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THE DIRICHLET PROBLEM
FOR CONSTANT MEAN CURVATURE GRAPHS IN H × R

OVER UNBOUNDED DOMAINS

ABIGAIL FOLHA AND SOFIA MELO

We study graphs of constant mean curvature H in H × R, where H is the
hyperbolic plane. When 0 < H < 1

2 , we find necessary and sufficient condi-
tions for the existence of these graphs over unbounded domains in H, having
prescribed, possibly infinite, boundary data.

1. Introduction

This work deals with graphs in H× R, where H is the hyperbolic plane, having
constant mean curvature H defined over unbounded domains in H. In the Euclidean
space R3, Finn [1963; 1965] and Jenkins and Serrin [1966] studied the existence
of a function whose graph over a bounded domain D ⊂ R2 is minimal and has
prescribed boundary data. Finn studied the behavior of graphs in R3 over bounded
convex domains in R2 having constant mean curvature H = 0 and established
criteria to determine when a graph tends to infinity over a boundary arc of the
domain. Jenkins and Serrin showed that necessary conditions for the existence of
graphs over a domain D ⊂ R2 having unbounded boundary values given by the
flux (see Section 5 for precise definition) on D are also sufficient.

The work of Jenkins and Serrin inspired many extensions to other ambient
spaces and some of their ideas are present in these extensions. In H×R the exis-
tence theorem was proved by Nelli and Rosenberg [2002]. Collin and Rosenberg
[2010] treated the case in which the domain D in H is unbounded and Mazet,
Rodríguez and Rosenberg [2008] dealt with a more general setting. Spruck [1972]
extended the theorem of Jenkins and Serrin to constant mean curvature graphs in R3

over bounded domains of R2. Spruck’s work introduced an important idea for the
case H 6= 0: the reflection of the curves in order to get values −∞ over boundary
arcs. The case of graphs of constant mean curvature over bounded domains in H
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was considered by Hauswirth, Rosenberg and Spruck [2009]. There are other arti-
cles about this theory; see, for example, [Rosenberg 2002; Pinheiro 2009; Gálvez
and Rosenberg 2010].

It is a well known fact that there is no entire graph for H greater than 1/2 in
H×R; moreover, Hauswirth, Rosenberg and Spruck [2008] prove that a complete
graph with H = 1/2 in H×R is an entire graph. Hence, we consider in this work
values of H > 0 less than 1/2. We take a convex domain D whose boundary ∂D

is composed of ideal arcs {Ai }, {B j } and {Ck} such that the curvatures of the arcs
with respect to the domain are κ(Ai )= 2H , κ(B j )=−2H and κ(Ck) ≥ 2H . We
give necessary and sufficient conditions on the geometry of the domain D which
assure the existence of a function u defined in D, whose graph has constant mean
curvature and u assumes the value+∞ on each Ai ,−∞ on each B j and prescribed
continuous data on each Ck . The conditions, as in Jenkins and Serrin’s work [1966],
will be considered in terms of the lengths and the areas of inscribed polygons.
Since these quantities are infinite in general, the formulation of the conditions is
somewhat delicate. For an example, the reader may look at Section 8. In order to
control lengths we do the same as Collin and Rosenberg [2010]; however, the new
and key idea appears when we consider the area and we split it in two parts, one
finite and the other infinite (see Section 3).

This paper is organized as follows. In Section 2, we introduce notation. In
Section 3, we state the main theorems, which will be proved in Section 7. Sec-
tions 4 and 5 contain general maximum principles and the flux formulas, which are
useful tools to prove preliminary results and the necessary conditions of the main
theorems. In Section 6, we state results about divergence lines, which are essential
to prove the sufficient conditions of the main theorems. Finally, in Section 8, we
construct an example.

