has dimension not smaller than dim S−.

Now let Sa denote the maximal k-split torus in the set of all t ∈ S such that
sa(t) = t−1. Since a is σ -invariant, such a torus is σ -stable. It is also one-
dimensional and its intersection with Ker(a) is finite. Therefore cSa is a nontrivial
(σ, k)-split subtorus of S′ which is not contained in c(S−). Thus the dimension of
S′−, which contains c(SaS−), is greater than dim S−, which contradicts the maxi-
mality property of A. This ends the proof of Proposition 4.8. �

4.12. Let A be a maximal (σ, k)-split torus of G, let S be a σ -stable maximal k-
split torus of G containing A and let A denote the apartment corresponding to S.
Let {A j

| j ∈ J} be a set of representatives of the Hk-conjugacy classes of maximal
(σ, k)-split tori in G. According to [Helminck and Wang 1993], the set J is finite.
Let x ∈A be a special point and write K for its stabilizer in Gk .

Theorem 4.13. For j ∈ J, let y j ∈ Gk such that y j A= A j . We have

Gk =
⋃
j∈J

Hk y j SkK.

Proof. By Proposition 4.8, for any g ∈Gk , there is a σ -stable maximal k-split torus
S′ of G such that the apartment corresponding to it contains g · x and such that S′−

is a maximal (σ, k)-split torus of G. Let j ∈ J be such that S′− is Hk-conjugate
to A j . According to Helminck and Helminck [1998, Lemma 2.2], there is h ∈ Hk

such that S′ = hy j S. Hence g · x is contained in hy j ·A. According to Property (2)
in 2.14, there exists n ∈ Nk such that g · x = hy j n · x . Therefore Gk is the union
of the Hk y j NkK for j ∈ J. As x is special, we have NkK = SkK and we get the
expected result. �

4.14. In the case where G is not necessarily k-split, we have the following result.
For each j , let WGk (A

j ) be the quotient of the normalizer of A j in Gk by its
centralizer, and likewise with Gk replaced by Hk . According to [Helminck and
Wang 1993], the group WGk (A

j ) is the Weyl group of a root system. For j ∈ J, let
N j ⊆ NGk (A

j ) be a set of representatives of

WHk (A
j )\WGk (A

j ),

and let y j ∈ Gk be such that y j A = A j . Let P be a minimal parabolic k-subgroup
of G containing S and such that P ∩ σ(P) is a Levi component of P [Helminck
and Wang 1993, § 4]. Let $ be a uniformizer of k, and write 3 for the lattice
made of the images of $ by the various algebraic cocharacters of A and 3− for
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the subset of antidominant elements of 3 relative to P. Then one can derive from
Proposition 3.10 the existence of a compact subset Q of Gk such that

(4-1) Gk =
⋃
j∈J

⋃
n∈N j

Hkny j3
−Q.

Benoist and Oh [2007] have obtained a similar decomposition of Gk , with a weaker
condition on the base field k (they assume k to have odd characteristic).

Remark 4.15. In the split case, starting from Theorem 4.13, one can obtain a
sharper result than the decomposition (4-1).

Let us mention that the question of the disjointness of the various components
appearing in the decomposition (4-1) has been investigated in [Lagier 2008].

5. Examples

Let k be a nonarchimedean locally compact field of odd residue characteristic. Let
O be its ring of integers and p be the maximal ideal of O.

5.1. We now consider the k-split reductive group G=GLn , n>1, endowed with the
k-involution σ : g 7→ t g−1, where t g denotes the transpose of g. We set K=GLn(O)

and H=Gσ , and write S for the diagonal torus of G. This case has been explicitly
investigated by Hironaka [1988] from a different point of view.

We start with the following lemma.

Lemma 5.2. Let V be a finite dimensional k-vector space and B a symmetric bi-
linear form on V. Then any free O-submodule of finite rank of V has a basis which
is orthogonal relative to B.

Proof. Let 3 be a free O-submodule of finite rank of V. The proof goes by induc-
tion on the rank of3. If B is null, then the result is trivial. If not, we denote by B3
the restriction of B to 3×3. Its image is of the form pm for some integer m ∈ Z.
If $ is a uniformizer of k, then the form B0

3 =$
−mB3 has image O on 3×3.

Therefore, it defines a nontrivial bilinear form

B̄0
3 :3/p3×3/p3→ O/p.

Let e ∈ 3 be a vector whose reduction modulo p is not isotropic relative to B̄0
3,

which means that B0
3(e, e) is a unit of O. Then 3 is the direct sum of Oe and

3∩ke⊥, where ke⊥ denotes the orthogonal of ke in V. Indeed, it follows from the
decomposition

x =
B(e, x)
B(e, e)

e+
(

x −
B(e, x)
B(e, e)

e
)
, for any x ∈3.
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As 3∩ ke⊥ is a free O-submodule of finite rank of V whose rank is smaller than
the rank of 3, we conclude by induction. �

We introduce the set Y of all g ∈ Gk such that t gg ∈ Sk . Using Lemma 5.2, we
get the following decomposition of Gk .

Proposition 5.3. We have Gk = YK.

Proof. We make Gk act on the quotient Gk/K, which can be identified to the set of
all O-lattices (that is, cocompact free O-submodules) of the k-vector space V= kn .
Let B denote the symmetric bilinear form on V making the canonical basis of V
into an orthonormal basis. According to Lemma 5.2, for any g ∈ Gk , the O-lattice
3 corresponding to the class gK has a basis which is orthogonal relative to B.
This means that there exists u ∈K such that the element g′ = gu−1

∈ gK maps the
canonical basis of V to an orthogonal basis of 3. Therefore we have g′ ∈ Y; thus
g ∈ YK. �

We now investigate the maximal (σ, k)-split tori of G. Note that S is a maximal
(σ, k)-split torus of G.

Proposition 5.4. The map g 7→ gS induces a bijection between (Hk,Nk)-double
cosets of Y and Hk-conjugacy classes of maximal (σ, k)-split tori of G.

Proof. One easily checks that this map is well defined and injective. For g ∈ Gk ,
the conjugate gS is a maximal (σ, k)-split torus of G if and only if g−1σ(g) ∈ Sk ,
which amounts to saying that g ∈ Y and proves surjectivity. �

Let Q denote the set of all equivalence classes of nondegenerate quadratic forms
on kn . For a= diag(a1, . . . , an)∈ Sk we denote by Qa the diagonal quadratic form
a1X2

1+ · · · + anX2
n . Note that the map a 7→ Qa induces a surjective map from Sk

to Q.
We write H0 and H1 for the set of σ -fixed points and the first set of nonabelian

cohomology of σ , respectively.

Proposition 5.5. (1) The map g 7→ t gg induces an injection ι from the set of
(Hk,Nk)-double cosets of Y to H1(Nk).

(2) Given a ∈ Sk , the class of a in H1(Nk) is in the image of ι if and only if
Qa ∼ X2

1+ · · ·+X2
n .

Proof. We have an exact sequence

Hk→ H0(Gk/Nk)→ H1(Nk)→ H1(Gk),

where the map from H0(Gk/Nk) to H1(Nk) is induced by g 7→ t gg. As the set of
(Hk,Nk)-double cosets of Y is a subset of Hk\H0(Gk/Nk), we get the first assertion.
To obtain the second one, it is enough to remark that H1(Gk) canonically identifies
with Q. �
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Remark 5.6. Recall from [Serre 1970, IV.2.3] that for a, b ∈ Sk , the quadratic
forms Qa,Qb are equivalent if and only if they have the same discriminant and the
same Hasse invariant.

Proposition 5.7. Let {a j
| j ∈ J} ⊆ Sk form a set of representatives of Im(ι) in

H1(Nk). For j ∈ J, we choose y j ∈ Y such that t y j y j = a j . Then,

Gk =
⋃
j∈J

Hk y j SkK.

Proof. Propositions 5.3 and 5.4 imply that Gk is the union of the components
Hk y j NkK for j ∈ J. As NkK= SkK, we get the expected result. �

Example 5.8. In the case where n = 2, we give an explicit description of Im(ι).
Let $ denote a uniformizer of O and ξ ∈ O× a nonsquare unit of O, so that
{1, ξ,$, ξ$ } is a set of representatives of k× modulo k×2. The set of elements
of k× which are represented by the quadratic form Q1 = X2

+Y2 depends on the
image of p in Z/4Z. If p ≡ 1 mod 4, all elements of k× are represented by Q1. If
p ≡ 3 mod 4, an element of k× is represented by Q1 if and only if its normalized
valuation if even. We set

J=
{
{1, ξ,$, ξ$ } if p ≡ 1 mod 4,
{1, ξ} if p ≡ 3 mod 4.

For each j ∈ J, set a j
= diag( j, j). Then the elements a j form a set of rep-

resentatives of Im(ι) in H1(Nk).

5.9. We now consider the connected reductive k-group G= Resk′/kGLn , where k ′

is a quadratic extension of k, endowed with the involutive k-automorphism σ of
G induced by the nontrivial element of Gal(k ′/k). This case has been explicitly
investigated by Offen [2004] when k ′/k is unramified.

We set H = Gσ , so that we have Gk = GLn(k ′) and Hk = GLn(k). We denote
by S the diagonal torus of G and by K the maximal compact subgroup GLn(O

′) of
Gk , where O′ denotes the ring of integers of k ′. Note that S is σ -invariant.

As usual, N and Z denote the normalizer and centralizer of S in G. Let Sn denote
the group of permutation matrices in Gk , so that Nk is the semidirect product of
Sn by Zk . Note that Sk (resp. Zk) is the subgroup of all diagonal matrices of Gk

with entries in k (resp. in k ′).

Lemma 5.10. H1(Nk) can be identified with the set of conjugacy classes of ele-
ments of Sn of order 1 or 2.

Proof. According to Hilbert’s Theorem 90, the group H1(Zk) is trivial. Therefore
we have an exact sequence

(5-1) 1→ H1(Nk)→ H1(Nk/Zk).
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As σ acts trivially on Nk/Zk ' Sn , the set H1(Nk/Zk) can be identified to the
set of Sn-conjugacy classes of Hom(Z/2Z,Sn), that is, to the set of conjugacy
classes of elements of Sn of order 1 or 2. This proves that H1(Nk) can be naturally
embedded in the set of conjugacy classes of elements of Sn of order 6 2.

Now two elements w,w′ ∈ Sn define the same class in H1(Nk) if and only if
they are conjugate in Sn , thus if and only if wZk and w′Zk define the same class
in H1(Nk/Zk). Therefore (5-1) is a bijection. �

Proposition 5.11. (1) The number of Hk-conjugacy classes of σ -stable maximal
k-split tori in Gk is [n/2] + 1.

(2) There is a unique Hk-conjugacy class of maximal (σ, k)-split tori in Gk .

Proof. (1) Let X denote the set of all g ∈ Gk such that g−1σ(g) ∈ Nk . Then the
map g 7→ gS defines an injective map from the set of (Hk,Nk)-double cosets of X
to H1(Nk). Therefore we are reduced to proving that this map is surjective, and the
first assertion will follow from Lemma 5.10. For n = 2, let τ denote the nontrivial
element of S2 and choose an element a ∈ k ′ which is not in k. Then the element

(5-2) u =
(

a σ(a)
1 1

)
∈ GL2(k ′)

satisfies the relation u−1σ(u)= τ . For an arbitrary integer n > 2, let w ∈Sn have
order 6 2. Then there is an integer 0 6 i 6 [n/2] such that w is conjugate to the
element

τi = diag(τ, . . . , τ, 1, . . . , 1) ∈ GLn(k ′),

where τ ∈ GL2(k ′) appears i times and 1 ∈ GL1(k ′) appears n− 2i times. Thus

(5-3) ui = diag(u, . . . , u, 1, . . . , 1) ∈ GLn(k ′)

satisfies the relation u−1
i σ(ui )= τi . Therefore any 1-cocycle in Nk is Gk-cohomo-

logous to the neutral element 1 ∈ Gk , which proves the first assertion.

(2) For any 0 6 i 6 [n/2], the dimension of the (σ, k)-split torus (ui S)− is equal
to i . According to (1), the map

Hk gNk 7→ class of g−1σ(g) in H1(Nk)

is a bijection from the set of (Hk,Nk)-double cosets of X to H1(Nk), and the ele-
ments of this latter set are the classes of the τi for 06 i 6 [n/2]. This gives us the
expected result. �

Proposition 5.12. For 0 6 i 6 [n/2], let ui denote the element defined by (5-2)
and (5-3). Then

Gk =
[n/2]⋃
i=0

Hkui ZkK.



CARTAN DECOMPOSITION FOR p-ADIC SYMMETRIC SPACES 19

Proof. According to the proof of Proposition 5.11, the set X is the union of the dou-
ble cosets Hkui Nk with 06 i6 [n/2]. The result then follows from Proposition 3.10
and from the fact that NkK= ZkK. �

5.13. We now give an example (due to Bertrand Lemaire) of a nonsplit k-group
such that Proposition 4.8 does not hold. We set G= Resk′/kGL2, where k ′ is now
a ramified quadratic extension of k. The k-involution σ is still induced by the
nontrivial element of Gal(k ′/k) and we set H= GL2. Let B′ (resp. B) denote the
building of G (resp. H) over k.

Bruhat and Tits [1984b] give a description of the faces of B in terms of hereditary
O-orders of M2(k). More precisely, there is a bijective correspondence

F 7→MF

between the faces of B and the hereditary O-orders of M2(k), such that the sta-
bilizer of F in GL2(k) in the normalizer of MF in GL2(k). For x ∈ B, we will
denote by Mx the hereditary order corresponding to the face of B which contains
x . We have a similar correspondence between faces of B′ and hereditary O′-orders
of M2(k ′). Moreover, since k ′ is tamely ramified over k, there is a bijective cor-
respondence j from the set B′σ of σ -fixed points of B′ to B such that, for any
x ∈B′σ , we have

M j (x) =Mx ∩M2(k).

Let q denote the cardinality of the residue field of k. As k ′ is totally ramified
over k, any vertex of B has exactly q + 1 neighbors in B, and likewise for B′.
Let x be a σ -invariant point of B′. Recall that, according to Proposition 3.8, it is
contained in a σ -stable apartment.

• If j (x) is in a chamber of B, then x has q + 1 neighbors in B′ but only two
σ -fixed ones. Thus x has non-σ -fixed neighbors.

• If j (x) is a vertex of B, then x has q + 1 neighbors in B′ as in B. There-
fore any neighbor of x in B′ is σ -invariant, which implies that any σ -stable
apartment containing x is σ -invariant. For instance, this is the case of the
vertex x corresponding to the O′-order M2(O

′), as its image j (x) corresponds
to the maximal O-order M2(O

′)∩M2(k) =M2(O). For such a special point,
Proposition 4.8 does not hold.
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UNITAL QUADRATIC QUASI-JORDAN ALGEBRAS

RAÚL FELIPE

Forty-six years ago, McCrimmon defined the notion of a unital quadratic
Jordan algebra. Here we introduce and study the notion of a unital qua-
dratic quasi-Jordan algebra, following earlier work by Loday, Velasquez
and the author.

1. Introduction

In the past century, among nonassociative systems, Jordan algebras and unital qua-
dratic Jordan algebras have occupied a very special place. For instance, Jordan
algebras occur in quantum mechanics in connection with the representation of
physical observables from an algebraic point of view.

It is well known that an associative algebra A gives rise to a Jordan algebra A+

via the Jordan product x ◦ y = 1
2(xy + yx); it also gives rise to a Lie algebra by

means of the product [x, y] = xy − yx . A Jordan algebra is called special if it is
isomorphic to a subalgebra of a Jordan algebra A+ for some associative algebra A;
otherwise it is exceptional. A major problem in the theory of Jordan algebra has
been, from the beginning, the classification of simple Jordan algebras. Its solution
began with the works of Jordan, von Neumann, Wigner and Albert around 1934
for finite-dimensional algebras and was concluded with Zelmanov’s outstanding
work in the general case [Albert 1934; Jordan et al. 1934; Zelmanov 1979; 1983].

Jordan algebras also play an important role in others areas of mathematics, such
as differential geometry (exceptional algebras; see for instance [Bertram 2000]),
and the analysis of nonconvex optimization problems over symmetric cones (specif-
ically, Euclidean Jordan algebras; see [Faybusovich 1997] for more details).

Unital quadratic Jordan algebras were introduced by McCrimmon [1966; 1978]
in order to understanding Jordan structures where there is no scalar 1

2 , which neces-
sitate a quadratic approach based in the product xyx instead of x ◦ y= 1

2(xy+ yx).
McCrimmon developed this concept to introduce uniform methods in the study

This research was supported in part under CONACYT grant no. 106923 and in part under the Cuba
National Research Project Theory and efficient algorithms for the solution of problems in operator
algebra and geometric modeling.
MSC2000: primary 17C50; secondary 16W10.
Keywords: Dialgebras, Leibniz algebras, quasi-Jordan algebras.
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of Jordan algebras over characteristic 2. In a strict sense, unital quadratic Jordan
algebras are not algebras, because they do not have a bilinear product; however,
their connection to Jordan algebras motivated this terminology.

More recently, Loday [1993; 2001] discovered interesting generalizations of
associative and Lie algebras, which are now well known as dialgebras and Leibniz
algebras. All this leads in a natural way to the question of finding a similar ana-
logue for Jordan algebras, and study the unital quadratic Jordan algebras associated
to these new structures. With this purpose, we introduced in [Velásquez and Felipe
2008] the notion of quasi-Jordan algebras.

More specifically, a Leibniz algebra is a generalization of a Lie algebra where
the skew-symmetry of the bracket is dropped and the Jacobi identity is changed
by the Leibniz identity. Loday observed that the relationship between Lie algebras
and associative algebras translate into an analogous relationship between Leibniz
algebras and so-called dialgebras, which are a generalization of associative alge-
bras possessing two products: Namely, a dialgebra over a field K is a K-vector
space D equipped with two associative products

a : D× D→ D, ` : D× D→ D

satisfying the identities

x a (y a z)= x a (y ` z),(1)

(x ` y)a z = x ` (y a z),(2)

(x ` y)` z = (x a y)` z.(3)

We say that e ∈ D is a bar unit of D if for all x ∈ D we have e` x = x = x a e.
Loday showed that any dialgebra (D,`,a) becomes a Leibniz algebra under

the Leibniz bracket [x, y] = x a y− y ` x .
Our notion of quasi-Jordan algebra bears to Leibniz algebras a relationship

similar to the one between Jordan algebras and Lie algebras. More precisely, in
[Velásquez and Felipe 2008] we attached a quasi-Jordan algebra Q Jx to any Q-
Jordan element x in a Leibniz algebra. Soon, Kolesnikov [2008] and Bremner
[2010] (see also [Bremner and Peresi 2010]) found independently an interesting
particular case of quasi-Jordan algebras, in which the analysis of its derivations
has a promising future (see [Felipe 2009]). We observe that in a dialgebra over a
field of characteristic other than 2 the Jordan quasiproduct takes the form

(4) x G y := 1
2(x a y+ y ` x).

In other words, any dialgebra over a field of characteristic other than 2 leads to a
quasi-Jordan algebra.
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In this paper we generalize the notion of unital quadratic Jordan algebras, be-
ginning with dialgebras. As we will see, one arrives to a new structure (the unital
quadratic quasi-Jordan algebra) which include the notion introduced by McCrim-
mon in 1966.

2. Definitions and basic examples

Definition 1 [McCrimmon 2004, page 83]. A unital quadratic Jordan algebra J
consists of a 8-module on which a product Ux y is defined which is linear in y and
quadratic in x (i.e., U : x 7→ Ux is a mapping of J into End8(J ), homogeneous
of degree 2), together with a choice of a unit element e, such that the following
operator identities hold, where we have defined

(5) Vx,yz = (Ux+z −Ux −Uz)y

for all x, y, z ∈ J :

(a) Ue = Id.

(b) Vx,yUx =Ux Vy,x .

(c) UUx y =UxUyUx .

Any associative algebra A determines a quadratic Jordan algebra Q A+ with the
product Ux y = xyx .

In his original paper, McCrimmon [1966] included in the definition of unital
quadratic Jordan algebras the condition that the identities (b) and (c) remain valid
under extensions of the ring of scalars, and pointed out that this condition is equiva-
lent to the assumption that the linearizations of the identities hold. He subsequently
eliminated this requirement [1978; 2004]. We return to this point in Section 3.

Definition 2. A unital quadratic quasi-Jordan algebra over a field K is a quadru-
ple (=,U,W, e), where = is a K -vector space, e is a distinguished element of =,
and U and W are maps a 7→ Ua and a 7→ Wa of = into EndK (=) satisfying the
following axioms:

(QQJ1) Ue = Id and We e = e.

(QQJ2) WzUx Vy,x =Wz Vx,yUx for all x, y, z ⊂ =, in the notation of (5).

(QQJ3) UUx y =UxUyUx , for every x, y ⊂ =.

(QQJ4) Uλx e = λ2Ux e for any x ∈ =.

We say that e is the unit of the unital quadratic quasi-Jordan algebra.

The need for a second operator W arises as follows. We wish to include split
quasi-Jordan algebras (where the product G is right commutative) among unital
quadratic quasi-Jordan algebras. But in general, it is not true that Ux Vy,x = Vx,yUx
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for unital quadratic quasi-Jordan algebras, as will become clear after Lemma 4. The
operator W is responsible, so to speak, for ensuring that U( · ) and V( · ,· ) “commute”
(QQJ2). Moreover, we want to be able to construct quasi-Jordan algebras from
unital quadratic quasi-Jordan algebras (Section 4).

Lemma 3. Any unital quadratic Jordan algebra is a unital quadratic quasi-Jordan
algebra in which Wa =Ua for all a ∈=. In this case Ux is K-quadratic with respect
to x.

Proof. This is immediately checked from the definitions. �

The real motivation for Definition 2 is the following lemma.

Lemma 4. Let (D,`,a , e) be a unital K-dialgebra. We need not suppose that the
field K is of characteristic other than 2. Define

Ux y = (x ` y)a x = x ` (y a x), Wx y = (x a y)a x = x a (y a x).

Then (D,U,W, e) is a unital quadratic quasi-Jordan algebra, for which U and W
are homogeneous of degree 2 (as maps D→ EndK (D)).

The unital quadratic quasi-Jordan algebra built from a unital dialgebra D will
be denoted by (Q Q(D), e).

Proof. It is clear that Uex = x for all x ∈ D. Next, Wee = (e a e) a e = e.
The homogeneity condition — that is, Uλx y = λ2Ux y and Wλx y = λ2Wx y for any
x, y ∈ = and any scalar λ— is also easy to check.

To show that QQJ3 holds, we write

UUx yz =U(x`y)ax z =
(
((x ` y)a x)` z

)
a ((x ` y)a x)

= ((x ` y)a x)`
(
z a ((x ` y)a x)

)
= ((x ` y)a x)`

(
z a (x ` (y a x))

)
= ((x ` y)a x)`

(
z a (x a (y a x))

)
= ((x ` y)` x)`

(
z a (x a (y a x))

)
= (x ` y)`

(
x ` (z a (x a (y a x)))

)
= (x ` y)`

(
(Ux z)a (y a x)

)
=UxUyUx z.

To simplify the rest of the proof we introduce some notation. If a1, a2, . . . , an

are elements of D and 1≤ k ≤ n, we set

a1a2 . . . ak−1âkak+1 . . . an−1an

= (a1 ` a2 ` · · · ` ak−2 ` ak−1)` ak a (ak+1 a ak+2 a · · · a an−1 a an),

where the right-hand side is well defined by associativity.
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Next we verify the axiom QQJ2. We have

WcUx Vy,x z = WcUx [(y` x)a z+ (z` x)a y]

= Wc
[(

x ` ((y` x)a z)
)
a x+

(
x ` ((z` x)a y)

)
a x
]

=
(
ca ((x ` ((y` x)a z))a x)

)
ac+

(
ca ((x ` ((z` x)a y))a x)

)
ac

= ĉxyxzxc+ ĉxzxyxc;

on the other hand

WcVx,yUx z = WcVx,y((x ` z)a x)

= Wc
[(
(x ` y)a ((x ` z)a x)

)
+
(
(((x ` z)a x)` y)a x

)]
= (ca ((x ` y)a ((x ` z)a x)))ac+

(
ca ((((x ` z)a x)` y)a x)

)
ac

= ĉxyxzxc+ ĉxzxyxc.

Thus, QQJ2 follows. Finally that Ux and Wx belong to EndK (D) for any x ∈ D
is evident. �

It is not hard to see that Ux Vy,x and Vx,yUx need not coincide for unital quadratic
quasi-Jordan algebras. In fact, from the proof of Lemma 4 it follows that

Ux Vy,x z =
(
x ` ((y ` x)a z)

)
a x +

(
x ` ((z ` x)a y)

)
a x,(6)

Vx,yUx z =
(
(x ` y)a ((x ` z)a x)

)
+
(
(((x ` z)a x)` y)a x

)
.(7)

Taking x = e, one obtains from (6) that UeVy,ez= y`eaz+z`ea y, and from (7)
that Ve,yUez = y a z+ z ` y. Thus, for nonzero y ∈ Z B(D) we have UeVy,ee = 0,
but Ve,yUee = 2y, which is nonzero if the characteristic is not 2.

3. Linearization

We now turn to the “linearization interpretation” of the axioms in Definition 2. We
restrict ourselves to the case of unital quadratic quasi-Jordan algebras (Q Q(D), e).

Recall that in the proof of Lemma 4 we used the equality

Vx,yz = (x ` y)a z+ (z ` y)a x .

Recall also that Ux y = (x ` y)a x . If we replace x by x+αz in this latter equality,
we obtain

Ux+αz y =Ux y+ (Vx,yz)α+ (Uz y)α2
;

that is, we can consider to Vx,y as the “linearization” of Ux , which justifies its
presence in axiom QQJ2.

One can see, after a cumbersome calculation, that if the field of scalars over
which a unital quadratic quasi-Jordan algebra (Q Q(D), e) is defined has at least
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four elements, the linearization of QQJ2 is

(8) Wv(Ux Vy,wz+Vw,Vy,x zx)=Wv(Vw,yUx z+Vx,y Vw,zx) for v, x, y, z, w ∈ D.

If the field of scalars has at least five elements, linearizing QQJ3 we obtain

(9) UxUy Vx,wz+ Vw,UyUx zx = VVw,y x,zUx y,

for all x, y, z, w ∈ D. Thus, if D is a dialgebra with a bar unit defined over a field
with at least five elements, the axioms QQJ2 and QQJ3 for (Q Q(D), e) can be
linearized in the form (8) and (9) respectively.

4. Relation to quasi-Jordan algebras

Let (D,`,a, e) be a unital dialgebra. The unital quadratic quasi-Jordan algebra
(Q Q(D), e) is restrictive, that is, it satisfies the condition

(10) Vz,(V(Vy,ye),x e)e−V(Vz,(Vy,ye)e),x e = 2Vy,(Vz,(Vy,x e)e−V(Vz,ye),x e)e,

for all x, y, z ∈ =. Indeed, (10) is the Bremner–Kolesnikov identity for the quasi-
Jordan product defined from dialgebras [Bremner 2010; Felipe 2009; Kolesnikov
2008].

It is well known that any unital Jordan algebra (J, •, e) over a field of charac-
teristic other than 2 gives rise to a unital quadratic Jordan algebra (and so also a
unital quadratic quasi-Jordan algebra) for which, if Rx y denotes the product of y
by x ,

Ux y = (2R2
x − Rx2)y and x • y = 1

2(Ux+y −Ux −Uy)e = Kx,ye.

At the same time, Bremner [2010] has shown that the Bremner–Kolesnikov identity
holds in Jordan algebras. Hence, we have

K(Ka,(Kb,be)e),ce− Ka,(K(Kb,be),ce)e = 2K(K(Ka,be),ce−Ka,(Kb,ce)e),be,

for all a, b, c∈ J . Since Vx,y and Kx,y act differently on a element, this last equality
is distinct from (10). This is not surprising, because in general the quasi-Jordan
algebra arising from a dialgebra is not a Jordan algebra.

We know that by means of the right and left products of a K-dialgebra over a
field K of characteristic other than 2, we can build a new product on the same
underlying vector space (see below after the next definition) with respect to which
it becomes a quasi-Jordan algebra (in fact, this new product is right commutative).
See [Velásquez and Felipe 2008; 2009] for details.

Definition 5. A quasi-Jordan algebra is a vector space = over a field K of a char-
acteristic other than 2 equipped with a bilinear product G : =×=→= such that

(11) x G (y G z)= x G (z G y) (right commutativity)
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and

(12) (y G x) G x2
= (y G x2) G x (right Jordan identity)

for all x, y, z ∈ =, where x2
= x G x . A unit of a quasi-Jordan algebra = is an

element e ∈ = such that x G e = x for all x ∈ =.

Example 6. As noted earlier, quasi-Jordan algebras appear in the study of the
product

(13) x G y := 1
2(x a y+ y ` x),

where x and y are elements in a dialgebra (D,`,a) over a field K of characteristic
other than 2. The quasi-Jordan algebra defined over D with the product (13) is
denoted by (=(D), G).

From the results above we see that if D has a bar unit e, our construction defines
over D a unital quadratic quasi-Jordan algebra (Q Q(D), e). In this case we have:

Lemma 7. For any x ∈ Q Q(D), the linear transformation Ux can be recovered as

Ux y = (2R2
x − Rx2)y,

where Rx is right multiplication by x (that is, the element of End(=(D)) defined by
Rx y = y G x). The product G in ((=(D), G), e) is recovered as y G x = 1

2 Vx,ye.

Proof. We prove the first statement; the proof of the equality y G x = 1
2 Vx,ye is

similar. In fact,

(2R2
x − Rx2)y

= 2(y G x) G x − y G (x G x)

=
1
2

(
(yax+x`y)ax+x`(yax+x`y)

)
−

1
4

(
ya(xax+x`x)+(xax+x`x)`y

)
= (x ` y)a x =Ux y. �

For a quasi-Jordan algebra = we introduce

Z r (=)= {z ∈ = : x G z = 0 for all x ∈ =}.

We denote by=ann the subspace of= spanned by elements of the form xGy−yGx ,
with x, y ∈ =, and call it the annihilator ideal of the quasi-Jordan algebra =. Then
= is a Jordan algebra if and only if =ann

= {0}. It follows from right commutativity
(11) that in any quasi-Jordan algebra

x G (y G z− z G y)= 0.

The last identity implies that =ann
⊂ Z r (=). One can prove that both =ann and

Z r (=) are two-sided ideals of =. Now recall from [Velásquez and Felipe 2008]
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that if = is a unital quasi-Jordan algebra, with a specific unit e, then

(14) =
ann
= Z r (=), =ann

= {x ∈ = : e G x = 0}.

It is now clear that units in quasi-Jordan algebras are not unique; indeed, the set of
units Ur (=) of = is given by

Ur (=)= {x + e : x ∈ =ann
}.

Definition 8. Let = be a quasi-Jordan algebra and let I be an ideal in = such that
=

ann
⊂ I ⊂ Z r (=). We say that = is split over I if there is a subalgebra J of = such

that = = I ⊕ J as a direct sum of subspaces.

Clearly, if = is split over an ideal I with complement J , then J is a Jordan
algebra with respect to the product G restricted to J . This is equivalent to saying
that (J, G|J ) is a Jordan algebra. In fact, for x, y ∈ J , then x G y, y G x ∈ J and
x G y− yGx ∈ I ∩ J ={0}; that is, G|J is commutative and therefore the right Jordan
identity over = implies that (J, G|J ) is a Jordan algebra.

Additionally, for a, b ∈ I and x, y ∈ J we have

(a+ x) G (b+ y)= a G y+ x G y,

because I ⊂ Z r (=).
Reciprocally, let (J, •) be a Jordan algebra and let M be a Jordan bimodule over

J . We consider the direct sum = := M⊕ J and we define the product G over = by

(a+ x) G (b+ y)= ay+ x • y,

for all a, b ∈ M and x, y ∈ J . Then (=, G) is a quasi-Jordan algebra, called the
demisemidirect product of M with J .

It is possible to see that =ann ∼= M J and

Z r (=)= M ⊕{y ∈ Z(J ) : uy = 0 for all u ∈ M},

where Z(J )= {y ∈ J : x • y = 0 for all x ∈ J }. Finally, M ∼= M⊕{0} is an ideal of
= such that =ann

⊂ M ⊂ Z r (=). In addition, =/M ∼= J and = is split over M with
complement J .

Let (=, •) be an algebra. Assume that == I⊕ J , where (J, •) is a Jordan algebra
and I is an ideal of =. In general I is not a Jordan bimodule over J with respect
to the product • . However, we can define a new product on = by

(15) (a+ x) G (b+ y)= a • y+ x • y,

for all a, b ∈ I and x, y ∈ J .

Lemma 9. Let (=, •) be an algebra such that = = I ⊕ J , where (J, •) is a Jordan
algebra and I is an ideal of =. Suppose that (a • x2) • x = (a • x) • x2 for all a ∈ I
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and x ∈ J , where x2
= x • x. Then (=, G) is a quasi-Jordan algebra, where G is the

product defined by (15). Moreover =ann
⊂ I ⊂ Z r (=).

We refer to (=, G) as the demisemidirect product of I with J .

Proof. The product (15) is right commutative; in fact, if a, b, c ∈ I and x, y, z ∈ J ,

(a+ x) G ((b+ y) G (c+ z))= a • (y • z)+ x • (y • z)

= a • (z • y)+ x • (z • y)

= (a+ x) G ((c+ z) G (b+ y)).

Observe that (a+ x) G (a+ x)= a • x + x2. Now

((b+ y) G (a+ x)) G (a • x + x2)= (b • x) • x2
+ (y • x) • x2

= (b • x2) • x + (y • x2) • x

= ((b+ y) G (a • x + x2)) G (a+ x).

Thus, the right Jordan identity holds. On the other hand,

(a+ x) G (b+ y)− (b+ y) G (a+ x)= a • y− b • x ∈ I.

It shows that =ann
⊂ I . Finally, we have

(a+ x) G b = (a+ x) G (b+ 0)= a • 0+ x • 0= 0,

which implies that I ⊂ Z r (=). �

Theorem 10. Let = be a quasi-Jordan algebra and let I be an ideal of = such that
=

ann
⊂ I ⊂ Z r (=). Then = is split over I if and only if = is the demisemidirect

product of I with a Jordan algebra J .

Proof. This follows from Lemma 9 and the discussion preceding that lemma. �

The property of being a split quasi-Jordan algebra is important for us, among
other reasons because every quasi-Jordan algebra is isomorphic to a subalgebra of
a split quasi-Jordan algebra.

Now suppose that = is a split quasi-Jordan algebra with a specific unit e. Since,
by (14), =ann and Z r (=) coincide, there is a Jordan algebra J such that ===ann

⊕J .
Because e ∈ = is a unit in =, there are elements a ∈ =ann and ε ∈ J such that

e = a+ ε. If b+ y ∈ =, with b ∈ =ann and y ∈ J , we have

b+ y = (b+ y) G e = (b+ y) G (a+ ε)= b G ε+ y G ε = (b+ y) G ε.

The last equality implies that ε is a unit in = and a unit in the Jordan algebra J .
Also, ε is the only element in J such that a+ ε is a unit in = for all a ∈ =ann. This
shows that the units in a split quasi-Jordan algebra are of the form a+ε, where a ∈
=

ann and ε is the unique unit of a unital Jordan algebra; hence Ur (=)==
ann
⊕{ε}.
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Theorem 11. Let == =ann
⊕ J be a unital split quasi-Jordan algebra and ε ∈ J a

unit of = which is also the unique unit of the Jordan algebra J . Then (=,U,W, ε)
is a unital quadratic quasi-Jordan algebra in which U and W are defined as follows
(if x, y ∈ J , we denote the product of x with y by xy instead of x G y):

(16) Ua+x(b+ y)= b+Ux y, Wa+x(b+ y)=−a G y+ (xy),

where a, b ∈ =ann, x, y ∈ J and Ux y = (2R2
x − Rx2)y. Here Rx y = yx = xy.

As the reader probably has noticed, where no misunderstanding can arise, we
will use the letter U to denote simultaneously the map Ua+x for any a+ x ∈ = and
the map Uz for every z ∈ J .

Proof. Keep in mind that J is a Jordan algebra. We have Uε(b+ y) = b+Uε y =
b+ y; thus Uε = Id . At the same time, Wεε = ε.

Obviously Ua+x(b+ y) and Wa+x(b+ y) are linear with respect to (b+ y) and
Uλ(a+x)ε =Uλxε = λ

2Uxε = λ
2Ua+xε.

Next,

(17) UUa+x (b+y)(c+ z)=Ub+Ux y(c+ z)= c+UUx yz.

On the other hand,

Ua+xUb+yUa+x(c+ z)=Ua+xUb+y(c+Ux z)(18)

=Ua+x(c+UyUx z)= c+UxUyUx z;

since UUx yz =UxUyUx z. From (17) and (18) we have

UUa+x (b+y) =Ua+xUb+yUa+x .

Next we check condition QQJ2. First we obtain

(19) V(b+y),(a+x)(c+ z)= (U((b+c)+(y+z))−U(b+y)−U(c+z))(a+ x)

= (a+Uy+zx)− (a+Uy x)− (a+Uzx)

=−a+ (Uy+zx −Uy x −Uzx)=−a+ Vy,x z.

Similarly, V(a+x),(b+y)(c+ z)=−b+ Vx,yz. Hence

Ua+x V(b+y),(a+x)(c+ z)=Ua+x(−a+ Vy,x z)=−a+Ux Vy,x z,

which implies that

(20) Wd+wUa+x V(b+y),(a+x)(c+ z)=Wd+w(−a+Ux Vy,x z)

=−d G (Ux Vy,x z)+w(Ux Vy,x z).
Observe also that

V(a+x),(b+y)Ua+x(c+ z)= V(a+x),(b+y)(c+Ux z)=−b+ Vx,yUx z,
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and from this we conclude that

Wd+wV(a+x),(b+y)Ua+x(c+ z)=Wd+w(−b+ Vx,yUx z)(21)

=−d G (Vx,yUx z)+w(Vx,yUx z).

Using the commutativity property Ux Vy,x = Vx,yUx of Jordan algebras, it fol-
lows from (20) and (21) that Wd+wUa+x V(b+y),(a+x) =Wd+wV(a+x),(b+y)Ua+x for
all (a+ x), (b+ y), (d +w) ∈ =. This concludes the proof of the theorem. �

Let = = =ann
⊕ J be a unital split quasi-Jordan algebra with ε ∈ J as unit,

then we denote ℘(=) for the unital quadratic quasi-Jordan algebra (=,U,W, ε)
corresponding to the previous theorem.

5. Split unital quadratic quasi-Jordan algebras

For a unital quadratic quasi-Jordan algebra (=,U,W, e) we put

Z r (=)= {z ∈ = :Wx z = 0 for all x ∈ =}.

We denote by =ann the subspace of = spanned by elements of the form

(Ux Vy,x − Vx,yUx)z, with x, y, z ∈ =.

= is a unital quadratic Jordan algebra if and only if =ann
={0} and Ux is K-quadratic

with respect to all x ∈ =. From QQJ2 follows that =ann
⊂ Z r (=).

Proposition 12. If (=,U,W, e) is a unital quadratic quasi-Jordan algebra, the
unit e does not belong to =ann.

Proof. Otherwise, one can write e =
∑
(Uxi Vyi ,xi − Vxi ,yi Uxi )zi , where the sum is

finite. Applying We to this equality and taking into account QQJ1 and QQJ2 we
obtain e = 0, which is impossible. �

In fact a more general statement holds: e does not belong to Z r (=).

Definition 13. We say that a unital quadratic quasi-Jordan algebra (=,U,W, e) is
split if there exists a subspace Q J such that = = =ann

⊕ Q J as a direct sum of
subspaces and Ux Q J ⊂ Q J for all x ∈ Q J .

Lemma 14. Let (=,U,W, e) be a split unital quadratic quasi-Jordan algebra such
that = = =ann

⊕ Q J. Then, if U is K-quadratic, Q J is a unital quadratic Jordan
algebra.

Proof. Take x, y, z ∈ Q J . We have (Ux Vy,x − Vx,yUx)z ∈ =ann
∩ Q J ; therefore

(Ux Vy,x − Vx,yUx)z = 0,

so Ux Vy,x = Vx,yUx for all x, y ∈ Q J . This shows that (Q J,U|Q J ,W|Q J , e) is a
unital quadratic Jordan algebra. �
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Now suppose that (D,`,a , e) is a unital split dialgebra such that D=Dann
⊕A,

where A is an associative algebra (so ` = a on A) and e is a bar unit of D which
is the unique unit of A. (Dann, the annihilator ideal of D, is the subspace of D
spanned by elements of the form x a y − x ` y; see [Velásquez and Felipe 2009]
for details). Then

(a+ i)a (b+ j)= (a a j)+ i j and (a+ i)` (b+ j)= (i ` b)+ i j,

where a, b ∈ Dann and i, j ∈ A, moreover Dann is spanned by elements of the form
a a i and k ` b.

Theorem 15. If D = Dann
⊕ A is a unital split dialgebra as above, the unital

quadratic quasi-Jordan algebra (Q Q(D), e) is split.

Proof. Since Ux y = (x ` y)a x = xyx ∈ A if x, y ∈ A, it is sufficient to check that
Dann
= (Q Q(D))ann. Now, it is easy to show through calculation that the term in

the expression

(22) U(a+i)V(b+ j),(a+i)(c+ k)− V(a+i),(b+ j)U(a+i)(c+ k)

that belongs to A is (i(( j i)k)) i+(i((ki) j)) i−((i j)((ik)i))−(((ik) i) j)= T ; but
since A is associative we conclude that T = 0. The remaining four terms are of
the form d a l and m ` f . It follows that (Q Q(D))ann

⊂ Dann. On the other hand,
taking i = j = e in (22), this expression will be equal to aa k+k`a−ba k−k`b.
Setting b = 0 we conclude that the elements of the form d a l and m ` f (which
span Dann) can be obtained by means of (22). Thus Dann

⊂ (Q Q(D))ann. This
completes the proof of the theorem. �

Proposition 16. Let ℘(=) = (=,U,W, ε) be the unital quadratic quasi-Jordan
algebra associated to a unital split quasi-Jordan algebra = = =ann

⊕ J with ε ∈ J
as a unit. Then ℘(=) is split.

Proof. It follows from (16) that Ux y ∈ J for any x, y ∈ J . At the same time,

(Ua+x V(b+y),(a+x)−V(a+x),(b+y)Ua+x)(c+z)= (−a+Ux Vy,x z)−(−b+Vx,yUx z)

= b−a,

where a, b, c∈=ann and x, y, z ∈ J . We obtain b=Ux V(b+y),x−Vx,(b+y)Ux)(c+z)
by setting a = 0. Since b ∈ =ann is arbitrary, this implies that ℘(=)ann

= =
ann. �

6. Concluding remarks

We propose a few possible directions of work:

(i) Inner ideals play a role in the theory of quadratic Jordan algebras analogous
to that played by the one-sided ideals in the theory of associative algebras. It
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is therefore important to develop a corresponding ideal theory for quadratic
quasi-Jordan algebras.

(ii) Although representations do not play as much of a role in the theory of Jordan
algebras as they do in the associative or Lie theories, we propose to develop a
representation theory for unital quadratic quasi-Jordan algebras. There exists
some previous work of McCrimmon about this subject for quadratic Jordan
algebras.

(iii) One of the most controversial concepts about dialgebras and quasi-Jordan al-
gebras, one which is still under study, is that of a regular or invertible element.
We think the reason for this is the nonuniqueness of the unit in these algebraic
structures. Hence, an interesting subject of study could be the notion of a
regular element on a unital quadratic quasi-Jordan algebra. Maybe this could
help unify views and opinions in the near future.

(iv) There are some techniques for establishing identities in Jordan algebras and
quadratic Jordan algebras, among which the best known are Macdonald’s prin-
ciple, Kocher’s principle and McCrimmon’s principle. It would be useful to
find corresponding principles for unital quadratic quasi-Jordan algebras with
the help of which we may know, for instance, whether (8) and (9) hold for
any unital quadratic quasi-Jordan algebra.
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THE DIRICHLET PROBLEM
FOR CONSTANT MEAN CURVATURE GRAPHS IN H × R

OVER UNBOUNDED DOMAINS

ABIGAIL FOLHA AND SOFIA MELO

We study graphs of constant mean curvature H in H × R, where H is the
hyperbolic plane. When 0 < H < 1

2 , we find necessary and sufficient condi-
tions for the existence of these graphs over unbounded domains in H, having
prescribed, possibly infinite, boundary data.

1. Introduction

This work deals with graphs in H× R, where H is the hyperbolic plane, having
constant mean curvature H defined over unbounded domains in H. In the Euclidean
space R3, Finn [1963; 1965] and Jenkins and Serrin [1966] studied the existence
of a function whose graph over a bounded domain D ⊂ R2 is minimal and has
prescribed boundary data. Finn studied the behavior of graphs in R3 over bounded
convex domains in R2 having constant mean curvature H = 0 and established
criteria to determine when a graph tends to infinity over a boundary arc of the
domain. Jenkins and Serrin showed that necessary conditions for the existence of
graphs over a domain D ⊂ R2 having unbounded boundary values given by the
flux (see Section 5 for precise definition) on D are also sufficient.

The work of Jenkins and Serrin inspired many extensions to other ambient
spaces and some of their ideas are present in these extensions. In H×R the exis-
tence theorem was proved by Nelli and Rosenberg [2002]. Collin and Rosenberg
[2010] treated the case in which the domain D in H is unbounded and Mazet,
Rodríguez and Rosenberg [2008] dealt with a more general setting. Spruck [1972]
extended the theorem of Jenkins and Serrin to constant mean curvature graphs in R3

over bounded domains of R2. Spruck’s work introduced an important idea for the
case H 6= 0: the reflection of the curves in order to get values −∞ over boundary
arcs. The case of graphs of constant mean curvature over bounded domains in H

Folha was supported by FAPERJ. Melo was supported by CAPES.
MSC2000: 53A10, 53C42.
Keywords: constant mean curvature, unbounded domain, graph, Dirichlet problem.
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was considered by Hauswirth, Rosenberg and Spruck [2009]. There are other arti-
cles about this theory; see, for example, [Rosenberg 2002; Pinheiro 2009; Gálvez
and Rosenberg 2010].

It is a well known fact that there is no entire graph for H greater than 1/2 in
H×R; moreover, Hauswirth, Rosenberg and Spruck [2008] prove that a complete
graph with H = 1/2 in H×R is an entire graph. Hence, we consider in this work
values of H > 0 less than 1/2. We take a convex domain D whose boundary ∂D

is composed of ideal arcs {Ai }, {B j } and {Ck} such that the curvatures of the arcs
with respect to the domain are κ(Ai )= 2H , κ(B j )=−2H and κ(Ck) ≥ 2H . We
give necessary and sufficient conditions on the geometry of the domain D which
assure the existence of a function u defined in D, whose graph has constant mean
curvature and u assumes the value+∞ on each Ai ,−∞ on each B j and prescribed
continuous data on each Ck . The conditions, as in Jenkins and Serrin’s work [1966],
will be considered in terms of the lengths and the areas of inscribed polygons.
Since these quantities are infinite in general, the formulation of the conditions is
somewhat delicate. For an example, the reader may look at Section 8. In order to
control lengths we do the same as Collin and Rosenberg [2010]; however, the new
and key idea appears when we consider the area and we split it in two parts, one
finite and the other infinite (see Section 3).

This paper is organized as follows. In Section 2, we introduce notation. In
Section 3, we state the main theorems, which will be proved in Section 7. Sec-
tions 4 and 5 contain general maximum principles and the flux formulas, which are
useful tools to prove preliminary results and the necessary conditions of the main
theorems. In Section 6, we state results about divergence lines, which are essential
to prove the sufficient conditions of the main theorems. Finally, in Section 8, we
construct an example.

2. Notation

Let H be the hyperbolic plane, and H×R be given the product metric. Let u : D⊂
H→ R be a function in C2(D), where D is a simply connected domain. Denote
the graph of u by S=Graph(u)={ (p, u(p)) | p∈ D }. Since S is a graph, there are
two choices for the unit normal vector N (P) to S at a point P = (p, u(p)), p ∈ D.
We choose

N (P)=
−∇u+ ∂t√
1+‖∇u‖2

,

that is, the normal vector pointing up.
Let
−→
H (P) be the mean curvature vector of S at P . The mean curvature function

of S at a point P is defined by H(P) = 〈N ,
−→
H 〉(P). Consider graphs with 0 <

H(P) < 1
2 for all P ∈ S; in particular,

−→
H points up.
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The graph S has constant mean curvature H if H(P) = H for all P ∈ S. This
means u satisfies the equation

(1) Mu := div
(

∇u√
1+ |∇u|2

)
= 2H,

where the divergence and gradient are taken with respect to the metric on H. A
function that satisfies this equation in D is called a solution in D. We will use the
notation Xu =∇u/Wu , where Wu =

√
1+ |∇u|2.

Let E ⊂ H be a smooth curve. Denote by κ(p) the (nonnegative) curvature of
E at a point p ∈ E and when κ(p) = K for all p ∈ E , we will say κ(E) = K .
When E is a boundary arc of a domain D, we will often let κ(p), p ∈ E , denote
the algebraic curvature of E at p with respect to D, that is, κ(p)≥ 0 if E is convex
with respect to D, and κ(p) < 0 otherwise.

We will consider ideal domains in H whose asymptotic boundary is composed
only of a finite number of isolated points. Domains mean a connected, simply
connected open set. The boundary of an ideal domain will be called ideal polygon.

3. Main theorems

In this section, we state the theorems that give necessary and sufficient conditions
for the existence of constant mean curvature graphs which take the boundary values
+∞ on certain arcs Ai , −∞ on arcs Bi and continuous data on arcs Ci .

Definition 3.1 (admissible domain). We say that an unbounded domain D in H is
admissible if it is simply connected and ∂D is an ideal polygon with sides {Ai },
{Bi } and {Ci } satisfying κ(Ai )= 2H , κ(Bi )=−2H and κ(Ci )≥ 2H , respectively
(with respect to the interior of D). Suppose that no two of the arcs Ai and no two
of the arcs Bi have a common endpoint. Moreover, all the sides of ∂D are contained
in H and all the vertices of ∂D are in the asymptotic boundary of H.

Definition 3.2 (Dirichlet problem). Let D be an admissible domain and fix 0 <
H < 1

2 . The generalized Dirichlet problem is to find a solution of (1) in D of
mean curvature H , which assumes the value +∞ on each Ai , −∞ on each Bi and
prescribed continuous data on each Ci .

Definition 3.3 (admissible inscribed polygon). Let D be an admissible domain.
We say that P is an admissible inscribed polygon if P ⊂ D ∪ ∂D, its sides have
curvature ±2H and all the vertices of P are vertices of D.

In [Hauswirth et al. 2009], the Dirichlet problem was solved for bounded ad-
missible domains. The necessary and sufficient conditions in this case are in terms
of the lengths and areas of inscribed polygons. When the domain is unbounded,
these quantities can be infinite. Using the ideas in [Collin and Rosenberg 2010],
we control the lengths as follows.
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Let P be an inscribed polygon in D and let {di } be the vertices of P. Consider
the set

2= {Hi |Hi is a horocycle at di ,Hi ∩H j =∅, i 6= j,

and these horocycles satisfy condition (5) }.

Remark 3.1. We define condition (5) in Section 7. This is a technical condi-
tion which is always satisfied for sufficiently “small” horocycles at the vertices di .
Throughout we only consider horocycles Hi contained in this set 2.

Let Fi be the convex horodisk with boundary Hi . Each Ai meets exactly two
horodisks. Denote by Ãi the compact arc of Ai which is the part of Ai outside the
two horodisks; we define |Ai | as the length of Ãi . For each arc η j ∈ P we define
η̃ j and |η j | in the same way.

We define

α(P)=
∑
Ai∈P

|Ai |, β(P)=
∑
Bi∈P

|Bi | and l(P)=
∑

j

|η j |

where P=
⋃

j η j .
Now, let γi = Hi ∩ (D∪ ∂D). Consider γ ∗i the geodesic reflection of γi about

the geodesic joining the endpoints of γi .
Denote by � the domain bounded by P and �̃ =

⋃
j (�∩ F j ), where the area

A(�∩ F j ) is finite.
Let H= {Hi }i=1,...,n be a family of horocycles.
For each family H, we define

Ã(�) :=A(�H)+A(�̃),

where
A(�H)=A

(
�−

(⋃
i (�∩ Fi )

))
for all i . This definition plays an important role in this work – actually, this is the
key idea which we need to extend previous results of [Collin and Rosenberg 2010;
Hauswirth et al. 2009] to our setting. In Section 7, we will point out where this
definition is used.

Notice that the definitions of α(P), β(P) and l(P) can be extended to the bound-
ary of D and Ã(�) to D.

Remark 3.2. When ∂D only has sides of type Ai and Bi , we have that Ã(D) =

A(D), because A(D ∩ Fi ) is finite for all i (this may be infinite when there are
arcs Ci present). Also, in this case, for all admissible polygons P in D we have

Ã(�)=A(�).

With these definitions we can state the main theorems.
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Theorem 3.1. Consider the Dirichlet problem in an admissible domain D and
suppose the family {Ci } is empty. Then, there exists a solution to the Dirichlet
problem if and only if for some choice of the horocycles (in 2) at the vertices,

(2) α(∂D)= β(∂D)+ 2HÃ(D)

and for all admissible polygons P,

(3) 2α(P) < l(P)+ 2HÃ(�) and 2β(P) < l(P)− 2HÃ(�).

Now we remove the hypothesis that {Ci } is empty from Theorem 3.1.

Theorem 3.2. Consider the Dirichlet problem in an admissible domain D and
suppose the family {Ci } is nonempty. Then there exists a solution to the Dirichlet
problem if and only if for some choice of the horocycles (in 2) at the vertices,

(4) 2α(P) < l(P)+ 2HÃ(�) and 2β(P) < l(P)− 2HÃ(�)

for all admissible polygons P.

4. Maximum principles

The next results are general maximum principles for sub- and supersolutions of
the constant mean curvature operator for boundary data having a finite number of
discontinuities. The first one is in a bounded domain and the second one is in an
unbounded domain. First we state a local lemma whose proof is in [Hauswirth
et al. 2009].

Lemma 4.1. Let u1 and u2 be functions in C2(D), D ⊂ H. Then〈
∇u1
−∇u2,

∇u1

W1
−
∇u2

W2

〉
≥ 0,

with equality at a point if and only if ∇u1
= ∇u2. Here Wi = W (∇ui ), W (p) =√

1+ |p|2, i = 1, 2.

Theorem 4.1 (general maximum principle 1). Let u1 and u2 satisfy Mu1
≥ 2H ≥

Mu2 in a bounded domain D ⊂ H. Suppose that lim inf(u2
− u1) ≥ 0 for any

approach to ∂D with the possible exception of a finite number of points of ∂D.
Then u2

≥ u1 with strict inequality unless u2
≡ u1.

Theorem 4.2 (general maximum principle 2). Let D be a domain with ∂D an
ideal polygon. Let W ⊂ D be a domain and let u1, u2

∈ C0(W ) be two solu-
tions of (1) in W with u1

≤ u2 on ∂W . Suppose that for each vertex p of ∂D,
lim inf distH(01, 02)→0 as one converges to p, where 01, 02 are the curves on ∂D
with p as vertex. Then u1

≤ u2 in W .
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The proof of Theorem 4.1 is given in [Hauswirth et al. 2009]. The proof of
Theorem 4.2 is analogous to the one of Theorem 2 in [Collin and Rosenberg 2010]
using Lemma 4.1.

We will see examples of barriers which will enable us to control convergence
of solutions on ∂D, when we know they converge in D. Then the limit of the
sequence on the boundary is the limit of the boundary values and the limit solution
extends continuously to the boundary. The following examples can be found in
[Hauswirth et al. 2009].

Example 4.1. Let B ⊂ H be a ball of radius δ centered at p. Let p1 and p2 be
“antipodal” points on ∂B. We choose points d1, d2 on ∂B symmetric with respect
to the geodesic through p1 pp2. Now let B1 be an arc of curvature −2H (as seen
from p) joining d1, d2 and set A1 = B∗1 , where B∗1 is the geodesic reflection of B1.
Let B2 be the reflection of B1 with respect to the geodesic orthogonal to p1 pp2

through p, and set A2 = B∗2 . For δ small compared with H , there is a solution u+

in B+, the connected domain bounded by A1, A2 and arcs of ∂B such that u+ is
+∞ on A1 and A2 and a constant M > 0 on the rest of ∂B+. Similarly, there is a
solution u− in B−, the domain bounded by B1, B2 and parts of ∂B such that u− is
−∞ on B1 and B2 and a constant −M,M > 0 on the rest of ∂B−.

d1

d2

p1 p2

A1 A2

p

B+ d1

d2

p1 p2

B1 B2

p

B−

Figure 1. Domains of the solutions u+ and u− in Example 4.1.

5. Flux formulas

In this section, we state some results about the flux of a solution. As in [Jenkins
and Serrin 1966], the flux will give us the necessary conditions, which also will
be sufficient, to the existence of solutions having infinite boundary values. Finn
[1963] proved that if a minimal solution in Euclidean space tends to +∞ or −∞
over a boundary arc 0, then 0 is a line. The flux formula gives the requirement on
the curvature of the boundary arcs of an admissible domain.
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Let u∈C2(D)∩C1(D) be a solution in the bounded domain D. Then integrating
(1) over D, we have

2HA(D)=
∫
∂D

〈
∇u
W
, ν
〉

ds,

where A(D) is the area of D and ν is the outer normal to ∂D. This integral is
called the flux of u across ∂D. Let η be a subarc of ∂D (homeomorphic to [0, 1]).
Even if u is not differentiable on η we can define the flux of u across η as follows;
see [Hauswirth et al. 2009].

Definition 5.1. Choose ϒ to be an embedded smooth curve in D so that η ∪ ϒ
bounds a simply connected domain 1ϒ . We then define the flux of u across η as

Fu(η)= 2HA(1ϒ)−

∫
ϒ

〈
∇u
W
, ν
〉

ds.

The last integral is well defined, and Fu(η) does not depend in the choice of ϒ .
With this definition we can remove the condition u ∈ C2(D)∩C1(D) and state

important flux formulas, whose proofs are in [Hauswirth et al. 2009].

Theorem 5.1. Let u be a solution in D.

(i) If ∂D is a compact cycle, we have Fu(∂D)= 2HA(D).

(ii) If D is bounded in part by a C1 arc η, then:
(a) If u tends to +∞ on η, we have κ(η)= 2H and∫

η

〈
∇u
W
, ν
〉

ds = |η|.

(b) If u tends to −∞ on η, we have κ(η)=−2H and∫
η

〈
∇u
W
, ν
〉

ds =−|η|.

(c) If η is C2, κ(η)≥ 2H and u is continuous on η, we have∣∣∣∣∫
η

〈
∇u
W
, ν
〉

ds
∣∣∣∣< |η|.

Lemma 5.1. Let D be a domain bounded in part by an arc η with κ(η) = 2H.
We take a sequence of solutions {un} in D with each un continuous on η. Then if
the sequence diverges to −∞ uniformly on compact subsets of D while remaining
uniformly bounded on compact subsets of η, we have

lim
n→∞

∫
ϒ

〈
∇u
W
, ν
〉

ds = |η|.

The next lemma is almost a converse of the above Theorem 5.1. We follow the
ideas in [Mazet et al. 2008].
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Lemma 5.2. Let u be a solution in D. Let η̃ ⊂ ∂D be an arc with κ(η̃) =
2H (κ(η̃) = −2H) such that Fu(η) = |η| (Fu(η) = −|η|), for every compact arc
η ⊂ η̃. Then u takes boundary value +∞ (−∞) on η̃.

Proof. Suppose that κ(η̃) = 2H . Let η be a compact arc as in the lemma, small
enough so that the domain 1 bounded by η and η∗ (the geodesic reflection of η) is
contained in D. Consider the solution v which takes values+∞ on η and v= u on
η∗; this solution exists by [Hauswirth et al. 2009, Theorem 7.11]. We need to show
that u= v. If this is not the case, the set O = {u−v < ε} is nonempty, where ε > 0
is a regular value of u−v. Let D′ be the connected component of the complement
of O in 1 which has ∂1− η in its boundary and let O ′ be the complement of
D′ in 1, so O ⊂ O ′ and ∂O ′ ⊂ ∂O . Let q be a point in ∂O ′ − η. For µ > 0,
let O ′(µ) be the set defined by O ′(µ) = {p ∈ O ′ | distH(p, η) > µ}. Let q1, q2

be the endpoints of the connected component of ∂O ′ ∩ ∂O ′(µ) which contains
q . Let pi be the projection of qi on η. Let Õ(µ) be the domain bounded by the
segments [p1, q1], [p2, q2], the arc [p1, p2] ⊂ η and the boundary component of
O ′(µ) between q1, q2, which is denoted by 0(µ). On 0(µ) the vector Xu − Xv
points outside Õ(µ). Calculating the flux of u− v across ∂O ′ gives

0= Fu−v =

∫
0(µ)

〈Xu − Xv, ν〉+
∫
[p1,q1]∪[p2,q2]

〈Xu − Xv, ν〉+
∫
[p1,p2]

〈Xu − Xv, ν〉 .

So applying the flux formula, we have

0<
∫
0(µ)

〈Xu − Xv, ν〉 = −
∫
[p1,q1]∪[p2,q2]

〈Xu − Xv, ν〉−
∫
[p1,p2]

〈Xu − Xv, ν〉

≤ 4µ,

since the last term in the first line vanishes by the hypothesis on u and Theorem 5.1
applied to v. Note that the integral on 0(µ) increases when µ → 0. So this
inequality cannot occur.

If κ(η̃) = −2H , we consider the domain 1 which is bounded by η and an arc
η′ of curvature greater than 2H (with respect to the domain 1) contained in D
having the same endpoints as η. Then we consider v the solution on 1 with values
−∞ on η and v = u on η′; this solution exists by [Hauswirth et al. 2009, Theorem
7.11]. Then the same argument made in the case κ(η)= 2H can be applied. �

6. Divergence lines

In this section, we will study some characteristics of the sets where a sequence of
solutions in a domain D converges or diverges. Jenkins and Serrin [1966] studied
the convergence of a sequence (monotone) using a maximum principle. They also
presented the structure of the divergence set of this sequence. Here, we study
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the convergence of a sequence defined over bounded or unbounded domains (not
necessarily monotone) without the aid of a maximum principle. Nevertheless, the
structure of the set where such a sequence converges is the same one found by
Jenkins and Serrin. Many ideas found here were inspired by [Mazet et al. 2008].

Definition 6.1. Let D be a domain with piecewise smooth boundary, and un a
sequence of solutions in D. We define the convergence set as

U=
{

p ∈ D | {‖∇un(p)‖} is bounded independent of n
}

and the divergence set as
V= D−U.

In this section, D denotes a domain in H with piecewise smooth boundary.

Lemma 6.1. Let p ∈ D and un be a sequence of solutions in the domain D. If
p ∈ U, there is a subsequence of {vn} with vn = un − un(p) converging uniformly
to a solution in a neighborhood of p in D. If p ∈ V, there is a compact arc L p(δ̃)

of curvature 2H containing p such that, after passing to a subsequence, {Nvn (p)}
converges to a horizontal vector which is orthogonal to L p(δ̃) having the same
direction as the curvature vector Eκ of L p(δ̃), where Nvn (p) is the upward unit
normal vector to the graph of vn at (p, 0).

Remark 6.1. All the vectors {Nun (p)} can be thought as vectors at (p, 0) by ver-
tical translation, with the identification Nun (p)= Nvn (p).

Proof of Lemma 6.1. Denote by G(vn) the graph of vn over D. Note that Nun (q)=
Nvn (q), and the convergence and divergence sets are the same for {un} and {vn}.

The curvature estimates (see [Zhang 2005]) give us a δ > 0 independent of n
(in fact δ depends only on the distance from p to ∂D) such that a neighborhood of
P = (p, vn(p))= (p, 0) in G(vn) is a graph, in geodesic coordinates, with height
and slope uniformly bounded over the disk Dn

δ (P) of radius δ centered at the origin
of TP G(vn). We call this graph G P(vn, δ).

If p∈U the sequence {‖∇un‖} is bounded, so there is a subsequence of {Nvn (p)},
still called {Nvn (p)}, which converges to a nonhorizontal vector and consequently
the tangent planes associated to this subsequence converge to a nonvertical plane5.
Then, since the graphs G P(vn, δ) have height and slope uniformly bounded, there
is a subsequence of {vn} such that these graphs converge to a graph G P(δ) with
constant mean curvature H over a disk of radius δ centered at the origin of 5.
Since this plane 5 is a nonvertical plane, there is δ̃, 0 < δ̃ ≤ δ such that G P(δ)

is a graph over a geodesic ball in D centered at p of radius δ̃. We conclude that
there is a neighborhood of p ∈ D such that a subsequence of {vn} converges to a
solution in this neighborhood.
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Now, suppose that p ∈V. Since {‖∇un‖} is unbounded, there is a subsequence
of {Nvn (p)} that converges to a horizontal vector NP , so (for this subsequence) the
tangent planes TP G(vn) converge to a vertical plane 5 and the graphs G P(vn, δ)

converge to a constant mean curvature H graph G P(δ
′) over a disk of radius δ′≤ δ

centered at the origin of5. By the choice of the direction of the normal vector and
the choice of H > 0, the limit of the curvature vectors of G P(vn, δ) has the same
direction as the normal limit.

Take the curve L p ⊂ D passing through p orthogonal to NP , with curvature 2H
and the curvature vector at p having the same direction as NP . We want to prove
that G P(δ

′)⊂ (L p×R).
Since G P(δ

′) is tangent to L p × R at P , if G P(δ
′) is on one side of L p × R,

by the maximum principle, we have that G P(δ
′) ⊂ (L p × R). If this is not the

case, G P(δ
′) ∩ (L p × R) is composed of k ≥ 2 curves passing through p, meet-

ing transversely at p. So in a neighborhood of p these curves separate G P(δ
′)

in 2k components and the adjacent components lie in alternate sides of L p × R.
Moreover, the curvature vector alternates from pointing down to pointing up when
one goes from one component to the other. This implies that the normal vector to
G P(δ) points down and up. So, for n large enough, the normal vector to G P(vn, δ)

would point down and up, which does not occur.
Let L p(δ̃) ⊂ D, δ′ ≥ δ̃, be the curve contained in G P(δ

′) ∩ (L p × {0}) which
contains p and has length 2δ̃. Since G P(δ

′) ⊂ (L p×R), we have that for all
q ∈ L p(δ̃) the normal vector to G P(δ

′) at q is a horizontal vector normal to L p(δ̃)

having the same direction as the curvature vector of L p(δ̃) at q . �

Remark 6.2. Lemma 6.1 shows that the convergence set is a domain.

Lemma 6.2. Let {un} be a sequence of solutions in D. Given p ∈ V, there is a
curve L ⊂ D of curvature 2H which passes through p and such that, after passing
to a subsequence, the sequence of normal vectors {Nun |L} converges to a horizontal
vector normal to L having the same direction as the curvature vector of L. This
curve L contains the compact arc L p(δ̃) given in Lemma 6.1.

