Pacific

Journal of

Mathematics

AN ANALOGUE OF THE CARTAN DECOMPOSITION FOR p-ADIC SYMMETRIC SPACES OF SPLIT p-ADIC REDUCTIVE GROUPS

Patrick Delorme and Vincent Sécherre

AN ANALOGUE OF THE CARTAN DECOMPOSITION FOR p-ADIC SYMMETRIC SPACES OF SPLIT \boldsymbol{p}-ADIC REDUCTIVE GROUPS

Patrick Delorme and Vincent Sécherre

Let k be a nonarchimedean locally compact field of residue characteristic p, let \mathbf{G} be a connected reductive group defined over k, let σ be an involutive \boldsymbol{k}-automorphism of \mathbf{G}, and \mathbf{H} an open \boldsymbol{k}-subgroup of the fixed points group of σ. We denote by \mathbf{G}_{k} and \mathbf{H}_{k} the groups of \boldsymbol{k}-points of \mathbf{G} and \mathbf{H}. We obtain an analogue of the Cartan decomposition for the reductive symmetric space $H_{k} \backslash \mathbf{G}_{k}$ in the case where \mathbf{G} is \boldsymbol{k}-split and \boldsymbol{p} is odd. More precisely, we obtain a decomposition of G_{k} as a union of $\left(H_{k}, K\right)$-double cosets, where K is the stabilizer of a special point in the Bruhat-Tits building of G over k. This decomposition is related to the \mathbf{H}_{k}-conjugacy classes of maximal σ antiinvariant k-split tori in G. In a more general context, Benoist and Oh obtained a polar decomposition for any \boldsymbol{p}-adic reductive symmetric space. In the case where \mathbf{G} is \boldsymbol{k}-split and \boldsymbol{p} is odd, our decomposition makes more precise that of Benoist and $\mathbf{O h}$, and generalizes results of Offen for $\mathbf{G L}_{n}$.

1. Introduction

Let k be a nonarchimedean locally compact field of odd residue characteristic. Let G be a connected reductive group defined over k, let σ be an involutive k automorphism of G and let H be an open k-subgroup of the fixed points group of σ. We denote by G_{k} and H_{k} the groups of k-points of G and H . Harmonic analysis on the reductive symmetric space $\mathrm{H}_{k} \backslash \mathrm{G}_{k}$ is the study of the action of G_{k} on the space of complex square integrable functions on $\mathrm{H}_{k} \backslash \mathrm{G}_{k}$. This study is related to the classification of H_{k}-distinguished representations of G_{k}, that is representations having a nonzero space of H_{k}-invariant linear forms. Offen [2004] has investigated the harmonic analysis of spherical functions in some cases related to GL_{n}. Hironaka [1988] has described a Cartan decomposition for the pair $\left(\mathrm{GL}_{n}, O_{n}\right)$. Blanc and Delorme [2008] have studied H_{k}-distinguishedness for families of parabolically induced representations of G_{k}. Lagier [2008], and independently Kato and Takano

[^0][2008], have introduced the notion of relative cuspidality for irreducible H_{k}-distinguished representations of G_{k} and constructed "Jacquet maps" at the level of invariant linear forms. In this paper, we investigate the geometry of the reductive symmetric space $\mathrm{H}_{k} \backslash \mathrm{G}_{k}$.

Connected reductive groups can be considered as reductive symmetric spaces. Indeed, if G^{\prime} is such a group, the map

$$
\sigma:(x, y) \mapsto(y, x)
$$

defines a k-involution of $\mathrm{G}=\mathrm{G}^{\prime} \times \mathrm{G}^{\prime}$ whose fixed points group H is the diagonal image of G^{\prime} in G , and the reductive symmetric space $\mathrm{H}_{k} \backslash \mathrm{G}_{k}$ naturally identifies with G_{k}^{\prime} via the map $(x, y) \mapsto x^{-1} y$. Moreover, if K^{\prime} is a subgroup of G_{k}^{\prime}, and if we set $\mathrm{K}=\mathrm{K}^{\prime} \times \mathrm{K}^{\prime}$, then this map induces a bijective correspondence:

$$
\left\{\left(\mathrm{H}_{k}, \mathrm{~K}\right) \text {-double cosets of } \mathrm{G}_{k}\right\} \leftrightarrow\left\{\mathrm{K}^{\prime} \text {-double cosets of } \mathrm{G}_{k}^{\prime}\right\} .
$$

In particular, if K^{\prime} is the G_{k}^{\prime}-stabilizer of a special point in the Bruhat-Tits building of G^{\prime} over k, the decomposition of $\mathrm{H}_{k} \backslash \mathrm{G}_{k}$ into K-orbits corresponds to the Cartan decomposition of G_{k}^{\prime} relative to K^{\prime} [Bruhat and Tits 1972, Proposition 4.4.3].

In this paper, we obtain an analogue of the Cartan decomposition for $\mathrm{H}_{k} \backslash \mathrm{G}_{k}$ when the group G is k-split. In a more general context (k any nonarchimedean locally compact field of odd characteristic and G any connected reductive group over k), Benoist and Oh [2007] have obtained a polar decomposition for $\mathrm{H}_{k} \backslash \mathrm{G}_{k}$. In the case where k has odd residue characteristic and G is k-split, our decomposition is a refinement of Benoist-Oh's polar decomposition (see 4.14). This decomposition can be seen as a p-adic analogue of the Cartan decomposition for real reductive symmetric spaces [Flensted-Jensen 1978, Theorem 4.1]. It generalizes the decompositions obtained by Offen [2004, Proposition 3.1] for $\mathrm{G}=\mathrm{GL}_{2 n}$ in what he called Cases 1 and 3.

Let $\left\{\mathrm{A}^{j} \mid j \in \mathrm{~J}\right\}$ be a set of representatives of the H_{k}-conjugacy classes of maximal σ-antiinvariant k-split tori of G (called maximal (σ, k)-split tori in [Helminck 1994]; see also Definition 4.2). These tori, as well as related entities, have been studied in [Helminck 1994; Helminck and Helminck 1998; Helminck and Wang 1993]. In particular, the set J is finite and the $\mathrm{A}^{j}, j \in \mathrm{~J}$, are all conjugate under G_{k}. Let S be a σ-stable maximal k-split torus of G containing a maximal (σ, k)-split torus A . For each $j \in \mathrm{~J}$, we choose $y_{j} \in \mathrm{G}_{k}$ such that $y_{j} \mathrm{~A} y_{j}^{-1}=\mathrm{A}^{j}$. Our main result is this:

Theorem 1.1 (see Theorem 4.13). Assume G is k-split. Let K be the stabilizer in G_{k} of a special point in the apartment attached to S . Then

$$
\begin{equation*}
\mathrm{G}_{k}=\bigcup_{j \in \mathrm{~J}} \mathrm{H}_{k} y_{j} \mathrm{~S}_{k} \mathrm{~K} \tag{1-1}
\end{equation*}
$$

If one compares with Offen's decompositions [2004, Proposition 3.1], one sees that in each of his Cases 1 and 3 (where $\mathrm{G}=\mathrm{GL}_{2 n}$ for $n \geqslant 1$), the set J reduces to a single element and y_{j} can be chosen to be trivial. In general however, one cannot avoid having several non- H_{k}-conjugate maximal σ-antiinvariant k-split tori of G appearing in (1-1).

To prove Theorem 1.1, we make generous use of Bruhat-Tits theory [1972; 1984a]. First, let G be any connected reductive group over k, and let \mathscr{B} be its Bruhat-Tits building. It is endowed with an action of σ. Then:

Proposition 1.2 (see Proposition 3.8). \mathscr{B} is the union of its σ-stable apartments.
Note that in the case where $\mathrm{G}=\mathrm{G}^{\prime} \times \mathrm{G}^{\prime}$ and $\sigma(x, y)=(y, x)$ as above, the building \mathscr{B} identifies with the product of two copies of the building of G^{\prime} over k and the proposition simply says that two arbitrary points in the building of G^{\prime} are always contained in a common apartment.

When G is k-split, we obtain the following refinement of the proposition above:
Proposition 1.3 (see Proposition 4.8). Assume G is k-split, and let x be a special point of \mathscr{B}. There is a σ-stable maximal k-split torus S of G such that the apartment corresponding to S contains x and the maximal σ-antiinvariant subtorus of S is a maximal (σ, k)-split torus of G .

As we will see in 5.13 , this is no longer true for nonsplit groups.
Summary. In Section 2, we recall the main properties of the Bruhat-Tits building attached to a connected reductive group defined over k. In Section 3, we study the set of all apartments containing a given σ-stable subset of the building, and we prove Proposition 1.2. In Section 4, we prove our main theorem for G a k split group. In Section 5, we study in more detail the case of $\mathrm{G}_{k}=\mathrm{GL}_{n}(k)$ and $\sigma(g)=$ transpose of g^{-1}, and the case of $\mathrm{G}_{k}=\mathrm{GL}_{n}\left(k^{\prime}\right)$ with k^{\prime} quadratic over k and $\mathrm{id} \neq \sigma \in \operatorname{Gal}\left(k^{\prime} / k\right)$. When $n=2$ and k^{\prime} is totally ramified over k, the second case provides an example of a nonsplit group for which Proposition 1.3 is not satisfied.

2. The Bruhat-Tits building

Let k be a nonarchimedean nondiscrete locally compact field, and let ω be its normalized valuation. In this section, we recall the main properties of the BruhatTits building attached to a connected reductive group defined over k. The reader may refer to [Bruhat and Tits 1972; 1984a] or to the more concise presentations [Landvogt 1995; Schneider and Stuhler 1997; Tits 1979].

