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Let k be a nonarchimedean locally compact field of residue characteristic p,
let G be a connected reductive group defined over k, let σ be an involutive
k-automorphism of G, and H an open k-subgroup of the fixed points group
of σ . We denote by Gk and Hk the groups of k-points of G and H. We obtain
an analogue of the Cartan decomposition for the reductive symmetric space
Hk\Gk in the case where G is k-split and p is odd. More precisely, we
obtain a decomposition of Gk as a union of (Hk,K)-double cosets, where
K is the stabilizer of a special point in the Bruhat–Tits building of G over
k. This decomposition is related to the Hk-conjugacy classes of maximal σ -
antiinvariant k-split tori in G. In a more general context, Benoist and Oh
obtained a polar decomposition for any p-adic reductive symmetric space.
In the case where G is k-split and p is odd, our decomposition makes more
precise that of Benoist and Oh, and generalizes results of Offen for GLn.

1. Introduction

Let k be a nonarchimedean locally compact field of odd residue characteristic.
Let G be a connected reductive group defined over k, let σ be an involutive k-
automorphism of G and let H be an open k-subgroup of the fixed points group of
σ . We denote by Gk and Hk the groups of k-points of G and H. Harmonic analysis
on the reductive symmetric space Hk\Gk is the study of the action of Gk on the
space of complex square integrable functions on Hk\Gk . This study is related to the
classification of Hk-distinguished representations of Gk , that is representations hav-
ing a nonzero space of Hk-invariant linear forms. Offen [2004] has investigated the
harmonic analysis of spherical functions in some cases related to GLn . Hironaka
[1988] has described a Cartan decomposition for the pair (GLn, On). Blanc and
Delorme [2008] have studied Hk-distinguishedness for families of parabolically
induced representations of Gk . Lagier [2008], and independently Kato and Takano
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[2008], have introduced the notion of relative cuspidality for irreducible Hk-dis-
tinguished representations of Gk and constructed “Jacquet maps” at the level of
invariant linear forms. In this paper, we investigate the geometry of the reductive
symmetric space Hk\Gk .

Connected reductive groups can be considered as reductive symmetric spaces.
Indeed, if G′ is such a group, the map

σ : (x, y) 7→ (y, x)

defines a k-involution of G = G′×G′ whose fixed points group H is the diagonal
image of G′ in G, and the reductive symmetric space Hk\Gk naturally identifies
with G′k via the map (x, y) 7→ x−1 y. Moreover, if K′ is a subgroup of G′k , and if
we set K= K′×K′, then this map induces a bijective correspondence:

{(Hk,K)-double cosets of Gk} ↔ {K′-double cosets of G′k}.

In particular, if K′ is the G′k-stabilizer of a special point in the Bruhat–Tits building
of G′ over k, the decomposition of Hk\Gk into K-orbits corresponds to the Cartan
decomposition of G′k relative to K′ [Bruhat and Tits 1972, Proposition 4.4.3].

In this paper, we obtain an analogue of the Cartan decomposition for Hk\Gk

when the group G is k-split. In a more general context (k any nonarchimedean lo-
cally compact field of odd characteristic and G any connected reductive group over
k), Benoist and Oh [2007] have obtained a polar decomposition for Hk\Gk . In the
case where k has odd residue characteristic and G is k-split, our decomposition is
a refinement of Benoist–Oh’s polar decomposition (see 4.14). This decomposition
can be seen as a p-adic analogue of the Cartan decomposition for real reductive
symmetric spaces [Flensted-Jensen 1978, Theorem 4.1]. It generalizes the decom-
positions obtained by Offen [2004, Proposition 3.1] for G=GL2n in what he called
Cases 1 and 3.

Let {A j
| j ∈ J} be a set of representatives of the Hk-conjugacy classes of maxi-

mal σ -antiinvariant k-split tori of G (called maximal (σ, k)-split tori in [Helminck
1994]; see also Definition 4.2). These tori, as well as related entities, have been
studied in [Helminck 1994; Helminck and Helminck 1998; Helminck and Wang
1993]. In particular, the set J is finite and the A j , j ∈ J, are all conjugate under Gk .
Let S be a σ -stable maximal k-split torus of G containing a maximal (σ, k)-split
torus A. For each j ∈ J, we choose y j ∈ Gk such that y j Ay−1

j = A j . Our main
result is this:

Theorem 1.1 (see Theorem 4.13). Assume G is k-split. Let K be the stabilizer in
Gk of a special point in the apartment attached to S. Then

(1-1) Gk =
⋃
j∈J

Hk y j SkK.
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If one compares with Offen’s decompositions [2004, Proposition 3.1], one sees
that in each of his Cases 1 and 3 (where G=GL2n for n> 1), the set J reduces to a
single element and y j can be chosen to be trivial. In general however, one cannot
avoid having several non-Hk-conjugate maximal σ -antiinvariant k-split tori of G
appearing in (1-1).

To prove Theorem 1.1, we make generous use of Bruhat–Tits theory [1972;
1984a]. First, let G be any connected reductive group over k, and let B be its
Bruhat–Tits building. It is endowed with an action of σ . Then:

Proposition 1.2 (see Proposition 3.8). B is the union of its σ -stable apartments.

Note that in the case where G = G′ × G′ and σ(x, y) = (y, x) as above, the
building B identifies with the product of two copies of the building of G′ over k
and the proposition simply says that two arbitrary points in the building of G′ are
always contained in a common apartment.

When G is k-split, we obtain the following refinement of the proposition above:

Proposition 1.3 (see Proposition 4.8). Assume G is k-split, and let x be a special
point of B. There is a σ -stable maximal k-split torus S of G such that the apartment
corresponding to S contains x and the maximal σ -antiinvariant subtorus of S is a
maximal (σ, k)-split torus of G.

As we will see in 5.13, this is no longer true for nonsplit groups.