Proof. Let L be the curve of constant curvature 2H in D which contains L p(δ̃)

joining the points of ∂D (L p(δ̃) is given in Lemma 6.1). Given p, q ∈ D, denote
by pq the compact arc in L between p, q. We define

3= { q ∈ L | there is a subsequence of {un} such that {Nun |pq}

becomes horizontal, orthogonal to L having the same direction
as the curvature vector of L}.

We want to prove that3= L . Since p∈3,3 is nonempty. We will prove that3 is
open and closed. First, we will prove that3 is open. Let q be a point in3. Denote
{u3(n)} the subsequence associated to3. Since3⊂V, Lemma 6.1 gives us a curve
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Lq(δ) through q such that, after passing to a subsequence, {Nu3(n)|Lq (δ)} becomes
horizontal and having the same direction as the curvature vector of Lq(δ). Note
that this subsequence of {Nu3(n)|Lq (δ)} converges to a horizontal vector normal to
Lq(δ) and to L simultaneously, so Lq(δ)⊂ L , then 3 is open.

Now we will prove that 3 is closed. We take a convergent sequence {qn} in
3, qn → q ∈ L . We will show that q ∈ 3. For each m, there is a subsequence
of {u3(n)} such that {Nu3(n)|pqm } becomes horizontal with the same direction as
the curvature vector in pqm . By the diagonal process we obtain a subsequence of
{u3(n)} such that {Nu3(n)|pqm } converges to a horizontal vector having the same
direction as the curvature vector of L in pqm for all m. Then by Lemma 6.1, we
can find a curve Lqm (δ) having constant curvature 2H through qm , (for m large, δ
depends only on the distance from q to ∂D) such that {Nu3(n)|pqm } converges to a
horizontal vector having the same direction as the curvature vector to Lqm (δ). So
Lqm (δ) ⊂ L and since qm → q , we have that, for all m large enough, q ∈ Lqm (δ).
Consequently, q ∈3. �

An important conclusion of this lemma is that the divergence set is given by
V=

⋃
i∈I L i , where L i is a curve, called a divergence line, having curvature 2H .

Lemma 6.3. Let {un} be a sequence of solutions in D. Suppose that the divergence
set V of {un} is composed of a countable number of divergence lines. Then there is
a subsequence of {un}, again denoted by {un}, such that

(1) the divergence set of {un} is composed of a countable number of pairwise
disjoint divergence lines;

(2) for any connected component U′ of U = D − V and for any p ∈ U′, the
sequence {un − un(p)} converges uniformly on compact subsets of U′ to a
solution in U′.

Proof. Suppose that V 6= ∅ and let L1 be a divergence line of {un}. Lemma 6.1
guarantees that, after passing to a subsequence, {Nun (q)} converges to a horizontal
vector orthogonal to L1 at q for all q in L1. The divergence set of this subsequence
is contained in the divergence set of the original sequence, so the divergence set
associated to this subsequence has only a countable number of lines. This subse-
quence is still denoted by {un} and its divergence set by V. If there is a divergence
line L2 6= L1 in V, we can find a subsequence such that {Nun (q)} converges to
a horizontal vector orthogonal to L2 at q for each q ∈ L2. This implies that
L1 ∩ L2 = ∅. In fact, if this does not occur, we take a point q ∈ L1 ∩ L2 so
the sequence {Nun (q)} converges to a horizontal vector orthogonal to L1 and L2

at q having the same direction as the curvature vector of L1 and L2. Then the
uniqueness of a curve through q having curvature 2H with a given tangent vector
shows that L1 = L2. We continue this process to get a subsequence of {un}, still
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denoted by {un}, whose divergence set is composed of a countable number of
pairwise disjoint divergence lines.

Lemma 6.1 shows that there is a subsequence of {un} and a neighborhood of
each point p ∈ U such that the sequence {un − un(p)} converges to a constant
mean curvature graph H , and this convergence is uniform on compact subsets
of this neighborhood. Then taking a countable dense sequence {pi } in U′, by the
diagonal process we obtain a subsequence of {un} such that {un−un(p)} converges
uniformly on compact subsets of U′ for all p ∈U′. �

Lemma 6.4. Let {un} be a sequence of solutions in D such that its divergence set
is composed of a countable number of pairwise disjoint divergence lines. Suppose
that {un} converges to a solution u in a connected set U′ ⊂ D. Let γ be a compact
arc in ∂U′ included in a divergence line of {un} such that Xun→ν along γ , where ν
is the outer conormal to γ with respect to U′. Then if p ∈U′ and q ∈ γ , we have

lim
n→∞

(un(q)− un(p))=+∞.

Proof. We choose p, q as in the hypothesis of the lemma. Since Xun → ν we have
Fun (γ )→ |γ |, where Fun (γ ) is the flux of un across γ . So Lemma 5.2 ensures
that u|γ =+∞.

Claim 6.1. There is an ε > 0 such that ∂un/∂t ≥ 0 on {ϒ(t) | −ε < t ≤ 0}, where
ϒ(t) (−θ < t ≤ 0, θ ≥ ε) is the geodesic in U′ such that ϒ(0) = (q, 0) and
ϒ ′(0)= ν. The inequality is strict on {ϒ(t) | −ε < t < 0}.

Using Lemma 6.1 and the fact that u|γ = +∞, we obtain a ε > 0 such that
∂u/∂t ≥ 1 in {ϒ(t) |−ε < t < 0}. The convergence un→ u implies that ∂un/∂t > 0
in {ϒ(t) | −ε < t <−η}, for every 0< η < ε and n ≥ n0(η).

If the claim is not true, considering a subsequence if necessary, there is a se-
quence {qn} in {ϒ(t) | −η ≤ t ≤ 0} such that qn→ q and (∂un/∂t)(qn)= 0.

If the sequence {‖∇un(qn)‖} is bounded, we have from the curvature estimates
that {‖∇un‖} is uniformly bounded on a disk Dn of radius independent of n, cen-
tered at qn . Since qn → q , the sequence {‖∇un(q)‖} is bounded, because for n
large enough, q ∈ Dn . This contradicts that q is contained in the divergence set.

If the sequence {‖∇un(qn)‖} is unbounded, consider the sequence {un−un(qn)}

and D1
n the disk of radius δ in the graph of {un−un(qn)} centered at (qn, 0) given by

the curvature estimates, δ independent of n. Since (∂un/∂t)(qn)= 0, the disks D1
n

converge to a δ vertical disk centered at (q, 0) in ϒ̃ × R, where ϒ̃ is a curve
having constant curvature 2H through q orthogonal to γ . Let D2

n be the disk of
radius δ centered at (q, 0) in the graph of {un − un(q)}. Since γ is contained in
a divergence line, {D2

n} converges to a vertical disk centered at (q, 0) in γ × R.
Then, for n large enough, these disks D1

n and D2
n intersect transversally, but this is

impossible because the normal vectors to D1
n and D2

n only depend on the gradient
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of un , so they are the same vector (on domains where both sequences are defined)
for the two sequences. This proves Claim 6.1.

Let qt ∈U′ be the point qt =ϒ(t), t < 0, for t small enough. Claim 6.1 ensures
that for n large,

un(q)− un(p)≥ un(qt)− un(p)

≥ u(qt)− u(p)− 1.

The second inequality comes from the convergence of {un} to u. The third term is
as large as we want, because u|γ =+∞. �

Lemma 6.5. Let E⊂∂D be a smooth arc having κ(E)≥2H. Consider a sequence
of solutions {un} in D such that limn→∞ un|E = f for f a continuous function.
Then a divergence line cannot finish at an interior point of E.

Proof. Let p∈ E be an interior point. If κ(E)>2H at p, Lemma 4.9 in [Hauswirth
et al. 2009] (see also the lemma on page 139 of [Finn 1965]) shows that {un} is
uniformly bounded in a neighborhood of p in D. Then, a divergence line cannot
end at p.

If κ(E) = 2H at p, by [Hauswirth et al. 2009, Lemma 4.9], we have that the
sequence {un} does not diverge to +∞ in a neighborhood of p. Suppose there is
one divergence line L leaving p. Then there is a subset V ⊂ D which contains a
subarc (containing p) of E in its boundary, and the sequence diverges to−∞ on V .
Consider a point q ∈ E ∩∂V , and denote by pq the arc contained in E joining the
points p and q . Let s be a point in L and ps the arc in L joining p and s. Denote
by sq the geodesic joining s and q , suppose that q is as close to s as necessary, in
order to guarantee sq ⊂ V . We choose this “triangle” T so that the sequence {un}

diverges to −∞ in the domain 1T ⊂ V bounded by T . By the flux formulas,

2HA(1T )= Fun (ps)+ Fun (pq)+ Fun (sq).

We have
lim

n→+∞
Fun (pq)= |pq|.

Since ps ⊂ L , either

lim
n→+∞

Fun (ps)= |ps| or lim
n→+∞

Fun (ps)=−|ps|.

First, suppose that
lim

n→+∞
Fun (ps)= |ps|.

Then,

lim
n→+∞

2HA(1T )= lim
n→+∞

Fun (ps)+ lim
n→+∞

Fun (pq)+ lim
n→+∞

Fun (sq)

≥ |ps| + |pq| − |sq|
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which implies
2HA(1T )

|sq|
≥
|ps| + |pq|
|sq|

− 1.

We move q to q ′ and s to s ′ so that |pq ′| = λ|pq| and |ps ′| = λ|ps|. When λ→ 0,
the inequality

2HA(1T )

|sq|
≥
|ps| + |pq|
|sq|

− 1

tends to zero on the left side, but is bounded from zero in the right side; a contra-
diction.

Now we consider the case where

lim
n→+∞

Fun (ps)=−|ps|.

By Lemma 6.4 we have that {un} diverges to −∞ on a subset of D − V which
has L and a subarc of E in its boundary. Then applying the same argument as
above, we get a contradiction.

Now, suppose that there are two or more divergence lines leaving from p. We fix
two divergence lines, L1, L2. The point p ∈ E divides E in two curves E1, E2, and
we orient L1, L2, E1, E2 such that W1 is the domain bounded in part by L1 ∪ E1

and not containing L2, W2 is the domain bounded in part by E2 ∪ L2 and not
containing L1 and finally W3 is the domain bounded in part by L1 ∪ L2 and not
containing E1 ∪ E2. Let q ∈ L1, s ∈ L2, p1 ∈ E , p2 ∈ E be points. Denote by pq
the segment in L1 joining p and q, by ps the segment in L2 joining p and s, by
sq ⊂ W3 the segment of the geodesic joining q to s, by qp1 ⊂ W1 the segment of
the geodesic joining q and p1, and by sp2⊂W2 the segment of the geodesic joining
s and p2. In some of these subsets Wi , i = 1, 2, 3, the sequence {un} diverges to
−∞. Suppose that in W3 the sequence diverges to −∞, and that sq ⊂W3.

If either

lim
n→+∞

Fun (ps)= |ps| or lim
n→+∞

Fun (pq)= |pq|,

with respect to W3, applying the flux formulas to the triangle formed by ps, pq
and sq , we obtain a contradiction as before.

If, with respect to W3, either

lim
n→+∞

Fun (ps)=−|ps| or lim
n→+∞

Fun (pq)=−|pq|,

then doing as we have done before to the triangle formed by qp1, pq and p1 p,
if limn→+∞ Fun (pq) = −|pq|, or to the triangle formed by ps, pp2 and sp2 if
limn→+∞ Fun (ps)=−|ps|, we obtain a contradiction. �



DIRICHLET PROBLEM FOR CMC GRAPHS IN H×R OVER UNBOUNDED DOMAINS 51

7. Proof of the main theorems

Before the proof of the theorems we need to show that the conditions of the hy-
pothesis make sense, that is, we have to show that they are preserved for smaller
horocycles.

Let Hi be an horocycle at di . Suppose that the conditions of Theorems 3.1 and
3.2 are satisfied for a family of horocycles H= {Hi }i=1,...,n . These conditions are

(i) α(∂D)−β(∂D)= 2HÃ(D),

and for all admissible polygons P 6= ∂D,

(ii) 2α(P) < l(P)+ 2HÃ(�),

(iii) 2β(P) < l(P)− 2HÃ(�).

Fixing s ∈ {1, . . . , n}, we will show that these conditions are also true for a
family H′ = {Hi }i 6=s ∪ {H

′
s}, where H′s is contained in the horodisk Fs bounded

by Hs . We are interested in “smaller” horocycles because in this way we have
an exhaustion of P. To prove this we will use subindices T and T ′ to clarify the
dependence of α(P), β(P) and l(P) with respect to H and H′ respectively.

First, consider condition (i). We observe that when we change the family of
horocycles, the left side of (i) does not change. So our definition for Ã should not
change. This is the first reason for the definition of Ã.

Note that

α(∂DT ′)−β(∂DT ′)= α(∂DT )−β(∂DT )= constant.

Thus, if (i) is true for H, then it is also true for H′.
Condition (ii) is equivalent to

2α(P)− l(P) < 2HÃ(�).

When we change from family H to family H′ the left side of the above inequality
is nonincreasing and the right side is nondecreasing, so the inequality is preserved.

Finally, we handle the inequality of condition (iii).
There are two distinct situations. The first one is when the horocycle Hs meets

sides E1, E2 where κ(E1) = −2H, κ(E2) = 2H . The second one is when Hs

meets sides E1, E2 with κ(E1)= 2H, κ(E2)= 2H .
In the first case, the area Ã(�) does not change when we change from the family

H to H′, and 2β(P)− l(P) is nonincreasing, so the inequality is preserved.
The second case is the most delicate one. Here, it will be necessary to have

horocycles small enough.
More precisely, we consider the half-space model of H. We can suppose that

the vertices of P are d j = (x j , 0) for all j 6= l and dl ∈ {∂H−{y = 0}}. We choose
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the family {Hi } of horocycles at the vertices di . We define

(0,Ml)=Hl ∩ {x = 0}.

The necessary condition is

(5) Ml >
2H(|xl−1| + |xl+1|)

2
√

1− 4H 2
for all l = 1, . . . , n.

Remark 7.1. This is always the case for sufficiently small horocycles.

With this hypothesis on the horocycles, we can finish that the inequality in (iii)
is preserved for the family H′.

Suppose that Hs meets sides E1 and E2, where κ(E1)= κ(E2)= 2H . We point
out that this is the case where we use (5) and also the definition of Ã, since Ã

should have the right behavior as the area is infinite.
Note that

2β(PT ′)= 2β(PT ) < l(PT )− 2HÃ(�T ).

We will show
l(PT )− 2HÃ(�T ) < l(PT ′)− 2HÃ(�T ′),

that is,

(6)
(
l(PT ′)− l(PT )

)
−
(
2HÃ(�T ′)− 2HÃ(�T )

)
> 0.

In fact, we show that l(PT )− 2HÃ(�T ) increases when H decreases.
Consider the half-space model of H. We can assume that ds = (0, 0) ∈ ∂∞H.

Using an inversion I with respect to the geodesic centered at (0, 0) of radius 1,
we have that Hs and H′s are taken to the horizontal straight lines through (0,M)
and (0, y0), respectively, and the sides A and E are taken to tilted lines leaving
the points (−x0, 0) and (x1, 0) and making an angle θ with the vertical, where
sin θ = 2H , x0 > 0 and x1 > 0; see Figure 2.

ds−1 ds ds+1

A
Hs H′s E

I I (H′s)

I (Hs)

I (A) I (E)
(0, y0)

(0,M)

(−x0, 0) (x1, 0)

Figure 2. Using the inversion I .

Now, we calculate the length of the arcs of I (A) and I (E) bounded by I (H′s)
and I (Hs), denoted by l(AH,H′) and l(EH,H′), and the area limited by I (A), I (E),
I (Hs) and I (H′s), denoted by A(�H,H′).
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Then,

l(AH,H′)= l(EH,H′)=

∫ y0

M

sec θ
y

dy = sec θ ln y
∣∣y0

M

and the area satisfies

A(�H,H′)=

∫ y0

M

∫ x1+y tan θ

−x0−y tan θ

dxdy
y2

=

∫ y0

M

(2 tan θ
y
+
(x1+x0)

y2

)
dy

= 2 tan θ ln y
∣∣y0

M − (x1+ x0)
1
y

∣∣∣y0

M
.

Therefore,

l(AH,H′)+ l(EH,H′)− 2HA(�H,H′)

= 2(sec θ − 2H tan θ) ln y
∣∣y0

M + 2H (x1+x0)

y

∣∣∣y0

M

= 2
(1−sin2 θ

cos θ

)
ln y

∣∣∣y0

M
+

2H(x1+x0)

y

∣∣∣y0

M

= 2 cos θ ln y0+
2H(x1+x0)

y0
− 2 cos θ ln M − 2H(x1+x0)

M
.

Then, to prove the inequality (6) it suffices to show that the function of y0 above is
increasing, because when y0 = M , it is zero. We show that its derivative is greater
than zero.

Differentiating we have

2 cos θ
y0
−

2H(x1+x0)

y2
0

.

So

2 cos θ
y0
−

2H(x1+ x0)

y2
0

> 0 ⇐⇒ 2y0 cos θ − 2H(x1+ x0) > 0,

that is,

y0 >
2H(x1+ x0)

2 cos θ
.

But our family H satisfies

M >
2H(x1+ x0)

2 cos θ
.

Thus, we have the inequality (6) as desired, and consequently the inequality in (iii)
is satisfied.

We fix some notation which will be useful in the proof of the theorems. Let
{di = (xi , yi )} be the set of vertices of ∂D. For each i , let Hi (n) be a horocycle
asymptotic to di such that Hi (n) belongs to 2 for all i, n. We choose Hi (n) such
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that Hi (n + 1) ⊂ Fi (n), where Fi (n) is the convex horodisk bounded by Hi (n).
Let D(n)⊂ D be the domain bounded by

∂D(n)=
(
∂D−

(⋃
i Fi (n)

))
∪
(⋃

i γi (n)
)
,

where γi (n)=Hi (n)∩ (∂D∪D). Let D∗(n)⊂ D be the domain bounded by

∂D∗(n)=
(
∂D−

(⋃
i Fi (n)

))
∪
(⋃

i γ
∗

i (n)
)
,

where γ ∗i (n) is the geodesic reflection of γi (n). Similarly, we define �(n) as the
domain whose boundary is

P(n)=
(
P−

(⋃
i Fi (n)

))
∪
(⋃

i γi (n)∩�(n)
)

and �∗(n) as the domain bounded by

∂�∗(n)=
(
P−

(⋃
i Fi (n)

))
∪
(⋃

i (γ
∗

i (n)∩�
∗(n))

)
.

Finally, given an arc η ⊂ P, we define η(n)= η∩P(n).

Proof of Theorem 3.1. Suppose that the conditions (2) and (3) are true for all
polygons in D.

Claim 7.1. There is a solution in D which boundary values

un =

{
n on

⋃
k Ak,

−n on
⋃

l B∗l .

Assume this Claim is true and take {un} a sequence of solutions in D, where un

is defined as in the Claim. Then, this sequence has, or does not have, a divergence
line.

First, we assume that there is some divergence line, and we will obtain a con-
tradiction. By Lemma 6.5, the endpoints of these lines are among vertices of D.
Since ∂D has only a finite number of vertices, we can suppose that the divergence
set is composed of a finite number of disjoint divergence lines. These lines separate
the domain D in at least two connected components, and the interior of these com-
ponents belongs to the convergence domain. By Lemma 6.4, in some connected
components of the convergence set, the sequence {un}, p ∈ D, diverges to +∞
or −∞. Suppose that in some connected component of the convergent set U′, the
sequence diverges to +∞ (the case −∞ is similar).

Since U′ ⊂ U, where U is the convergence domain, we have that the sequence
{un−un(p)}, p∈U′, converges uniformly on compact subsets of U′ to a solution u
in U′. On the other hand, by the choice of U′ we have un(p)→ +∞, p ∈ U′.
Moreover, we note that ∂U′ = P is an admissible polygon, we can choose P sat-
isfying the next Claim.



DIRICHLET PROBLEM FOR CMC GRAPHS IN H×R OVER UNBOUNDED DOMAINS 55

Claim 7.2. One can choose P so that

Fu

(
P(n)−

((⋃
i Ai (n)

)
∪
(⋃

i (γi (n)∩U′)
)))

=−l
(

P(n)−
((⋃

i Ai (n)
)
∪
(⋃

i (γi (n)∩U′)
)))

,

where ∂U′ = P.

See [Mazet et al. 2008] for a proof.
We are supposing that there is a divergence line, so P 6= ∂D. By Claim 7.2 and

the flux formulas

Fu(P(n))= 2HA(U′(n))

= Fu

(
P(n)−

((⋃
i Ai (n)

)
∪
(⋃

i (γi (n)∩U′)
)))

+ Fu

((⋃
i Ai (n)

)
∪
(⋃

i (γi (n)∩U′)
))

≤−l
(

P(n)−
((⋃

i Ai (n)
)
∪
(⋃

i (γi (n)∩U′)
)))

+ l
((⋃

i Ai (n)
)
∪
(⋃

i (γi (n)∩U′)
))

= 2α(P)− l(P)+ l
(⋃

i (γi (n)∩U′)
)
.

When n→∞, the area A
(
D∩

(⋃
j F j

))
tends to zero, so

2HA(U′)≤ 2α(P)− l(P),

contradicting the hypothesis. So the sequence {un} has no divergence lines.
Since the sequence {un} does not have any divergence lines, D is the convergence

domain, so there is a subsequence of {un − un(p)}, p ∈ D which converges to a
solution u on D. If the sequence {un} is bounded at the point p ∈ D, u has the
boundary values as desired, that is, u|Ak =+∞ and u|Bl =−∞. We will show that
even if the sequence {un} is unbounded, the solution u has the boundary values as
prescribed.

Suppose the sequence {un(p)} tends to −∞. By the flux formulas,

lim
n→∞

Fun (P(m))= 2HA(D(m))

= 2HÃ(D)− 2HA
(
D∩

(⋃
i Fi (m)

))
=

∑
lim

n→∞
Fun (Ai (m))+

∑
lim

n→∞
Fun (Bi (m))

+

∑
lim

n→∞
Fun (γi (m))

≥ α(P)−β(P)−
∑
|γi (m)|

which implies
2β(P)≥ l(P)− 2HA(�).
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The hypothesis does not allow 2β(P) > l(P)− 2HA(�). Then equality holds:
2β(P) = l(P)− 2HA(�). This implies that limn→∞ Fun (Bl(m)) = |Bl(m)|. So
{un − un(p)} tends to −∞ on Bl for all l.

Suppose the sequence {un(p)} tends to +∞. By the flux formulas,

lim
n→∞

Fun (P(m))= 2HA(D(m))= 2HÃ(D)− 2HA
(
D∩

(⋃
i Fi (m)

))
=

∑
lim

n→∞
Fun (Ai (m))+

∑
lim

n→∞
Fun (Bi (m)) lim

n→∞
Fun (γi (m))

≤ α(P)−β(P)+
∑
|γi (m)|,

which implies

2α(P)≥ l(P)+ 2HA(�).

Since we cannot have 2α(P)> l(P)+2HA(�), we have 2α(P)= l(P)+2HA(�),
which implies limn→∞ Fun (Ak(m)) = |Ak(m)|. Then {un − un(p)} tends to +∞
on Ak for all k.

Proof of Claim 7.1. By the existence theorem for continuous boundary values and
bounded domains [Hauswirth et al. 2009], for each m in D∗(m) there is a solution
with boundary values

um =


n on

⋃
k Ak(m),

−n on
⋃

l B∗l (m),

0 on
⋃

i γ
∗

i (m).

Fix m0. For all m > m0, we have that {um |D∗(m0)} is a sequence of solutions in
D∗(m0). If there were any divergence lines, we would find a divergence set which
would contradict the hypothesis, as in the proof of Theorem 3.1. Moreover, as
there are no divergence lines, either this sequence is bounded or it is not bounded.
If this sequence is not bounded, say um(p)→+∞, p ∈ D∗(m0), a subsequence
{um |D∗(m0)−um(p)} converges to a solution in D∗(m0) and tends to−∞ on each arc
Ai (m0), which cannot occur. If {um(p)}→−∞, p ∈D∗(m0), some subsequence
of {um |D∗(m0) − um(p)} converges to a solution in D∗(m0) and tends to +∞ on
each arc Ai (m0), B∗l (m0). Taking m0 →∞ we again get a contradiction, since
two arcs with the same vertex point have values +∞. So this sequence is bounded
and some subsequence is convergent, by the boundary values of the {um}, we have
um |Ak(m0) = n and um |Bl (m0) = −n. By the diagonal process, we have in D a
solution un given by

un =

{
n on

⋃
k Ak,

−n on
⋃

l B∗l ,

which completes the proof. �
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We return to the proof of Theorem 3.1 and prove the necessary conditions. Sup-
pose there is a solution u in D of the Dirichlet problem. Applying the flux formulas
to P(n)= ∂D(n), and remembering that, in this case, Ã=A, we have

Fu(P(n))= 2HA(D(n))= 2HÃ(D)− 2HA
(
D∩

(⋃
i Fi (n)

))
=
∑

Fu(Ai (n))+
∑

Fu(Bi (n))+
∑

Fu(γi (n)).

Since D̃= D∩
(⋃

i Fi (n)
)
,∑

|Ai (n)| −
∑
|Bi (n)| −

∑
|γi (n)| ≤ 2HÃ(D)− 2HA(D̃)

≤
∑
|Ai (n)| −

∑
|Bi (n)| +

∑
|γi (n)|.

It follows that

α(D)−β(D)−
∑
|γi (n)| ≤ 2HÃ(D)− 2HA(D̃)≤ α(D)−β(D)+

∑
|γi (n)|.

When n→∞, we have |γi |→0 and A(D̃)→0, so α(D)−β(D)=2HÃ(D).Now,
we prove the inequalities (3). Applying the flux formulas to the polygon P(n), and
denoting its interior arcs by Em , we have

Fu(P(n))= 2HA(�(n))

=
∑
k

Fu(Ak(n))+
∑

l
Fu(Bl(n))+

∑
m

Fu(Em(n))+
∑

j
Fu(γ j (n)∩�(n))

≥
∑
k
|Ak(n)| −

∑
l
|Bl(n)| + δ−

∑
|Em(n)| −

∑
j
|γ j (n)∩�(n)|

= 2α(P)− l(P)+ δ−
∑

j
|γ j (n)∩�(n)|.

We see that Ã(�)>A(�(n)) and
∑

j
|γ j (n)∩�(n)|−δ < 0 for n large enough, so

2α(P) < l(P)+ 2HÃ(�).

Similarly,

Fu(P(n))= 2HA(�(n))

=
∑
k

Fu(Ak(n))+
∑

l
Fu(Bl(n))+

∑
m

Fu(Em(n))+
∑

j
Fu(γ j (n)∩�)

≤
∑
k
|Ak(n)|−

∑
l
|Bl(n)|−δ+

∑
m
|Em(n)|+

∑
j
|γ j (n)∩�|

= −2β(P)+l(P)−δ;

that is, for n sufficiently large,

2β(P)≤ l(P)− 2HA(�(n))− δ

< l(P)− 2HÃ(�). �
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Proof of Theorem 3.2. This is similar to the proof of Theorem 3.1.

Claim 7.3. There is a solution on D having boundary values

un =


n on Ak,

−n on B∗l ,
fn on Cm,

where fn = ϕ ◦ f for ϕ : R→ R defined by

ϕ(x)=


x if − n ≤ x ≤ n,
−n if x <−n,

n if x > n.

Assume that Claim 7.3 is true and take a sequence {un} on D given by this claim.
Suppose that {un} has a divergence line. By Lemma 6.5, we can suppose that

the divergence set is composed of a finite number of disjoint divergence lines.
These lines separate the domain D in at least two connected components, and the
interior of these components belongs to the convergence domain. By Lemma 6.4,
in connected components of the convergence set the sequence {un}, p∈D, diverges
to +∞ or −∞. We observe that if there is some arc C ⊂ ∂D having κ(C) > 2H ,
Lemma 4.9 in [Hauswirth et al. 2009] ensures that in a neighborhood of this arc
the sequence {un} is bounded.

As in the proof of Theorem 3.1 we will work on subdomains of D where the
sequence diverges to +∞ or −∞, so the boundary of these domains only has arcs
of curvature 2H . This means that the boundary of these domains are admissible
polygons. From now on, the proof is similar to the proof of Theorem 3.1.

Proof of Claim 7.3. The only difference between Claim 7.3 and Claim 7.1 is found
in the construction of solutions over bounded domains. Let {di } be the vertices
points of D, after some isometry of the hyperbolic plane, we can assume that each di

belongs to {(x, y) ∈ R2
| y = 0}. Let σi [m] be geodesics which are semicircles

centered at di with radius 1/m. The hypothesis on the curvature of the arcs Ci

enables us to conclude that, if m is big enough, σi [m] divides D in exactly two
components, one of them having di in its asymptotic boundary. Let %i [m] be the
arc of the equidistant curve to σi [m] having curvature 2H joining points of the
boundary of D. Then %i [m] divides D in exactly two components, one having
di in its asymptotic boundary. We chose the curvature vector of %i [m] pointing
to the component of D which does not have di on its boundary. Now we can
find a solution with prescribed boundary values using the existence theorem of
[Hauswirth et al. 2009]. Let Ai [m] be the compact arcs contained in Ai bounded
by the endpoints of {%i [m]}, Bi [m] be the compact arcs contained in Bi bounded by
the endpoints of {%i [m]} and Ci [m] be the compact arcs contained in Ci bounded
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by the endpoints of {%i [m]}. So there exists

un =


n on Ai [m],
−n on B∗i [m],

fn on Ci [m],
0 on %i [m],

where fn = ϕ ◦ f , for ϕ : R→ R given by

ϕ(x)=


x −n ≤ x ≤ n,
−n x <−n,

n x > n.

From now on, the same procedure as in Claim 7.1 enables us to conclude the
existence of a solution over D as desired in Claim 7.3. �

Now, we go back to the proof of Theorem 3.2. Suppose that there is a solution u
for the Dirichlet problem. Let � be the domain bounded by the admissible poly-
gon P and �(n),P(n) as found in the notation at the beginning of this section.
Applying the flux formulas,

Fu(P(n))

= 2HA(�(n))

=
∑
k

Fu(Ak(n))+
∑

l
Fu(Bl(n))+

∑
p

Fu(C p(n))+
∑
m

Fu(Em(n))+
∑

j
Fu(γ j (n)∩�)

≥
∑
k
|Ak(n)| −

∑
l
|Bl(n)| −

∑
p
|C p(n)| + δ−

∑
|Em(n)| −

∑
j
|γ j (n)∩�|

= 2α(P)− l(P)+ δ−
∑

j
|γ j (n)∩�|.

Either A(D) < ∞, or A(D) = ∞. If A(D) < ∞, since Ã(�) > A(�H) and
|γ j (n)| → 0 for all j , we have

2α(P) < l(P)+ 2HA(�(n)) < l(P)+ 2HÃ(�).

If A(D)=∞, we have

2HÃ(�)≥ 2HA(�H) > 2α(P)− l(P)−
∑

j
|γ j (n)∩�|,

Then,
2HÃ(�)+ l(P)− 2α(P) >−

∑
j
|γ j (n)∩�|.

Remembering that l(P)−2α(P) is nondecreasing, we have that the left side of this
inequality is increasing and tends to+∞, when the horocycles tend to the vertices.
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Therefore, we can suppose

2HÃ(�)+ l(P)− 2α(P) > 0.
Similarly,

Fu(P(n))

= 2HA(�H)

=
∑
k

Fu(Ak(n))+
∑

l
Fu(Bl(n))+

∑
p

Fu(C p(n))+
∑
m

Fu(Em(n))+
∑

j
Fu(γ j (n)∩�)

≤
∑
k
|Ak(n)| −

∑
l
|Bl(n)| +

∑
p
|C p(n)| − δ+

∑
m
|Em(n)| +

∑
j
|γ j (n)∩�|

= − 2β(P)+ l(P)− δ+
∑

j
|γ j (n)∩�|.

Then, if A(D) <∞,

2β(P) < l(P)− 2HA(�H)−
δ

2
≤ l(P)− 2HÃ(�),

since we can choose 2HA(�∩ (∪i Fi ))≤
δ
2 and

∑
j
|γ j (n)∩�|< δ

2 .

If A(D)=∞,

2HÃ(�)+ 2β(P)− l(P) < 2HA(�(n))+ 2β(P)− l(P)≤
∑

j
|γ j (n)|,

because we can choose 2HA(�̃)<δ. Since 2HÃ(�)+2β(P)−l(P) tends to−∞
when the horocycles converge to vertices, we can suppose

2HÃ(�)+ 2β(P)− l(P) < 0. �

8. Example

Consider a domain D whose boundary has sides A1, B1, A2 and B2 and vertices
d1= (xd1, 0), d2= (xd2, 0), d3= (xd3, 0) and d4∈{∂∞H−y = 0}with xd1<xd2<xd3 .
Suppose that the vertices of A1 are d4 and d1, the vertices of B1 are d1 and d2, the
vertices of A2 are d2 and d3 and the vertices of B2 are d3 and d4. So A1, B2 are
tilted lines and B1 and A2 are contained in Euclidean circles; see Figure 3.

Denote by 2µ = xd2 − xd1 , 2ω = xd3 − xd2 , and 0 < θ < π
2 the angle such that

2H = sin θ . This domain is not defined for all values of µ,ω, θ . We have to
suppose that B1 ∩ B2 =∅.

Claim 8.1. With the notation above, for

2H <

√
ω

ω+µ
,

the domain D is well defined.
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Proof. Since B2 is a tilted line making angle θ with vertical, we can write

B2(y)= (xd3 − y tan(θ), y).

The curve B1 satisfies (x − (xd1 + µ))
2
+ (y − µ tan θ)2 =

(
µ

cos θ

)2
for y > 0.

Since xd3 = xd1 + 2µ+ 2ω, we have B1 ∩ B2 6=∅ if

y > 0 and (µ+ 2ω− y tan θ)2+ (y−µ tan θ)2 =
(
µ

cos θ

)2
.

Then B1 ∩ B2 =∅ if

2H = sin(θ) <
√

ω

ω+µ
. �

We will assume that the domain D is well defined. We will show that the con-
ditions of Theorem 3.1 are true for some choice of the horocycles at the vertices
of D, provided that 2H <

√
2/2.

Suppose that B1 and A2 are contained in Euclidean circles centered at (xd1+µ, h)
and (xd2 +ω, RA), respectively, where RA = ω/cos θ , RB = µ/cos θ are the Eu-
clidean radii of these circles and l = ω tan θ, h = µ tan θ ; see Figure 3.

A1
B1

A2

B2

D

d1 d2 d3µ

h
RB

θ ω

l
RA

θ

Figure 3. The domain D.

On each vertex di we put horocycles Hi , Hi∩H j =∅, i 6= j . Since this domain
does not have inscribed polygons we will verify only condition (3) of Theorem 3.1.
When µ=ω and 2H <

√
2/2 we have, for this choice of horocycles, that α(∂D)=

β(∂D), so condition (2) of Theorem 3.1 can’t occur. The next proposition shows
that there is a choice of ω such that this condition is satisfied for 2H <

√
2/2.

Proposition 8.1. With the notation above, given µ ≥ 3 and 2H <
√

2/2, there is
ω0 ≥ µ such that the condition α(∂D)−β(∂D)= 2HA(D) is satisfied.
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Proof. First, we calculate the area A(D). Since the arc B1 satisfies the equa-
tion (x − (xd1 + µ))

2
+ (y − h)2 = R2

B and the arc A2 satisfies the equation
(x − (xd2 +ω))

2
+ (y+ l)2 = R2

A, we have

A(D)= lim
a→0

2(µ+ω)
a

− 2 lim
a→0+

∫ RB+h

a

∫ √R2
B−(y−h)2+xd1+µ

xd1+µ

dxdy
y2

− 2 lim
a→0+

∫ RA−l

a

∫ √R2
A−(y+l)2+xd2+ω

xd2+ω

dxdy
y2 ,

where the first term is the area between the arcs A1, B2 and straight line segment
joining d1, d2, d3.

Then

A(D)= 2π + 2 tan θ ln
2ω2(RA− l)

R2
A− l RA

+ 2 tan θ ln
R2

B + h RB

2µ2(RB + h)
= 2

(
π + ln

ω

µ

)
.

Now, we are interested in the difference α(∂D) − β(∂D). We can suppose the
horocycles H1,H2,H3 are the same, that is, they differ by a horizontal translation.
With this choice of the horocycles, we have α(∂D)−β(∂D)= |A2| − |B1|, where
|A2| and |B1| are the lengths of the compact arcs of A2, B1, respectively, which
are outside of the horodisks bounded by H1, H2 and H3. Moreover, we will sup-
pose that ω ≥ µ and that Hi ∩ϒi = (xdi , µ/2), where ϒi is the vertical geodesic
through xdi . It is possible to show that the intersection of B1 and H1 occurs at
(xd1, 0) and at

(x0, y0)=
(
−

√
R2

B − (y0− h)2+ xd1 +µ,
8µ3

17µ2+ 16h2− 8hµ

)
,

where B1 and H1 satisfy the equations (x − (xd1 + µ))
2
+ (y − h)2 = R2

B and
(x − xd1)

2
+ (y−µ/4)2 = µ2/16 respectively.

Similarly, the intersection of A2 and H2 occurs at (xd2, 0) and at

(7) (x1, y1)=
(
−

√
R2

A− (y1+ l)2+ xd2 +ω,
8ω2µ

16ω2+µ2+ 16l2+ 8µl

)
,

where A2 and H2 satisfy the equations (x − (xd2 + ω))
2
+ (y + l)2 = R2

A and
(x − xd2)

2
+ (y−µ/4)2 = µ2/16, respectively.

Then, the length of B1 with respect to the horocycles H1,H2 is

|B1| = 2
∫ RB+h

y0

RB

y
√

R2
B − (y− h)2

dy

=
2

cos θ

(
− ln RB − ln y0+ ln

(
µ
√

R2
B − (y0− h)2+µ2

+ hy0
))
.
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A1

B1

A2

B2

H1 H2 H3

H4

(xd1 ,
µ

2 ) (xd2 ,
µ

2 ) (xd3 ,
µ

2 )

Figure 4. The domain D with the horocycles.

Analogously, the length of A2 with respect to the horocycles H2,H3 is

|A2| = 2
∫ RA−l

y1

RA

y
√

R2
A− (y+ l)2

dy

=
2

cos θ

(
− ln RA− ln y1+ ln

(
ω
√

R2
A− (y1+ l)2+ω2

− ly1
))
.

So α(∂D)−β(∂D)− 2HA(D) only depends on µ and ω, because θ also depends
on µ or ω. Thus consider, for each µ ∈ R, µ≥ 3 fixed, the function

F(ω)= α(∂D)−β(∂D)− 2HA(D).

We will show that at any moment this function is zero. We know for µ = ω that
F(ω)=−2HA(D) < 0; thus we must show that for ω large enough, F(ω) > 0, so
there exists a ω0 such that F(ω0)= 0 for each µ≥ 3 fixed. We have

F(ω)= 2
cos θ

(
− ln RA− ln y1+ ln

(
ω
√

R2
A− (y1+ l)2+ω2

− ly1
)
.

+ ln RB + ln y0− ln
(
µ
√

R2
B − (y0− h)2+µ2

+ hy0
))

− 4H
(
π + ln ω

µ

)
=

2
cos θ

(
ln
( 1

RA y1

(
ω
√

R2
A− (y1+ l)2+ω2

− ly1
))

+ ln
RB y0

µ
√

R2
B − (y0− h)2+µ2+ hy0

)

− 4Hπ − 2 sin θ ln ω
µ
.
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The second logarithmic term in the big parentheses is constant, because we are
supposing µ fixed. As for the remaining terms, we substitute the value of y1 from
(7) and find that the difference

2
cos θ

ln
( 1

RA y1

(
ω
√

R2
A− (y1+ l)2+ω2

− ly1
))
− 2 sin θ ln ω

µ

is strictly positive and increasing, so the function F is increasing and unbounded.
Thus there is a ω0 such that F(ω0)= 0. �
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OSGOOD–HARTOGS-TYPE PROPERTIES OF POWER SERIES
AND SMOOTH FUNCTIONS

BUMA L. FRIDMAN AND DAOWEI MA

We study the convergence of a formal power series of two variables if its
restrictions on curves belonging to a certain family are convergent. Also
analyticity of a given C∞ function f is proved when the restriction of f on
analytic curves belonging to some family is analytic. Our results generalize
two known statements: a theorem of P. Lelong and the Bochnak–Siciak
theorem. The questions we study can be regarded as problems of Osgood–
Hartogs type.

Introduction

Hartogs’ theorem is a fundamental result in complex analysis: A function f in Cn ,
where n > 1, is holomorphic if it is holomorphic in each variable separately. That
is, f is holomorphic in Cn if for each axis it is holomorphic on every complex
line parallel to this axis. In the last interpretation this statement leads to a number
of questions described in an article by K. Spallek, P. Tworzewski, T. Winiarski
[Spallek et al. 1990] in the following way: “Osgood–Hartogs-type problems ask
for properties of ‘objects’ whose restrictions to certain ‘test-sets’ are well known”.
The article has a number of examples of such problems. Here are two classical
examples: a theorem of P. Lelong and one proved independently by J. Bochnak
and J. Siciak.

Theorem [Lelong 1951]. A formal power series g(x, y) converges in some neigh-
borhood of the origin if there exists a set E ⊂ C of positive capacity such that, for
each s ∈ E , the formal power series g(x, sx) converges in some neighborhood of
the origin (of a size possibly depending on s).

Theorem [Bochnak 1970; Siciak 1970]. Let f ∈ C∞(D), where D is a domain in
Rn containing 0. Suppose f is analytic on every line segment through 0. Then f is
analytic in a neighborhood of 0 (as a function of n variables).

In many articles the same two “objects” are usually considered: power series and
functions of several variables. The test sets in many cases form a family of linear

MSC2000: 26E05, 30C85, 40A05.
Keywords: formal power series, analytic functions, capacity.
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subspaces of lower dimension. For example, articles by S. S. Abhyankar, T. T. Moh
[1970], N. Levenberg and R. E. Molzon, [1988], R. Ree [1949], A. Sathaye [1976],
M. A. Zorn [1947] and others consider the convergence of formal power series of
several variables provided the restriction of such a series on each element of a
sufficiently large family of linear subspaces is convergent. T. S. Neelon [2009;
2006] proved that a formal power series is convergent if its restrictions to certain
families of curves or surfaces parametrized by polynomial maps are convergent.
The articles [Bochnak 1970; Neelon 2004; 2009; Siciak 1970], among others,
prove that a function of several variables is highly smooth (or even analytic) if it
is smooth enough on each of a sufficiently large set of linear or algebraic curves
(or surfaces of lower dimension). The publication by E. Bierstone, P. D. Milman,
A. Parusiński [Bierstone et al. 1991] provides an interesting example of a noncon-
tinuous function in R2 that is analytic on every analytic curve.

In this article we also consider both: power series with complex coefficients
and functions in a neighborhood of the origin in R2. As test sets we consider
separately two families. They are derived the following way. First consider a
nonlinear analytic curve 0 = {x, γ (x)}, with γ (0) = 0. One family, =1, is a set
of dilations of 0: =1 = {sx, sγ (x)}, s ∈ 31}, where 31 ⊂ R is a closed subset of
C of positive capacity. The other family, =2, consists of curves 0θ , each of which
is a rotation of 0 about the origin by an angle θ ∈ 32, where 32 is a subset of
[0, 2π ] of positive capacity. If f is C∞ and its restriction on every curve of =1 can
be extended as an analytic function in a neighborhood of that curve, then f is real
analytic in a neighborhood of the origin in the region covered by the curves of =1.
The same is true regarding =2. (For precise statements see Theorems 2.1 and 2.2).

We start however with two results related to power series. First we prove a gen-
eralization of P. Lelong’s theorem. Namely, if g(x, y) is a formal power series and
h(x), h(0)= 0, is a convergent power series such that the inhomogeneous dilations
g(sσ x, sτh(x)) are convergent for sufficiently many s (σ, τ are fixed), then g(x, y)
is convergent (for the precise statement see Theorem 1.1). Theorem 1.2 is devoted
to a reverse claim: if h(x) is a formal power series and g(sσ x, sτh(x)) converges
for sufficiently many s, then h(x) is convergent.

The results in this paper do not carry over in a routine way to dimensions greater
than two. We intend to study corresponding problems for higher dimensions in
future work.

1. On the convergence of a power series in two variables

Let C[[x1, x2, . . . , xn]] denote the set of (formal) power series

g(x1, . . . , xn)=
∑

k1,...,kn≥0

ak1...kn xk1
1 · · · x

kn
n
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in n variables with complex coefficients. Let g(0)= g(0, . . . , 0) denote the coeffi-
cient a0,...,0. A power series equals 0 if all of its coefficients ak1...kn are equal to 0.
A power series g ∈C[[x1, x2, . . . , xn]] is said to be convergent if there is a constant
C = Cg such that |ak1...kn | ≤ Ck1+···+kn for all (k1, . . . , kn) 6= (0, . . . , 0). If g is
convergent, then it represents a holomorphic function in some neighborhood of 0
in Cn . If g ∈ C[[x1, x2, . . . , xn]] and s ∈ Cn , then gs(t) := g(s1t, . . . , snt) is well
defined and belongs to C[[t]]. By [Zorn 1947], g is convergent if and only if gs(t)
is convergent for each s ∈ Cn . The partial derivatives of a power series are well
defined even when it is divergent (not convergent). For example, if g ∈ C[[x, y]]
and if g =

∑
ai j x i y j , then

g′y =
∂g
∂y
=

∑
jai j x i y j−1.

Thus g′y 6= 0 simply means that g 6∈ C[[x]]. If g ∈ C[[x, y]], and if h ∈ C[[x]] with
h(0)= 0, then g(x, h(x)) is a well-defined element of C[[x]].

As mentioned above, a lot of work has been done on the convergence of a power
series with the assumption that the series is convergent after restriction to suffi-
ciently many subspaces; see [Abhyankar and Moh 1970; Levenberg and Molzon
1988; Lelong 1951; Siciak 1970; 1982].

We consider substitution of a power series y = h(x) into an inhomogeneous
dilation g(sσ x, sτ y) of a series g(x, y), where σ, τ are integers.

Let
Q :=

{
(σ, τ ) : σ, τ ∈ Z, (σ, τ ) 6= (0, 0)

}
.

Let cap E denote the (logarithmic) capacity of a closed set E in the complex plane.

We now present our two main theorems.

Theorem 1.1. Let g∈C[[x, y]] be a power series of two variables x, y, let h∈C[[x]]
be a nonzero convergent power series with h(0) = 0, let E be a closed subset of
C r {0} with cap E > 0, and let (σ, τ ) be a pair in the set Q. Assume, in case
στ > 0, that h(x) is not a monomial of the form bk xk with σk − τ = 0. Suppose
that g(sσ x, sτh(x)) is convergent for each s ∈ E. Then g is convergent.

Theorem 1.2. Let g ∈ C[[x, y]] be a power series with g′y 6= 0, let h ∈ C[[x]]
be a nonzero power series with h(0) = 0, let E be a closed subset of C r {0}
with cap E > 0, and let (σ, τ ) be a pair in the set Q with στ > 0. Suppose that
g(sσ x, sτh(x)) is convergent for each s ∈ E. Then h is convergent.

The examples in Section 3 show that if any condition in these two theorems
is dispensed with, the resulting statement is false. We now prove some auxiliary
results.

The following theorem is a consequence of a result by B. Malgrange [1966].
We present an independent short proof.
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Theorem 1.3. Let g ∈ C[[x1, . . . , xn, y]] with g′y 6= 0, and let h ∈ C[[x1, . . . , xn]]

with h(0) = 0. Suppose that g and g(x1, . . . , xn, h(x1, . . . , xn)) are convergent.
Then h must be convergent.

Proof. Let f ∈ C[[x1, . . . , xn, y]] be defined by

f (x1, . . . , xn, y)= g(x1, . . . , xn, y)− g(x1, . . . , xn, h(x1, . . . , xn)).

Then f is convergent and f (x1, . . . , xn, h(x1, . . . , xn))= 0. Fix s = (s1, . . . , sn)∈

Cn . Let fs(t, y) ∈ C[[t, y]] be defined by fs(t, y) = f (s1t, . . . , snt, y). Then
fs(t, y) is convergent and fs(t, hs(t))= 0. By the Weierstrass preparation theorem
(see [Griffiths and Harris 1978, p. 8], for example), there is a nonnegative integer k
such that fs(t, y)= tk P(t, y)Q(t, y), where P(t, y)= ym

+a1(t)ym−1
+· · ·+am(t)

is a polynomial in y with coefficients being convergent power series in t , and
Q(t, y) is a convergent power series with Q(0, 0) 6= 0. Hence P(t, hs(t))= 0. By
[Fuks 1963, Theorem 4.12, p. 73] there is a positive integer r such that P(tr , y)
splits into linear factors in y:

P(tr , y)= (y− u1(t)) · · · (y− um(t)),

where the u j (t) are convergent power series. Thus

0= P(tr , hs(tr ))= (hs(tr )− u1(t)) · · · (hs(tr )− um(t)).

It follows that hs(tr ) = u j (t) for some j . Therefore hs(t) is convergent. Since
hs(t) is convergent for each s ∈ Cn , the series h(x1, . . . , xn) must be convergent.

�

Let E be a closed bounded set in the complex plane. The transfinite diameter
of E is defined as

d∞(E)= lim
n

(
max

{∏
i< j
|zi − z j |

2/n(n−1)
: z1, . . . , zn ∈ E

})
.

For a probability measure µ on the compact set E , the logarithmic potential of µ is

pµ(z)= lim
N→∞

∫
min

(
N , log 1

|z−ζ |

)
dµ(ζ ),

and the capacity of E is defined by

cap E = exp(− min
µ(E)=1

sup
z∈C

pµ(z)).

It turns out that d∞(E) = cap E [Ahlfors 1973, pp. 23–28]. It follows from the
definition of the transfinite diameter that, for E1 ⊃ E2 ⊃ · · · ,

E =
⋂

En H⇒ cap E = lim(cap En),



OSGOOD–HARTOGS PROPERTIES OF POWER SERIES AND SMOOTH FUNCTIONS 71

and from the definition of the capacity that, if E1 ⊂ E2 ⊂ · · · ,

(1) E =
⋃

En H⇒ cap E = lim(cap En).

If E is a closed set, its capacity can be defined by

cap E = lim
n

cap(E ∩ {|x | ≤ n}).

Lemma 1.4 (Bernstein inequality). Let E be a compact set in the complex plane
with cap E > 0. Then there exists a positive constant C = CE , depending only on
E , such that for each positive integer n and each polynomial P(z)=

∑
akzk
∈C[z]

of degree n, each coefficient ak , 0≤ k ≤ n, of P(z) satisfies

|ak | ≤ Cn max
z∈E
|P(z)|.

Proposition 4.6 in [Neelon 2009] can be used to prove this statement. Also
(we thank Nessim Sibony for pointing this out to us) this lemma follows from
considerations in [Sibony 1985]. We present here an independent short proof.

Proof. Without loss of generality we assume that maxz∈E |P(z)| = 1. Let � be
the unbounded component of the complement of E in C. It is known that � has a
Green’s function with a pole at∞ [Ahlfors 1966; 1973, pp. 25–27]. The Green’s
function is harmonic in �, 0 on ∂�, and its asymptotic behavior at∞ is

u(z)= log |z| − logα+ o(1),

where α := cap E . On applying the maximum principle to the subharmonic func-
tion log |P(z)|−(n+ε)u(z), we obtain |P(z)| ≤ enu(z) for z ∈�. Choose an R> 1
so that E ⊂ {z : |z|< R}. Set C =max|z|=R eu(z). Then |P(z)| ≤Cn if |z| = R, and

|ak | =

∣∣∣∣ 1
2π i

∫
|z|=R

P(z)
zk+1 dz

∣∣∣∣≤ R−k max
|z|=R
|P(z)| ≤ Cn.

This proves the lemma. �

Proof of Theorem 1.1. We assume that a00 = g(0, 0) = 0, that E is bounded, that
gcd(σ, τ ) = 1, that σ ≥ 0, and, in case σ = 0, that τ = −1. This causes no loss
of generality. Indeed, if E is unbounded, set En = {s ∈ E : n ≥ |s| ≥ 1/n}. Since
lim cap En=cap E>0, the set En has positive capacity when n is sufficiently large.
On replacing E by En , we obtain that 0 6∈ E and E is bounded. If d :=gcd(σ, τ )>1,
we can replace (σ, τ ) by (σ/d, τ/d), and E by the set {s ∈ C : sd

∈ E}. Finally,
if σ < 0, or if (σ, τ ) = (0, 1), we can replace (σ, τ ) by (−σ,−τ), and E by
{s ∈ C : s−1

∈ E}.
Let

h(x)=
∞∑

i=1

bi x i .
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Then

h(x) j
=

∞∑
k= j

c jk xk,

where

c jk =
∑

l1+···+l j=k

bl1 · · · bl j .

Note that c jk = 0 for k < j . Hence

g(sσ x, sτh(x))=
∑
i, j,k

ai j c jksσ i+τ j x i+k
=

∞∑
p=1

( (σ+τ+)p∑
q=−τ− p

dpqsq
)

x p,

where τ+ =max(0, τ ), τ− =−min(0, τ ), and

(2) dpq =
∑

σ i+τ j=q

ai j c j,p−i .

For each p ≥ 1 and each q ∈ Z, the sum (2) contains only a finite number
of nonzero terms. Let u p(s) =

∑
q dpqsq . Then sτ

− pu p(s) is a polynomial in
s of degree at most (σ + |τ |)p, and g(sσ x, sτh(x)) =

∑
u p(s)x p. For s ∈ E ,

since g(sσ x, sτh(x)) is convergent, its coefficients u p(s) satisfy |u p(s)| ≤ C p
s for

some positive constant Cs , possibly depending on s, and p = 1, 2, . . . . Set, for
n = 1, 2, . . . ,

En = {s ∈ E : |u p(s)| ≤ n p for all p > 0}.

The sequence (En) is an increasing sequence of closed sets. Since lim cap En =

cap E > 0, the set En has positive capacity for some n. On replacing E by En , we
obtain |u p(s)| ≤ n p for s ∈ E and p = 1, 2, . . . . The polynomial sτ

− pu p(s) is of
degree at most (σ + |τ |)p, and satisfies

|sτ
− pu p(s)| ≤ Mτ− pn p, s ∈ E,

where M=maxE |s|. By Lemma 1.4, the coefficients of the above mentioned poly-
nomial satisfy |dpq | ≤ C (σ+|τ |)p

E Mτ− pn p, where CE is the constant in Lemma 1.4,
depending only on E . Set C = Cσ+|τ |

E Mτ−n. Then

(3) |dpq | ≤ C p.

Let

(4) gq(x, y)=
∑

σ i+τ j=q

ai j x i y j ,
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and let φq(x) = gq(x, h(x)), for q ∈ Z. Then gq ∈ C[[x, y]] in general, and it is a
polynomial when σ, τ > 0. It is straightforward to verify that

(5) φq(x)= gq(x, h(x))=
∞∑

p=1

dpq x p.

The series φq(x) is convergent because of (3). Choose a positive number r < 1/C ,
where C is the constant in (3), so that h(x) converges in a neighborhood of the
closed ball {x ∈C : |x |≤ r} and h(x) 6=0 when 0< |x |≤ r . Let m=min|x |=r |h(x)|.
Then m > 0. For x ∈ C, |x | ≤ r ,

|φq(x)| ≤
∑
|dpq ||x |p ≤

∑
(Cr)p

=
1

1−Cr
.

We now consider two cases, depending on whether στ is positive.

Case (i): σ > 0, τ > 0. Let

(6) �q = {(i, j) : i, j ∈ Z, i, j ≥ 0, σ i + τ j = q}.

Let ωq be the cardinality of �q . It is clear that ωq ≤ q + 1. Fix a q ≥ 1 so that
ωq > 0. Let (λ, µ) be the element of �q so that µ is the minimum. Then

�q = {(λ− kτ, µ+ kσ) : k = 0, 1, . . . , ωq − 1},

and

gq(x, y)= xλyµ
ωq−1∑
k=0

aλ−kτ, µ+kσ (x−τ yσ )k .

Let

ψq(t)=
ωq−1∑
k=0

aλ−kτ, µ+kσ tk,

so that gq(x, y)= xλyµψq(x−τ yσ ), and

(7) ψq(x−τh(x)σ )= x−λh(x)−µφq(x).

Let u(x) = x−τh(x)σ , S = {x ∈ C : |x | = r}, and F = u(S). Since h(x) is not
a monomial of the form bk xk with σk− τ = 0, the function u(x) is a nonconstant
meromorphic function, hence F has positive capacity. For t = x−τh(x)σ ∈ F , we
obtain, by (7), that

(8) |ψq(t)| ≤
r−λm−µ

1−Cr
≤
(1+ r−1

+m−1)λ+µ

1−Cr
.

The summand 1 in the right-hand side of the above inequality is included to ensure
that the numerator is greater than 1 as needed later. Hence |ψq(t)| ≤ Lq on F ,
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where

L =
1+ r−1

+m−1

1−Cr
,

for λ+µ ≤ q. By Lemma 1.4, the coefficients of ψq are bounded by LqCωq−1
F .

Thus for (i, j) ∈�q ,

|ai j | ≤ LqCωq−1
F ≤ (L +CF )

2q
≤ (L +CF )

2(σ+τ)(i+ j),

or |ai j | ≤ K i+ j , where K = (L +CF )
2(σ+τ). The number K does not depend on

q . It follows that
|ai j | ≤ K i+ j , if σ i + τ j ≥ 1.

This proves that g is convergent.

Case (ii): σ ≥ 0, τ ≤ 0. In this case the set �q in (6) can be written as

�q = {(λ− kτ, µ+ kσ) : k = 0, 1, 2, . . . },

where (λ, µ) is the element in �q with least value of µ when σ > 0, and (λ, µ)=
(0,−q) when (σ, τ )= (0,−1). Let

ψq(t)=
∞∑

k=0

aλ+k|τ |, µ+kσ tk .

Then gq(x, y)= xλyµψq(x |τ |yσ ). The formal power series ψq(t) satisfies φq(x)=
xλh(x)µψq(x |τ |h(x)σ ). Since xλh(x)µ and φq(x) are convergent, the series

α(x) := ψq(x |τ |h(x)σ )

has to be convergent. Write x |τ |h(x)σ = cxν + · · · , c 6= 0. There is a power series
β(x), also convergent in a neighborhood of {|x | ≤ r}, such that x |τ |h(x)σ = β(x)ν .
Reducing r if necessary, we assume that β(x) is univalent in a neighborhood of
{|x | ≤ r}. Note that the reduction in the value of r is independent of q . The set
{β(x) : |x | < r} contains an open disc {z ∈ C : |z| < δ}. The series β(x) has an
inverse γ (z), convergent in {z∈C : |z|<δ}, such that γ (β(x))= x and β(γ (z))= z.
Now ψq(zν) is converge nt in {|z| < δ}, so ψq(t) is convergent in {|t | < δν}. Let
t ∈ C with |t |< δν . Then t = zν for some z with |z|< δ, and z = β(x) for some x
with |x |< r . Hence

|ψq(t)| = |ψq(β(x)ν)| = |α(x)| ≤max
|x |=r
|α(x)|.

Thus

sup
|t |<δν
|ψq(t)| ≤max

|x |=r

∣∣∣∣ φq(x)
xλh(x)µ

∣∣∣∣≤ r−λm−µ

1−Cr
.
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By the Cauchy estimates, the coefficients of ψq satisfy

|aλ+k|τ |, µ+kσ | ≤
r−λm−µ

1−Cr
δ−kν
≤
(1+ r−1

+m−1
+ δ−ν)λ+µ+k

1−Cr
.

The summand 1 in the right-hand side of the above inequality is included to ensure
that the numerator is greater than 1 as needed later. It follows that, for (i, j) ∈�q ,

|ai j | ≤

(
1+ r−1

+m−1
+ δ−ν

1−Cr

)i+ j

.

The number K := (1+r−1
+m−1

+δ−ν)/(1−Cr) does not depend on q . Therefore,
|ai j | ≤ K i+ j for all (i, j). This proves that g is convergent. �

Proof of Theorem 1.2. This proof and the proof of Theorem 1.1 share the discussion
through Equation (5). Note that the convergence of h has not been used in the
derivation of (5). We define polynomials gq(x, y) by (4). Then gq(x, h(x)) are
convergent by (3) and (5). Since g′y(x, y) 6= 0, ∂gq/∂y 6= 0 for some q . It follows
from Theorem 1.3 that h(x) is convergent. �

For h ∈ C[[x]] with h(0)= 0, let hs(x)= s−1h(sx).

Corollary 1.5. Let g ∈ C[[x, y]] be a power series, let h ∈ C[[x]] be a nonzero and
nonlinear power series with h(0) = 0, and let E be a closed subset of R r {0}
with cap E > 0. Suppose that g(x, hs(x)) is convergent for each s ∈ E. Then g is
convergent.

Proof. If g′y = 0 then the statement holds. Suppose g′y 6= 0. For s 6= 0, g(x, hs(x))
is convergent if and only if g(s−1x, hs(s−1x)) = g(s−1x, s−1h(x)) is convergent.
By Theorem 1.2, h is convergent. Then g is convergent by Theorem 1.1. �

For f ∈ C[[x, y]] and θ ∈ [0, 2π ], write

fθ (x, y)= f (x cos θ − y sin θ, x sin θ + y cos θ).

Theorem 1.6. Let f ∈ C[[x, y]] be a power series, let h ∈ C[[x]] be a convergent
power series with h(0)= 0, and let E be a closed subset of [0, 2π ] with cap E > 0.
Suppose that fθ (x, h(x)) is convergent for each θ ∈ E. Then f is convergent.

Proof. Let g(x, y)= f ((x+ y)/2,−i(x− y)/2). Then f (x, y)= g(x+ iy, x− iy)
and fθ (x, y)= g(eiθ (x+ iy), e−iθ (x− iy)). Let φθ (x)= fθ (x, h(x))= g(eiθ (x+
ih(x)), e−iθ (x − ih(x))). Then φθ (x) is convergent for θ ∈ E . The x terms of the
two series x±ih(x) cannot both be zero. Say, the x term of x+ih(x) is nonzero. So
x+ih(x) has an inverse ψ(x) which is a convergent power series such that ψ(x)+
ih(ψ(x))= x . Set ψ(x)− ih(ψ(x))=ω(x). Then φθ (ψ(x))= g(eiθ x, e−iθω(x))
is convergent for θ ∈ E . It follows that g(sx, s−1ω(x)) is convergent for each s in
the set {eiθ

: θ ∈ E}, which has positive capacity. By Theorem 1.1, g is convergent.
Therefore f is convergent. �
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2. Analytic functions in R2

Suppose that f (x, y), φ(x), q(x) are C∞ functions defined near the origin with
φ(0)= 0. Let f̂ , φ̂, q̂ denote the Taylor series at 0 of those functions. Then f̂ lies
in C[[x, y]] and φ̂, q̂ lie in C[[x]]. By the chain rule, f (x, φ(x)) = q(x) implies
f̂ (x, φ̂(x)) = q̂(x). We consider here complex-valued analytic functions of real
variables. If I is an interval and if 0 = {(t, γ (t)) : t ∈ I } is a curve, the dilation by
s of 0 is

0s = {(st, sγ (t))} = {(t, γ1/s(t))}, γs(t)= s−1γ (st).

Theorem 2.1. Let f be a C∞ function defined in an open set � ⊂ R2 containing
the origin, let 0 = {(t, φ(t))} be a nonlinear analytic curve in R2 passing through
or ending at the origin, and let E be a closed subset of Rr{0} of positive capacity.
Suppose that for each s ∈ E , there is a real analytic function Fs defined in a
neighborhood Qs of 0s ∩� in R2 such that f and Fs coincide on 0s ∩�. Then
there is a neighborhood U of the origin, and a real analytic function F defined on
U that coincides with f on U ∩3, where 3 :=

⋃
s∈E 0s .

Proof. Without loss of generality we assume that φ(0)=0. Since f and Fs coincide
on 0s , we have

(9) f (x, φ1/s(x))= Fs(x, φ1/s(x)).

Let g, h denote the Taylor series of f , φ respectively. Then (9) implies

g(x, h1/s(x))= Fs(x, h1/s(x)).

Hence g(x, h1/s(x)) is convergent for s ∈ E . By Corollary 1.5, g is convergent.
Thus g represents a real analytic function F in some neighborhood U of the ori-
gin that satisfies F(x, h1/s(x)) = Fs(x, h1/s(x)). It follows that the real analytic
function F coincides with f on U ∩3. �

Note that f does not need to be analytic in a neighborhood of the origin.
If 0 = {(t, φ(t) : t ∈ I } is a curve, its rotation by θ is

0θ = {(t cos θ +φ(t) sin θ,−t sin θ +φ(t) cos θ) : t ∈ I }.

Theorem 2.2. Let f be a C∞ function defined in an open set � ⊂ R2 containing
the origin, let 0= {(t, φ(t))} be an analytic curve in R2 passing through or ending
at the origin, and let E be a closed subset of [0, 2π ] of positive capacity. Suppose
that for each θ ∈ E , there is a real analytic function Fθ defined in a neighborhood
Qθ of 0θ ∩ � in R2 such that f and Fθ coincide on 0θ ∩ �. Then there is an
analytic function F defined in some neighborhood U of the origin that coincides
with f on U ∩3, where 3 :=

⋃
θ∈E 0θ .
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Proof. The proof is similar to that of Theorem 2.1. Let

gθ (x, y) := g(x cos θ + y sin θ,−x sin θ + y cos θ).

Then gθ (x, h(x)) is convergent for each θ ∈ E . By Theorem 1.6, g is convergent.
�

Corollary 2.3. Let f be a C∞ function defined in a neighborhood of 0 in R2, and
let 0 = {(t, φ(t))} be an analytic curve passing through or ending at the origin in
R2. Suppose that for each θ ∈ [0, 2π ], the restriction of f to 0θ extends to a real
analytic function Fθ in a neighborhood Qθ of the origin. Then f is analytic in a
neighborhood of the origin.

Remark 2.4. We can see from the proofs that in Theorem 2.1, Theorem 2.2, and
Corollary 2.3 the hypothesis on f can be weakened to f having a Taylor series
at the origin in the sense that there are numbers ai j such that for each positive
integer n,

f (x, y)−
∑

i+ j≤n

ai j x i y j
= o((x2

+ y2)n/2).

3. Examples

Here we show that the restrictions in our main theorems are necessary.

Example 3.1. P. Lelong [1951] proved that if E is a set with cap E = 0 then
one can find a divergent power series g(x, y) such that for all s ∈ E , g(x, sx) is
convergent. For completeness we present here a construction of such an example.
Since cap E = 0, there is a sequence of positive numbers (δn) with lim δn = 0, and
a sequence of polynomials (Pn(x)) with maxx∈E |P(x)| ≤ δn

n , where

Pn(x)=
n∑

j=0

bnj xn− j ,

with bn0 = 1. Let

ai j = δ
−(i+ j)
i+ j bi+ j,i and g(x, y)=

∑
ai j x i y j .

Then
g(x, sx)=

∑
δ−n

n Pn(s)xn.

For s ∈ E we have |δ−n
n Pn(s)| ≤ 1, so g(x, sx) is convergent. Note that a0 j = δ

− j
j ,

which obviously implies that g is divergent, since lim δ j = 0.