If G is a linear algebraic group defined over k, the group of its k-points will be denoted by G_{k} or $\mathrm{G}(k)$, and its neutral component will be denoted by G°. If X is a subset of G, then $\mathrm{N}_{\mathrm{G}}(\mathrm{X})$ and $\mathrm{Z}_{\mathrm{G}}(\mathrm{X})$ denote respectively the normalizer and centralizer of X in G , and, given $g \in \mathrm{G}$, we write ${ }^{g} \mathrm{X}$ for $g \mathrm{Xg}^{-1}$.
2.1. Let G be a connected reductive group defined over k, and let S be a maximal k-split torus of G . We denote by $\mathrm{X}^{*}(\mathrm{~S})=\operatorname{Hom}\left(\mathrm{S}, \mathrm{GL}_{1}\right)$ the group of algebraic characters, and by $X_{*}(S)=\operatorname{Hom}\left(\mathrm{GL}_{1}, S\right)$ the group of cocharacters, of S . We define a map

$$
\begin{equation*}
\mathrm{X}_{*}(\mathrm{~S}) \times \mathrm{X}^{*}(\mathrm{~S}) \rightarrow \mathbb{Z} \tag{2-1}
\end{equation*}
$$

as follows. If $\lambda \in \mathrm{X}_{*}(\mathrm{~S})$ and $\chi \in \mathrm{X}^{*}(\mathrm{~S})$, then $\chi \circ \lambda$ is an endomorphism of the multiplicative group GL_{1}, which corresponds to an endomorphism of the ring $\mathbb{Z}\left[t, t^{-1}\right]$. It is of the form $t \mapsto t^{n}$ for some $n \in \mathbb{Z}$. This integer n is denoted by $\langle\lambda, \chi\rangle$. The map (2-1) defines a perfect duality [Borel 1991, § 8.6].
2.2. Let N and Z denote the normalizer and centralizer of S in G. If we extend the map (2-1) by \mathbb{R}-linearity, there exists a unique group homomorphism

$$
\begin{equation*}
v: \mathrm{Z}_{k} \rightarrow \mathrm{X}_{*}(\mathrm{~S}) \otimes_{\mathbb{Z}} \mathbb{R} \tag{2-2}
\end{equation*}
$$

such that the condition

$$
\langle\nu(z), \chi\rangle=-\omega(\chi(z))
$$

holds for any $z \in \mathrm{Z}_{k}$ and any k-rational character $\chi \in \mathrm{X}^{*}(\mathrm{Z})_{k}$ [Tits 1979, § 1.2]. According to [Landvogt 1995, Proposition 1.2], the kernel of (2-2) is the maximal compact subgroup of Z_{k}.
2.3. Let C denote the connected center of G and let $X_{*}(C)$ be the group of its algebraic cocharacters. It is a subgroup of the free abelian group $X_{*}(S)$. We denote by \mathscr{A} the space

$$
\mathrm{V}=\left(\mathrm{X}_{*}(\mathrm{~S}) \otimes_{\mathbb{Z}} \mathbb{R}\right) /\left(\mathrm{X}_{*}(\mathrm{C}) \otimes_{\mathbb{Z}} \mathbb{R}\right)
$$

considered as an affine space on itself and by $\operatorname{Aff}(\mathscr{A})$ the group of its affine automorphisms. By making V act on \mathscr{A} by translations, we can think of V as a subgroup of $\operatorname{Aff}(\mathscr{A})$. It is the kernel of the natural group homomorphism $\operatorname{Aff}(\mathscr{A}) \rightarrow \operatorname{GL}(\mathrm{V})$ which associates to any affine automorphism its linear part.
2.4. The map (2-2) induces a homomorphism

$$
\begin{equation*}
\mathrm{Z}_{k} \rightarrow \operatorname{Aff}(\mathscr{A}) \tag{2-3}
\end{equation*}
$$

which we still denote by v. Its image is contained in V . An important property of this homomorphism is that it extends to a homomorphism $\mathrm{N}_{k} \rightarrow \operatorname{Aff}(\mathscr{A})$ [Tits 1979, § 1.2]. It does not extend in a unique way, but two homomorphisms extending (2-3) to N_{k} are conjugated by a unique element of $\operatorname{Aff}(\mathscr{A})$ [Landvogt 1995, Proposition 1.8].
2.5. The affine space \mathscr{A} endowed with an action of N_{k} defined by a group homomorphism $v: \mathrm{N}_{k} \rightarrow \operatorname{Aff}(\mathscr{A})$ extending the homomorphism (2-3) is called the (reduced) apartment attached to S. It satisfies these conditions:

A1. \mathscr{A} is an affine space on V;
A2. v is a group homomorphism $\mathrm{N}_{k} \rightarrow \operatorname{Aff}(\mathscr{A})$ extending the canonical homomorphism $\mathrm{Z}_{k} \rightarrow \mathrm{~V}$.

It has the following uniqueness property: if $\left(\mathscr{A}^{\prime}, v^{\prime}\right)$ satisfies A1 and A2, there is a unique affine and N_{k}-equivariant isomorphism from \mathscr{A}^{\prime} to \mathscr{A}.

Remark 2.6. As in [Tits 1979], one obtains the nonreduced apartment $\mathscr{A}_{\mathrm{nr}}$ by replacing V by $\mathrm{X}_{*}(\mathrm{~S}) \otimes_{\mathbb{Z}} \mathbb{R}$. It is not as canonical as the reduced one: two homomorphisms extending the map $v_{\mathrm{nr}}: \mathrm{Z}_{k} \rightarrow \operatorname{Aff}\left(\mathscr{A}_{\mathrm{nr}}\right)$ to N_{k} are conjugated by an element of $\operatorname{Aff}\left(\mathscr{A}_{\mathrm{nr}}\right)$ which is not necessarily unique [Landvogt 1995, Chapter 1, § 1; Tits 1979, § 1.2].
2.7. Let $\Phi=\Phi(G, S)$ denote the set of roots of G relative to S. It is a subset of $\mathrm{X}^{*}(\mathrm{~S})$. Therefore, any root $a \in \Phi$ can be seen as a linear form on $\mathrm{X}_{*}(\mathrm{~S}) \otimes_{\mathbb{Z}} \mathbb{R}$ which is trivial on the subspace $X_{*}(\mathrm{C}) \otimes_{\mathbb{Z}} \mathbb{R}$, hence as a linear form on V [Landvogt 1995, Chapter 1, § 1].

For $a \in \Phi$, we denote by U_{a} the root subgroup associated to a, which is a unipotent subgroup of G normalized by Z [Borel 1991, Proposition 21.9], and by s_{a} the reflection corresponding to a, considered as an element of $\mathrm{GL}(\mathrm{V})$ - or, more precisely, of the quotient of $\nu\left(\mathrm{N}_{k}\right)$ by $\nu\left(\mathrm{Z}_{k}\right)$.
2.8. Let $a \in \Phi$ and $u \in \mathrm{U}_{a}(k)-\{1\}$. The intersection

$$
\begin{equation*}
\mathrm{U}_{-a}(k) u \mathrm{U}_{-a}(k) \cap \mathrm{N}_{k} \tag{2-4}
\end{equation*}
$$

consists of a single element, called $m(u)$, whose image by v is an affine reflection the linear part of which is s_{a} [Borel and Tits 1965, § 5]. The set $\mathscr{H}_{a, u}$ of fixed points of $v(m(u))$ is an affine hyperplane of \mathscr{A}, which is called a wall of \mathscr{A}.

A chamber of \mathscr{A} is a connected component of the complementary in \mathscr{A} of the union of its walls. Note that a chamber is open in \mathscr{A}.

A point $x \in \mathscr{A}$ is said to be special if, for all root $a \in \Phi$, there is a root $b \in \Phi \cap \mathbb{R}_{+} a$ and an element $u \in \mathrm{U}_{b}(k)-\{1\}$ such that $x \in \mathscr{H}_{b, u}$ [Landvogt 2000, § 1.2.3; Tits 1979, § 1.9].
2.9. Let $\theta(a, u)$ denote the affine function $\mathscr{A} \rightarrow \mathbb{R}$ whose linear part is a and whose vanishing hyperplane is the wall $\mathscr{H}_{a, u}$ of fixed points of $v(m(u))$. We fix a base point in \mathscr{A}, so that \mathscr{A} can be identified with the vector space V . For $r \in \mathbb{R}$, we set

$$
\mathrm{U}_{a}(k)_{r}=\left\{u \in \mathrm{U}_{a}(k)-\{1\} \mid \theta(a, u)(x) \geqslant a(x)+r \text { for all } x \in \mathscr{A}\right\} \cup\{1\} .
$$

Thus we obtain a filtration of $\mathrm{U}_{a}(k)$ by subgroups. If we change the base point in \mathscr{A}, this filtration is only modified by a translation of the indexation.
2.10. Let Ω be a nonempty subset of \mathscr{A}. We set

$$
\mathbf{N}_{\Omega}=\left\{n \in \mathbf{N}_{k} \mid v(n)(x)=x \text { for all } x \in \Omega\right\},
$$

and we denote by U_{Ω} the subgroup of G_{k} generated by all the $\mathrm{U}_{a}(k)_{r}$ such that the affine function $x \mapsto a(x)+r$ is nonnegative on Ω. According to [Landvogt 1995, § 12], this subgroup is compact in G_{k}, and we have $n \mathrm{U}_{\Omega} n^{-1}=\mathrm{U}_{\nu(n)(\Omega)}$ for $n \in \mathrm{~N}_{k}$. In particular, N_{Ω} normalizes U_{Ω}. The subgroup $\mathrm{P}_{\Omega}=\mathrm{N}_{\Omega} \mathrm{U}_{\Omega}$ is open in G_{k} [Landvogt 1995, Corollary 12.12].
2.11. Let $\Phi=\Phi^{-} \cup \Phi^{+}$be a decomposition of Φ into positive and negative roots. We denote by $\mathrm{U}^{+}\left(\mathrm{U}^{-}\right)$the subgroup of G_{k} generated by the U_{a} for all $a \in \Phi^{+}$ ($a \in \Phi^{-}$). Then the group P_{Ω} has the following Iwahori decomposition [Landvogt 1995, Corollary 12.6; Bruhat and Tits 1972, § 7.1.4]:

$$
\begin{equation*}
\mathrm{P}_{\Omega}=\left(\mathrm{U}_{\Omega} \cap \mathrm{U}^{-}\right) \cdot\left(\mathrm{U}_{\Omega} \cap \mathrm{U}^{+}\right) \cdot \mathrm{N}_{\Omega} . \tag{2-5}
\end{equation*}
$$

2.12. Bruhat and Tits [1972; 1984a] associate to the apartment ($\mathscr{A}, v)$ a G_{k}-set $\mathscr{B}=\mathscr{B}(\mathrm{G}, k)$ containing \mathscr{A}, called the (reduced) building of G over k and satisfying the following conditions:

B1. The set \mathscr{B} is the union of the $g \cdot \mathscr{A}$ for $g \in \mathrm{G}_{k}$.
B2. The subgroup N_{k} is the stabilizer of \mathscr{A} in G_{k}, and $n \cdot x=v(n)(x)$ for all $x \in \mathscr{A}$ and $n \in \mathrm{~N}_{k}$.
B3. For all $a \in \Phi$ and $r \in \mathbb{R}$, the subgroup $\mathrm{U}_{a}(k)_{r}$ defined in 2.9 fixes the subset $\{x \in \mathscr{A} \mid a(x)+r \geqslant 0\}$ pointwise.