Summary. In Section 2, we recall the main properties of the Bruhat–Tits building
attached to a connected reductive group defined over k. In Section 3, we study
the set of all apartments containing a given σ -stable subset of the building, and
we prove Proposition 1.2. In Section 4, we prove our main theorem for G a k-
split group. In Section 5, we study in more detail the case of Gk = GLn(k) and
σ(g)= transpose of g−1, and the case of Gk=GLn(k ′)with k ′ quadratic over k and
id 6= σ ∈Gal(k ′/k). When n = 2 and k ′ is totally ramified over k, the second case
provides an example of a nonsplit group for which Proposition 1.3 is not satisfied.

2. The Bruhat–Tits building

Let k be a nonarchimedean nondiscrete locally compact field, and let ω be its
normalized valuation. In this section, we recall the main properties of the Bruhat–
Tits building attached to a connected reductive group defined over k. The reader
may refer to [Bruhat and Tits 1972; 1984a] or to the more concise presentations
[Landvogt 1995; Schneider and Stuhler 1997; Tits 1979].

If G is a linear algebraic group defined over k, the group of its k-points will be
denoted by Gk or G(k), and its neutral component will be denoted by G◦. If X
is a subset of G, then NG(X) and ZG(X) denote respectively the normalizer and
centralizer of X in G, and, given g ∈ G, we write gX for gXg−1.
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2.1. Let G be a connected reductive group defined over k, and let S be a maximal
k-split torus of G. We denote by X∗(S) = Hom(S,GL1) the group of algebraic
characters, and by X∗(S) = Hom(GL1,S) the group of cocharacters, of S. We
define a map

(2-1) X∗(S)×X∗(S)→ Z

as follows. If λ∈X∗(S) and χ ∈X∗(S), then χ◦λ is an endomorphism of the multi-
plicative group GL1, which corresponds to an endomorphism of the ring Z[t, t−1

].
It is of the form t 7→ tn for some n ∈ Z. This integer n is denoted by 〈λ, χ〉. The
map (2-1) defines a perfect duality [Borel 1991, § 8.6].

2.2. Let N and Z denote the normalizer and centralizer of S in G. If we extend the
map (2-1) by R-linearity, there exists a unique group homomorphism

(2-2) ν : Zk→ X∗(S)⊗Z R

such that the condition

〈ν(z), χ〉 = −ω(χ(z))

holds for any z ∈ Zk and any k-rational character χ ∈ X∗(Z)k [Tits 1979, § 1.2].
According to [Landvogt 1995, Proposition 1.2], the kernel of (2-2) is the maximal
compact subgroup of Zk .

2.3. Let C denote the connected center of G and let X∗(C) be the group of its
algebraic cocharacters. It is a subgroup of the free abelian group X∗(S). We denote
by A the space

V= (X∗(S)⊗Z R)/(X∗(C)⊗Z R),

considered as an affine space on itself and by Aff(A) the group of its affine auto-
morphisms. By making V act on A by translations, we can think of V as a subgroup
of Aff(A). It is the kernel of the natural group homomorphism Aff(A)→ GL(V)
which associates to any affine automorphism its linear part.

2.4. The map (2-2) induces a homomorphism

(2-3) Zk→ Aff(A),

which we still denote by ν. Its image is contained in V. An important property
of this homomorphism is that it extends to a homomorphism Nk → Aff(A) [Tits
1979, § 1.2]. It does not extend in a unique way, but two homomorphisms extend-
ing (2-3) to Nk are conjugated by a unique element of Aff(A) [Landvogt 1995,
Proposition 1.8].
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2.5. The affine space A endowed with an action of Nk defined by a group ho-
momorphism ν : Nk → Aff(A) extending the homomorphism (2-3) is called the
(reduced) apartment attached to S. It satisfies these conditions:

A1. A is an affine space on V;

A2. ν is a group homomorphism Nk→Aff(A) extending the canonical homomor-
phism Zk→ V.

It has the following uniqueness property: if (A′, ν ′) satisfies A1 and A2, there is a
unique affine and Nk-equivariant isomorphism from A′ to A.

Remark 2.6. As in [Tits 1979], one obtains the nonreduced apartment Anr by
replacing V by X∗(S)⊗Z R. It is not as canonical as the reduced one: two ho-
momorphisms extending the map νnr : Zk → Aff(Anr) to Nk are conjugated by an
element of Aff(Anr) which is not necessarily unique [Landvogt 1995, Chapter 1,
§ 1; Tits 1979, § 1.2].

2.7. Let 8 = 8(G,S) denote the set of roots of G relative to S. It is a subset of
X∗(S). Therefore, any root a ∈8 can be seen as a linear form on X∗(S)⊗ZR which
is trivial on the subspace X∗(C)⊗Z R, hence as a linear form on V [Landvogt 1995,
Chapter 1, § 1].

For a ∈ 8, we denote by Ua the root subgroup associated to a, which is a
unipotent subgroup of G normalized by Z [Borel 1991, Proposition 21.9], and by
sa the reflection corresponding to a, considered as an element of GL(V)— or, more
precisely, of the quotient of ν(Nk) by ν(Zk).

2.8. Let a ∈8 and u ∈ Ua(k)−{1}. The intersection

(2-4) U−a(k)uU−a(k)∩Nk

consists of a single element, called m(u), whose image by ν is an affine reflection
the linear part of which is sa [Borel and Tits 1965, § 5]. The set Ha,u of fixed points
of ν(m(u)) is an affine hyperplane of A, which is called a wall of A.

A chamber of A is a connected component of the complementary in A of the
union of its walls. Note that a chamber is open in A.

A point x ∈A is said to be special if, for all root a∈8, there is a root b∈8∩R+a
and an element u ∈ Ub(k)− {1} such that x ∈ Hb,u [Landvogt 2000, § 1.2.3; Tits
1979, § 1.9].