Example 3.2. We show that the condition in Theorem 1.1 that h(x) is not a mono-
mial of the form bk xk with σk−τ =0 cannot be dispensed with. Let σ, k be positive
integers, and φ∈C[[x]] a divergent series with φ(0)=0. Let g(x, y)=φ(xk)−φ(y)
and h(x)= xk . Then g is divergent; but g(sσ x, sσkh(x))= 0 for each s ∈ C.
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Example 3.3. We show that the hypothesis in Theorem 1.1 that h(x) is convergent
cannot be dispensed with when στ ≤ 0. (By Theorem 1.2 that hypothesis can be
dispensed with when στ > 0.) The example also shows that Theorem 1.2 fails for
στ ≤ 0.

Suppose that τ ≤ 0, σ > 0. Let u(x) = x + · · · be a divergent series. Let
h(x), φ(x) be the series satisfying φ(u(x)) = x and x |τ |h(x)σ = u(xσ+|τ |). Then
φ, h are divergent. Let f (x, y)= φ(x |τ |yσ ). Then f is divergent; but

f (sσ x, sτh(x))= xσ+|τ | for each s ∈ C r {0}.

Now we consider the case where σ = 0, τ = 1. Let h(x)= x+· · · be a divergent
series, and let φ(x) be the series satisfying h(x)φ(x) = x2. Then φ is divergent.
Let f (x, y)= φ(x)y. Then f is divergent; but f (x, sh(x))= sx2 for each s ∈ C.
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TWISTED CAPPELL–MILLER HOLOMORPHIC
AND ANALYTIC TORSIONS

RUNG-TZUNG HUANG

Recently, Cappell and Miller extended the classical construction of the an-
alytic torsion for de Rham complexes to coupling with an arbitrary flat
bundle and the holomorphic torsion for ∂̄-complexes to coupling with an
arbitrary holomorphic bundle with compatible connection of type (1, 1).
Cappell and Miller also studied the behavior of these torsions under metric
deformations. On the other hand, Mathai and Wu generalized the classical
construction of the analytic torsion to the twisted de Rham complexes with
an odd degree closed form as a flux and later, more generally, to the Z2-
graded elliptic complexes. Mathai and Wu also studied the properties of an-
alytic torsions for the Z2-graded elliptic complexes, including the behavior
under metric and flux deformations. In this paper we define the Cappell–
Miller holomorphic torsion for the twisted Dolbeault-type complexes and
the Cappell–Miller analytic torsion for the twisted de Rham complexes. We
obtain variation formulas for the twisted Cappell–Miller holomorphic and
analytic torsions under metric and flux deformations.

1. Introduction

Ray and Singer, in the celebrated works [1971; 1973], defined the analytic torsion
for de Rham complexes and the holomorphic torsion for ∂-complexes of complex
manifolds. They studied properties of these torsions, including the behavior under
metric deformations and coupled the Riemannian Laplacian and the ∂-Laplacian
with unitary flat vector bundles and obtained self-adjoint operators. Hence, the
analytic torsion and holomorphic torsion are real numbers in the acyclic cases
considered by Ray and Singer and are expressed as elements of real determinant
line in the nonacyclic case.

Recently, Cappell and Miller [2010] extended the classical construction of the
analytic torsion to coupling with an arbitrary flat bundle and the holomorphic tor-
sion to coupling with an arbitrary holomorphic bundle with compatible connection

MSC2000: 58J52.
Keywords: determinant, analytic torsion.
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of type (1, 1); see Definition 3.1. This includes both unitary and flat (not nec-
essarily unitary) bundles as special cases. However, in this general setting, the
associated operators are not necessarily self-adjoint and the torsions are complex-
valued. Cappell and Miller also studied the behavior of these torsions under metric
deformations.

Mathai and Wu [2008; 2010b] generalized the classical construction of the Ray–
Singer torsion for de Rham complexes to the twisted de Rham complex with an
odd degree closed differential form H as a flux. Later, in [Mathai and Wu 2010a],
they extended this to Z2-graded elliptic complexes. The definitions use pseudo-
differential operators and residue traces. Mathai and Wu also studied the properties
of analytic torsion for Z2-graded elliptic complexes, including the behavior under
the variation of metric and flux.

Let E be a holomorphic bundle with a compatible type-(1, 1) connection D
(see Definition 3.1) over a complex manifold W of complex dimension n and H ∈
A0,1(W,C) be a ∂-closed differential form of type (0, odd). In Definition 3.5,
for each p, 1 ≤ p ≤ n, we define the twisted Cappell–Miller holomorphic torsion
τholo,p(W, E, H) as a nonvanishing element of the determinant line:

τholo,p(W, E, H) ∈ Det H p,•
∂E
(W, E, H)⊗

(
Det H•,n−p

D1,0 (W, E, H)
)
(−1)n+1

.

We show that the variation of the twisted Cappell–Miller holomorphic torsion
τholo,p(W, E, H) under the deformation of the metric is given by a local formula;
see Theorem 3.8. We also show that along any deformation of H that fixes the
cohomology class [H ] and the natural identification of determinant lines, the vari-
ation of the twisted Cappell–Miller holomorphic torsion τholo,p(W, E, H) under
the deformation of the flux is given by a local formula; see Theorem 3.12.

Let E be a complex flat vector bundle over a closed manifold M endowed with
a flat connection ∇ and let H be an odd degree flux form. Then the Cappell–Miller
analytic torsion τ(∇,H) (see Definition 4.2) for the twisted de Rham complexes is
an element of Det H•(M,E⊕E′,H), where E′ is the dual of the vector bundle E.
We show that the variation of the twisted Cappell–Miller analytic torsion τ(∇,H)

under the deformation of the metric is given by a local formula; see Theorem 4.3.
We also show that along any deformation of H that fixes the cohomology class [H]
and the natural identification of determinant lines, the variation of the twisted
Cappell–Miller analytic torsion τ(∇,H) under the deformation of the flux is given
by a local formula; see Theorem 4.4. In particular, we show that if the manifold M
is an odd-dimensional closed oriented manifold, then the twisted Cappell–Miller
analytic torsion is independent of the Riemannian metric and the representative H

in the cohomology class [H]. See also [Su 2011, Section 6]. We also compare the
twisted Cappell–Miller analytic torsion with the twisted refined analytic torsion
[Huang 2010]; see Theorem 4.5.
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In the paper just cited we defined and studied the refined analytic torsion of
Braverman and Kappeler [2007; 2008b] for the twisted de Rham complexes. Later,
Su [2011] defined and studied the Burghelea–Haller [2007; 2008; 2010] analytic
torsion for the twisted de Rham complexes and compared the twisted Burghelea–
Haller torsion with the twisted refined analytic torsion. Su [2011] also briefly
discussed the twisted Cappell–Miller analytic torsion when the dimension of the
manifold is odd.

The rest of the paper is organized as follows. In Section 2, we define and cal-
culate the Cappell–Miller torsion for the Z2-graded finite-dimensional bigraded
complex. In Section 3, we first define the Dolbeault-type bigraded complexes
twisted by a flux form and its (co)homology groups. We then define the Cappell–
Miller holomorphic torsion for the twisted Dolbeault-type bigraded complexes. We
prove variation theorems for the twisted Cappell–Miller holomorphic torsion under
metric and flux deformations. In Section 4, we first define the de Rham bigraded
complex twisted by a flux form and its (co)homology groups. Then we define
the Cappell–Miller analytic torsion for the twisted de Rham bigraded complex.
We prove variation theorems for the twisted Cappell–Miller analytic torsion under
metric and flux deformations.

Throughout this paper, a bar over an integer means taking the value modulo 2.

2. The Cappell–Miller torsion for a Z2-graded finite-dimensional bigraded
complex

In this section we define and calculate the Cappell–Miller torsion for the Z2-graded
finite-dimensional bigraded complex. For the Z-graded case, see [Cappell and
Miller 2010, Section 6]. Throughout this section k is a field of characteristic zero.

Determinant lines of a Z2-graded finite-dimensional bigraded complex. Given a
k-vector space V of dimension n, the determinant line of V is the line Det(V ) :=∧nV , where

∧nV denotes the n-th exterior power of V . By definition, we set
Det(0) := k. Further, we denote by Det(V )−1 the dual line of Det(V ). Let

C0
= Ceven

=

[m/2]⊕
i=0

C2i ,

C1
= Codd

=

[(m−1)/2]⊕
i=0

C2i+1,

where C i , i = 0, . . . ,m, are finite-dimensional k-vector spaces. Let

(2-1) (C•, d) : · · ·
d
−→ C0 d

−→ C1 d
−→ C0 d

−→ · · ·
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be a Z2-graded cochain complex of finite dimensional k-vector spaces. Denote by
H•(d)= H 0(d)⊕ H 1(d) its cohomology. Set

(2-2)
Det(C•) := Det(C0)⊗Det(C1)−1,

Det(H•(d)) := Det(H 0(d))⊗Det(H 1(d))−1.

Assume that C• has another differential d∗ : Ck
→ Ck−1 giving the complex

(C•, d∗) : · · ·
d∗
←− C0 d∗

←− C1 d∗
←− C0 d∗

←− · · · .

Denote its homology by H•(d∗)= H0(d∗)⊕ H1(d∗). Set

Det(H•(d∗)) := Det(H0(d∗))⊗Det(H1(d∗))−1.

The fusion isomorphisms. (See [Braverman and Kappeler 2007, Section 2.3].)
For two finite-dimensional k-vector spaces V and W , we denote by µV,W the
canonical fusion isomorphism

(2-3) µV,W : Det(V )⊗Det(W )→ Det(V ⊕W ).

For v ∈ Det(V ), w ∈ Det(W ), we have

(2-4) µV,W (v⊗w)= (−1)dim V ·dim WµW,V (w⊗ v).

By a slight abuse of notation, denote by µ−1
V,W the transpose of the inverse of µV,W .

Similarly, if V1, . . . , Vr are finite-dimensional k-vector spaces, we define an
isomorphism

(2-5) µV1,...,Vr : Det(V1)⊗ · · ·⊗Det(Vr )→ Det(V1⊕ · · ·⊕ Vr ).

The isomorphism between determinant lines. For k = 0, 1, fix a direct sum de-
composition

(2-6) Ck
= Bk

⊕ H k
⊕ Ak,

such that Bk
⊕ H k

= (Ker d) ∩ Ck and Bk
= d(Ck−1) = d(Ak−1). Then H k

is naturally isomorphic to the cohomology H k(d) and d defines an isomorphism
d : Ak

→ Bk+1.
Fix ck ∈ Det(Ck) and xk ∈ Det(Ak). Let d(xk) ∈ Det(Bk+1) be the image of xk

under the map Det(Ak)→Det(Bk+1) induced by the isomorphism d : Ak
→ Bk+1.

Then there is a unique element hk ∈ Det(H k) such that

(2-7) ck = µBk ,H k ,Ak
(
d(xk−1)⊗ hk ⊗ xk

)
,

whereµBk ,H k ,Ak is the fusion isomorphism; see (2-5) and [Braverman and Kappeler
2007, Section 2.3].
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Define the canonical isomorphism

(2-8) φC• = φ(C•,d) : Det(C•)−→ Det(H•(d))

by the formula

(2-9) φC• : c0⊗ c−1
1 7→ h0⊗ h−1

1 .

Following the sign convention of [Braverman and Kappeler 2007, (2-14)], Equa-
tion (2.10) of [Huang 2010] introduced a sign-refined version of the canonical
isomorphism (2-8). Here we follow the sign convention of [Cappell and Miller
2010, Section 6].

Similarly, for k = 0, 1, fix a direct sum decomposition

(2-10) Ck
= Bk ⊕ Hk ⊕ Ak,

such that Bk ⊕ Hk = (Ker d∗) ∩ Ck and Bk = d∗(Ck+1) = d∗(Ak+1). Then Hk

is naturally isomorphic to the homology Hk(d∗) and d∗ defines an isomorphism
d∗ : Ak→ Bk−1.

Similarly, fix ck ∈ Det(Ck) and yk ∈ Det(Ak). Let d∗(yk) ∈ Det(Bk−1) denote
the image of yk under the map Det(Ak)→Det(Bk−1) induced by the isomorphism
d∗ : Ak→ Bk−1. Then there is a unique element h′k ∈ Det(H k) such that

(2-11) ck = µBk ,Hk ,Ak

(
d∗(yk+1)⊗ h′k ⊗ yk

)
,

whereµBk ,Hk ,Ak is the fusion isomorphism; see (2-5) and [Braverman and Kappeler
2007, Section 2.3].

Define the canonical isomorphism

(2-12) φ′C• = φ
′

(C•,d∗) : Det(C•)−→ Det(H•(d∗))

by the formula

(2-13) φ′C• : c0⊗ c−1
1 7→ h′0⊗ h′1

−1
.

The Cappell–Miller torsion for a Z2-graded finite-dimensional bigraded com-
plex. Let C• = C0

⊕ C1 and C̃• = C̃0
⊕ C̃1 be finite-dimensional Z2-graded k-

vector spaces. The fusion isomorphism

µC•,C̃• : Det(C•)⊗Det(C̃•)→ Det(C•⊕ C̃•)

is defined by the formula

(2-14) µC•,C̃• := (−1)M(C
•,C̃•)µ

C0,C̃0 ⊗µ
−1
C1,C̃1 ,

where

(2-15) M(C•, C̃•) := dim C1
· dim C̃0.
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Consider the element c := c0 ⊗ c−1
1 of Det(C•). Then, for the bigraded complex

(C•, d, d∗), the Cappell–Miller torsion is the algebraic torsion invariant

(2-16) τ(C•, d, d∗) := (−1)S(C•)φC•(c)(φ′C•(c))−1

∈ Det(H•(d))⊗Det(H•(d∗))−1,

where (−1)S(C•) is defined by the formula

(2-17) S(C•) :=
∑

k=0,1

(
dim Bk−1 · dim Bk+1

+ dim Bk+1
· dim Hk

+ dim Bk−1 · dim H k).
Calculation of the Z2-graded Cappell–Miller torsion. We first compute the tor-
sion in the case that the combinatorial Laplacian 1 := d∗d + dd∗ is bijective.

For k = 0, 1, define

(2-18) Ck
+
:= Ker d∗ ∩Ck, Ck

−
:= Ker d ∩Ck .

The proof of the following proposition is similar to the proof of the Z-graded case
[Cappell and Miller 2010, Section 6.2, Claim B].

Proposition 2.1. Suppose that the combinatorial Laplacian 1 has no zero eigen-
value. Then the cohomology group H•(d)=0 and the homology group H•(d∗)=0.
Moreover,

(2-19) τ(C•, d, d∗)= Det(d∗d|C0
+
) ·Det(d∗d|C1

+
)−1,

Proof. The proof of the first assertion that H•(d)= 0 and H•(d∗)= 0 is standard,
so we skip the proof.

To compute τ(C•, d, d∗) (see (2-16)), we first compute φ′C•(c). For each k =
0, 1, we now have the direct sum decomposition

(2-20) Ck
= d∗Ck+1

⊕ dCk−1.

We also have the isomorphisms

(2-21) d : d∗Ck+1 ∼= dCk, d∗ : dCk ∼= d∗Ck+1.

By (2-18), (2-20) and (2-21), we know that

(2-22) Ck
+
= d∗Ck+1, Ck

−
= dCk−1.

By (2-6), (2-10), (2-21), (2-22) and the first assertion we know that

(2-23) Ck
+
= Bk ∼= Ak, Ck

−
= Bk ∼= Ak .

Let { d∗yk+1,i | 1≤ i ≤ dim Bk } be a basis for Bk = d∗Ck+1 ∼= Ak . Since

d∗d : d∗Ck+1
→ d∗Ck+1
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is an isomorphism, there is a unique vector

xk,i ∈ Bk = d∗Ck+1

such that

(2-24) d∗dxk,i = d∗yk+1,i .

Then { xk,i | 1≤ i ≤ dim Bk } is also a basis for Bk ∼= Ak . Since d : d∗Ck+1
→ dCk

is an isomorphism, it follows that { dxk,i | 1 ≤ i ≤ dim Bk } is a basis for Bk+1
=

dCk ∼= Ak+1. Hence, in view of the decomposition (2-20), we conclude that

{ d∗yk+1,i | 1≤ i ≤ dim Bk } ∪ { dxk−1,i | 1≤ i ≤ dim Bk−1 }

forms a basis for Ck . In particular, by the first assertion and (2-6), we have

(2-25) dim Bk
= dim Bk−1.

With this particular choice of basis, we set

yk+1 := yk+1,1 ∧ · · · ∧ yk+1,dim Bk ∈ Det(Ak+1)

xk−1 := xk−1,1 ∧ · · · ∧ xk−1,dim Bk−1 ∈ Det(Bk−1).

Let d∗yk+1 and dxk−1 be the induced elements in Det(Bk) and Det(Ak). Set

(2-26) ck = µBk ,Ak (d
∗yk+1⊗ dxk−1).

To compute φ′C•(c) (see (2-13)), we need to compute h′k ∈ Det(Hk(d∗))∼= k.
If L is a complex line and x, y ∈ L with y 6= 0, we denote by [x : y] ∈ k the

unique number such that x = [x : y]y. Then

(2-27) h′k = [ck : µBk ,Ak (d
∗yk+1⊗ dxk−1)] by (2-24)

= [µBk ,Ak (d
∗yk+1⊗ dxk−1) : µBk ,Ak (d

∗yk+1⊗ dxk−1)] by (2-26)

= 1.

We next compute φC•(c). By (2-9), we need to compute hk . By our choice of
basis, we have

(2-28) hk = [ck : µBk ,Ak (dxk−1)⊗ xk]

= [µBk ,Ak (d
∗yk+1⊗ dxk−1) : µBk ,Ak (dxk−1)⊗ xk] by (2-26)

= [µBk ,Ak (d
∗dxk ⊗ dxk−1) : µAk ,Bk (dxk−1)⊗ xk] by (2-23), (2-24)

= (−1)dim Bk dim Ak [µBk ,Ak (d
∗dxk ⊗ dxk−1) : µBk ,Ak (xk ⊗ dxk−1)]

= (−1)dim Bk−1 dim Bk+1
Det(d∗d|Ck

+
), by (2-23), (2-25).

Combining (2-16), (2-17), (2-27), (2-28) with the first assertion gives (2-19). �
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We now compute the torsion in the case that the combinatorial Laplacian 1 :=
d∗d+dd∗ is not bijective. For simplicity, we restrict to the case k=C for the rest
of discussion in this section. The operator 1 maps Ck into itself. For an arbitrary
interval I ⊂ [0,∞), let Ck

I ⊂ Ck denote the linear span of the generalized eigen-
vectors of the restriction of 1 to Ck , corresponding to eigenvalue λ with |λ| ∈ I.
Since both d and d∗ commute with1, we have d(Ck

I)⊂Ck+1
I and d∗(Ck

I)⊂Ck−1
I .

Hence, we obtain a subcomplex C•I of C•. We denote by H•I(d) the cohomology of
the complex (C•I, dI) and H•,I(d∗) the homology of the complex (C•I, d∗I). Denote
by dI and d∗I the restrictions of d and d∗ to Ck

I and denote by 1I the restriction
of 1 to Ck

I. Then 1I = d∗IdI + dId∗I. For k = 0, 1, we also denote by Ck
±,I the

restrictions of Ck
±

to Ck
I.

For each λ ≥ 0, we have C• = C•
[0,λ] ⊕ C•(λ,∞). Then H•(λ,∞)(d) = 0 whereas

H•
[0,λ](d) ∼= H•(d) and H•,(λ,∞)(d∗) = 0 whereas H•,[0,λ](d∗) ∼= H•(d∗). Hence

there are canonical isomorphisms

8λ : Det(H•(λ,∞)(d))→ C, 9λ : Det(H•
[0,λ](d))→ Det(H•(d))

8′λ : Det(H•,(λ,∞)(d∗))→ C, 9 ′
∗

λ : Det(H•,[0,λ](d∗))−1
→ Det(H•(d∗))−1.

In the sequel, we will write t for 8λ(t) ∈ C and t ′ for 8′λ(t
′) ∈ C.

Proposition 2.2. Let (C•, d, d∗) be a Z2-graded bigraded complex of finite-dimen-
sional k-vector spaces. Then, for each λ≥ 0,

(2-29) τ(C•, d, d∗)= Det(d∗d|C0
+,(λ,∞)

) ·Det(d∗d|C1
+,(λ,∞)

)−1
· τ(C•

[0,λ], d, d∗),

where we view τ(C•
[0,λ], d, d∗) as an element of Det(H•(d))⊗Det(H•(d∗))−1 via

the canonical isomorphism 9λ ⊗ 9
′∗

λ : Det(H•
[0,λ](d)) ⊗ Det(H•,[0,λ](d∗))−1

→

Det(H•(d))⊗Det(H•(d∗))−1.
In particular, the right side of (2-29) is independent of λ≥ 0.

Proof. Recall the natural isomorphisms

Det(H k
[0,λ](d)⊗ H k

(λ,∞)(d))∼= Det(H k
[0,λ](d)⊕ H k

(λ,∞)(d))(2-30)

= Det(H k(d)),

Det(Hk,[0,λ](d∗)⊗ Hk,(λ,∞)(d∗))∼= Det(Hk,[0,λ](d∗)⊕ Hk,(λ,∞)(d∗))(2-31)

= Det(Hk(d∗)).

From (2-16), Proposition 2.1, (2-30) and (2-31) we obtain the result. �

3. Twisted Cappell–Miller holomorphic torsion

In this section we first review the ∂-Laplacian for a holomorphic bundle with
compatible type (1,1) connection introduced in [Cappell and Miller 2010]. Then
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we define the Dolbeault-type bigraded complexes twisted by a flux form and its
cohomology and homology groups. We define the Cappell–Miller holomorphic
torsion for the twisted Dolbeault-type bigraded complexes. We also prove variation
theorems for the twisted Cappell–Miller holomorphic torsion under metric and flux
deformations.

The ∂-Laplacian for a holomorphic bundle with compatible type (1, 1) connec-
tion. In this section we review some materials from [Cappell and Miller 2010];
see also [Liu and Yu 2010].

Let (W, J ) be a complex manifold of complex dimension n with the complex
structure J and let gW be any Hermitian metric on T W . Let E→W be a holomor-
phic bundle over W endowed with a linear connection D and let hE be a Hermitian
metric on E .

The complex structure J induces a splitting T W ⊗R C = T (1,0)W ⊕ T (0,1)W ,
where T (1,0)W and T (0,1)W are eigenbundles of J corresponding to eigenvalues i
and −i , respectively. Let T ∗(1,0)W and T ∗(0,1)W be the corresponding dual bun-
dles. For 0≤ p, q ≤ n, let

Ap,q(W, E)= 0
(
W,

∧p
(T ∗(1,0)W )⊗

∧q
(T ∗(0,1)W )⊗ E

)
be the space of smooth (p, q)-forms on W with values in E . Set

A•,•(W, E)=
n⊕

p,q=0

Ap,q(W, E).

Let ∂ : Ap,q(W,C)→W p,q+1(W,C) and ∂ : Ap,q(W,C)→ Ap+1,q(W,C) be the
standard operators obtained by decomposing by type the exterior derivative

d = ∂ + ∂

acting on complex-valued smooth forms of type (p, q). From d2
= 0, we have

∂2
= 0, ∂2

= 0.
Since E is holomorphic, the operator ∂ on A•,•(W,C) has a unique natural

extension to A•,•(W, E) (see [Cappell and Miller 2010, page 139])

∂E : Ap,q(W, E)→W p,q+1(W, E).

Under the splitting 0(W, (T ∗W ⊗R C)⊗C E) = A1,0(W, E)⊕ A0,1(W, E), the
connection D decomposes as a sum D = D1,0

⊕ D0,1 with

D1,0
: 0(W, E)→ A1,0(W, E), D0,1

: 0(W, E)→ A0,1(W, E).

Extend the connection D on0(W, E) in a unique way to A•,•(W, E) by the Leibniz
formula [Berline et al. 2004, page 21]. The extended D again decomposes as a sum
D=D1,0

+D0,1 also satisfying the Leibniz formula [Berline et al. 2004, page 131].
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Recall the following definition from [Cappell and Miller 2010, pages 139–140]
or [Liu and Yu 2010, Definition 2.1].

Definition 3.1. The connection D is said to be compatible with the holomorphic
structure on E if D0,1

= ∂E . The connection D is said to be of type (1, 1) if the
curvature D2 is of type (1, 1), that is, (D1,0)2 = 0 and (D0,1)2 = 0.

The complex Hodge star operator ? acting on forms is a complex conjugate
linear mapping

? : Ap,q(W,C)→ An−p,n−q(W,C)

induced by a conjugate linear bundle isomorphism; see [Cappell and Miller 2010,
page 141] for this and other statements on this page.

The natural conjugate mapping

conj : Ap,q(W,C)→ Aq,p(W,C)

is a complex linear mapping induced by the bundle automorphism

T ∗W ⊗R C→ T ∗W ⊗R C, v⊗ λ 7→ v⊗ λ, v ∈ T ∗W, λ ∈ C,

of the complexified cotangent bundle. Define ?̂ := conj ? . Then

?̂= conj ? : Ap,q(W,C)→ An−q,n−p(W,C)

is a complex linear mapping. Clearly, ?̂= conj ?= ? conj.
As pointed out by Cappell and Miller, since ?̂ is complex linear, it may be

coupled to a complex linear bundle mapping, for example, the identity mapping.
We also denote by ?̂ the complex linear mapping

?̂ : Ap,q(W, E)→ An−q,n−p(W, E).

Recall that the adjoint ∂∗ of ∂ with respect to the chosen Hermitian inner product
on T W is given by

∂∗ =− ? ∂ ? .

In particular,
∂∗ =−?̂ conj ∂ conj ?̂=−?̂ ∂ ?̂.

Let D be a compatible (1, 1) connection. Following Cappell and Miller, we define

∂∗E,D1,0 =−?̂ D1,0 ?̂

and the ∂-Laplacian for the holomorphic bundle E with compatible type-(1, 1)
connection D by

�E,∂ = ∂E∂
∗

E,D1,0 + ∂
∗

E,D1,0∂E .

Note that (∂∗E,D1,0)
2
= 0, since (D1,0)2 = 0 and ?̂2

= ?2
=±1.
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Denote by δE the adjoint of the ∂-operator ∂E with respect to the inner product
〈 · , · 〉E on A•,•(W, E) induced by the Hermitian metrics gW and hE . Then the
associated self-adjoint ∂-Laplacian is defined as

�E = (∂E + δE)
2
= ∂EδE + δE∂E .

Recall that, in general, the operator �E,∂ is not self-adjoint with respect to the inner
product 〈 · , · 〉E on A•,•(W, E), but has the same leading symbol as the operator
�E ; see [Cappell and Miller 2010, Section 3]. When the connection on E is
compatible with the Hermitian inner product 〈 · , · 〉E on A•,•(W, E), the operator
�E,∂ recovers the self-adjoint operators considered in [Bismut 1993; Bismut et al.
1988a; 1988b; 1988c; 1990; Bismut and Lebeau 1989; 1991]. When the bundle
E is unitary flat, the operator �E,∂ recovers the self-adjoint operators of [Ray and
Singer 1973]. For more details about the operator �E,∂ , see [Cappell and Miller
2010].

Twisted Dolbeault-type cohomology and homology groups. For each 0 ≤ p ≤ n,
denote by Ap,0(W, E) := Ap,even(W, E) and Ap,1(W, E) := Ap,odd(W, E). Let
H ∈ A0,1(W,C) and ∂H

E := ∂E + H ∧ · . We assume that ∂H = 0. Then, as in the
de Rham case, (∂H

E )
2
= 0. Hence, we can consider the twisted complex

(Ap,•(W, E), ∂H
E ) : · · ·

∂
H
E−→ Ap,0(W, E)

∂
H
E−→ Ap,1(W, E)

∂
H
E−→ Ap,0(W, E)

∂
H
E−→· · · .

Define the twisted Dolbeault-type cohomology groups of (Ap,•(W, E), ∂H
E ) as

H p,k
∂E
(W, E, H) :=

Ker(∂H
E : Ap,k(W, E)→ Ap,k+1(W, E))

Im(∂H
E : Ap,k−1(W, E)→ Ap,k(W, E))

, k = 0, 1.

Define H := conj H . Let D1,0
H := D1,0

+H ∧· . Then (D1,0
H )2 = 0. Hence, we can

also consider the twisted complex

(A•,p(W, E),D1,0
H ) : · · ·

D1,0
H
−→ A0,p(W, E)

D1,0
H
−→ A1,p(W, E)

D1,0
H
−→ A0,p(W, E)

D1,0
H
−→· · · .

Define the twisted Dolbeault-type cohomology groups of (A•,p(W, E), D1,0
H ) as

H k,p
D1,0(W, E, H) :=

Ker(D1,0
H : Ak,p(W, E)→ Ak+1,p(W, E))

Im(D1,0
H : Ak−1,p(W, E)→ Ak,p(W, E))

, k = 0, 1.

Define ∂∗,HE,D1,0 :=−?̂ (D1,0
+conj H∧· ) ?̂=−?̂ D1,0

H ?̂. Then (∂∗,HE,D1,0)2=0. Again
we can consider the twisted complex

(Ap,•(W, E), ∂∗,HE,D1,0) : · · ·
∂
∗,H
E,D1,0
←−−−− Ap,0(W, E)

∂
∗,H
E,D1,0
←−−−− Ap,1(W, E)
∂
∗,H
E,D1,0
←−−−− Ap,0(W, E)

∂
∗,H
E,D1,0
←−−−− · · · .
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Define the twisted Dolbeault-type homology groups of (Ap,•(W, E), ∂∗,HE,D1,0) as

Hk(Ap,•(W,E),∂∗,HE,D1,0) :=
Ker(∂∗,HE,D1,0 : Ap,k(W,E)→ Ap,k−1(W,E))

Im(∂∗,HE,D1,0 : Ap,k+1(W,E)→ Ap,k(W,E))
, k=0,1.

The operator ?̂ induces a C-linear isomorphism from (Ap,•(W, E), ∂∗,HE,D1,0) to
(An−•,n−p(W, E),±D1,0

H ). Hence, as in the Z-graded case (see [Cappell and Miller
2010, page 151] or [Liu and Yu 2010, (2.19)]), we have the isomorphism

(3-1) H n−k,n−p
D1,0 (W, E, H)∼= Hk(Ap,•(W, E), ∂∗,HE,D1,0), k = 0, 1.

ζ -function and ζ -regularized determinant. In this section we briefly recall some
definitions of ζ -regularized determinants of non-self-adjoint elliptic operators. See
[Braverman and Kappeler 2007, Section 6] for more details. Let F be a com-
plex (respectively, holomorphic) vector bundle over a closed smooth (respectively,
complex) manifold N . Let D : C∞(N , F)→ C∞(N , F) be an elliptic differential
operator of order m ≥ 1. Assume that θ is an Agmon angle; see, for example,
[Braverman and Kappeler 2007, Definition 6.3]. Let 5 : L2(N , F)→ L2(N , F)
denote the spectral projection of D corresponding to all nonzero eigenvalues of D.
The ζ -function ζθ (s, D) of D is defined as

(3-2) ζθ (s, D)= Tr5D−s
θ , Re s >

dim N
m

.

Seeley [1967] (see also [Shubin 2001]) showed that ζθ (s, D) has a meromorphic
extension to the whole complex plane and that 0 is a regular value of ζθ (s, D).

Definition 3.2. The ζ -regularized determinant of D is defined by the formula

Det′θ (D) := exp
(
−

d
ds

∣∣∣
s=0
ζθ (s, D)

)
.

Define
LDet′θ (D)=−

d
ds

∣∣∣
s=0
ζθ (s, D).

Let Q be a 0-th order pseudo-differential projection, that is, a 0-th order pseudo-
differential operator satisfying Q2

= Q. Set

(3-3) ζθ (s, Q, D)= Tr Q5D−s
θ , Re s >

dim M
m

.

The function ζθ (s, Q, D) also has a meromorphic extension to the whole complex
plane and by [Wodzicki 1984, Section 7], it is regular at 0.

Definition 3.3. Suppose that Q is a 0-th order pseudo-differential projection com-
muting with D. Then V := Im Q is D invariant subspace of C∞(M, E). The ζ -
regularized determinant of the restriction D|V of D to V is defined by the formula

Det′θ (D|V ) := eLDet′θ (D|V ),
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where

(3-4) LDet′θ (D|V )=−
d
ds

∣∣∣
s=0
ζθ (s, Q, D).

Remark 3.4. The prime in Det′θ and LDet′θ indicates that we ignore the zero
eigenvalues of the operator in the definition of the regularized determinant. If the
operator is invertible we usually omit the prime and write Detθ and LDetθ instead.

Twisted Cappell–Miller holomorphic torsion. For each 0≤ p≤ n, the twisted flat
∂-Laplacian, defined as

�H
E,∂ := (∂

H
E + ∂

∗,H
E,D1,0)2,

maps Ap,k(W, E), k = 0, 1, into itself. Suppose that I is an interval of the form
[0, λ], (λ, µ] or (λ,∞)(µ > λ ≥ 0). Denote by 5E,I the spectral projection of
�H

E,∂ corresponding to the set of generalized eigenvalues, whose absolute values
lie in I. Set

Ap,k
I (W, E) :=5E,I(Ap,k(W, E))⊂ Ap,k(W, E), k = 0, 1.

If the interval I is bounded, then for each 0 ≤ p ≤ n, the space Ap,k
I (W, E),

k = 0, 1, is finite-dimensional. The differentials ∂H
E and ∂∗,HE,D1,0 commute with

�H
E,∂ , so the subspace Ap,k

I (W, E) is a subcomplex of the twisted bigraded complex
(Ap,•(W, E), ∂H

E , ∂
∗,H
E,D1,0). Clearly, for each λ ≥ 0, the complex Ap,k

(λ,∞)(W, E) is
doubly acyclic, that is,

H k(Ap,•
(λ,∞)(W, E), ∂H

E )= 0 and Hk(A
p,•
(λ,∞)(W, E), ∂∗,HE,D1,0)= 0.

Since
Ap,k(W, E)= Ap,k

[0,λ](W, E)⊕ Ap,k
(λ,∞)(W, E),

we have the isomorphisms

H k(Ap,•
[0,λ](W, E), ∂H

E )
∼= H p,k

∂E
(W, E, H)

and, by (3-1),

Hk(A
p,•
[0,λ](W, E), ∂∗,HE,D1,0)∼=H n−k(A•,n−p

[0,λ] (W, E),±D1,0
H )∼=H n−k,n−p

D1,0 (W, E, H).

In particular, we have the isomorphisms

Det H•(Ap,•
[0,λ](W, E), ∂H

E )
∼= Det H p,•

∂E
(W, E, H),(3-5)

Det H•(A
p,•
[0,λ](W, E), ∂∗,HE,D1,0)∼= Det H n−•,n−p

D1,0 (W, E, H).(3-6)

For any λ ≥ 0, 0 ≤ p ≤ n, let τp,[0,λ] denote the Cappell–Miller torsion of the
twisted bigraded complex (Ap,k

[0,λ](W, E), ∂H
E , ∂

∗,H
E,D1,0); see (2-16). Then, by (3-5)
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and (3-6), we can view τp,[0,λ] as an element of the determinant line

(3-7) τp,[0,λ] ∈ Det H p,•
∂E
(W, E, H)⊗

(
Det H n−•,n−p

D1,0 (W, E, H)
)−1

∼= Det H p,•
∂E
(W, E, H)⊗

(
Det H•,n−p

D1,0 (W, E, H)
)(−1)n+1

.

For each k = 0, 1 and each 0≤ p ≤ n, set

Ap,k
+,I(W, E) := Ker(∂H

E ∂
∗,H
E,D1,0)∩ Ap,k

I (W, E),

Ap,k
−,I(W, E) := Ker(∂∗,HE,D1,0∂

H
E )∩ Ap,k

I (W, E).

Clearly,

Ap,k
I (W, E)= Ap,k

+,I(W, E)⊕ Ap,k
−,I(W, E), if 0 /∈ I.

Let θ ∈ (0, 2π) be an Agmon angle of the operator �H
E,∂ ; see, for example, [Braver-

man and Kappeler 2007, Section 6]. Since the leading symbol of the operator �H
E,∂

is positive definite, the ζ -regularized determinant

Detθ (∂
∗,H
E,D1,0∂

H
E )|Ap,k

+,I(W,E)

is independent of the choice of the Agmon angle θ of the operator �H
E,∂ .

For any 0≤ λ≤ µ≤∞, one easily sees that

(3-8)
∏

k=0,1

(
Detθ (∂

∗,H
E,D1,0∂

H
E )|Ap,k

+,(λ,∞)(W,E)
)(−1)k

=

( ∏
k=0,1

(
Detθ (∂

∗,H
E,D1,0∂

H
E )|Ap,k

+,(λ,µ)(W,E)
)(−1)k

)

·

( ∏
k=0,1

(
Detθ (∂

∗,H
E,D1,0∂

H
E )|Ap,k

+,(µ,∞)(W,E)
)(−1)k

)
By Proposition 2.2 and (3-8), we know that the element

(3-9) τholo,p(W, E, H) := τp,[0,λ] ·
∏

k=0,1

(
Detθ (∂

∗,H
E,D1,0∂

H
E )|Ap,k

+,(λ,∞)(W,E)
)(−1)k

is independent of the choice of λ. It is also independent of the choice of the Agmon
angle θ ∈ (0, 2π) of the operator �H

E,∂ .

Definition 3.5. The nonvanishing element of the determinant

τholo,p(W, E, H) ∈ Det H p,•
∂E
(W, E, H)⊗

(
Det H•,n−p

D1,0 (W, E, H)
)(−1)n+1

defined in (3-9) is called the twisted Cappell–Miller holomorphic torsion.
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Twisted Cappell–Miller holomorphic torsion under metric deformation. Let gW
u ,

u ∈ R, be a smooth family of Hermitian metrics on the complex manifold W .
Denote by ?u the Hodge star operators associated to the metrics gW

u and denote by

∂
∗,H
E,D1,0,u := −?̂u (D1,0

+ conj H ∧ · ) ?̂u .

Let �H
E,∂,u = (∂

H
E + ∂

∗,H
E,D1,0,u)

2 be the flat Laplacian operators associated to the
metrics gW

u .
Fix u0 ∈ R and choose λ ≥ 0 so that there are no eigenvalues of �H

E,∂,u whose
absolute values are equal to λ. Then there exists δ > 0 such that the same is true
for all u ∈ (u0−δ, u0+δ). In particular, if we denote by Ap,•

[0,λ],u(W, E) the span of
the generalized eigenvectors of �H

E,∂,u corresponding to eigenvalues with absolute
value ≤ λ, then dim Ap,•

[0,λ],u(W, E) is independent of u ∈ (u0− δ, u0+ δ).
For any λ≥ 0, 0≤ p ≤ n, let τp,[0,λ],u denote the Cappell–Miller torsion of the

twisted bigraded complex (Ap,•
[0,λ](W, E), ∂H

E , ∂
∗,H
E,D1,0,u). Set

αu = ?
−1
u ·

d
du
?u = ?̂

−1
u ·

d
du
?̂u .

Let Q p,k be the spectral projection onto Ap,k
[0,λ](W, E). The proof of the following

lemma is similar to the proof of [Cappell and Miller 2010, Lemma 7.1], where the
untwisted case was treated.

Lemma 3.6. Under the assumptions above, we have

d
du
τp,[0,λ],u =−

∑
k=0,1

(−1)k Tr(αu Q p,k) · τp,[0,λ],u .

Lemma 3.7. Under the assumptions above, we have

d
du

( ∑
k=0,1

(−1)k LDetθ (∂
∗,H
E,D1,0,u∂

H
E )|Ap,k

+,(λ,∞)(W,E)

)
=

∑
k=0,1

(−1)k Tr(αu Q p,k)+
∑

k=0,1

(−1)k
∫

W
bn,p,k,u,

where bn,p,k,u is given by a local formula.

Proof. Set

(3-10) f (s,u)=
∑

k=0,1

(−1)k
∫
∞

0
t s−1Tr

(
exp

(
−t (∂∗,HE,D1,0,u∂

H
E )|Ap,k

+,(λ,∞)(W,E)
))

dt

= 0(s)
∑

k=0,1

(−1)kζ
(
s,(∂∗,HE,D1,0,u∂

H
E )|Ap,k

+,(λ,∞)(W,E)
)
.

The equality

(3-11) d
du
∂
∗,H
E,D1,0,u|Ap,k+1

−,(λ,∞)(W,E)
=−

[
αu, ∂

∗,H
E,D1,0,u|Ap,k+1

−,(λ,∞)(W,E)
]
,
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follows easily from ∂
∗,H
E,D1,0,u := −?̂u (D1,0

+ conj H ∧ · ) ?̂u and the equality

?−1
u ·

d
du
?u =−

d
du
?u · ?

−1
u .

If A is of trace class and B is a bounded operator, it is well known that Tr(AB)=
Tr(B A). By this and the semigroup property of the heat operator, we have

(3-12)

Tr
(
∂
∗,H
E,D1,0,u|Ap,k+1

−,(λ,∞)(W,E)
αu∂

H
E |Ap,k

+,(λ,∞)(W,E)
exp

(
−t (∂∗,HE,D1,0,u∂

H
E )|Ap,k

+,(λ,∞)(W,E)
))

= Tr
(

exp
(
−

t
2
(∂
∗,H
E,D1,0,u∂

H
E )|Ap,k

+,(λ,∞)(W,E)

)
∂
∗,H
E,D1,0,u|Ap,k+1

−,(λ,∞)(W,E)

·αu∂
H
E |Ap,k

+,(λ,∞)(W,E)
exp

(
−

t
2
(∂
∗,H
E,D1,0,u∂

H
E )|Ap,k

+,(λ,∞)(W,E)

))
= Tr

(
αu∂

H
E |Ap,k

+,(λ,∞)(W,E)
exp

(
−

t
2
(∂
∗,H
E,D1,0,u∂

H
E )|Ap,k

+,(λ,∞)(W,E)

)
· exp

(
−

t
2
(∂
∗,H
E,D1,0,u∂

H
E )|Ap,k

+,(λ,∞)(W,E)
)
∂
∗,H
E,D1,0,u|Ap,k+1

−,(λ,∞)(W,E)

)
= Tr

(
αu(∂

H
E ∂
∗,H
E,D1,0,u)|Ap,k+1

−,(λ,∞)(W,E)
exp

(
−t (∂H

E ∂
∗,H
E,D1,0,u)|Ap,k+1

−,(λ,∞)(W,E)
))

Now, by (3-10), (3-11) and (3-12), we have

(3-13)
d

du
f (s, u)=

∑
k=0,1

(−1)k
∫
∞

0
t s−1 Tr

(
t
[
αu, ∂

∗,H
E,D1,0 |Ap,k+1

−,(λ,∞)(W,E)
]

× exp
(
−t (∂∗,HE,D1,0∂

H
E )|Ap,k

+,(λ,∞)(W,E)
))

dt

=

∑
k=0,1

(−1)k
∫
∞

0
t s−1

×Tr
(

tαu

(
(∂
∗,H
E,D1,0∂

H
E )|Ap,k

+,(λ,∞)(W,E)
exp

(
−t (∂∗,HE,D1,0∂

H
E )|Ap,k

+,(λ,∞)(W,E)
)

− (∂
H
E ∂
∗,H
E,D1,0,u)|Ap,k+1

−,(λ,∞)(W,E)
exp

(
−t (∂H

E ∂
∗,H
E,D1,0,u)|Ap,k+1

−,(λ,∞)(W,E)
)))

dt

=

∑
k=0,1

(−1)k
∫
∞

0
t s Tr

(
αu(�

H
E,∂,u)|Ap,k

(λ,∞)(W,E)

× exp
(
−t (�H

E,∂,u)|Ap,k
(λ,∞)(W,E)

))
dt

=−

∑
k=0,1

(−1)k
∫
∞

0
t s d

dt
Tr
(
αu exp

(
−t (�H

E,∂,u)|Ap,k
(λ,∞)(W,E)

))
dt

= s
∑

k=0,1

(−1)k
∫
∞

0
t s−1 Tr

(
αu exp

(
−t (�H

E,∂,u)|Ap,k
(λ,∞)(W,E)

))
dt,

where the second equality holds by (3-12) and we used integration by parts for the
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last equality. Since �H
E,∂,u is an elliptic operator, the dimension of Ap,•

[0,λ](W, E) is
finite. Then we can rewrite (3-13) as

(3-14) d
du

f (s, u)= s
∑

k=0,1

(−1)k
∫ 1

0
t s−1 Tr

(
αu exp

(
−t (�H

E,∂,u)|Ap,k(W,E)
))

dt

+ s
∑

k=0,1

(−1)k
∫
∞

1
t s−1 Tr

(
αu exp

(
−t (�H

E,∂,u)|Ap,k(W,E)
))

dt

− s
∑

k=0,1

(−1)k
∫ 1

0
t s−1 Tr

(
αu exp

(
−t (�H

E,∂,u)|Ap,k
[0,λ](W,E)

))
dt

− s
∑

k=0,1

(−1)k
∫
∞

1
t s−1 Tr

(
αu exp

(
−t (�H

E,∂,u)|Ap,k
[0,λ](W,E)

))
dt.

Now dim W = 2n is even, so for small time asymptotic expansion for

Tr
(
αu exp

(
−t (�H

E,∂,u)|Ap,k(W,E)
))

has a term an,p,k,u t0 in its expansion about t = 0. That means

Tr
(
αu exp

(
−t (�H

E,∂,u)|Ap,k(W,E)
))
− an,p,k,u t0

does not contain a constant term as t ↓ 0. Hence, the integrals∑
k=0,1

(−1)k
∫ 1

0
t s−1 Tr

(
αu exp

(
−t (�H

E,∂,u)|Ap,k(W,E)
))
− an,p,k,u t0 dt

do not have poles at s = 0. But the integrals∑
k=0,1

(−1)k
∫ 1

0
t s−1an,p,k,u t0 dt

have poles of order 1 with residue an,p,k,u , k=0, 1. And, because of the exponential
decay of Tr

(
αu exp

(
−t (�H

E,∂,u)|Ap,k(W,E)
))

and Tr
(
αu exp

(
−t (�H

E,∂,u)|Ap,k
[0,λ](W,E)

))
for large t , the integrals of the second and fourth terms on the right-hand side of
(3-14) are entire functions in s. Hence we have

(3-15) d
du

∣∣∣
s=0

f (s,u)=−s
( ∑

k=0,1

(−1)k
∫ 1

0
t s−1(Tr[αu Q p,k]−an,p,k,u

)
dt
)∣∣∣

s=0

=−

∑
k=0,1

(−1)k Tr[αu Q p,k]+
∑

k=0,1

(−1)kan,p,k,u .

Hence, the result follows. �

By combining Lemma 3.6 with Lemma 3.7, we obtain the main theorem of this
section. For the untwisted case, see [Cappell and Miller 2010, Theorem 4.4].
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Theorem 3.8. Let W be a complex manifold of complex dimension n and let E be
a holomorphic bundle with connection D that is compatible and of type (1, 1) over
W . Suppose that H ∈ A0,1(W,C) and ∂H = 0. Let gW

u , u ∈ (u0 − δ, u0 + δ),
be a smooth family of Riemannian metrics on the complex manifold W . Then
the corresponding twisted Cappell–Miller holomorphic torsion τholo,p,u(W, E, H)
varies smoothly and the variation of τholo,p,u(W, E, H) is given by a local formula

d
du
τholo,p,u(W, E, H)=

( ∑
k=0,1

(−1)k
∫

W
bn,p,k,u

)
· τholo,p,u(W, E, H).

We have the following corollary. See also [Mathai and Wu 2010a, Theorem 5.3,
Corollary 7.1] for the case of analytic torsion on Z2-graded elliptic complexes.

Corollary 3.9. Let W be a complex manifold of complex dimension n and let E
be a holomorphic bundle with connection D that is compatible and of type (1, 1)
over W . Suppose that H ∈ A0,1(W,C) and ∂H = 0. Let F1, F2 be two flat complex
bundles over W of the same dimension. Then

τholo,p(W, E ⊗ F1, H)⊗
(
τholo,p(W, E ⊗ F2, H)]−1)

in the tensor product of determinant lines(
Det H p,•

∂E
(W, E ⊗ F1, H)⊗

(
Det H•,n−p

D1,0 (W, E ⊗ F1, H)
)
(−1)n+1)

⊗

(
Det H p,•

∂E
(W, E ⊗ F2, H)⊗

(
Det H•,n−p

D1,0 (W, E ⊗ F2, H)
)
(−1)n+1)−1

is independent of the Hermitian metric gW chosen.

This follows from the fact that the two bundles E ⊗ F1 and E ⊗ F2 are lo-
cally identical as bundles. For the untwisted case, see [Cappell and Miller 2010,
Corollary 4.5].

Twisted Cappell–Miller holomorphic torsion under flux deformation. Suppose
that the flux form H is deformed smoothly along a one-parameter family with
parameter v ∈ R in such a way that the cohomology class [H ] ∈ H 0,1(W,C)

is fixed. Then (d/dv)H = −∂B for some form B ∈ A0,0(W,C) that depends
smoothly on v. Let β = B∧ · . Fix v0 ∈R and choose λ> 0 such that there are no
eigenvalues of �H

E,∂,v0
of absolute value λ. Then there exists δ > 0 small enough

that the same holds for the spectrum of �H
E,∂,v|Ap,k

(λ,∞)(W,E)
for v ∈ (v0− δ, v0+ δ).

For simplicity, we omit the parameter v in the notation in the following discussion.
Recall that Q p,k is the spectral projection onto Ap,k

[0,λ](W, E).
The proof of the following lemma is similar to the proof of [Mathai and Wu

2008, Lemma 3.7]; see also [Huang 2010, Lemma 4.7].
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Lemma 3.10. Under the assumptions above, we have

d
dv
τp,[0,λ] =−

∑
k=0,1

(−1)k Tr[βQ p,k] · τp,[0,λ],

upon identification of determinant lines under the deformation.

Lemma 3.11. Under the assumptions above, we have

d
dv

( ∑
k=0,1

(−1)k LDetθ (∂
∗,H
E,∇1,0∂

H
E )|Ap,k

+,(λ,∞)(W,E)

)
=

∑
k=0,1

(−1)k Tr[βQ p,k] +
∑

k=0,1

(−1)k
∫

W
cn,p,k,

where cn,p,k is given by a local formula.

Proof. Under the deformation, we have

d
dv
∂

H
E = [β, ∂

H
E ],

d
dv
∂
∗,H
E,D1,0 =−[β, ∂

∗,H
E,D1,0].

Following the proof of [Mathai and Wu 2008, Lemma 3.5], we obtain the desired
variation formula. �

By combining Lemma 3.10 with Lemma 3.11, we obtain the main theorem of
this section.

Theorem 3.12. Let W be a complex manifold of complex dimension n and let E
be a holomorphic bundle with connection D that is compatible and of type (1, 1)
over W . Along any one parameter deformation of H that fixes the cohomology
class [H ] and the natural identification of determinant lines, we have the variation
formula

d
dv
τholo,p(W, E, H)=

( ∑
k=0,1

(−1)k
∫

W
cn,p,k

)
· τholo,p(W, E, H).

As with Corollary 3.9, we have the following corollary. See also [Mathai and
Wu 2010a, Corollary 7.1] for the case of analytic torsion on Z2-graded elliptic
complexes.

Corollary 3.13. Let W be a complex manifold of complex dimension n and let E
be a holomorphic bundle with connection D that is compatible and of type (1, 1)
over W . Suppose that H ∈ A0,1(W,C) and ∂H = 0. Let F1, F2 be two flat complex
bundles over W of the same dimension. Then

τholo,p(W, E ⊗ F1, H)⊗
(
τholo,p(W, E ⊗ F2, H)

)−1

is invariant under any deformation of H by an ∂-exact form, up to natural identifi-
cation of the determinant lines.
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4. Twisted Cappell–Miller analytic torsion

In this section we first define the de Rham bigraded complex twisted by a flux
form H and its (co)homology groups. Then we define the Cappell–Miller an-
alytic torsion for the twisted de Rham bigraded complex. We obtain the varia-
tion theorems of the twisted Cappell–Miller analytic torsion under metric and flux
deformations. Su, in a recent preprint [2011], also briefly discussed the twisted
Cappell–Miller analytic torsion when dimension of the manifold M is odd.

The twisted de Rham complexes. Suppose M is a closed oriented m-dimensional
smooth manifold and let E be a complex vector bundle over M endowed with a
flat connection ∇. We denote by �p(M,E) the space of p-forms with values in
the flat bundle E, that is, �p(M,E)= 0(M,

∧p
(T ∗M)R⊗E) and by

∇ :�•(M,E)→�•+1(M,E)

the covariant differential induced by the flat connection on E. Fix a Riemannian
metric gM on M and let ? :�•(M,E)→�m−•(M,E) denote the Hodge ? operator.
We choose a Hermitian metric hE so that together with the Riemannian metric gM

we can define a scalar product 〈 · , · 〉M on �•(M,E). Define the chirality operator
0 = 0(gM) :�•(M,E)→�•(M,E) by [Braverman and Kappeler 2007, (7-1)]

(4-1) 0ω := ir (−1)q(q+1)/2 ?ω, ω ∈�q(M,E),

where r = (m+1)/2 if m is odd and r =m/2 if m is even. The numerical factor in
(4-1) has been chosen so that 02

= Id; see [Berline et al. 2004, Proposition 3.58].
Assume H is an odd degree closed differential form on M . Let �0/1(M,E) :=

�even /odd(M,E) and ∇H
:= ∇ +H∧ · . Assume that H does not contain a 1-form

component, which can be absorbed in the flat connection ∇.
It is not difficult to check that (∇H)2 = 0. Clearly, for each k = 0, 1, we have
∇

H
: �k(M,E) → �k+1(M,E). Hence we can consider the twisted de Rham

complex
(4-2)

(�•(M,E),∇H) : · · ·
∇

H

−→�0(M,E)
∇

H

−→�1(M,E)
∇

H

−→�0(M,E)
∇

H

−→ · · · .

We define the twisted de Rham cohomology group of (�•(M,E),∇H) as

H k(M,E,H) :=
Ker(∇H

:�k(M,E)→�k+1(M,E))

Im(∇H :�k−1(M,E)→�k(M,E))
, k = 0, 1.

The groups H k(M,E,H), k = 0, 1, are independent of the choice of the Riemann-
ian metric on M or the Hermitian metric on E. Replacing H by H′ =H− dB for
some B ∈ �0(M) gives an isomorphism εB := eB

∧ · : �•(M,E)→ �•(M,E)
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satisfying

εB ◦∇
H
=∇

H′
◦ εB.

Therefore εB induces an isomorphism on the twisted de Rham cohomology. Also
denote by εB the map

(4-3) εB : H•(M,E,H)→ H•(M,E,H′).

Denote by ∇H,∗ the adjoint of ∇H with respect to the scalar product 〈 · , · 〉M . Then
the Laplacian

1H
:= ∇

H,∗
∇

H
+∇

H
∇

H,∗

is an elliptic operator and therefore the complex (4-2) is elliptic. By Hodge theory,
we have the isomorphism Ker1H∼= H•(M,E,H). For more details of the twisted
de Rham cohomology, see, for example, [Mathai and Wu 2008].

Now denote by ∇ ′ the connection on E dual to the connection ∇ with respect
to the Hermitian metric hE [Braverman and Kappeler 2007, Section 10.1]. Denote
by E′ the flat bundle (E,∇ ′), referring to E′ as the dual of the flat vector bundle E.
We emphasize that, similar to the untwisted case [Braverman and Kappeler 2007,
(10-8); Cappell and Miller 2010, (8.4)],

∇
H,∗
= 0∇ ′

H
0,

where ∇ ′H =∇ ′+H∧ · .
Let∇H,]

:=0∇H0. Then (∇H,])2=0. Clearly,∇H,]
:�k(M,E)→�k−1(M,E).

Hence we can consider the twisted de Rham complex

(4-4) (�•(M,E),∇H,]) : · · ·
∇

H,]

←−−�0(M,E)
∇

H,]

←−−�1(M,E)

∇
H,]

←−−�0(M,E)
∇

H,]

←−− · · · .

We also define the homology group of the complex (�•(M,E),∇H,]) as

Hk(�
•(M,E),∇H,]) :=

Ker(∇H,]
:�k(M,E)→�k−1(M,E))

Im(∇H,] :�k+1(M,E)→�k(M,E))
, k = 0, 1.

Similarly, the groups Hk(�
•(M,E),∇H,]), k = 0, 1, are independent of the choice

of the Riemannian metric on M or the Hermitian metric on E. Suppose that H

is replaced by H′′ = H− δB′ for some B′ ∈ �0(M) and δ the adjoint of d with
respect to the scalar product induced by the Riemannian metric gM . Then there is
an isomorphism εB′ := eB′

∧ · :�•(M,E)→�•(M,E) satisfying

εB′ ◦∇
H,]
=∇

H′′,]
◦ εB′ .
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Therefore εB′ induces an isomorphism on the twisted de Rham homology. Also
denote by εB′ the map

(4-5) εB′ : H•(�•(M,E),∇H,])→ H•(�•(M,E),∇H′′,]).

Denote by ∇H,],∗ the adjoint of ∇H,] with respect to the scalar product 〈 · , · 〉M .
Then we have the equalities

∇
H,],∗
=∇

′H, 1′
H
:= ∇

′H,∗
∇
′H
+∇

′H
∇
′H,∗
=∇

H,]
∇

H,],∗
+∇

H,],∗
∇

H,].

Again the Laplacian 1′H is an elliptic operator and thus the complex (4-4) is ellip-
tic. By Hodge theory, we have the isomorphism Ker1′H ∼= H•(�•(M,E),∇H,]).
In particular, for k = 0, 1,

(4-6) Hk(�
•(M,E),∇H,])∼= H k(M,E′,H).

Definition of twisted Cappell–Miller analytic torsion. The flat Laplacian

1H,]
:= (∇H

+∇
H,])2

maps �k(M,E) into itself. Suppose I is an interval of the form [0, λ], (λ, µ], or
(λ,∞) (µ>λ≥ 0). Denote by5],I the spectral projection of1H,] corresponding
to the set of generalized eigenvalues, whose absolute values lie in I. Set

�k
I(M,E) :=5],I(�k(M,E))⊂�k(M,E).

If the interval I is bounded, then the space �k
I(M,E) is finite dimensional. Since

∇
H and ∇H,] commute with 1]H, the subspace �•I(M,E) is a subcomplex of the

twisted de Rham bi-complex (�•(M,E),∇H,∇H,]). Clearly, for each λ ≥ 0, the
complex �•(λ,∞)(M,E) is doubly acyclic, that is, H k(�•(λ,∞)(M,E),∇H)= 0 and
Hk(�

•

(λ,∞)(M,E),∇H,])= 0. Since

(4-7) �k(M,E)=�k
[0,λ](M,E) ⊕ �k

(λ,∞)(M,E),

the homology Hk(�
•

[0,λ](M,E),∇H,]) of the complex (�•
[0,λ](M,E),∇H,]) is nat-

urally isomorphic to the homology Hk(�
•(M,E),∇H,]) ∼= H k(M,E′,H) (see

(4-6)), and the cohomology H k(�•
[0,λ](M,E),∇H) of (�•

[0,λ](M,E),∇H) is natu-
rally isomorphic to the cohomology H k(M,E,H).

Similar to the Z-graded case [Cappell and Miller 2010, Section 8], the chirality
operator 0 establishes a complex linear isomorphism of the homology groups with
cohomology groups

Hk(�
•

[0,λ](M,E),∇H,])∼= H m−k(�•
[0,λ](M,E),∇H)∼= H m−k(M,E,H).
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In particular, we have the isomorphism

(4-8)
Det H•(�•(M,E),∇H,])∼= Det H•(�•[0,λ](M,E),∇H,])

∼= (Det H•(M,E,H))(−1)m .

Using Poincaré duality, we also have the isomorphism

(4-9) Det H m−k(M,E,H)−1 ∼= Det H k(M,E′,H),

where E′ is the dual vector bundle of the vector bundle E . Therefore, we have

Det H•(M,E,H)⊗Det H m−•(M,E,H)−1

∼=Det H•(M,E,H)⊗Det H•(M,E′,H) by (4-9)(4-10)
∼=Det H•(M,E⊕E′,H).

For k = 0, 1, set

(4-11)
�k
+,I(M,E) := Ker(∇H

∇
H,])∩�k

I(M,E),

�k
−,I(M,E) := Ker(∇H,]

∇
H)∩�k

I(M,E).

Clearly,
�k

I(M,E)=�k
+,I(M,E)⊕�k

−,I(M,E) if 0 /∈ I.

Let θ ∈ (0, 2π) be an Agmon angle; see [Shubin 2001]. Since the leading symbol of
∇

H,]
∇

H is positive definite, the ζ -regularized determinant Detθ (∇H,]
∇

H)|�k
+,I(M,E)

is independent of the choice of θ .
For any 0≤ λ≤ µ≤∞, one easily sees that∏

k=0,1

(
Detθ (∇H,]

∇
H)|�k

+,(λ,∞)(M,E)
)(−1)k

=

( ∏
k=0,1

(
Detθ (∇H,]

∇
H)|�k

+,(λ,µ)(M,E)
)(−1)k

)

·

( ∏
k=0,1

(
Detθ (∇H,]

∇
H)|�k

+,(µ,∞)(M,E)
)(−1)k

)
.

For any λ≥ 0, denote by τ[0,λ] the Cappell–Miller torsion of the twisted de Rham
bigraded complex

(
�•
[0,λ](M,E),∇H,∇H,]

)
. Via the isomorphisms

H•(�•[0,λ](M,E),∇H,])∼= H•(�•(M,E),∇H,]),

H•(�•
[0,λ](M,E),∇H)∼= H•(M,E,H),

and (4-10), we can view τ[0,λ] as an element of Det H•(M,E⊕E′,H). In particular,
if m is odd, then, up to an isomorphism,

(4-12) τ[0,λ] ∈ Det H•(M,E,H)⊗Det H•(M,E,H)∼= Det H•(M,E⊕E′,H).
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The proof of the following lemma is similar to the proof of [Cappell and Miller
2010, Theorem 8.3].

Lemma 4.1. The element

τ[0,λ] ·
∏

k=0,1

(
Detθ (∇H,]

∇
H)|�k

+,(λ,∞)(M,E)
)(−k)

is independent of the choice of λ.

We now define the Cappell–Miller analytic torsion for the de Rham complex
twisted by a flux.

Definition 4.2. Let (E,∇) be a complex vector bundle over a connected oriented
m-dimensional closed Riemannian manifold M and H be a closed odd degree form
(not a 1-form). Further, let

∇
H
=∇ +H∧ · and ∇

H,]
= 0∇H0.

Let θ ∈ (0, 2π) be an Agmon angle for the operator 1H,]
:= (∇H

+ ∇
H,])2.

The Cappell–Miller torsion τ(∇,H) for the twisted de Rham bigraded complex
(�•(M,E),∇H,∇H,]) is an element of Det H•(M,E,H)⊗

(
Det H•(M,E,H)

)
(−1)m+1

defined as

(4-13) τ(∇,H) := τ[0,λ] ·
∏

k=0,1

(
Detθ (∇H,]

∇
H)|�k

+,(λ,∞)(M,E)
)(−k)

.

Twisted Cappell–Miller analytic torsion under metric and flux deformations. In
this section we obtain the variation formulas for the twisted Cappell–Miller analytic
torsion τ(∇,H) under the metric and flux deformations. In particular, we show that
if the manifold M is an odd-dimensional closed oriented manifold, then the twisted
Cappell–Miller analytic torsion is independent of the Riemannian metric and the
representative H in the cohomology class [H]. See also [Su 2011].

The proof of the following theorem is similar to the proof of Theorem 3.8.

Theorem 4.3. Let (E,∇) be a complex vector bundle over a m-dimensional con-
nected oriented closed Riemannian manifold M and H be a closed odd degree
form (not a 1-form). Let gM

v , a ≤ v ≤ b, be a smooth family of Riemannian metrics
on M. Then the corresponding twisted Cappell–Miller analytic torsion τv(∇,H)

varies smoothly and the variation of τv(∇,H) is given by a local formula

d
dv
τv(∇,H)=

( ∑
k=0,1

(−1)k
∫

M
bm/2,k,v

)
· τv(∇,H).

In particular, if the dimension of the manifold M is odd, then twisted Cappell–
Miller analytic torsion τ(∇,H) is independent of the Riemannian metric gM .
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For the untwisted case considered in [Bismut and Zhang 1992], the variation of
the torsion can be integrated to an anomaly formula.

The proof of the following is similar to that of [Mathai and Wu 2010a, Theorem
6.1]. See also [Mathai and Wu 2008, Theorem 3.8].

Theorem 4.4. Let (E,∇) be a complex vector bundle over a m-dimensional con-
nected oriented closed Riemannian manifold M and H be a closed odd degree form
(not a 1-form). Under the natural identification of determinant lines and along any
one parameter deformation Hv of H that fixes the cohomology class [H], we have
the variation formula

d
dv
τ(∇,Hv)=

( ∑
k=0,1

(−1)k
∫

M
cm/2,k,v

)
· τ(∇,Hv).

In particular, if the dimension of the manifold M is odd, then, under the nat-
ural identification of determinant lines, the twisted Cappell–Miller analytic tor-
sion τ(∇,H) is independent of any deformation of H that fixes the cohomology
class [H].

Relationship with the twisted refined analytic torsion. In this section we assume
that M is a closed compact oriented manifold of odd dimension. Recall that in
[Huang 2010, (3.13)], for each λ > 0, we define the twisted refined torsion ρ0[0,λ]
of the twisted finite-dimensional complex (�•

[0,λ](M,E),∇H) corresponding to the
chirality operator 0[0,λ]. In our setting, as in the Z-graded case [Braverman and
Kappeler 2008a, (5.1)], the twisted Cappell–Miller torsion can be described as (see
(4-12))

(4-14) τ[0,λ] := ρ0[0,λ] ⊗ ρ0[0,λ] ∈ Det H•(M,E,H)⊗Det H•(M,E,H).

By combining (3.14), (3.20), (5.28) and Definition 4.5 of [Huang 2010], the
twisted refined analytic torsion can be written as

(4-15) ρan(∇
H)=±ρ0[0,λ] ·

∏
k=0,1

(
Detθ (∇H,]

∇
H)|�k

+,(λ,∞)(M,E)
)−k/2

· exp
(
−iπ(η(BH

0 (∇
H))− rank E · ηtrivial)

)
,

where η(BH
0 (∇

H))− rank E · ηtrivial is the ρ-invariant of the twisted odd signature
operator BH

0 (∇
H) defined in [Huang 2010, (3.2)].

By combining (4-13), (4-14) with (4-15), we have the following comparison
theorem of the twisted Cappell–Miller analytic torsion and twisted refined analytic
torsion.

Theorem 4.5. Let (E,∇) be a complex vector bundle over a connected oriented
odd-dimensional closed Riemannian manifold M and H be a closed odd degree
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form (not a 1-form). Further, let ∇H
=∇ +H∧ · . Then

τ(∇,H) · exp
(
−2iπ(η(BH

0 (∇
H))− rank E · ηtrivial)

)
= ρan(∇

H)⊗ ρan(∇
H).