The building has the following uniqueness property: if \mathscr{B}^{\prime} is a G_{k}-set containing \mathscr{A} and satisfying B1-B3, there is a unique G_{k}-equivariant bijection from \mathscr{B}^{\prime} to \mathscr{B} [Tits 1979, § 2.1; Prasad and Yu 2002, § 1.9].
2.13. The subsets of \mathscr{B} of the form $g \cdot \mathscr{A}$ with $g \in \mathrm{G}_{k}$ are called apartments. According to B 1 , the building is the union of its apartments. For $g \in \mathrm{G}_{k}$, the apartment $g \cdot \mathscr{A}$ can be naturally endowed with a structure of affine space and an action of ${ }^{g} \mathrm{~N}_{k}$ by affine isomorphisms. Up to unique isomorphism, it is the apartment attached to the maximal k-split torus ${ }^{g} \mathrm{~S}$ (see 2.5). This defines a unique G_{k}-equivariant map

$$
\begin{equation*}
\mathrm{S}^{\prime} \mapsto \mathscr{A}\left(\mathrm{S}^{\prime}\right) \subseteq \mathscr{B} \tag{2-6}
\end{equation*}
$$

between maximal k-split tori of G and apartments of \mathscr{B}, such that S maps to \mathscr{A}.

Note that the building \mathscr{B} does not depend on the maximal k-split torus S. Indeed, let S^{\prime} be a maximal k-split torus of G, let $\left(\mathscr{A}^{\prime}, v^{\prime}\right)$ be the apartment attached to S^{\prime} and \mathscr{B}^{\prime} be the building of G over k relative to this apartment (see 2.12). If we identify \mathscr{A}^{\prime} with the unique apartment of \mathscr{B} corresponding to S^{\prime} via (2-6), then $\mathscr{B}^{\prime}=\mathscr{B}$.
2.14. The building has the following important properties [Bruhat and Tits 1972, § 7.4; Landvogt 1995, Chapter 4, § 13]:
(1) Let Ω be a nonempty subset of \mathscr{A}. Then P_{Ω} is the subgroup of G_{k} made of those elements fixing Ω pointwise.
(2) Let $g \in \mathrm{G}_{k}$. There is $n \in \mathrm{~N}_{k}$ such that $g \cdot x=n \cdot x$ for any $x \in \mathscr{A} \cap g^{-1} \cdot \mathscr{A}$.

In particular, (1) together with B2 imply that $\mathrm{N}_{\Omega}=\mathrm{N}_{k} \cap \mathrm{P}_{\Omega}$.
2.15. Let σ be a k-automorphism of G . There is a unique bijective map from \mathscr{B} to itself, still denoted σ, such that
(1) the condition

$$
\sigma(g \cdot x)=\sigma(g) \cdot \sigma(x)
$$

holds for any $g \in \mathrm{G}_{k}$ and $x \in \mathscr{B}$; and
(2) the map σ permutes the apartments and, for any apartment \mathscr{A}, the restriction of σ to \mathscr{A} is an affine isomorphism from \mathscr{A} to $\sigma(\mathscr{A})$.

This makes (2-6) into a σ-equivariant map. In particular, an apartment is σ-stable if and only if its corresponding maximal k-split torus of G is σ-stable [Bruhat and Tits 1984a, § 4.2.12].

3. Existence of σ-stable apartments

From now on, k will be a nonarchimedean locally compact field of odd residue characteristic. Let G be connected reductive group defined over k and let σ be a k-involution on G. According to 2.15 , the building \mathscr{B} of G over k is endowed with an action of σ. In this section, we prove that, given $x \in \mathscr{B}$, there exists a σ-stable apartment containing x. We keep using notation of Section 2.
3.1. Let Ω be a nonempty σ-stable subset of \mathscr{B} contained in some apartment, and let $\operatorname{Ap}(\Omega)$ be the set of all apartments of \mathscr{B} containing Ω. It is a nonempty set on which the group P_{Ω} acts transitively [Landvogt 1995, Corollary 13.7]. Because Ω is σ-stable, both P_{Ω} and $\mathrm{Ap}(\Omega)$ are σ-stable. Note that the σ-stable apartments containing Ω are exactly the σ-fixed points in $\operatorname{Ap}(\Omega)$.
3.2. Let us fix an apartment $\mathscr{A} \in \operatorname{Ap}(\Omega)$ and an element $u \in \mathrm{P}_{\Omega}$ such that $\sigma(\mathscr{A})=$ $u \cdot A$. Let N denote the normalizer in G of the maximal k-split torus of G corresponding to \mathscr{A}. As σ is involutive, we have

$$
\begin{equation*}
\sigma(u) u \in \mathrm{P}_{\Omega} \cap \mathrm{N}_{k}=\mathrm{N}_{\Omega} \tag{3-1}
\end{equation*}
$$

The map $\rho: g \mapsto g \cdot \mathscr{A}$ induces a P_{Ω}-equivariant bijection between the homogeneous spaces $\mathrm{P}_{\Omega} / \mathrm{N}_{\Omega}$ and $\operatorname{Ap}(\Omega)$. The automorphism

$$
\theta: x \mapsto u^{-1} \sigma(x) u
$$

of the group G_{k} stabilizes P_{Ω} and N_{Ω}. Indeed $\sigma\left(\mathrm{N}_{k}\right)=u \mathrm{~N}_{k} u^{-1}$, and

$$
\theta\left(\mathrm{N}_{\Omega}\right)=u^{-1} \sigma\left(\mathrm{P}_{\Omega} \cap \mathrm{N}_{k}\right) u=\mathrm{P}_{\Omega} \cap u^{-1} \sigma\left(\mathrm{~N}_{k}\right) u=\mathrm{N}_{\Omega}
$$

Note that the condition (3-1) implies that $\theta \circ \theta$ is conjugation by some element of N_{Ω}. As N_{Ω} is θ-stable, the map

$$
\left(\sigma, g \mathrm{~N}_{\Omega}\right) \mapsto u \theta\left(g \mathrm{~N}_{\Omega}\right), \quad g \in \mathrm{P}_{\Omega}
$$

defines an action of σ on $\mathrm{P}_{\Omega} / \mathrm{N}_{\Omega}$, making ρ into a σ-equivariant bijection. Note that this action differs from the natural action of σ on $\mathrm{P}_{\Omega} / \mathrm{N}_{\Omega}$ (which obviously has fixed points).
3.3. Let Ω be a nonempty σ-stable subset of \mathscr{B} contained in some apartment.

Proposition 3.4. Assume that Ω contains a point of a chamber of \mathscr{B}. Then Ω is contained in some σ-stable apartment.

Proof. We describe the quotient $\mathrm{P}_{\Omega} / \mathrm{N}_{\Omega}$ as a projective limit of finite σ-sets. According to [Cartier 1979, § 1.2], Example (f), the group G_{k} is locally compact and totally disconnected. Therefore we can choose a decreasing filtration $\left(\mathrm{Q}_{i}\right)_{i \geqslant 0}$ of the open subgroup P_{Ω} of G_{k} satisfying the following properties:
(A) The intersection of the Q_{i} is reduced to $\{1\}$.
(B) For any $i \geqslant 0$, the subgroup Q_{i} is compact open and normal in P_{Ω}.

Lemma 3.5. Consider the decreasing filtration of P_{Ω} formed by the subgroups $\mathrm{P}_{\Omega, i}=\mathrm{N}_{\Omega} \mathrm{Q}_{i} \cap \theta\left(\mathrm{~N}_{\Omega} \mathrm{Q}_{i}\right)$, for $i \geqslant 0$.
(1) The intersection of the $\mathrm{P}_{\Omega, i}$ is reduced to N_{Ω}.
(2) For any $i \geqslant 0$, the subgroup $\mathrm{P}_{\Omega, i}$ is θ-stable and of finite index in P_{Ω}.

Proof. As N_{Ω} is θ-stable, it is contained in the intersection of the $\mathrm{P}_{\Omega, i}$. Let g be in this intersection. For any $i \geqslant 0$, there exist $n_{i} \in \mathrm{~N}_{\Omega}$ and $q_{i} \in \mathrm{Q}_{i}$ such that $g=n_{i} q_{i}$. Because of (A) above, q_{i} converges to 1 . Therefore n_{i} converges to a limit contained in the closed subgroup N_{Ω}, and this limit is g. This proves (1).

Now recall that $\theta \circ \theta$ is conjugation by some element of N_{Ω}. This implies that $\mathrm{P}_{\Omega, i}$ is θ-stable. As $\mathrm{P}_{\Omega, i}$ is open in P_{Ω} and contains N_{Ω}, the quotient $\mathrm{P}_{\Omega} / \mathrm{P}_{\Omega, i}$ can be identified with the quotient of U_{Ω}, which is compact, by some open subgroup. This gives (2).

Because of Lemma 3.5(2), the map

$$
\left(\sigma, g \mathrm{P}_{\Omega, i}\right) \mapsto u \theta\left(g \mathrm{P}_{\Omega, i}\right), \quad g \in \mathrm{P}_{\Omega}
$$

defines an action of σ on the finite quotient $\mathrm{P}_{\Omega} / \mathrm{P}_{\Omega, i}$, which gives us a projective system $\left(\mathrm{P}_{\Omega} / \mathrm{P}_{\Omega, i}\right)_{i \geqslant 0}$ of finite σ-sets. Since P_{Ω} is complete, and thanks to Lemma 3.5(1), the natural σ-equivariant map from $\mathrm{P}_{\Omega} / \mathrm{N}_{\Omega}$ to the projective limit of the $\mathrm{P}_{\Omega} / \mathrm{P}_{\Omega, i}$ is bijective.
Lemma 3.6. Let $\left(\mathrm{X}_{i}\right)_{i \geqslant 0}$ be a projective system of finite σ-sets. For all $i \geqslant 0$, assume the transition maps $\varphi_{i}: \mathrm{X}_{i+1} \rightarrow \mathrm{X}_{i}$ to be surjective and X_{i} to have odd cardinality. Then the projective limit X has a σ-fixed point.
Proof. For each $i \geqslant 0$, the set X_{i}^{σ} of σ-fixed points of X_{i} is nonempty, since X_{i} has odd cardinality. This defines a projective system $\left(\mathrm{X}_{i}^{\sigma}\right)_{i \geqslant 0}$ whose transition maps may not be surjective. For each $i \geqslant 0$, let Y_{i} denote the intersection in X_{i} of the images of the $\mathrm{X}_{i+n}^{\sigma}$, for $n \geqslant 0$. Then Y_{i} is nonempty, and the transition maps $\varphi_{i}: \mathrm{Y}_{i+1} \rightarrow \mathrm{Y}_{i}$ are surjective. Therefore, the projective limit $\mathrm{Y}=\mathrm{X}^{\sigma} \subseteq \mathrm{X}$ of the system $\left(\mathrm{Y}_{i}\right)_{i \geqslant 0}$ is nonempty.