2.9. Let θ(a, u) denote the affine function A→R whose linear part is a and whose
vanishing hyperplane is the wall Ha,u of fixed points of ν(m(u)). We fix a base
point in A, so that A can be identified with the vector space V. For r ∈ R, we set

Ua(k)r =
{
u ∈ Ua(k)−{1} | θ(a, u)(x)> a(x)+ r for all x ∈A

}
∪ {1}.
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Thus we obtain a filtration of Ua(k) by subgroups. If we change the base point in
A, this filtration is only modified by a translation of the indexation.

2.10. Let � be a nonempty subset of A. We set

N� = {n ∈ Nk | ν(n)(x)= x for all x ∈�},

and we denote by U� the subgroup of Gk generated by all the Ua(k)r such that
the affine function x 7→ a(x)+ r is nonnegative on �. According to [Landvogt
1995, § 12], this subgroup is compact in Gk , and we have nU�n−1

= Uν(n)(�) for
n ∈ Nk . In particular, N� normalizes U�. The subgroup P� = N�U� is open in
Gk [Landvogt 1995, Corollary 12.12].

2.11. Let 8=8−∪8+ be a decomposition of 8 into positive and negative roots.
We denote by U+ (U−) the subgroup of Gk generated by the Ua for all a ∈ 8+

(a ∈8−). Then the group P� has the following Iwahori decomposition [Landvogt
1995, Corollary 12.6; Bruhat and Tits 1972, § 7.1.4]:

(2-5) P� = (U� ∩U−) · (U� ∩U+) ·N�.

2.12. Bruhat and Tits [1972; 1984a] associate to the apartment (A, ν) a Gk-set
B=B(G, k) containing A, called the (reduced) building of G over k and satisfying
the following conditions:

B1. The set B is the union of the g ·A for g ∈ Gk .

B2. The subgroup Nk is the stabilizer of A in Gk , and n ·x = ν(n)(x) for all x ∈A

and n ∈ Nk .

B3. For all a ∈ 8 and r ∈ R, the subgroup Ua(k)r defined in 2.9 fixes the subset
{x ∈A | a(x)+ r > 0} pointwise.

The building has the following uniqueness property: if B′ is a Gk-set containing
A and satisfying B1–B3, there is a unique Gk-equivariant bijection from B′ to B

[Tits 1979, § 2.1; Prasad and Yu 2002, § 1.9].

2.13. The subsets of B of the form g · A with g ∈ Gk are called apartments.
According to B1, the building is the union of its apartments. For g ∈ Gk , the
apartment g · A can be naturally endowed with a structure of affine space and
an action of gNk by affine isomorphisms. Up to unique isomorphism, it is the
apartment attached to the maximal k-split torus gS (see 2.5). This defines a unique
Gk-equivariant map

(2-6) S′ 7→A(S′)⊆B

between maximal k-split tori of G and apartments of B, such that S maps to A.
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Note that the building B does not depend on the maximal k-split torus S. Indeed,
let S′ be a maximal k-split torus of G, let (A′, ν ′) be the apartment attached to S′

and B′ be the building of G over k relative to this apartment (see 2.12). If we
identify A′ with the unique apartment of B corresponding to S′ via (2-6), then
B′ =B.

2.14. The building has the following important properties [Bruhat and Tits 1972,
§ 7.4; Landvogt 1995, Chapter 4, § 13]:

(1) Let � be a nonempty subset of A. Then P� is the subgroup of Gk made of
those elements fixing � pointwise.

(2) Let g ∈ Gk . There is n ∈ Nk such that g · x = n · x for any x ∈A∩ g−1
·A.

In particular, (1) together with B2 imply that N� = Nk ∩P�.

2.15. Let σ be a k-automorphism of G. There is a unique bijective map from B to
itself, still denoted σ , such that

(1) the condition

σ(g · x)= σ(g) · σ(x)

holds for any g ∈ Gk and x ∈B; and

(2) the map σ permutes the apartments and, for any apartment A, the restriction
of σ to A is an affine isomorphism from A to σ(A).

This makes (2-6) into a σ -equivariant map. In particular, an apartment is σ -stable
if and only if its corresponding maximal k-split torus of G is σ -stable [Bruhat and
Tits 1984a, § 4.2.12].

3. Existence of σ -stable apartments

From now on, k will be a nonarchimedean locally compact field of odd residue
characteristic. Let G be connected reductive group defined over k and let σ be a
k-involution on G. According to 2.15, the building B of G over k is endowed with
an action of σ . In this section, we prove that, given x ∈B, there exists a σ -stable
apartment containing x . We keep using notation of Section 2.

3.1. Let � be a nonempty σ -stable subset of B contained in some apartment, and
let Ap(�) be the set of all apartments of B containing �. It is a nonempty set on
which the group P� acts transitively [Landvogt 1995, Corollary 13.7]. Because �
is σ -stable, both P� and Ap(�) are σ -stable. Note that the σ -stable apartments
containing � are exactly the σ -fixed points in Ap(�).
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3.2. Let us fix an apartment A ∈Ap(�) and an element u ∈ P� such that σ(A)=
u ·A. Let N denote the normalizer in G of the maximal k-split torus of G corre-
sponding to A. As σ is involutive, we have

(3-1) σ(u)u ∈ P� ∩Nk = N�.

The map ρ : g 7→ g·A induces a P�-equivariant bijection between the homogeneous
spaces P�/N� and Ap(�). The automorphism

θ : x 7→ u−1σ(x)u

of the group Gk stabilizes P� and N�. Indeed σ(Nk)= uNku−1, and

θ(N�)= u−1σ(P� ∩Nk)u = P� ∩ u−1σ(Nk)u = N�.

Note that the condition (3-1) implies that θ ◦ θ is conjugation by some element of
N�. As N� is θ -stable, the map

(σ, gN�) 7→ uθ(gN�), g ∈ P�,

defines an action of σ on P�/N�, making ρ into a σ -equivariant bijection. Note
that this action differs from the natural action of σ on P�/N� (which obviously
has fixed points).

3.3. Let � be a nonempty σ -stable subset of B contained in some apartment.

Proposition 3.4. Assume that � contains a point of a chamber of B. Then � is
contained in some σ -stable apartment.