Su in [2011, Theorem 5.1] compared the twisted Burghelea–Haller analytic tor-
sion which he introduced with the twisted refined analytic torsion. By combining
[Su 2011, Theorem 5.1] with Theorem 4.5, we can also obtain the comparison
theorem of the twisted Burghelea–Haller torsion and the twisted Cappell–Miller
analytic torsion. We skip the details.
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GENERALIZATIONS OF AGOL’S INEQUALITY AND
NONEXISTENCE OF TIGHT LAMINATIONS

THILO KUESSNER

We give a general lower bound for the normal Gromov norm of genuine
laminations in terms of the topology of the complementary regions.

In the special case of 3-manifolds, this yields a generalization of Agol’s
inequality from incompressible surfaces to tight laminations. In particular,
the inequality excludes the existence of tight laminations with nonempty
guts on 3-manifolds of small simplicial volume.

1. Results

Agol’s inequality [1999, Theorem 2.1] is the following (see Section 7 for notation):
Let M be a hyperbolic 3-manifold containing an incompressible, properly em-

bedded surface F. Then

Vol(M)≥−2V3χ(Guts(M − F)),

where V3 is the volume of a regular ideal tetrahedron in hyperbolic 3-space.
In [Agol et al. 2007], this inequality was improved to

Vol(M)≥ Vol(Guts(M − F))≥−Voctχ(Guts(M − F)),

where Voct is the volume of a regular ideal octahedron in hyperbolic 3-space.
In this paper we will, building on ideas from [Agol 1999], prove a general in-

equality for the (transversal) Gromov norm ‖M‖F and the normal Gromov norm
‖M‖norm

F of laminations.
To state the result in its general form we need two definitions.

Definition (pared acylindrical). Let Q be a manifold with a given decomposition

∂Q = ∂0 Q ∪ ∂1 Q.

The pair (Q, ∂1 Q) is called a pared acylindrical manifold if any continuous map of
pairs f : (S1

×[0, 1],S1
×{0, 1})→ (Q, ∂1 Q) that is π1-injective as a map of pairs

MSC2000: primary 57R30; secondary 53C23, 57M27, 57N10, 57M50.
Keywords: lamination, hyperbolic, 3-manifold, volume, Gromov norm, tight, Weeks manifold,

simplicial, simplex, straightening.
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is necessarily homotopic, as a map of pairs (S1
×[0, 1],S1

×{0, 1})→ (Q, ∂1 Q),
into ∂Q.

Definition (essential decomposition). Let (N , ∂N ) be a pair of topological spaces
such that N = Q ∪ R for two subspaces Q, R. Let

∂0 Q = Q∩ R, ∂1 Q = Q∩∂N , ∂1 R= R∩∂N , ∂Q = ∂0 Q∪∂1 Q, ∂R= ∂0 Q∪∂1 R.

We say that the decomposition N =Q∪R is an essential decomposition of (N , ∂N )
if the inclusions

∂1 Q→ Q→ N , ∂1 R→ R→ N , ∂N → N , ∂0 Q→ Q, ∂0 Q→ R

are each π1-injective (for each path component).

Theorem 1.1. Let M be a compact, orientable, connected n-manifold and F a
lamination (of codimension one) of M. Assume that N := M −F has a decompo-
sition N = Q ∪ R into orientable n-manifolds (with boundary) Q, R such that the
following assumptions are satisfied for ∂0 Q=Q∩R, ∂1 Q=Q∩∂N , ∂1 R= R∩∂N :

(i) Each path component of ∂0 Q has amenable fundamental group.

(ii) (Q, ∂1 Q) is pared acylindrical and ∂1 Q is acylindrical.

(iii) Q, ∂N , ∂1 Q, ∂1 R, ∂0 Q are aspherical.

(iv) The decomposition N = Q ∪ R is an essential decomposition of (N , ∂N ).

Then

‖M, ∂M‖norm
F ≥

1
n+ 1

‖∂Q‖.

In the case of 3-manifolds M carrying an essential lamination F, considering
Q = Guts(M −F) yields a special case:

Theorem 1.2. Let M be a compact 3-manifold with (possibly empty) boundary
consisting of incompressible tori, and let F be an essential lamination of M. Then

‖M, ∂M‖norm
F ≥−χ(Guts(M −F)).

More generally, if P is a polyhedron with f faces, then

‖M, ∂M‖norm
F,P ≥−

2
f − 2

χ(Guts(M −F)).

The following corollary applies, for example, to all hyperbolic manifolds M ob-
tained by Dehn-filling the complement of the figure-eight knot in S3. (It is known
that each of these M contains tight laminations. By the following corollary, all
these tight laminations have empty guts.)
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Corollary 1.3. If M is a finite-volume hyperbolic 3-manifold with Vol(M)<2V3=

2.02 . . . , then M carries no essential lamination F with ‖M‖norm
F,P = ‖M‖P for all

polyhedra P, and nonempty guts. In particular, there is no tight essential lamina-
tion with nonempty guts.

Calegari and Dunfield [2003] observed that their own results about tight lami-
nations with empty guts would imply the following corollary, in the presence of a
generalization of Agol’s inequality to the case of tight laminations.

Corollary 1.4 [Calegari and Dunfield 2003, Conjecture 9.7]. The Weeks manifold
(the closed hyperbolic manifold of smallest volume) admits no tight lamination F.

Taking into account the main result of [Li 2006], this can be strengthened:

Corollary 1.5. The Weeks manifold admits no transversely orientable essential
lamination.

We also have an application of Theorem 1.1 to higher-dimensional manifolds.

Corollary 1.6. Let M be a compact Riemannian n-manifold of negative sectional
curvature and finite volume. Let F ⊂ M be a geodesic (n−1)-dimensional hyper-
surface of finite volume. Then ‖F‖ ≤ 1

2(n+ 1)‖M‖.

The basic idea of Theorem 1.1, say for simplicity in the special situation of
Corollary 1.6, is the following: a simplex which contributes to a normalized fun-
damental cycle of M should intersect ∂Q = 2F in at most n+ 1 codimension-one
simplices. This is of course not true in general: simplices can wrap around M
many times and intersect F arbitrarily often, and even a homotopy rel vertices will
not change this. As an obvious example, look at the following situation: Let γ
be a closed geodesic transverse to F , and for some large N let σ be a straight
simplex contained in a small neighborhood of γ N. Then σ and F intersect N times
and, since σ is already straight, this number of intersections can of course not be
reduced by straightening. This shows that some more involved straightening must
take place, and that the acylindricity of F is an essential condition. The way to use
acylindricity will be to find a normalization such that many subsets of simplices are
mapped to cylinders, which degenerate and thus can be removed without changing
the homology class.

We remark that many technical points, including the use of multicomplexes, can
be omitted if (in the setting of Theorem 1.2) one does not consider incompressible
surfaces or essential laminations, but just geodesic surfaces in hyperbolic mani-
folds. In this case, all essential parts of the proof of Theorem 1.1 enter without the
notational complications caused by the use of multicomplexes. Therefore we have
given a fairly detailed outline of the proof for this special case in the beginning
of Section 6. This should help to motivate the general proof in the second half
of that section (156). (We mention that Theorem 1.1 is not true without assuming
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amenability of π1∂0 Q. This indicates that the proof of multicomplexes in the proof
of Theorem 1.1 seems unavoidable.)

2. Preliminaries

2A. Laminations. Let M be an n-manifold, possibly with boundary. In this paper
all manifolds will be smooth and orientable. (Hence they are triangulable by White-
head’s theorem and possess a locally finite fundamental class.) A (codimension 1)
lamination F of M is a foliation of a closed subset F of M , i.e., a decomposition of
a closed subset F⊂M into immersed codimension 1 submanifolds (leaves) so that
M is covered by charts φ j : R

n−1
×R→ M , the intersection of any leaf with the

image of any chart φ j being a union of plaques of the form φ j (R
n−1
× {∗}). (We

will denote by F both the lamination and the laminated subset of M , i.e., the union
of leaves.) If M has boundary, we will always assume without further mentioning
that F is either transverse to ∂M (that is, every leaf is transverse to F) or tangential
to ∂M (that is, ∂M is a leaf of F). If neither of these two conditions were true,
then the transverse and normal Gromov norm would be infinite, therefore all lower
bounds will be trivially true.

To construct the leaf space T of F, one considers the pull-back lamination F̃ on
the universal covering M̃ . The space of leaves T is defined as the quotient of M̃
under the following equivalence relation ∼. Two points x, y ∈ M̃ are equivalent
if either they belong to the same leaf of F̃, or they belong to the same connected
component of the metric completion M̃ − F̃ (for the path metric inherited by M̃−F̃

from an arbitrary Riemannian metric on M̃).

2B. Laminations of 3-manifolds. A lamination F of a 3-manifold M is called es-
sential if no leaf is a sphere or a torus bounding a solid torus, M −F is irreducible,
and ∂(M −F) is incompressible and end-incompressible in M −F, where again
the metric completion M −F of M −F is taken with respect to the path metric
inherited from any Riemannian metric on M ; see [Gabai and Oertel 1989, Chapter
1]. (Note that M −F is immersed in M , the leaves of F in the image of the
immersion are called boundary leaves.)

Examples of essential laminations are taut foliations or compact, incompress-
ible, boundary-incompressible surfaces in compact 3-manifolds. (We always con-
sider laminations without isolated leaves. If a lamination has isolated leaves, then
it can be converted into a lamination without isolated leaves by replacing each two-
sided isolated leaf Si with the trivially foliated product Si ×[0, 1], resp. each one-
sided isolated leaf with the canonically foliated normal I -bundle, without changing
the topological type of M .)

If F is an essential lamination, then the leaf space T is an order tree, with
segments corresponding to directed, transverse, efficient arcs. (An order tree T is
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a set T with a collection of linearly ordered subsets, called segments, such that the
axioms of [Gabai and Oertel 1989, Definition 6.9], are satisfied.) Moreover, T is an
R-order tree, that is, it is a countable union of segments and each segment is order
isomorphic to a closed interval in R. T can be topologized by the order topology
on segments (and declaring that a set is closed if the intersection with each segment
is closed). For this topology, π0T and π1T are trivial (see, for example, [Roberts
et al. 2003], Chapter 5, and its references).

The order tree T comes with a fixed-point free action of π1 M . Fenley [2007]
has exhibited hyperbolic 3-manifolds whose fundamental groups do not admit any
fixed-point free action on R-order trees. Thus there are hyperbolic 3-manifolds not
carrying any essential lamination.

If M is hyperbolic and F an essential lamination, then M −F has a characteristic
submanifold which is the maximal submanifold that can be decomposed into I -
bundles and solid tori, respecting boundary patterns (see [Jaco and Shalen 1979],
[Johannson 1979] for precise definitions). The complement of this characteristic
submanifold is denoted by Guts(F). It admits a hyperbolic metric with geodesic
boundary and cusps. (Be aware that some authors, like [Calegari and Dunfield
2003], include the solid tori into the guts.) If F = F is a properly embedded, in-
compressible, boundary-incompressible surface, then Agol’s inequality states that
Vol(M)≥−2V3χ(Guts(F)). This implies, for example, that a hyperbolic manifold
of volume < 2V3 can not contain any geodesic surface of finite area. Agol, Storm,
and Thurston [Agol et al. 2007], using estimates coming from Perelman’s work on
the Ricci flow, have improved this inequality to

Vol(M)≥ Vol(Guts(F))≥−Voctχ(Guts(F)).

Assume that F is a codimension one lamination of an n-manifold M such that
its leaf space T is an R-order tree. (For example this is the case if n = 3 and F

is essential.) An essential lamination is called tight if T is Hausdorff. It is called
unbranched if T is homeomorphic to R. It is said to have two-sided branching
[Calegari 2000, Definition 2.5.2] if there are leaves λ, λ1, λ2, µ, µ1, µ2 such that
the corresponding points in the T satisfy λ < λ1, λ < λ2, µ > µ1, µ > µ2, but
λ1, λ2 are incomparable and µ1, µ2 are incomparable. It is said to have one-sided
branching if it is neither unbranched nor has two-sided branching.

If M is a hyperbolic 3-manifold and carries a tight lamination with empty guts,
we know from [2003, Theorem 3.2] that π1 M acts effectively on the circle, i.e.,
there is an injective homomorphism π1 M → Homeo(S1). This implies that the
Weeks manifold cannot carry a tight lamination with empty guts [Calegari and
Dunfield 2003, Corollary 9.4]. The aim of this paper is to find obstructions to the
existence of laminations with nonempty guts.
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2C. Simplicial volume and refinements. Let M be a compact, orientable, con-
nected n-manifold, possibly with boundary. Its top integer (singular) homology
group Hn(M, ∂M;Z) is cyclic. The image of a generator under the change-of-
coefficients homomorphism Hn(M, ∂M;Z)→ Hn(M, ∂M;R) is called a funda-
mental class and is denoted [M, ∂M]. If M is not connected, we define [M, ∂M]
to be the formal sum of the fundamental classes of its connected components.

The simplicial volume ‖M, ∂M‖ is defined as

‖M, ∂M‖ = inf
{ r∑

i=1
|ai |

}
,

where the infimum is taken over all singular chains
∑r

i=1 aiσi (with real coeffi-
cients) representing the fundamental class in Hn(M, ∂M;R).

If M − ∂M carries a complete hyperbolic metric of finite volume Vol(M), then

‖M, ∂M‖ =
1
Vn

Vol(M),

with Vn = sup {Vol(1) :1⊂ Hn geodesic simplex}; see [Gromov 1982; Thurston
1980; Benedetti and Petronio 1992; Francaviglia 2004].

More generally, let P be any polyhedron. Then the invariant ‖M, ∂M‖P is
defined in [Agol 1999] as follows: denoting by C∗(M, ∂M; P;R) the complex of
P-chains with real coefficients and by H∗(M, ∂M; P;R) its homology, there is a
canonical chain homomorphism ψ : C∗(M, ∂M; P;R)→ C∗(M, ∂M;R), given
by certain triangulations of P which are to be chosen so that all possible cancella-
tions of boundary faces are preserved. Then ‖M, ∂M‖P is defined as the infimum
of
∑r

i=1 |ai | over all P-chains
∑r

i=1 ai Pi such that ψ(
∑r

i=1 ai Pi ) represents the
fundamental class [M, ∂M]. Set VP := sup{Vol(1)}, where the supremum is taken
over all straight P-polyhedra 1⊂ H3.

Proposition 2.1 [Agol 1999, Lemma 4.1]. If M − ∂M admits a hyperbolic metric
of finite volume Vol(M), then

‖M, ∂M‖P =
1

VP
Vol(M).

(The proof in [Agol 1999] is quite short, and it does not give details for the
cusped case. However, the proof in the cusped case can be completed using the
arguments in [Francaviglia 2004, Sections 5 and 6].)

Let M be a manifold and F a codimension-one lamination of M . Let 1n be the
standard simplex in Rn+1, and σ : 1n

→ M some continuous singular simplex.
The lamination F induces an equivalence relation on 1n , whereby x ∼ y if and
only if σ(x) and σ(y) belong to the same connected component of L ∩σ(1n) for
some leaf L of F. We say that a singular simplex σ :1n

→ M is laminated if the
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equivalence relation ∼ is induced by a lamination F|σ of1n . We call a lamination
F of 1n affine if there is an affine mapping f : 1n

→ R such that x, y ∈ 1n

belong to the same leaf if and only if f (x) = f (y). We say that a lamination G

of 1n is conjugate to an affine lamination if there is a simplicial homeomorphism
H :1n

→1n such that H∗G is an affine lamination.
We say that a singular n-simplex σ : 1n

→ M , n ≥ 2, is transverse to F if it
is laminated and it is either contained in a leaf, or F|σ is conjugate to an affine
lamination G of 1n .

For n = 1, we say that a singular 1-simplex σ :11
→ M is transverse to F if it

is either contained in a leaf, or for each lamination chart φ :U→Rm−1
×R1 (with

m-th coordinate map φm : U → R1) one has that φm ◦ σ |σ−1(U ) : σ
−1(U )→ R1 is

locally surjective at all points of int(11), i.e., for all p ∈ int(11) ∩ σ−1(U ), the
image of φm ◦ σ |σ−1(U ) contains a neighborhood of φm ◦ σ(p).

We say that the simplex σ :1n
→M is normal to F if, for each leaf F , σ−1(F)

consists of normal disks, i.e., disks meeting each edge of 1n at most once. (If
F = ∂M is a leaf of F we also allow that σ−1(F) can be a face of 1n). In
particular, any transverse simplex is normal.

In the special case of foliations, F one has that the transversality of a singular
simplex σ is implied by (hence equivalent to) the normality of σ , as can be shown
along the lines of [Kuessner 2004, Section 1.3].

More generally, let P be any polyhedron. Then we say that a singular polyhe-
dron σ : P → M is normal to F if, for each leaf F , σ−1(F) consists of normal
disks, i.e., disks meeting each edge of P at most once (or being equal to a face of
P , if F is a boundary leaf).

transverse normal, not transverse not normal

Definition 2.2. Let M be a compact, oriented, connected n-manifold, possibly
with boundary, and let F be a foliation or lamination on M . Let1n be the standard
simplex and P any polyhedron. Let 6 be the set of singular simplices 1n

→ M
transverse to F. We define

‖M, ∂M‖F := inf
{ r∑

i=1
|ai | : ψ

( r∑
i=1

aiσi

)
represents [M, ∂M] for some σi ∈6

}
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and

‖M, ∂M‖norm
F,P := inf

{ r∑
i=1
|ai | :ψ

( r∑
i=1

aiσi

)
represents [M, ∂M] for some σi ∈6

}
.

In particular, we define ‖M, ∂M‖norm
F = ‖M, ∂M‖norm

F,1n .

All these norms are finite, under the assumption that F is transverse or tangential
to ∂M . There are obvious inequalities

‖M, ∂M‖ ≤ ‖M, ∂M‖norm
F ≤ ‖M, ∂M‖F.

In the case of foliations, this last inequalities becomes an equality.
(We remark that all definitions extend in an obvious way to disconnected man-

ifolds by summing over the connected components.)
The next proposition and lemma are straightforward generalizations of [Calegari

2000, Theorem 2.5.9] and of arguments in [Agol 1999].

Proposition 2.3. Let M be a compact, oriented 3-manifold.

(a) If F is an essential lamination which is either unbranched or has one-sided
branching such that the induced lamination of ∂M is unbranched, then

‖M, ∂M‖norm
F,P = ‖M, ∂M‖P

for each polyhedron P.

(b) If F is a tight essential lamination, then

‖M, ∂M‖norm
F,P = ‖M, ∂M‖P

for each polyhedron P.

Proof. Since F is an essential lamination, we know from [Gabai and Oertel 1989,
Theorem 6.1] that the leaves are π1-injective, the universal covering M̃ is homeo-
morphic to R3 and that the leaves of the pull-back lamination are planes, in partic-
ular aspherical. Therefore Proposition 2.3 is a special case of the next result. �

Lemma 2.4. Let M be a compact, oriented, aspherical manifold, and F a lamina-
tion of codimension one. Assume that the leaves are π1-injective and aspherical,
and that the leaf space T is an R-order tree.

(a) If the leaf space T is either R or branches in only one direction, so that the
induced lamination of ∂M has leaf space R, then ‖M, ∂M‖norm

F,P =‖M, ∂M‖P

for each polyhedron P.

(b) If the leaf space is a Hausdorff tree, then ‖M, ∂M‖norm
F,P =‖M, ∂M‖P for each

polyhedron P.
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Proof. To prove the wanted equalities, it suffices in each case to show that any
(relative) cycle can be homotoped to a cycle consisting of normal polyhedra. We
denote by F̃ the pull-back lamination of M̃ and by p : M̃→T = M̃/F̃ the projection
to the leaf space.

(a) First we consider the case that P is a simplex [Calegari 2000, Section 4.1] and F

is unbranched. For this case, we can repeat the argument in [Calegari 2000, Lemma
2.2.8]. Namely, given a (relative) cycle

∑r
i=1 aiσi , lift it to a π1 M-equivariant

(relative) cycle on M̃ and then perform an (equivariant) straightening, by induction
on the dimension of subsimplices of the lifts σ̃i as follows: for each edge ẽ of any
lift σ̃i , its projection p(ẽ) to the leaf space T is homotopic to a unique straight arc
str(p(ẽ)) in T ' R. It is easy to see (covering the arc by foliation charts and then
extending the lifted arc stepwise) that str(p(ẽ)) can be lifted to an arc str(ẽ) with
the same endpoints as ẽ, and that the homotopy between str(p(ẽ)) and p(ẽ) can
be lifted to a homotopy between str(ẽ) and ẽ. str(ẽ) is transverse to F, because its
projection is a straight arc in T . These homotopies of edges can be extended to a
homotopy of the whole (relative) cycle. Thus we have straightened the 1-skeleton
of the given (relative) cycle.

Now let us be given a 2-simplex f̃ : 12
→ M̃ with transverse edges. There is

an obvious straightening str(p( f̃ )) of p( f̃ ) : 12
→ T as follows: if, for t ∈ T ,

(p f̃ )−1(t) has two preimages x1, x2 on edges of12 (which are necessarily unique),
then str(p( f̃ )) maps the line which connects x1 and x2 in 12 constantly to t . It is
clear that this defines a continuous map str(p( f̃ )) :12

→ T .
Since the leaves F̃ of F̃ are connected (π0 F̃ = 0), str(p( f̃ )) can be lifted to

a map str( f̃ ) : 12
→ M̃ with p(str( f̃ )) = str(p( f̃ )). The 2-simplex str( f̃ ) is

transverse to F, because its projection is a straight simplex in T .
There is an obvious homotopy between p( f̃ ) and str(p( f̃ )). For each t ∈ T ,

the restriction of the homotopy to (p f̃ )−1(t) can be lifted to a homotopy in M̃ ,
because π1 M̃ = 0. Since π2 M̃ = 0, these homotopies for various t ∈ T fit together
continuously to give a homotopy between f̃ and str( f̃ ).

These homotopies of 2-simplices leave the (already transverse) boundaries point-
wise fixed; thus they can be extended to a homotopy of the whole (relative) cycle.
Hence we have straightened the 2-skeleton of the given (relative) cycle.

Assume that we have already straightened the k-skeleton, for some k ∈ N. The
analogous procedure, using πk−1 F̃ = 0 for all leaves, and πk M̃ = 0, πk+1 M̃ = 0,
allows to straighten the (k+1)-skeleton of the (relative) cycle. This finishes the
proof in the case that F is unbranched.

The generalization to the case that F has one-sided branching and the induced
lamination of ∂M is unbranched works as in [Calegari 2000, Theorem 2.6.6].

We remark that in the case that P is a simplex we get not only a normal cycle,
but even a transverse cycle.
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Now we consider the case of arbitrary polyhedra P . Let
∑r

i=1 aiσi be a P-
cycle. It can be subtriangulated to a simplicial cycle

∑r
i=1 ai

∑s
j=1 τi, j . Again the

argument in [Calegari 2000, Lemma 2.2.8], and the corresponding argument for
manifolds with boundary, shows that this simplicial cycle can be homotoped such
that each τi, j is transverse (and such that boundary cancellations are preserved).
But transversality of each τi, j implies by definition that σi =

∑s
j=1 τi, j is normal

(though in general not transverse) to F.

(b) By assumption M̃/F̃ is a Hausdorff tree. Its branching points are the projec-
tions of complementary regions: Indeed, if F is a leaf of F, then F̃ is a submanifold
of the contractible manifold M̃ . By asphericity and π1-injectivity of F , F̃ must
be contractible. By Alexander duality it follows that M̃ − F̃ has two connected
components. Therefore the complement of the point p(F̃) in the leaf space has (at
most) two connected components, so p(F̃) cannot be a branch point.

Again, to define a straightening of P-chains it suffices to define a canonical
straightening of singular polyhedra P such that straightenings of common bound-
ary faces will agree. Let ṽ0, . . . , ṽn be the vertices of the image of P . For each
pair {ṽi , ṽ j } there exists at most one edge ẽi j with vertices ṽi , ṽ j in the image of P .
Since the leaf space is a tree, we have a unique straight arc str(p(ẽi j )) connecting
the points p(ṽi ) and p(ṽ j ) in the leaf space. As in (a), one can lift this straight
arc str(p(ẽi j )) to an arc str(ẽi j ) in M̃ , connecting ṽi and ṽ j , which is transverse
to F. We define this arc str(ẽi j ) to be the straightening of ẽi j . As in (a), we have
homotopies of 1-simplices, which extend to a homotopy of the whole (relative)
cycle. Thus we have straightened the 1-skeleton.

Now let us be given the 3 vertices ṽ0, ṽ1, ṽ2 of a 2-simplex f̃ with straight
edges. If the projections p(ṽ0), p(ṽ1), p(ṽ2) belong to a subtree isomorphic to a
connected subset of R, then we can straighten f̃ as in (a). If not, the projection of
the 1-skeleton of this simplex has exactly one branch point, which corresponds to
a complementary region. (The projection may of course meet many branch points
of the tree, but the image of the projection, considered as a subtree, can have at
most one branch point. In general, a subtree with n vertices can have at most
n − 2 branch points.) The preimage of the complement of this complementary
region consists of three connected subsets of the 2-simplex (the “corners” around
the vertices). We can straighten each of these subsets and do not need to care
about the complementary region corresponding to the branch point. Thus we have
straightened the 2-skeleton.

Assume that we have already straightened the k-skeleton, for some k ∈N. Given
the k+2 vertices ṽ0, ṽ1, . . . , ṽk+1 of a (k+1)-simplex with straight faces, we have
(at most k) branch points in the projection of the simplex, which correspond to
complementary regions. Again we can straighten the parts of the simplex which
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do not belong to these complementary regions as in (a), since they are projected to
linearly ordered subsets of the tree. Thus we have straightened the (k+1)-skeleton.

Since, by the recursive construction, we have defined straightenings of simplices
with common faces by first defining (the same) straightenings of their common
faces, the straightening of a (relative) cycle will be again a (relative) cycle, in the
same (relative) homology class. �

Remark. For ‖M‖F instead of ‖M‖norm
F , equality (b) is in general wrong, and

equality (a) is unknown (but presumably wrong).

If F is essential but not tight, one may still try to homotope cycles to be trans-
verse, by possibly changing the lamination. In the special case that the cycle is
coming from a triangulation, this has been done by Brittenham [1995] and Gabai
[1999]. It is not obvious how to generalize their arguments to cycles with overlap-
ping simplices.

3. Retracting chains to codimension zero submanifolds

3A. Definitions. The results of this section are essentially all due to Gromov, but
we follow mainly our exposition in [Kuessner 2010]. We start with some recollec-
tions about multicomplexes; for details, see [Gromov 1982, Section 3; Kuessner
2010, Section 1].

A multicomplex K is a topological space |K | with a decomposition into sim-
plices, where each n-simplex is attached to the (n−1)-skeleton Kn−1 by a simplicial
homeomorphism f : ∂1n

→ Kn−1. (In particular, each n-simplex has n+1 distinct
vertices.) In contrast with simplicial complexes, in a multicomplex there may be
n-simplices with the same (n−1)-skeleton.

We call a multicomplex minimally complete if the following condition holds:
Let σ : 1n

→ |K | be a singular n-simplex such that ∂0σ, . . . , ∂nσ are distinct
simplices of K . Then σ is homotopic relative ∂1n to a unique simplex in K .

We call a minimally complete multicomplex K aspherical if all simplices σ 6= τ
in K satisfy σ1 6= τ1. That means that simplices are uniquely determined by their
1-skeleton.

Orientations of multicomplexes are defined as usual in simplicial theory. If σ is
a simplex, σ will denote the simplex with the opposite orientation.

A submulticomplex L of a multicomplex K is a subset of the set of simplices
closed under face maps. (K , L) is a pair of multicomplexes if K is a multicomplex
and L is a submulticomplex of K .

A group G acts simplicially on a pair of multicomplexes (K , L) if it acts on the
set of simplices of K , mapping simplices in L to simplices in L , so that the action
commutes with all face maps. For g ∈ G and σ a simplex in K , we denote by gσ
the simplex obtained by this action.
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3B. Construction of K (X). We recall the construction from [Kuessner 2010, Sec-
tion 1.3] (originally found in [Gromov 1982, pp. 45–46]).

For a topological space X , we denote by S∗(X) the simplicial set of all singular
simplices in X and by |S∗(X)| its geometric realization.

For a topological space X , a multicomplex K̂ (X) ⊂ |S∗(X)| is constructed as
follows. The 0-skeleton K̂0(X) equals S0(X). The 1-skeleton K̂1(X) contains one
element in each homotopy class (rel {0, 1}) of singular 1-simplices f : [0, 1]→ X
with f (0) 6= f (1). For n ≥ 2, assuming by recursion that the (n−1)-skeleton is
defined, the n-skeleton K̂n(X) contains one singular n-simplex in each homotopy
class (rel boundary) of singular n-simplices f : 1n

→ X with ∂ f ∈ K̂n−1(X).
We can choose K̂ (X) with the property that σ ∈ K̂ (X) ⇐⇒ σ ∈ K̂ (X) (recall
that the bar denotes orientation reversal). We will henceforth assume that K̂ (X) is
constructed according to this condition.

According to [Gromov 1982], |K̂ (X)| is weakly homotopy equivalent to X .
The multicomplex K (X) is defined as the quotient

K (X) := K̂ (X)/∼

where simplices in K̂ (X) are identified if and only if they have the same 1-skeleton.
Let p be the canonical projection p : K̂ (X)→ K (X).

K (X) is minimally complete and aspherical.
If X ′⊂ X is a subspace, we have (not necessarily injective) simplicial mappings

ĵ : K̂ (X ′)→ K̂ (X) and j : K (X ′)→ K (X).
If π1 X ′→ π1 X is injective (for each path-connected component of X ′), then j

is injective ([Kuessner 2010], Section 1.3) and we can (and will) consider K (X ′)
as a submulticomplex of K (X). (Since simplices in K̂ (X ′) have image in X ′, this
means that we assume we have constructed K̂ (X) so that simplices in K̂ (X) have
image in X ′ whenever this is possible.) If moreover πn X ′→πn X is injective for all
n≥ 2 (say, if X ′ is aspherical), then ĵ is also injective and K̂ (X ′) can be considered
as a submulticomplex of K̂ (X).

In particular, if X and X ′ are aspherical and π1 X ′→ π1 X is injective, there is
an inclusion

i∗ : C
simp
∗ (K (X), K (X ′))= C simp

∗ (K̂ (X), K̂ (X ′))→ C sing
∗ (X, X ′)

into the relative singular chain complex of (X, X ′).

3C. Infinite and locally finite chains. In this paper we will also work with infinite
chains, and in particular with locally finite chains on noncompact manifolds, as
introduced in [Gromov 1982, Section 0.2].

For a topological space X , a formal sum
∑

i∈I aiσi of singular k-simplices with
real coefficients (with a possibly infinite index set I , and the convention ai 6= 0
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for i ∈ I ) is an infinite singular k-chain. It is said to be a locally finite chain if
each point of X is contained in the image of at most finitely many σi . Infinite k-
chains form a real vector space denoted by C inf

k (X), and locally finite k-chains one
denoted by C lf

k (X). The boundary operator maps locally finite k-chains to locally
finite (k−1)-chains, hence, for a pair of spaces (X, X ′) the homology H lf

∗
(X, X ′)

of the complex of locally finite chains can be defined.
For a noncompact, orientable n-manifold X with (possibly noncompact) bound-

ary ∂X , one has a fundamental class [X, ∂X ] ∈ H lf
n (X, ∂X). We will say that an

infinite chain
∑

i∈I aiσi represents [X, ∂X ] if it is homologous to a locally finite
chain representing [X, ∂X ] ∈ H lf

n (X, ∂X).
For a simplicial complex K , we denote by C simp,inf

k (K ) the R-vector space of
(possibly infinite) formal sums

∑
i∈I aiσi with ai ∈ R and σi k-simplices in K .

If πn X ′ → πn X is injective for n ≥ 1, we have again the obvious inclusion i∗ :
C simp,inf
∗ (K̂ (X), K̂ (X ′))→ C inf

∗
(X, X ′).

The following observation is of course a well-known application of the homo-
topy extension property, but we will use it so often that we state it here for reference.

Observation 3.1. Let X be a topological space and σ0 : 1
n
→ X a singular

simplex. Let H : ∂1n
× I → X be a homotopy with H(x, 0) = σ0(x) for all

x ∈ ∂1n . Then there exists a homotopy H : 1n
× I → X with H |∂1n×I = H and

H |1n×{0} = σ0.
If X ′⊂ X is a subspace and the images of σ0 and H belong to X ′, we can choose

H so that its image belongs to X ′.

Lemma 3.2. Let (X, X ′) be a pair of topological spaces. Assume πn X ′→ πn X is
injective for each path component of X ′ and each n ≥ 1.

(a) Let
∑

i∈I aiτi ∈ C inf
n (X, X ′) be a (possibly infinite) singular n-chain. Assume

that I is countable, and that each path component of X and each nonempty
path component of X ′ contain uncountably many points. Then

∑
i∈I aiτi is

homotopic to a (possibly infinite) simplicial chain∑
i∈I

aiτ
′

i ∈ C simp,inf
n (K̂ (X), K̂ (X ′))⊂ C inf

∗
(X, X ′).

In particular,
∑

i∈I aiτ
′

i is homologous to
∑

i∈I aiτi .

(b) Let σ0 ∈ K̂ (X) and H : 1n
× [0, 1] → X a homotopy with H( · , 0) = σ0.

Consider a minimal triangulation 1n
× [0, 1] = 10 ∪ . . . 1n of 1n

× [0, 1]
into n+1 (n+1)-simplices. Assume that H(∂1n

×[0, 1]) consists of simplices
in K̂ (X). Then H is homotopic (rel 1n

× {0} ∪ ∂1n
× [0, 1]) to a map H :

1n
×[0, 1]→ X such that H |1i ∈ K̂ (X); in particular σ1 := H( · , 1)∈ K̂ (X).

Proof. (a) From the assumptions it follows that there exists a homotopy of the
0-skeleton such that each vertex is moved into a distinct point of X , and such
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that vertices in X ′ remain in X ′ during the homotopy. By Observation 3.1, this
homotopy can by induction be extended to a homotopy of the whole chain.

Now we prove the claim by induction on k (0 ≤ k < n). We assume that the
k-skeleton of

∑
i∈I aiτi consists of simplices in K̂ (X) and we want to homotope∑

i∈I aiτi such that the homotoped (k+1)-skeleton consists of simplices in K̂ (X).
By construction, each singular (k+1)-simplex σ in X with boundary a sim-

plex in K̂ (X) is homotopic (rel boundary) to a unique (k+1)-simplex in K̂ (X).
Since the homotopy keeps the boundary fixed, the homotopies of different (k+1)-
simplices are compatible. By Observation 3.1, the homotopy of the (k+1)-skeleton
can by induction be extended to a homotopy of the whole chain.

If the image of the (k+1)-simplex σ is contained in X ′, then it is homotopic
rel boundary to a simplex in K̂ (X ′), for a homotopy with image in X ′. Thus we
can realize the homotopy in such a way that all simplices with image in X ′ are
homotoped inside X ′.

(b) follows by the same argument as (a), successively applied to 10, . . . ,1n . �

We remark that there exists a canonical simplicial map

p : C simp,inf
∗ (K̂ (X), K̂ (X ′))→ C simp,inf

∗ (K (X), K (X ′)),

defined by induction. It is defined to be the identity on the 1-skeleton. If it is
defined on the (n−1)-skeleton, for n ≥ 2, then, for an n-simplex τ , p(τ ) ∈ K (X)
is the unique simplex with ∂i p(τ )= p(∂iτ) for i = 0, . . . , n.

3D. Action of G =5(A). We repeat the definitions from [Kuessner 2010, Section
1.5] (originally due to Gromov), as they will be frequently used in the remainder
of the paper.

Let (P, A) be a pair of minimally complete multicomplexes. We define its space
of nontrivial loops �∗A as the set of homotopy classes (rel {0, 1}) of continuous
maps γ : [0, 1]→ |A| with γ (0)= γ (1) and not homotopic (rel {0, 1}) to a constant
map.

We define

5(A) :=
{
{γ1, . . . , γn} : n ∈ N, γ1, . . . , γn ∈ A1 ∪�

∗A, γi (0)= γi (1) for all i,

γi (0) 6= γ j (0), γi (1) 6= γ j (1) for i 6= j
}
.

If γ, γ ′ are elements of A1 with γ ′ 6= γ and γ (0)= γ ′(1), we denote by γ ∗γ ′ ∈ A1

the unique edge of A in the homotopy class of the concatenation.1 If γ ∈ A1 and
γ ′ ∈ �∗A (or vice versa), with γ (1) 6= γ (0) = γ ′(1) = γ ′(0), we also denote

1We follow the usual convention of defining the concatenation of paths by γ ∗ γ ′(t) = γ (2t) if
t ≤ 1

2 and γ ∗ γ ′(t) = γ ′(2t − 1) if t ≥ 1
2 . Unfortunately this implies that, in order for 5(A) to act

on P , we will need the multiplication in 5(A) to satisfy, for example, {γ }{γ ′} = {γ ′ ∗ γ }. We hope
that this does not lead to confusion.
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by γ ∗ γ ′ ∈ A1 the unique edge in the homotopy class of the concatenation. If
γ, γ ′ ∈ �∗A with γ (1) = γ (0) = γ ′(1) = γ ′(0), we denote by γ ∗ γ ′ ∈ �∗A the
concatenation of homotopy classes of loops.

We then define a multiplication on 5(A) as follows: Given {γ1, . . . , γm} and
{γ ′1, . . . , γ

′
n}, we reindex the unordered sets {γ1, . . . , γm} and {γ ′1, . . . , γ

′
n} so that

γ j (1)= γ ′j (0) for 1≤ j ≤ i and γ j (1) 6= γ ′k(0) for j ≥ i + 1 and k ≥ i + 1. (Since
we are assuming that all γ j (1) are pairwise distinct, and also all γ ′j (0) are pairwise
distinct, such a reindexing exists for some i ≥ 0, and it is unique up to permuting
the indices ≤ i and permuting separately the indices of the γ j and γ ′k with j ≥ i+1
and k ≥ i + 1.) Moreover we permute the indices {1, . . . , i} so that there exists
some h with 0≤ h ≤ i satisfying the following conditions:

– For 1≤ j ≤ h we have either γ ′j 6= γ j ∈ A1 or γ ′j 6= γ
−1
j ∈�

∗A.

– For h < j ≤ i we have either γ ′j = γ j ∈ A1 or γ ′j = γ
−1
j ∈�

∗A.

With this fixed reindexing we define

{γ1, . . . , γm}{γ
′

1, . . . , γ
′

n} := {γ
′

1 ∗ γ1, . . . , γ
′

h ∗ γh, γi+1, . . . , γm, γ
′

i+1, . . . , γ
′

n}.

(Note that we have omitted all γ ′j ∗γ j with j > h. The choice of γ ′j ∗γ j rather than
γ j ∗ γ

′

j is just because we want to define a left action on (P, A).)
We have shown in [Kuessner 2010] (footnote to Section 1.5.1) that the product

belongs to 5(A). Moreover, the multiplication so defined is independent of the
chosen reindexing. It is clearly associative. A neutral element is given by the empty
set. The inverse to {γ1, . . . , γn} is given by {γ ′1, . . . , γ

′
n}, with γ ′i =γi if γi ∈ A1 and

γ ′i = γ
−1
i if γi ∈�

∗A. (Indeed, in this case h = 0; thus {γ1, . . . , γn}{γ
′

1, . . . , γ
′
n} is

the empty set.) Thus we have defined a group law on 5(A).

Remark. There is an inclusion

5(A)⊂map0
(

A0,
[
[0, 1], |A|

]
|P|
)
,

where
[
[0, 1], |A|

]
|P| is the set of homotopy classes (in |P|) rel {0, 1} of maps

from [0, 1] to |A|, and map0
(

A0,
[
[0, 1], |A|

]
|P|
)

is the set of maps f : A0 →[
[0, 1], |A|

]
|P| with

– f (y)(0)= y for all y ∈ A0, and

– f ( · )(1) : A0→ A0 is a bijection.

This inclusion is given by sending {γ1, . . . , γn} to the map f defined by f (γi (0))=
[γi ] for i =1, . . . , n, and f (y)=[cy] (the constant path) for y 6∈ {γ1(0), . . . , γn(0)}.
The inclusion is a homomorphism with respect to the group law defined by

[g f (y)] := [ f (y)] ∗ [g( f (y)(1))]

on map0(A0,
[
[0, 1], |A|

]
|P|).
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3E. Action of 5(A) on P. From now on we assume that P is aspherical. We
define an action of map0

(
A0,

[
[0, 1], |A|

]
|P|
)

on P . This gives an action of 5(A)
on P .

Let g ∈map0(A0, [(0, 1), |A|]|P|). Define gy = g(y)(1) for y ∈ A0 and gx = x
for x ∈ P0− A0. This defines the action on the 0-skeleton of P .

We extend this to an action on the 1-skeleton of P . Recall that, by minimal
completeness of P , 1-simplices σ are in one-to-one correspondence with homotopy
classes (rel {0, 1}) of (nonclosed) singular 1-simplices in |P| with vertices in P0.
Using this correspondence, define

gσ := [g(σ (0))] ∗ [σ ] ∗ [g(σ (1))],

where ∗ denotes concatenation of (homotopy classes of) paths.
In [Kuessner 2010, Section 1.5.1] we proved that this defines an action on P1

and that there is an extension of ths action to an action on P . (The extension is
unique because P is aspherical.)

We remark, because this will be one of the assumptions to apply Lemma 3.7,
that the action of any element g∈5(A) is homotopic to the identity. The homotopy
between the action of the identity and the action of {γ1, . . . , γr } given by the action
of {γ t

1 , . . . , γ
t
r }, 0≤ t ≤ 1, with γ t

i (s)= γi (st).
The next lemma follows directly from the construction, but we will use it so

often that we want to explicitly state it.

Lemma 3.3. Let (P, A) be a pair of aspherical, minimally complete multicom-
plexes, with the action of G = 5(A). If σ ∈ P is a simplex all of whose vertices
are not in A, then gσ = σ for all g ∈ G.

For a topological space and a subset P⊂ S∗(X) closed under face maps, the (an-
tisymmetric) bounded cohomology H∗b (P) and its pseudonorm are defined literally
like for multicomplexes in [Gromov 1982, Section 3.2]. The following well-known
fact will be needed for applications of Lemma 3.7 (to the setting of Theorem 1.1)
with P = K str(∂Q),G =5(K (∂0 Q)).

Lemma 3.4. (a) Let (P, A) be a pair of minimally complete multicomplexes.
If each connected component of |A| has amenable fundamental group, then
5(A) is amenable.

(b) Let X be a topological space, P ⊂ S∗(X) a subset closed under face maps,
and G an amenable group acting on P. Then the canonical homomorphism

id⊗1 : C simp
∗ (P)→ C simp

∗ (P)⊗ZG Z

induces an isometric monomorphism in bounded cohomology.

The proof of (a) is an obvious adaptation of that of [Kuessner 2010, Lemma 4].
Part (b) is proved by averaging bounded cochains; see [Gromov 1982].
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3F. Retraction to central simplices.

Lemma 3.5. Let (N , ∂N ) be a pair of topological spaces with N = Q∪ R for two
subspaces Q, R. Let

∂0 Q = Q∩ R, ∂1 Q = Q∩∂N , ∂1 R= R∩∂N , ∂Q = ∂0 Q∪∂1 Q, ∂R= ∂0 Q∪∂1 R.

Assume that ∂1 Q → Q → N , ∂1 R → R → N , ∂N → N , ∂0 Q → Q, ∂0 Q → R
are π1-injective, and that ∂N , ∂1 Q, ∂1 R, ∂0 Q are aspherical (so the corresponding
K ( · ) can be considered as submulticomplexes of K (N )).

In connection with the simplicial action of G =5(K (∂0 Q)) on K (N ), there is
a chain homomorphism

r : C simp,inf
∗ (K (N ))⊗ZG Z→ C simp,inf

∗ (K (Q))⊗ZG Z

in degrees ∗≥2, mapping C simp,inf
∗ (G K (∂N ))⊗ZG Z to C simp,inf

∗ (G K (∂1 Q))⊗ZG Z,
and such that

– if σ is a simplex in K (N ), then r(σ ⊗ 1)= κ ⊗ 1, where either κ is a simplex
in K (Q) or κ = 0;

– if σ is a simplex in K (Q), then r(σ ⊗ 1)= σ ⊗ 1;

– if σ is a simplex in K (R), then r(σ ⊗ 1)= 0.

Proof. This is [Kuessner 2010, Proposition 6]. (We have replaced the assumption
ker(π1∂0 Q → π1 Q) = ker(π1∂0 Q → π1 R) from that reference by the stronger
assumption of π1-injectivity, since this will be true in all our applications and
we have no need for the more general assumption.) The conclusion is stated in
[Kuessner 2010] for locally finite chains, but of course r extends linearly to infinite
chains. �

Remark. If some edge of σ is contained in K (∂0 Q)= K (Q)∩ K (R), then

σ ⊗ 1= 0 ∈ C simp,inf
∗ (K (N ))⊗ZG Z;

see [Kuessner 2010, Section 1.5.2]. (The proof is essentially the same as that of
Lemma 5.17 below.) In particular, if σ is contained in both K (Q) and K (R), then
r(σ ⊗ 1)= r(0)= 0.

3G. Fundamental cycles in K (N) and K ( Q). Let N be a (possibly noncompact)
connected, orientable n-manifold with (possibly noncompact) boundary ∂N . Then
H lf

n (N , ∂N ) ' Z by Whitehead’s theorem and a generator is called [N , ∂N ]. (It
is only defined up to sign, but this will not concern our arguments.) Recall that
an infinite chain is said to represent [N , ∂N ] if it is homologous to a locally finite
chain representing [N , ∂N ].
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If ∂N→ N is π1-injective and ∂N is aspherical, we know from Section 3B that

C simp,inf
∗ (K̂ (N ), K̂ (∂N ))⊂ C sing,inf

∗ (N , ∂N ).

Thus it makes sense to say that some chain z ∈C simp,inf
∗ (K̂ (N ), K̂ (∂N )) represents

the fundamental class [N , ∂N ].
If ∂1 Q→ Q is π1-injective and Q and ∂1 Q are aspherical, and if we set G :=

5(K (∂0 Q)), then C simp,inf
∗ (G K (∂1 Q)) = C simp,inf

∗ (G K̂ (∂1 Q)) ⊂ C sing,inf
∗ (∂Q), as

G maps simplices in im(K (∂Q)→ K (Q)) to simplices in im(K (∂Q)→ K (Q)).
Thus it makes sense to say that some chain z ∈ C simp,inf

∗ (K (Q),G K (∂1 Q)) repre-
sents the fundamental class [Q, ∂Q].

The projection p : K̂ (N )→ K (N ) is defined at the end of Section 3B.

Lemma 3.6. Let N be an orientable n-manifold with boundary (where n ≥ 2),
and let Q, R ⊂ N be orientable n-manifolds with boundary such that N = Q ∪ R
satisfies the assumptions of Lemma 3.5 and that ∂0 Q, ∂1 Q ⊂ ∂Q and ∂1 R ⊂ ∂R
are (n−1)-dimensional submanifolds (with boundary) of ∂Q or ∂R. Assume also
that Q is aspherical. Let

∑
i aiσi ∈ C simp,inf

n (K̂ (N ), K̂ (∂N )) represent [N , ∂N ].

(a)
∑

i
air(p(σi ))⊗1∈C simp,inf

n (K (Q),G K (∂1 Q))⊗ZG Z represents [Q, ∂Q]⊗1.

(b) ∂
∑

i
air(p(σi ))⊗ 1 ∈ C simp,inf

n (G K (∂Q))⊗ZG Z represents [∂Q]⊗ 1.

Remark. Explicitly, statement (a) means that the element on the left represents
the image of h⊗1 under the canonical homomorphism H sing,inf

n (Q, ∂Q)⊗ZG Z→

Hn(C
sing,inf
∗ (Q, ∂Q) ⊗ZG Z), where h ∈ H simp,inf

n (K (Q),G K (∂1 Q)) represents
[Q, ∂Q] ∈ H sing

n (Q, ∂Q). Similarly, (b) means that the element represents the
image of h⊗1 under the canonical homomorphism H simp,inf

n (G K (∂1 Q))⊗ZG Z→

Hn(C
simp,inf
∗ (G K (∂1 Q))⊗ZG Z), where h∈H simp,inf

n (G K (∂1 Q)) represents [∂Q]∈
H sing

n (∂Q).

Proof. Since p and r are chain maps, it suffices to check the claim for some chosen
representative of [N , ∂N ]. So let z ∈ C simp,inf

∗ (K̂ (N ), K̂ (∂N )) be a representative
of [N , ∂N ] chosen so that

p(z)= zQ + zR,

where zQ represents [Q, ∂Q] and zR represents [R, ∂R], and so that

∂zQ = w1+w2, ∂zR =−w2+w3

with w1 ∈ C simp,inf
n−1 (K (∂1 Q)) representing [∂1 Q], w2 ∈ C simp,inf

n−1 (K (∂0 Q)) repre-
senting [∂0 Q], and w3 ∈ C simp,inf

n−1 (K (∂1 R)) representing [∂1 R].
From Lemma 3.5 we have

r(p(z)⊗ 1)= zQ ⊗ 1,
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which implies the first claim, and

∂r(p(z)⊗ 1)= ∂zQ ⊗ 1= w1⊗ 1+w2⊗ 1.

Since w1+w2 represents [∂Q], this implies the second claim. �

Remark. From the remark after Lemma 3.5 we have w2 ⊗ 1 = 0. This implies
∂r(p(z)⊗1)= ∂zQ⊗1=w1⊗1, that is, ∂r(p(z)⊗1) represents at the same time
[∂Q]⊗ 1 and [∂1 Q]⊗ 1.

3H. Using amenability. The next lemma is well-known in slightly different for-
mulations and we reprove it here only for completeness. (It has of course a relative
version as well, but we will not need that for our argument.)

We will apply2 this lemma in the proof of Theorem 1.1 with X = ∂Q,G =
q∗(5(K (∂0 Q))) and K = G K str(∂1 Q).

Lemma 3.7. Let X be a closed, orientable manifold and K ⊂ S∗(X) closed under
face maps. Assume that

– there is an amenable group G acting on K , such that the action of each g ∈G
on |K | is homotopic to the identity, and

– there is a fundamental cycle z ∈ C simp
∗ (K ) such that z⊗ 1 is homologous to a

cycle h =
∑s

j=1 b jτ j ⊗ 1 ∈ C simp
∗ (K )⊗ZG Z.

Then

‖X‖ ≤
s∑

j=1

|b j |.

Proof. If ‖X‖= 0, there is nothing to prove. Thus we may assume ‖X‖ 6= 0, which
implies [Gromov 1982, p. 17] that there is β ∈H n

b (X), a bounded cohomology class
dual to [X ] ∈ Hn(X), with ‖β‖ = 1/‖X‖.

Let p :C simp
∗ (K )→C simp

∗ (K )⊗ZG Z be the homomorphism defined by p(σ )=
σ ⊗ 1. Since G is amenable we have, by the proof of [Gromov 1982, Lemma 4b],
an “averaging homomorphism” Av : H∗b (K )→ H∗b (C∗(K )⊗ZG Z) such that Av
is left-inverse to p∗ and Av is an isometry. Hence

‖Av(β)‖ = ‖β‖ =
1
‖X‖

.

2If a group G acts simplicially on a multicomplex M , then C∗(M)⊗ZG Z are abelian groups with
well-defined boundary operator ∂∗ ⊗ 1, even though M/G may not be a multicomplex, like for the
action of G =5X (X) on K (X), for a topological space X .

We remark that C∗(M)⊗ZG Z ' C∗(M)⊗RG R is just the quotient chain complex for the G-
action. In particular, even though C∗(M) is an RG-module, it does not make any difference whether
we tensor over ZG or RG.
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Moreover, denoting by
[∑s

j=1 b jτ j⊗1
]

the homology class of
∑s

j=1 b jτ j⊗1, we
have obviously ∣∣∣∣Av(β)[ s∑

j=1
b jτ j ⊗ 1

]∣∣∣∣≤ ‖Av(β)‖
s∑

j=1
|b j |

and therefore

‖X‖ =
1

‖Av(β)‖
≤

∑s
j=1 |b j |∣∣∣Av(β)[∑s
j=1 b jτ j ⊗ 1

]∣∣∣ .
It remains to prove that Av(β)

[∑s
j=1 b jτ j ⊗ 1

]
= 1. For this we have to look at

the definition of Av, which is as follows:
Let γ ∈C∗b (K ) be a bounded cochain. By amenability there exists a bi-invariant

mean av : B(G)→ R on the bounded functions on G with infg∈G δ(g)≤ av(δ)≤
supg∈G δ(g) for all δ ∈ B(G). Then, given any p(σ ) ∈ C∗(K )⊗ZG Z, one can
fix an identification between G and Gσ , the set of all σ ′ with p(σ ′) = p(σ ),
and thus consider the restriction of γ to Gσ as a bounded cochain on G. Define
Av(γ )(p(σ )) to be the average av of this bounded cochain on G ' Gσ . (This
definition is independent of all choices; see [Ivanov 1985].)

Now, if z =
∑s

j=1 b jτ j is a fundamental cycle, we have β(z)= 1.
If g ∈G is arbitrary, then left multiplication with g is a chain map on C simp

∗ (K ),
as well as on C sing

∗ (X). Since the action of g on |K | is homotopic to the identity,
it induces the identity on the image of C simp

∗ (K )→C sing
∗ (X). Thus, for each cycle

z ∈ C simp
∗ (K ) representing [X ] ∈ H sing

∗ (X), the cycle gz ∈ C simp
∗ (K ) must also

represent [X ].
If gz represents [X ], then β(gz)= β([X ])= 1. In conclusion, β(p(z′))= 1 for

each z′ with p(z′) = p(z). By the definition of Av, this implies Av(β)(p(z)) = 1
for each fundamental cycle z. In particular, Av(β)

[∑s
j=1 b jτ j ⊗ 1

]
= 1, which

finishes the proof of the lemma. �

Remark. In the proof of Theorem 1.1, we will work with C simp
∗ (K )⊗ZG Z rather

than C simp
∗ (K ). This is analogous to Agol’s construction of “crushing the cusps to

points” in [Agol 1999]. However C simp
∗ (K (Q))⊗Z5(∂0 Q) Z 6= C simp

∗ (K (Q/∂0 Q));
thus one cannot simplify our arguments by working directly with Q/∂0 Q.

4. Disjoint planes in a simplex

In this section, we will discuss the possibilities for how a simplex can be cut by
planes without producing parallel arcs in the boundary. (More precisely, we pose
the additional condition that the components of the complement can be colored
by black and white such that all vertices belong to black components, and we
actually want to avoid only parallel arcs in the boundary of white components.)
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For example, for the 3-simplex, it will follow that there is essentially only the
possibility in Case 1 pictured below; meanwhile, in Case 2, each triangle has a
parallel arc with another triangle, regardless how the quadrangle is triangulated.

Case 1 Case 2

Let1n
⊂Rn+1 be the standard simplex3 with vertices v0, . . . , vn . It is contained

in the plane E = {(x1, . . . , xn+1) ∈ Rn+1
: x1+ · · ·+ xn+1 = 1}.

In this section we will be interested in (n−1)-dimensional affine planes P ⊂ E
whose intersection with1n either contains no vertex, consists of exactly one vertex,
or consists of a face of 1n . For such planes we define their type as follows.

Definition 4.1. Let P ⊂ E be an (n−1)-dimensional affine plane such that P∩1n

contains no vertex, consists of exactly one vertex, or consists of a face of 1n .

– If P ∩1n
= ∂01

n , we say that P is of type {0}.

– If P ∩1n
= ∂ j1

n with j ≥ 1, we say that P is of type {01 . . . ĵ . . . n}.

– If P ∩ {v0, . . . , vn} = {v0}, we say that P is of type {0}.

– If P ∩{v0, . . . , vn} =∅ or P ∩{v0, . . . , vn} = {v j } with j ≥ 1, we say that P
is of type {0a1 . . . ak} with a1, . . . , ak ∈ {1, . . . , n} if the following condition
is satisfied: vi belongs to the same connected component of 1n

− (P ∩1n)

as v0 if and only if i ∈ {a1, . . . , ak}.

Observation 4.2. Let P1 be a plane of type {0a1 . . . ak} and P2 a plane of type
{0b1 . . . bl}. Assume that Q1 := P1 ∩1

n
6= ∅ and Q2 := P2 ∩1

n
6= ∅. Then

Q1 ∩ Q2 = ∅ implies that either {a1, . . . , ak} = {b1, . . . , bl} or exactly one of the
following conditions holds:

– {a1, . . . , ak} ⊂ {b1, . . . , bl}.

– {b1, . . . , bl} ⊂ {a1, . . . , ak}.

– {a1, . . . , ak} ∪ {b1, . . . , bl} = {1, . . . , n}.

3As usual, vi is the vertex with all coordinates except the i-th equal to zero, and ∂i1
n denotes

the subsimplex spanned by all vertices except vi . We will occasionally identify singular 1-simplices
σ :11

→M with paths e : [0, 1]→M by the rule e(t)=σ(t, 1−t). In particular, e(0)=σ(v0)= ∂1σ
and e(1)= σ(v1)= ∂0σ .
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Proof. 1n
− Q1 consists of two connected components, C1 and C2. Similarly,

1n
−Q2 consists of two connected components, D1 and D2. Choose the numbering

so v0 ∈ C1 and v0 ∈ C2. In particular, C1 ∩ D1 6=∅.
Since Q1∩ Q2 =∅, it follows that Q2 is contained in one of C1 or C2, and Q1

is contained in one of D1 or D2.
If Q1⊂ D1, either we have C1⊂ D1, which implies {a1, . . . , ak}⊂ {b1, . . . , bl},

or we have C2⊂ D1, which implies {1, . . . , n}−{a1, . . . , ak}⊂ {b1, . . . , bl}, hence
{a1, . . . , ak} ∪ {b1, . . . , bl} = {1, . . . , n}.

If instead Q1 ⊂ D2, we have Q2 ⊂ C1. After interchanging Q1 and Q2 we are
back in the case of the previous paragraph. �

Notational remark. Arc will mean the intersection of an (n−1)-dimensional affine
plane P ⊂ E (such that P ∩1n

6=∅ either contains no vertex, consists of exactly
one vertex or consists of a face) with a 2-dimensional subsimplex τ 2

⊂ 1n . If an
arc consists of only one vertex, we call it a degenerate arc.

Definition 4.3 (parallel arcs). Let P1, P2⊂ E be (n−1)-dimensional affine planes.
Let τ be a 2-dimensional subsimplex of 1n with vertices vr , vs, vt . We say that
the disjoint arcs e1, e2 obtained as intersections of P1 and P2, respectively, with τ
are parallel arcs if one of the following conditions holds:

– Both are nondegenerate and any two of {vr , vs, vt } belong to the same con-
nected component of τ − e1 if and only if they belong to the same connected
component of τ − e2.

– One, say e1, is nondegenerate, the other, say with vertices vs, vt , is contained
in a face, and vr does not belong to the same connected component of τ − e1

as either vs and vt .

– One, say e1, is nondegenerate, the other is degenerate, say equal to vr , and
vs, vt do not belong to the same connected component of τ − e1 as vr .

– Both are degenerate and equal.

– Both are contained in a face and equal.

– One is degenerate, the other is contained in a face.

Lemma 4.4. Let 1n
⊂ Rn+1 be the standard simplex. Let P1, P2 ⊂ E be (n−1)-

dimensional affine planes with Qi = Pi ∩1
n
6= ∅ for i = 1, 2. Let P1 be of type

{0a1 . . . ak} with 1 ≤ k ≤ n − 2 and P2 of type {0b1 . . . bl} with l arbitrary. Then
either Q1 ∩ Q2 6=∅, or Q1 and Q2 have a parallel arc.

Proof. Assume that Q1 ∩ Q2 = ∅. By Observation 4.2, there are four possible
cases:

– {0a1 . . . ak} = {0b1 . . . bl}. Then we clearly have parallel arcs.
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– {0a1 . . . ak} is a proper subset of {0b1 . . . bl}, i.e., 1 ≤ k < l ≤ n − 1 and
a1 = b1, . . . , ak = bk . There is at least one index, say i , not contained in
{0b1 . . . bl}. The 2-dimensional subsimplex with vertices v0, va1, vi intersects
P1 and P2 in parallel arcs, because P1 and P2 both separate v0 and vak from vi .

– {0b1 . . . bl} is a proper subset of {0a1 . . . ak}, i.e., 0 ≤ l < k ≤ n − 2 and
a1 = b1, . . . , al = bl . There are two indices i, j not contained in {0a1 . . . ak}.
The 2-dimensional subsimplex with vertices v0, vi , v j intersects P1 and P2 in
parallel arcs, because P1 and P2 both separate v0 from vi and v j .

– {a1, . . . , ak}∪{b1, . . . , bl}= {1, . . . , n}. Since k≤ n−2, there are two indices
i, j not contained in ∈ {0a1 . . . ak}. Hence i, j ∈ {b1, . . . , bl}. There exists an
index h ∈ {a1, . . . , ak} such that h 6∈ {b1, . . . , bl}; otherwise, we would have
{a1, . . . , ak} ⊂ {b1, . . . , bl}, hence {1, . . . , n} = {a1, . . . , ak} ∪ {b1, . . . , bl} ⊂

{b1, . . . , bl}, contradicting Q2 6=∅. Now the 2-dimensional subsimplex with
vertices vi , v j , vh intersects P1 and P2 in parallel arcs, because both P1 and
P2 separate vi and v j from vh . �

Definition 4.5 (canonical coloring of complementary regions). Let P1, P2, . . .⊂ E
be a (possibly infinite) set of (n−1)-dimensional affine planes with Qi := Pi ∩1

n

nonempty and Qi ∩Q j =∅ for all i 6= j . Assume that each Qi either contains no
vertices or consists of exactly one vertex.

A coloring of the connected components of1n
−
⋃

i Qi by the colors black and
white, and of all the Qi by black, is called a canonical coloring (associated to
P1, P2, . . . ) if all the vertices of 1n are colored black and each Qi is incident to
at least one white component.

Definition 4.6 (white-parallel arcs). Let {Pi : i ∈ I } be a set of (n−1)-dimensional
affine planes Pi ⊂ E , with Qi := Pi ∩1

n
6=∅ for i ∈ I . Assume that Qi ∩Q j =∅

for all i 6= j ∈ I , and that we have a canonical coloring associated to {Pi : i ∈ I }.
We say that arcs ei , e j obtained as intersections of Pi , Pj (i, j ∈ I ) with some 2-
dimensional subsimplex of 1n are white-parallel arcs if they are parallel arcs and
belong to the boundary of the closure of the same white component.

We mention two consequences of Lemma 4.4. They will not be needed for the
proof of Lemma 4.13, but they will be necessary for the proof of Theorem 1.1.

Corollary 4.7. Let 1n
⊂ Rn+1 be the standard simplex. Let P1, . . . , Pm ⊂ E be a

finite set of (n−1)-dimensional affine planes and let Qi = Pi∩1
n for i = 1, . . . ,m.

Assume that Qi ∩ Q j =∅ for all i 6= j , and that we have an associated canonical
coloring such that Qi and Q j do not have a white-parallel arc for i 6= j .

Then, unless m = 0, we have m = n + 1 and P1 is of type {0}, Pn+1 is of type
{0 1 . . . n− 1}, and Pi is of type {01 . . . î−1 . . . n} for i = 2, . . . , n.
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Proof. If the conclusion were not true, there would exist a plane P1 of type
{0a1 . . . ak} with 1 ≤ k ≤ n − 2. Let W be the white component of the canonical
coloring that is incident to P1. Because, for a canonical coloring, no vertex belongs
to a white component, there must be at least one more plane P2 incident to W . Since
Q1∩Q2=∅, from Lemma 4.4 we get that Q1 and Q2 have a parallel arc. Because
Q1 and Q2 are incident to W , the arc is white-parallel. �

Corollary 4.8. Let 1n
⊂ Rn+1 be the standard simplex. Let P1, P2, . . . ⊂ E be a

(possibly infinite) set of (n−1)-dimensional affine planes and let Qi = Pi ∩1
n for

i = 1, 2, . . . . Assume that we have an associated canonical coloring.
Let Pi be of type {0ai

1 . . . a
i
c(i)}, for i = 1, 2, . . . . Then either

– c(1) ∈ {0, n− 1}, or

– whenever, for some i ∈ {2, 3, . . .}, P1 and Pi bound a white component of
1n
−∪ j Q j , then they must have a white-parallel arc.

Proof. Assume that c(1) 6∈ {0, n − 1}. The white component W bounded by P1

is bounded by a finite number of planes; thus we can apply Corollary 4.7, and
conclude that P1 has a white-parallel arc with each other plane adjacent to W . �

Definition 4.9. Let P ⊂ E be an (n−1)-dimensional affine plane and T a triangu-
lation of the polytope Q := P ∩1n . We say that T is minimal if all vertices of T
are vertices of Q. We say that an edge of some simplex in T is an exterior edge if
it is an edge of Q.

Observation 4.10. Let P ⊂ E be an (n−1)-dimensional affine plane and T a
triangulation of the polytope Q := P ∩1n . If T is minimal, each edge of Q is an
(exterior) edge of (exactly one) simplex in T .

Proof. By minimality, the triangulation does not introduce new vertices. Thus
every edge of Q is an edge of some simplex. �

Observation 4.11. Let P ⊂ E be an (n−1)-dimensional affine plane with Q :=
P ∩1n

6=∅. Assume that P is of type {0a1 . . . ak}. Then either

(a) Each vertex of Q arises as the intersection of P with an edge e of 1n . The
vertices of e are vi and v j with i ∈ {0, a1, . . . , ak} and j 6∈ {0, a1, . . . , ak}. (We
will denote such a vertex by (viv j ).)

(b) Two vertices (vi1v j1) and (vi2v j2) of Q are connected by an edge of Q (i.e., an
exterior edge of any triangulation) if either i1 = i2 or j1 = j2.

Proof. (a) holds because e has to connect vertices in distinct components of1n
−Q.

Statement (b) holds because the edge of Q has to belong to some 2-dimensional
subsimplex of 1n , with vertices either vi1, v j1, v j2 or vi1, vi2, v j1 . �
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Remark. If, for an affine hyperplane P ⊂ E , Q = P ∩ 1n consists of exactly
one vertex, then we will consider the minimal triangulation of Q to consist of
one (degenerate) (n−1)-simplex. This convention helps to avoid needless case
distinctions.

Lemma 4.12. Let {Pi ⊂ E : i ∈ I } be a set of (n−1)-dimensional affine planes and
let Qi := Pi ∩1

n for i ∈ I . Assume that Qi ∩ Q j = ∅ for all i 6= j and that we
have an associated canonical coloring. Assume that we have fixed, for each i ∈ I ,
a minimal triangulation Qi =

⋃
a τia of Qi .

If P1 is of type {0a1
1 . . . a

1
c(1)} with 1≤ c(1)≤ n−2, then for each simplex τ1a ⊂

Q1 there exists some j ∈ I and some simplex τ jb ⊂ Q j (of the fixed triangulation
of Q j ) such that τia and τ jb have a white-parallel arc.