Let p denote the residue characteristic of k.
Lemma 3.7. Let K be a normal subgroup of finite index in P_{Ω} containing N_{Ω}. Then the index of K in P_{Ω} is a power of p.
Proof. Let S be the maximal k-split torus associated to \mathscr{A}, let Φ be the set of roots of G relative to S and let $\Phi=\Phi^{-} \cup \Phi^{+}$be a decomposition of Φ into positive and negative roots. According to (2-5), the group P_{Ω} has the Iwahori decomposition

$$
\mathrm{P}_{\Omega}=\left(\mathrm{U}_{\Omega} \cap \mathrm{U}^{-}\right) \cdot\left(\mathrm{U}_{\Omega} \cap \mathrm{U}^{+}\right) \cdot \mathrm{N}_{\Omega}
$$

That Ω contains a point of a chamber of \mathscr{B} implies that the group N_{Ω} is reduced to $\operatorname{Ker}(\nu)$, hence normalizes the groups $\mathrm{V}^{+}=\mathrm{U}_{\Omega} \cap \mathrm{U}^{+}$and $\mathrm{V}^{-}=\mathrm{U}_{\Omega} \cap \mathrm{U}^{-}$. The index of K in P_{Ω} can be decomposed as

$$
\left(\mathrm{P}_{\Omega}: \mathrm{K}\right)=\left(\mathrm{P}_{\Omega}: \mathrm{V}^{+} \mathrm{K}\right) \cdot\left(\mathrm{V}^{+} \mathrm{K}: \mathrm{K}\right)
$$

On the one hand, the index

$$
\left(\mathrm{V}^{+} \mathrm{K}: \mathrm{K}\right)=\left(\mathrm{V}^{+}: \mathrm{V}^{+} \cap \mathrm{K}\right)
$$

is a power of p, since V^{+}is a pro- p-group. On the other hand, the index

$$
\left(\mathrm{P}_{\Omega}: \mathrm{V}^{+} \mathrm{K}\right)=\left(\mathrm{V}^{-}: \mathrm{V}^{-} \cap \mathrm{V}^{+} \mathrm{K}\right)
$$

is a power of p, since V^{-}is a pro- p-group. The result follows.
According to Lemma 3.7, the cardinality of each $\mathrm{P}_{\Omega} / \mathrm{P}_{\Omega, i}$, with $i \geqslant 0$, is odd (recall that p is different from 2). Proposition 3.4 follows from Lemma 3.6.

We now prove the first main result of this section.
Proposition 3.8. For any $x \in \mathscr{B}$, there exists a σ-stable apartment containing x.
Proof. Let x be a point in \mathscr{B}, and let y be a point of a chamber of \mathscr{B} whose closure contains x. The set $\Omega=\{y, \sigma(y)\}$ is a σ-stable subset of \mathscr{B} satisfying the conditions of Proposition 3.4. Hence we get a σ-stable apartment of \mathscr{B} containing y. Such an apartment contains the closure of the chamber of y. In particular, it contains x.
3.9. Let S be a σ-stable maximal k-split torus, and let N and Z denote the normalizer and centralizer of S in G . Let $\mathrm{X}=\mathrm{X}(\mathrm{S})$ denote the set of all $g \in \mathrm{G}_{k}$ such that $g^{-1} \sigma(g) \in \mathrm{N}_{k}$, let \mathscr{A} denote the σ-stable apartment corresponding to S and, given $x \in \mathscr{A}$, let P_{x} denote the subgroup P_{Ω} (see 2.11) with $\Omega=\{x\}$.
Proposition 3.10. X is a finite union of $\left(\mathrm{H}_{k}, \mathrm{Z}_{k}\right)$-double cosets and $\mathrm{G}_{k}=\mathrm{XP}$.
Proof. Let us fix a minimal parabolic k-subgroup P of G containing the torus S . According to Helminck and Wang [1993, Proposition 6.8], the map $g \mapsto \mathrm{H}_{k} g \mathrm{P}_{k}$ induces a bijection between the $\left(\mathrm{H}_{k}, \mathrm{Z}_{k}\right)$-double cosets in X and the $\left(\mathrm{H}_{k}, \mathrm{P}_{k}\right)$-double cosets in G_{k}. The first part of the proposition then follows from [Helminck and Wang 1993, Corollary 6.16].

Note that we have $g \in \mathrm{X}$ if and only if $g \cdot \mathscr{A}$ is σ-stable. For $g \in \mathrm{G}_{k}$, we set $x^{\prime}=g \cdot x$. According to Proposition 3.8, there is a σ-stable apartment \mathscr{A}^{\prime} containing x^{\prime}. Let $g^{\prime} \in \mathrm{X}$ be such that $\mathscr{A}^{\prime}=g^{\prime} \cdot \mathscr{A}$. According to Property (2) in 2.14, there is $n \in \mathrm{~N}_{k}$ such that we have $g^{\prime-1} g \cdot x=n \cdot x$. Hence we get $g \in \mathrm{XN}_{k} \mathrm{P}_{x} . \mathrm{As} \mathrm{XN}_{k}=\mathrm{X}$, we obtain the expected result.

4. Decomposition of $\mathbf{H}_{\boldsymbol{k}} \backslash \mathbf{G}_{\boldsymbol{k}}$

In all this section, we assume that G is k-split. Let H be an open k-subgroup of the fixed points group G^{σ}. Equivalently, H is a k-subgroup of G^{σ} containing $\left(\mathrm{G}^{\sigma}\right)^{\circ}$.
4.1. If T is a σ-stable torus in G , we write T^{+}for the neutral component of $\mathrm{T} \cap \mathrm{H}$ and T^{-}for the neutral component of the subgroup $\left\{t \in \mathrm{~T} \mid \sigma(t)=t^{-1}\right\}$. The torus T is the almost direct product of T^{+}and T^{-}, that is $\mathrm{T}=\mathrm{T}^{+} \mathrm{T}^{-}$and the intersection $\mathrm{T}^{+} \cap \mathrm{T}^{-}$is finite [Borel 1991, xi].

Definition 4.2 [Helminck and Wang 1993, § 4.4]. A σ-stable torus T of G is said to be (σ, k)-split if it is k-split and if $\mathrm{T}=\mathrm{T}^{-}$.

By Proposition 10.3 of the same reference, two arbitrary maximal (σ, k)-split tori of G are G_{k}-conjugated.
4.3. Let $\mathscr{D} G$ denote the derived subgroup of G , and recall that C denotes the connected center of G. This latter subgroup is a k-split torus of G .

Lemma 4.4. Let T be a k-split torus of G .
(1) There is a k-subtorus T^{\prime} of C such that the groups $\mathrm{T} \cdot \mathscr{D} \mathrm{G}$ and $\mathrm{T}^{\prime} \cdot \mathscr{D} \mathrm{G}$ are equal.
(2) If T is (σ, k)-split, any T^{\prime} satisfying (1) is (σ, k)-split.
(3) Assume that $\mathscr{D} \mathrm{G}$ is contained in H and T is (σ, k)-split. Then any T^{\prime} satisfying (1) is (σ, k)-split and has the same dimension as T .

Proof. We set $\tilde{\mathrm{G}}=\mathrm{G} / \mathscr{D} \mathrm{G}$ and, for any k-subgroup K of G , we write $\tilde{\mathrm{K}}$ for the image of K in $\tilde{\mathrm{G}}$. According to [Borel 1991, Proposition 14.2], the group G is the almost direct product of C and $\mathscr{D} \mathrm{G}$, which means that G is equal to the product $\mathrm{C} \cdot \mathscr{D} \mathrm{G}$ and that the intersection $\mathrm{C} \cap \mathscr{D} \mathrm{G}$ is finite. This implies that $\tilde{\mathrm{C}}=\tilde{\mathrm{G}}$. Let f denote the k-rational map $\mathrm{C} \rightarrow \tilde{\mathrm{C}}$. It is surjective with finite kernel. Hence $\tilde{\mathrm{G}}$ is a k-split torus, and we denote by $\tilde{\sigma}$ the involutive k-automorphism of \tilde{G} induced by σ. We now prove each conclusion claim in the lemma.
(1) By [Borel 1991, Proposition 8.2(c)], the neutral component of the inverse image $f^{-1}(\tilde{\mathrm{~T}})$ is a k-split subtorus of C which we denote by T^{\prime}. It has finite index in $f^{-1}(\tilde{\mathrm{~T}})$. The image $f\left(\mathrm{~T}^{\prime}\right)$ is then a subtorus of finite index in the connected group $\tilde{\mathrm{T}}$, so that $\tilde{\mathrm{T}}^{\prime}=\tilde{\mathrm{T}}$.
(2) Assume that T is (σ, k)-split, and let T^{\prime} satisfy (1). Let us consider the map $t \mapsto t \sigma(t)$ from T^{\prime} to itself. As $\tilde{\mathrm{T}}^{\prime}=\tilde{\mathrm{T}}$ is a $(\tilde{\sigma}, k)$-split torus, the image of this map is a connected k-subgroup contained in the kernel of f, which is finite.
(3) Assume that $\mathscr{D} \mathrm{G}$ is contained in H and T is (σ, k)-split. Then the map $\mathrm{T} \rightarrow \tilde{\mathrm{T}}$ has finite kernel, which implies that T and $\tilde{\mathrm{T}}$ have the same dimension. Now let T^{\prime} satisfy (1). According to (2), such a torus is (σ, k)-split, and it has the same dimension as $\tilde{\mathrm{T}}^{\prime}=\tilde{\mathrm{T}}$.
4.5. Let S be a σ-stable maximal (k-split) torus of G , let \mathscr{A} be the apartment corresponding to S and let Φ be the set of roots of G relative to S . Let $x \in \mathscr{A}$ be a special point (see 2.8), and write U_{x} for U_{Ω} (see 2.11) with $\Omega=\{x\}$. Let $a \in \Phi$ be a σ-invariant root, which means that $a \circ \sigma=a$.

Lemma 4.6. Assume that $\mathrm{U}_{-a}(k)$ is contained in $\left\{g \in \mathrm{G}_{k} \mid \sigma(g)=g^{-1}\right\}$. Then there are $n \in \mathrm{~N}_{k}$ and $c \in \mathrm{U}_{x}$ such that $n=c^{-1} \sigma(c)$ and $\nu(n)$ is the affine reflection of \mathscr{A} which let x invariant and whose linear part is s_{a}.

Proof. We fix a base point in the apartment \mathscr{A}, so that it can be identified with the vector space V . For any $b \in \Phi$, this defines a filtration of the group $\mathrm{U}_{b}(k)$ (see 2.9). For $u \in \mathrm{U}_{b}(k)-\{1\}$, we denote by $\varphi_{b}(u)$ the greatest real number $r \in \mathbb{R}$ such that $u \in \mathrm{U}_{b}(k)_{r}$. Let us choose $w \in \mathrm{U}_{-a}(k)-\{1\}$ such that x is contained in the wall $\mathscr{H}_{-a, w}$. Thus $\nu(m(w))$ is the affine reflection of \mathscr{A} which fixes x and whose linear part is s_{a}, and we can set

$$
n=m(w) \in \mathbf{N}_{k}
$$

Moreover $\theta(-a, w)$, which is the unique affine function from \mathscr{A} to \mathbb{R} whose linear part is $-a$ and whose vanishing hyperplane is $\mathscr{H}_{-a, w}$, vanishes on x. Therefore it is equal to

$$
y \mapsto-a(y)+a(x)
$$

which implies that $\varphi_{-a}(w)=a(x)$. According to B3 (see 2.12), it follows that w fixes x.