Proof. We describe the quotient P�/N� as a projective limit of finite σ -sets. Ac-
cording to [Cartier 1979, § 1.2], Example ( f ), the group Gk is locally compact and
totally disconnected. Therefore we can choose a decreasing filtration (Qi )i>0 of
the open subgroup P� of Gk satisfying the following properties:

(A) The intersection of the Qi is reduced to {1}.

(B) For any i > 0, the subgroup Qi is compact open and normal in P�.

Lemma 3.5. Consider the decreasing filtration of P� formed by the subgroups
P�,i = N�Qi ∩ θ(N�Qi ), for i > 0.

(1) The intersection of the P�,i is reduced to N�.

(2) For any i > 0, the subgroup P�,i is θ -stable and of finite index in P�.

Proof. As N� is θ -stable, it is contained in the intersection of the P�,i . Let g
be in this intersection. For any i > 0, there exist ni ∈ N� and qi ∈ Qi such that
g = ni qi . Because of (A) above, qi converges to 1. Therefore ni converges to a
limit contained in the closed subgroup N�, and this limit is g. This proves (1).
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Now recall that θ ◦ θ is conjugation by some element of N�. This implies that
P�,i is θ -stable. As P�,i is open in P� and contains N�, the quotient P�/P�,i can
be identified with the quotient of U�, which is compact, by some open subgroup.
This gives (2). �

Because of Lemma 3.5(2), the map

(σ, gP�,i ) 7→ uθ(gP�,i ), g ∈ P�,

defines an action of σ on the finite quotient P�/P�,i , which gives us a projec-
tive system (P�/P�,i )i>0 of finite σ -sets. Since P� is complete, and thanks to
Lemma 3.5(1), the natural σ -equivariant map from P�/N� to the projective limit
of the P�/P�,i is bijective.

Lemma 3.6. Let (Xi )i>0 be a projective system of finite σ -sets. For all i > 0,
assume the transition maps ϕi : Xi+1 → Xi to be surjective and Xi to have odd
cardinality. Then the projective limit X has a σ -fixed point.

Proof. For each i > 0, the set Xσ
i of σ -fixed points of Xi is nonempty, since Xi has

odd cardinality. This defines a projective system (Xσ
i )i>0 whose transition maps

may not be surjective. For each i > 0, let Yi denote the intersection in Xi of the
images of the Xσ

i+n , for n > 0. Then Yi is nonempty, and the transition maps
ϕi : Yi+1→ Yi are surjective. Therefore, the projective limit Y = Xσ

⊆ X of the
system (Yi )i>0 is nonempty. �

Let p denote the residue characteristic of k.

Lemma 3.7. Let K be a normal subgroup of finite index in P� containing N�.
Then the index of K in P� is a power of p.

Proof. Let S be the maximal k-split torus associated to A, let 8 be the set of roots
of G relative to S and let 8=8−∪8+ be a decomposition of 8 into positive and
negative roots. According to (2-5), the group P� has the Iwahori decomposition

P� = (U� ∩U−) · (U� ∩U+) ·N�.

That � contains a point of a chamber of B implies that the group N� is reduced
to Ker(ν), hence normalizes the groups V+ = U� ∩U+ and V− = U� ∩U−. The
index of K in P� can be decomposed as

(P� : K)= (P� : V+K) · (V+K : K).

On the one hand, the index

(V+K : K)= (V+ : V+ ∩K)

is a power of p, since V+ is a pro-p-group. On the other hand, the index

(P� : V+K)= (V− : V− ∩V+K)
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is a power of p, since V− is a pro-p-group. The result follows. �

According to Lemma 3.7, the cardinality of each P�/P�,i , with i > 0, is odd
(recall that p is different from 2). Proposition 3.4 follows from Lemma 3.6. �

We now prove the first main result of this section.

Proposition 3.8. For any x ∈B, there exists a σ -stable apartment containing x.

Proof. Let x be a point in B, and let y be a point of a chamber of B whose closure
contains x . The set�={y, σ (y)} is a σ -stable subset of B satisfying the conditions
of Proposition 3.4. Hence we get a σ -stable apartment of B containing y. Such an
apartment contains the closure of the chamber of y. In particular, it contains x . �

3.9. Let S be a σ -stable maximal k-split torus, and let N and Z denote the normal-
izer and centralizer of S in G. Let X=X(S) denote the set of all g ∈Gk such that
g−1σ(g) ∈ Nk , let A denote the σ -stable apartment corresponding to S and, given
x ∈A, let Px denote the subgroup P� (see 2.11) with �= {x}.

Proposition 3.10. X is a finite union of (Hk,Zk)-double cosets and Gk = XPx .

Proof. Let us fix a minimal parabolic k-subgroup P of G containing the torus S.
According to Helminck and Wang [1993, Proposition 6.8], the map g 7→Hk gPk in-
duces a bijection between the (Hk,Zk)-double cosets in X and the (Hk,Pk)-double
cosets in Gk . The first part of the proposition then follows from [Helminck and
Wang 1993, Corollary 6.16].

Note that we have g ∈ X if and only if g ·A is σ -stable. For g ∈ Gk , we set
x ′= g ·x . According to Proposition 3.8, there is a σ -stable apartment A′ containing
x ′. Let g′ ∈X be such that A′ = g′ ·A. According to Property (2) in 2.14, there is
n ∈Nk such that we have g′−1g · x = n · x . Hence we get g ∈XNkPx . As XNk =X,
we obtain the expected result. �

4. Decomposition of Hk\Gk

In all this section, we assume that G is k-split. Let H be an open k-subgroup of the
fixed points group Gσ . Equivalently, H is a k-subgroup of Gσ containing (Gσ )◦.

4.1. If T is a σ -stable torus in G, we write T+ for the neutral component of T∩H
and T− for the neutral component of the subgroup {t ∈ T | σ(t)= t−1

}. The torus
T is the almost direct product of T+ and T−, that is T= T+T− and the intersection
T+ ∩T− is finite [Borel 1991, xi].