Proof. Let w1, . . . , wn be the n vertices of the (n−1)-simplex τ1k . By Observation
4.11(a), each wl arises as intersection of Q1 with some edge (vrlvsl ) of 1n , and
the vertices vrl , vsl satisfy rl ∈ {0, a1

1, . . . , a1
c(1)} and sl 6∈ {0, a1

1, . . . , a1
c(1)}.

For the canonical coloring, there must be a white component W bounded by
P1. We distinguish the cases whether W and v0 belong to the same connected
component of 1n

− Q1 or not.

Case 1: W and v0 belong to the same connected component of 1n
− Q1.

Since c(1)≤ n−2, there exist at most n−1 possible values for rl . Hence there
exists l 6= m ∈ {1, . . . , n} such that vrl = vrm .

Let e be the edge of τ1k ⊂ Q1 connecting wl and wm . By Observation 4.11(b), e
is an exterior edge. Consider the 2-dimensional subsimplex τ 2

⊂1n with vertices
vrl , vsl , vsm . We conclude that P1 intersects τ 2 in e, i.e., in an arc separating vrl

from the other two vertices of τ 2.
Note that rl ∈ {0, a1

1, . . . , a1
c(1)}; hence vrl belongs to the same component of

1n
− Q1 as v0. In particular, vrl belongs to the same component of 1n

− Q1 as
W . On the other hand, since the coloring is canonical, all vertices are colored
black, and vrl cannot belong to the white component W . Thus there must be some
plane Pj such that Q j bounds W and separates vrl from Q1. (The possibility that
Pj ∩ 1

n
= {vrl } is allowed.) In particular, some (possibly degenerate) exterior

edge f of Q j separates vrl from vsl , vsm . Thus e and f are white-parallel arcs. By
Observation 4.10, f is an edge of some τ jl .

Case 2: W and v0 don’t belong to the same connected component of 1n
− Q1.

Since n− c(1)≤ n−1, there exist some l 6=m ∈ {1, . . . , n} such that vsl = vsm .
Let e be the edge of τ1k ⊂ Q1 connecting wl and wm . e is an exterior edge

by Observation 4.11(b). Consider the 2-dimensional subsimplex τ 2
⊂ 1n with

vertices vrl , vrm , vsl . P1 intersects τ 2 in e, i.e., in an arc separating vsl from the
other two vertices of τ 2.
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We have sl 6∈ {0, a1
1, . . . , a1

c(1)}; hence vsl does not belong to the same component
of1n

−Q1 as v0. This implies that vsl belongs to the same component of1n
−Q1

as W . On the other hand, since the coloring is canonical, vsl cannot belong to the
white component W and there must be some plane Pj such that Q j bounds W and
separates vsl from Q1. In particular, some exterior edge f of Q j separates vsl from
vrl , vrm . Thus e and f are white-parallel arcs. By Observation 4.10, f is an edge
of some τ jl . �

Lemma 4.13. Let {Pi : i ∈ I } be a set of (n−1)-dimensional affine planes with
Qi := Pi ∩1

n
6=∅ for i ∈ I . Let Pi be of type {0a(i)1 . . . a(i)ki

} for i ∈ I . Assume that
Qi ∩ Q j = ∅ for i 6= j ∈ I , and that we have an associated canonical coloring.
Assume that for each Qi one has fixed a minimal triangulation Qi = ∪

t (i)
k=1τik .

For each i ∈ I , let

Di = ]{τik⊂Qi : there is no τ jl ⊂Q j such that τik, τ jl have a white-parallel arc}.

Then ∑
i∈I

Di = 0 or
∑
i∈I

Di = n+ 1.

Proof. First we remark that the number of planes may be infinite, but we may
of course remove pairs of planes Pi , Pj whenever they are of the same type and
bound the same white component. This removal of Pi , Pj and the common white
component does not affect

∑
i∈I Di . Since there are only finitely many different

types of planes, we may without loss assume that we start with a finite number
P1, . . . , Pm of planes. (It may happen that after this removal no planes and no
white components remain. In this case

∑
i∈I Di∈I = 0.) So we assume now that

we have a finite number of planes P1, . . . , Pm , and no two planes of the same type
bound a white region.

The first case to consider is that all planes are of type {0a1 . . . ak} with k = 0
or k = n − 1. Since all vertices are colored black, this means that m = n + 1
and (upon renumbering) P1 is of type {0}, Pn+1 is of type {0 1 . . . n − 1}, and Pi

is of type {01 . . . î−1 . . . n} for i = 2, . . . , n. Hence D1 = · · · = Dn+1 = 1 and∑n+1
i=1 Di = n+ 1.
Now we assume that there exists Pi , say P1, of type {0a(1)1 . . . a(1)k1

} with 1 ≤
c(1) ≤ n− 2. Let W be the white component bounded by P1 and, without loss of
generality, let P2, . . . , Pl be the other planes bounding W . Then Lemma 4.12 says
that each simplex in the chosen triangulation of Q1 has a parallel arc with some
simplex in the chosen triangulation of each of Q2, . . . , Ql . In particular, D1 = 0.
For j ∈ {2, . . . , l}, if 1 ≤ c( j) ≤ n− 2, the same argument shows that D j = 0. If
j ∈{2, . . . , l} and c( j)=0 or c( j)=n−1, then Q j consists of only one simplex. By
Corollary 4.8, this simplex has a parallel arc with (some exterior edge of) Q1 and
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thus (by Observation 4.10) with some simplex of the chosen triangulation of Q1.
This shows that D j =0 also in this case. Altogether we conclude that

∑l
j=1 D j =0

and thus
∑m

i=1 Di =
∑m

i=l+1 Di . Hence we can remove4 the white component W
and its bounding planes P1, . . . , Pl to obtain a smaller number of planes and a new
canonical coloring without changing

∑m
i=1 Di . Since we start with finitely many

planes, we can repeat this reduction finitely many times and will end up either with
an empty set of planes or with a set of planes of type {0a1 . . . ak}, with k = 0 or
k = n− 1. Thus either

∑m
i=1 Di = 0 or

∑m
i=1 Di = n+ 1. �

We have thus proved that, in the presence of a canonical coloring, the number of
(n−1)-simplices without white-parallel arcs in a minimal triangulation of the Qi is
0 or n+1. We remark that in the proof of Theorem 1.1 we will actually count only
those triangles that have neither a white-parallel arc nor a degenerate arc. Thus, in
general, we may remain with even less than n+ 1 (n−1)-simplices.

5. A straightening procedure

In this section we will always work with the following set of assumptions.

Assumption I. Q is an aspherical n-dimensional manifold with aspherical bound-
ary ∂Q. We have (n−1)-dimensional submanifolds ∂0 Q, ∂1 Q ⊂ ∂Q such that
∂Q = ∂0 Q ∪ ∂1 Q, ∂∂0 Q = ∂∂1 Q, and ∂1 Q 6=∅ is aspherical.

The example that one should have in mind is a nonpositively curved manifold
Q with totally geodesic boundary ∂1 Q and cusps corresponding to ∂0 Q.

In the case of nonpositively curved manifolds with totally geodesic boundary,
there is a well-known straightening procedure that homotopes each relative cycle
into a straight relative cycle. It is explained for closed hyperbolic manifolds in
[Benedetti and Petronio 1992, Lemma C.4.3].

However, we will need a more subtle straightening procedure, which considers
relative cycles with a certain 0-1 labeling of their edges and straightens the 1-
labeled edges into certain distinguished 1-simplices. This straightening procedure
will be explained in Section 5C. Before that, we explain a construction which will
“morally” (although not literally) reduce the proof of Theorem 1.1 to the case that
∂0 Q ∩C is path-connected, for each path component C of ∂Q.

5A. Making ∂0 Q ∩ C connected.
Construction 5.1. Let Assumption I be satisfied. There exists a continuous map
of triples q : (Q, ∂Q, ∂1 Q)→ (Q, ∂Q, ∂1 Q) that is (as a map of triples) homotopic
to the identity and such that, for each path component C of ∂Q, the image A :=
q(∂0 Q ∩C) is path-connected.

4To remove a white component means that this component together with the neighboring black
components will form one new black component.
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Moreover, for each path component F of ∂1 Q, the path components of ∂F ⊂
∂0 Q∩∂1 Q can be numbered by E F

0 , . . . , E F
s and one can choose points xE F

i
∈ E F

i
such that q(xE F

i
)≡ xE F

0
for i = 0, . . . , s.

Proof. For each path component F of ∂1 Q, number the path components of ∂F ⊂
∂0 Q ∩ ∂1 Q by E F

0 , . . . , E F
s , where s depends on F . Choose one point x F

E ∈ E for
each path component E ⊂ F of ∂0 Q ∩ ∂1 Q. Whenever E0, Ei is a pair of path
components of ∂0 Q∩∂1 Q adjacent to the same path component F of ∂1 Q, choose
a 1-dimensional submanifold lE F

0 E F
i
⊂ ∂1 Q with

∂lE F
0 E F

i
= {xE F

0
} ∪ {xE F

i
}.

The lE F
0 E F

i
may be chosen succesively in such a way that they are disjoint from

each other (apart from the common vertex xE F
0

) and disjoint from ∂0 Q (apart from
the vertices xE F

0
and xE F

i
).

For each pair {E F
0 , E F

i } let h : lE F
0 E F

i
→{xE F

0
} be the constant map from lE F

0 E F
i

to xE F
0

. For each path component F of ∂1 Q, the union

s⋃
i=1

lE F
0 E F

i

is an embedded wedge of arcs in ∂1 Q; hence it is contractible. In particular, h
is homotopic to the identity. By the homotopy extension property there exists
g : F→ F with

g|lE F
0 E F

i
= h ≡ xE0

for all lE F
0 E F

i
, and g∼ id by a homotopy extending the homotopy between h and id.

Thus we defined g on each path component F of ∂1 Q with F ∩ ∂0 Q 6= ∅. On
path components F of ∂1 Q with F ∩ ∂0 Q = ∅ we define g = id. Hence we have
defined g on all of ∂1 Q.

On path components C of ∂0 Q with C ∩ ∂1 Q = ∅, we define f = id. Again
by the homotopy extension property there exists f : ∂Q → ∂Q with f |∂1 Q = g,
f |C = id for path components C of ∂0 Q with C ∩ ∂1 Q = ∅, and f ∼ id by a
homotopy extending the homotopy of g. (Of course, f does not preserve the path
components of ∂0 Q that intersect ∂1 Q.)

Once again by the homotopy extension property there exists q : Q → Q with
q ∼ id such that q extends f and the homotopy between q and id extends the
homotopy between f and id.

Due to the stepwise construction, q is a map of triples, homotopic to the identity
by a homotopy of triples. Moreover, A := q(∂0 Q ∩C) is path-connected for each
component C of ∂Q. Indeed, any two points in ∂0 Q ∩ C can be connected by a
sequence of paths which either have image in ∂0 Q or belong to

⋃s
i=1 lE F

0 E F
i

for
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some path component F of ∂1 Q ∩C . The image of these paths under q , in both
cases, is in A. �

Remark. The map q induces a simplicial map q : K (Q)→ K (Q) and a homo-
morphism q∗ :5(K (∂0 Q))→5(K (A)) defined by

q∗({γ1, . . . , γn}) := {q(γ1), . . . , q(γn)},

such that q∗(g)q(σ )= q(gσ) for each σ ∈ K (Q) and g ∈5(K (∂0 Q)).

Proof. Continuous maps q : Q→ Q induce simplicial maps q : K (Q)→ K (Q).
(The simplicial map agrees with q on the 0-skeleton, and it maps each 1-simplex
e ∈ K1(Q) to the unique 1-simplex of K1(Q) that is in the homotopy class rel
{0, 1} of q(e).)

Let e ∈ K1(Q). By construction, {γ1, . . . , γn}e = [α ∗ e ∗ β] for some α, β ∈
{γ1, . . . , γn} ∪ {ce(0), ce(1)}. Thus

{q(γ1), . . . , q(γn)}q(e)= [q(α) ∗ q(e) ∗ q(β)] = q({γ1, . . . , γn}e).

This implies the claim for the 1-skeleton, and thus, by the asphericity of K (Q),
for all σ ∈ K (Q). �

5B. Definition of K str( Q). Let Q, ∂Q, ∂1 Q, ∂0 Q satisfy Assumption I.
Recall that we have defined in Section 3B an aspherical multicomplex K (Q)⊂

S∗(Q) with the property that (for aspherical Q) each singular simplex in Q, with
boundary in K (Q) and pairwise distinct vertices, is homotopic rel boundary to a
unique simplex in K (Q).

The aim of this subsection is to describe a selection procedure yielding a sub-
set K str

∗
(Q) ⊂ S∗(Q). The final purpose of the straightening procedure will be

to produce a large number of (weakly) degenerate simplices, in the sense of the
following definition.

Definition 5.2. Let Q be an compact manifold with boundary ∂Q. We say that a
simplex in S∗(Q) is degenerate if one of its edges is a constant loop. We say that
it is weakly degenerate if it is degenerate or its image is contained in ∂Q.

Notational remark. For subsets K str
∗
(Q)⊂ S∗(Q) we define

K str
∗
(∂0 Q) := K str

∗
(Q)∩ S∗(∂0 Q),

K str
∗
(∂1 Q) := K str

∗
(Q)∩ S∗(∂1 Q),

K str
∗
(∂0 Q Q) := K str

∗
(Q)∩ S∗(∂0 Q).

Lemma 5.3. Let Q, ∂Q, ∂1 Q, ∂0 Q satisfy Assumption I. Let K (Q)⊂ S∗(Q) be as
defined in Section 3B. Let q : Q→ Q and {xE F

i
∈ ∂0 Q ∩ ∂1 Q : 0≤ i ≤ s} be given

by Construction 5.1.
Then there exists a subset K str

∗
(Q)⊂ S∗(Q), closed under face maps, such that:
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(i) If C is a path component of ∂0 Q with C ∩ ∂1 Q = ∅, then K str
0 (Q) contains

each point in C.

(ii) For a path component F of ∂1 Q with F∩∂0 Q=∅, there is exactly one point
xF ∈ K str

0 (Q)∩ F , while
for a path component F of ∂1 Q with F ∩ ∂0 Q 6=∅, we have K str

0 (Q)∩ F =
{xE F

0
, . . . , xE F

s
}.

(iii) K str
0 (Q)= K str

0 (∂Q).

(iv) K str
1 (Q) consists of

– all 1-simplices e ∈ K (Q) with ∂e ∈ K str
0 (Q),

– exactly one 1-simplex for each nontrivial homotopy class (rel boundary)
of loops e with ∂0e = ∂1e ∈ K str

0 (Q), and
– the constant loop for the homotopy class of the constant loop at x , if

x ∈ K str
0 (Q).

(v) For n ≥ 2, if σ ∈ Sn(Q) is an n-simplex with ∂σ ∈ K str
n−1(Q), then σ is

homotopic rel boundary to a unique τ ∈ K str
n (Q).

(vi) If σ ∈ K str
n (Q) is homotopic rel boundary to some τ ∈ Kn(Q), then σ = τ .

(vii) If σ ∈ K str
n (Q) is homotopic rel boundary to a simplex τ ∈ Sn(∂1 Q), then

σ ∈ K str
n (∂1 Q); if σ ∈ K str

1 (Q) is homotopic rel boundary to a simplex τ ∈
S1(∂0 Q), then σ ∈ K str

1 (∂0 Q).

(viii) K str
∗
(Q) is aspherical, i.e., if σ, τ ∈ K str

∗
(Q) have the same 1-skeleton, then

σ = τ .

Proof. K str
∗
(Q) is defined by induction on the dimension of simplices as follows.

Definition of K str
0 (Q): Choose K str

0 (Q) such that conditions (i)–(iii) are satisfied.
Note that we have chosen a nonempty set of 0-simplices since we are assuming
∂1 Q 6=∅.

Definition of K str
1 (Q): For an ordered pair (x, y) ∈ K str

0 (Q)×K str
0 (Q) with x 6= y,

there exists unique simplex in K1(Q) in each homotopy class (rel boundary) of arcs
e from x to y. Choose these 1-simplices so they belong to K str

1 (Q). (Uniqueness
implies that (vi) is true for n = 1.) For pairs (x, x) ∈ K str

0 (Q)× K str
0 (Q), choose

one simplex in each homotopy class (rel boundary) of loops e from x to itself. For
the homotopy class of the constant loop, choose the constant loop.

Choose the 1-simplices in ∂0 Q and/or ∂1 Q whenever this is possible. (If a 1-
simplex is homotopic into both ∂0 Q and ∂1 Q, then it is necessarily homotopic into
∂0 Q ∩ ∂1 Q. Indeed, a disk realizing a homotopy between 1-simplices in ∂0 Q and
∂1 Q can be made transversal to ∂0 Q ∩ ∂1 Q and then intersects ∂0 Q ∩ ∂1 Q in an
arc or loop.) Hence (vii) is satisfied for n = 1.
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Definition of K str
n (Q) for n ≥ 2, assuming that K str

n−1(Q) is defined: For an (n+1)-
tuple κ0, . . . , κn of (n−1)-simplices in K str

n−1(Q), satisfying ∂iκ j = ∂ j−1κi for all
i, j , there are two possibilities:

– If no edge of any κi is a loop, then, by the asphericity of Q, there is a
unique n-simplex σ ∈ Kn(Q) with ∂iσ = κi for i = 0, . . . , n. In this case set
κ := σ . Uniqueness implies that (vi) is satisfied for n. (By the construction in
Section 3B, we have κ ∈ Kn(∂1 Q) if κ is homotopic rel boundary into ∂1 Q.)

– Otherwise, choose an n-simplex κ ∈ Sn(Q) with ∂iκ = κi for i = 0, . . . , n.
Since Q is aspherical, κ exists and is unique up to homotopy rel boundary.
Choose the simplices in ∂1 Q whenever this is possible.

By construction, K str
∗
(Q) is closed under face maps and satisfies the conditions

(i)–(vii). Condition (viii) follows by induction on the dimension of subsimplices
of σ and τ from condition (v). �

The simplices in K str
∗
(Q) will be called straight simplices.

We remark that K str
∗
(Q) is not a multicomplex because simplices in K str

∗
(Q)

need not have pairwise distinct vertices. (Note also that simplices in K (Q) belong
to K str(Q) if and only if all their vertices belong to K str

0 (Q), by construction.)

Observation 5.4. Let Q, ∂Q, ∂1 Q, ∂0 Q satisfy Assumption I. Let K str
∗
(Q)⊂ S∗(Q)

satisfy conditions (i)–(viii) from Lemma 5.3. Then q : Q→ Q induces a simplicial
map q : K str(Q)→ K str(Q), compatible with the simplicial map q : K (Q)→ K (Q)
from Section 5A.

Proof. By construction, q maps K str
0 (Q) to itself. Indeed:

– If C is a path component of ∂0 Q with C ∩ ∂1 Q = ∅, then q(v) = v for each
v ∈ C .

– If F is a path component F of ∂1 Q with F∩∂0 Q=∅, then q(v)= v for each
v ∈ F (in particular for the unique v ∈ F ∩ K str

0 (Q)).

– If F is a path component of ∂1 Q with F ∩ ∂0 Q 6=∅, then we have K str
0 (Q)∩

F = {xE F
0
, . . . , xE F

s
}, and q(xE F

i
)= xE F

0
for i = 0, . . . , s by Construction 5.1.

Hence q induces a simplicial map on K str(Q). (The simplicial map agrees with
q on the 0-skeleton, and it maps each 1-simplex e ∈ K str

1 (Q) to the unique 1-
simplex of K str

1 (Q) that is in the homotopy class rel {0, 1} of q(e). Since K str(Q)
is aspherical, this determines the simplicial map q uniquely.) �

5C. Definition of the straightening.

Definition 5.5. Let (Q, ∂1 Q) be a pair of topological spaces and let z=
∑

i∈I aiτi ∈

C inf
n (Q) be a (possibly infinite) singular chain.
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(a) A set of cancellations of z is a symmetric set C ⊂ Sn−1(Q)× Sn−1(Q) with
(η1, η2) ∈ C ⇒ η1 = η2 and η1 = ∂kτi1, η2 = ∂lτi2 for some i1, i2 ∈ I and
k, l ∈ {0, . . . , n}.

(b) Let z=
∑

i∈I aiτi ∈C inf
n (Q). If C is a set of cancellations for z, the associated

simplicial set ϒz,C is the simplicial set generated5 by {1i : i ∈ I }, subject to
the identifications ∂k1i1 = ∂l1i2 if and only if (∂kτi1, ∂lτi2) ∈ C.

(c) Let z=
∑

i∈I aiτi ∈C inf
n (Q). Choose a minimal presentation for ∂z (meaning

that no further cancellation is possible). Define

J = J∂z :=
{
(i, a) ∈ I ×{0, . . . , n} : ∂aτi occurs with a nonzero coefficient

in the chosen presentation of ∂z
}
.

Let C be a set of cancellations for z. Then the simplicial set ∂ϒz,C is defined
as the set consisting of |J | (n−1)-simplices 1i,a, (i, a) ∈ J , together with all
their iterated faces and degenerations, subject to the identifications ∂a∂a1τi1 =

∂a∂a2τi2 for all a= 0, . . . , n−1, whenever (∂a1τi1, ∂a2τi2)∈C and (i1, a1)∈ J .

(d) If z =
∑

i∈I aiτi ∈ C inf
n (Q) is a relative cycle, then a set of cancellations C is

called sufficient if the formal sum
∑

i∈I
∑n

k=0(−1)kai∂kτi can be reduced to
a chain in C inf

n−1(∂Q) by substracting (possibly infinitely many) multiples of
(∂a1τi1 − ∂a2τi2) with (∂a1τi1, ∂a2τi2) ∈ C.

Observations 5.6. Let (Q, ∂1 Q) be a pair of topological spaces.

(a) If z =
∑

i∈I aiτi ∈ C inf
n (Q) is a singular chain, C is a set of cancellations,

and ϒ := ϒz,C is the associated simplicial set, the geometric realization |ϒ | is
obtained from |I | copies of the standard n-simplex 1i , i ∈ I , with identifications
∂a11i1 = ∂a21i2 if and only if (∂a1τi1, ∂a2τi2) ∈ C. For a minimal presentation of
∂z and ∂ϒ := ∂ϒz,C, |∂ϒ | is the subspace of |ϒ | containing all simplices ∂a11i1

with (i1, a1) ∈ J .

(b) There exists an associated continuous map τ : |ϒ | → Q with τ |1i = τi (upon
the identification 1i =1

n). If z is a relative cycle, i.e., if ∂z ∈ C inf
n−1(∂1 Q), then τ

maps |∂ϒ | to ∂1 Q.

(c) Let z1 =
∑

i∈I aiτi , z2 =
∑

i∈I aiσi ∈ C inf
n (Q, ∂1 Q) be relative cycles and let

C1,C2 be sufficient sets of cancellations of z1 and z2, respectively. Assume that
(∂a1τi1, ∂a2τi2)∈C1 if and only if (∂a1σi1, ∂a2σi2)∈C2, and that there exist minimal
presentations of ∂z1, ∂z2 such that Jz1 = Jz2 .

If the associated continuous maps τ, σ : |ϒ |→Q are homotopic, for a homotopy
mapping |∂ϒ | to ∂Q, then

∑
i∈I aiτi and

∑
i∈I aiσi ∈ C inf

∗
(Q, ∂Q) are relatively

homologous.

5That is, the subset of Ssing
∗ (Q) containing the |I | n-simplices1i , i ∈ I , together with all simplices

obtained by iterated applications of face and degeneracy operators. See [May 1967, Example 1.5].
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We emphasize that we do not assume that C is a complete list of cancellations,
and the simplicial map τ∗ : C

simp
∗ (ϒ)→ C sing

∗ (Q) need not be injective.

After having set up the necessary notations, we will now define the actual
straightening. We first mention that there is of course an analogue of the classical
straightening of [Benedetti and Petronio 1992, Lemma C.4.3] in our setting.

Observation 5.7. Let Q, ∂Q, ∂1 Q, ∂0 Q satisfy Assumption I. Suppose K str
∗
(Q) ⊂

S∗(Q) satisfy conditions (i)–(viii) from Lemma 5.3. Then there exists a “canonical
straightening” map

strcan : C
simp,inf
∗ (K (Q))→ C simp,inf

∗ (K str(Q)),

mapping C simp,inf
∗ (K (∂1 Q)) to C simp,inf

∗ (K str(∂1 Q)), with the following properties:

(i) strcan is a chain map.

(ii) If z =
∑

i∈I aiτi ∈ C simp,inf
∗ (K (Q)) and

∑
i∈I aiσi :=

∑
i∈I ai strcan(τi ), then

the maps τ, σ : |ϒ | → Q (defined by Observation 5.6(b) after fixing a set of
cancellations C and a minimal presentation of ∂z) are homotopic.

Moreover, if z =
∑

i∈I aiτi is a relative cycle with ∂z ∈ C simp,inf
∗ (K (∂1 Q)), the

same is true for
∑

i∈I aiσi , and

τ, σ : (|ϒ |, |∂ϒ |)→ (Q, ∂1 Q)

are homotopic as maps of pairs.
In particular,

∑
i∈I ai strcan(τi ) is relatively homologous to

∑
i∈I aiτi .

Proof. We define strcan, and the homotopy to the identity, by induction on the
dimension of simplices. (During the construction we take care that strcan and the
homotopy preserve K (∂1 Q).)

0-simplices. If C is a path component of ∂0 Q with C ∩ ∂1 Q = ∅, we define
strcan(v) = v for each 0-simplex v in C . The homotopy H(v) is for each v given
by the constant map.

If C is a path component of ∂0 Q with C ∩ ∂1 Q 6= ∅, there is at least one path
component F of ∂1 Q with C∩F 6=∅. By Construction 5.1 and condition (ii) from
Lemma 5.3, for each such F , there is a straight 0-simplex xE F

i
∈ C ∩ F . Choose

one such straight 0-simplex (among the xE F
i

) for each path component C of ∂0 Q,
denote it xC , and for each v ∈ C we define strcan(v) := xC ∈ K str

0 (Q)∩C and we
choose the homotopy H(v) to belong to C .

If v∈∂1 Q, then there is (at least) one straight 0-simplex in the same path compo-
nent F of ∂1 Q, we choose strcan(v)∈ F∩K str

0 (Q) and there exists H(v)∈ K1(∂1 Q)
with ∂H(v)= v− strcan(v).

If v 6∈ ∂Q, then we define strcan(v) to be some straight 0-simplex in ∂Q and we
fix arbitrarily some H(v) ∈ K1(Q) with ∂H(v)= v− strcan(v).
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1-simplices. For e ∈ K1(Q) we define

strcan(e) := [H(∂1e) ∗ e ∗ H(∂0e)],

where, as always, [ · ] denotes the unique 1-simplex in K str
1 (Q), that is homotopic

rel boundary to the path in brackets.
The simplex e is homotopic to strcan(e) by the canonical homotopy that is inverse

to the homotopy moving H(∂1e) or H(∂0e) into constant maps. In particular, the
restriction of this homotopy to ∂1e, ∂0e gives H(∂1e), H(∂0e). Thus, for differ-
ent edges with common vertices, the homotopies are compatible. We thus have
constructed a homotopy for the 1-skeleton ϒ1.

We note that, for v ∈ ∂1 Q, the homotopy H(v) is either constant or lies in
K1(∂1 Q), Thus if τ ∈ K1(∂1 Q) then strcan(τ ) ∈ K str

1 (∂1 Q) and the homotopy
between τ and strcan(τ ) takes place in ∂1 Q.

n-simplices. We assume inductively, that for some n≥ 1, we have defined strcan on
K∗≤n(Q), mapping K∗≤n(∂1 Q) to K str

∗≤n(∂1 Q), and satisfying (i) and (ii).
Let τ ∈ K (Q) be an (n+1)-simplex. Then we have by (ii) a homotopy between

∂τ and strcan(∂τ ). By Observation 3.1 this homotopy extends to τ . The resulting
simplex τ ′ satisfies ∂τ ′ ∈ K str

n (Q). Condition (v) from Lemma 5.3 means that τ ′

is homotopic rel boundary to a unique simplex strcan(τ ) ∈ K str
n+1(Q). This proves

the inductive step.
If τ ∈ K (∂1 Q), then we can inductively assume that the homotopy of ∂τ has im-

age in ∂1 Q. Then condition (vii) from Lemma 5.3 implies strcan(τ ) ∈ K str
n+1(∂1 Q).

Moreover, since ∂1 Q is aspherical, the homotopy of τ can be chosen to have image
in ∂1 Q.

By construction, for any set of cancellations C, the induced maps τ and σ are
homotopic. In particular, if we chose a sufficient set of cancellations in the sense
of Definition 5.5(d), then Observation 5.6(c) implies that

∑r
i=1 ai strcan(τi ) is (rel-

atively) homologous to
∑r

i=1 aiτi . �

However, we want to define a more refined straightening, which will be defined
only on relative cycles with some kind of additional information.

Before stating the definition of distinguished 1-simplices, we remark that there is
a left and right action of the pseudogroup0 :=�(∂Q) (as defined in Section 3D) on
K str

1 (Q): if e ∈ K str
1 (Q), γ1 ∈ π1(∂Q, ∂1e), γ2 ∈ π1(∂Q, ∂0e), then let γ1eγ2 be the

unique straight 1-simplex homotopic rel {0, 1} to γ1∗e∗γ2. (The left action agrees
with the action defined in Section 3D.) The cosets 0K str

1 (Q)0 in Definition 5.8 are
with respect to this action.

For x, y ∈ K str
0 (Q) we will denote K str

1,xy := {e ∈ K str
1 (Q) : ∂1e = x, ∂0e = y}.

Definition 5.8. Let Q, ∂Q, ∂1 Q, ∂0 Q satisfy Assumption I.



AGOL’S INEQUALITY AND NONEXISTENCE OF TIGHT LAMINATIONS 143

Let q : Q→ Q and {xE F
i
∈ ∂0 Q ∩ ∂1 Q} be given by Construction 5.1.

Let K str
∗
(Q)⊂ S∗(Q) satisfy conditions (i)–(viii) from Lemma 5.3.

A set D ⊂ K str
1 (Q) is called a set of distinguished 1-simplices if it satisfies the

following conditions:

(ix) ∂0e, ∂1e ∈ K str
0 (Q) for each e ∈ D.

(x) For each (x, y) ∈ K str
0 (Q)× K str

0 (Q), the set

Dxy := {e ∈ D : ∂1e = x, ∂0 = y}

contains exactly one element in each double coset 0 f 0 ∈ 0K str
1,xy(Q)0,

where 0 =�(∂Q).

(xi) For all x ∈ K str
0 (Q), the constant loop cx belongs to D.

(xii) If e ∈ D, then ē ∈ D, where the bar denotes orientation reversal.

(xiii) If F, F ′ are path components of ∂1 Q and

{xE F
i
∈ ∂0 Q ∩ F}, {xE F ′

j
∈ ∂0 Q ∩ F ′}

are given by Construction 5.1, then q(DxE F
i

x
E F ′

j
)=DxE F

0
x

E F ′
0

for all xE F
i
, xE F ′

j
.

(xiv) If x1, x2 ∈C1 and y1, y2 ∈C2 for some path components C1,C2 of ∂Q, then
for each e1 ∈ Dx1 y1 there exists some e2 ∈ Dx2 y2 with q(e2) = gq(e1) for
some g ∈ H := q∗(5(K (∂0 Q))).

In connection with (xiii) we note that if F ∩∂0 Q =∅, there is only one straight
0-simplex xE F

0
in F . Similarly, if F ′∩∂0 Q=∅, there is only one straight 0-simplex

xE F ′
0

in F ′. In particular, if F ∩ ∂0 Q = ∅ and F ′ ∩ ∂0 Q = ∅, condition (xiii) is
empty.

Observation 5.9. Let the assumptions of Definition 5.8 be satisfied. Then a set D
of distinguished 1-simplices exists.

Proof. For each path component C of ∂Q we fix some xC ∈ j str
0 (C).

For each pair {C1,C2} of path components, we select for membership in DxC1 xC2

one simplex e with

∂1e = xC1, ∂0e = xC2

in each coset of 0K str
1,xC1 xC2

(Q)0. If e is selected for DxC1 xC2
, we select ē for

DxC2 xC1
. If C1=C2, then in particular for the coset of the constant loop we choose

the constant loop for DxC1 xC2
.

For each path component C of ∂Q and each path component F of C ∩ ∂1 Q,
we conclude that q(xC) and q(xE F

0
) belong to the path-connected set q(∂0 Q ∩C).
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Therefore we have a sequence of 1-simplices α1, . . . , αm ∈ K1(∂0 Q) with images
in distinct path components of ∂0 Q ∩C , such that

∂1q(α1)= q(xC), ∂0q(α1)= ∂1q(α2), . . . ,

∂0q(αm−1)= ∂1q(αm), ∂0q(αm)= q(xE F
0
).

To prepare the definition of the Dx,y , we first describe, for each x ∈C∩K str
0 (Q),

a sequence {α1, . . . , αk} of 1-simplices:

– If C ∩ ∂1 Q = ∅, then k = 1 and for each x ∈ C we choose arbitrarily a
1-simplex α1 in C with ∂1α1 = xC , ∂0α1 = x .

– If C ∩ ∂0 Q = ∅, then C ∩ K str
0 (Q) = {xC} by condition (ii) of Lemma 5.3,

and we let k = 0.

– If C∩∂0 Q∩∂1 Q 6=∅, again by condition (ii) of Lemma 5.3 we have x = xE F
i

for some path component F of ∂1 Q and some i ; thus we have the sequence
α1, . . . , αm constructed above with ∂1q(α1)= q(xC), ∂0q(α1)= ∂1q(α2), . . . ,
∂0q(αm−1)= ∂1q(αm), ∂0q(αm)= q(xE F

i
), where the last equality holds true

because q(xE F
i
)= xE F

0
= q(xE F

0
).

Let x, y ∈ K str
0 (Q). Let C1,C2 be the path components of ∂Q with x ∈ C1

and y ∈ C2. We have constructed sequences of 1-simplices α1, . . . , αk ∈ K1(∂Q)
and β1, . . . , βl ∈ K1(∂Q) such that ∂1q(α1) = q(xC1), ∂0q(α1) = ∂1q(α2), . . . ,
∂0q(αk−1)= ∂1q(αk), ∂0q(αk)= q(x), and ∂1q(β1)= q(xC2), ∂0q(β1)= ∂1q(β2),
. . . , ∂0q(βk−1)= ∂1q(βk), ∂0q(βk)= q(y). Note that all q(αi ) and q(βi ) are either
constant or contained in q(K1(∂0 Q)).

Let H := q∗(5(K (∂0 Q))). Define

g := {q(α1), q(α1)} . . . {q(αk), q(αk)}{q(βl), q(βl)} . . . {q(β1), q(β1)} ∈ H.

(If k = l = 0, this just means g = 1.)
We have g = g−1 and

ge ∈ K str
1,q(x)q(y)(Q) ⇐⇒ e ∈ K str

1,q(xC1 )q(xC2 )
(Q).

By construction, the g associated to xE F
i
, xE F ′

j
agrees with the g associated to

xE F
0
, xE F ′

0
.

We are given DxC1 xC2
and we want to define Dxy such that condition (xiii) is

satisfied.
First, if C1 ∩ ∂1 Q =∅ or C2 ∩ ∂1 Q =∅, then we can fix an arbitrary choice of

Dx,y satisfying conditions (x)–(xii). (Condition (xiii) is empty in this case.)
So let us assume C1 ∩ ∂1 Q 6=∅ and C2 ∩ ∂1 Q 6=∅. We note that

q : (Q, ∂Q, ∂1 Q)→ (Q, ∂Q, ∂1 Q)
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is homotopic to the identity as a map of triples, by the construction in Section 5A.
This implies that cosets of 0K str

1,xy(Q)0 are in one-to-one correspondence (by
applying q) with those of 0K str

1,q(x)q(y)0. Thus it suffices to describe q(Dxy) ⊂

K str
1,q(x)q(y).
Let

0 f 0 ∈ 0K str
1,q(x)q(y)(Q)0

be a double coset. Then the double coset

0(g f )0 ∈ 0K str
1,q(xC1 )q(xC2 )

(Q)0

is the image under q of some double coset

0e′0 ∈ 0K str
1,xC1 xC2

(Q)0

Let e be the unique distinguished simplex in 0e′0. Then we choose gq(e) to be
the distinguished simplex in 0 f 0. This is possible because gq(e) belongs to the
double coset 0 f 0. Indeed,

q(e) ∈ 0(g f )0

means that q(e)= q∗(γ1)g f q∗(γ2) for some loops γ1 and γ2 based at xC1 and xC2 ,
respectively, and this implies gq(e′)= q∗(γ ′1) f q∗(γ ′2) with

γ ′1 := [αm ∗ . . . ∗α1 ∗ γ1 ∗α1 ∗ . . . ∗αm], γ
′

2 := [βn ∗ . . . ∗β1 ∗ γ2 ∗β1 ∗ . . . ∗βn].

This defines Dxy . By construction, condition (xiv) is satisfied if e1 ∈ DxC1 xC2
.

In general, if e1 ∈ Dx1 y1 , then we get e ∈ DxC1 xC2
and g1 ∈ H with q(e1)= g1q(e)

and e2 ∈ Dx2 y2, g2 ∈ H with q(e2)= g2q(e); thus q(e2)= g2g−1
1 q(e1).

Condition (xiii) is implied because q(xE F
i
) = xE F

0
, q(xE F ′

j
) = xE F ′

0
and the g

associated to xE F
i
, xE F ′

j
agrees with the g associated to xE F

0
, xE F ′

0
.

One checks easily that (xi) and (xii) are true for Dxy , since they are true for
DxC1 xC2

. �

Definition 5.10. Let Q, ∂Q, ∂0 Q, ∂1 Q satisfy Assumption I. Let z =
∑

i∈I aiτi ∈

C inf
n (Q) be a singular chain and let ϒ be the associated simplicial set (for some set

of cancellations C).
We say that a 0-1 labeling of the elements of the 1-skeleton ϒ1 is admissible if

∂e1 ∩ ∂e2 =∅ for all 1-labeled vertices e1, e2.

Lemma 5.11. Let Q, ∂Q, ∂1 Q, ∂0 Q satisfy Assumption I. Let q : Q→ Q be given
by Construction 5.1.

Let K str
∗
(Q) ⊂ S∗(Q) satisfy conditions (i)–(viii) from Lemma 5.3, and let D ⊂

K str
1 (Q) be a set of distinguished 1-simplices.
Let z =

∑
i∈I aiτi ∈ C simp,inf

∗ (K (Q)) be a relative cycle with

∂z ∈ C simp,inf
∗ (K (∂1 Q)).
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Let a set of cancellations C for z and a minimal presentation of ∂z be given. Let
ϒ, ∂ϒ be the associated simplicial sets, τ : (|ϒ |, |∂ϒ |)→ (Q, ∂1 Q) the associated
continuous mapping.

Assume that we have an admissible 0-1 labeling of ϒ1. Then there exists a
relative cycle

z′ =
∑
i∈I

aiτ
′

i ∈ C simp,inf
∗ (K str(Q), K str(∂1 Q))

satisfying the following conditions:

(i) The associated continuous mappings

τ, τ ′ : (|ϒ |, |∂ϒ |)→ (Q, ∂1 Q)

are homotopic by a homotopy mapping |∂ϒ | to ∂Q.

(ii) If an edge of some τi is labeled by 1, the corresponding edge of τ ′i belongs to D.

Remark. The homotopy in (i) does not necessarily map |∂ϒ | to ∂1 Q, but to ∂Q.

Proof. First we apply the canonical straightening strcan from Observation 5.7. The
resulting chain

∑
i∈I ai strcan(τi ) satisfies (i), but not necessarily (ii).∑

i∈I ai strcan(τi ) inherits the admissible labeling from
∑

i∈I aiτi . Thus we can,
without loss of generality, restrict ourselves to the case that all τi belong to K str(Q).

Let e ∈ K str
1 (Q) be a 1-labeled edge, and set x = ∂1e ∈ K str

0 (Q), y = ∂0e ∈
K str

0 (Q). By Definition 5.8, the coset 0e0 contains a unique distinguished 1-
simplex str(e) ∈ Dxy . (We use the notation from Definition 5.8; in particular,
0 :=�(∂Q).)

That str(e) ∈ 0e0 means6 that there are loops γ1, γ2 ⊂ ∂Q based at x and y,
respectively, such that str(e)∼ γ1 ∗e∗γ2 rel {0, 1}. There is an obvious homotopy
between e and γ1 ∗e∗γ2, which moves ∂1e along γ 1 and ∂0e along γ2. (Of course,
we change the homotopy class relative boundary, so we cannot keep the endpoints
fixed during the homotopy.) If e and/or ∂0e and/or ∂1e have image in ∂1 Q, then
their images remain in ∂Q (and end up in ∂1 Q) during the homotopy.

Using Observation 3.1, the homotopy thus constructed between e and str(e) can
be extended to a homotopy from

τ : (|ϒ |, |∂ϒ |)→ (Q, ∂1 Q)

to some
τ̂ : (|ϒ |, |∂ϒ |)→ (Q, ∂1 Q),

such that τ̂ is a simplicial map from ϒ to S∗(Q). (If a 0-labeled edge has one or
both vertices adjacent to 1-labeled edges, then the 0-labeled edge just follows the

6If ∂0e, ∂1e 6∈ ∂1 Q, then str(e) ∈ 0e0 means, of course, str(e) = e. Similarly, if only one vertex
of e belongs to ∂1 Q, then only that vertex is moved during the homotopy.
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homotopy of the vertices. Edges labeled with 0 but not adjacent to 1-labeled edges
can remain fixed during the homotopy.) The homotopy maps |∂ϒ | to ∂Q.

Next we apply homotopies rel boundary to the (already homotoped images of)
all 0-labeled edges f ∈K str

1 (Q), to homotope them to edges in K str
1 (Q). If f and/or

∂0 f and/or ∂1 f have image in ∂1 Q, then their images remain in ∂Q (and end up
in ∂1 Q) during the homotopy.

Now we have a simplicial map τ̂ : ϒ → S∗(Q), such that all 1-simplices are
mapped to K str

1 (Q), and such that

τ̂ (e) ∈ D ⊂ K str
1 (Q)

holds for all 1-labeled edges e. Then we can, as in the proof of Observation 5.7,
by induction on n, apply homotopies rel boundary to all n-simplices to homotope
them into K str

n (Q). Simplices in ∂1 Q remain in ∂Q (and end up in ∂1 Q) during
the homotopy.

We obtain a homotopy (of pairs), which keeps the 1-skeleton fixed, to a simpli-
cial map

τ ′ : ϒ→ K str(Q),

mapping ∂ϒ to K str(∂1 Q) and satisfying conditions (i) and (ii) of Lemma 5.11. �

A somewhat artificial formulation of the conclusion of Lemma 5.11 is that we
have constructed a chain map

str : C simp,inf
∗ (ϒ, ∂ϒ)→ C simp,inf

∗ (K str(Q), K str(∂1 Q)).

Unfortunately, this somewhat artificial formulation can not be simplified because
str depends on the chain

∑
i∈I aiτi . That is, we do not get a chain map

str : C simp,inf
∗ (K (Q), K (∂1 Q))→ C simp,inf

∗ (K str(Q), K str(∂1 Q)).

5D. Straightening of crushed cycles. Recall from Section 3H that ( · ) ⊗ZG Z

means the tensor product with the trivial ZG-module Z, that is, the quotient under
the G-action. We first state obvious generalizations of Observation 5.6 to the case
of tensor products with a factor with trivial G-action.

Observation 5.12. Let (Q, ∂1 Q) be a pair of topological spaces. Let G be a group
acting on a pair (K , ∂K ) with K ⊂ S∗(Q) and ∂K ⊂ S∗(∂1 Q) both closed under
face maps.

(i) If
z =

∑
i∈I

aiτi ⊗ 1 ∈ C simp,inf
∗ (K , ∂K )⊗ZG Z

is a relative cycle, so is

ẑ =
∑
i∈I

∑
g∈G

ai (gτi ) ∈ C simp,inf
∗ (K , ∂K ).
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If C is a sufficient set of cancellations for z, there exists a set of cancellations Ĉ

for ẑ such that (η1, η2) ∈ Ĉ implies (η1⊗ 1, η2⊗ 1) ∈ C.
If ∂z =

∑
a,i cai∂aτi ⊗ 1 is a minimal presentation for ∂z, then

∂ ẑ =
∑

g∈G

∑
a,i

cai∂a(gτi )

is a minimal presentation for ẑ.

(ii) Let ϒ̂, ∂ϒ̂ be the simplicial sets associated to ẑ, the sufficient set of cancella-
tions Ĉ and the minimal presentation of ∂ ẑ. They come with an obvious G-action.
Then we have an associated continuous mapping τ̂ : (|ϒ̂ |, |∂ϒ |)→ (Q, ∂1 Q).

Corollary 5.13. Let Q, ∂Q, ∂1 Q, ∂0 Q satisfy Assumption I. Let q : Q → Q be
given by Construction 5.1. Let K str

∗
(Q) ⊂ S∗(Q) satisfy conditions (i)–(viii) from

Lemma 5.3, and let D ⊂ K str
1 (Q) be a set of distinguished 1-simplices.

Let G :=5(K (∂0 Q)) with its action on K str(Q) defined in Observation 5.4, and
let H := q∗(G) as defined in Section 5A. Let∑

i∈I
aiτi ⊗ 1 ∈ C simp,inf

n (K (Q),G K (∂1 Q))⊗ZG Z

be a relative cycle. Fix a sufficient set of cancellations C and a minimal presen-
tation for ∂z. Let ϒ̂, ∂ϒ̂ be defined by Observation 5.12. Assume that we have a
G-invariant admissible 0-1 labeling of the edges of ϒ̂ .

Then there is a well-defined chain map

q ◦ str : C simp,inf
∗ (ϒ̂)⊗ZG Z→ C simp,inf

∗ (H K str(Q))⊗ZH Z,

mapping C simp,inf
∗ (∂ϒ̂)⊗ZG Z to C simp,inf

∗ (G K str(∂1 Q))⊗ZH Z, satisfying the fol-
lowing conditions:

(i) If e ∈ ϒ̂1 is a 1-labeled edge, str(e⊗ 1)= f ⊗ 1, then f ∈ D.

(ii) If Q is an orientable manifold with boundary ∂Q, and if∑
i∈I

aiτi ⊗ 1 ∈ C simp,inf
∗ (K (Q),G K (∂1 Q))⊗ZG Z

represents7 the image of [Q, ∂Q]⊗ 1, then∑
i∈I

ai q ◦ str(τi ⊗ 1) ∈ C simp,inf
∗ (H K str(Q), H K str(∂1 Q))⊗ZH Z

represents7 the image of [Q, ∂Q]⊗ 1 and

∂
∑
i∈I

ai q ◦ str(τi ⊗ 1) ∈ C simp,inf
∗ (H K str(∂1 Q))⊗ZH Z

represents the image of [∂Q]⊗ 1.

7See the remark following Lemma 3.6.
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Proof. We can apply Lemma 5.11 to the infinite chain
∑

i∈I,g∈H ai (gτi ) to obtain
a chain map str : C simp,inf

∗ (ϒ̂)→ C simp,inf
∗ (K str(Q)), given by

str(gτi ) := (gτi )
′.

The map q : (K str(Q), K str(∂1 Q))→ (K str(Q), K str(∂1 Q)) is defined by Obser-
vation 5.4. (We actually have q ◦ str(gτi ) ∈ K str(Q). We need H K str(Q) in the
statement of Corollary 5.13 just to have the tensor product well-defined.)

We are going to define q ◦ str(σ ⊗ z) := q(str(σ ))⊗ z for each σ ∈ ϒ̂ and z ∈ Z.
For this to be well-defined, we need this fact:

Claim. For each σ ∈ K , g ∈ G, there exists h ∈ H with q(str(gσ))= hq(str(σ )).

Proof. By condition (viii) from Lemma 5.3 (asphericity of K str(Q)), it suffices to
check this for the 1-skeleton.

0-simplices. If σ = v ∈ S0(∂0 Q) then v and gv belong to the same path com-
ponent C of ∂0 Q, hence str(v) and str(gv) belong to the same path component
C . Let γ : [0, 1] → ∂0 Q be a path with γ (0) = str(v), γ (1) = str(gv). Let
γ ′ be the unique 1-simplex in K (∂0 Q) which is homotopic rel boundary to γ .
Let g′ := {γ ′, γ ′} ∈ G = 5(K (∂0 Q)). Then g′ str(v) = str(gv), which implies
q(str(gv))= hq(str(v)) with h = q∗(g′) ∈ H .

If σ = v 6∈ ∂0 Q, then gv = v, hence q(str(gv))= q(str(v)).

1-simplices. In a first step we prove that for e ∈ K1(Q) and g ∈ G we have
strcan(ge) = g′ strcan(e) with g′ ∈ G. Then we show that, if e ∈ K str

1 (Q) and
g ∈ G, there exists h ∈ H with q(str(ge))= hq(str(e)). Hence altogether we will
get q(str(ge)) = q(str(strcan(ge))) = q(str(g′ strcan(e))) = h q(str(strcan(e))) =
h q(str(e)).

Step 1. This is basically a case analysis.
First case: If both vertices of e do not belong to ∂0 Q, then also both vertices

of strcan(e) do not belong to ∂0 Q, and we have ge = e, g strcan(e) = str(e), which
implies the conclusion.

Second case: If both vertices of e belong to ∂0 Q, then strcan(e) ∼ α1 ∗ e ∗ α2

and strcan(ge) ∼ β1 ∗ ge ∗ β2 for some paths α1, α2, β1, β2 in ∂0 Q. Moreover,
by the definition of the action (Section 3.3) we have ge ∼ γ2 ∗ e ∗ γ1 for some
γ1, γ2 ∈ K1(∂0 Q). Thus strcan(ge) ∼ β1 ∗ γ1 ∗ α

−1
1 ∗ strcan(e) ∗ α−1

2 ∗ γ2 ∗ β2; in
particular strcan(ge)= g′ strcan(e) for some g′ ∈ G.

Third case: Finally we consider the case that one vertex, say ∂0e, belongs to
∂0 Q, but ∂1e does not. Then we are in the situation of the second case with
γ2 = 1 and α2 = β2, except that α2 is not contained in ∂0 Q. We get strcan(ge) ∼
β1 ∗ γ1 ∗ α

−1
1 ∗ strcan(e). Since β1 ∗ γ1 ∗ α

−1
1 is contained in ∂0 Q, this implies that

strcan(ge)= g′ strcan(e) for some g′ ∈ G.
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Step 2. Let e ∈ K str
1 (Q).

If e is a 1-labeled edge, with x = ∂1e, y = ∂0e ∈ K str
0 (Q), then we have by

condition (xiv) from Definition 5.8 that

q(str(ge))= hq(e2)

for some e2 ∈ Dxy and some h ∈ H . But e2 belongs to the same coset in 0K str
1 (Q)0

as e; thus e2 = str(e), which proves the claim for e.
If f is adjacent to one 1-labeled edge e and q(str(ge)) = hq(str(e)), then

q(str(g f ))= hq(str( f )) because the homotopy of f just followed that of e, and the
homotopy of g f just followed that of ge; for example, if ∂1 f =∂1e and q(str(ge))∼
q∗(α)∗q(str(e))∗q∗(β) with α, β ∈ K1(∂0 Q), then q(str(g f ))∼ q∗(α)∗q(str( f )).
Similarly if f is adjacent to two 1-labeled edges.

Finally, if a 0-labeled straight 1-simplex f is not adjacent to a 1-labeled edge,
we have str( f ) = f and str(g f ) = g f , which implies that str(g f ) = g str( f ) and
q(str(g f ))= q∗(g) str( f ).

This concludes the proof of the claim. �

Thus q ◦ str is well-defined; by Lemma 5.11, it satisfies the equation in part (i)
of our corollary. To prove part (ii), we first observe that, if

∑
i∈I aiτi represents

[Q, ∂Q], then, by Observation 5.6(c) and condition (i) from Lemma 5.11 (together
with q ∼ id), the element ∑

i∈I
ai q ◦ str(τi )=

r∑
i=1

ai q(τ ′i )

represents [Q, ∂Q] and the claim follows. Thus it suffices to check: if
∑

i∈I aiτi⊗1
is (relatively) homologous to

∑
j∈J b jκ j ⊗ 1, then q ◦ str(

∑
i∈I aiτi ⊗ 1) is (rela-

tively) homologous to q ◦ str
(∑

j∈J b jκ j ⊗ 1
)
.

So let∑
i∈I

aiτi ⊗ 1−
∑
j∈J

b jκ j ⊗ 1= ∂
∑

k∈K
ckηk ⊗ 1 mod C simp,inf

∗ (G K (∂1 Q))⊗ZG Z

for some chain
∑

k∈K ckηk⊗1∈C simp,inf
∗ (K (Q))⊗ZG Z. In complete analogy with

Lemma 5.11, we may extend str to the simplicial set built by the gηk , their faces
and degenerations, and obtain a singular chain q

(
str
(∑

k∈K ckηk
))

with boundary

∂q ◦ str
(∑

k∈K
ckηk

)
= q ◦ str

(∑
i∈I

aiτi ⊗ 1
)
− q ◦ str

(∑
j∈J

b jκ j ⊗ 1
)

mod C simp,inf
∗ (H K str(∂1 Q))⊗ZH Z.

This gives the first claim of (ii). The second claim of (ii) follows because ∂ maps
[Q, ∂Q] to [∂Q]. �
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5E. Removal of 0-homologous chains.

Definition 5.14. Let Q be an n-dimensional compact manifold with boundary ∂Q.
We define rmv : S∗(Q)→ S∗(Q) by

rmv(σ )=
{

0 if σ is weakly degenerate (Definition 5.2),
σ else.

Lemma 5.15. Assume that Q is a n-dimensional compact manifold with boundary
∂Q. Let K str

∗
(Q) ⊂ S∗(Q) satisfy conditions (i)–(viii) from Lemma 5.3. Then the

map from C simp
∗ (K str(Q), K str(∂0 Q)∪ K str(∂1 Q)) to itself defined by

rmv([σ ]) := [rmv(σ )]

is a well-defined chain map. Moreover, if

r∑
j=1

a jτ j ∈ C simp
∗ (K str(Q), K str(∂0 Q)∪ K str(∂1 Q))⊂ C sing

∗ (Q, ∂Q)

represents [Q, ∂Q], then
∑r

j=1 a j rmv(τ j ) represents [Q, ∂Q].

Proof. If σ ∈ K str(∂0 Q)∪ K str(∂1 Q), then rmv(σ ) ∈ K str(∂0 Q)∪ K str(∂1 Q); thus
rmv is well-defined. We next prove it is a chain map.

Assume that rmv(σ )= 0. If σ has image in ∂Q, then rmv(σ ) and rmv(∂σ ) both
vanish; thus ∂ rmv(σ )= rmv(∂σ ).

If some edge e of σ , say connecting the i-th and j-th vertices, is a constant
loop, then all faces of σ except possibly ∂iσ and ∂ jσ have a constant edge. Thus
rmv(∂kσ) = 0 if k 6∈ {i, j}. Moreover, since e is constant, corresponding edges of
∂iσ and ∂ jσ are homotopic rel boundary and thus agree (possibly up to orientation)
by condition (v) from Lemma 5.3. By induction on the dimension of subsimplices
we get, again using condition (v) from Lemma 5.3, that ∂iσ = (−1)i− j∂ jσ . Alto-
gether we get rmv(∂σ )= 0; thus ∂ rmv(σ )= rmv(∂σ ).

Assume that rmv(σ )= σ . Since no edge of σ is a constant loop, of course also
no edge of a face ∂iσ is a constant loop. If the image of ∂iσ is not contained in
∂Q, this implies rmv(∂iσ) = ∂iσ = ∂i rmv(σ ). If ∂iσ has image in ∂Q, then of
course [∂iσ ] = [0] = [∂i rmv(σ )], which implies rmv(∂iσ)= ∂i rmv(σ ).

Now we prove that rmv sends relative fundamental cycles to relative funda-
mental cycles. Let

∑r
j=1 a jτ j be a straight relative cycle representing the relative

homology class [Q, ∂Q]. We denote by J1 ⊂ {1, . . . , r} the indices of those τ j

which have a constant edge. The sum
∑

j∈J1
a jτ j is a relatively 0-homologous

relative cycle. Indeed, each face of ∂iτk not contained in ∂Q has to cancel against
some face of some τl , because

∑r
j=1 a jτ j is a relative cycle. If ∂iτk is degenerate,

then necessarily l ∈ J1. Moreover, if τk is degenerate and ∂iτk is nondegenerate, it
follows from the earlier part of the proof that ∂iτk cancels against some ∂ jτk .
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Thus
∑

j∈J1
a jτ j represents some relative homology class. The isomorphism

Hn(C
sing
∗ (Q, ∂Q)) → R is given by pairing with the volume form of an arbi-

trary Riemannian metric. After smoothing the relative cycle, we can apply Sard’s
lemma, and conclude that degenerate simplices have volume 0. Thus

∑
j∈J1

a jτ j

is 0-homologous.
We denote by J2⊂{1, . . . , r} the indices of those τ j which are contained in ∂Q.

For j ∈ J2 we have [τ j ] = [0] ∈ C sing
∗ (Q, ∂Q).

Thus
∑

j 6∈J1∪J2
a jτ j is another representative of the homology class [Q, ∂Q].

But, by Definition 5.14, it also represents (rmv)∗([Q, ∂Q]). �

Consider a subgroup H⊂5(K (A)) for some A⊂∂Q. For instance, A=q(∂0 Q)
in the setting of Construction 5.1, and H = q∗(5(K (∂0 Q)))⊂5(K (A)).

A 1-simplex e is a constant loop if and only if he is a constant loop for all
h ∈ H . This implies that a simplex σ is degenerate if and only if hσ is degen-
erate for all hσ . Moreover, H maps simplices in ∂Q to simplices in ∂Q. Thus
rmv(σ ) = 0 if and only if rmv(hσ) = 0 for all h ∈ H , that is, rmv is well defined
on C simp,inf

∗ (H K str(Q))⊗ZH Z for each subgroup H .

Lemma 5.16. Assume that Q is a n-dimensional compact manifold with boundary
∂Q. Let the assumptions of Corollary 5.13 be satisfied. Then we can extend rmv to
a well-defined chain map from (H K str(Q), H K str(∂1 Q))⊗ZH Z to itself by defining

rmv(σ ⊗ z)=
{

0 if rmv(σ )= 0,
σ ⊗ z else.

Moreover, if
∑

j∈J a jτ j ⊗ 1 ∈ C simp,inf
∗ (H K str(Q), H K str(∂1 Q)) ⊗ZH Z repre-

sents the image of [Q, ∂Q] ⊗ 1, then
∑
∈J a j rmv(τ j ⊗ 1) represents the image of

[Q, ∂Q]⊗ 1.

Proof. Well-definedness of rmv follows from the remark before Lemma 5.16. The
same proof as for Lemma 5.15 shows that rmv is a chain map.

If
∑r

j=1 a jτ j represents [Q, ∂Q], the second claim follows from Lemma 5.15. If∑
j∈J a jτ j⊗1 is homologous to

∑s
i=1 biκi⊗1 and

∑s
i=1 biκi represents [Q, ∂Q],

then, because rmv is a chain map, rmv
(∑

j∈J a jτ j ⊗ 1
)

and rmv
(∑s

i=1 biκi ⊗ 1
)

are homologous, which implies the second claim. �

The proof of Theorem 1.1 will pursue the idea of straightening a given cycle
in such a way that many simplices either become weakly degenerate or will have
an edge in ∂0 Q. In the first case, they will disappear after application of rmv. In
the second case, they disappear in view of the following observation, which is a
variant of an argument used in [Gromov 1982].

Lemma 5.17. (a) Let Assumption I be satisfied for a manifold Q and consider
the action of G = 5(K (∂0 Q)) on K (Q). Let σ ∈ K (Q) be a simplex. If
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str(σ ) has an edge in ∂0 Q, then

str(σ ⊗ 1)= 0 ∈ C simp,inf
∗ (K (Q))⊗ZG Z.

(b) If q : Q→ Q is given by Construction 5.1, H = q∗(G), and σ ∈ K (Q) is a
simplex such that q(str(σ )) has an edge in q(∂0 Q), then

q(str(σ ⊗ 1))= 0 ∈ C simp,inf
∗ (K (Q))⊗ZH Z.

Proof. (a) Let γ be the edge of str(σ ) with image in ∂0 Q. Then g = {γ, γ } is
an element of G = 5(K (∂0 Q)) and g str(σ ) = str(σ ). In the simplicial chain
complex C simp,inf

∗ (K (Q)), one has str(σ ) = − str(σ ). Thus g str(σ ) = − str(σ ),
which implies str(σ ⊗ 1)= str(σ )⊗ 1= 0.

(b) Let γ be the edge of q(str(σ )) with image in q(∂0 Q). Let γ ′ be the corre-
sponding edge of str(σ ). Let g = {γ ′, γ ′} ∈ G and h = q∗(g) = {γ, γ } ∈ H . The
same argument as in (a) shows hq(str(σ ))=−q(str(σ )). �

6. Proof of Main Theorem

As discussed in the introduction, before tackling the proof of Theorem 1.1 in full
generality, we prove some particular cases as motivation.

Example 6.1. M is a connected, orientable, hyperbolic n-manifold, F is an ori-
entable, geodesic (n−1)-submanifold, and Q = M − F . For simplicity we assume
that M and F are closed; thus Q is a hyperbolic manifold with geodesic boundary
∂1 Q 6=∅, and ∂0 Q =∅.

Outline of proof that ‖M‖norm
F ≥ ‖∂Q‖/(n + 1). Start with a fundamental cycle∑r

i=1 aiσi of M such that σ1, . . . , σr are normal to F . Since we want to consider
laminations without isolated leaves, we replace F by a trivially foliated product
neighborhood F. We can assume after a suitable homotopy that each component
of σ−1

i (∂Q) either contains no vertex of 1n or consists of exactly one vertex, and
that each vertex of 1n belongs to σ−1

i (F), for i = 1, . . . , r .
Each σ−1

i (Q) consists of polytopes, which can be further triangulated (without
introducing new vertices) in a coherent way (i.e., such that boundary cancellations
between different σi ’s will remain) into τi1, . . . , τis(i).

The sum
∑r

i=1 ai (τi1+ · · ·+ τis(i)) is a relative fundamental cycle for Q.
For each σi , preimages of the boundary leaves of F cut 1n into regions which

we color with black (components of σ−1
i (F)) and white (components of σ−1

i (Q)).
If σ−1

i (∂Q) contains vertices, these vertices are colored black. This is a canonical
coloring (Definition 4.5).
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The edges of the simplices τi, j fall into two classes: “old edges”, i.e., subarcs
of edges of σi , and “new edges”, which are contained in the interior of some sub-
simplex of σi of dimension ≥ 2.

We label the edges of τi j in such a way that old edges are labeled 1 and new
edges are labeled 0. This is an admissible labeling (Definition 5.10). With this
labeling, we apply the straightening procedure8 from Section 5 to get a straight
cycle

∑r
i=1 ai (str(τi1)+ · · · + str(τis(i))). (Thus old edges are straightened to dis-

tinguished 1-simplices.)
After straightening we apply the map rmv from Section 5D to remove all weakly

degenerate simplices (simplices contained in ∂Q or having a constant edge). By
Lemma 5.15, this does not change the homology class. In particular, the boundary
of the relative cycle, ∂

∑
i, j ai rmv(str(τi j )) still represents the fundamental class

[∂Q] of ∂Q.

Claim. For each σi , after straightening there remain at most n + 1 faces of non-
degenerate simplices str(τi j ) contributing to ∂

∑
i, j ai rmv(str(τi j )).

Proof of claim. In view of Lemma 4.13, it suffices to show a subclaim: If , for a
fixed i , the faces T1 = ∂k1τi j1 and T2 = ∂k2τi j2 of τi j1 and τi j2 have a white-parallel
arc (Definition 4.9), then rmv(str(τi j1)) and rmv(str(τi j2)) vanish.
In particular the corresponding straightened faces9 str(T1), str(T2)

do not occur (with nonzero coefficient) in ∂
∑

i, j rmv(str(τi j )).
To prove the subclaim, let W be the white region of 1n con-

taining T1 and T2 in its boundary. By the assumption of the
subclaim, there is a white square bounded by two arcs e1⊂ T1,
e2⊂ T2 and two arcs f1, f2 which are subarcs of edges of1n .
(The square is a formal sum of two triangles, U1+U2, which
are 2-dimensional faces of some τi j ’s.)

e2

e1

f2f1

We want to show that all edges of str(τi j1) belong to Sstr
1 (∂Q). Note that T1, T2⊂

∂W are mapped to ∂Q. Let x1, x2 ∈ Sstr
0 (Q) be the unique elements of Sstr

0 (Q) in
the same connected component C1,C2 of ∂Q as σi (T1) and σi (T2), respectively.
In particular ∂0 str(e1) = x1 = ∂1 str(e1) and ∂0 str(e2) = x2 = ∂1 str(e2). Thus e1

and e2 are straightened to loops str(e1) and str(e2) based at x1 and x2, respectively.
The straightenings str( f1), str( f2) of the other two arcs connect x1 to x2, and they
are distinguished 1-simplices because they arise as straightenings of old edges.
Thus str( f1) = str( f2), by uniqueness of distinguished 1-simplices in each coset

8Under the assumptions of Example 6.1, straight simplices can be chosen to be the totally
geodesic simplices with vertices in Sstr

0 (Q). Distinguished simplices are chosen according to
Observation 5.9.

9For a subsimplex T of an affine subset S ⊂1n we get a singular simplex σi |T by restricting σi
to T . We denote by str(T ) the straightening of σi |T .
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0K str
1 (Q)0 of 0=�(∂Q). This is why we have performed the straightening con-

struction in Section 5 such that there should be only one distinguished 1-simplex,
in each coset, for any given pair of connected components.

This means that the square is straightened to a cylinder.
But (Q, ∂Q) is acylindrical; thus either both str(e1) and str(e2) are constant (in

which case rmv(str(τi j1))= rmv(str(τi j2))= 0), or the cylinder must be homotopic
into ∂Q. In the latter case, str( f1)must be homotopic into, and therefore contained
in, ∂Q. In particular, ∂0 str( f1) and ∂1 str( f1) belong to the same component of ∂Q.
This implies ∂0 str( f1)= ∂1 str( f1). Since str( f1) is a distinguished 1-simplex, this
implies that str( f1) is constant.

Let P1, P2 be the affine planes whose intersections with 1n contain T1 and T2,
respectively. There is an arc f1 connecting P1 ∩1

n to P2 ∩1
n such that str( f1)

is contained in ∂Q. This implies that for each other arc f connecting P1 ∩1
n to

P2 ∩1
n its straightening str( f ) must be homotopic into, and therefore contained

in, ∂Q.
If P1 and P2 are of the same type, then all edges of str(τi j1) connect P1∩1

n to
P2 ∩1

n; hence all edges of str(τi j1) belong to Sstr
1 (∂Q). If P1 and P2 are not of

the same type, the existence of a parallel arc implies that at least one of them, say
P1, must be of type {0a1 . . . ak} with k 6∈ {0, n− 1}. Then, if P3 is any other plane
bounding W , it follows from Corollary 4.8 that P3 has a white-parallel arc with P1.
Repeating the argument in the last paragraph with P1 and P3 in place of P1 and P2,
we conclude that for each arc f connecting P1 ∩1

n to P3 ∩1
n its straightening

str( f ) must be homotopic into, and therefore contained in, ∂Q. Hence, for each
τi j1 in the chosen triangulation of W , its 1-skeleton is straightened into ∂Q.