The group $\mathrm{U}_{-a}(k)$ is isomorphic to the additive group of k. Thus, for $r \in \mathbb{R}$, the subgroup $\mathrm{U}_{-a}(k)_{r}$ corresponds through this isomorphism to a nontrivial sub- $(\mathcal{O}-$ module of k, where \mathcal{O} denotes the ring of integers of k [Landvogt 1995, Proposition 7.7]. Therefore, there is a unique element $v \in \mathrm{U}_{-a}(k)$ such that $w=v^{2}$ and $\varphi_{-a}(v)=\varphi_{-a}(w)$, hence $v \in \mathrm{U}_{x}$.

The map $\mathrm{U}_{a}(k) \times \mathrm{U}_{a}(k) \rightarrow \mathrm{G}_{k}$ defined by $\left(u, u^{\prime}\right) \mapsto u w u^{\prime}$ is injective and the intersection given by (2-4) consists of a single element, which is n. If we choose $u, u^{\prime} \in \mathrm{U}_{a}(k)$ such that $u w u^{\prime}=n$, then the element

$$
\sigma\left(u^{\prime}\right)^{-1} w \sigma(u)^{-1}=\sigma(n)^{-1}
$$

is contained in the intersection (2-4). Hence $\sigma(n)^{-1}$ is equal to n, and the uniqueness property implies that $u^{\prime}=\sigma(u)^{-1}$. Moreover, according to [Landvogt 1995, Lemma 7.4(ii)], the real numbers $\varphi_{a}(u)$ and $\varphi_{a}(\sigma(u))$ are both equal to $-\varphi_{-a}(w)$. This implies that u and $\sigma(u)$ are contained in U_{x}. Since v is σ-antiinvariant and $w=v^{2}$, we get the expected result by choosing $c=(u v)^{-1}$.

Remark 4.7. Note that $\sigma(c) \in \mathrm{U}_{x}$. Indeed we have $\sigma(v)=v^{-1} \in \mathrm{U}_{x}$ and $\sigma(u) \in \mathrm{U}_{x}$. Hence $n=c^{-1} \sigma(c) \in \mathrm{N}_{k} \cap \mathrm{U}_{\Omega}$, which is contained in N_{Ω} with $\Omega=\{x, \sigma(x)\}$.

Let \mathscr{B} denote the building of G over k.
Proposition 4.8. Let x be a special point of \mathscr{B}. There is a σ-stable maximal k-split torus S of G such that the apartment corresponding to S contains x and such that S^{-}is a maximal (σ, k)-split torus of G .

Remark 4.9. In 5.13, we give an example of a nonsplit k-group G such that Proposition 4.8 does not hold.

Proof. Let \mathscr{A} be a σ-stable apartment containing x (see Proposition 3.8) and let S be the corresponding maximal k-split torus of G. Assume that \mathscr{A} has been chosen such that the dimension of the (σ, k)-split torus S^{-}is maximal. If it is a maximal (σ, k)-split torus of G, then Proposition 4.8 is proved. Assume that this is not the case, and let A be a maximal (σ, k)-split torus of G containing S^{-}. The dimension of A is greater than $\operatorname{dim} \mathrm{S}^{-}$(if not, the containment $\mathrm{S}^{-} \subseteq \mathrm{A}$ would imply that $S^{-}=A$). Let G^{\prime} be the neutral component of the centralizer of S^{-}in G. It is a k-split connected reductive subgroup of G containing S and A , which is naturally endowed with a nontrivial action of σ. Let C^{\prime} denote the connected center of G^{\prime}.

Lemma 4.10. There is $a \in \Phi\left(\mathrm{G}^{\prime}, \mathrm{S}\right)$ such that the corresponding root subgroup U_{a}^{\prime} is not contained in H , and such a root is σ-invariant.

Proof. Assume that $\mathrm{U}_{a}^{\prime} \subseteq \mathrm{H}$ for each root $a \in \Phi\left(\mathrm{G}^{\prime}, \mathrm{S}\right)$. Then the derived subgroup $\mathscr{D} \mathrm{G}^{\prime}$, which is generated by the U_{a}^{\prime} for $a \in \Phi\left(\mathrm{G}^{\prime}, \mathrm{S}\right)$, is contained in H [Humphreys 1975, Theorem 27.5(e)]. According to Lemma 4.4(iii), there exists a (σ, k)-subtorus A^{\prime} of C^{\prime} such that $\mathrm{A} \cdot \mathscr{D} \mathrm{G}^{\prime}=\mathrm{A}^{\prime} \cdot \mathscr{D} \mathrm{G}^{\prime}$ and $\operatorname{dim}(\mathrm{A})=\operatorname{dim}\left(\mathrm{A}^{\prime}\right)$. The subgroup generated by C^{\prime} and S is a k-torus of G^{\prime}. As G^{\prime} is k-split, S is a maximal torus of G^{\prime}, hence it contains C^{\prime}. Therefore S^{-}contains A^{\prime} which has the same dimension as A , and this dimension is greater than $\operatorname{dim} \mathrm{S}^{-}$. This gives us a contradiction.

Now let a be a root in $\Phi\left(\mathrm{G}^{\prime}, \mathrm{S}\right)$ such that U_{a}^{\prime} is not contained in H. The root a and its conjugate $a \circ \sigma$ coincide on S^{+}and are both trivial on S^{-}. As S is the almost direct product of S^{+}and S^{-}(see 4.1), they are equal. Therefore a is σ-invariant. This ends the proof of Lemma 4.10.

Let $a \in \Phi\left(\mathrm{G}^{\prime}, \mathrm{S}\right)$ as in Lemma 4.10. If we think of a as a root in $\Phi(\mathrm{G}, \mathrm{S})$, then U_{a} is σ-stable and is not contained in H . Moreover:

Lemma 4.11. $\mathrm{U}_{a}(k)$ is contained in $\left\{g \in \mathrm{G}_{k} \mid \sigma(g)=g^{-1}\right\}$.
Proof. As G is k-split, U_{a} is k-isomorphic to the additive group. Thus the action of σ on $\mathrm{U}_{a}(k)$ corresponds to an involutive automorphism of the k-algebra $k[t]$. It has the form $t \mapsto \lambda t$ for some $\lambda \in k^{\times}$with $\lambda^{2}=1$. As U_{a} is not contained in H , we have $\lambda=-1$. This gives us the expected result.

According to Lemma 4.6, there are $n \in \mathbf{N}_{k}$ and $c \in \mathrm{U}_{x}$ such that $n=c^{-1} \sigma(c)$ and $v(n)$ is the affine reflection of \mathscr{A} which let x invariant and whose linear part is s_{a}. For any $t \in \mathrm{~S}$, note that

$$
\sigma\left(c t c^{-1}\right)=c n \sigma(t) n^{-1} c^{-1}=c s_{a}(\sigma(t)) c^{-1}
$$

Let $\mathscr{A}{ }^{\prime}$ denote the apartment $c \cdot \mathscr{A}$ and let $\mathrm{S}^{\prime}={ }^{c} \mathrm{~S}$ be the corresponding maximal k-split torus of G. Then \mathscr{A}^{\prime} contains x and is σ-stable. Moreover, since the root a is trivial on S^{-}and s_{a} fixes the kernel of a pointwise, the conjugate ${ }^{c}\left(\mathrm{~S}^{-}\right)$is a (σ, k)-split subtorus of S^{\prime}. Thus $\mathrm{S}^{\prime-}$ has dimension not smaller than $\operatorname{dim} \mathrm{S}^{-}$.

Now let S_{a} denote the maximal k-split torus in the set of all $t \in \mathrm{~S}$ such that $s_{a}(t)=t^{-1}$. Since a is σ-invariant, such a torus is σ-stable. It is also onedimensional and its intersection with $\operatorname{Ker}(a)$ is finite. Therefore ${ }^{c} \mathrm{~S}_{a}$ is a nontrivial (σ, k)-split subtorus of S^{\prime} which is not contained in ${ }^{c}\left(\mathrm{~S}^{-}\right)$. Thus the dimension of $\mathrm{S}^{\prime-}$, which contains ${ }^{c}\left(\mathrm{~S}_{a} \mathrm{~S}^{-}\right)$, is greater than $\operatorname{dim} \mathrm{S}^{-}$, which contradicts the maximality property of \mathscr{A}. This ends the proof of Proposition 4.8.
4.12. Let A be a maximal (σ, k)-split torus of G , let S be a σ-stable maximal k split torus of G containing A and let \mathscr{A} denote the apartment corresponding to S . Let $\left\{\mathrm{A}^{j} \mid j \in \mathrm{~J}\right\}$ be a set of representatives of the H_{k}-conjugacy classes of maximal (σ, k)-split tori in G. According to [Helminck and Wang 1993], the set J is finite. Let $x \in \mathscr{A}$ be a special point and write K for its stabilizer in G_{k}.