Definition 4.2 [Helminck and Wang 1993, § 4.4]. A σ -stable torus T of G is said
to be (σ, k)-split if it is k-split and if T= T−.

By Proposition 10.3 of the same reference, two arbitrary maximal (σ, k)-split
tori of G are Gk-conjugated.
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4.3. Let DG denote the derived subgroup of G, and recall that C denotes the con-
nected center of G. This latter subgroup is a k-split torus of G.

Lemma 4.4. Let T be a k-split torus of G.

(1) There is a k-subtorus T′ of C such that the groups T · DG and T′ · DG are
equal.

(2) If T is (σ, k)-split, any T′ satisfying (1) is (σ, k)-split.

(3) Assume that DG is contained in H and T is (σ, k)-split. Then any T′ satisfying
(1) is (σ, k)-split and has the same dimension as T.

Proof. We set G̃ = G/DG and, for any k-subgroup K of G, we write K̃ for the
image of K in G̃. According to [Borel 1991, Proposition 14.2], the group G is the
almost direct product of C and DG, which means that G is equal to the product
C ·DG and that the intersection C∩DG is finite. This implies that C̃ = G̃. Let f
denote the k-rational map C→ C̃. It is surjective with finite kernel. Hence G̃ is
a k-split torus, and we denote by σ̃ the involutive k-automorphism of G̃ induced
by σ . We now prove each conclusion claim in the lemma.

(1) By [Borel 1991, Proposition 8.2(c)], the neutral component of the inverse image
f −1(T̃) is a k-split subtorus of C which we denote by T′. It has finite index in
f −1(T̃). The image f (T′) is then a subtorus of finite index in the connected group
T̃, so that T̃′ = T̃.

(2) Assume that T is (σ, k)-split, and let T′ satisfy (1). Let us consider the map
t 7→ tσ(t) from T′ to itself. As T̃′ = T̃ is a (σ̃ , k)-split torus, the image of this map
is a connected k-subgroup contained in the kernel of f , which is finite.

(3) Assume that DG is contained in H and T is (σ, k)-split. Then the map T→ T̃
has finite kernel, which implies that T and T̃ have the same dimension. Now let
T′ satisfy (1). According to (2), such a torus is (σ, k)-split, and it has the same
dimension as T̃′ = T̃. �

4.5. Let S be a σ -stable maximal (k-split) torus of G, let A be the apartment
corresponding to S and let 8 be the set of roots of G relative to S. Let x ∈ A be
a special point (see 2.8), and write Ux for U� (see 2.11) with �= {x}. Let a ∈8
be a σ -invariant root, which means that a ◦ σ = a.

Lemma 4.6. Assume that U−a(k) is contained in {g ∈ Gk | σ(g) = g−1
}. Then

there are n ∈Nk and c ∈Ux such that n = c−1σ(c) and ν(n) is the affine reflection
of A which let x invariant and whose linear part is sa .
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Proof. We fix a base point in the apartment A, so that it can be identified with the
vector space V. For any b ∈ 8, this defines a filtration of the group Ub(k) (see
2.9). For u ∈Ub(k)−{1}, we denote by ϕb(u) the greatest real number r ∈R such
that u ∈ Ub(k)r . Let us choose w ∈ U−a(k)− {1} such that x is contained in the
wall H−a,w. Thus ν(m(w)) is the affine reflection of A which fixes x and whose
linear part is sa , and we can set

n = m(w) ∈ Nk .

Moreover θ(−a, w), which is the unique affine function from A to R whose linear
part is −a and whose vanishing hyperplane is H−a,w, vanishes on x . Therefore it
is equal to

y 7→ −a(y)+ a(x),

which implies that ϕ−a(w) = a(x). According to B3 (see 2.12), it follows that w
fixes x .

The group U−a(k) is isomorphic to the additive group of k. Thus, for r ∈ R,
the subgroup U−a(k)r corresponds through this isomorphism to a nontrivial sub-O-
module of k, where O denotes the ring of integers of k [Landvogt 1995, Proposition
7.7]. Therefore, there is a unique element v ∈ U−a(k) such that w = v2 and
ϕ−a(v)= ϕ−a(w), hence v ∈ Ux .

The map Ua(k)×Ua(k)→ Gk defined by (u, u′) 7→ uwu′ is injective and the
intersection given by (2-4) consists of a single element, which is n. If we choose
u, u′ ∈ Ua(k) such that uwu′ = n, then the element

σ(u′)−1wσ(u)−1
= σ(n)−1

is contained in the intersection (2-4). Hence σ(n)−1 is equal to n, and the unique-
ness property implies that u′ = σ(u)−1. Moreover, according to [Landvogt 1995,
Lemma 7.4(ii)], the real numbers ϕa(u) and ϕa(σ (u)) are both equal to −ϕ−a(w).
This implies that u and σ(u) are contained in Ux . Since v is σ -antiinvariant and
w = v2, we get the expected result by choosing c = (uv)−1. �

Remark 4.7. Note that σ(c)∈Ux . Indeed we have σ(v)=v−1
∈Ux and σ(u)∈Ux .

Hence n = c−1σ(c) ∈ Nk ∩U�, which is contained in N� with �= {x, σ (x)}.

Let B denote the building of G over k.

Proposition 4.8. Let x be a special point of B. There is a σ -stable maximal k-split
torus S of G such that the apartment corresponding to S contains x and such that
S− is a maximal (σ, k)-split torus of G.
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Remark 4.9. In 5.13, we give an example of a nonsplit k-group G such that
Proposition 4.8 does not hold.