Since straight simplices σ (of dimension ≥ 2) with ∂σ in the geodesic boundary
∂Q must be in ∂Q, this implies by induction that the k-skeleton of str(τi j1) is in
∂Q for each k. In particular, str(τi j1) ∈ Sstr

n (∂Q). Hence rmv(str(τi j1)) = 0. This
proves the subclaim.

By Lemma 4.13, the subclaim implies the claim. �

Since
∑r

i=1 ai∂
∑

j rmv(str(τi j )) represents the fundamental class [∂Q], we
conclude that ‖∂Q‖ ≤ (n+ 1)

∑r
i=1 |ai |, as desired. �

The simplifications of Example 6.1 in comparison to the general proof below
are essentially all due to the fact that ∂0 Q = ∅. In the next example, if F is not
geodesic, then Q 6= N and thus ∂0 Q 6=∅ (even though ∂M and ∂F are both empty).
Thus the generalization to ∂0 Q 6= ∅ would be necessary even if one only wanted
to consider closed manifolds M and F .

Example 6.2. M is a connected, closed, hyperbolic 3-manifold, F ⊂ M a closed,
incompressible surface, N = M − F , Q = Guts(N ).
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Outline of proof that ‖M‖norm
F ≥

1
4‖∂Q‖. Start with a fundamental cycle

∑r
i=1 aiσi

of M , such that σ1, . . . , σr are normal to F . As in Example 6.1 we get a relative
fundamental cycle

∑r
i=1 ai (τi1+· · ·+ τis(i)) of N . We cannot apply the argument

from Example 6.1 to N because N is not acylindrical. Therefore we would like to
work with a relative fundamental cycle for the acylindrical manifold Q.

N is aspherical. Using Lemma 3.2, we can assume that all τi j belong to K (N ).
Then we can apply the retraction r from Lemma 3.5. Since r is only defined after
tensoring with Z over ZG, we get r(τi j ⊗ 1) = κi j ⊗ 1 with κi j ∈ K (Q) only
determined up to choosing one κi j in its G-orbit.

Since Q is aspherical, we have K (Q)= K̂ (Q), that is, the κi j can be considered
as simplices in Q and we can apply Lemma 3.6(b) to obtain a fundamental cycle
for ∂Q.

The rest of the proof basically boils down to copying the proof of Example 6.1,
with τi j replaced by κi j ; but taking care of the ambiguity in the choice of κi j . The
details can be found in the full-fledged proof of the theorem we’re about to give. �

Proof of Theorem 1.1. The theorem is trivially true if n = 1. Hence we assume
n ≥ 2.

If ∂1 Q is empty, the equality ∂Q = ∂0 Q and the amenability of π1∂0 Q would
imply ‖∂Q‖ = 0, and Theorem 1.1 would be trivially true. Hence we assume
∂1 Q 6=∅. In particular, Q satisfies Assumption I from Section 5.

Consider a relative cycle
∑r

i=1 aiσi , representing [M, ∂M], such that σ1, . . . , σr

are normal to F. Our aim is to show that
r∑

i=1
|ai | ≥

1
n+1
‖∂Q‖.

Define

N = M −F.

Since each σi is normal to F, we have for each i = 1, . . . , r that, after application
of a simplicial homeomorphism hi : 1

n
→ 1n , the image of σ−1

i (N ) consists of
polytopes, which can each be further triangulated in a coherent way (i.e., such that
boundary cancellations between different σi ’s will remain) into simplices θi j , with
j ∈ Ĵi . (It is possible that | Ĵi | = ∞, because N may be noncompact.) We choose
these triangulations of the σ−1

i (N ) to be minimal (Definition 4.9); that is, we do
not introduce new vertices. (Compatible minimal triangulations of the σ−1

i (N ) do
exist: one starts with common minimal triangulations of the common faces and
extends them to minimal triangulations of each polytope.)

Because boundary cancellations are preserved, we see that
∑r

i=1 ai
∑

j∈ Ĵi
θi j

is a countable (possibly infinite) relative cycle representing the fundamental class
[N , ∂N ] in the sense of Section 3B.
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We fix a sufficient set of cancellations CM for the relative cycle
∑r

i=1 aiσi , in
the sense of Definition 5.5. This induces a sufficient set of cancellations CN for
the relative cycle

∑r
i=1

∑
j∈ Ĵi

aiθi j .

If ∂M is a leaf of F, then all faces of z contributing to ∂z are contained in ∂N .
We call these faces exterior faces. We can assume that, for each i ,

– each component of σ−1
i (∂N ) either contains no vertex of 1n , or consists of

exactly one vertex, or consists of an exterior face, and

– and each vertex of 1n belongs to σ−1
i (F).

Indeed, by a small homotopy of the relative fundamental cycle
∑r

i=1 aiσi , pre-
serving normality, we can obtain that no component of σ−1

i (∂N ) contains a vertex
of 1n , except for exterior faces. Afterwards, if some vertices of

∑r
i=1 aiσi do not

belong to F, we may homotope a small neighborhood of the vertex, until the vertex
(and no other point of the neighborhood) meets ∂N . This, of course, preserves
normality to F.

Since each σi is normal to F, in particular each σi is normal to the union of
boundary leaves

∂1 N := ∂N − (∂M ∩ ∂N ).

Thus for each σi , after application of a simplicial homeomorphism hi :1
n
→1n ,

the image of σ−1
i (∂1 N ) consists of a (possibly infinite) set

Q1, Q2, . . .⊂1
n,

such that
Qi = Pi ∩1

n

for some affine hyperplanes P1, P2, . . . . We define a coloring by declaring that
(images under hi of) components of

σ−1
i (int(N )) := σ−1

i (N − ∂1 N )

are colored white and (images under hi of) components of σ−1
i (F) are colored

black. (In particular, all Qi are colored black.) Since we assume that all vertices
of 1n belong to σ−1

i (F), and since each boundary leaf is adjacent to at least one
component of σ−1

i (int(N )), this is a canonical coloring (Definition 4.5).

By Lemma 3.2(a), we can homotope the relative cycle
∑r

i=1
∑

j∈ Ĵi
θi j , which

belongs to C inf
n (N , ∂N ), to a relative cycle

r∑
i=1

ai
∑
j∈ Ĵi

θ̂i j

such that each θ̂i j is a simplex of K̂ (N ), as defined in Section 3B, and such that
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the boundary ∂
∑r

i=1
∑

j∈ Ĵi
θi j is homotoped into K̂ (∂N ). Then consider

r∑
i=1

∑
j∈ Ĵi

aiτi j :=
r∑

i=1

∑
j∈ Ĵi

ai p(θ̂i j ) ∈ C simp,inf
n (K (N )),

where p : K̂ (N )→ K (N ) is the projection defined at the end of Section 3B, and
τi j := p(θ̂i j ) for all i, j .

Consider Q ⊂ N as in the assumptions of Theorem 1.1. We define

G :=5(K (∂0 Q)).

We have by assumption that N =Q∪R is an essential decomposition (as defined
in the introduction), which means exactly that the assumptions of Lemma 3.5 are
satisfied. Thus, according to Lemma 3.5, there exists a retraction

r : C simp,inf
n (K (N ))⊗ZG Z→ C simp,inf

n (K (Q))⊗ZG Z

for n ≥ 2, mapping C simp,inf
n (G K (∂N ))⊗ZG Z to C simp,inf

n (G K (∂1 Q))⊗ZG Z, such
that, for each simplex τi j ∈ K (N ), we either have r(τi j ⊗ 1)= 0 or

r(τi j ⊗ 1)= κi j ⊗ 1

for some simplex κi j ∈ K (Q). (Recall that we’ve assumed that n ≥ 2.) Thus

r
( r∑

i=1
ai
∑
j∈ Ĵi

τi j ⊗ 1
)
=

r∑
i=1

ai
∑
j∈Ji

κi j ⊗ 1,

with Ji ⊂ Ĵi for all i . (It may still be possible that |Ji | = ∞.) We remark that κi j

is only determined up to choosing one κi j in its G-orbit.
Since r is a chain map, we get a sufficient set of cancellations for

r∑
i=1

ai
∑
j∈Ji

κi j⊗1
by setting

CQ
:=
{
(∂kκi1 j1 ⊗ 1, ∂lκi2 j2 ⊗ 1) : (∂kτi1 j1, ∂lτi2 j2) ∈ CN}.

By assumption, Q is aspherical. We can therefore apply Lemma 3.6 and get

∂
( r∑

i=1
ai
∑
j∈Ji

κi j ⊗ 1
)
∈ C simp,inf
∗ (G K (∂1 Q))⊗ZG Z

represents (the image of) [∂Q]⊗ 1.
Lemma 3.4(a) gives that G is amenable. Together with Lemma 3.7 this implies

‖∂Q‖ ≤
r∑

i=1
|ai |(n+ 1)|Ji |.

In the remainder of the proof, we will use Lemma 5.16 to improve this inequality,
getting rid of the unspecified (possibly infinite) numbers |Ji |.
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Q, ∂Q, ∂0 Q, ∂1 Q satisfy Assumption I (page 135). Thus there exists a simpli-
cial set

K str
∗
(Q)⊂ S∗(Q)

satisfying conditions (i)–(viii) from Lemma 5.3, and a set

D ⊂ K str
1 (Q)

of distinguished 1-simplices (Definition 5.8).
Recall that, for each i , ∑

j∈ Ĵi

θi, j

was defined by choosing a triangulation of σ−1
i (N ). The simplices θi, j thus have

“old edges”, i.e., subarcs of edges of σi , and “new edges”, whose interior is con-
tained in the interior of some subsimplex of σi of dimension ≥ 2.

Associated to z =
∑r

i=1 ai
∑

j∈ Ĵi
θi j and CN (and an arbitrary minimal presen-

tation of ∂z) are, by Definition 5.5, simplicial sets ϒN , ∂ϒN .
The only possibility that two old edges have a vertex in ϒN in common is that

this vertex is a vertex of σi .
So the labeling of edges of

∑r
i=1 ai

∑
j∈ Ĵi

θi j by labeling old edges not contain-
ing a vertex of any σi with label 1 and all other edges with label 0 is an admissible
labeling (Definition 5.10).

Associated to

w =
r∑

i=1
ai
∑
j∈Ji

κi j ⊗ 1

and CQ (and an arbitrary minimal presentation of ∂w) there are simplicial sets
ϒ, ∂ϒ . By our definition of CQ , ϒ is isomorphic to a simplicial subset of ϒN ,
namely to the subset generated by the set

{τ ∈ ϒN
: r(τ ⊗ 1) 6= 0}

together with all iterated faces and degenerations. In particular, the admissible 0-1
labeling of ϒN induces an admissible 0-1 labeling of ϒ .

By Construction 5.1, there is a map of triples q : (Q, ∂Q, ∂1 Q)→ (Q, ∂Q, ∂1 Q)
which is (as a map of triples) homotopic to the identity, and such that q(∂0 Q ∩C)
is path-connected for each path component C of ∂Q.

We define

A := q(∂0 Q), H := q∗(G)= q∗(5(K (∂0 Q)))⊂5(K (A)).

We observe that H is a quotient of G, hence amenable, even though 5(K (A))
need not be amenable.
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Let ϒ̂, ∂ϒ̂ be defined by Observation 5.12. By Corollary 5.13, there is a chain
map

q ◦ str : C simp,inf
∗ (ϒ̂)⊗ZG Z→ C simp,inf

∗ (H K str(Q))⊗ZH Z,

mapping C simp,inf
∗ (∂ϒ̂)⊗ZG Z to C simp,inf

∗ (H K str(∂1 Q))⊗ZH Z such that

∂
r∑

i=1
ai
∑
j∈Ji

q(str(κi j ))⊗ 1

represents (the image of) [∂Q] ⊗ 1 and such that 1-labeled edges are mapped to
distinguished 1-simplices. (We keep in mind that κi j is only determined up to
G-action; thus q(str(κi j )) is determined only up to choosing one simplex in its
H -orbit.)

We then apply Lemma 5.16 to get the cycle

∂
r∑

i=1
ai
∑
j∈Ji

rmv(q(str(κi j ))⊗ 1) ∈ C simp,inf
∗ (H K str(∂1 Q))⊗ZH Z

representing (the image of) [∂Q]⊗1. We want to show that this is actually a finite
chain of l1-norm at most

(n+ 1)
r∑

i=1
|ai |.

Claim. For each i ,
∂
∑
j∈Ji

rmv(q(str(κi j ))⊗ 1)

is the formal sum of at most n+ 1 (n−1)-simplices L ⊗ 1 with coefficient 1.

Proof. This is a consequence of the following subclaim and Lemma 4.13:

Assume that for some fixed i ∈ I , for the chosen triangulation

σ−1
i (N )=

⋃
j∈ Ĵi

θi j

and the associated canonical coloring, there exist j1, j2∈ Ĵi and k1, k2∈{0, . . . , n}
such that the faces

T1 = ∂k1θi j1 ∈ Sn−1(∂N ), T2 = ∂k2θi j2 ∈ Sn−1(∂N )

have a white-parallel arc (Definition 4.9). Then

rmv(q(str(κi j1))⊗ 1)= 0, rmv(q(str(κi j2))⊗ 1)= 0.

To prove the subclaim, note first that

∂klθi jl ∈ Sn−1(∂N )

implies (by Lemma 3.5 and Construction 5.1)

∂kl q(str(κi jl )) ∈ H K str
∗
(∂1 Q)
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for l = 1, 2. Now assume (for a contradiction) that

rmv(q(str(κi j1))⊗ 1) 6= 0.

By the subclaim’s hypothesis, there are white-parallel arcs e1, e2 of T1 and T2,
respectively. This means that there are arcs e1, e2 in a 2-dimensional subsimplex
τ 2
⊂1n of the standard simplex, and subarcs f1, f2 of some edge of τ 2, all satis-

fying

∂0e1 = ∂1 f2, ∂0 f2 = ∂0e2, ∂1e2 = ∂0 f1, ∂1 f1 = ∂1e1

and such that e1, f2, e2, f1 bound a square in the boundary of a white component.
(See figure on page 154. We will use the same letter for an affine subset of 1n

and for the singular simplex obtained by restricting σi to this subset.) The square
is of the form U1+U2, where U1,U2 are (n−2)-fold iterated faces of some θi j ’s.
Hence ∂U1 = e1+ f2+ ∂2U1 and ∂U2 =−e2− f1− ∂2U1, in other words,

∂(U1+U2)= e1+ f2− e2− f1 and ∂2U1 =−∂2U2.

We emphasize that we assume e1 and e2 to be edges of θi j1 and θi j2 , respectively,
but f1, f2 need not be edges of θi j1 or θi j2 .

Notational remark. For each iterated face f = ∂k1 . . . ∂klθi j with i ∈ I, j ∈ Ji , we
will denote by f ′ the (n−l)-simplex with

f ′⊗ 1= ∂k1 . . . ∂klκi j ⊗ 1= r(∂k1 . . . ∂kl τi j ⊗ 1)= r(∂k1 . . . ∂kl p(θ̂i j )⊗ 1).

(The last two equations are true because r, p and the homotopy from
∑

i, j aiθi j to∑
i, j θ̂i j are chain maps.) In other words, if f is an iterated face of some τi j , then

f ′ is, up to the ambiguity by the H -action, the corresponding iterated face of κi j .

By Lemma 3.5 we have e′1, e′2 ∈ G K (∂1 Q). Thus we can (and will) choose
κi j1, κi j2 in their G-orbits in such a way that e′1, e′2 ∈ K (∂1 Q), which implies that
str(e′1), str(e′2) ∈ K str(∂1 Q).

Since r, p and the homotopy are chain maps, we have

∂2U ′1⊗ 1=−∂2U ′2⊗ 1.

That is,

∂2U ′1 = g∂2U ′2

for some g ∈ G.
Since U ′1 and U ′2 belong to different κi j ’s, say κi j1 and κi j2 , we can, upon replac-

ing κi j2 by gκi j2 , assume that

∂2U ′1 = ∂2U ′2,
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that is, U ′1+U ′2 is a square. (Since g maps ∂e′2 to ∂e′1, this second choice of κi j2 in
its G-orbit preserves the condition that e′2 ∈ K str(∂1 Q).)

F

F
xk xk

xl

xl

cylinder

Let F and F ′ be the path components of ∂1 Q such that e′1 ⊂ F and e′2 ⊂ F ′.
Then ∂1 str( f ′1), ∂0 str( f ′2) ∈ F and ∂0 str( f ′1), ∂1 str( f ′2) ∈ F ′.

We note that f ′1 and f ′2 are edges with label 1. By condition (i) of Corollary 5.13,
this implies that str( f ′1) and str( f ′2) are distinguished 1-simplices.

By conditions (ix) and Condition (xiii) of Definition 5.8 we have

∂1q(str( f ′1))= xE F
0
= ∂0q(str( f ′2)), ∂0q(str( f ′1))= xE F ′

0
= ∂1q(str( f ′2)).

That is, q(str(e′1)) and q(str(e′2)) are loops in ∂1 Q, based respectively at xE F
0

and
xE F ′

0
.

Since the square q(str(U ′1 +U ′2)) realizes a homotopy between q(str( f ′1)) and
q(str( f ′2)), we have

q(str( f ′1))= γ1q(str( f ′2))γ2

with

γ1 = q(str(e′1)), γ2 = q(str(e′2)) ∈�(∂1 Q)⊂ 0 =�(∂Q).

By condition (x) from Definition 5.8 this implies

q(str( f ′1))= q(str( f ′2)).

This means that q(str(U ′1))+ q(str(U ′2)) is a cylinder with the boundary circles
q(str(e′1)) and q(str(e′2)) in ∂1 Q.

(This is why we have performed the straightening construction in Section 5 in
such a way that there should be only one distinguished 1-simplex in each coset.)
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The assumption rmv(q◦str(κi j1)⊗1) 6=0 made at the top of page 161 implies that
the loops q(str(e′1)) and q(str(e′2)) are not 0-homotopic. Indeed, if one of them is 0-
homotopic (and thus constant), so is the other, because they are homotopic through
the cylinder. But q(str(e′1)) and q(str(e′2)) are edges of q(str(κi j1)) and q(str(κi j2)),
respectively. In particular, q(str(κi j1)) and q(str(κi j2)) then have a constant loop as
an edge. By Lemma 5.16 and Definition 5.2, this implies rmv(q ◦str(κi j1)⊗1)= 0.

Thus we can assume that q(str(e′1)) and q(str(e′2)) are not 0-homotopic, that is,
the cylinder

q(str(U ′1))+ q(str(U ′2))

is π1-injective as a map of pairs. Since (Q, ∂1 Q) is a pared acylindrical manifold,
the cylinder must then be homotopic into ∂Q, as a map of pairs

(S1
×[0, 1],S1

×{0, 1})→ (Q, ∂1 Q).

Since ∂1 Q is acylindrical, the cylinder must then either degenerate (that is, S1
×

[0, 1]→ ∂Q homotopes to a map that factors over the projection S1
×[0, 1]→S1;

in particular, q(str(e′1)) = q(str(e′2))) or be homotopic into ∂0 Q (and hence into
q(∂0 Q), since q ∼ id). In the second case the vertices xE F

0
, xE F ′

0
must belong to

∂0 Q and we get by condition (vii) from Lemma 5.3 that q(str(e′1)) and q(str(e′2)) lie
in K str

1 (∂0 Q). By Lemma 5.17 this implies that q(str(κi j1))⊗1 and q(str(κi j2))⊗1
vanish.

Thus we can assume that the cylinder degenerates. In particular, q(str( f ′1)) and
q(str( f ′2)) lie in K str

1 (∂1 Q).
Let P1, P2 be the affine planes whose intersections with 1n contain T1 and T2,

respectively. Let W be the white component whose boundary contains the white-
parallel arcs of T1, T2. We have seen that there are arcs f1, f2 connecting P1∩1

n

to P2 ∩1
n such that

q(str( f ′1)), q(str( f ′2)) ∈ K str
1 (∂1 Q).

This implies that for each other arc f connecting P1∩1
n to P2∩1

n the straight-
ening q(str( f ′)) must be (homotopic into — and therefore, by condition (vii) from
Lemma 5.3), contained in — ∂1 Q.

If P1 and P2 are of the same type (Definition 4.1), this shows that for all arcs
f ⊂W we have

q(str( f ′)) ∈ K str
1 (∂1 Q)

If P1 and P2 are not of the same type, then the existence of a parallel arc implies
that at least one of them, say P1, must be of type {0a1 . . . ak} with k 6∈ {0, n− 1}.
Then, for each plane P3 6= P1 with P3∩1

n
⊂ ∂W , it follows from Corollary 4.8 that

P3∩1
n has a white-parallel arc with P1∩1

n . Thus, repeating the argument with P1

and P3 in place of P1 and P2, we prove that there are arcs in ∂1 Q connecting P1∩1
n
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to P3∩1
n , and consequently for each arc f ⊂W connecting P1∩1

n to P3∩1
n ,

the straightening str( f ′) must be homotopic into, and thus contained in, ∂1 Q.
Consequently, also for arcs connecting P2 ∩1

n to P3 ∩1
n , we conclude that

q(str( f ′)) must be homotopic into, and therefore contained in, ∂1 Q. This finally
shows that the 1-skeleta of q(str(κi j1)) and q(str(κi j2)) belong to K str

1 (∂1 Q). By the
π1-injectivity of ∂1 Q → Q, the asphericity of K (∂1 Q), and condition (vii) from
Lemma 5.3, this implies that the 2-skeleta of q(str(κi j1)) and q(str(κi j2)) belong
to K str

1 (∂1 Q). Inductively, if the k-skeleta of q(str(κi j1)) and q(str(κi j2)) belong to
K str

k (∂1 Q), then by the asphericity of K (Q) and K (∂1 Q) together with condition
(vii) from Lemma 5.3 we obtain that the k+1-skeleta of q(str(κi j1)) and q(str(κi j2))

belong to K str
k+1(∂1 Q). This provides the inductive step and thus our inductive proof

shows that q(str(κi j1)) and q(str(κi j2)) belong to K str(∂1 Q).
By Definitions 5.2 and 5.14 and Lemma 5.16 this implies

rmv(q(str(κi j1))⊗ 1)= 0, rmv(q(str(κi j2))⊗ 1)= 0.

So we have shown the subclaim: if T1 = ∂k1θi j1 and T2 = ∂k2θi j2 have a white-
parallel arc, then rmv(q(str(κi j1)) ⊗ 1) = 0 and rmv(q(str(κi j2)) ⊗ 1) = 0. In
particular, q(str(T ′1)) and q(str(T ′2)) do not occur (with nonzero coefficient) in

∂
∑
j∈Ji

rmv(q(str(κi j ))⊗ 1).

By Lemma 4.13, for a canonical coloring associated to a set of affine planes
P1, P2, . . . , and a fixed triangulation of each Qi = Pi ∩1

n , we have at most n+1
(n−1)-simplices whose 1-skeleton does not contain a white-parallel arc. This show
that the subclaim implies the claim. �

The upshot is that we have presented [∂Q] ⊗ 1 as a finite chain of l1-norm
at most (n + 1)

∑r
i=1 |ai |. By Lemma 3.4(a) we know that G = 5(K (∂0 Q)) is

amenable. Hence H = q∗(G) is amenable. Thus Lemma 3.7, applied to X = ∂Q
and K = H K str(∂1 Q) with its H -action, implies ‖∂Q‖ ≤ (n+ 1)

∑r
i=1 |ai |. This

concludes the proof of Theorem 1.1. �

Theorem 1.1 is not true without assuming the amenability of π1∂0 Q. Coun-
terexamples can be found, for example, using [Jungreis 1997] or [Kuessner 2003,
Theorem 6.3].

Remark. In [Agol 1999], Theorem 1.1 has been proven for incompressible sur-
faces in hyperbolic 3-manifolds. We compare the steps of the proof in [Agol 1999]
with the arguments in our paper:

Agol’s step 1 is the normalization procedure, which we restated in Lemma 2.4.
Step 2 consists in choosing compatible triangulations of the polytopes σ−1

i (N ).
Step 3 boils down to the statement that, for each component Qi of Q, there

exists a retraction r : N̂→ p−1(Qi ), for the covering p : N̂→ N corresponding to



AGOL’S INEQUALITY AND NONEXISTENCE OF TIGHT LAMINATIONS 165

π1 Qi . Such a statement cannot be correct because it would (together with Agol’s
step 7) imply ‖N‖ ≥ ‖Q‖ whenever Q is a π1-injective submanifold of N . This
inequality is true for submanifolds with amenable boundary, but not in general. In
fact, one only has the more complicated retraction

r : C∗(K (N ), K (N ′))⊗ZG Z→ C∗(K (Q), K (∂Q))⊗ZG Z,

with G =5(K (∂0 Q)). This is why much of the latter arguments become notation-
ally awkward, although conceptually not much is changing. Moreover, the action
of G is basically the reason why Theorem 1.1 is true only for amenable G.

Basically, the reason why the retraction r : N̂→ Q does not exist, is as follows.
Let R j be the connected components of N̂ − p−1(Qi ). Then R j is homotopy
equivalent to each connected component of ∂R j . If ∂R j were connected for each
j , this homotopy equivalence could be extended to a homotopy equivalence r :
N̂ → p−1(Qi ). However, in most cases ∂R j will be disconnected, and then such
an r cannot exist.

We note that also the weaker construction of cutting off simplices does not work.
A simplex may intersect Qi in many components and it is not clear which compo-
nent to choose.

Step 4 from Agol’s proof puts a hyperbolic metric with geodesic boundary on Q.
His step 5 is the straightening procedure, corresponding to Sections 5B–5D in

this paper. We remark that the straightening procedure must be slightly more com-
plicated than in [Agol 1999] because it is not possible, as suggested in that same
paper, to homotope all edges between boundary components of ∂Q into shortest
geodesics. This is the reason why we can only straighten chains with an admis-
sible 0-1 labeling of their edges (and why our straightening homomorphism in
Section 5C is only defined on C simp

∗ (|ϒ |) and not on all of C sing
∗ (Q)).

Agol’s step 6 consists in removing degenerate simplices. This corresponds to
Section 5E in this paper.

His step 7 proves that each triangle in σ−1
i (∂N ) contributes only once to the

constructed fundamental cycle of ∂Q. Since, in our argument, we do not work
with the covering p : N̂ → N , we have no need for this justification.

His step 8 counts the remaining triangles per simplex (after removing degenerate
simplices). It seems to have used the combinatorial arguments which we work out
for arbitrary dimensions in Section 4.

We mention that the arguments of Section 4 are the only part of the proof
which gets easier if one restricts to 3-manifolds rather than arbitrary dimensions.
Moreover, the proof for laminations is the same as for hypersurfaces except for
Lemma 2.4. Thus, upon these two points it seems that even in the case of in-
compressible surfaces in 3-manifolds the proof of Theorem 1.1 cannot be further
simplified.
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7. Specialization to 3-manifolds

Guts of essential laminations. We start by recalling the guts-terminology. Let
M be a compact 3-manifold with (possibly empty) boundary consisting of in-
compressible tori, and F an essential lamination transverse or tangential to the
boundary. N = M −F is a, possibly noncompact, irreducible 3-manifold with
incompressible, aspherical boundary ∂N . We set

∂0 N = ∂N ∩ ∂M, ∂1 N = ∂N − ∂0 N .

(Thus ∂1 N is the union of boundary leaves of the lamination.) By the proof of
[Gabai and Kazez 1998, Lemma 1.3], the noncompact ends of N are essential I -
bundles over noncompact subsurfaces of ∂1 N . After cutting off each of these ends
along an essential, properly fibered annulus, one obtains a compact 3-manifold to
which one can apply the JSJ-decomposition [Jaco and Shalen 1979; Johannson
1979]. Hence we have a decomposition of N into the characteristic submani-
fold Char(N ) (which consists of I -bundles and Seifert fibered solid tori, where
the fibrations have to respect boundary patterns as defined in [Johannson 1979,
p. 83]) and the guts of N , Guts(N ). The I -fibered ends of N will be added to the
characteristic submanifold, which thus may become noncompact, while Guts(N )
is compact. (We mention that there are different notions of guts in the literature.
Our notion is compatible with that of [Agol 1999; Agol et al. 2007], but differs
from the definition in [Gabai and Kazez 1998] or [Calegari and Dunfield 2003] by
taking the Seifert fibered solid tori into the characteristic submanifold and not into
the guts. Thus, solid torus guts in the paper of Calegari–Dunfield is the same as
empty guts in our setting.) If ∂0 N ∩ ∂Q 6=∅ consists of annuli A1, . . . , Ak , then,
to be consistent with the setting of Theorem 1.1, we add components Ai × [0, 1]
to Char(N ) (without changing the homeomorphism type of N ), which implies
∂0 N ∩ ∂Q =∅.

For Q = Guts(N ) we set

∂1 Q = ∂1 N ∩ ∂Q = ∂N ∩ ∂Q = Q ∩ ∂N , ∂0 Q = ∂Q− ∂1 Q.

For R = Char(N ) we set

∂1 R = ∂N ∩ ∂R, ∂0 R = ∂R− ∂1 R.

Then ∂0 N ∩ ∂Q =∅ implies ∂0 Q = Q ∩ R.
∂0 Q consists of essential tori and annuli; in particular π1∂0 Q is amenable. The

guts of N has the following properties: the pair (Q, ∂1 Q) is a pared acylindrical
manifold (Definition 4.3), Q, ∂1 Q, ∂1 R are aspherical, and the inclusions

∂0 Q→ Q, ∂1 Q→ Q, Q→ N , ∂0 R→ R, ∂1 R→ R, R→ N
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are π1-injective; see [Jaco and Shalen 1979; Johannson 1979]. It follows from
Thurston’s hyperbolization theorem for Haken manifolds that Q admits a hyper-
bolic metric with geodesic boundary ∂1 Q and cusps corresponding to ∂0 Q. (In
particular, we have χ(∂Q) ≤ 0; thus ∂Q is aspherical, and ∂1 Q is a hyperbolic
surface, thus acylindrical.)

Theorem 7.1. Let M be a compact 3-manifold with (possibly empty) boundary
consisting of incompressible tori, and let F be an essential lamination of M. Then

‖M, ∂M‖norm
F ≥−χ(Guts(F)).

More generally, if P is a polyhedron with f faces, then

‖M, ∂M‖norm
F,P ≥−

2
f −2

χ(Guts(F)).

Proof. Let N = M −F. Since F is essential, N is irreducible (hence aspherical,
since ∂N 6= ∅) and has incompressible, aspherical boundary. Let R = Char(N )
be the characteristic submanifold and Q = Guts(N ) be the complement of the
characteristic submanifold of N . The discussion before Theorem 7.1 shows that
the decomposition N = Q ∪ R satisfies the assumptions of Theorem 1.1.

From the computation of the simplicial volume for surfaces [Gromov 1982,
section 0.2] and χ(Q)= 1

2
χ(∂Q) (which is a consequence of Poincaré duality for

the closed 3-manifold Q ∪∂Q Q), it follows that

−χ(Guts(F))=− 1
2
χ(∂ Guts(F))= 1

4‖∂ Guts(F)‖.

Thus, the first claim is obtained as application of Theorem 1.1 to Q = Guts(F).
The second claim — the generalization to arbitrary polyhedra — is obtained as

in [Agol 1999]. Namely, one uses the same straightening as above, and asks again
how many nondegenerate 2-simplices may, after straightening, occur in the inter-
section of ∂Q with some polyhedron Pi . In [Agol 1999, p. 11], it is shown that
this number is at most 2 f − 4, where f is the number of faces of Pi . The same
argument as above then shows that

r∑
i=1
|ai | ≥

1
2 f −4

‖∂ Guts(F)‖,

giving the wanted inequality. �

The following corollary applies, for example, to all hyperbolic manifolds obtained
by Dehn-filling the complement of the figure-eight knot in S3. (It was proved in
[Hatcher 1992] that each hyperbolic manifold obtained by Dehn-filling the com-
plement of the figure-eight knot in S3 carries essential laminations.)
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Corollary 7.1. If M is a finite-volume hyperbolic manifold with Vol(M) < 2V3 =

2.02 . . . , then M carries no essential lamination F with

‖M, ∂M‖norm
F,P = ‖M, ∂M‖P

for all polyhedra P, and nonempty guts. In particular, there is no tight essential
lamination with nonempty guts.

Proof. The derivation of this corollary from Theorem 1.2 is exactly the same as
in [Agol 1999] for the usual (nonlaminated) Gromov norm. Namely, by [Sleator
et al. 1988] (or [Agol 1999], end of Section 6) there exists a sequence Pn of straight
polyhedra in H3 with

lim
n→∞

Vol(Pn)

fn − 2
= V3,

where fn denotes the number of faces of Pn . Assuming that M carries a lamination
F with ‖M, ∂M‖norm

F,Pn
= ‖M, ∂M‖Pn for all n, one gets

−χ(Guts(F))≤
fn − 2

2
‖M, ∂M‖F,Pn =

fn − 2
2
‖M, ∂M‖Pn ≤

fn − 2
2

Vol(M)
Vol(Pn)

,

which tends to
Vol(M)

2V3
< 1.

On the other hand, if Guts(F) is not empty, it is a hyperbolic manifold with
nonempty geodesic boundary; hence χ(Guts(F))≤−1, giving a contradiction. �

Definition 7.2. The Weeks manifold is the closed 3-manifold obtained by applying
(− 5

1 ,−
5
2)-surgery at the Whitehead link [Rolfsen 1976, p. 68].

It is known that the Weeks manifold is hyperbolic and that its hyperbolic volume
is approximately 0.94 . . . . It is actually the hyperbolic 3-manifold of smallest
volume.

Corollary 7.3 [Calegari and Dunfield 2003, Conjecture 9.7]. The Weeks manifold
admits no tight lamination F.

Proof. According to [Calegari and Dunfield 2003], the Weeks manifold cannot
carry a tight lamination with empty guts. Since tight laminations satisfy ‖M‖norm

F,P =

‖M‖ for each polyhedron (see Lemma 2.4), and since the Weeks manifold has
volume smaller than 2V3, it follows from Corollary 7.1 that it cannot carry a tight
lamination with nonempty guts neither. �

The same argument shows that a hyperbolic 3-manifold M of volume less than
2V3 and such that there is no injective homomorphism π1 M→Homeo+(S1) can-
not carry a tight lamination, because it was shown in [Calegari and Dunfield 2003]
that the existence of a tight lamination with empty guts implies the existence of an
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injective homomorphism π1 M→ Homeo+(S1). Some methods for excluding the
existence of injective homomorphisms π1 M→Homeo+(S1) have been developed
in that same paper (which yielded in particular the nonexistence of such homomor-
phisms for the Weeks manifold, used in the corollary above), but in general it is
still hard to apply this criterion to other hyperbolic 3-manifolds of volume < 2V3.

As indicated in [Calegari 2003], an approach to a generalization of some of
the above arguments to essential, nontight laminations, yielding possibly a proof
for nonexistence of essential laminations on the Weeks manifold, could consist
in trying to define a straightening of cycles (as in the proof of Lemma 2.4) upon
possibly changing the essential lamination.

As a consequence of a result of Tao Li, one can at least exclude the existence of
transversely orientable essential laminations on the Weeks manifold.

Corollary 7.4. The Weeks manifold admits no transversely orientable essential
lamination F.

Proof. According to [Li 2006, Theorem 1.1], if a closed, orientable, atoroidal 3-
manifold M contains a transversely orientable essential lamination, then it contains
a transversely orientable tight essential lamination. Hence Corollary 7.4 is a direct
consequence of Corollary 7.3. �

8. Higher dimensions

We want to finish this paper showing that Theorem 1.1 is interesting also in higher
dimensions. While in dimension 3 the assumptions of Theorem 1.1 hold for any
essential lamination, it is likely that this will not be the case for many laminations
in higher dimensions. However, the most straightforward, but already interest-
ing, application of the inequality is Corollary 8.1, which means that, for a given
negatively curved manifold M , we can give an explicit bound on the topological
complexity of geodesic hypersurfaces. Such a bound seems to be new except, of
course, in the 3-dimensional case, where it goes back to [Agol 1999] and (with no
explicit constants) to [Hass 1995].

Corollary 8.1. Let M be a compact Riemannian n-manifold of negative sectional
curvature and finite volume. Let F ⊂ M be a geodesic (n−1)-dimensional hyper-
surface of finite volume. Then

‖F‖ ≤ n+1
2
‖M‖.

Proof. Consider N = M − F . (N , ∂N ) is acylindrical. This is well-known and
can be seen as follows: assume that N contains an essential cylinder; then the
double DN = N ∪∂1 N N contains an essential 2-torus. But, since N is a negatively
curved manifold with geodesic boundary, we can glue the Riemannian metrics to
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get a complete negatively curved Riemannian metric on DN . In particular, DN
contains no essential 2-torus, giving a contradiction.

Moreover, the geodesic boundary ∂N is π1-injective and negatively curved, thus
aspherical. Therefore we can choose Q = N , in which case the other assumptions
of Theorem 1.1 are trivially satisfied. From Theorem 1.1 we conclude that

‖M‖norm
F ≥

1
n+ 1

‖∂N‖.

The boundary of N consists of two copies of F , hence ‖∂N‖ = 2‖F‖. The leaf
space of F̃ ⊂ M̃ is a Hausdorff tree; thus Lemma 2.4(b) implies ‖M‖norm

F = ‖M‖.
The claim follows. �

This statement should be read as follows: for a given manifold M (with given
volume) one has an upper bound on the topological complexity of compact geo-
desic hypersurfaces.

For hyperbolic manifolds one can use the Chern–Gauss–Bonnet theorem and the
proportionality principle to reformulate Corollary 8.1 as follows: If M is a closed
hyperbolic n-manifold and F a closed (n−1)-dimensional geodesic hypersurface,
then Vol(M)≥ Cnχ(F) for a constant Cn depending only on n.
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CHERN NUMBERS AND THE INDICES OF SOME ELLIPTIC
DIFFERENTIAL OPERATORS

PING LI

Libgober and Wood proved that the Chern number c1cn−1 of a compact
complex manifold of dimension n can be determined by its Hirzebruch χ y-
genus. Inspired by the idea of their proof, we show that, for compact, spin,
almost-complex manifolds, more Chern numbers can be determined by the
indices of some twisted Dirac and signature operators. As a byproduct,
we get a divisibility result of certain characteristic number for such man-
ifolds. Using our method, we give a direct proof of the result of Libgober
and Wood, which was originally proved by induction.

1. Introduction and main results

Suppose (M, J ) is a compact, almost-complex 2n-manifold with a given almost
complex structure J . This J makes the tangent bundle of M into a n-dimensional
complex vector bundle TM . Let ci (M, J ) ∈ H 2i (M;Z) be the i-th Chern class of
TM . Suppose we have a formal factorization of the total Chern class as follows:

1+ c1(M, J )+ · · ·+ cn(M, J )=
n∏

i=1

(1+ xi ),

i.e., x1, . . . , xn are formal Chern roots of TM . The Hirzebruch χy-genus of (M, J ),
χy(M, J ), is defined by

χy(M, J )=
( n∏

i=1

xi (1+ ye−xi )

1− e−xi

)
[M].

Here [M] is the fundamental class of the orientation of M induced by J and y is
an indeterminate. If J is specified, we simply denote χy(M, J ) by χy(M).
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When the almost complex structure J is integrable (equivalently, when M is an
n-dimensional compact complex manifold), χy(M) can be obtained by

χ p(M)=
n∑

q=0

(−1)qh p,q(M), χy(M)=
n∑

p=0

χ p(M) · y p,

where h p,q( · ) is the Hodge number of type (p, q). This is given by the Hirzebruch–
Riemann–Roch Theorem, proved in [Hirzebruch 1966] for projective manifolds
and in [Atiyah and Singer 1968] in the general case.

The formula

(1-1)
n∑

p=0

χ p(M) · y p
=

( n∏
i=1

xi (1+ ye−xi )

1− e−xi

)
[M]

implies that χ p(M), the index of the Dolbeault complex, can be expressed as a
rational combination of some Chern numbers of M . Conversely, we can address
the following question.

Question 1.1. For an n-dimensional compact complex manifold M , given a par-
tition λ = λ1λ2 · · · λl of weight n, can the Chern number cλ1cλ2 · · · cλl [M] be
determined by χ p(M), or more generally by the indices of some other elliptic
differential operators?

For the simplest case cn[M], the answer is affirmative and well-known [Hirze-
bruch 1966, Theorem 15.8.1]:

cn[M] = χy(M)|y=−1 =

n∑
p=0

(−1)pχ p(M).

The next-to-simplest case is the Chern number c1cn−1[M]. The answer here is also
affirmative, as was proved by Libgober and Wood [1990, pp. 141–143]:

(1-2)
n∑

p=2

(−1)p
(

p
2

)
χ p(M)=

n(3n− 5)
24

cn[M] +
1
12

c1cn−1[M].

The idea of their proof is quite enlightening: expanding both sides of (1-1) at
y =−1 and comparing the coefficients of the term (y+ 1)2, one gets (1-2).

Inspired by this idea, in this paper we consider twisted Dirac operators and
signature operators on compact, spin, almost-complex manifolds and show that the
Chern numbers cn , c1cn−1, c2

1cn−2 and c2cn−2 of such manifolds can be determined
by the indices of these operators.

Remark 1.2. Equation (1-2) was also obtained later by Salamon [1996, p. 144],
who applied this result extensively to hyper-Kähler manifolds.
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Let M be a compact, almost-complex 2n-manifold. We still use x1, . . . , xn to
denote the corresponding formal Chern roots of the n-dimensional complex vector
bundle TM . Suppose E is a complex vector bundle over M . Set

Â(M, E) :=
(

ch(E) ·
n∏

i=1

xi/2
sinh(xi/2)

)
[M],

L(M, E) :=
(

ch(E) ·
n∏

i=1

xi (1+ e−xi )

1− e−xi

)
[M],

where ch(E) is the Chern character of E . The celebrated Atiyah–Singer index
theorem [Hirzebruch et al. 1992, pp. 74–81] states that L(M, E) is the index of
the signature operator twisted by E and when M is spin, Â(M, E) is the index of
the Dirac operator twisted by E .

Definition 1.3. Set

Ay(M) :=
n∑

p=0

Â(M,3p(T ∗M)) · y
p and L y(M) :=

n∑
p=0

L(M,3p(T ∗M)) · y
p,

where 3p(T ∗M) denotes the p-th exterior power of the dual of TM .

Our main result is the following:

Theorem 1.4. Let M be a compact, almost-complex manifold.

(1)
n∑

p=0

(−1)p Â(M,3p(T ∗M))= cn[M],

n∑
p=1

(−1)p
· p · Â(M,3p(T ∗M))=

1
2
(
ncn[M] + c1cn−1[M]

)
,

n∑
p=2

(−1)p
(

p
2

)
Â(M,3p(T ∗M))=

(n(3n−5)
24

cn +
3n−2

12
c1cn−1+

1
8

c2
1cn−2

)
[M];

(2)
n∑

p=0

(−1)p L(M,3p(T ∗M))= 2ncn[M],

n∑
p=1

(−1)p
· p · L(M,3p(T ∗M))= 2n−1(ncn[M] + c1cn−1[M]

)
,

n∑
p=2

(−1)p
(

p
2

)
L(M,3p(T ∗M))

= 2n−2
(n(3n−5)

6
cn +

3n−2
3

c1cn−1+ c2
1cn−2− c2cn−2

)
[M].
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Corollary 1.5. (1) The Chern numbers cn[M], c1cn−1[M] and c2
1cn−2[M] can be

determined by Ay(M).

(2) The characteristic numbers cn[M], c1cn−1[M] and c2
1cn−2[M] − c2cn−2[M]

can be determined by L y(M).

(3) When M is a spin manifold, the Chern numbers cn[M], c1cn−1[M], c2
1cn−2[M]

and c2cn−2[M] can be expressed by using linear combinations of the indices
of some twisted Dirac and signature operators.

As remarked in [Libgober and Wood 1990, p. 143], it was shown by Milnor
[1960] that every complex cobordism class contains a non-singular algebraic vari-
ety. Milnor also showed that two almost-complex manifolds are complex cobordant
if and only if they have the same Chern numbers. Hence Libgober and Wood’s
result implies that the characteristic number

n(3n−5)
24

cn[N ] +
1

12
c1cn−1[N ]

is always an integer for any compact, almost-complex 2n-manifold N .
Note that the right-hand side of the third equality in Theorem 1.4 is(n(3n−5)

24
cn[M] +

1
12

c1cn−1[M]
)
+

1
8

(
2(n− 1)c1cn−1[M] + c2

1cn−2[M]
)
.

Corollary 1.6. For a compact, spin, almost-complex manifold M , the integer

2(n− 1)c1cn−1[M] + c2
1cn−2[M]

is divisible by 8.

Example 1.7. The total Chern class of the complex projective space CPn is given
by c(CPn) = (1+ g)n+1, where g is the standard generator of H 2(CPn

;Z) ∼= Z.

CPn is spin if and only if n is odd, as c1(CPn) = (n+ 1)g. Suppose n = 2k + 1.
Then

2(n−1)c1cn−1[CPn
]+c2

1cn−2[CPn
] = 8(k+1)2

(
k(2k+1)+ 1

3 k(k+1)(2k+1)
)
.

It is easy to check that CP4 does not satisfy this divisibility result.

2. Proof of the main result

Lemma 2.1. Let M be a compact, almost-complex manifold. Then:

Ay(M)=
( n∏

i=1

(
xi (1+ ye−xi (1+y))

1− e−xi (1+y) · e−xi (1+y)/2
)
[M],

L y(M)=
( n∏

i=1

(
xi (1+ ye−xi (1+y))

1− e−xi (1+y) · (1+ e−xi (1+y))

))
[M].
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Proof. From

c(TM)=

n∏
i=1

(1+ xi )

we have (see, for example, [Hirzebruch et al. 1992, p. 11])

c(3p(T ∗M))=
∏

1≤i1<···<i p≤n

(
1− (xi1 + · · ·+ xi p)

)
.

Hence

ch(3p(T ∗M))y
p
=

∑
1≤i1<···<i p≤n

e−(xi1+···+xi p )y p
=

∑
1≤i1<···<i p≤n

( p∏
j=1

ye−xi j

)
.

Therefore

n∑
p=0

ch(3p(T ∗M))y
p
=

n∑
p=0

( ∑
1≤i1<···<i p≤n

( p∏
j=1

ye−xi j

))
=

n∏
i=1

(1+ ye−xi ).

So

(2-1) Ay(M)=
n∑

p=0

Â(M,3p(T ∗M)) · y
p

=

(( n∑
p=0

ch(3p(T ∗M))y
p
)
·

n∏
i=1

xi/2
sinh(xi/2)

)
[M]

=

( n∏
i=1

(
(1+ ye−xi ) ·

xi/2
sinh(xi/2)

))
[M]

=

( n∏
i=1

(
xi (1+ ye−xi )

1− e−xi
· e−xi/2

))
[M].

Since for the evaluation only the homogeneous component of degree n in the xi

enters, then we obtain an additional factor (1+ y)n if we replace xi by xi (1+ y)
in (2-1). We therefore obtain

Ay(M)=
(

1
(1+ y)n

n∏
i=1

(
xi (1+ y)(1+ ye−xi (1+y))

1− e−xi (1+y) · e−xi (1+y)/2
))
[M]

=

( n∏
i=1

(
xi (1+ ye−xi (1+y))

1− e−xi (1+y) · e−xi (1+y)/2
))
[M].
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Similarly,

L y(M)=
( n∏

i=1

(
(1+ ye−xi ) ·

xi (1+ e−xi )

1− e−xi

))
[M]

=

(
1

(1+ y)n

n∏
i=1

(
xi (1+ y)(1+ ye−xi (1+y))

1− e−xi (1+y) · (1+ e−xi (1+y))

))
[M]

=

( n∏
i=1

(
xi (1+ ye−xi (1+y))

1− e−xi (1+y) · (1+ exi (1+y))

))
[M]. �

Lemma 2.2. Set z = 1+ y. We have

Ay(M)=
( n∏

i=1

(
(1+ xi )− (xi +

1
2 x2

i )z+
( 11

24 x2
i +

1
8 x3

i
)
z2
+ · · ·

))
[M],

L y(M)=
( n∏

i=1

(
2(1+ xi )− (2xi + x2

i )z+
( 7

6 x2
i +

1
2 x3

i
)
z2
+ · · ·

))
[M].

Proof.
xi (1+ ye−xi (1+y))

1− e−xi (1+y) =−xi y+
xi (1+ y)

1− e−xi (1+y) =−xi (z− 1)+
xi z

1− e−xi z

=−xi (z− 1)+
(
1+ 1

2 xi z+ 1
12 x2

i z2
+ · · ·

)
= (1+ xi )−

1
2 xi z+ 1

12 x2
i z2
+ · · · .

So we have

Ay(M)=
( n∏

i=1

xi (1+ ye−xi (1+y))

1− e−xi (1+y) · e−xi (1+y)/2
)
[M]

=

( n∏
i=1

(
(1+ xi )−

1
2 xi z+ 1

12 x2
i z2
+ · · ·

)(
1− 1

2 xi z+ 1
8 x2

i z2
+ · · ·

))
[M]

=

( n∏
i=1

(
(1+ xi )− (xi +

1
2 x2

i )z+
( 11

24 x2
i +

1
8 x3

i
)
z2
+ · · ·

))
[M].

Similarly,

L y(M)=
( n∏

i=1

(
xi (1+ ye−xi (1+y))

1− e−xi (1+y) · (1+ e−xi (1+y))

))
[M]

=

( n∏
i=1

(
(1+ xi )−

1
2 xi z+ 1

12 x2
i z2
+ · · ·

)(
2− xi z+ 1

2 x2
i z2
+ · · ·

))
[M]

=

( n∏
i=1

(
2(1+ xi )− (2xi + x2

i )z+
( 7

6 x2
i +

1
2 x3

i
)
z2
+ · · ·

))
[M]. �
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Let f (x1, . . . , xn) be a symmetric polynomial in x1, . . . , xn . Then f (x1, . . . , xn)

can be expressed in terms of c1, . . . , cn in a unique way. We use h( f (x1, . . . , xn))

to denote the homogeneous component of degree n in f (x1, . . . , xn). For instance,
when n = 3,

h(x1+ x2+ x3+ x2
1 x2+ x2

1 x3+ x2
2 x1+ x2

2 x3+ x2
3 x1+ x2

3 x2)

= x2
1 x2+ x2

1 x3+ x2
2 x1+ x2

2 x3+ x2
3 x1+ x2

3 x2

= (x1+ x2+ x3)(x1x2+ x1x3+ x2x3)− 3x1x2x3 = c1c2− 3c3.

The next lemma is a crucial technical ingredient in the proof of our main result.

Lemma 2.3.

(1) h1 := h
( n∑

i=1

(
xi

∏
j 6=i

(1+ x j )

))
= ncn .

(2) h11 := h
( ∑

1≤i< j≤n

(
xi x j

∏
k 6=i, j

(1+ xk)

))
=

n(n− 1)
2

cn .

(3) h2 := h
( n∑

i=1

(
x2

i

∏
j 6=i

(1+ x j )

))
=−ncn + c1cn−1.

(4) h12 := h
( ∑

1≤i< j≤n

(
(x2

i x j + xi x2
j )
∏

k 6=i, j

(1+ xk)

))
= (n− 2)(−ncn + c1cn−1).

(5) h22 :=h
( ∑

1≤i< j≤n

(
x2

i x2
j

∏
k 6=i, j

(1+xk)

))
=

n(n−3)
2

cn−(n−2)c1cn−1+c2cn−2.

(6) h3 := h
( n∑

i=1

(
x3

i

∏
j 6=i

(1+ x j )

))
= ncn − c1cn−1+ c2

1cn−2− 2c2cn−2.

Now we can complete the proof of Theorem 1.4; we postpone the proof of
Lemma 2.3 to the end of this section.

Proof. From Lemma 2.2, the constant term in Ay(M) is( n∏
i=1

(1+ xi )

)
[M] = cn[M].

The coefficient of z is( n∑
i=1

(
−
(
xi +

1
2 x2

i
)∏

j 6=i

(1+ x j )
))
[M] =

(
− h1−

1
2 h2

)
[M]

= −
1
2

(
ncn[M] + c1cn−1[M]

)
.
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The coefficient of z2 is( n∑
i=1

(( 11
24 x2

i +
1
8 x3

i
)∏

j 6=i
(1+ x j )

)
+

∑
1≤i< j≤n

(
(xi +

1
2 x2

i )(x j +
1
2 x2

j )
∏

k 6=i, j
(1+ xk)

))
[M]

=
( 11

24 h2+
1
8 h3+ h11+

1
2 h12+

1
4 h22

)
[M]

=

(n(3n−5)
24

cn +
3n−2

12
c1cn−1+

1
8

c2
1cn−2

)
[M].

Similarly, for L y(M), the constant term is(
2n

n∏
i=1

(1+ xi )

)
[M] = 2ncn[M].

The coefficient of z is( n∑
i=1

(
−(2xi + x2

i )
∏
j 6=i

2(1+ x j )

))
[M] = (−2nh1− 2n−1h2)[M]

= −2n−1(ncn[M] + c1cn−1[M]).

The coefficient of z2 is( n∑
i=1

(( 7
6 x2

i +
1
2 x3

i
)∏

j 6=i
2(1+x j )

)
+

∑
1≤i< j≤n

(
(2xi+x2

i )(2x j+x2
j )
∏

k 6=i, j
2(1+xk)

))
[M]

=

(7·2n−2

3
h2+ 2n−2h3+ 2nh11+ 2n−1h12+ 2n−2h22

)
[M]

= 2n−2
(n(3n−5)

6
cn +

3n−2
3

c1cn−1+ c2
1cn−2− c2cn−2

)
[M]. �

Proof of Lemma 2.3. In the following proof, x̂i means deleting xi . Parts (1) and
(2) are quite obvious. For (3),

h2 =

n∑
i=1

(
h
(

x2
i

∏
j 6=i

(1+ x j )

))
=

n∑
i=1

(
xi

∑
j 6=i

x1 · · · x̂ j · · · xn

)
=

n∑
i=1

(xi cn−1− cn)

=−ncn + c1cn−1.

For (4),

h12 =
∑

1≤i< j≤n

(
h
(
(x2

i x j + xi x2
j )
∏

k 6=i, j
(1+ xk)

))
=

∑
1≤i< j≤n

(
(xi + x j )

∑
k 6=i, j

x1 · · · x̂k · · · xn

)
= (n− 2)

n∑
i=1

(
xi

∑
k 6=i

x1 · · · x̂k · · · xn

)
= (n−2)h2 = (n−2)(−ncn+ c1cn−1).
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For (5),

c2cn−2 =

( ∑
1≤i< j≤n

xi x j

)( ∑
1≤k<l≤n

x1 · · · x̂k · · · x̂l · · · xn

)

=

∑
1≤i< j≤n

(
xi x j

∑
1≤k<l≤n

x1 · · · x̂k · · · x̂l · · · xn

)

=

∑
1≤i< j≤n

(
x1x2 · · · xn + (x2

i x j + xi x2
j )
∑

k 6=i, j

x1 · · · x̂k · · · x̂i · · · x̂ j · · · xn

+ x2
i x2

j

∑
1≤k<l≤n

k 6=i, j
l 6=i, j

x1 · · · x̂k · · · x̂l · · · x̂i · · · x̂ j · · · xn

)

=
n(n− 1)

2
cn + h12+ h22.

Therefore,

h22 = c2cn−2−
n(n− 1)

2
cn − h12 =

n(n− 3)
2

cn − (n− 2)c1cn−1+ c2cn−2.

For (6),

(c2
1− 2c2)cn−2

=

( n∑
i=1

x2
i

)( ∑
1≤ j<k≤n

x1 · · · x̂ j · · · x̂k · · · xn

)
=

n∑
i=1

(
x2

i

∑
1≤ j<k≤n

x1 · · · x̂ j · · · x̂k · · · xn

)

=

n∑
i=1

((
x3

i

∑
1≤ j<k≤n

j 6=i
k 6=i

x1 · · · x̂ j · · · x̂k · · · x̂i · · · xn)+ (x2
i

∑
k 6=i

x1 · · · x̂k · · · x̂i · · · xn

))

= h3+ h2.

Hence h3 = (c2
1− 2c2)cn−2− h2 = ncn − c1cn−1+ c2

1cn−2− 2c2cn−2. �

3. Concluding remarks

Libgober and Wood’s proof [1990, p. 142, Lemma 2.2] of (1-2) is by induction.
Here, using our method, we can give a quite direct proof. We have shown that

χy(M)=
( n∏

i=1

xi (1+ ye−xi (1+y))

1− e−xi (1+y)

)
[M]

=

( n∏
i=1

(
(1+ xi )−

1
2 xi z+ 1

12 x2
i z2
+ · · ·

))
[M].
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The coefficient of z2 is( n∑
i=1

( 1
12

x2
i

∏
j 6=i

(1+ x j )

)
+

∑
1≤i< j≤n

(
1
4

xi x j

∏
k 6=i, j

(1+ xk)

))
[M]

=
( 1

12 h2+
1
4 h11

)
[M] = n(3n−5)

24
cn[M] +

1
12

c1cn−1[M].

It is natural to ask what the coefficients are for higher-order terms (y+ 1)p, for
p ≥ 3. Unfortunately the coefficients become very complicated for such terms. In
[Libgober and Wood 1990, pp. 144–145] there is a detailed remark on the coef-
ficients of the higher-order terms of χy(M). Note that the expression of Ay(M)
(resp. L y(M)) has an additional factor e−xi (1+y)/2 (resp. 1+ exi (1+y)) relative to
than that of χy(M). Hence we cannot expect that there are explicit expressions of
higher-order coefficients similar to Theorem 1.4.
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BLOCKS OF THE CATEGORY OF CUSPIDAL sp2n-MODULES

VOLODYMYR MAZORCHUK AND CATHARINA STROPPEL

In this paper we show that every block of the category of cuspidal general-
ized weight modules with finite dimensional generalized weight spaces over
the Lie algebra sp2n(C) is equivalent to the category of finite dimensional
C[[t1, t2, . . . , tn]]-modules.

1. Introduction and description of the results

Fix the ground field to be the complex numbers. Fix n ∈ {2, 3, . . . } and consider
the symplectic Lie algebra sp2n =: g with a fixed Cartan subalgebra h and root
space decomposition

g= h⊕
⊕
α∈1

gα,

where 1 denotes the corresponding root system. For a g-module V and λ ∈ h∗ set

Vλ := {v ∈ V : h · v = λ(h)v for any h ∈ h},

V λ
:= {v ∈ V : (h− λ(h))k · v = 0 for any h ∈ h and k� 0}.

A g-module V is called

• a weight module provided that V =
⊕

λ∈h∗ Vλ;

• a generalized weight module provided that V =
⊕

λ∈h∗ V λ;

• a cuspidal module provided that for any α ∈ 1 the action of any nonzero
element from gα on V is bijective.

If V is a generalized weight module, then the set {λ ∈ h∗ : Vλ 6= 0} is called the
support of V and is denoted by supp(V ).

Denote by Ĉ the full subcategory in g-mod that consists of all cuspidal gen-
eralized weight modules with finite dimensional generalized weight spaces, and
by C the full subcategory of Ĉ consisting of all weight modules. Understanding
the categories C and Ĉ is a classical problem in the representation theory of Lie
algebras. The first major step towards the solution of this problem was made in
[Mathieu 2000], where all simple objects in Ĉ were classified. Britten et al. [2004]

MSC2000: 17B10.
Keywords: cuspidal module, category, block, power series.
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showed that the category C is semisimple, hence completely understood. The aim
of the present note is to describe the category Ĉ.

Apart from sp2n , cuspidal weight modules with finite dimensional weight spaces
exist only for the Lie algebra sln [Fernando 1990]. In the latter case, simple objects
in the corresponding category Ĉ are classified in [Mathieu 2000], the category C is
described in [Grantcharov and Serganova 2010] (see also [Mazorchuk and Stroppel
2011]), and the category Ĉ is described in [Mazorchuk and Stroppel 2011]. Taking
all these results into account, the present paper completes the study of cuspidal
generalized weight modules with finite dimensional generalized weight spaces over
semisimple finite dimensional Lie algebras.

Let U (g) be the universal enveloping algebra of g and Z(g) the center of U (g).
The action of Z(g) on any object from Ĉ is locally finite. Using this and the
standard support arguments gives the following block decomposition of Ĉ:

Ĉ∼=
⊕

χ :Z(g)→C
ξ∈h∗/Z1

Ĉχ,ξ ,

where Ĉχ,ξ consists of all V such that supp(V )⊂ ξ and (z−χ(z))k · v = 0 for all
v ∈ V , z ∈ Z(g) and k� 0. Set

Cχ,ξ := C∩ Ĉχ,ξ .

From [Mathieu 2000, Section 9] it follows that each nontrivial Ĉχ,ξ contains a
unique (up to isomorphism) simple object. In particular, Ĉχ,ξ is indecomposable,
hence a block. From this and [Britten et al. 2004] we thus get that every nontrivial
block Cχ,ξ is equivalent to the category of finite dimensional C-modules. Our main
result is the following:

Theorem 1. Every nontrivial block Ĉχ,ξ is equivalent to the category of finite di-
mensional C[[t1, t2, . . . , tn]]-modules.

To prove Theorem 1 we use and further develop the technique of extension of
the module structure from a Lie subalgebra, originally developed in [Mazorchuk
and Stroppel 2011] for the study of categories of singular and nonintegral cuspidal
generalized weight sln-modules. The proof of Theorem 1 is given in Section 4.
In Section 2 we recall the standard reduction to the case of the so-called simple
completely pointed modules (that is, simple weight cuspidal modules for which all
nontrivial weight spaces are one-dimensional) and a realization of such modules
using differential operators. In Section 3 we define a functor from the category of
finite dimensional C[[t1, t2, . . . , tn]]-modules to any block Ĉχ,ξ containing a simple
completely pointed module. In Section 4 we prove that this functor is an equiva-
lence of categories. In Section 5 we present some consequences of our main result.
In particular, we recover the main result of [Britten et al. 2004] stated above.
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2. Completely pointed simple cuspidal weight modules

A weight g-module V is called pointed provided that dim Vλ = 1 for some λ ∈ h∗.
If V is a pointed simple cuspidal weight g-module, then, obviously, all nontrivial
weight spaces of V are one-dimensional, in which case one says that V is com-
pletely pointed (see [Britten et al. 2004]). It is enough to consider blocks with
completely pointed simple modules because of the following:

Lemma 2. All nontrivial blocks of Ĉ are equivalent.

Proof. In the case of the category C, this is proved in [Britten et al. 2004, Lemma 2].
The same argument works in the case of the category Ĉ. �

We recall the explicit realization of completely pointed simple cuspidal mod-
ules from [Britten and Lemire 1987]. Denote by Wn the n-th Weyl algebra, that
is, the algebra of differential operators with polynomial coefficients in variables
x1, x2, . . . , xn . The algebra Wn is generated by xi and ∂/∂xi , i = 1, . . . , n, which
satisfy the relations [∂/∂xi , x j ] = δi, j . Let ε1, ε2, . . . , εn be the vectors of the
standard basis in Cn . Identify Cn with h∗ such that 1 becomes the following
standard root system of type Cn:

{±(εi ± ε j ) : 1≤ i < j ≤ n} ∪ {±2εi : 1≤ i ≤ n}.
Then

H = Hn = {2ε1, ε2− ε1, ε3− ε2, . . . , εn − εn−1}

is a basis of 1. Fix a basis of g of the form

C := {X±εi±ε j : 1≤ i < j ≤ n} ∪ {X±2εi : i = 1, 2, . . . , n} ∪ {Hα : α ∈ H}

such that the following map defines an injective Lie algebra homomorphism from
g to the Lie algebra associated with Wn:

(1)

Xεi−ε j 7→ xi
∂

∂x j
, 1≤ i 6= j ≤ n,

Xεi+ε j 7→ xi x j , i, j = 1, 2, . . . , n,

X−εi−ε j 7→
∂

∂xi

∂

∂x j
, i, j = 1, 2, . . . , n,

Hεi+1−εi 7→ xi+1
∂

∂xi+1
− xi

∂

∂xi
, i = 1, 2, . . . , n− 1,

H2ε1 7→
1
2

(
x1

∂

∂x1
+

∂

∂x1
x1

)
.

Set
B := {(b1, b2, . . . , bn) ∈ Zn

: b1+ b2+ · · ·+ bn ∈ 2Z}.

For a = (a1, a2, . . . , an) ∈ Cn define N (a) to be the linear span of

{xb
:= xa1+b1

1 xa2+b2
2 · · · xan+bn

n : b ∈ B}.
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First define an action of the elements from C on N (a) using the formulae from (1)
as follows:

(2)

Xεi−ε j x
b
= (a j + b j )xb+εi−ε j 1≤ i 6= j ≤ n,

Xεi+ε j x
b
= xb+εi+ε j i, j = 1, 2, . . . , n,

X−εi−ε j x
b
= (ai + bi )(a j + b j )xb−εi−ε j 1≤ i 6= j ≤ n,

X−2εi x
b
= (ai + bi )(ai + bi − 1)xb−2εi i = 1, 2, . . . , n,

Hεi+1−εi x
b
= (ai+1+ bi+1− ai − bi )xb i = 1, 2, . . . , n− 1,

H2ε1 xb
=

1
2(2a1+ 2b1+ 1)xb.

Theorem 3 [Britten and Lemire 1987]. (i) For every a ∈ Cn the formulae in (2)
define on N (a) the structure of a completely pointed weight g-module.

(ii) If ai 6∈ Z for all i = 1, . . . , n, then the module N (a) is simple and cuspidal.

(iii) Every completely pointed simple cuspidal g-module is isomorphic to N (a)
for some a ∈ Cn such that ai 6∈ Z, i = 1, . . . , n.

3. The functor F

This section is similar to [Mazorchuk and Stroppel 2011, Section 3.1]. Fix a ∈
Cn such that ai 6∈ Z, i = 1, . . . , n. Let Ĉa denote the block of Ĉ containing
N (a). The category Ĉa is closed under extensions. Denote the category of fi-
nite dimensional C[[t1, t2, . . . , tn]]-modules by C[[t1, t2, . . . , tn]]-mod. For V ∈
C[[t1, t2, . . . , tn]]-mod denote by Ti the linear operator describing the action of ti
on V . Set 0= (0, 0, . . . , 0) ∈ B.

For b ∈ B consider a copy V b of V . Define

FV :=
⊕
b∈B

V b.

Define the action of elements from C on the vector space FV in the following way:
for v ∈ V b set

(3)



Xεi−ε jv = (T j + (a j + b j ) IdV )v ∈ V b+εi−ε j ,

Xεi+ε jv = v ∈ V b+εi+ε j ,

X−εi−ε jv = (Ti + (ai + bi ) IdV )(T j + (a j + b j ) IdV )v ∈ V b−εi−ε j ,

X2εiv = (Ti + (ai + bi ) IdV )(Ti + (ai + bi − 1) IdV )v ∈ V b−2εi ,

Hεi+1−εiv = (Ti+1− Ti + (ai+1+ bi+1− ai − bi ) IdV )v ∈ V b,

H2ε1v =
1
2(2T1+ (2a1+ 2b1+ 1) IdV )v ∈ V b,
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where i and j are as in the respective row of (2). For a homomorphism f : V→W
of C[[t1, t2, . . . , tn]]-modules denote by F f the diagonally extended linear map
from FV to FW , that is, for every b ∈ B and v ∈ V b, set

(4) F f (v)= f (v) ∈W b.