Theorem 4.13. For $j \in \mathbf{J}$, let $y_{j} \in \mathrm{G}_{k}$ such that ${ }^{y_{j}} \mathrm{~A}=\mathrm{A}^{j}$. We have

$$
\mathrm{G}_{k}=\bigcup_{j \in \mathrm{~J}} \mathrm{H}_{k} y_{j} \mathrm{~S}_{k} \mathrm{~K}
$$

Proof. By Proposition 4.8, for any $g \in \mathrm{G}_{k}$, there is a σ-stable maximal k-split torus S^{\prime} of G such that the apartment corresponding to it contains $g \cdot x$ and such that $\mathrm{S}^{\prime-}$ is a maximal (σ, k)-split torus of G. Let $j \in \mathrm{~J}$ be such that $\mathrm{S}^{\prime-}$ is H_{k}-conjugate to A^{j}. According to Helminck and Helminck [1998, Lemma 2.2], there is $h \in \mathrm{H}_{k}$ such that $\mathrm{S}^{\prime}={ }^{h y_{j}} \mathrm{~S}$. Hence $g \cdot x$ is contained in $h y_{j} \cdot \mathscr{A}$. According to Property (2) in 2.14, there exists $n \in \mathrm{~N}_{k}$ such that $g \cdot x=h y_{j} n \cdot x$. Therefore G_{k} is the union of the $\mathrm{H}_{k} y_{j} \mathrm{~N}_{k} \mathrm{~K}$ for $j \in \mathrm{~J}$. As x is special, we have $\mathrm{N}_{k} \mathrm{~K}=\mathrm{S}_{k} \mathrm{~K}$ and we get the expected result.
4.14. In the case where G is not necessarily k-split, we have the following result. For each j, let $\mathrm{W}_{\mathrm{G}_{k}}\left(\mathrm{~A}^{j}\right)$ be the quotient of the normalizer of A^{j} in G_{k} by its centralizer, and likewise with G_{k} replaced by H_{k}. According to [Helminck and Wang 1993], the group $\mathrm{W}_{\mathrm{G}_{k}}\left(\mathrm{~A}^{j}\right)$ is the Weyl group of a root system. For $j \in \mathbf{J}$, let $\mathcal{N}_{j} \subseteq \mathrm{~N}_{\mathrm{G}_{k}}\left(\mathrm{~A}^{j}\right)$ be a set of representatives of

$$
\mathrm{W}_{\mathrm{H}_{k}}\left(\mathrm{~A}^{j}\right) \backslash \mathrm{W}_{\mathrm{G}_{k}}\left(\mathrm{~A}^{j}\right),
$$

and let $y_{j} \in \mathrm{G}_{k}$ be such that ${ }^{y_{j}} \mathrm{~A}=\mathrm{A}^{j}$. Let P be a minimal parabolic k-subgroup of G containing S and such that $\mathrm{P} \cap \sigma(\mathrm{P})$ is a Levi component of P [Helminck and Wang 1993, §4]. Let ϖ be a uniformizer of k, and write Λ for the lattice made of the images of ϖ by the various algebraic cocharacters of A and Λ^{-}for
the subset of antidominant elements of Λ relative to P. Then one can derive from Proposition 3.10 the existence of a compact subset Q of G_{k} such that

$$
\begin{equation*}
\mathrm{G}_{k}=\bigcup_{j \in \mathrm{~J}} \bigcup_{n \in \mathcal{N}_{j}} \mathrm{H}_{k} n y_{j} \Lambda^{-} \mathrm{Q} \tag{4-1}
\end{equation*}
$$

Benoist and Oh [2007] have obtained a similar decomposition of G_{k}, with a weaker condition on the base field k (they assume k to have odd characteristic).

Remark 4.15. In the split case, starting from Theorem 4.13, one can obtain a sharper result than the decomposition (4-1).

Let us mention that the question of the disjointness of the various components appearing in the decomposition (4-1) has been investigated in [Lagier 2008].

5. Examples

Let k be a nonarchimedean locally compact field of odd residue characteristic. Let \mathcal{O} be its ring of integers and \mathfrak{p} be the maximal ideal of \mathcal{O}.
5.1. We now consider the k-split reductive group $\mathrm{G}=\mathrm{GL}_{n}, n \geqslant 1$, endowed with the k-involution $\sigma: g \mapsto^{t} g^{-1}$, where ${ }^{t} g$ denotes the transpose of g. We set $\mathrm{K}=\mathrm{GL}_{n}(\mathcal{O})$ and $\mathrm{H}=\mathrm{G}^{\sigma}$, and write S for the diagonal torus of G . This case has been explicitly investigated by Hironaka [1988] from a different point of view.

We start with the following lemma.
Lemma 5.2. Let V be a finite dimensional k-vector space and B a symmetric bilinear form on V . Then any free \mathcal{O}-submodule of finite rank of V has a basis which is orthogonal relative to B .

Proof. Let Λ be a free \mathcal{O}-submodule of finite rank of V . The proof goes by induction on the rank of Λ. If B is null, then the result is trivial. If not, we denote by B_{Λ} the restriction of B to $\Lambda \times \Lambda$. Its image is of the form \mathfrak{p}^{m} for some integer $m \in \mathbb{Z}$. If ϖ is a uniformizer of k, then the form $\mathrm{B}_{\Lambda}^{0}=\varpi^{-m} \mathrm{~B}_{\Lambda}$ has image \mathcal{O} on $\Lambda \times \Lambda$. Therefore, it defines a nontrivial bilinear form

$$
\overline{\mathrm{B}}_{\Lambda}^{0}: \Lambda / \mathfrak{p} \Lambda \times \Lambda / \mathfrak{p} \Lambda \rightarrow \mathcal{O} / \mathfrak{p}
$$

Let $e \in \Lambda$ be a vector whose reduction modulo \mathfrak{p} is not isotropic relative to $\overline{\mathrm{B}}_{\Lambda}^{0}$, which means that $\mathrm{B}_{\Lambda}^{0}(e, e)$ is a unit of \mathcal{O}. Then Λ is the direct sum of $\mathcal{O} e$ and $\Lambda \cap k e^{\perp}$, where $k e^{\perp}$ denotes the orthogonal of $k e$ in V . Indeed, it follows from the decomposition

$$
x=\frac{\mathrm{B}(e, x)}{\mathrm{B}(e, e)} e+\left(x-\frac{\mathrm{B}(e, x)}{\mathrm{B}(e, e)} e\right), \quad \text { for any } x \in \Lambda .
$$

As $\Lambda \cap k e^{\perp}$ is a free \mathcal{O}-submodule of finite rank of V whose rank is smaller than the rank of Λ, we conclude by induction.

We introduce the set Y of all $g \in \mathrm{G}_{k}$ such that ${ }^{t} g g \in \mathrm{~S}_{k}$. Using Lemma 5.2, we get the following decomposition of G_{k}.

Proposition 5.3. We have $\mathrm{G}_{k}=\mathrm{YK}$.
Proof. We make G_{k} act on the quotient $\mathrm{G}_{k} / \mathrm{K}$, which can be identified to the set of all \mathcal{O}-lattices (that is, cocompact free \mathcal{O}-submodules) of the k-vector space $\mathrm{V}=k^{n}$. Let B denote the symmetric bilinear form on V making the canonical basis of V into an orthonormal basis. According to Lemma 5.2, for any $g \in \mathrm{G}_{k}$, the \mathcal{O}-lattice Λ corresponding to the class $g \mathrm{~K}$ has a basis which is orthogonal relative to B . This means that there exists $u \in \mathrm{~K}$ such that the element $g^{\prime}=g u^{-1} \in g \mathrm{~K}$ maps the canonical basis of V to an orthogonal basis of Λ. Therefore we have $g^{\prime} \in \mathrm{Y}$; thus $g \in \mathrm{YK}$.

We now investigate the maximal (σ, k)-split tori of G . Note that S is a maximal (σ, k)-split torus of G.
Proposition 5.4. The map $g \mapsto{ }^{g}$ S induces a bijection between $\left(\mathrm{H}_{k}, \mathrm{~N}_{k}\right)$-double cosets of Y and H_{k}-conjugacy classes of maximal (σ, k)-split tori of G .

Proof. One easily checks that this map is well defined and injective. For $g \in \mathrm{G}_{k}$, the conjugate ${ }^{g} \mathrm{~S}$ is a maximal (σ, k)-split torus of G if and only if $g^{-1} \sigma(g) \in \mathrm{S}_{k}$, which amounts to saying that $g \in \mathrm{Y}$ and proves surjectivity.

Let 2 denote the set of all equivalence classes of nondegenerate quadratic forms on k^{n}. For $a=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) \in \mathrm{S}_{k}$ we denote by Q_{a} the diagonal quadratic form $a_{1} \mathrm{X}_{1}^{2}+\cdots+a_{n} \mathrm{X}_{n}^{2}$. Note that the map $a \mapsto \mathrm{Q}_{a}$ induces a surjective map from S_{k} to 2 .

We write H^{0} and H^{1} for the set of σ-fixed points and the first set of nonabelian cohomology of σ, respectively.
Proposition 5.5. (1) The map $g \mapsto^{t} g g$ induces an injection ι from the set of $\left(\mathrm{H}_{k}, \mathrm{~N}_{k}\right)$-double cosets of Y to $\mathrm{H}^{1}\left(\mathrm{~N}_{k}\right)$.
(2) Given $a \in \mathrm{~S}_{k}$, the class of a in $\mathrm{H}^{1}\left(\mathrm{~N}_{k}\right)$ is in the image of ι if and only if $\mathrm{Q}_{a} \sim \mathrm{X}_{1}^{2}+\cdots+\mathrm{X}_{n}^{2}$.

Proof. We have an exact sequence

$$
\mathrm{H}_{k} \rightarrow \mathrm{H}^{0}\left(\mathrm{G}_{k} / \mathrm{N}_{k}\right) \rightarrow \mathrm{H}^{1}\left(\mathrm{~N}_{k}\right) \rightarrow \mathrm{H}^{1}\left(\mathrm{G}_{k}\right),
$$

where the map from $\mathrm{H}^{0}\left(\mathrm{G}_{k} / \mathrm{N}_{k}\right)$ to $\mathrm{H}^{1}\left(\mathrm{~N}_{k}\right)$ is induced by $g \mapsto{ }^{t} g g$. As the set of $\left(\mathrm{H}_{k}, \mathrm{~N}_{k}\right)$-double cosets of Y is a subset of $\mathrm{H}_{k} \backslash \mathrm{H}^{0}\left(\mathrm{G}_{k} / \mathrm{N}_{k}\right)$, we get the first assertion. To obtain the second one, it is enough to remark that $\mathrm{H}^{1}\left(\mathrm{G}_{k}\right)$ canonically identifies with 2.

Remark 5.6. Recall from [Serre 1970, IV.2.3] that for $a, b \in \mathrm{~S}_{k}$, the quadratic forms $\mathrm{Q}_{a}, \mathrm{Q}_{b}$ are equivalent if and only if they have the same discriminant and the same Hasse invariant.
Proposition 5.7. Let $\left\{a^{j} \mid j \in \mathrm{~J}\right\} \subseteq \mathrm{S}_{k}$ form a set of representatives of $\operatorname{Im}(\iota)$ in $\mathrm{H}^{1}\left(\mathrm{~N}_{k}\right)$. For $j \in \mathrm{~J}$, we choose $y_{j} \in \mathrm{Y}$ such that ${ }^{t} y_{j} y_{j}=a^{j}$. Then,

$$
\mathrm{G}_{k}=\bigcup_{j \in \mathrm{~J}} \mathrm{H}_{k} y_{j} \mathrm{~S}_{k} \mathrm{~K}
$$

Proof. Propositions 5.3 and 5.4 imply that G_{k} is the union of the components $\mathrm{H}_{k} y_{j} \mathrm{~N}_{k} \mathrm{~K}$ for $j \in \mathrm{~J}$. As $\mathrm{N}_{k} \mathrm{~K}=\mathrm{S}_{k} \mathrm{~K}$, we get the expected result.
Example 5.8. In the case where $n=2$, we give an explicit description of $\operatorname{Im}(\iota)$. Let ϖ denote a uniformizer of \mathcal{O} and $\xi \in \mathcal{O}^{\times}$a nonsquare unit of \mathcal{O}, so that $\{1, \xi, \varpi, \xi \varpi\}$ is a set of representatives of k^{\times}modulo $k^{\times 2}$. The set of elements of k^{\times}which are represented by the quadratic form $\mathrm{Q}_{1}=\mathrm{X}^{2}+\mathrm{Y}^{2}$ depends on the image of p in $\mathbb{Z} / 4 \mathbb{Z}$. If $p \equiv 1 \bmod 4$, all elements of k^{\times}are represented by Q_{1}. If $p \equiv 3 \bmod 4$, an element of k^{\times}is represented by Q_{1} if and only if its normalized valuation if even. We set

$$
\mathrm{J}= \begin{cases}\{1, \xi, \varpi, \xi \varpi\} & \text { if } p \equiv 1 \bmod 4 \\ \{1, \xi\} & \text { if } p \equiv 3 \bmod 4\end{cases}
$$

For each $j \in \mathbf{J}$, set $a^{j}=\operatorname{diag}(j, j)$. Then the elements a^{j} form a set of representatives of $\operatorname{Im}(\iota)$ in $\mathrm{H}^{1}\left(\mathrm{~N}_{k}\right)$.
5.9. We now consider the connected reductive k-group $\mathrm{G}=\operatorname{Res}_{k^{\prime} / k} \mathrm{GL}_{n}$, where k^{\prime} is a quadratic extension of k, endowed with the involutive k-automorphism σ of G induced by the nontrivial element of $\operatorname{Gal}\left(k^{\prime} / k\right)$. This case has been explicitly investigated by Offen [2004] when k^{\prime} / k is unramified.