Proof. Let A be a σ -stable apartment containing x (see Proposition 3.8) and let S
be the corresponding maximal k-split torus of G. Assume that A has been chosen
such that the dimension of the (σ, k)-split torus S− is maximal. If it is a maximal
(σ, k)-split torus of G, then Proposition 4.8 is proved. Assume that this is not the
case, and let A be a maximal (σ, k)-split torus of G containing S−. The dimension
of A is greater than dim S− (if not, the containment S− ⊆ A would imply that
S− = A). Let G′ be the neutral component of the centralizer of S− in G. It is a
k-split connected reductive subgroup of G containing S and A, which is naturally
endowed with a nontrivial action of σ . Let C′ denote the connected center of G′.

Lemma 4.10. There is a ∈8(G′,S) such that the corresponding root subgroup U′a
is not contained in H, and such a root is σ -invariant.

Proof. Assume that U′a ⊆ H for each root a ∈ 8(G′,S). Then the derived sub-
group DG′, which is generated by the U′a for a ∈ 8(G′,S), is contained in H
[Humphreys 1975, Theorem 27.5(e)]. According to Lemma 4.4(iii), there exists
a (σ, k)-subtorus A′ of C′ such that A ·DG′ = A′ ·DG′ and dim(A) = dim(A′).
The subgroup generated by C′ and S is a k-torus of G′. As G′ is k-split, S is a
maximal torus of G′, hence it contains C′. Therefore S− contains A′ which has the
same dimension as A, and this dimension is greater than dim S−. This gives us a
contradiction.

Now let a be a root in 8(G′,S) such that U′a is not contained in H. The root a
and its conjugate a◦σ coincide on S+ and are both trivial on S−. As S is the almost
direct product of S+ and S− (see 4.1), they are equal. Therefore a is σ -invariant.
This ends the proof of Lemma 4.10. �

Let a ∈8(G′,S) as in Lemma 4.10. If we think of a as a root in 8(G,S), then
Ua is σ -stable and is not contained in H. Moreover:

Lemma 4.11. Ua(k) is contained in {g ∈ Gk | σ(g)= g−1
}.

Proof. As G is k-split, Ua is k-isomorphic to the additive group. Thus the action
of σ on Ua(k) corresponds to an involutive automorphism of the k-algebra k[t]. It
has the form t 7→ λt for some λ ∈ k× with λ2

= 1. As Ua is not contained in H,
we have λ=−1. This gives us the expected result. �

According to Lemma 4.6, there are n ∈ Nk and c ∈ Ux such that n = c−1σ(c)
and ν(n) is the affine reflection of A which let x invariant and whose linear part is
sa . For any t ∈ S, note that

σ(ctc−1)= cnσ(t)n−1c−1
= csa(σ (t))c−1.
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Let A′ denote the apartment c ·A and let S′ = cS be the corresponding maximal
k-split torus of G. Then A′ contains x and is σ -stable. Moreover, since the root
a is trivial on S− and sa fixes the kernel of a pointwise, the conjugate c(S−) is a
(σ, k)-split subtorus of S′. Thus S′− has dimension not smaller than dim S−.

Now let Sa denote the maximal k-split torus in the set of all t ∈ S such that
sa(t) = t−1. Since a is σ -invariant, such a torus is σ -stable. It is also one-
dimensional and its intersection with Ker(a) is finite. Therefore cSa is a nontrivial
(σ, k)-split subtorus of S′ which is not contained in c(S−). Thus the dimension of
S′−, which contains c(SaS−), is greater than dim S−, which contradicts the maxi-
mality property of A. This ends the proof of Proposition 4.8. �

4.12. Let A be a maximal (σ, k)-split torus of G, let S be a σ -stable maximal k-
split torus of G containing A and let A denote the apartment corresponding to S.
Let {A j

| j ∈ J} be a set of representatives of the Hk-conjugacy classes of maximal
(σ, k)-split tori in G. According to [Helminck and Wang 1993], the set J is finite.
Let x ∈A be a special point and write K for its stabilizer in Gk .

Theorem 4.13. For j ∈ J, let y j ∈ Gk such that y j A= A j . We have

Gk =
⋃
j∈J

Hk y j SkK.

Proof. By Proposition 4.8, for any g ∈Gk , there is a σ -stable maximal k-split torus
S′ of G such that the apartment corresponding to it contains g · x and such that S′−

is a maximal (σ, k)-split torus of G. Let j ∈ J be such that S′− is Hk-conjugate
to A j . According to Helminck and Helminck [1998, Lemma 2.2], there is h ∈ Hk

such that S′ = hy j S. Hence g · x is contained in hy j ·A. According to Property (2)
in 2.14, there exists n ∈ Nk such that g · x = hy j n · x . Therefore Gk is the union
of the Hk y j NkK for j ∈ J. As x is special, we have NkK = SkK and we get the
expected result. �

4.14. In the case where G is not necessarily k-split, we have the following result.
For each j , let WGk (A

j ) be the quotient of the normalizer of A j in Gk by its
centralizer, and likewise with Gk replaced by Hk . According to [Helminck and
Wang 1993], the group WGk (A

j ) is the Weyl group of a root system. For j ∈ J, let
N j ⊆ NGk (A

j ) be a set of representatives of

WHk (A
j )\WGk (A

j ),

and let y j ∈ Gk be such that y j A = A j . Let P be a minimal parabolic k-subgroup
of G containing S and such that P ∩ σ(P) is a Levi component of P [Helminck
and Wang 1993, § 4]. Let $ be a uniformizer of k, and write 3 for the lattice
made of the images of $ by the various algebraic cocharacters of A and 3− for



CARTAN DECOMPOSITION FOR p-ADIC SYMMETRIC SPACES 15

the subset of antidominant elements of 3 relative to P. Then one can derive from
Proposition 3.10 the existence of a compact subset Q of Gk such that

(4-1) Gk =
⋃
j∈J

⋃
n∈N j

Hkny j3
−Q.

Benoist and Oh [2007] have obtained a similar decomposition of Gk , with a weaker
condition on the base field k (they assume k to have odd characteristic).

Remark 4.15. In the split case, starting from Theorem 4.13, one can obtain a
sharper result than the decomposition (4-1).