Proposition 4. (i) The formulae of (3) define on FV the structure of a g-module.

(ii) Every V b is a generalized weight space of FV . Moreover, for b 6= b′ the
weights of V b and V b′ are different.

(iii) The module FV belongs to Ĉa.

(iv) Formulae (3) and (4) turn F into a functor

F : C[[t1, t2, . . . , tn]]-mod→ Ĉa.

(v) The functor F is exact, faithful and full.

Proof. Consider the g-module N (a) for a as above. Then, for every b, the defin-
ing relations of g (in terms of elements from C) applied to xb can be written as
some polynomial equations in the ai . Since (2) defines a g-module for any a by
Theorem 3(i), these equations hold for any a, that is, they are actually formal
identities in the ai . Now write

T j + (a j + b j ) IdV = A j + B j ,

a sum of matrices, where A j = T j + a j IdV and B j = b j IdV . All Ai and B j

commute with each other and with all the Tl . For a fixed b, the defining relations
for g on FV reduce to our formal identities (in the Ai ) and hence are satisfied. This
proves claim (i). Claim (ii) follows from the last two lines in (3) and the fact that
all the Ti are nilpotent (hence zero is the only eigenvalue).

As f commutes with all Ti , the map F f commutes with the action of all elements
from C and hence defines a homomorphism of g-modules. By construction we also
have F( f ◦ f ′)= F f ◦F f ′, which implies claim (iv).

By construction, F is exact and faithful. It sends the simple one-dimensional
C[[t1, t2, . . . , tn]]-module to N (a) (as in this case all Ti =0 and hence (3) gives (2)),
which is an object of the category Ĉa closed under extensions. Claim (iii) follows.

To complete the proof of claim (v) we are left to show that F is full. Let
ϕ : FV → FW be a g-homomorphism. Then ϕ commutes with the action of all
elements from h. Using claim (ii), we get that ϕ induces, by restriction, a linear map
f : V = V 0

→ W 0
= W . As ϕ commutes with all Hεi+1−εi , the map f commutes

with all operators Ti+1 − Ti . As ϕ commutes with H2ε1 , the map f commutes
with T1. It follows that f is a homomorphism of C[[t1, t2, . . . , tn]]-modules. This
yields ϕ = F f and thus the functor F is full. This completes the proof of claim (v)
and of the whole proposition. �
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4. Proof of Theorem 1

Because of Lemma 2 it is enough to fix one particular block and show there that F
is an equivalence. Thus, we may assume that ai +a j 6∈ Z for all i, j (in particular,
ai 6∈ Z for all i). According to Proposition 4, we are only left to show that F is
dense (that is, essentially surjective). We establish the density of F by induction
on n. We first prove the induction step and then the basis of the induction, which
is the case n = 2.

Denote by λ the weight of x0
∈ N (a) (see Proposition 4(ii)). Let M ∈ Ĉa. Set

V := Mλ and denote by M ′ the a-module U (a)V .

4.1. Reduction to the case n = 2. The main result of this section is the following:

Proposition 5. If the functor F is dense for n = 2, then it is dense for any n ≥ 2.

Proof. Assume that n > 2 and that the functor F is dense in the case of the alge-
bra sp2n−2. Realize sp2n−2 as the subalgebra a of g corresponding to the subset
Hn−1 ⊂ H of simple roots.

Let Y1, Y2,. . . , Yn be the linear operators representing the action of the elements
H2ε1, Hε2−ε1 , Hε3−ε2 ,. . . , Hεn−εn−1 on V , respectively. Set

(5)

T1 := Y1−
1
2(2a1+ 1) IdV ,

T2 := Y2+ T1− (a2− a1) IdV ,

T3 := Y3+ T2− (a3− a2) IdV ,
...

Tn := Yn + Tn−1− (an − an−1) IdV .

The Ti are obviously pairwise commuting nilpotent linear operators.
The module M ′ is a cuspidal generalized weight a-module with finite dimen-

sional weight spaces. Moreover, as all composition subquotients of M are of the
form N (a), all composition subquotients of M ′ are of the form N (a)′, the latter
being a completely pointed simple cuspidal a-module. By our inductive assump-
tion, the functor F is dense in the case of the algebra a. Hence M ′∼= N ′ :=

⊕
bV b,

where b ∈ B is such that bn = 0, and the action of a on N ′ is given by (3).

Lemma 6. There is a unique (up to isomorphism) g-module Q ∈ Ĉa such that
Q′ = N ′ and which gives the linear operator Tn when computed using (5).

Proof. The existence statement is clear, so we need only to show uniqueness.
Assume that Q ∈ Ĉa is such that Q′ = N ′ and the formulae in (5) applied to Q
produce the linear operator Tn . Since an 6∈Z, the endomorphism Tn+(an+bn) IdV

is invertible for all bn ∈ Z. As the action of Xεn−εn−1 on Q is bijective, we can
fix a weight basis in Q such that both the a-action on Q′ = N ′ and the action
of Xεn−εn−1 on the whole Q is given by (3). As n> 2, the elements X±2ε1 commute
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with Xεn−εn−1 and hence their action extends uniquely to the whole of Q using this
commutativity. This holds similarly for all elements X±(εi−εi−1), i < n−1, and for
the element Xεn−2−εn−1 . This leaves us with the elements Xεn−1−εn−2 and Xεn−1−εn .
The simple roots εn−1−εn−2 and εn−εn−1 corresponding to the elements Xεn−1−εn−2

and Xεn−εn−1 generate a root system of type A2 (this corresponds to the alge-
bra sl3). Lemmas 21 and 22 of [Mazorchuk and Stroppel 2011] prove that the
actions of Xεn−1−εn−2 and Xεn−1−εn extend uniquely to Q. This completes the proof
of Lemma 6. �

The module FV obviously satisfies (FV )′= N ′ and defines the linear operator Tn

when computed using (5). Hence Lemma 6 implies M ∼= FV . Since M ∈ Ĉa was
arbitrary, the functor F is dense, completing the proof of Proposition 5. �

4.2. Base of the induction: some sl2-theory as preparation. In this section we
will recall (and slightly improve) some classical sl2-theory. For details see [Ma-
zorchuk 2010]. Consider the Lie algebra sl2 = sl2(C) with standard basis

e :=
(

0 1
0 0

)
, f :=

(
0 0
1 0

)
, h :=

(
1 0
0 −1

)
.

Let V be a finite dimensional vector space and A and B be two commuting linear
operators on V . For i ∈Z denote by V (i) a copy of V and consider the vector space
V :=

⊕
i∈Z V (i) (a direct sum of copies of V indexed by i). Define the actions of

e, f and h on V as follows: for v ∈ V (i) set

(6)

v := (P − i IdV )v ∈ V (i+1),

v := (Q+ i IdV )v ∈ V (i−1),

v := (Q− P + 2i IdV )v ∈ V (i).

This can be depicted as follows (here right arrows represent the action of e, left
arrows represent the action of f and loops represent the action of h):

. . .
P+2 IdV

,,
V (−1)

P+IdV
,,

Q−IdV

kk

Q−P−2 IdV

VV V (0)

Q
ll

P
,,

Q−P

VV V (1)
P−IdV

++

Q+IdV

ll

Q−P+2 IdV

VV
. . .

Q+2 IdV

ll

Proposition 7. (i) The formulae in (6) define on V the structure of a generalized
weight sl2-module with finite dimensional generalized weight spaces.

(ii) Every cuspidal generalized weight sl2-module with finite dimensional gener-
alized weight spaces is isomorphic to V for some V with P and Q as above.

(iii) The action of the Casimir element c := (h+ 1)2+ 4 f e on V is given by the
linear operator (P + Q+ IdV )

2.
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(iv) Let C2 denote the natural sl2-module (the unique two-dimensional simple sl2-
module). Then the linear operator (c− (P + Q + 2 IdV )

2)(c− (P + Q)2)
annihilates the sl2-module C2

⊗ V .

(v) Let C3 denote the unique three-dimensional simple sl2-module. Then the lin-
ear operator (c−(P+Q+3 IdV )

2)(c−(P+Q+IdV )
2)(c−(P+Q−IdV )

2)

annihilates the sl2-module C3
⊗ V .

Proof. The fact that V is an sl2-module is checked by a direct computation. That V
is a generalized weight module follows from the fact that the action of h on V pre-
serves (by (6)) each V i and hence is locally finite. Since the category of generalized
weight modules is closed under extensions, to prove that V has finite dimensional
generalized weight spaces it is enough to consider the case when h has a unique
eigenvalue on V (0), say λ. However, in this case h has a unique eigenvalue on V i ,
namely λ+2i , which implies that V

λ
= V is finite dimensional. Claim (i) follows.

To prove Claim (iii) we observe that the action of c on V i is given by

(Q− P + (2i + 1) IdV )
2
+ 4(Q+ (i + 1) IdV )(P − i IdV )= (P + Q+ IdV )

2.

Claim (ii) can be found with all details in [Mazorchuk 2010, Chapter 3].
To prove claim (iv) choose a basis {v1, . . . , vk} in V , which gives rise to a

basis {v(i)1 , . . . , v
(i)
k , i ∈ Z} in V . Choose the standard basis {e1, e2} in C2. Since

he1 = e1, he2 =−e2 and h acts by Q− P + 2i IdV on V (i), we obtain that h acts
by Q− P + (2i + 1) IdV on the vector space W (i) with basis

{ e1⊗ v
(i)
1 , . . . , e1⊗ v

(i)
1 , e2⊗ v

(i+1)
1 , . . . , e2⊗ v

(i+1)
1 }.

We have C2
⊗V ∼=

⊕
i∈Z W (i) and one easily computes that in the above basis the

actions of e and f on C2
⊗ V are given by the following picture:

. . . ,,
W (−1)

(
P+Id Id

0 P

)
,,

kk W (0)( Q 0
Id Q+Id

)ll

(
P Id
0 P−Id

)
,,
W (1) ++( Q+Id 0

Id Q+2 Id

)ll . . .ll

The action of c on W (0) is now easily computed to be given by the linear operator

G :=
(
(Q−P+2 Id)2+4(Q+Id)P 4(Q+Id)

4P (Q−P+2 Id)2+4(Q+2 Id)(P−Id)+4 Id

)
.

The characteristic polynomial of G is

χG(λ)= (λ− (P + Q+ 2 Id)2)(λ− (P + Q)2).

Claim (iv) now follows from the Cayley–Hamilton theorem.
We have an isomorphism of sl2-modules as follows: C2

⊗C2 ∼= C3
⊕C (here

C is the trivial module), and hence claim (v) follows applying claim (iv) twice.
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Alternatively, one could do a direct calculation, similar to the proof of (iii). The
proposition follows. �

The statement of Proposition 7(ii) is a special case of a more general result
of Gabriel and Drozd describing blocks of the category of (generalized) weight
sl2-modules, in particular, simple weight sl2-modules (see [Drozd 1983; Dixmier
1996, 7.8.16]). The statements of Proposition 7(iv) and (v) are sl2-refinements of a
theorem of Kostant [1975, Theorem 5.1] describing possible (generalized) central
characters of the tensor product of a finite dimensional module with an infinite
dimensional module.

4.3. The case n = 2. Assume now that n = 2. We have a1, a2, a1+ a2 6∈ Z. Let a

denote the Lie subalgebra of g generated by X±(ε2−ε1). The algebra a is isomorphic
to sl2.

Let M ∈ Ĉa. Denote by λ the weight of x0
∈ N (a) and set V := Mλ. Let Y1

and Y2 be the linear operators representing the actions of the elements Hε2−ε1 and
C := (Hε2−ε1 + 1)2 + 4Xε1−ε2 Xε2−ε1 on V . The element C is a Casimir element
for a. In particular, the operators Y1 and Y2 commute. Our first observation is the
following:

Lemma 8. The action of C on V is invertible and hence has a square root.

Proof. From (2) we have that C acts on x0 by

(a2− a1+ 1)2+ 4(a2+ 1)a1 = (a1+ a2+ 1)2.

Since a1 + a2 6∈ Z by our assumptions, x0 is an eigenvector of C with a nonzero
eigenvalue. As the module M has a composition series with subquotients isomor-
phic to N (a), the complex number (a1+ a2+ 1)2 6= 0 is the only eigenvalue of C
on V . The claim follows. �

Consider the a-module M ′ := U (a)Mλ. Let Y ′2 denote any square root of Y2,
which is a polynomial in Y2 (it exists by Lemma 8). So Y ′2 commutes with Y1. Set

T1 :=
Y ′2− Y1− IdV

2
− a1 IdV , T2 :=

Y ′2+ Y1− IdV

2
− a2 IdV .

Then T1 and T2 are two commuting nilpotent linear operators (it is easy to check
that 0 is the unique eigenvalue for both T1 and T2), hence define on V the structure
of a C[[t1, t2]]-module. The aim of this section is to establish an isomorphism
FV ∼= M , which would complete the proof of Theorem 1.

Set R′ :=U (a)(FV )λ. A direct computation using (3) shows that Hε2−ε1 and C
act on (FV )λ= V 0 as the linear operators Y1 and Y2, respectively. As any cuspidal
generalized weight a-module is uniquely determined by the actions of Hε2−ε1 and C
(see [Drozd 1983; Mazorchuk 2010, 3.7] for full details), it follows that M ′ ∼= R′.
The isomorphism FV ∼= M now follows from the next proposition:
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Proposition 9. There is at most one (up to isomorphism) g-module R ∈ Ĉa such
that U (a)Rλ = R′.

Proof. Let R ∈ Ĉa be such that U (a)Rλ = R′. Choose a weight basis in R such
that the action of a on R′ and the action of X2ε1 on R is given by (3) (in other
words these actions coincide with the corresponding actions on FV ). Since Xε1−ε2

commutes with X2ε1 , it follows that the action of Xε1−ε2 on R is also given by (3).
It is left to show that the action of Xε2−ε1 extends uniquely from R′ to R and

then that there is a unique way to define the action of X−2ε1 . This will be done in
the Lemmata 10 and 11 below. �

Lemma 10. There is a unique way to extend the action of Xε2−ε1 from R′ to R.

Proof. We first show that for every k ∈ {1, 2, . . . }, the action of Xε2−ε1 extends
uniquely from X k−1

2ε1
R′ to X k

2ε1
R′ (here X0

2ε1
R′ = R′).

Consider the following picture:

(7)

•

X
**f _ X
•

Q

ii

•

1

II

P+1
**
•

1

II

Q

ii
P

**
•

Q+1

ii

Here bullets are weight spaces with some fixed bases. The lower row is a part of
X k−1

2ε1
R′ where the a-action is already known by induction. The bases in the weight

spaces in the lower row are chosen such that the action of a in the lower row is given
by (3). The upper row is a part of X k

2ε1
R′ where the a-action is to be determined.

Arrows pointing up indicate the action of X2ε1 . The bases of the weight spaces in
the upper row are chosen such that the action of X2ε1 is given by the operator IdV

(as in (3)). Left arrows indicate the action of Xε1−ε2 . The latter commutes with
the action of X2ε1 and hence is given by the same linear operator in each column.
Right arrows indicate the action of Xε2−ε1 (which is known for X k−1

2ε1
R′ and is to be

determined for X k
2ε1

R′). The part to be determined is given by the dashed arrow.
Labels P and Q represent coefficients (which are linear operators on V ) appearing
in the corresponding parts of formulae (3). Note that P and Q commute. The
action of Xε2−ε1 on X k

2ε1
R′ which is to be determined is given by some unknown

linear operator X .
From Hε2−ε1 = [Xε2−ε1, Xε1−ε2] we see that the action of Hε2−ε1 on the middle

weight space in the lower row is given by Q− P . Using [Hε2−ε1, X2ε1] = −2X2ε1

we get that Hε2−ε1 acts on the right dot of the upper row via Q − P − 2. Using
[Hε2−ε1, Xε1−ε2]=−2Xε1−ε2 we get that Hε2−ε1 acts on the left dot of the upper row
via Q−P−4. So the action of C on the upper row is given by (Q−P−3)2+4X Q.
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The action of C on the lower row is given by (Q − P − 1)2 + 4(P + 1)Q =
(Q+ P + 1)2.

The elements X2ε1 , X2ε2 and Xε1+ε1 form a weight basis of a simple three-
dimensional a-module C3 with respect to the adjoint action of a. Hence the upper
row of our picture is a subquotient of the tensor product of the lower row and C3.
Therefore, from Proposition 7(v) we obtain that the linear operator

(C − (Q+ P − 1)2)(C − (Q+ P + 1)2)(C − (Q+ P + 3)2)

annihilates the upper row. A direct computation using (3) shows that the action
of the operators C − (Q + P − 1)2 and C − (Q + P + 1)2 on the part X k

2ε1
N (a)′

of the module N (a) is invertible. As the g-module we are working with must
have a composition series with subquotients N (a), it follows that the action of
both C − (Q + P − 1)2 and C − (Q + P + 1)2 on X k

2ε1
R′ is invertible. Hence

C − (Q+ P + 3)2 annihilates X k
2ε1

R′, which gives us the equation

(Q− P − 3)2+ 4X Q = (Q+ P + 3)2.

This equation has a unique solution, namely X = Q+ 3, which gives the required
extension.

Similarly one shows that for k ∈ {−1,−2, . . . }, the action of Xε2−ε1 extends
uniquely from X k+1

2ε1
R′ to X k

2ε1
R′ (here again X0

2ε1
R′ = R′). �

Lemma 11. There is a unique way to define the action of X−2ε1 on N.

Proof. To determine this action of X−2ε1 on N we consider the following extension
of the picture (7) with the same notation as in the proof of Lemma 10:

•

u

		

&

�

�

P+3
**
•

Q

ii

v

		

&

�

�

P+2
**
•

Q+1

ii

w

		

&

�

�

•

1

II

P+1 **

x

		

&

�

�

;;

•

1

II

Q

ii

y

		

&

�

�

Q
**
•

1

II

Q+1

ii

•

1

II

P−1 **

;;

•

1

II

Q

ii

Here all right arrows, representing the action of Xε2−ε1 , are now determined by
Lemma 10 and we have to figure out the down arrows, representing the action of
X−2ε1 . The two dotted arrows will be used later on in the proof.

Consider the sl2-subalgebra c of g generated by e := X2ε1 and f := X−2ε1 . Set
h := [e, f ]. Denote by Z the action of h in the leftmost weight space of the middle
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row. Then Z = x−u. The element h commutes with both h and Hε2−ε1 . Therefore,
by (3), the operator Z commutes with both T1 and T2 and hence with both P and Q.

The algebra c has the quadratic Casimir element Cc, whose action on the c-
module given by the leftmost column of our picture is given by x+ f (Z), where f
is some polynomial of degree two. From (3) it follows that the unique eigenvalue
of this action is nonzero, in particular, x + f (Z) is invertible. Let x ′ be a fixed
square root x + f (Z), which is a polynomial in x + f (Z).

The elements Xε2−ε1 and Xε2+ε1 form a basis of a simple two-dimensional c-
module with respect to the adjoint action. Using Proposition 7(iv) and arguments
similar to those used in the proof of Lemma 10, we get that Cc − (x ′ + 1)2 or
Cc − (x ′ − 1)2 annihilates the middle column (the sign depends on the original
choice of x ′). The middle column equals Xε2−ε1 applied to the leftmost column.

Similarly, the elements Xε1−ε2 and X−ε2−ε1 form a basis of a simple two-dimen-
sional c-module with respect to the adjoint action. Applying the same arguments
as in the previous paragraph we get that Cc − (x ′)2 annihilates any vector of the
form Xε1−ε2 Xε2−ε1v, where v is from the leftmost column. This implies that the
actions of Cc and Xε1−ε2 Xε2−ε1 and thus the actions of Cc and C on the leftmost
column commute. As the action of H commutes with the action of C , we thus
obtain that x commutes with the action of C . This implies that x commutes with
T1+T2. As it obviously commutes with T1−T2, we get that x commutes with both
T1 and T2 and hence with both P and Q.

Similarly one shows that y, u, v and w commute with both P and Q. From the
commutativity of Xε2−ε1 and X−2ε1 we get the conditions

y(P + 1)= (P − 1)x, V (P + 3)= (P + 1)u, w(P + 2)(P + 3)= P(P + 1)u.

Here everything commutes by the above and P+1, P+2 and P+3 are invertible
(as Xε2−ε1 acts bijectively). Therefore

y=(P−1)(P+1)−1x, v=(P+1)(P+3)−1u, w= P(P+1)(P+3)−1(P+2)−1u.

This implies that y, v and w are uniquely determined by x and u.
Since the actions of both Xε2−ε1 and X2ε1 are completely determined, we can

compute the action of X2ε2 and see that it is given (similarly to the action of X2ε1)
by IdV (this is depicted by the dotted arrows in the picture). As X−2ε2 and X2ε2

commute, we obtain that w = x , that is,

(8) x = P(P + 1)(P + 3)−1(P + 2)−1u.

Therefore the only parameter left for now is u.
On the one hand, the action of the element h on the middle dot of the second

row is given by y − v = (P − 1)(P + 1)−1x − (P + 1)(P + 3)−1u. On the other
hand, from [h, Xε2−ε1]= 4Xε2−ε1 we have that this action equals Z+4= x−u+4.
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This gives us the equation

(9) (P − 1)(P + 1)−1x − (P + 1)(P + 3)−1u = x − u+ 4.

Using (9) and (8) we get the equation

P(P−1)
(P+2)(P+3)

u+ P+1
P+3

u = P(P+1)
(P+2)(P+3)

u− u+ 4.

This is a linear equation with nonzero coefficients and thus it has a unique solution,
namely u = (P+3)(P+2). Hence u is uniquely defined. The claim of the lemma
follows. �

5. Consequences

Corollary 12. Let a ∈ Cn be such that ai 6∈ Z and ai + a j 6∈ Z for all i and j . Let
M ∈ Ĉ and λ ∈ supp(M). Denote by U0 the centralizer of h in U (g). Then for any
A, B ∈U0 the actions of A and B on Mλ commute.

Proof. By Proposition 4, we may assume that M ∼= FV . For the module FV the
claim follows from the formulae in (3). �

Corollary 13. For any simple weight cuspidal g-module L with finite dimensional
weight spaces we have dim Ext1g(L , L)= n.

Proof. This follows from Theorem 1 and the observation that a similar equality is
true for the unique simple C[[t1, t2, . . . , tn]]-module. �

We also recover the main result of [Britten et al. 2004]:

Corollary 14. The category of all weight cuspidal g-modules is semisimple.

Proof. By [Britten et al. 2004, Lemma 2], all blocks of the category of weight
cuspidal g-modules are equivalent. Hence it is enough to prove the claim for the
block containing N (a) for some a∈Cn such that ai+a j 6∈Z for all i, j . From (3) it
follows that the module FV is weight if and only if all operators Ti are semisimple,
hence zero. Therefore from Theorem 1 we get that the block of the category of
weight cuspidal modules is equivalent to the category of finite dimensional modules
over C[[t1, t2, . . . , tn]]/(t1− 0, t2− 0, . . . , tn − 0)∼= C. The claim follows. �
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A CONSTANT MEAN CURVATURE ANNULUS
TANGENT TO TWO IDENTICAL SPHERES IS DELAUNEY

SUNG-HO PARK

We show that a compact embedded annulus of constant mean curvature in
R3 tangent to two spheres of the same radius along its boundary curves and
having nonvanishing Gaussian curvature is part of a Delaunay surface. In
particular, if the annulus is minimal, it is part of a catenoid. We also show
that a compact embedded annulus of constant mean curvature with negative
meeting a sphere tangentially and a plane at a constant contact angle ≥ π/2
(in the case of positive Gaussian curvature) or ≤ π/2 (in the negative case)
is part of a Delaunay surface. Thus, if the contact angle is ≥ π/2 and the
annulus is minimal, it is part of a catenoid.

Delaunay surfaces are rotational surfaces (surfaces of revolution) of constant
mean curvature in R3. Besides cylinders and spheres, they are divided into undu-
loids, nodoids, and (allowing the case of zero mean curvature in the definition,
for convenience) the catenoid, recognized long ago [Bonnet 1860] as the only
nonplanar minimal surface of rotation in R3.

Thus a Delaunay surface meets every plane perpendicular to the axis of rota-
tion under a constant angle. Conversely, if a compact surface of constant mean
curvature meets two parallel planes in constant contact angles, it is part of a De-
launay surface. This can be proved by using Alexandrov’s moving plane argument
[Alexandrov 1962; Hopf 1989] with planes perpendicular to the parallel planes.

A compact immersed minimal annulus meeting two parallel planes in constant
contact angles is also part of a catenoid. This result is not true when the con-
stant mean curvature is nonzero: Wente [1995] constructed examples of immersed
constant mean curvature annuli in a slab or in a ball meeting the boundary planes
or the boundary sphere perpendicularly. Compared to the above first case, we
may ask whether a compact minimal annulus or a compact embedded constant
mean curvature annulus meeting two spheres in constant contact angles is part of
a catenoid or of a plane. In [Park and Pyo ≥ 2011], it is shown that if a compact
embedded minimal annulus meets two concentric spheres perpendicularly then the
minimal annulus is part of a plane.

Supported by the Hankuk University of Foreign Studies Research Fund of 2011.
MSC2000: 53A10.
Keywords: minimal annulus, contact angle, sphere, parallel surface.
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In this paper, we show that a compact embedded constant mean curvature annu-
lus A in R3 meeting two spheres S1 and S2 of the same radius ρ tangentially and
having nonvanishing Gaussian curvature K is part of a Delaunay surface. More
precisely, depending on the values of K and the mean curvature H we have three
cases: (i) K < 0 and H > −1/ρ, in which case A is part of a unduloid if H < 0,
part of a catenoid if H = 0 and part of a nodoid if H > 0, (ii) K > 0 and
−1/ρ < H < −1/2ρ, in which case A is part of a unduloid, and (iii) K > 0
and H < −1/ρ, in which case A is part of a nodoid. In the first two cases, A

stays outside of the balls B1 and B2 bounded by S1 and S2. If (iii) holds, then
A⊂ B1 ∩ B2.

We also show that a compact embedded constant mean curvature annulus B

in R3 with negative (respectively, positive) Gaussian curvature meeting a unit
sphere tangentially and a plane in constant contact angle ≥ π/2 (respectively,
≤ π/2) is part of a Delaunay surface. In particular, a compact embedded mini-
mal annulus in R3 meeting a sphere tangentially and a plane in constant contact
angle ≥ π/2 is part of a catenoid.

To prove Theorems 3.1 and 3.2, we use the −ρ-parallel surface Ã of A (respec-
tively, B̃ of B), that is, the parallel surface of A (respectively, of B) with distance
ρ in the direction to the centers of the spheres. We use Alexandrov’s moving plane
argument [Alexandrov 1962; Hopf 1989] to prove that Ã and B̃ are rotational.
Since Ã and B̃ are the parallel surfaces of A and B respectively, A and B are also
rotational and, hence, are part of a Delaunay surface or part of a catenoid.

1. Constant mean curvature annulus meeting spheres tangentially

In the following, we may assume that the spheres have radius 1. Let A be a compact
embedded annulus with constant mean curvature H meeting two unit spheres S1

and S2 tangentially along the boundary curves γ1 and γ2. We fix the unit normal N
of A in such a way that N points away from the center of Si along each γi . Let
Y : A(1, R)→R3 be a conformal parametrization of A from an annulus A(1, R)=
{(x, y) ∈ R2

: 1 ≤
√

x2+ y2 ≤ R}. We define X by X = Y ◦ exp on the strip
B = {(u, v) ∈ R2

: 0 ≤ u ≤ log R}. Then X is periodic with period 2π . Let
z = u+ iv and λ2

:= |Xu|
2
= |Xv|2 with λ > 0.

Let hi j , i, j = 1, 2, be the coefficients of the second fundamental form of X with
respect to N . Note that the Hopf differential φ(z) dz2

= (h11 − h22 − 2ih12) dz2

is holomorphic for constant mean curvature surfaces [Hopf 1989]. The theorem
of Joachimsthal [do Carmo 1976] says that γ1 and γ2 are curvature lines of A.
Hence h12 ≡ 0 on u = 0 and u = log R. Since h12 is harmonic and periodic, we
have h12 ≡ 0 on B. This implies that z is a conformal curvature coordinate and
h11−h22 is constant [McCuan 1997]. Let c= h11−h22. If A is minimal, then we
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have K < 0 and c= 2h11 > 0 by the choice of N . When H =−1, A is part of the
unit sphere S1 = S2 by the boundary comparison principle for the mean curvature
operator [Gilbarg and Trudinger 2001]. We assume that H 6= −1 in the following.
The principal curvatures of A are

(1) κ1 = H +
c

2λ2 and κ2 = H −
c

2λ2 .

We use for γ1 and γ2 the parametrizations γ1(v)= X (0, v) and γ2(v)= X (log R, v),
for v∈[0, 2π). In the following, we assume that A has nonzero Gaussian curvature.

Lemma 1.1. Each γi (v), i = 1, 2, has constant speed
√

c/2(1+ H) and κ2 is −1
on γ1 and γ2. As spherical curves, γ1 and γ2 are convex. On A \ ∂A, we have
λ2 < c/2(1+ H) when K < 0 and λ2 > c/2(1+ H) when K > 0.

Proof. The curvature vector of γ1(v) is

Eκ =
1
|Xv|

d
dv

(
Xv
|Xv|

)
=

1
|Xv|2

Xvv −
Xv
|Xv|4

(Xv · Xvv)(2)

=
1
λ2

(
−
λu

λ
Xu + h22 N

)
.

Let the center of S1 be the origin of R3. Since A is tangential to S1 along γ1, we have
N (0, v)= X (0, v)= γ1(v) on γ1. Since γ1 is on the unit sphere S1, the curvature
vector Eκ of γ1 satisfies (Eκ · γ1)(v)=−1. Hence we have κ2 = h22/λ

2
=−1 on γ1.

Since λ2
= |γ1v|

2 on γ1, we have |γ1v| =
√

c/2(1+ H) from (1). By choosing the
center of S2 as the origin of R3, we get the results for γ2.

The Gaussian curvature K satisfies

1 log λ=−Kλ2,

where 1= ∂2/∂u2
+ ∂2/∂v2. We can rewrite this equation as

(3) λ1λ= |∇λ|2− Kλ4.

Since λv(0, v) = 0 and λv(log R, v) = 0 and K 6= 0, λ does not have interior
maximum when K < 0, and does not have interior minimum when K > 0. Since
λ2
= c/2(1+ H) on γ1 and γ2, it follows that λ2 < c/2(1+ H) on A \ ∂A when

K < 0 and λ2 > c/2(1+ H) when K > 0. Moreover we have λu ≤ 0 on u = 0 and
λu ≥ 0 on u = log R when K < 0 and λu ≥ 0 on u = 0 and λu ≤ 0 on u = log R
when K > 0. Since Xu/|Xu| ∈ T Si is perpendicular to γi , the geodesic curvature
of γi as a spherical curve is Eκ · (Xu/|Xu|)=−λu/λ

2. Hence γ1 and γ2 are convex
as spherical curves. �

Remark 1.2. If λ2
≡ c/2(1+ H) on A, then K ≡ 0 and A is part of a cylinder.
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2. The −1-parallel surface

The −1-parallel surface Ã of A is defined by

X̃ = X − N .

The image of γ1 (respectively, of γ2) in Ã is a point corresponding to the center
of S1 (respectively, of S2). We denote the centers of S1 and S2 by O and O2 for
simplicity. We fix the unit normal Ñ of Ã to be N . Since z = u+ iv is a curvature
coordinate of X , we have

(4) X̃u =

(
1+

h11

λ2

)
Xu and X̃v =

(
1+

h22

λ2

)
Xv.

Since κ2 = −1 on γi by Lemma 1.1, X̃ is singular for u = 0 and u = log R. By
Lemma 1.1, we have λ2

6= c/2(1+ H) on A \ ∂A, which implies that 1+ κ2 6= 0
on A \ ∂A. When K < 0, we have κ1 > 0 on A \ ∂A. Hence X̃ is regular for
0< u < log R and we have H >−1.

Now suppose that K > 0. Since κ2 =−1 on γi by Lemma 1.1, we have κ1 < 0
and H <−1/2. We consider two cases separately: H <−1 and −1< H <−1/2.
If H <−1, then c< 0 from λ2

= c/2(1+ H) > 0 on γi . Hence we have κ1 <−1,
which implies that X̃ is regular for 0<u< log R. If−1< H <−1/2, then we must
have c> 0. This implies that 1+κ1 6= 0. Otherwise we have 0< 2λ2(1+H)=−c,
which contradicts c > 0. Hence X̃ is regular for 0< u < log R.

Remark 2.1. When K < 0 or K > 0 and −1< H <−1/2, A stays outside of the
balls B1 and B2 bounded by S1 and S2. If K > 0 and H <−1, then A⊂ B1 ∩ B2.

Lemma 2.2. The mean curvature H̃ and the Gaussian curvature K̃ of Ã satisfies
(1+ H)K̃ = (1+ 2H)H̃ − H. On Ã \ {O, O2}, we have the following:

(i) If K < 0 and H >−1, then κ̃1 > 0, κ̃2 > 1 and H̃ > 1.

(ii) If K >0 and−1< H <−1/2, then 0< c/2λ2(1+H)<min{1,−H/(1+H)},
κ̃1 < 0, κ̃2 < H/(1+ H) and H̃ < H/(1+ H).

(iii) If K > 0 and H <−1, then 0< c/2λ2(1+H) < 1, κ̃1 > (1+2H)/2(1+H),
κ̃2 > H/(1+ H) and H̃ > H/(1+ H).

Proof. Since

h̃12 = N · X̃uv =

(
1+

h11

λ2

)
(N · Xuv)= 0,

(u, v) is a curvature coordinate (not conformal) for Ã except for O and O2. We
have

h̃11 = N · X̃uu =

(
1+

h11

λ2

)
h11, h̃22 = N · X̃vv =

(
1+

h22

λ2

)
h22.
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The principal curvatures of Ã are

κ̃1 =
κ1

1+ κ1
=

H/(1+ H)+
(
c/2λ2(1+ H)

)
1+

(
c/2λ2(1+ H)

) ,

κ̃2 =
κ2

1+ κ2
=

H/(1+ H)−
(
c/2λ2(1+ H)

)
1−

(
c/2λ2(1+ H)

) .

From κ1+ κ2 = 2H , we have H = H̃− K̃
1−2H̃− K̃

or (1+ H)K̃ = (1+ 2H)H̃ − H .
It is straightforward to see that

H̃ =
H/(1+ H)−

(
c/2λ2(1+ H)

)2

1−
(
c/2λ2(1+ H)

)2 .

Note that κ2 < 0 on A. First suppose that K < 0. Then we have κ1 > 0, which
implies that κ̃1 = κ1/(1+ κ1) > 0. Since c/2λ2(1+ H) > 1 by Lemma 1.1, we
have κ̃2 > 1 and H̃ > 1.

When K >0, we have κ1=H+c/2λ2<0. If−1<H <−1/2, then we have c>
0 because λ2

= c/2(1+H)> 0 on γi . It follows that c/2λ2(1+H)<−H/(1+H).
By Lemma 1.1, we also have c/2λ2(1+ H) < 1. Therefore 0 < c/2λ2(1+ H) <
min{1,−H/(1 + H)}. It is easy to see that κ̃1 < 0, κ̃2 < H/(1 + H) < 0 and
H̃ < H/(1+ H) < 0.

When K > 0 and H < −1, we have c < 0 and 0 < c/2λ2(1+ H) < 1. It is
straightforward to see that κ̃1 > (1+ 2H)/(1+ H), κ̃2 > H/(1+ H) and H̃ >

H/(1+ H). �

This lemma says that Ã is a linear Weingarten surface with two singular points O
and O2 and is positively curved outside O and O2.

Lemma 2.3. Ã is embedded.

Proof. Let ν(v) = (Xu/|Xu|)(0, v). Note that ν is a closed curve in the unit
sphere S1. We claim that ν is convex as a spherical curve. Otherwise, there is a
great circle η intersecting the image of ν at no less than 3 points ν(v1), . . . , ν(vn).
(It is possible that ν maps an interval (va, vb) ⊂ [0, 2π) into a single point. We
choose the vi ’s in such a way that ν maps no two vi ’s to the same point.) Each ν(vi )

determines a great circle S1
vi
⊂ S1 contained in the plane perpendicular to ν(vi ).

At each γ1(vi ), γ1 is tangent to S1
vi

. Since η and S1
vi

are perpendicular, γ1 can-
not be convex when n ≥ 3. Hence ν intersect every geodesic of S1 at no more
than two points. This shows that ν is convex as a spherical curve. Similarly,
(Xu/|Xu|)(log R, v) is also convex as a spherical curve.

Since Ã is a parallel surface of A, the tangent cone Tan(O, Ã) of Ã at O is
the cone formed by rays from O through ν. Since ν is a convex spherical curve,
Tan(O, Ã) is convex. This shows that a small neighborhood of O in Ã is embedded
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and nonnegatively curved as a metric space [Alexandrov 1948]. Similarly, there
is a neighborhood of O2 in Ã which is embedded and nonnegatively curved as a
metric space.

Hadamard showed that a closed surface S in R3 with strictly positive Gauss-
ian curvature is the boundary of a convex body [Hopf 1989]. In particular, S is
embedded. Alexandrov [1948] generalized Hadamard’s theorem to nonnegatively
curved metric spaces. Since Ã is a nonnegatively curved closed metric space, Ã is
embedded. �

Remark 2.4. We have νv = (λu/λ
2)Xv. At points where λu 6= 0, the curvature

vector of ν is

Eκν =
1
λu

(
−
λu

λ
Xu + h22 N

)
.

The geodesic curvature of ν as a spherical curve Eκν · N = h22/λu .

3. Main results

We use Alexandrov’s moving plane argument [Alexandrov 1962; Hopf 1989] to
prove the theorems.

Theorem 3.1. A compact embedded constant mean curvature annulus A with non-
vanishing Gaussian curvature meeting two spheres S1 and S2 of the same radius
tangentially is part of a Delaunay surface. In particular, if A is minimal, then A

is part of a catenoid.

Proof. We suppose that the radius of S1 and S2 is 1. By Lemma 2.2 and Lemma 2.3,
Ã is a compact embedded surface with two singular points O and O2 and satisfying
(1+H)K̃ = (1+2H)H̃ −H at regular points. A small neighborhood of a regular
point of Ã can be represented as the graph of a function f (x, y) satisfying

(5) 2(1+ H)( fxx fyy − f 2
xy)+ 2H(1+ f 2

x + f 2
y )

2

= (1+ 2H)
(
(1+ f 2

y ) fxx − 2 fx fy fxy + (1+ f 2
x ) fyy

)
(1+ f 2

x + f 2
y )

1/2.

This equation can be rewritten as

(6) det
(
2(1+ H)D2 f + A(D f )

)
=W 4,

where

A(D f )=−(1+ 2H)
(
(1+ f 2

x )W fx fy W
fx fy W (1+ f 2

y )W

)
and W =

√
1+ f 2

x + f 2
y .

Equation (6) is elliptic with respect to f if 2(1 + H)D2 f + A(D f ) is positive
definite. Since det

(
2(1+ H)D2 f + A(D f )

)
=W 4 > 0, this happens if

(7) Tr
(
2(1+ H)D2 f + A(D f )

)
= 2(1+ H)1 f − (1+ 2H)(2+ f 2

x + f 2
y )W



A CMC ANNULUS TANGENT TO SPHERES IS DELAUNEY 203

is strictly positive.
First we consider the case K < 0. Since H̃ > 1 by Lemma 2.2, we have

(8) 1 f + f 2
y fxx − 2 fx fy fxy + f 2

x fyy > 2W 3/2,

for f representing Ã. We may assume that f is defined on B(0, ε)⊂ TpÃ so that
∇ f (0)= E0 and D2 f is diagonal. For sufficiently small ε = ε(p), (8) implies that
(7) is strictly positive. Hence (6) is elliptic with respect to f representing Ã.

When −1< H <−1/2, (7) is automatically satisfied.
Now we consider the case K > 0 and H < −1. Since H̃ > H/(1 + H) by

Lemma 2.2, we have

(9) 1 f + f 2
y fxx − 2 fx fy fxy + f 2

x fyy >
2H

1+H
W 3/2.

Assuming that f is defined on B(0, ε)⊂TpÃ with∇ f (0)=E0 and D2 f is diagonal,
(9) implies that

1 f − 1+2H
2(1+H)

(2+ f 2
x + f 2

y )W

is strictly positive for sufficiently small ε. So det
(
−2(1+H)D2 f − A(D f )

)
=W 4

is elliptic for f representing Ã. The ellipticity of (6) for f representing Ã en-
ables us to use the maximum principle and the boundary point lemma [Gilbarg
and Trudinger 2001].

Since Ã is convex and embedded, we can use Alexandrov’s moving plane ar-
gument [Alexandrov 1962; Hopf 1989] to show that Ã is rotational as follows.
Let 5θ be the plane containing the line segment OO2 ⊂ R3 and making angle θ
with a fixed vector EE which is perpendicular to OO2. Fix a positive constant L
such that each plane 5L

θ that is parallel to 5θ with distance L from 5θ does not
meet Ã for all θ . Let5l

θ be the plane between5L
θ and5θ with distance l from5θ .

When 5l
θ intersects Ã, we reflect the 5L

θ side part of Ã about 5l
θ . Denote this

reflected surface by Ãref
l,θ . As we decrease l from L , there might be a first lθ ≥ 0 for

which Ãref
lθ ,θ is tangent to Ã at an interior point or at a boundary point of ∂Ãref

lθ ,θ .
We call this point the first touch point. If there is no nonnegative l with the first
touch point, we repeat the process for 5L

θ+π to find lθ+π , which must be positive.
At the first touch point, we apply the comparison principles for (5) to see that the
part of Ã in the 5θ side and Ãref

lθ ,θ are identical and, hence, lθ = 0. This implies
that 5θ is a symmetry plane for Ã. Since θ can be chosen arbitrarily, Ã should
be rotational and, hence, A is also rotational. Since the Delaunay surfaces and the
catenoid are the only nonplanar rotational minimal and constant mean curvature
surfaces, A is part of a Delaunay surface or part of a catenoid. �

We used the embeddedness of A to prove that Ã is embedded. Whether there
is a nonembedded minimal or constant mean curvature annulus meeting two unit
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spheres tangentially is an interesting question. Moreover we raise the following
questions.

(1) Is a compact immersed minimal annulus or a compact embedded minimal
or constant mean curvature surface meeting a sphere perpendicularly or in
constant contact angles part of a catenoid or part of a Delaunay surface?
Nitsche showed that an immersed disk type minimal or constant mean cur-
vature surface meeting a sphere in constant contact angle is either a flat disk
or a spherical cap [Nitsche 1985].

(2) Is a compact immersed minimal annulus or a compact embedded minimal
or constant mean curvature surface meeting two spheres in constant contact
angles part of a catenoid or a plane or part of a Delaunay surface?

(3) Is a compact immersed minimal or constant mean curvature annulus or a com-
pact embedded minimal or constant mean curvature surface meeting a sphere
and a plane in constant contact angles part of a catenoid or part of a Delaunay
surface? We give an affirmative answer to this problem in a special case in
the following.

Theorem 3.2. A compact embedded constant mean curvature annulus B with neg-
ative (respectively, positive) Gaussian curvature meeting a sphere tangentially and
a plane in constant contact angle≥π/2 (respectively,≤π/2) is part of a Delaunay
surface. In particular, if B is minimal and the constant contact angle is≥π/2 then
B is part of a catenoid.

The angle is measured between the outward conormal of B and the outward
conormal of the bounded domain in 5 bounded by the boundary curve. Since the
proof of this theorem is similar to that of Theorem 3.1, we omit some previously
proved details.

Proof. Denote the sphere by S2 and the plane by5. We may assume that the radius
of S2 is 1. Let α be the constant contact angle between B and 5. If α = π/2, then
we can reflect B about 5 to get a constant mean curvature annulus meeting two
unit spheres tangentially. Hence B is part of a catenoid or a Delaunay surface by
Theorem 3.1.

In the following, we assume that α 6=π/2. As in the case for A in Section 1, there
is a conformal parametrization X of B from a strip {(u, v) ∈ R2

: 0 ≤ u ≤ log R}
for which z = u+ iv is a curvature coordinate. We fix the normal N of B to point
away from the center of S2. Let c1(v)= X (0, v) be on 5 and c2(v)= X (log R, v)
be on S2 with ∂X3/∂u > 0 along c1. As in Lemma 1.1, c2 has constant speed
√

c/2(1+ H) and κ2=−1 along c2. Since K 6=0 on B and z=u+iv is a curvature
coordinate, we have κ2 < 0 on c1. The curvature of c1 is |Eκ| = −κ2/ sinα > 0,
which shows that c1 is locally convex. Since c1 is a Jordan curve, it is convex.
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First, we assume that K < 0 and α >π/2. Since (Eκ/|Eκ|) ·(Xu/Xu|)= cosα < 0
on c1, it follows from (2) that λu>0 on c1. Since λv(log R, v)=0 (see Lemma 1.1),
it follows from (3) that λu ≥ 0 on c2. Otherwise, λ will have an interior maximum,
which contradicts (3). Hence we have λ2 < c/2(1 + H) on B \ c2. Note that
κ1 > 0 and κ2 < 0 in B. From λu ≤ 0 on c2, we see that c2 is convex as a
spherical curve (see Lemma 1.1). Arguing as in the proof of Lemma 2.3, we see
that (Xu/|Xu|)(log R, v) is also convex as a spherical curve.

When K > 0 and α < π/2, we have (Eκ/|Eκ|) · (Xu/|Xu|) = cosα > 0 on c1.
Hence λu < 0 on c1. Since λv(log R, v) = 0, it follows from (3) that λ does not
have interior minimum. Then we have λu ≤ 0 on c2 and λ2> c/2(1+H) on B\c2.
Note that κ1 < 0 and κ2 < 0 in B. From λu ≤ 0 on c2, it follows that c2 is convex
as a spherical curve. Moreover (Xu/|Xu|)(log R, v) is convex as a spherical curve
(see Lemma 2.3).

Let B̃ be the −1-parallel surface of B. As in Section 2, we can show that B̃ is
regular except for O2: the image of c2, and H >−1 when K < 0 and H <−1/2
when K > 0. As in Lemma 2.2, we see that mean curvature H̃ and the Gaussian
curvature K̃ of B̃ satisfies (1 + H)K̃ = (1 + 2H)H̃ − H and (i) if K < 0 and
H > −1, then κ̃1 > 0, κ̃2 > 1 and H̃ > 1, (ii) if K > 0 and −1 < H < −1/2,
then 0 < c/2λ2(1+ H) < min{1,−H/(1+ H)}, κ̃1 < 0, κ̃2 < H/(1+ H) and
H̃ < H/(1+ H), and (iii) if K > 0 and H < −1, then 0 < c/2λ2(1+ H) < 1,
κ̃1 > (1+ 2H)/2(1+ H), κ̃2 > H/(1+ H) and H̃ > H/(1+ H).

The convexity of (Xu/|Xu|)(log R, v) as a spherical curve implies that there
is a neighborhood of O2 in B̃ which is embedded and nonnegatively curved as a
metric space. Let 5̃ be the plane parallel to 5 and containing c̃1. The curvature
of c̃1 is |κ̃2|/ sinα, which does not vanish. Hence c̃1 is locally convex. Using
the orthogonal projection onto 5̃, c̃1 may be considered as a (sinα)-parallel curve
of c1 in 5̃. Hence c̃1 is also a convex Jordan curve.

Suppose that K < 0 and α > π/2. Since κ1 > 0, X̃u is a positive multiple of Xu

by (4). The positivity of κ̃1 and κ̃2 implies that B̃ meets 5̃ in constant angle π−α.
Suppose that K > 0 and α < π/2. If −1 < H < −1/2, then we have c > 0 and
κ1>−1. Hence X̃u is a positive multiple of Xu by (4). The negativity of κ̃1 and κ̃2

implies that B̃ meets 5̃ in constant angle α. When K > 0 and H < −1, we have
c < 0 and κ1 < −1. Hence X̃u is negative multiple of Xu by (4). In this case, B̃

lies below 5̃ and κ̃1 and κ̃2 are both positive. It is straightforward to see that B̃

meets 5̃ in constant angle α.
Let B̆ be the singular surface obtained from B̃ by attaching the disk in 5̃

bounded by c̃1 to B̃. Since B̃ meets 5̃ in acute angle, B̆ is a nonnegatively curved
metric space. By Alexandrov’s generalization [1948] of Hadamard’s theorem, B̆ is
the boundary of a convex body. Therefore B̆ is embedded. Note again that H̃ , K̃ ,
κ̃1 and κ̃2 satisfy the statements of Lemma 2.2. Hence (5) is elliptic for functions
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representing B̃ locally. We can apply Alexandrov’s moving plane argument to B̃

using planes perpendicular to 5̃ as in the proof of Theorem 3.1 to see that B̃ is
rotational. Hence B is rotational and, as a result, is part of a Delaunay surface or
part of a catenoid. �
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A NOTE ON THE TOPOLOGY OF THE COMPLEMENTS
OF FIBER-TYPE LINE ARRANGEMENTS IN CP2

SHENG-LI TAN, STEPHEN S.-T. YAU AND FEI YE

We prove that BDiff+(S2, {x1, . . . , xn+1}) is a K (π, 1) space, where π is the
mapping class group of an (n+1)-punctured sphere. As a consequence we
derive that the center-projecting braid monodromy of a fiber-type projec-
tive line arrangement determines the diffeomorphic type of its complement.

1. Introduction

A complex arrangement of hyperplanes A is a finite collection of C-linear sub-
spaces of dimension n − 1 in Cn . Denote by M(A) = Cn

−
⋃
{H : H ∈ A} the

complement of A. The theory of arrangements of hyperplanes is not only closely
related to singularity theory, algebraic geometry and hypergeometric function the-
ory, but also has its own interesting questions. For example, one of the central
problems is to find the relationship between the topological structure and combi-
natorial structure of an arrangement. In other words, one wants to understand the
topological properties of M(A) and how to classify the arrangements according
to their combinatorics. To study such problems, mathematicians have developed
many techniques, for example, the lattice-isotopy theorem and braid monodromy
method which will be used in this paper. The lattice-isotopy theorem was used
in [Jiang and Yau 1994; Wang and Yau 2005; 2007; 2008; Yau and Ye 2009] to
derive the structures of so-called nice arrangements and prove that their differential
structures are determined by their combinatorics. Braid monodromy method has
been widely used to study the topology of complements of plane algebraic curves
and line arrangements; see, for example, [Moishezon 1981; Cohen and Suciu 1997;
Dung 1999; Kulikov and Taı̆kher 2000; Cohen 2001; Artal Bartolo et al. 2003;
2007]. However, there are still many kinds of arrangements for which we are
far from understanding the relationship between the topology and combinatorics.
This is true even in the case of a fiber-type projective line arrangement, that is,
the projectivization of a fiber-type hyperplane arrangement in C3. Cohen [2001]
studied the structure and properties of the fundamental group of the complement of

MSC2000: primary 14N20, 52C35; secondary 57R22, 37E30.
Keywords: fiber-type line arrangement, braid monodromy, differentiable fiber bundle.
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a fiber-type arrangement. He showed that the Whitehead group of the fundamental
group of the complement of a fiber-type arrangement is trivial, which was con-
jectured by Aravinda, Farrell and Roushon [2000]. He also proved the conjecture
by Xicoténcatl [1997] on the structure of the Lie algebra associated to the lower
central series of the fundamental group. Besides that, we still don’t know whether
the combinatorics of a line arrangement determines the topology of its complement.

It is well known that fiber-type projective line arrangements are the same as
supersolvable projective line arrangements (see, for example, [Orlik and Terao
1992]). Moreover, Jiang et al. [2001] studied the geometric characterization of
supersolvable line arrangements in CP2. They showed that any fiber-type line
arrangement in CP2 has a center through which every multiple point of the ar-
rangement has a line in the arrangement passing. The complement of a fiber-type
projective line arrangement is a locally trivial fiber bundle with punctured sphere
as base and fibers. It is a natural question how to classify the complements of
fiber-type line arrangements in CP2 by center-projecting braid monodromies (see
Definition/Construction 4.1). One of the applications of such braid monodromies is
that the fundamental group of a fiber-type projective line arrangement is isomorphic
to the semidirect product of free groups Fm oφFn , where φ is the center-projecting
braid monodromy [Cohen 2001]. The purpose of this paper is to use this center-
projecting braid monodromy to study the topology of the complement.

It is well known that the braid monodromy determines the homotopy type of
the complement of an algebraic curve [Libgober 1986]. In this paper, we prove
that for a fiber-type projective line arrangement its center-projecting braid mon-
odromy determines even the diffeomorphic type of its complement, consequently,
determines the homotopy type.

Main Theorem. Let A1 and A2 be two fiber-type projective line arrangements. If
they have the same center-projecting braid monodromies, then their complements
are diffeomorphic.

The key ingredient of the proof is Proposition 3.1. It shows that the classifying
space of the structure group of the complement, the orientation-preserving diffeo-
morphism group Diff+(S2, {x1, x2, . . . , xn+1}) of S2 fixing the set {x1, x2, . . . , xn+1},
is a K (π, 1) space, where π is the mapping class group of a punctured sphere.
Morita [1987] explained that BDiff0(6g), where Diff0(6g) is the subgroup of dif-
feomorphisms of a Riemann surface 6g which can be deformed to the identity, is
contractible for g ≥ 2, using a result of Earle and Eells [1967]. However, in our
case, Earle and Eells’ result is not applicable.

2. The complements of fiber-type line arrangements in CP2

We begin by recalling some definitions which one can find in [Orlik 1992].
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Definition 2.1. A hyperplane arrangement A is called strictly linear fibered if,
after a suitable linear change of coordinates, the restriction of the projection of
M(A) to the first (n − 1) coordinates is a fiber bundle projection with base the
complement M(B) of an arrangement B in C(n−1), and fiber the complement C∗
of finitely many points in C3.

Definition 2.2. A 1-arrangement A1 of finitely points in C is fiber-type. An n-
arrangement is fiber-type if it is strictly linear fibered over a fiber-type (n−1)-
arrangement. A fiber-type projective line arrangement A∗ in CP2 is the projec-
tivization of a fiber-type 3-arrangement A3 in C.

Definition 2.3. Let A∗ be an arrangement in CP2 and c be a point in the lattice
L(A∗). The point c is called a center of A∗ if for any multiple point p of A∗ there
is a line l in A∗ connecting c and p.

Let A∗ be a fiber-type projective line arrangement with complement M(A∗).
We now recall some geometric characterizations of fiber-type line arrangements.

Theorem 2.4 [Terao 1986]. An arrangement A is fiber-type if and only if L(A) is
supersolvable.

Theorem 2.5 [Jiang et al. 2001]. Let A be a 3-arrangement. The lattice L(A) is a
supersolvable if and only if the projectivization A∗ has a center.

Using the above two theorems, the structure of the complements of fiber-type
projective line arrangements can be characterized as follows.

Remark 2.6 [Jiang et al. 2001]. Let c be the center of A∗. After a suitable linear
transformation, we may assume that c= (0 : 1 : 0) and that one of the lines passing
through c is the line at infinity, z = 0. We can view M(A∗) as a subset of C2.
Assume that the lines passing c are defined by the equations

z = 0, x = k1z, . . . , x = kmz,

and the rest of the lines in A∗ are

y = a1x + b1z, . . . , y = anx + bnz.

Therefore, M(A∗) is a fiber bundle over base X = CP1
− {k1, . . . , km,∞} and

with fibers Fx = CP1
− {a1x + b1, . . . , anx + bn,∞}, x ∈ X , under the first

coordinate projection C2
→ C. Moreover, this fiber bundle admits a structure

group Diff+(S2, {x1, . . . , xn, xn+1}).

Definition 2.7. Let A∗ be a fiber-type projective line arrangement in CP2. Let
c = (0 : 1 : 0) be the center of A∗. Denote by St(c) the set of lines in A∗ passing
through c. Define the subarrangement associated to A∗ as B=A∗−St(c).

Note that B can be viewed as an affine arrangement in C2
= CP2

− L∞. We
will construct the braid monodromy of B related to A∗ in Section 4.
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3. Classification of the complements of fiber-type line arrangements in CP2

as fiber bundles

For any differentiable fiber bundle with fiber F , let the group Diff+(F) be its
structure group, the group generated by all orientation preserving diffeomorphisms
of F equipped with topology. It is well-known that Diff+(F) is also a manifold.
Two differentiable fiber bundles p1 : E1 → B and p2 : E2 → B are isomorphic
if there exists an diffeomorphism h : E1 → E2 such that the following diagram
commutes:

E1
h - E2

B

p2

�

p1

-

The following natural bijection is a well-known fact:

{ isomorphism class of differentiable fiber bundles over X} ∼= [X, BDiff+(F)],

where [X, BDiff+(F)] is the set of homotopy classes of differentiable maps from X
to the classifying space BDiff+(F).

Note that the homotopy classes of continuous maps and that of differential maps
are canonically the same (see Corollary 3.8.18 in [Conlon 2001]). So the classifi-
cation of differentiable fiber bundles over X with structure group Diff+(F) lies in
the set of homotopy classes of continuous maps X→ BDiff+(F).

It is well known from obstruction theory (see for example Theorem 11 on page
428 in [Spanier 1981]) that if BDiff+(F) is a K (π, 1) space, then

[X, BDiff+(F)] ∼= homconj(π1(X), π1(BDiff+(F))

where homconj means the conjugacy classes of homomorphisms. Two homomor-
phisms f and g are in the same conjugacy class if and only if there is an inner
automorphism a of the target group such that f = a ◦g ◦a−1. In the following, we
will show that the classifying space of BDiff+(S2, {x1, . . . , xn+1}) is a K (π, 1)
space and the fundamental group is nothing but the mapping class group of an
(n+1)-punctured sphere, which is the group π0(Diff+(S2, {x1, . . . , xn+1})) of path
components of Diff+(S2, {x1, . . . , xn+1}); see, for example, Chapter 4 in [Birman
1974].

Proposition 3.1. BDiff+(S2, {x1, . . . , xn+1}) is a K (π, 1) space. Moreover,

π1(BDiff+(S2, {x1, . . . , xn+1}))= π0(Diff+(S2, {x1, . . . , xn+1}))

is the mapping class group of an (n+1)-punctured sphere.
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Proof. Let Diff+(S2, x1, . . . , xn+1) be the subgroup of Diff+(S2, {x1, . . . , xn+1})

consisting of diffeomorphisms fixing the base points xi , i = 1, . . . , n + 1. Then
Diff+(S2, x1, . . . , xn+1) is a normal subgroup in

Diff+(S2, {x1, . . . , xn+1})

with the symmetric group Sn+1 as its quotient. On the classifying space level, it
follows the fibration

BDiff+(S2, x1, . . . , xn+1)→ BDiff+(S2, {x1, . . . , xn+1})→ BSn+1;

see [Piccinini and Spreafico 1998, Theorem 6.1]. Since Sn+1 is a discrete group,
πi (Sn+1)= 0 for i ≥ 1. Then

πi (BSn+1)∼= πi−1(Sn+1)= 0

for i ≥ 2, which implies that BSn+1 is a K (Sn+1, 1)-space. The advantage of
working with Diff+(S2, x1, x2, . . . , xn+1) is that we can take xn+1 to be the point
at∞ and identify

Diff+(S2, x1, . . . , xn+1)∼= Diff+(S2
−{∞}, x1, . . . , xn)

with the group Diff+(R2, x1, . . . , xn) of diffeomorphisms of R2 that keep the n
points x1, . . . , xn fixed. The later is a better known group. Following from the
well-known criterion for classifying spaces [Steenrod 1999, Theorem 19.4; Cohen
1998, Proposition 2.15], we have another fibration

Diff+(R2)/Diff+(R2, x1, . . . , xn)→ BDiff+(R2, x1, . . . , xn)
f
−→ BDiff+(R2),

where f is defined by forgetting the n points. Consider the configuration space
Fn(R

2) of n points in R2:

Fn(R
2)= { (x1, . . . , xn) | xi ∈ R2 for i = 1, 2, . . . , n and xi 6= x j if i 6= j }.

It is easy to see that the fiber Diff+(R2)/Diff+(R2, x1, . . . , xn) equals Fn(R
2),

which can be considered as the quotient of the flowing homomorphism

Diff+(R2)→ Fn(R
2)

h 7→ (h(x1), . . . , h(xn)).

It is well known that the configuration space Fn(R
2) is a K (π, 1)-space and its

fundamental group is a braid group. On the other hand, by Theorem 1 in [Friberg
1973], Diff+(R2) has the same homotopy type as SO(2), which is homeomor-
phic to the circle S1. So π1(Diff+(R2)) ∼= π1(SO(2)) = Z and πi (Diff+(R2)) ∼=

πi (SO(2))= 0 for i ≥ 2. Hence to prove that

πi (BDiff+(R2, x1, . . . , xn))= 0
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for i ≥ 2, by using the long exact sequence of the fibration

πi (Fn(R
2)) - πi (BDiff+(R2, x1, . . . , xn)) - πi (BDiff+(R2))

∼=
πi−1(Diff+(R2))

∼=

πi−1(SO(2)),

it is enough to prove that the boundary map ∂ in the diagram

π2(BDiff+(R2))
∂- π1(Fn(R

2))

π1(Diff+(R2))

∼=

? ϕ

-

is injective. The map π1(Diff+(R2))
ϕ
−→ π1(Fn(R

2)) can be identified with the
induced homomorphism given by

Diff+(R2)→Fn(R
2)

h 7→(h(x1), . . . , h(xn)).

From this interpretation, it is easy to see that a generator of π1(Diff+(R2)) is
mapped to a nontrivial element in π1(Fn+1(R

2)). Thus ∂ is injective and hence
BDiff+(S2, x1, . . . , xn+1) is a K (π, 1)-space. So BDiff+(S2, {x1, . . . , xn+1}) is
also a K (π, 1)-space and

π1(BDiff+(S2, {x1, . . . , xn+1}))= π0(Diff+(S2, {x1, . . . , xn+1}))

is the mapping class group of an (n+1)-punctured sphere. �

It follows immediately that:

Theorem 3.2. Let B= S2
\{k1, k2, . . . , km+1} and F= S2

\{x1, x2, . . . , xn+1}. The
isomorphic classes of differentiable fiber bundles over B with fiber F and structure
group G =Diff+(F) are in one-to-one correspondence with the conjugacy classes
of homomorphisms from π1(B) to π1(BG) = Mn , where Mn is the mapping class
group of an n-punctured sphere.

4. Application of braid monodromy

Before we prove our Main Theorem, we will give the definition of center-projecting
braid monodromy of a fiber-type projective line arrangement and some useful re-
sults [Cohen and Suciu 1997; Dung 1999; Artal Bartolo et al. 2003].
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Let fi (x)= ai x + bi , 1≤ i ≤ n, be the linear functions of the lines not passing
through the center c of a fiber-type projective line arrangement. Define

f : C \ {k1, . . . , km} → Fn(C)

to be the map f (x)= ( f1(x), f2(x), . . . , fn(x)).

Definition/Construction 4.1. Let A∗ be a fiber-type line arrangement in CP2 with
center c and let B be the subarrangement associated to A∗. Choose the projection
from the complement M(B) in C2 to C so that it coincides with the projection
from M(A∗) to a CP1 through the center c. Let∞, k1, k2, . . . , km be the points in
CP1 that are the projective images of the lines in A∗ passing through c. The braid
monodromy of B is the homomorphism ϕ : π1(C \ {k1, . . . , km})→ Bn induced
by the map f , where Bn is the braid group of n strings (see [Birman 1974]) and
n is the number of the lines in A∗ not passing through the center c. Such a braid
monodromy is called the center-projecting braid monodromy of the fiber-type line
arrangement A∗ in CP2.

One can easily check that the braid monodromy of B coincides with the mon-
odromy of the fiber bundle M(A∗).

This fact about the bundle structure of M(A∗) is a theorem of Cohen [2001]:

Theorem 4.2. The complement of A∗ with the natural bundle structure is equiva-
lent to the pullback of the bundle of configuration spaces pn+1 : Fn+1(C)→ Fn(C)

via f .

The next corollary follows immediately from Theorem 4.2 and Proposition 3.1.

Corollary 4.3. Let g : π1(B)→ Mn be a classifying morphism representing the
isomorphism class of the bundle M(A∗)→ B and q : Bn→Mn be the classifying
morphism representing the isomorphism class the fiber bundle Fn+1(C)→ Fn(C).
Then g factors through q via the center-projecting braid monodromy ϕ.

Proof. Let G = Diff+(S2, {x1, . . . , xn, xn+1}) be the structure group of the bundle
M(A∗)→ B. Let g′ : B→ BG be a differentiable map which induces the map g
and q ′ : Fn(C)→ BG be a differentiable map which induces the map q . Then
we have the following bundle isomorphisms: g′∗EG ∼= M(A∗)∼= f ∗(Fn+1(C))∼=

f ∗(q ′∗(EG))= (q ′◦ f )∗(EG), where BG is the classifying space of G and EG is
the universal fiber bundle over BG. Then q ′ ◦ f and g′ are representing the same
bundle. Therefore g = q ◦ ϕ, because the braid monodromy ϕ is induced by the
map f . �

Denote by Fm the free group generated by m elements.

Definition 4.4. Let ψ1, ψ2 : π1(C \ {k1, . . . , km}) = Fm → Bn be the center-
projecting braid monodromies of A∗1 and A∗2 respectively. We say that A∗1 and
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A∗2 have the same braid monodromy if there exists an element ρ ∈ Bn such that
ψ2(α)= ρ ·ψ1(α) · ρ

−1 for any α ∈ Fm .

Main Theorem. Let A∗1 and A∗2 be two fiber-type projective line arrangements. If
they have the same center-projecting braid monodromies, then their complements
M(A∗1) and M(A∗2) are diffeomorphic.

Proof. By Remark 2.6, the complements of the two fiber-type line arrangements
are fiber bundles. Since they have the same center-projecting braid monodromy,
they have the same base, fiber and structure group. By Theorem 3.2, we know
that the isomorphism classes of such fiber bundles over same base with same
fiber and structure group are in one-to-one correspondence with the homomor-
phisms π1(S2

\ {x1, . . . , xm+1})→ Mn up to conjugation. By Corollary 4.3, the
isomorphism class of the complement of a fiber-type projective line arrangement
as a fiber bundle is determined by the braid monodromy. Let the homomorphism
q : Bn→Mn be a representative of the isomorphism class of the bundle of config-
urations Fn+1(C)→ Fn(C). If ψ1, ψ2 : π1(C \ {k1, . . . , km}) = Fm → Bn are the
same center-projecting braid monodromies associated to A∗1 and A∗2 respectively,
then there exists a ρ ∈ Bn such that ψ2(α)= ρ ·ψ1(α) ·ρ

−1 for any α ∈ Fm . Thus
q◦ψ2(α)=q(ρ)·(q◦ψ1(α))·(q(ρ))−1 for any α ∈Fm . This implies that q◦ψ1 and
q ◦ψ2 determine the same isomorphism class. By the definition of isomorphism
of differentiable fiber bundles, any two members in the isomorphism class have
diffeomorphic total spaces. This proves the theorem. �

Combined with a theorem of Jiang and Yau [1993], our Main Theorem implies
that the center-projecting braid monodromy of a fiber-type projective line arrange-
ment determines its lattice. In fact:

Theorem 4.5 [Cohen and Suciu 1997]. The braid monodromy of a line arrange-
ment determines its lattice.