We set $\mathrm{H}=\mathrm{G}^{\sigma}$, so that we have $\mathrm{G}_{k}=\mathrm{GL}_{n}\left(k^{\prime}\right)$ and $\mathrm{H}_{k}=\mathrm{GL}_{n}(k)$. We denote by S the diagonal torus of G and by K the maximal compact subgroup $\mathrm{GL}_{n}\left(\mathcal{O}^{\prime}\right)$ of G_{k}, where \mathcal{O}^{\prime} denotes the ring of integers of k^{\prime}. Note that S is σ-invariant.

As usual, N and Z denote the normalizer and centralizer of S in G . Let \mathfrak{S}_{n} denote the group of permutation matrices in G_{k}, so that N_{k} is the semidirect product of \mathfrak{S}_{n} by Z_{k}. Note that S_{k} (resp. Z_{k}) is the subgroup of all diagonal matrices of G_{k} with entries in k (resp. in k^{\prime}).
Lemma 5.10. $\mathrm{H}^{1}\left(\mathrm{~N}_{k}\right)$ can be identified with the set of conjugacy classes of elements of \mathfrak{S}_{n} of order 1 or 2 .
Proof. According to Hilbert's Theorem 90, the group $\mathrm{H}^{1}\left(\mathrm{Z}_{k}\right)$ is trivial. Therefore we have an exact sequence

$$
\begin{equation*}
1 \rightarrow \mathrm{H}^{1}\left(\mathrm{~N}_{k}\right) \rightarrow \mathrm{H}^{1}\left(\mathrm{~N}_{k} / \mathrm{Z}_{k}\right) \tag{5-1}
\end{equation*}
$$

As σ acts trivially on $\mathrm{N}_{k} / \mathrm{Z}_{k} \simeq \mathfrak{S}_{n}$, the set $\mathrm{H}^{1}\left(\mathrm{~N}_{k} / \mathrm{Z}_{k}\right)$ can be identified to the set of \mathfrak{S}_{n}-conjugacy classes of $\operatorname{Hom}\left(\mathbb{Z} / 2 \mathbb{Z}, \mathfrak{S}_{n}\right)$, that is, to the set of conjugacy classes of elements of \mathfrak{S}_{n} of order 1 or 2 . This proves that $\mathrm{H}^{1}\left(\mathrm{~N}_{k}\right)$ can be naturally embedded in the set of conjugacy classes of elements of \mathfrak{S}_{n} of order $\leqslant 2$.

Now two elements $w, w^{\prime} \in \mathfrak{S}_{n}$ define the same class in $\mathrm{H}^{1}\left(\mathrm{~N}_{k}\right)$ if and only if they are conjugate in \mathfrak{S}_{n}, thus if and only if $w \mathrm{Z}_{k}$ and $w^{\prime} Z_{k}$ define the same class in $\mathrm{H}^{1}\left(\mathrm{~N}_{k} / \mathrm{Z}_{k}\right)$. Therefore (5-1) is a bijection.

Proposition 5.11. (1) The number of H_{k}-conjugacy classes of σ-stable maximal k-split tori in G_{k} is $[n / 2]+1$.
(2) There is a unique H_{k}-conjugacy class of maximal (σ, k)-split tori in G_{k}.

Proof. (1) Let X denote the set of all $g \in \mathrm{G}_{k}$ such that $g^{-1} \sigma(g) \in \mathrm{N}_{k}$. Then the map $g \mapsto{ }^{g}$ S defines an injective map from the set of $\left(\mathrm{H}_{k}, \mathrm{~N}_{k}\right)$-double cosets of X to $\mathrm{H}^{1}\left(\mathrm{~N}_{k}\right)$. Therefore we are reduced to proving that this map is surjective, and the first assertion will follow from Lemma 5.10. For $n=2$, let τ denote the nontrivial element of \mathfrak{S}_{2} and choose an element $a \in k^{\prime}$ which is not in k. Then the element

$$
u=\left(\begin{array}{cc}
a & \sigma(a) \tag{5-2}\\
1 & 1
\end{array}\right) \in \mathrm{GL}_{2}\left(k^{\prime}\right)
$$

satisfies the relation $u^{-1} \sigma(u)=\tau$. For an arbitrary integer $n \geqslant 2$, let $w \in \mathfrak{S}_{n}$ have order $\leqslant 2$. Then there is an integer $0 \leqslant i \leqslant[n / 2]$ such that w is conjugate to the element

$$
\tau_{i}=\operatorname{diag}(\tau, \ldots, \tau, 1, \ldots, 1) \in \mathrm{GL}_{n}\left(k^{\prime}\right)
$$

where $\tau \in \mathrm{GL}_{2}\left(k^{\prime}\right)$ appears i times and $1 \in \mathrm{GL}_{1}\left(k^{\prime}\right)$ appears $n-2 i$ times. Thus

$$
\begin{equation*}
u_{i}=\operatorname{diag}(u, \ldots, u, 1, \ldots, 1) \in \mathrm{GL}_{n}\left(k^{\prime}\right) \tag{5-3}
\end{equation*}
$$

satisfies the relation $u_{i}^{-1} \sigma\left(u_{i}\right)=\tau_{i}$. Therefore any 1-cocycle in N_{k} is G_{k}-cohomologous to the neutral element $1 \in \mathrm{G}_{k}$, which proves the first assertion.
(2) For any $0 \leqslant i \leqslant[n / 2]$, the dimension of the (σ, k)-split torus $\left({ }^{u_{i}} \mathrm{~S}\right)^{-}$is equal to i. According to (1), the map

$$
\mathrm{H}_{k} g \mathrm{~N}_{k} \mapsto \text { class of } g^{-1} \sigma(g) \text { in } \mathrm{H}^{1}\left(\mathrm{~N}_{k}\right)
$$

is a bijection from the set of $\left(\mathrm{H}_{k}, \mathrm{~N}_{k}\right)$-double cosets of X to $\mathrm{H}^{1}\left(\mathrm{~N}_{k}\right)$, and the elements of this latter set are the classes of the τ_{i} for $0 \leqslant i \leqslant[n / 2]$. This gives us the expected result.

Proposition 5.12. For $0 \leqslant i \leqslant[n / 2]$, let u_{i} denote the element defined by (5-2) and (5-3). Then

$$
\mathrm{G}_{k}=\bigcup_{i=0}^{[n / 2]} \mathrm{H}_{k} u_{i} \mathrm{Z}_{k} \mathrm{~K} .
$$

Proof. According to the proof of Proposition 5.11, the set X is the union of the double cosets $\mathrm{H}_{k} u_{i} \mathrm{~N}_{k}$ with $0 \leqslant i \leqslant[n / 2]$. The result then follows from Proposition 3.10 and from the fact that $\mathrm{N}_{k} \mathrm{~K}=\mathrm{Z}_{k} \mathrm{~K}$.
5.13. We now give an example (due to Bertrand Lemaire) of a nonsplit k-group such that Proposition 4.8 does not hold. We set $\mathrm{G}=\operatorname{Res}_{k^{\prime} / k} \mathrm{GL}_{2}$, where k^{\prime} is now a ramified quadratic extension of k. The k-involution σ is still induced by the nontrivial element of $\mathrm{Gal}\left(k^{\prime} / k\right)$ and we set $\mathrm{H}=\mathrm{GL}_{2}$. Let \mathscr{B}^{\prime} (resp. \mathscr{B}) denote the building of G (resp. H) over k.

Bruhat and Tits [1984b] give a description of the faces of \mathscr{B} in terms of hereditary \mathcal{O}-orders of $\mathrm{M}_{2}(k)$. More precisely, there is a bijective correspondence

$$
\mathrm{F} \mapsto \mathcal{M}_{\mathrm{F}}
$$

between the faces of \mathscr{B} and the hereditary \mathcal{O}-orders of $\mathrm{M}_{2}(k)$, such that the stabilizer of F in $\mathrm{GL}_{2}(k)$ in the normalizer of \mathcal{M}_{F} in $\mathrm{GL}_{2}(k)$. For $x \in \mathscr{B}$, we will denote by \mathcal{M}_{x} the hereditary order corresponding to the face of \mathscr{B} which contains x. We have a similar correspondence between faces of \mathscr{B}^{\prime} and hereditary \mathcal{O}^{\prime}-orders of $\mathrm{M}_{2}\left(k^{\prime}\right)$. Moreover, since k^{\prime} is tamely ramified over k, there is a bijective correspondence j from the set $\mathscr{B}^{\prime \sigma}$ of σ-fixed points of \mathscr{B}^{\prime} to \mathscr{B} such that, for any $x \in \mathscr{B}^{\prime \sigma}$, we have

$$
\mathcal{M}_{j(x)}=\mathcal{M}_{x} \cap M_{2}(k)
$$

Let q denote the cardinality of the residue field of k. As k^{\prime} is totally ramified over k, any vertex of \mathscr{B} has exactly $q+1$ neighbors in \mathscr{B}, and likewise for \mathscr{B}^{\prime}. Let x be a σ-invariant point of \mathscr{B}^{\prime}. Recall that, according to Proposition 3.8, it is contained in a σ-stable apartment.