2. Notation

Let H be the hyperbolic plane, and H×R be given the product metric. Let u : D⊂
H→ R be a function in C2(D), where D is a simply connected domain. Denote
the graph of u by S=Graph(u)={ (p, u(p)) | p∈ D }. Since S is a graph, there are
two choices for the unit normal vector N (P) to S at a point P = (p, u(p)), p ∈ D.
We choose

N (P)=
−∇u+ ∂t√
1+‖∇u‖2

,

that is, the normal vector pointing up.
Let
−→
H (P) be the mean curvature vector of S at P . The mean curvature function

of S at a point P is defined by H(P) = 〈N ,
−→
H 〉(P). Consider graphs with 0 <

H(P) < 1
2 for all P ∈ S; in particular,

−→
H points up.
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The graph S has constant mean curvature H if H(P) = H for all P ∈ S. This
means u satisfies the equation

(1) Mu := div
(

∇u√
1+ |∇u|2

)
= 2H,

where the divergence and gradient are taken with respect to the metric on H. A
function that satisfies this equation in D is called a solution in D. We will use the
notation Xu =∇u/Wu , where Wu =

√
1+ |∇u|2.

Let E ⊂ H be a smooth curve. Denote by κ(p) the (nonnegative) curvature of
E at a point p ∈ E and when κ(p) = K for all p ∈ E , we will say κ(E) = K .
When E is a boundary arc of a domain D, we will often let κ(p), p ∈ E , denote
the algebraic curvature of E at p with respect to D, that is, κ(p)≥ 0 if E is convex
with respect to D, and κ(p) < 0 otherwise.

We will consider ideal domains in H whose asymptotic boundary is composed
only of a finite number of isolated points. Domains mean a connected, simply
connected open set. The boundary of an ideal domain will be called ideal polygon.

3. Main theorems

In this section, we state the theorems that give necessary and sufficient conditions
for the existence of constant mean curvature graphs which take the boundary values
+∞ on certain arcs Ai , −∞ on arcs Bi and continuous data on arcs Ci .

Definition 3.1 (admissible domain). We say that an unbounded domain D in H is
admissible if it is simply connected and ∂D is an ideal polygon with sides {Ai },
{Bi } and {Ci } satisfying κ(Ai )= 2H , κ(Bi )=−2H and κ(Ci )≥ 2H , respectively
(with respect to the interior of D). Suppose that no two of the arcs Ai and no two
of the arcs Bi have a common endpoint. Moreover, all the sides of ∂D are contained
in H and all the vertices of ∂D are in the asymptotic boundary of H.

Definition 3.2 (Dirichlet problem). Let D be an admissible domain and fix 0 <
H < 1

2 . The generalized Dirichlet problem is to find a solution of (1) in D of
mean curvature H , which assumes the value +∞ on each Ai , −∞ on each Bi and
prescribed continuous data on each Ci .

Definition 3.3 (admissible inscribed polygon). Let D be an admissible domain.
We say that P is an admissible inscribed polygon if P ⊂ D ∪ ∂D, its sides have
curvature ±2H and all the vertices of P are vertices of D.

In [Hauswirth et al. 2009], the Dirichlet problem was solved for bounded ad-
missible domains. The necessary and sufficient conditions in this case are in terms
of the lengths and areas of inscribed polygons. When the domain is unbounded,
these quantities can be infinite. Using the ideas in [Collin and Rosenberg 2010],
we control the lengths as follows.
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Let P be an inscribed polygon in D and let {di } be the vertices of P. Consider
the set

2= {Hi |Hi is a horocycle at di ,Hi ∩H j =∅, i 6= j,

and these horocycles satisfy condition (5) }.

Remark 3.1. We define condition (5) in Section 7. This is a technical condi-
tion which is always satisfied for sufficiently “small” horocycles at the vertices di .
Throughout we only consider horocycles Hi contained in this set 2.

Let Fi be the convex horodisk with boundary Hi . Each Ai meets exactly two
horodisks. Denote by Ãi the compact arc of Ai which is the part of Ai outside the
two horodisks; we define |Ai | as the length of Ãi . For each arc η j ∈ P we define
η̃ j and |η j | in the same way.