The braid monodromies they considered are generic braid monodromies, that
is, projecting from a generic point such that each fiber of the projection contains
at most one singularity. However, their method seems also work for nongeneric
cases. In fact, when there is more than one singularity in a fiber, the images of
the local braid monodromies still record the twists of the braids which reflect the
intersecting of lines.

Example 4.6. The complements of any two line arrangements A∗1 and A∗2 of six
lines with four triple points and three nodes are diffeomorphic. Clearly, any triple
point can be viewed as a center for such an arrangement. Assume that the line at
infinity passes through the center. After removing the center, the subarrangement in
C2 contains three lines, the three solid lines in Figure 1, and the braid monodromy
is uniquely determined. In fact, the center-projecting braid monodromies of A∗1
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1

2

3

4 5z = 0

Remove z = 0,
then lines 4 and 5

1

2

3

45

Figure 1. Arrangement of six lines with four triple points and
three nodes and its associated subarrangement.

and A∗2 coincide with the generic braid monodromy of arrangement of 3 lines. Let
ξ1 and ξ2 be two circles centered at x1 and x2, in the base B = C \ {x1, x2}, where
x1 and x2 are the projections of lines 4 and 5 respectively. Assume that ξ1 and ξ2

have a tangent point between x1 and x2. Then the fundamental group of the base B
is π1(B)= 〈ξ1, ξ2〉. It is easy to see that the braid monodromy of arrangement of 3
lines as shown in Figure 1 is uniquely determined up to conjugacy by the images
of ξ1 and ξ2 which are the monodromy generators σ 2

1 (the image of ξ1) and σ 2
2 (the

image of ξ2), where σ1 and σ2 are the two generators of the braid group B3 on 3
strings as shown in Figure 2 (see, for example, [Cohen and Suciu 1997] on how
to calculate braid monodromy generators in general). Hence by our theorem, the
complements M(A∗1) and M(A∗2) are diffeomorphic.

1 2 3 1 2 3

σ1 σ2

Figure 2. Braid generators of B3.

Remark 4.7. The arrangement in the example above is well studied in many as-
pects. For example, it has been shown in a recent paper [Nazir and Yoshinaga
2010] that the moduli space of line arrangements of six lines with four triple points
and three nodes is irreducible, so is connected. In fact, it is easy to see that line
arrangements of six lines with four triple points and three nodes are of simple C3

type in the sense of Nazir and Yoshinaga.
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INEQUALITIES FOR THE NAVIER AND DIRICHLET
EIGENVALUES OF ELLIPTIC OPERATORS

QIAOLING WANG AND CHANGYU XIA

This paper studies eigenvalues of elliptic operators on a bounded domain in
a Euclidean space. We obtain lower bounds for the eigenvalues of elliptic
operators of higher orders with Navier boundary condition. We also prove
lower bounds and universal inequalities of Payne–Pólya–Weinberger–Yang
type for the eigenvalues of second order elliptic equations in divergence
form with Dirichlet boundary condition.

1. Introduction

Let � be a bounded domain in an n-dimensional Euclidean space Rn (n ≥ 2)
with smooth boundary ∂�. Let 1 be the Laplacian of Rn and consider the fixed
membrane or Dirichlet eigenvalue problem

(1-1)
{
1u =−λu in �,
u|∂� = 0.

Let

0< λ1 < λ2 ≤ · · · →∞

denote the eigenvalues (repeated with multiplicity) of the problem (1-1). Weyl’s
asymptotic formula [1912] tells us that

(1-2) λk ∼ C(n)
(

k
|�|

)2/n

as k→∞,

where |�| is the volume of� and C(n)= (2π)2ω−2/n
n with ωn being the volume of

the unit ball in Rn . Pólya [1961] showed that for any “plane covering domain”� in
R2 (those that tile R2) this asymptotic relation is a one-sided inequality (his proof

Wang was partially supported by CNPq. Xia was partially supported by CNPq and FAPDF.
MSC2000: primary 35P15, 53C20, 53C42; secondary 35P15, 53C42.
Keywords: eigenvalue, lower bound, universal inequality, elliptic operator, Navier boundary

condition.
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also works for Rn-covering domains) and conjectured, for any domain�⊂Rn , the
inequality

(1-3) λk ≥ C(n)
(

k
|�|

)2/n

for all k.

Li and Yau [1983] showed the lower bound

(1-4)
k∑

i=1

λi ≥
nkC(n)
n+ 2

(
k
|�|

)2/n

,

which yields an individual lower bound on λk in the form

(1-5) λk ≥
nC(n)
n+ 2

(
k
|�|

)2/n

.

Similar bounds for eigenvalues with Neumann boundary condition were proved
in [Kröger 1992; 1994; Laptev 1997]. It was pointed out in [Laptev and Weidl
2000] that (1-4) also follows from an earlier result of Berezin [1972] by using the
Legendre transformation. Melas [2003] gave an improvement of (1-4):

(1-6)
k∑

i=1

λi ≥
nkC(n)
n+ 2

(
k
|�|

)2/n

+ dnk
|�|

I (�)
,

where the constant dn depends only on the dimension and

I (�)= min
a∈Rn

∫
�

|x − a|2 dx

is the “moment of inertia” of �.
In this paper, we study eigenvalues of elliptic operators of higher orders with

Navier boundary condition and of second order elliptic equations in divergence
form with Dirichlet boundary condition and prove lower bounds for them which
are similar to the inequality (1-6). We will also prove universal inequalities of Yang
type for the Dirichlet eigenvalues of second order equations in divergence form.
The first two results concern eigenvalues with Navier boundary condition.

Theorem 1.1. Let � be a bounded domain in Rn and let l be a positive integer.
Consider the eigenvalue problem

(1-7)
{
(−1)lu = λu in �, u ∈ C∞(�),
u|∂� =1u|∂� = · · · =1l−1u|∂� = 0.

Let
0< λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · →∞
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be the eigenvalues of (1-7) and denote by µ1, . . . , µn the first n nonzero eigen-
values of the Neumann problem

(1-8)
{
−1v = µv in �,
(∂v/∂ν)|∂� = 0,

where ν is the unit outward normal vector field along ∂�. Then

(1-9)
k∑

j=1

λ
1/ l
j ≥

nkC(n)
n+ 2

(
k
|�|

)2/n

+
d(n)k∑n
i=1 µ

−1
i

.

Here d(n) is a positive constant depending only on n.

Theorem 1.2. Let � be a bounded domain in Rn and let l be a fixed positive
integer. Let L be the elliptic operator given by

Lu =
l∑

m=1

am(−1)
mu, u ∈ C∞(�),

where the am are constants with am ≥ 0, 1 ≤ m ≤ l, and al = 1. Consider the
eigenvalue problem

(1-10)
{

Lu =3u in �,
u|∂� =1u|∂� = · · · =1l−1u|∂� = 0.

Let
0<31 ≤32 ≤ · · · ≤3k ≤ · · · →∞

be the eigenvalues of (1-10). Then

(1-11) 3k ≥

l∑
m=1

am

(
nC(n)
n+ 2

(
k
|�|

)2/n

+
d(n)∑n
i=1 µ

−1
i

)m

,

where µ1, . . . , µn are the first n nonzero Neumann eigenvalues of � and d(n) is a
positive constant depending on n.

Our next results are about second order equations in divergence form with
Dirichlet boundary condition. Firstly, we have a Li–Yau type inequality.

Theorem 1.3. Let � be a bounded domain in Rn and let V be a nonnegative con-
tinuous function on �. Consider the eigenvalue problem

(1-12)

−
n∑

α,β=1

∂

∂xα

(
aαβ(x)

∂u
∂xβ

)
+ V (x)u = λu in �,

u|∂� = 0.
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Assume that there is a positive number ξ0 such that the symmetric matrix [aαβ]
satisfies [aαβ] ≥ ξ0 I in the sense of quadratic forms throughout �, where I is the
identity matrix of order n. Let

0< λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · →∞

be the eigenvalues of (1-12). Then

(1-13)
k∑

j=1

λ j ≥ ξ0k
(

nC(n)
n+ 2

(
k
|�|

)2/n

+
d(n)∑n
i=1 µ

−1
i

+
V0

ξ0

)
.

Here V0 = infx∈� V (x), µ1, . . . , µn and d(n) are as in Theorem 1.1.

We then prove a universal inequality of Payne–Pólya–Weinberger–Yang type
[Payne et al. 1956; Yang 1991] for an eigenvalue problem more general than (1-12).

Theorem 1.4. Let � be a connected bounded domain in Rn and let V be a non-
negative continuous function on � with V0 = infx∈� V (x). Let ρ be a continuous
function on � satisfying ρ1 ≤ ρ(x) ≤ ρ2 for all x ∈ �, for some positive con-
stants ρ1 and ρ2. Assume also that there are positive numbers ξ1 and ξ2 such that
the symmetric matrix [aαβ] satisfies [aαβ]≥ ξ1 I in the sense of quadratic forms and∑n

α=1 aαα ≤ nξ2 throughout �. Consider the eigenvalue problem

(1-14)

−
n∑

α,β=1

∂

∂xα

(
aαβ(x)

∂u
∂xβ

)
+ V (x)u = λρu in �,

u|∂� = 0.

Let
0< λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · →∞

be the eigenvalues of (1-14). Then

(1-15)
k∑

i=1

(λk+1− λi )
2
≤

4ξ2ρ
2
2

nξ1ρ
2
1

k∑
i=1

(λk+1− λi )

(
λi −

V0

ρ2

)
.

Remark 1.5. Universal inequalities of Payne–Pólya–Weinberger-Yang type for
eigenvalues of elliptic operators on Riemannian manifolds have been studied re-
cently by many mathematicians. One can find various interesting results in this
direction, for example, in [Ashbaugh 1999; 2002; Ashbaugh and Benguria 1993a;
1993b; Ashbaugh and Hermi 2004; Cheng and Yang 2005; 2006a; 2006b; 2006c;
2007; El Soufi et al. 2007; Harrell 1993; Harrell and Michel 1994; Harrell and
Stubbe 1997; Harrell and Yıldırım Yolcu 2009; Hile and Protter 1980; Hook 1990;
Laptev 1997; Levitin and Parnovski 2002; Sun et al. 2008; Wang and Xia 2007a;
2007b; 2008; 2010a; 2010b; 2010c; 2011].
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2. An auxiliary result

Before proving 1.1–1.3, we show the following fact.

Theorem 2.1. Let � be a bounded domain in Rn and let w1, . . . , wk : �→ R be
smooth functions satisfying

(2-1) wi |∂� = 0 and
∫
�

wi (x)w j (x) dx = δi j for i, j = 1, . . . , k.

Then

(2-2)
k∑

j=1

∫
�

|∇w j (x)|2 dx ≥
nkC(n)
n+ 2

(
k
|�|

)2/n

+
d(n)k∑n
i=1 µ

−1
i

,

where d(n) is a computational positive constant depending only on n and the µi

are the first n nonzero Neumann eigenvalues of the Laplacian of �.

Proof. Let v1, . . . , vn be orthonormal eigenfunctions corresponding to µ1, . . . , µn:

−1vi = µivi in �, ∂vi
∂ν

∣∣∣
∂�
= 0,

∫
�

viv j = δi j for i, j = 1, . . . , n.

By a translation of the origin and a suitable rotation of axes, we can assume, using
[Ashbaugh and Benguria 1993b, p. 563], that∫

�

xi dx = 0 for i = 1, . . . , n,∫
�

x jvi dx = 0 for j = 2, . . . , n, i = 1, . . . , j − 1.

It then follows from inequality (2.8) in the same paper that

(2-3)
n∑

i=1

1
µi
≥

∫
�
|x |2dx
|�|

.

By a simple rearrangement argument, we have

(2-4)
∫
�

|x |2 dx ≥ n
n+2
|�|
(
|�|

ωn

)2/n
.

Extend each wi to Rn by letting wi (x)= 0 for x ∈Rn
\�. For a function g on Rn ,

we will denote by F(g) the Fourier transformation of g. For any z ∈ Rn , we have,
by definition,

(2-5) F(w j )(z)= (2π)−n/2
∫
�

e−i〈x,z〉w j (x) dx .
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Since {w j }
k
j=1 is an orthonormal set in L2(�), the Bessel inequality gives

(2-6)
k∑

j=1

|F(w j )(z)|2 ≤ (2π)−n
∫
�

|e−i〈x,z〉
|
2 dx = (2π)−n

|�|.

For each q = 1, . . . , n and j = 1, . . . , k, since w j vanishes on ∂�, one gets from
the divergence theorem that

(2-7) zqF(w j )(z)= i(2π)−n/2
∫
�

∂e−i〈x,z〉

∂xq
w j (x) dx

=−i(2π)−n/2
∫
�

∂w j (x)
∂xq

e−i〈x,z〉 dx =−iF
(
∂w j

∂zq

)
(z).

It then follows from the Plancherel formula that

(2-8)
∫

Rn
|z|2|F(w j )(z)|2 dz =

∫
Rn

n∑
q=1

∣∣∣F(∂w j

∂zq

)
(z)
∣∣∣2 dz

=

∫
�

n∑
q=1

(
∂w j

∂xq

)2
dx =

∫
�

|∇w j (x)|2 dx .

Since

∇(F(w j ))(z)= (2π)−n/2
∫
�

(−i xe−i〈x,z〉w j (x)) dx,

we have

(2-9)
k∑

j=1

|∇(F(w j ))(z)|2 ≤ (2π)−n
∫
�

|i xe−i〈x,z〉
|
2 dx = (2π)−n

∫
�

|x |2 dx .

Set

G(z)=
k∑

j=1

|F(w j )(z)|2.

Then 0≤ G(z)≤ (2π)−n
|�| and

|∇G(z)| ≤ 2
( k∑

j=1

|F(w j )(z)|2
)1/2( k∑

j=1

|∇(F(w j ))(z)|2
)1/2

(2-10)

≤ 2(2π)−n
(
|�|

∫
�

|x |2 dx
)1/2

for every z ∈ Rn . We also have

(2-11)
∫

Rn
G(z) dz =

k∑
j=1

∫
�

w j (x)2 dx = k.
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Let G∗(z)= g(|z|) be the decreasing spherical rearrangement of G. By approxima-
tion, we may assume that g : [0,+∞)→[0, (2π)−n

|�|] is absolutely continuous.
Setting α(t)= |{G∗ > t}| = |{G > t}|, we have

(2-12) α(g(s))= ωnsn,

which implies that nωnsn−1
=α′(g(s))g′(s) for almost every s. The coarea formula

[Chavel 1984] tells us that

(2-13) α′(t)=−
∫
{G=t}

1
|∇G|

d At .

Set η = 2(2π)−n
(
|�|

∫
�
|x |2 dx

)1/2; then one infers from (2-10) and the iso-
perimetric inequality that

(2-14) −α′(g(s))≥ η−1area({G = g(s)})≥ η−1nωnsn−1,

and so

(2-15) −η ≤ g′(s)≤ 0

for almost every s. It follows from (2-11) that

(2-16) k =
∫

Rn
G(z) dz =

∫
Rn

G∗(z) dz = nωn

∫
∞

0
sn−1g(s) ds

and, by (2-8),

(2-17)
k∑

j=1

∫
�

|∇w j |
2
=

∫
Rn
|z|2G(z) dz ≥

∫
Rn
|z|2G∗(z) dz

= nωn

∫
∞

0
sn+1g(s) ds,

since z→ |z|2 is radial and increasing.
We next apply the following lemma to the function g, with A = k

nωn
and

η = 2(2π)−n
(
|�|

∫
�

|x |2 dx
)1/2

:

Lemma [Melas 2003]. Let n ≥ 1 and η, A > 0 and let h : [0,+∞)→ [0,+∞)
be a decreasing and absolutely continuous function such that

−η ≤ h′(s)≤ 0 and
∫
∞

0
sn−1h(s) ds = A.

Then

(2-18)
∫
∞

0
sn+1h(s) ds ≥

(n A)(n+2)/n

n+ 2
h(0)−2/n

+
Ah(0)2

6(n+ 2)η2 .
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After applying the lemma and using (2-17), we infer that

(2-19)
k∑

j=1

∫
�

|∇w j (x)|2 dx ≥
n

n+ 2
ω−2/n

n k1+2/ng(0)−2/n
+

kg(0)2

6(n+ 2)η2

≥
n

n+ 2
ω−2/n

n k1+2/ng(0)−2/n
+
τkg(0)2

(n+ 2)η2 ,

where τ is any constant with 0< τ ≤ 1
6 . From (2-4) we know that

(2-20) η ≥ 2(2π)−n
( n

n+2

)1/2
ω−1/n

n |�|(n+1)/n.

Observe that 0< g(0)≤ (2π)−n
|�|. Let τ = τ(n) be the constant given by

τ =min
{

1
6
,

16π2n

(n+ 2)ω4/n
n

}
.

Then one can see by using (2-20) that the function

β(t)=
n

n+ 2
ω−2/n

n k1+2/nt−2/n
+

τkt2

(n+ 2)η2

satisfies

β ′((2π)−n
|�|)≤ 0,

and so β is decreasing on (0, (2π)−n
|�|]. Hence, choosing d(n) = τ

4(n+2)
, we

have

(2-21)
k∑

j=1

∫
�

|∇w j (x)|2 dx

≥ β(g(0))≥ β((2π)−n
|�|)

=
n

n+ 2
ω−2/n

n k1+2/n((2π)−n
|�|)−2/n

+
τk((2π)−n

|�|)2

(n+ 2)η2

=
n

n+ 2

(
2π

ω
1/n
n

)2

k1+2/n
|�|−2/n

+
d(n)k|�|∫
�
|x |2 dx

.

Substituting (2-3) into (2-21), one gets (2-2). completing the proof of Theorem 2.1.
�

3. Proof of the main results

Proof of Theorem 1.1. Let {ui }
k
i=1 be a set of orthonormal eigenfunctions corre-

sponding to {λi }
k
i=1:
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(−1)lui = λi ui in �, ui |∂� =1ui |∂� = · · · =1
l−1ui |∂� = 0,∫

�

ui u j = δi j for i, j = 1, . . . , k.

We show that for each s = 1, . . . , l and i = 1, . . . , k,

(3-1) 0≤
∫
�

ui (−1)
sui ≤ λ

s/ l
i .

When l = 1, (3-1) holds trivially, so assume l > 1. when s ∈ {1, . . . , l} is even, we
have from the divergence theorem that∫

�

ui (−1)
sui =

∫
�

ui1
sui =

∫
�

(1s/2ui )
2
≥ 0.

On the other hand, if s ∈ {1, . . . , l} is odd,∫
�

ui (−1)
sui =−

∫
�

ui1
sui

=−

∫
�

1(s−1)/2ui1(1
(s−1)/2ui )=

∫
�

|∇(1(s−1)/2ui )|
2
≥ 0.

Thus the first inequality in (3-1) holds.
We claim now that for any s = 1, . . . , l − 1,

(3-2)
(∫

�

ui (−1)
sui

)s+1

≤

(∫
�

ui (−1)
s+1ui

)s

.

Since (∫
�

ui1ui

)2

≤

∫
�

u2
i

∫
�

(1ui )
2
=

∫
�

ui1
2ui ,

we know that (3-2) holds when s = 1.
Suppose that (3-2) is true for s− 1, that is,

(3-3)
(∫

�

ui (−1)
s−1ui

)s

≤

(∫
�

ui (−1)
sui

)s−1

.

When s is even, we have∫
�

ui (−1)
sui =

∫
�

1s/2−1ui1(1
s/2ui )=−

∫
�

∇(1s/2−1ui )∇(1
s/2ui )

≤

(∫
�

|∇(1s/2−1ui )|
2
)1/2(∫

�

|∇(1s/2ui )|
2
)1/2

=

(
−

∫
�

1s/2−1ui1
s/2ui

)1/2(
−

∫
�

1s/2ui1
s/2+1ui

)1/2

=

(∫
�

ui (−1)
s−1ui

)1/2(∫
�

ui (−1)
s+1ui

)1/2

.
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On the other hand, when s is odd,∫
�

ui (−1)
sui =

∫
�

(−1)(s−1)/2ui (−1)
(s+1)/2ui

≤

(∫
�

(
(−1)(s−1)/2ui

)2
)1/2(∫

�

(
(−1)(s+1)/2ui

)2
)1/2

=

(∫
�

ui (−1)
s−1ui

)1/2(∫
�

ui (−1)
s+1ui

)1/2

.

Thus we always have

(3-4)
∫
�

ui (−1)
sui ≤

(∫
�

ui (−1)
s−1ui

)1/2(∫
�

ui (−1)
s+1ui

)1/2

.

Substituting (3-3) into (3-4), we know that (3-2) is true for s. Using (3-2) repeat-
edly, we get∫

�

ui (−1)
sui ≤

(∫
�

ui (−1)
s+1ui

)s/(s+1)

≤ · · · ≤

(∫
�

ui (−1)
lui

)s/ l

= λ
s/ l
i .

Thus the second inequality in (3-1) is also true. Consequently,

(3-5)
k∑

j=1

∫
�

|∇u j |
2
=

k∑
j=1

∫
�

u j (−1u j )≤

k∑
j=1

λ
1/ l
j

which implies (1-9) by applying Theorem 2.1 to the functions u1, . . . , uk . This
completes the proof of Theorem 1.1. �

Proof of Theorem 1.2. Let {ui }
k
i=1 be a set of orthonormal eigenfunctions of the

problem (1-11) corresponding to {λi }
k
i=1:

Lui =3ui in �, ui |∂� =1ui |∂� = · · · =1
l−1ui |∂� = 0,∫

�

ui u j = δi j for i, j = 1, . . . , k.

Denote by {λi }
k
i=1 the first k fixed membrane eigenvalues of the Laplacian of �

corresponding to the orthonormal eigenfunctions {vi }
k
i=1:

−1vi = λivi in �, vi |∂� = 0,
∫
�

viv j = δi j for i, j = 1, . . . , k.

Let w =
k∑

j=1
α j u j 6= 0 be such that

(3-6)
∫
�

wvi = 0 for i = 1, . . . , k− 1.
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Such an element w exists because {α j | 1 ≤ j ≤ k} is a nontrivial solution of a
system of k−1 linear equations

(3-7)
k∑

j=1

α j

∫
�

u jvi = 0, 1≤ i ≤ k− 1,

in k unknowns. Also assume without loss of generality that

(3-8)
∫
�

w2
= 1.

Then it follows from the Rayleigh–Ritz inequality that

(3-9) λk ≤

∫
�

w(−1w).

By using the arguments similar to those in the proof of (3-2), we have

(3-10)
(∫

�

w(−1) jw

)j+1

≤

(∫
�

w(−1) j+1w

)j

, j = 1, . . . , l − 1.

Hence

(3-11)
∫
�

w(−1w)≤

(∫
�

w(−1)sw

)1/s

, s = 1, . . . , l,

which, combined with (3-9), gives

λs
k ≤

∫
M
w(−1)sw, s = 1, 2, . . . , l.

Thus we have

(3-12) a1λk + a2λ
2
k + · · ·+ al−1λ

l−1
k + λ

l
k

≤

∫
�

w
(
a1(−1)+ a2(−1)

2
+ · · ·+ al−1(−1)

l−1
+ (−1)l

)
w

=

∫
�

wLw =
k∑

i, j=1

αiα j

∫
�

ui Lu j =

k∑
i, j=1

αiα j

∫
�

ui3 j u j

=

k∑
i, j=1

αiα j3 jδi j =

k∑
i=1

α2
i 3i ≤3k,

where, in the last equality, we have used the fact that

k∑
i=1

α2
i =

∫
�

w2
= 1.
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It is easy to see by taking l = 1 in (1-9) that

(3-13) λk ≥
nC(n)
n+ 2

(
k
|�|

)2/n

+
d(n)∑n
i=1 µ

−1
i

.

Substituting (3-13) into (3-12), we get (1-11). Theorem 1.2 follows. �

Proof of Theorem 1.3. Let {ui }
k
i=1 be a set of orthonormal eigenfunctions of the

problem (1-12) corresponding to {λi }
k
i=1:

−

n∑
α,β=1

∂

∂xα

(
aαβ(x)

∂ui
∂xβ

)
+ V (x)ui = λi ui in �,(3-14)

ui |∂� = 0,
∫
�

ui u j = δi j for i, j = 1, . . . , k.(3-15)

Multiplying (3-14) by ui , integrating over �, and using the divergence theorem
and the inequalities V ≥ V0 and [aαβ] ≥ ξ0 I , we obtain

λi =

∫
�

( n∑
α,β=1

aαβ(x)
∂ui
∂xα

∂ui
∂xβ
+ V (x)u2

i

)

≥

∫
�

ξ0

n∑
α=1

(
∂ui
∂xα

)2
+ V0

∫
�

u2
i = ξ0

∫
�

|∇ui |
2
+ V0,

which gives

(3-16)
k∑

i=1

∫
�

|∇ui |
2
≤

1
ξ0

( k∑
i=1

λi − kV0

)
.

Observing (3-15), one gets (1-13) by using Theorem 2.1 applied to u1, . . . , uk .
Theorem 1.3 follows. �

Proof of Theorem 1.4. Let x1, . . . , xn be the coordinate functions on Rn . For a
function f : � → R, set f,α = ∂ f/∂xα, α = 1, . . . , n. Let {ui }

k
i=1 be a set of

orthonormal eigenfunctions of the problem (1-14) corresponding to {λi }
k
i=1:

−

n∑
α,β=1

∂

∂xα

(
aαβ(x)

∂ui
∂xβ

)
+ V (x)ui = λiρui in �,

ui |∂� = 0,
∫
�

ui u j = δi j for i, j = 1, . . . , k.

For each α = 1, . . . , n and i = 1, . . . , k, following [Payne et al. 1956], consider
the functions φαi :�→ R given by

(3-17) φαi = xαui −

k∑
j=1

rαi j u j ,
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where

(3-18) rαi j =

∫
�

ρxαui u j .

Since φαi |∂� = 0 and∫
�

ρu j φαi = 0 for i, j = 1, . . . , k and α = 1, . . . , n,

it follows from the Rayleigh–Ritz inequality that

λk+1

∫
�

ρφ2
αi(3-19)

≤

∫
�

φαi

(
−

n∑
β,γ=1

(aβγφαi,γ ),β + Vφαi

)

=

∫
�

φαi

(
−

n∑
β,γ=1

(aβγ (xαui ),γ ),β + V xαui −

k∑
j=1

rαi jλ jρu j

)

=

∫
�

φαi

(
−

n∑
β,γ=1

(aβγ (xαui ),γ ),β + V xαui

)

=

∫
�

φαi

(
λiρxαui −

n∑
β=1

((aαβui ),β + aαβui,β)

)

= λi

∫
�

ρφ2
αi −

∫
�

φαi

( n∑
β=1

((aαβui ),β + aαβui,β)

)

= λi

∫
�

ρφ2
αi −

∫
�

xαui

( n∑
β=1

((aαβui ),β + aαβui,β)

)
+

k∑
j=1

rαi j sαi j ,

where
sαi j =

∫
�

( n∑
β=1

((aαβui ),β + aαβui,β)

)
u j .

Multiplying the equation

(3-20) −

n∑
β,γ=1

(aβγ u j,β),γ + V u j = λ jρu j

by xαui , we have

(3-21) −

n∑
β,γ=1

(aβγ u j,β),γ xαui + V xαui u j = λ jρxαui u j .
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Interchanging the roles of i and j , we get

(3-22) −

n∑
βγ=1

(aβγ ui,β),γ xαu j + V xαui u j = λiρxαui u j .

Subtracting (3-21) from (3-22) and integrating the resulted equation on �, we get
by using the divergence theorem that

(λi − λ j )rαi j =

n∑
β,γ=1

∫
�

(
(aβγ u j,β),γ xαui − (aβγ ui,β),γ xαu j

)
(3-23)

=

n∑
β,γ=1

∫
�

(
−aβγ u j,β(xαui ),γ + aβγ ui,β(xαu j ),γ

)

=

n∑
β=1

∫
�

(
−aαβu j,βui + aαβui,βu j

)
=

n∑
β=1

∫
�

(
(aαβui ),β + aαβui,β

)
u j = sαi j ,

which, combined with (3-19), gives

(3-24) (λk+1− λi )

∫
�

ρφ2
αi

≤−

∫
�

φαi

( n∑
β=1

((aαβui ),β + aαβui,β)

)

=−

∫
�

xαui

( n∑
β=1

((aαβui ),β + aαβui,β)

)
+

k∑
j=1

(λi − λ j )r2
αi j .

Set

tαi j =

∫
�

u j ui,α;

then tαi j + tα j i = 0 and

(3-25)
∫
�

(−2)φαi ui,α =−2
∫
�

xαui ui,α+2
k∑

j=1

rαi j tαi j = ‖ui‖
2
+2

k∑
j=1

rαi j tαi j .

Multiplying (3-25) by (λk+1 − λi )
2 and using the Schwarz inequality and (3-24),

we get

(λk+1− λi )
2
(
‖ui‖

2
+ 2

k∑
j=1

rαi j tαi j

)
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= (λk+1− λi )
2
∫
�

(−2)
√
ρφαi

(
1
√
ρ

ui,α −

k∑
j=1

tαi j
√
ρu j

)

≤ δ(λk+1− λi )
3
‖
√
ρφαi‖

2
+
(λk+1− λi )

δ

∫
�

∣∣∣∣ 1
√
ρ

ui,α −

k∑
j=1

tαi j
√
ρu j

∣∣∣∣2

= δ(λk+1− λi )
3
‖
√
ρφαi‖

2
+
(λk+1− λi )

δ

(∥∥∥∥ 1
√
ρ

ui,α

∥∥∥∥2

−

k∑
j=1

t2
αi j

)

≤ δ(λk+1− λi )
2
(
−

∫
�

xαui

( n∑
β=1

((aαβui ),β + aαβui,β)

)
+

k∑
j=1

(λi − λ j )r2
αi j

)

+
(λk+1− λi )

δ

(∥∥∥∥ 1
√
ρ

ui,α

∥∥∥∥2

−

k∑
j=1

t2
αi j

)
,

where δ is any positive constant. Summing over i and noticing that rαi j = rα j i and
tαi j =−tα j i , we infer that

k∑
i=1

(λk+1− λi )
2
‖ui‖

2
− 2

k∑
i, j=1

(λk+1− λi )(λi − λ j )rαi j tαi j

≤ δ

k∑
i=1

(λk+1− λi )
2
(
−

∫
�

xαui

( n∑
β=1

((aαβui ),β + aαβui,β)

))

+

k∑
i=1

(λk+1−λi )

δ

∥∥∥∥ 1
√
ρ

ui,α

∥∥∥∥2

−

k∑
i, j=1

(λk+1−λi )δ(λi−λ j )
2r2
αi j−

k∑
i, j=1

(λk+1−λi )

δ
t2
αi j .

Hence,
k∑

i=1

(λk+1−λi )
2
‖ui‖

2
≤δ

k∑
i=1

(λk+1−λi )
2
(
−

∫
�

xαui

( n∑
β=1

((aαβui ),β+aαβui,β)

))

+

k∑
i=1

(λk+1− λi )

δ

∥∥∥∥ 1
√
ρ

ui,α

∥∥∥∥2

.

Summing over α, we infer

(3-26) n
k∑

i=1

(λk+1− λi )
2
‖ui‖

2

≤ δ

k∑
i=1

(λk+1− λi )
2
(
−

n∑
α=1

∫
�

xαui

( n∑
β=1

((aαβui ),β + aαβui,β)

))

+

k∑
i=1

(λk+1− λi )

δ

∥∥∥∥ 1
√
ρ
|∇ui |

∥∥∥∥2

.
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Since
∫
�
ρu2

i = 1 and ρ1 ≤ ρ(x)≤ ρ2 for x ∈�, we have

(3-27) 1
ρ2
≤ ‖ui‖

2
≤

1
ρ1
.

One gets from the divergence theorem that

(3-28) −
n∑
α=1

∫
�

xαui

( n∑
β=1

(
(aαβui ),β + aαβui,β

))

=

∫
�

( n∑
α,β=1

(
aαβui (xαui ),β − aαβui,βxαui

))
=

∫
�

( n∑
α=1

aαα

)
u2

i

≤ nξ2

∫
�

u2
i ≤

nξ2
ρ1
.

Multiplying the equation −
n∑

α,β=1
(aαβui,β),α+V (x)ui =λiρui by ui and integrating

over �, we get

(3-29) λi =

∫
�

( n∑
α,β=1

aαβ(x)ui,αui,β + V (x)u2
i

)
≥

∫
�

ξ1|∇ui |
2
+

V0
ρ2
,

which gives

(3-30)
∥∥∥∥ 1
√
ρ
|∇ui |

∥∥∥∥2

≤
1
ρ1

∫
�

|∇ui |
2
≤

1
ρ1ξ1

(
λi −

V0
ρ2

)
.

Substituting (3-27), (3-28) and (3-30) into (3-26), we infer

n
ρ2

k∑
i=1

(λk+1− λi )
2
≤ δ

k∑
i=1

(λk+1− λi )
2
·

nξ2

ρ1
+

k∑
i=1

(λk+1−λi )

δ
·

1
ρ1ξ1

(
λi −

V0
ρ2

)
.

Taking

(3-31) δ =

(
k∑

i=1
(λk+1− λi )

(
λi −

V0
ρ2

))1/2

(
k∑

i=1
(λk+1− λi )2nξ1ξ2

)1/2 ,

we get (1-15). This completes the proof of Theorem 1.4. �
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A BEURLING–HÖRMANDER THEOREM
ASSOCIATED WITH THE RIEMANN–LIOUVILLE OPERATOR

XUECHENG WANG

We establish an analogue of the Beurling theorem associated with the Rie-
mann–Liouville operator. We also derive some other versions of uncertainty
principle theorems associated with this operator.

1. Introduction and the main result

The uncertainty principle, which plays an important role in harmonic analysis,
states that a nonzero function and its Fourier transform cannot simultaneously be
very small at infinity. This principle has been researched on various aspects and has
several versions named after Hardy, Morgan, Cowling and Price, Gelfand, Beurling
and others. The Beurling theorem is the most general case since it implies the other
uncertainty principles.

The classical Beurling theorem was proved by Hörmander [1991] and general-
ized to d dimensions by Bonami et al. [2003]. Here we record the general case:

Lemma 1.1. For f ∈ L2(Rd) and N = 0, if∫
Rd

∫
Rd

| f (x)| | f̂ (y)| e‖x‖‖y‖

(1+‖x‖+‖y‖)N dx dy <∞,

then f (x) = P(x) e−a〈Ax,x〉, a > 0, where A is a real positive definite symmetric
matrix and P(x) is a polynomial of degree<(N−d)/2. In particular, f = 0 when
N ≤ d.

In the lemma and the rest of the paper, f̂ is the classic Fourier transform of f
in Rd , defined by

f̂ (λ)=
∫

Rd
f (x) e−i λ x dx, λ ∈ Rd .

The Beurling theorem has been generalized to different settings. L. Bouat-
tour established an analogue in the framework of Chébli–Trimèche hypergroups
(R+, ∗(A)) (see [Bouattour and Trimèche 2005]). J. Z. Huang and H. P. Liu [2007a;

MSC2000: 33C45, 42B10.
Keywords: uncertainty principle, Riemann–Liouville operator, Beurling–Hörmander theorem,

Riemann–Liouville transform.
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2007b] gave analogues for the Laguerre hypergroup and the Heisenberg group.
R. P. Sarkar and J. Sengupta [2007b] established the analogue of the Beurling
theorem on the full group SL(2,R). As for the noncompact semisimple Lie group
case, S. Thangavelu [2004] first gave the analogue on rank 1 symmetric spaces with
an additional condition like the one required in the Cowling–Price theorem, so he
called it the Cowbeurling Theorem; then R. P. Sarkar and J. Sengupta [2007a] re-
moved this additional condition and gave the analogue in rank 1 symmetric spaces;
recently, L. Bouattour [2008] generalized this result and gave the analogue for real
symmetric spaces of rank d . For more Beurling theorems in different settings, refer
to [Kamoun and Trimèche 2005; Parui and Sarkar 2008].

In this paper, for α ≥ 0 we consider the singular partial differential operators
11 =

∂

∂x
,

12 =
∂2

∂r2 +
2α+1

r
∂

∂r
−
∂2

∂x2 , (r, x) ∈ (0,+∞)×R, α = 0,

originally studied in [Baccar et al. 2006; Omri and Rachdi 2008]. The latter authors
have proved an uncertainty principle that generalized the Heisenberg–Pauli–Weyl
inequality for the classical Fourier transform:

Proposition [Omri and Rachdi 2008]. For all f ∈ L2(dvα), we have

‖ |(r, x)| f ‖2,vα ‖(µ
2
+ 2λ2)1/2Fα( f )‖2,γα =

2α+3
2
‖ f ‖22,vα

with equality if and only if

f (r, x)= Ce−(r
2
+x2)/2t2

0 for (r, x) ∈ R+×R, t0 > 0, C ∈ C,

where dvα is a measure defined on R+×R by

(1) dvα(r, x)= dc(r)⊗ dx with dc(r) def
=

r2α+1

2α 0(α+ 1)
√

2π
dr;

drα(µ, λ) is a measure defined on the set 0+

0+ = R+×R∪
{
(i t, x) : (t, x) ∈ R+× R, t 5 |x |

}
;

|(r, x)| is the Euclidean norm in R2, that is, |(r, x)| = (r2
+ x2)1/2; and Fα( f ) is

the generalized Fourier transform associated with the Riemann–Liouville operator.

Our main result is an analogue of the Beurling–Hörmander theorem for this
generalized Fourier transform Fα associated with the Riemann–Liouville operator:
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Theorem 1.2. Let K = R+×R, and assume N = 0. For f ∈ L2(K , dvα), if∫
0+

∫
K

| f (r, x)| |Fα( f )(µ, λ)| e|x ||λ|

(1+ |x | + |λ|)N dvα(r, x) drα(µ, λ) <∞,

then

f (r, x)= e−ax2
( k∑

j=0

ψ j (r)x j
)
,

where a> 0, k< N−1
2

, and ψ j (r)∈ L2
(
[0,+∞), r2α+1

2α0(α+1)
dr
)

. In particular,
when N 5 3,

f (r, x)= e−ax2
ψ(r),

where ψ(r) ∈ L2([0,+∞), r2α+1/(2α0(α + 1)) dr), and when N 5 1, we have
f = 0.

Section 2 contains some preliminary facts about the Riemann–Liouville operator
and the generalized Fourier transform. In Section 3, we prove Theorem 1.2. In
Section 4, we give some other uncertainty principles. In Section 5, we give a
stronger result but at the cost of more strictly constraining the function f (r, x) by
utilizing the Riemann–Liouville transform and its dual.

2. Preliminaries

In this section, we set some notation and theorems about the generalized Fourier
transform associated with Riemann–Liouville operator. For detailed information,
refer to [Baccar et al. 2006; Hamadi and Rachdi 2006; Omri and Rachdi 2008].

From this last reference we know that for all (µ, λ) ∈ C2, the system
11u(r, x)=−i λ u(r, x),

12u(r, x)=−µ2 u(r, x),

u(0, 0)= 1, (∂u/∂r)(0, x)= 0, x ∈ R

admits a unique solution ϕµ.λ, given by

(2) ϕµ,λ(r, x)= jα(r
√
µ2+ λ2) e−i λx for (µ, λ) ∈ R2,

where

(3) jα(x)= 2α 0(α+ 1) Jα(x)
xα
= 0(α+ 1)

∞∑
0

(−1)n

n!0(α+n+1)

( x
2

)2n
,
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and Jα(x) is a Bessel function of the first kind of index α. The modified Bessel
function jα has the following integral representation: for all µ, r ∈ R+ we have

jα(rµ)=


20(α+ 1)
√
π0(α+ 1/2)

∫ 1

0
(1− t2)α−1/2 cos(rµt) dt if α >−1/2,

cos(rµ) if α =−1/2.

The Riemann–Liouville integral transform associated with 11, 12 is defined by

Rα( f )(r, x)=


α

π

∫ 1

−1

∫ 1

−1
f (rs

√
1− t2, x + r t)(1− t2)α−1/2(1− s2)α−1 dt ds

if α > 0,
1
π

∫ 1

−1
f (r
√

1− t2, x + r t)
dt

√
1− t2

if α = 0.

Now we give some properties of the eigenfunction ϕµ,λ.

(i) The supremum of ϕµ,λ satisfies

sup
(r,x)∈R2

|ϕµ,λ (r, x)| = 1

if and only if (µ, λ) belongs to the set

0 = R2
∪
{
(i t, x) : (t, x) ∈ R2, |t |5 |x |

}
.

(ii) The eigenfunction ϕµ,λ has Mehler integral representation

ϕµ,λ(r, x)=


α

π

∫ 1

−1

∫ 1

−1
f (rs

√
1− t2, x + r t)(1− t2)α−1/2 (1− s2)α−1 dt ds

if α > 0,
1
π

∫ 1

−1
f (r

√
1− t2, x + r t)

dt
√

1− t2
if α = 0,

where f is a continuous function on R2.

From our definition, we can see that the transform Rα generalizes the “mean
operator” defined by

R0( f )(r, x)=
1
π

∫ 2π

0
f (r sin(θ), x + r cos(θ)) dθ.

In the remainder of the paper, we use the following notation:
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(i) L p(dvα) denotes the space of measurable functions f on K =R+×R such
that

‖ f ‖p,vα =

(∫
∞

0

∫
R

| f (r, x)|p dvα(r, x)
)1/p

<∞ if p ∈ [1,+∞),

‖ f ‖∞,vα = ess sup
(r,x)∈K

| f (r, x)|<+∞ if p =+∞.

(ii) 〈 , 〉vα is the inner product defined on L2(dvα) by

〈 f, g〉vα =
∫
∞

0

∫
R

f (r, x)g(r, x) dvα(r, x).

(iii) 0+ = R+×R∪
{
(i t, x) : (t, x) ∈ R+×R, t ≤ |x |

}
.

(iv) B0+ is a σ -algebra defined on 0+ by

B0+ =
{
θ−1(B) : B ∈B(R+×R)

}
,

where θ is the bijective function defined on the set 0+ by

θ(µ, λ)= (
√
µ2+ λ2, λ).

(v) 2 is the operator given by (2 ◦ f )(µ, λ) = f (θ(µ, λ)) for any function f
defined on 0+.

(vi) dγα is a measure on B0+ given by

γα(A)= vα(θ(A)) for A ∈B0+ .

(vii) Let L p(dγα) denote the space of measurable functions f on 0+ such that

‖ f ‖p,γα =

(∫∫
0+

| f (µ, λ)|pdγα(µ, λ)
)1/p

<∞ if p ∈ [1,+∞),

‖ f ‖∞,γα = ess sup
(µ,λ)∈0+

e| f (µ, λ)|<+∞ if p =+∞.

(viii) 〈 , 〉γα is the inner product defined on L2(dγα) by

〈 f, g〉γα =
∫
0+

f (µ, λ)g(µ, λ) dγα(µ, λ).

Proposition 2.1. (i) For all nonnegative measurable functions g on 0+, we have∫
0+

g(µ, λ) dγα(µ, λ)=
1

2α0(α+1)
√

2π

(∫
R

∫
∞

0
g(µ, λ)(µ2

+λ2)αµ dµ dλ

+

∫
R

∫
|λ|

0
g(iµ, λ)(λ2

−µ2)αµ dµ dλ
)
.
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(ii) For all measurable functions f on K , the function2◦ f is measurable on 0+.
Furthermore, if f is a nonnegative or integrable function on K with respect
to the measure dvα, then we have

(4)
∫
0+

(2 ◦ f )(µ, λ) dγα(µ, λ)=
∫
∞

0

∫
R

f (r, x) dvα(r, x).

Now we give the definition of the generalized Fourier transform associated with
the Riemann–Liouville operator and some relevant properties.

Definition 2.2. For f ∈ L1(dvα), the Fourier transform Fα associated with the
Riemann–Liouville operator is defined by

Fα( f )(µ, λ)=
∫

K
f (r, x)ϕµ,λ(r, x) dvα(r, x) for (µ, λ) ∈ 0+.

For this generalized Fourier transform, we have an inversion formula and an
Plancherel theorem, just as with the classical Fourier transform in Euclidean space.

Theorem 2.3 (inversion formula). Let f ∈ L1(dvα) such that Fα( f ) ∈ L1(dγα).
Then for almost every (r, x) ∈ K , we have

f (r, x)=
∫
0+

Fα( f )(µ, λ)ϕµ,λ(r, x) dγα(µ, λ).

Theorem 2.4 (Plancherel). The Fourier transform Fα can be extended to an iso-
morphism from L2(dvα) onto L2(dγα). In particular, for all f, g ∈ L2(dvα), we
have a version of Parseval’s equality:∫

0+

Fα( f )(µ, λ)Fα(g)(µ, λ) dγα(µ, λ)=
∫

K
f (r, x)g(r, x) dvα(r, x).

The next two important lemmas will be used later in our proof.

Lemma 2.5. For m ∈ N, let

8m(r)=

√
2α+10(α+1)m!
0(α+m+1)

e−r2/2 Lαm(r
2).

The family {8m(r)}m∈N forms an orthonormal basis of the space

L2(R+, r2α+1/(2α0(α+ 1)) dr)

where Lαm(x) is the Laguerre polynomial of degree m and order α defined by the
expansion [Stempak 1988]

∞∑
n=0

tn Lαn (x)=
1

(1− t)α+1 ext/(t−1).
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For the polynomial Lαm(x), from [Huang and Liu 2007b], we also have the ex-
plicit expression for Lαm(x):

Lαm(x)=
m∑

j=0

0(m+α+1)
0(m− j+1)0( j+α+1)

(−x) j

j !
.

From the explicit expression of the Laguerre polynomial of degree m and order α,
we know that there exists a function M : N→ R+ such that for each m ∈ N, we
have |8m(x)| ≤ M(m). The essence of this claim is that the polynomial doesn’t
grow as rapid as the exponential function when r approaches infinity.

Lemma 2.6 [Omri and Rachdi 2008, page 9]. For all m ∈ N ,∫
∞

0
e−r/2Lαm(r)Jα(

√
r y)rα/2 dr = (−1)m2 e−y/2 yα/2Lαm(y).

We make the variable replacements r = a2, y = b2, but for simplicity we still
use r and y instead of a, b. Then∫

∞

0
e−r2/2Lαm(r

2)Jα(r y)rα+1 dr = (−1)m e−y2/2 yαLαm(y
2),

that is,

(5)
∫
∞

0
Jα(r y) rα+18m(r) dr = (−1)m yα 8m(y).

3. Proof of the main result

In this section, we will prove Theorem 1.2. From the definition of the generalized
Fourier transform, we know that

Fα( f )(µ, λ)=
∫

K
f (r, x)ϕµ,λ(r, x) dvα(r, x).

Replace ϕµ,λ(r, x) by the expression in (2) to get

Fα( f )(µ, λ)=
∫
∞

0

∫
R

f (r, x) jα(r
√
µ2+ λ2) e−iλx dx dc(r)

If we let

F̃α( f )(µ, λ)=
∫
∞

0

∫
R

f (r, x) jα(rµ) e−iλx dx dc(r),

then Fα( f )(µ, λ)= (2 ◦ F̃α( f ))(µ, λ). Thus our condition,∫
K

∫
0+

| f (r, x)| |Fα( f )(µ, λ)| e|x ||λ|

(1+ |x | + |λ|)N dvα(r, x) drα(µ, λ) <∞,
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is equivalent to∫
K

∫
K

| f (r, x)| |F̃α( f )(µ, λ)| e|x ||λ|

(1+ |x | + |λ|)N dvα(r, x) dvα(µ, λ) <∞

by (4) (see Proposition 2.1). Defining

f λ(r)=
∫

R

f (r, x) e−iλx dx and fm(x)=
∫
∞

0
f (r, x)8m(r) dc(r),

we obtain

f̂m(λ)=

∫
∞

0
f λ(r)8m(r) dc(r).

Before we proceed, we first prove the following useful formula:

(6)
∣∣∣∣∫ ∞

0
F̃α( f )(µ, λ)8m(µ) dc(µ)

∣∣∣∣= 1
√

2π
| f̂m(λ)|.

Indeed,

(7)
∫
∞

0
F̃α( f )(µ, λ)8m(µ) dc(µ)

=

∫
∞

0

∫
∞

0

∫
R

f (r, x)e−iλ x jα(rµ)8m(µ) dx dc(r) dc(µ)

= 2α 0(α+ 1)
∫
∞

0

∫
∞

0
f λ(r)

Jα(rµ)
(rµ)α

µ2α+1

2α0(α+ 1)
√

2π
8m(µ) dµ dc(r).

By (5) (see Lemma 2.6), we know that the right-hand side equals

(−1)m
√

2π

∫
∞

0
f λ(r)8m(r) dc(r)=

(−1)m
√

2π
f̂m(λ),

which proves the claim.
We also need to prove the function f (r, x) is in L1(dvα). Since

(8)
∫
0+

∫
K

| f (r, x)| |Fα( f )(µ, λ)| e|x ||λ|

(1+ |x | + |λ|)N dvα(r, x) drα(µ, λ) <∞,

there must exist a λ0 ∈ R such that∫
K

| f (r, x)|e|x ||λ0|

(1+ |x | + |λ0|)N dvα(r, x) <+∞.

Since there exists a constant C > 0 such that (1+ |x | + |λ0|)
N < Ce|x ||λ0| for all

x ∈ R, we obtain∫
K
| f (r, x)| dvα(r, x) <

1
C

∫
K

| f (r, x)|e|x ||λ0|

(1+ |x | + |λ0|)N dvα(r, x) <+∞,

that is, f (r, x) ∈ L1(dvα(r, x)).
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To proceed, we first prove that for any m, n ∈ N,

(9)
∫

R

∫
R

| fm(x)|| f̂n(λ)|e|x ||λ|

(1+ |x | + |λ|)N dx dλ <+∞.

Since

| fm(x)| =
∣∣∣∣∫ ∞

0
f (r, x)8m(r) dc(r)

∣∣∣∣5 M(m)
∫
∞

0
| f (r, x)| dc(r)

and

| f̂n(λ)| =
√

2π
∣∣∣∣∫ ∞

0
F̃α( f )(µ, λ)8m(µ) dc(µ)

∣∣∣∣
5
√

2π M(n)
∫
∞

0
|F̃α( f )(µ, λ)| dc(µ),

we have, for any m, n ∈ N,∫
R

∫
R

| fm(x)|| f̂n(λ)|e|x | |λ|

(1+ |x | + |λ|)N dx dλ

5
√

2πM(m)M(n)
∫

K

∫
K

| f (r, x)||F̃α( f )(µ, λ) e|x | |λ|

(1+ |x | + |λ|)N dvα(r, x) dvα(µ, λ)

=
√

2πM(m)M(n)
∫

K

∫
0+

| f (r, x)||Fα( f )(µ, λ)| e|x ||λ|

(1+ |x | + |λ|)N dvα(r, x) dγα(µ, λ)

<+∞.

In particular, setting m = n, we get∫
R

∫
R

| fm(x)|| f̂m(λ)| e|x ||λ|

(1+ |x | + |λ|)N dx dλ <+∞.

Then by Lemma 1.1 (in this case d = 1), we have

fm(x)= Pm(x) e−am x2
,

where am is positive and Pm(x) is a polynomial with degree less than (N − 1)/2.
Further we claim that for all m ∈N, we have am = an = a. This holds since if there
exist m, n ∈ N such that am 6= an , then the equation∫

R

∫
R

| fm(x)|| f̂n(λ)|e|x | |λ|

(1+ |x | + |λ|)N dx dλ <+∞

cannot hold, since it is in contradiction with the same equation derived by exchang-
ing subscripts, which must be equally true. So, by Lemma 2.5,

f (r, x)=
∞∑
j=0

fm(x)8m(r)= e−ax2
( k∑

i=0

ψi (r) x i
)
,
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where k < N−1
2

and

ψi (r) ∈ L2
(
[0,+∞), r2α+1

2α0(α+1)
dr
)
.

Thus when N < 3 we have f (r, x) = e−ax2
ψ(r). In particular, when N < 1 we

know that f = 0, since fm(x) = 0 for each m ∈ N. This finishes the proof of
Theorem 1.2.

4. Some other versions of the uncertainty principle

We now derive other versions of the uncertainty principle as corollaries of our
theorem. We start with a Gelfand–Shilov type uncertainty principle, which it is
relatively straightforward to prove using Hölder’s inequality and reduction to the
absurd.

Theorem 4.1 (Gelfand–Shilov type). Let N = 0 and assume f ∈ L2(K , dvα(r, x))
satisfies ∫

K

| f (r, x)| e(a
p/p)|x |p

(1+ |x |)N dvα(r, x) <+∞,∫
0+

|Fα( f )(µ, λ)| e(b
q/q)|λ|q

(1+ |λ|)N dγα(µ, λ) <+∞,

where 1 < p, q <∞ satisfy 1/p + 1/q = 1, and a, b are positive numbers such
that ab= 1. Then f = 0 unless p= q = 2, ab= 1 and N > 0, and in this case, we
have

f (r, x)= e−ax2
( m∑

j=0

ϕ j (r) x j
)
,

where ϕ j (r) ∈ L2(R+, dc(r)) and m ≤ N − 1. In particular, when N 5 1,

f (r, x)= e−(a
2/2) x2

ψ(r),

where ψ(r) ∈ L2(R+, dc(r)), and when N < 1, we have f = 0.

Proof. Following the same procedure as in the proof of Theorem 1.2, we derive∫
R

| fm(x)| e(a
p/p)|x |p

(1 + |x |)N dx <∞,
∫

R

| f̂m(λ)| e(b
q/q)|λ|q

(1 + |λ|)N dλ <∞.

From Hölder’s inequality, we have

a |x | b |λ| ≤ a p
|x |p

p
+

bq
|λ|q

q
.
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Then∫
R

∫
R

| fm(x)| | f̂m(λ)| eab |x | |λ|

(1 + |x | + |λ|)2 N dx dλ

≤

∫
R

∫
R

| fm(x)| e(a
p/p)|x |p

(1 + |x |)N

| f̂m(λ)| e(b
q/q)|λ|q

(1 + |λ|)N dx dλ <∞.

So, when ab > 1, we could first derive the exact form of the function fm(x) from
the Beurling theorem. We then know that with this form for fm(x), the inequality∫

R

∫
R

| fm(x)| | f̂m(λ)| eab |x | |λ|

(1 + |x | + |λ|)2 N dx dλ <∞

cannot hold if fm(x) 6= 0. When ab = 1 and either p > 2 or q > 2, also from the
Beurling theorem, fm(x) is the product of polynomial and e− c x2

. We deduce that
the inequality ∫

R

| fm(x)| e(a
p/p)|x |p

(1 + |x |)N dx <∞

cannot hold when p > 2 and the inequality∫
R

| f̂m(λ)| e(b
q/q)|λ|q

(1 + |λ|)N dλ <∞

cannot hold when q > 2, if fm(x) 6= 0.
The conclusion in the last possible case, when ab = 1 and p = q = 2, can be

derived from the Beurling theorem directly. �

Following the same idea as in Section 3, we can derive a Morgan-type theorem,
which also gives a sharp lower bound for the Gelfand–Shilov type uncertainty
principle:

Theorem 4.2. Let f ∈ L2(K , dvα(r, x)) and suppose f satisfies∫
K
| f (r, x)| ea p

|x |p/p dvα(r, x) <∞,
∫
0+

|Fα( f )(µ, λ)|ebq
|λ|q/q dγα(µ, λ) <∞,

where 1 < p < 2, 1/p+ 1/q = 1, and a, b are positive numbers. Then f = 0 if
ab > |cos(pπ/2)|1/p.

Proof. By the same argument as in the proof of our main theorem, we have∫
R

| fm(x)| ea p
|x |p/p dx <∞ and

∫
R

| f̂m(λ) ebq
|λ|q/q dλ <∞.

Then [Bonami et al. 2003, Theorem 1.4], under the condition ab> |cos(pπ/2)|1/p,
implies that fm(x)= 0 for each m, so we have f (r, x)= 0. �
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Theorem 4.3 (Hardy type). Suppose f ∈ L2(K , dvα(r, x)) satisfies

| f (r, x)|5 C1e−a(r2
+x2) and |Fα( f )(µ, λ)|5 C2e−b (µ2

+λ2),

where C1,C2 are positive constants and a, b are positive real numbers such that
ab = 1

4 . If ab > 1
4 , then f = 0. If ab = 1

4 , then

f (r, x)= e−ax2
ψ(r),

where ψ(r) ∈ L2(R+, dc(r)).

Proof. To prove this corollary, we recall the well-known classical Hardy’s theorem
for the classical Fourier transform on R which says that if

| f (x)|5 Ce−ax2
and f̂ (λ)5 Ce−b λ2

,

where f̂ is the Fourier transform of f , then

(i) f = 0 when ab > 1
4 ;

(ii) f (x)= ce−ax2
when ab = 1

4 ;

(iii) there are infinitely many linearly independent functions satisfying the above
conditions when ab < 1

4 .

From the conditions in the corollary and using the same method used in Section 3,
we have

| fm(x)|5 C e−ax2
and | f̂m(λ)|5 C e−bλ2

.

So from the classical Hardy’s theorem, we have fm(x) = cm e−ax2
if ab = 1

4 for
each m ∈ N . Then

f (r, x)= e−ax2
( ∞∑

m=0

cm 8m(r)
)
= e−ax2

ψ(r),

where ψ(r) ∈ L2(R+, d c(r)). When ab > 1
4 , each fm(x) vanishes, so we have

f (r, x)= 0. �

Theorem 4.4 (Morgan type). Suppose f ∈ L2(K , dvα(r, x)) satisfies∫
∞

0
| f (r, x)| r2α+1 dr 5 C1e−a|x |p ,

∫
∞

0
|F̃α( f )(µ, λ)|µ2α+ 1 dµ5 C2e−b |λ|q ,

where C1,C2 are positive constants, 1 < p < 2, 1/p + 1/q = 1, and a, b are
positive numbers. Then f = 0 if (a p)1/p(b q)1/q > |cos(pπ/2)|1/p.

Proof. First let a = α p/p and b = βq/q. Then

α β > |cos(p π/2)|1/p.
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There exists an ε > 0, such that (α−ε) (β−ε) > |cos(p π/2)|1/p also holds. Then∫
R

| fm(x)| e(α−ε)
p
|x |p/p dx < M(m)

∫
R

e−(α
p
−(α− ε)p)/p |x |p dx <∞,∫

R

| f̂m(λ) e(β − ε)
q
|λ|q/q dλ < M(m)

∫
R

e−(β
q
−(β − ε)q )/q |λ|q dλ <∞.

By [Bonami et al. 2003, Theorem 1.4], we have fm(x) = 0 for each m ∈ N, so
f = 0. �

5. More on this topic

We now derive a sharper result than the main theorem, requiring an additional
constraint on the function f (r, x).

First we introduce some related notation and propositions about the dual of the
Riemann–Liouville operator. For more details, refer to [Baccar et al. 2006]. Let
C∗(R

2) be the function space of continuous functions on R2 even with respect to
the first variable, and S∗(R

2) the space of infinitely differentiable functions on R2,
rapidly decreasing together with all their derivatives even with respect to the first
variable. The dual Riemann–Liouville operator (or transform) is defined by∫
∞

0

∫
R

Rα( f )(r, x)g(r, x) dx r2α+1 dr =
∫
∞

0

∫
R

f (r, x) tRα(g)(r, x) dx r2α+1 dr,

where f ∈ C∗(R
2) and g ∈ S∗(R

2). This is also why tRα called the “dual”. We
also have for f ∈ S∗(R

2),

tRα( f )(r, x)=


2α
π

∫
∞

r

∫ √µ2−r2

−

√
µ2−r2

f (u, x + v)(µ2
− v2
− r2)α−1 dv µ dµ

if α > 0,
1
π

∫
R

f
(√

r2
+ (x − y)2, y

)
dy if α = 0.

Some propositions related to the dual Riemann–Liouville transform are needed
before going to our main result in this section.

Lemma 5.1 [Baccar et al. 2006, Lemma 3.6, page 9]. For f ∈ S∗(R
2),

Fα( f )(µ.λ)=∧α ◦ tRα( f ) (µ, λ) for (µ, λ) ∈ R2,

where ∧α is a constant multiple of the classical Fourier transform on R2 defined by

∧α( f )(µ, λ)=
∫
∞

0

∫
R

f (r, x) cos(rµ) exp(−iλ x)
1

√
2π2α0(α+ 1)

dx dr.

Lemma 5.2 [Baccar et al. 2006, Proposition 3.7]. (i) tRα is not injective when
applied to S∗(R

2).
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(ii) tRα(S∗(R2))= S∗(R
2).

To proceed, we still need to define two special subspaces of S∗(R
2). Denote by

S0
∗
(R2) the subspace of S∗(R

2) consisting of functions f such that

supp F̃α( f )⊂ {(µ, λ) ∈ R2
: |µ|= |λ|}.

Denote by S∗,0(R
2) the subspace of S∗(R

2) consisting of functions f such that∫
∞

0
f (r, x) r2k dr = 0 for all k ∈ N and x ∈ R.

From Lemma 5.2, we know that tRα is not a isomorphism between S∗(R
2) and

S∗(R
2). But things are different on the subspace S0

∗
(R2). We have the isomorphism

lemma as well as inversion formula for the operator tRα.

Lemma 5.3. The dual transform tRα is an isomorphism from S0
∗
(R2) onto S∗,0(R

2).

Lemma 5.4 [Baccar et al. 2006, Theorems 4.5 and 4.6]. For g ∈ S∗,0(R
2) the

inversion formula
(tRα)

−1(g)= (K 2
α ◦Rα)(g)

holds for tRα, where Rα is the Riemann–Liouville operator defined in Section 1
and the operator K 2

α is defined by

K 2
α(g)(r, x)= F−1

α

(
π

22α+102(α+ 1)
(µ2
+ λ2)α|µ|Fα(g)

)
(r, x).

Also K 2
α is an isomorphism from S0

∗
(R2) onto itself.

With the help of these lemmas, we derive our new analogue:

Theorem 5.5. Suppose f ∈ S0
∗
(R2) satisfies∫

K

∫
0+

| f (r, x)| |Fα( f )(µ, λ)| e‖(r,x)‖‖(µ,λ)‖4(µ, λ)
(1+‖(r, x)‖+‖(µ, λ)‖)N dγα(µ, λ) dvα(r, x) <∞.

Then
f (r, x)= (tRα)

−1(P(y) e−〈Ay,y〉),
where y= (r, x), P(y) is a polynomial with degree less than (N−2)/2, A is a real
positive definite symmetric 2×2 matrix, ‖ · ‖ is the usual norm in Cn , and 4(µ, λ)
is defined by

4(µ, λ)=
1

(µ2+ λ2)α|µ|
.

In particular, when N 5 2, we have f = 0.
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Proof. We first prove that for all (µ, λ) ∈ R2, there exists C > 0 such that∫
K

|
tRα( f )(r, x)| |Fα( f )(µ, λ)| e‖(r,x)‖‖(µ,λ‖)

(1+‖(r, x)‖+‖(µ, λ)‖)N dr dx

5 C
∫

K

| f (r, x)||Fα( f )(µ, λ) e‖(r,x)‖ ‖(µ,λ)‖

(1+‖(r, x)‖+‖(µ, λ)‖)N dvα(r, x).

We first consider the case when α > 0; then

tRα( f )(r, x)=
2α
π

∫
∞

r

∫ √µ2−r2

−

√
µ2−r2

f (µ, x + v)(µ2
− v2
− r2)α−1 dv µ dµ.

So we have∫
K

|
tRα( f )(r,x)|e‖(r,x)‖‖(µ,λ)‖

(1+‖(r,x)‖+‖(µ,λ)‖)N dr dx

=
2α
π

∫
∞

0

∫
R

∣∣∣∫∞r ∫√µ2−r2
√
µ2−r2

f (µ,x+v)(µ2
−v2
−r2)α−1dvµdµ

∣∣∣e‖(r,x)‖‖(µ,λ)‖
(1+‖(r,x)‖+‖(µ,λ)‖)N dx dr

=
2α
π

∫
∞

0

∫
R

∫
∞

r

∫ √µ2−r2

√
µ2−r2

| f (µ,x+v)|(µ2
−v2
−r2)α−1e‖(r,x)‖‖(µ,λ)‖

(1+‖(r,x)‖+‖(µ,λ)‖)N dvµdµdx dr.

Changing variables, let µ = µ, b = x + v, r = r , x = x . For simplicity we will
still use v instead of b. Then by a change of variables and integration, we see that
the right-hand side above is bounded above by

5 C1

∫
∞

0

∫
R

| f (r, x)| e‖(r,x)‖‖(µ,λ)‖

(1+‖(r, x)‖+‖(µ, λ)‖)N r2α+1 dr dx

5 C2 e
∫

K

| f (r, x)| e‖(r,x)‖‖(µ,λ)‖

(1+‖(r, x)‖+‖(µ, λ)‖)N dvα(r, x).

For the case α=0, our previous claim also holds by using the same method as in the
case α > 0, using a different variable replacement by letting a =

√

r2
+ (x − y)2,

y = y, and for simplicity still using r instead of a. This proves our claim.
By Proposition 2.1(i), and restricting the integral region 0+ to K , we derive the

inequality∫
K

∫
K

|
tRα( f )(r, x)| |Fα( f )(µ, λ)| e‖(r,x)‖‖(µ,λ‖)

(1+‖(r, x)‖+‖(µ, λ)‖)N dr dx dµ dλ

5 C ×
∫

K

∫
0+

| f (r, x)| |Fα( f )(µ, λ)| e‖(r,x)‖‖(µ,λ‖)4(µ, λ)
(1+‖(r, x)‖+‖(µ, λ)‖)N dvα(r, x) dγα(µ, λ)

<∞.
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By Lemma 5.1 we know that the above inequality satisfies the conditions of the
Beurling theorem (Lemma 1.1) in 2-dimensional Euclidean space. So

tRα( f )(r, x)= P(y) e−〈Ay,y〉,

where y = (r, x), P(y) is a polynomial such that its degree is less than (N −2)/2,
and A is a positive definite symmetric 2 × 2 matrix. From f ∈ S0

∗
(R2) and

Lemma 5.3 we know that P(y) e−〈Ay,y〉
∈ S∗,0(R

2) and

f (r, x)= (tRα)
−1(P(y) e−〈Ay,y〉).

In particular, if N 5 2, we have
tRα( f )(r, x)= 0,

which implies f (r, x)= 0 so our proof is finished. �

Remark. In this section, we gave another analogue of the Beurling–Hörmander
theorem. When compared with Theorem 1.2, which just gives the precise structure
of x but not r since we only know that ψ j (r) ∈ L2(R+, dc(r)), the new analogue
derived in this section gives the precise structure of both r and x . However, this
requires the additional condition that f ∈ S0

∗
(R2) and it’s difficult to remove this

condition because the dual Riemann–Liouville transform is not injective on the full
space S∗(R

2). To conquer this difficulty, a different method might be needed.
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