- If $j(x)$ is in a chamber of \mathscr{B}, then x has $q+1$ neighbors in \mathscr{B}^{\prime} but only two σ-fixed ones. Thus x has non- σ-fixed neighbors.
- If $j(x)$ is a vertex of \mathscr{B}, then x has $q+1$ neighbors in \mathscr{B}^{\prime} as in \mathscr{B}. Therefore any neighbor of x in \mathscr{B}^{\prime} is σ-invariant, which implies that any σ-stable apartment containing x is σ-invariant. For instance, this is the case of the vertex x corresponding to the \mathcal{O}^{\prime}-order $\mathrm{M}_{2}\left(\mathcal{O}^{\prime}\right)$, as its image $j(x)$ corresponds to the maximal \mathcal{O}-order $\mathrm{M}_{2}\left(\mathcal{O}^{\prime}\right) \cap \mathrm{M}_{2}(k)=\mathrm{M}_{2}(\mathcal{O})$. For such a special point, Proposition 4.8 does not hold.

Acknowledgements

We thank F. Courtès, B. Lemaire, G. Rousseau, and S. Stevens for stimulating discussions. Particular thanks go to J. Bernstein for having suggested to the first author the use of the Bruhat-Tits building, and to J.-P. Labesse for answering numerous questions.

References

[Benoist and Oh 2007] Y. Benoist and H. Oh, "Polar decomposition for p-adic symmetric spaces", Int. Math. Res. Not. 2007:24 (2007), article ID rnm121. MR 2009a:22006
[Blanc and Delorme 2008] P. Blanc and P. Delorme, "Vecteurs distributions H-invariants de représentations induites, pour un espace symétrique réductif p-adique G / H ", Ann. Inst. Fourier (Grenoble) 58:1 (2008), 213-261. MR 2009e:22015 Zbl 1151.22012
[Borel 1991] A. Borel, Linear algebraic groups, 2nd ed., Grad. Texts in Math. 126, Springer, New York, 1991. MR 92d:20001 Zbl 0726.20030
[Borel and Tits 1965] A. Borel and J. Tits, "Groupes réductifs", Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55-150. MR 34 \#7527 Zbl 0145.17402
[Bruhat and Tits 1972] F. Bruhat and J. Tits, "Groupes réductifs sur un corps local", Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5-251. MR 48 \#6265 Zbl 0254.14017
[Bruhat and Tits 1984a] F. Bruhat and J. Tits, "Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d'une donnée radicielle valuée", Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197-376.
[Bruhat and Tits 1984b] F. Bruhat and J. Tits, "Schémas en groupes et immeubles des groupes classiques sur un corps local", Bull. Soc. Math. France 112:2 (1984), 259-301. MR 86i:20064 Zbl 0565.14028
[Cartier 1979] P. Cartier, "Representations of p-adic groups: a survey", pp. 111-155 in Automorphic forms, representations and L-functions, I (Corvallis, OR, 1977), edited by A. Borel and W. Casselman, Proc. Sympos. Pure Math. 33, Amer. Math. Soc., Providence, R.I., 1979. MR 81e:22029 Zbl 0421.22010
[Flensted-Jensen 1978] M. Flensted-Jensen, "Spherical functions of a real semisimple Lie group. A method of reduction to the complex case", J. Funct. Anal. 30:1 (1978), 106-146. MR 80f:43022 Zbl 0419.22019
[Helminck 1994] A. G. Helminck, "Symmetric k-varieties", pp. 233-279 in Algebraic groups and their generalizations: classical methods (University Park, PA, 1991), edited by W. J. Haboush and B. J. Parshall, Proc. Sympos. Pure Math. 56, Amer. Math. Soc., Providence, RI, 1994. MR 1278710 Zbl 0819.20048
[Helminck and Helminck 1998] A. G. Helminck and G. F. Helminck, "A class of parabolic k subgroups associated with symmetric k-varieties", Trans. Amer. Math. Soc. 350:11 (1998), 46694691. MR 99g:20082 Zbl 0912.20041
[Helminck and Wang 1993] A. G. Helminck and S. P. Wang, "On rationality properties of involutions of reductive groups", Adv. Math. 99:1 (1993), 26-96. MR 94d:20051 Zbl 0788.22022
[Hironaka 1988] Y. Hironaka, "Spherical functions of Hermitian and symmetric forms, I", Japan. J. Math. (N.S.) 14:1 (1988), 203-223. MR 90c:11027 Zbl 0674.43006
[Humphreys 1975] J. E. Humphreys, Linear algebraic groups, Grad. Texts in Math. 21, Springer, New York, 1975. MR 53 \#633 Zbl 0325.20039
[Kato and Takano 2008] S.-i. Kato and K. Takano, "Subrepresentation theorem for p-adic symmetric spaces", Int. Math. Res. Not. 2008:11 (2008), Art. ID rnn028. MR 2009i:22021
[Lagier 2008] N. Lagier, "Terme constant de fonctions sur un espace symétrique réductif p-adique", J. Funct. Anal. 254:4 (2008), 1088-1145. MR 2009d:22013 Zbl 1194.22010
[Landvogt 1995] E. Landvogt, A compactification of the Bruhat-Tits building, Lecture Notes in Math. 1619, Springer, Berlin, 1995. MR 98h:20081 Zbl 0935.20034
[Landvogt 2000] E. Landvogt, "Some functorial properties of the Bruhat-Tits building", J. Reine Angew. Math. 518 (2000), 213-241. MR 2001g:20029 Zbl 0937.20026
[Offen 2004] O. Offen, "Relative spherical functions on \wp-adic symmetric spaces (three cases)", Pacific J. Math. 215:1 (2004), 97-149. MR 2005f:11103
[Prasad and Yu 2002] G. Prasad and J.-K. Yu, "On finite group actions on reductive groups and buildings", Invent. Math. 147:3 (2002), 545-560. MR 2003e:20036 Zbl 1020.22003
[Schneider and Stuhler 1997] P. Schneider and U. Stuhler, "Representation theory and sheaves on the Bruhat-Tits building", Inst. Hautes Études Sci. Publ. Math. 85 (1997), 97-191. MR 98m:22023 Zbl 0892.22012
[Serre 1970] J.-P. Serre, Cours d'arithmétique, Collection SUP: "Le Mathématicien" 2, Presses Universitaires de France, Paris, 1970. MR 41 \#138 Zbl 0225.12002
[Tits 1979] J. Tits, "Reductive groups over local fields", pp. 29-69 in Automorphic forms, representations and L-functions, I (Corvallis, OR, 1977), edited by A. Borel and W. Casselman, Proc. Sympos. Pure Math. 33, Amer. Math. Soc., Providence, R.I., 1979. MR 80h:20064 Zbl 0415.20035

Received January 18, 2010.

Patrick Delorme

Université de la Mediterranée
Institut de Mathématiques de Luminy, UMR 6206
Campus de Luminy, Case 907
13288 Marseille, Cedex 9
France
delorme@iml.univ-mrs.fr
http://iml.univ-mrs.fr/fiche/Patrick_Delorme.html

Vincent SÉCherre
Université de Versailles Saint-Quentin
Laboratoire de Mathématiques de Versailles
45, AVENUE DES ÉTATS-UNIS
78035 Versailles Cedex
France
secherre@math.uvsq.fr

PACIFIC JOURNAL OF MATHEMATICS

http://www.pjmath.org
Founded in 1951 by
E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)

EDITORS
V. S. Varadarajan (Managing Editor)

Department of Mathematics
University of California
Los Angeles, CA 90095-1555
pacific@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics University of California Riverside, CA 92521-0135 chari@math.ucr.edu

Robert Finn

Department of Mathematics Stanford University Stanford, CA 94305-2125
finn@math.stanford.edu
Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
liu@math.ucla.edu

Darren Long
Department of Mathematics University of California
Santa Barbara, CA 93106-3080 long@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong
jhlu@maths.hku.hk
Alexander Merkurjev
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
merkurev@math.ucla.edu

Sorin Popa
Department of Mathematics University of California
Los Angeles, CA 90095-1555 popa@math.ucla.edu Jie Qing
Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu
Jonathan Rogawski
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
jonr@math.ucla.edu

PRODUCTION

pacific@math.berkeley.edu
Silvio Levy, Scientific Editor Matthew Cargo, Senior Production Editor

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY
INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY
MATH. SCIENCES RESEARCH INSTITUTE NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA
UNIV. OF CALIFORNIA, BERKELEY
UNIV. OF CALIFORNIA, DAVIS
UNIV. OF CALIFORNIA, LOS ANGELES
UNIV. OF CALIFORNIA, RIVERSIDE
UNIV. OF CALIFORNIA, SAN DIEGO
UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ
UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA UNIV. OF UTAH UNIV. OF WASHINGTON WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or www.pjmath.org for submission instructions.
The subscription price for 2011 is US $\$ 420 /$ year for the electronic version, and $\$ 485 /$ year for print and electronic.
Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. Prior back issues are obtainable from Periodicals Service Company, 11 Main Street, Germantown, NY 12526-5635. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and the Science Citation Index.
The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 969 Evans Hall, Berkeley, CA 94720-3840, is published monthly except July and August. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOw ${ }^{\text {TM }}$ from Mathematical Sciences Publishers.
PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS
at the University of California, Berkeley 94720-3840
A NON-PROFIT CORPORATION
Typeset in $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$
Copyright ©2011 by Pacific Journal of Mathematics

PACIFIC JOURNAL OF MATHEMATICS

$$
\text { Volume } 251 \quad \text { No. } 1 \quad \text { May } 2011
$$

An analogue of the Cartan decomposition for p-adic symmetric spaces of split 1
p-adic reductive groups
Patrick Delorme and Vincent Sécherre
Unital quadratic quasi-Jordan algebras 23
Raúl Felipe
The Dirichlet problem for constant mean curvature graphs in $\mathbb{H} \times \mathbb{R}$ over 37 unbounded domains
Abigail Folha and Sofia Melo
Osgood-Hartogs-type properties of power series and smooth functions 67Buma L. Fridman and Daowei Ma
Twisted Cappell-Miller holomorphic and analytic torsions 81
Rung-Tzung Huang
Generalizations of Agol's inequality and nonexistence of tight laminations 109
Thilo Kuessner
Chern numbers and the indices of some elliptic differential operators 173Ping Li
Blocks of the category of cuspidal $\mathfrak{s p}_{2 n}$-modules 183
Volodymyr Mazorchuk and Catharina Stroppel
A constant mean curvature annulus tangent to two identical spheres is Delauney 197
Sung-ho Park
A note on the topology of the complements of fiber-type line arrangements in 207
$\mathbb{C P}^{2}$Sheng-Li Tan, Stephen S.-T. Yau and Fei Ye
Inequalities for the Navier and Dirichlet eigenvalues of elliptic operators 219
Qiaoling Wang and Changyu Xia
A Beurling-Hörmander theorem associated with the Riemann-Liouville 239
operator
Xuecheng Wang

[^0]: MSC2000: 22E35.
 Keywords: p-adic reductive group, building, Cartan decomposition, symmetric space.