We define

α(P)=
∑
Ai∈P

|Ai |, β(P)=
∑
Bi∈P

|Bi | and l(P)=
∑

j

|η j |

where P=
⋃

j η j .
Now, let γi = Hi ∩ (D∪ ∂D). Consider γ ∗i the geodesic reflection of γi about

the geodesic joining the endpoints of γi .
Denote by � the domain bounded by P and �̃ =

⋃
j (�∩ F j ), where the area

A(�∩ F j ) is finite.
Let H= {Hi }i=1,...,n be a family of horocycles.
For each family H, we define

Ã(�) :=A(�H)+A(�̃),

where
A(�H)=A

(
�−

(⋃
i (�∩ Fi )

))
for all i . This definition plays an important role in this work – actually, this is the
key idea which we need to extend previous results of [Collin and Rosenberg 2010;
Hauswirth et al. 2009] to our setting. In Section 7, we will point out where this
definition is used.

Notice that the definitions of α(P), β(P) and l(P) can be extended to the bound-
ary of D and Ã(�) to D.

Remark 3.2. When ∂D only has sides of type Ai and Bi , we have that Ã(D) =

A(D), because A(D ∩ Fi ) is finite for all i (this may be infinite when there are
arcs Ci present). Also, in this case, for all admissible polygons P in D we have

Ã(�)=A(�).

With these definitions we can state the main theorems.
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Theorem 3.1. Consider the Dirichlet problem in an admissible domain D and
suppose the family {Ci } is empty. Then, there exists a solution to the Dirichlet
problem if and only if for some choice of the horocycles (in 2) at the vertices,

(2) α(∂D)= β(∂D)+ 2HÃ(D)

and for all admissible polygons P,

(3) 2α(P) < l(P)+ 2HÃ(�) and 2β(P) < l(P)− 2HÃ(�).

Now we remove the hypothesis that {Ci } is empty from Theorem 3.1.

Theorem 3.2. Consider the Dirichlet problem in an admissible domain D and
suppose the family {Ci } is nonempty. Then there exists a solution to the Dirichlet
problem if and only if for some choice of the horocycles (in 2) at the vertices,

(4) 2α(P) < l(P)+ 2HÃ(�) and 2β(P) < l(P)− 2HÃ(�)

for all admissible polygons P.

4. Maximum principles

The next results are general maximum principles for sub- and supersolutions of
the constant mean curvature operator for boundary data having a finite number of
discontinuities. The first one is in a bounded domain and the second one is in an
unbounded domain. First we state a local lemma whose proof is in [Hauswirth
et al. 2009].

Lemma 4.1. Let u1 and u2 be functions in C2(D), D ⊂ H. Then〈
∇u1
−∇u2,

∇u1

W1
−
∇u2

W2

〉
≥ 0,

with equality at a point if and only if ∇u1
= ∇u2. Here Wi = W (∇ui ), W (p) =√

1+ |p|2, i = 1, 2.

Theorem 4.1 (general maximum principle 1). Let u1 and u2 satisfy Mu1
≥ 2H ≥

Mu2 in a bounded domain D ⊂ H. Suppose that lim inf(u2
− u1) ≥ 0 for any

approach to ∂D with the possible exception of a finite number of points of ∂D.
Then u2

≥ u1 with strict inequality unless u2
≡ u1.

Theorem 4.2 (general maximum principle 2). Let D be a domain with ∂D an
ideal polygon. Let W ⊂ D be a domain and let u1, u2

∈ C0(W ) be two solu-
tions of (1) in W with u1

≤ u2 on ∂W . Suppose that for each vertex p of ∂D,
lim inf distH(01, 02)→0 as one converges to p, where 01, 02 are the curves on ∂D
with p as vertex. Then u1

≤ u2 in W .
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The proof of Theorem 4.1 is given in [Hauswirth et al. 2009]. The proof of
Theorem 4.2 is analogous to the one of Theorem 2 in [Collin and Rosenberg 2010]
using Lemma 4.1.

We will see examples of barriers which will enable us to control convergence
of solutions on ∂D, when we know they converge in D. Then the limit of the
sequence on the boundary is the limit of the boundary values and the limit solution
extends continuously to the boundary. The following examples can be found in
[Hauswirth et al. 2009].