Let us mention that the question of the disjointness of the various components
appearing in the decomposition (4-1) has been investigated in [Lagier 2008].

5. Examples

Let k be a nonarchimedean locally compact field of odd residue characteristic. Let
O be its ring of integers and p be the maximal ideal of O.

5.1. We now consider the k-split reductive group G=GLn , n>1, endowed with the
k-involution σ : g 7→ t g−1, where t g denotes the transpose of g. We set K=GLn(O)

and H=Gσ , and write S for the diagonal torus of G. This case has been explicitly
investigated by Hironaka [1988] from a different point of view.

We start with the following lemma.

Lemma 5.2. Let V be a finite dimensional k-vector space and B a symmetric bi-
linear form on V. Then any free O-submodule of finite rank of V has a basis which
is orthogonal relative to B.

Proof. Let 3 be a free O-submodule of finite rank of V. The proof goes by induc-
tion on the rank of3. If B is null, then the result is trivial. If not, we denote by B3
the restriction of B to 3×3. Its image is of the form pm for some integer m ∈ Z.
If $ is a uniformizer of k, then the form B0

3 =$
−mB3 has image O on 3×3.

Therefore, it defines a nontrivial bilinear form

B̄0
3 :3/p3×3/p3→ O/p.

Let e ∈ 3 be a vector whose reduction modulo p is not isotropic relative to B̄0
3,

which means that B0
3(e, e) is a unit of O. Then 3 is the direct sum of Oe and

3∩ke⊥, where ke⊥ denotes the orthogonal of ke in V. Indeed, it follows from the
decomposition

x =
B(e, x)
B(e, e)

e+
(

x −
B(e, x)
B(e, e)

e
)
, for any x ∈3.
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As 3∩ ke⊥ is a free O-submodule of finite rank of V whose rank is smaller than
the rank of 3, we conclude by induction. �

We introduce the set Y of all g ∈ Gk such that t gg ∈ Sk . Using Lemma 5.2, we
get the following decomposition of Gk .

Proposition 5.3. We have Gk = YK.

Proof. We make Gk act on the quotient Gk/K, which can be identified to the set of
all O-lattices (that is, cocompact free O-submodules) of the k-vector space V= kn .
Let B denote the symmetric bilinear form on V making the canonical basis of V
into an orthonormal basis. According to Lemma 5.2, for any g ∈ Gk , the O-lattice
3 corresponding to the class gK has a basis which is orthogonal relative to B.
This means that there exists u ∈K such that the element g′ = gu−1

∈ gK maps the
canonical basis of V to an orthogonal basis of 3. Therefore we have g′ ∈ Y; thus
g ∈ YK. �

We now investigate the maximal (σ, k)-split tori of G. Note that S is a maximal
(σ, k)-split torus of G.

Proposition 5.4. The map g 7→ gS induces a bijection between (Hk,Nk)-double
cosets of Y and Hk-conjugacy classes of maximal (σ, k)-split tori of G.

Proof. One easily checks that this map is well defined and injective. For g ∈ Gk ,
the conjugate gS is a maximal (σ, k)-split torus of G if and only if g−1σ(g) ∈ Sk ,
which amounts to saying that g ∈ Y and proves surjectivity. �

Let Q denote the set of all equivalence classes of nondegenerate quadratic forms
on kn . For a= diag(a1, . . . , an)∈ Sk we denote by Qa the diagonal quadratic form
a1X2

1+ · · · + anX2
n . Note that the map a 7→ Qa induces a surjective map from Sk

to Q.
We write H0 and H1 for the set of σ -fixed points and the first set of nonabelian

cohomology of σ , respectively.

Proposition 5.5. (1) The map g 7→ t gg induces an injection ι from the set of
(Hk,Nk)-double cosets of Y to H1(Nk).

(2) Given a ∈ Sk , the class of a in H1(Nk) is in the image of ι if and only if
Qa ∼ X2

1+ · · ·+X2
n .

Proof. We have an exact sequence

Hk→ H0(Gk/Nk)→ H1(Nk)→ H1(Gk),

where the map from H0(Gk/Nk) to H1(Nk) is induced by g 7→ t gg. As the set of
(Hk,Nk)-double cosets of Y is a subset of Hk\H0(Gk/Nk), we get the first assertion.
To obtain the second one, it is enough to remark that H1(Gk) canonically identifies
with Q. �
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Remark 5.6. Recall from [Serre 1970, IV.2.3] that for a, b ∈ Sk , the quadratic
forms Qa,Qb are equivalent if and only if they have the same discriminant and the
same Hasse invariant.

Proposition 5.7. Let {a j
| j ∈ J} ⊆ Sk form a set of representatives of Im(ι) in

H1(Nk). For j ∈ J, we choose y j ∈ Y such that t y j y j = a j . Then,

Gk =
⋃
j∈J

Hk y j SkK.

Proof. Propositions 5.3 and 5.4 imply that Gk is the union of the components
Hk y j NkK for j ∈ J. As NkK= SkK, we get the expected result. �

Example 5.8. In the case where n = 2, we give an explicit description of Im(ι).
Let $ denote a uniformizer of O and ξ ∈ O× a nonsquare unit of O, so that
{1, ξ,$, ξ$ } is a set of representatives of k× modulo k×2. The set of elements
of k× which are represented by the quadratic form Q1 = X2

+Y2 depends on the
image of p in Z/4Z. If p ≡ 1 mod 4, all elements of k× are represented by Q1. If
p ≡ 3 mod 4, an element of k× is represented by Q1 if and only if its normalized
valuation if even. We set

J=
{
{1, ξ,$, ξ$ } if p ≡ 1 mod 4,
{1, ξ} if p ≡ 3 mod 4.

For each j ∈ J, set a j
= diag( j, j). Then the elements a j form a set of rep-

resentatives of Im(ι) in H1(Nk).

5.9. We now consider the connected reductive k-group G= Resk′/kGLn , where k ′

is a quadratic extension of k, endowed with the involutive k-automorphism σ of
G induced by the nontrivial element of Gal(k ′/k). This case has been explicitly
investigated by Offen [2004] when k ′/k is unramified.

We set H = Gσ , so that we have Gk = GLn(k ′) and Hk = GLn(k). We denote
by S the diagonal torus of G and by K the maximal compact subgroup GLn(O

′) of
Gk , where O′ denotes the ring of integers of k ′. Note that S is σ -invariant.

As usual, N and Z denote the normalizer and centralizer of S in G. Let Sn denote
the group of permutation matrices in Gk , so that Nk is the semidirect product of
Sn by Zk . Note that Sk (resp. Zk) is the subgroup of all diagonal matrices of Gk

with entries in k (resp. in k ′).

Lemma 5.10. H1(Nk) can be identified with the set of conjugacy classes of ele-
ments of Sn of order 1 or 2.

Proof. According to Hilbert’s Theorem 90, the group H1(Zk) is trivial. Therefore
we have an exact sequence

(5-1) 1→ H1(Nk)→ H1(Nk/Zk).
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As σ acts trivially on Nk/Zk ' Sn , the set H1(Nk/Zk) can be identified to the
set of Sn-conjugacy classes of Hom(Z/2Z,Sn), that is, to the set of conjugacy
classes of elements of Sn of order 1 or 2. This proves that H1(Nk) can be naturally
embedded in the set of conjugacy classes of elements of Sn of order 6 2.

Now two elements w,w′ ∈ Sn define the same class in H1(Nk) if and only if
they are conjugate in Sn , thus if and only if wZk and w′Zk define the same class
in H1(Nk/Zk). Therefore (5-1) is a bijection. �

Proposition 5.11. (1) The number of Hk-conjugacy classes of σ -stable maximal
k-split tori in Gk is [n/2] + 1.

(2) There is a unique Hk-conjugacy class of maximal (σ, k)-split tori in Gk .

Proof. (1) Let X denote the set of all g ∈ Gk such that g−1σ(g) ∈ Nk . Then the
map g 7→ gS defines an injective map from the set of (Hk,Nk)-double cosets of X
to H1(Nk). Therefore we are reduced to proving that this map is surjective, and the
first assertion will follow from Lemma 5.10. For n = 2, let τ denote the nontrivial
element of S2 and choose an element a ∈ k ′ which is not in k. Then the element

(5-2) u =
(

a σ(a)
1 1

)
∈ GL2(k ′)

satisfies the relation u−1σ(u)= τ . For an arbitrary integer n > 2, let w ∈Sn have
order 6 2. Then there is an integer 0 6 i 6 [n/2] such that w is conjugate to the
element

τi = diag(τ, . . . , τ, 1, . . . , 1) ∈ GLn(k ′),

where τ ∈ GL2(k ′) appears i times and 1 ∈ GL1(k ′) appears n− 2i times. Thus

(5-3) ui = diag(u, . . . , u, 1, . . . , 1) ∈ GLn(k ′)

satisfies the relation u−1
i σ(ui )= τi . Therefore any 1-cocycle in Nk is Gk-cohomo-

logous to the neutral element 1 ∈ Gk , which proves the first assertion.

(2) For any 0 6 i 6 [n/2], the dimension of the (σ, k)-split torus (ui S)− is equal
to i . According to (1), the map

Hk gNk 7→ class of g−1σ(g) in H1(Nk)

is a bijection from the set of (Hk,Nk)-double cosets of X to H1(Nk), and the ele-
ments of this latter set are the classes of the τi for 06 i 6 [n/2]. This gives us the
expected result. �

Proposition 5.12. For 0 6 i 6 [n/2], let ui denote the element defined by (5-2)
and (5-3). Then

Gk =
[n/2]⋃
i=0

Hkui ZkK.
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Proof. According to the proof of Proposition 5.11, the set X is the union of the dou-
ble cosets Hkui Nk with 06 i6 [n/2]. The result then follows from Proposition 3.10
and from the fact that NkK= ZkK. �

5.13. We now give an example (due to Bertrand Lemaire) of a nonsplit k-group
such that Proposition 4.8 does not hold. We set G= Resk′/kGL2, where k ′ is now
a ramified quadratic extension of k. The k-involution σ is still induced by the
nontrivial element of Gal(k ′/k) and we set H= GL2. Let B′ (resp. B) denote the
building of G (resp. H) over k.

Bruhat and Tits [1984b] give a description of the faces of B in terms of hereditary
O-orders of M2(k). More precisely, there is a bijective correspondence

F 7→MF

between the faces of B and the hereditary O-orders of M2(k), such that the sta-
bilizer of F in GL2(k) in the normalizer of MF in GL2(k). For x ∈ B, we will
denote by Mx the hereditary order corresponding to the face of B which contains
x . We have a similar correspondence between faces of B′ and hereditary O′-orders
of M2(k ′). Moreover, since k ′ is tamely ramified over k, there is a bijective cor-
respondence j from the set B′σ of σ -fixed points of B′ to B such that, for any
x ∈B′σ , we have

M j (x) =Mx ∩M2(k).

Let q denote the cardinality of the residue field of k. As k ′ is totally ramified
over k, any vertex of B has exactly q + 1 neighbors in B, and likewise for B′.
Let x be a σ -invariant point of B′. Recall that, according to Proposition 3.8, it is
contained in a σ -stable apartment.

• If j (x) is in a chamber of B, then x has q + 1 neighbors in B′ but only two
σ -fixed ones. Thus x has non-σ -fixed neighbors.

• If j (x) is a vertex of B, then x has q + 1 neighbors in B′ as in B. There-
fore any neighbor of x in B′ is σ -invariant, which implies that any σ -stable
apartment containing x is σ -invariant. For instance, this is the case of the
vertex x corresponding to the O′-order M2(O

′), as its image j (x) corresponds
to the maximal O-order M2(O

′)∩M2(k) =M2(O). For such a special point,
Proposition 4.8 does not hold.
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