Example 4.1. Let B ⊂ H be a ball of radius δ centered at p. Let p1 and p2 be
“antipodal” points on ∂B. We choose points d1, d2 on ∂B symmetric with respect
to the geodesic through p1 pp2. Now let B1 be an arc of curvature −2H (as seen
from p) joining d1, d2 and set A1 = B∗1 , where B∗1 is the geodesic reflection of B1.
Let B2 be the reflection of B1 with respect to the geodesic orthogonal to p1 pp2

through p, and set A2 = B∗2 . For δ small compared with H , there is a solution u+

in B+, the connected domain bounded by A1, A2 and arcs of ∂B such that u+ is
+∞ on A1 and A2 and a constant M > 0 on the rest of ∂B+. Similarly, there is a
solution u− in B−, the domain bounded by B1, B2 and parts of ∂B such that u− is
−∞ on B1 and B2 and a constant −M,M > 0 on the rest of ∂B−.

d1

d2

p1 p2

A1 A2

p

B+ d1

d2

p1 p2

B1 B2

p

B−

Figure 1. Domains of the solutions u+ and u− in Example 4.1.

5. Flux formulas

In this section, we state some results about the flux of a solution. As in [Jenkins
and Serrin 1966], the flux will give us the necessary conditions, which also will
be sufficient, to the existence of solutions having infinite boundary values. Finn
[1963] proved that if a minimal solution in Euclidean space tends to +∞ or −∞
over a boundary arc 0, then 0 is a line. The flux formula gives the requirement on
the curvature of the boundary arcs of an admissible domain.
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Let u∈C2(D)∩C1(D) be a solution in the bounded domain D. Then integrating
(1) over D, we have

2HA(D)=
∫
∂D

〈
∇u
W
, ν
〉

ds,

where A(D) is the area of D and ν is the outer normal to ∂D. This integral is
called the flux of u across ∂D. Let η be a subarc of ∂D (homeomorphic to [0, 1]).
Even if u is not differentiable on η we can define the flux of u across η as follows;
see [Hauswirth et al. 2009].

Definition 5.1. Choose ϒ to be an embedded smooth curve in D so that η ∪ ϒ
bounds a simply connected domain 1ϒ . We then define the flux of u across η as

Fu(η)= 2HA(1ϒ)−

∫
ϒ

〈
∇u
W
, ν
〉

ds.

The last integral is well defined, and Fu(η) does not depend in the choice of ϒ .
With this definition we can remove the condition u ∈ C2(D)∩C1(D) and state

important flux formulas, whose proofs are in [Hauswirth et al. 2009].

Theorem 5.1. Let u be a solution in D.

(i) If ∂D is a compact cycle, we have Fu(∂D)= 2HA(D).

(ii) If D is bounded in part by a C1 arc η, then:
(a) If u tends to +∞ on η, we have κ(η)= 2H and∫

η

〈
∇u
W
, ν
〉

ds = |η|.

(b) If u tends to −∞ on η, we have κ(η)=−2H and∫
η

〈
∇u
W
, ν
〉

ds =−|η|.

(c) If η is C2, κ(η)≥ 2H and u is continuous on η, we have∣∣∣∣∫
η

〈
∇u
W
, ν
〉

ds
∣∣∣∣< |η|.

Lemma 5.1. Let D be a domain bounded in part by an arc η with κ(η) = 2H.
We take a sequence of solutions {un} in D with each un continuous on η. Then if
the sequence diverges to −∞ uniformly on compact subsets of D while remaining
uniformly bounded on compact subsets of η, we have

lim
n→∞

∫
ϒ

〈
∇u
W
, ν
〉

ds = |η|.

The next lemma is almost a converse of the above Theorem 5.1. We follow the
ideas in [Mazet et al. 2008].
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Lemma 5.2. Let u be a solution in D. Let η̃ ⊂ ∂D be an arc with κ(η̃) =
2H (κ(η̃) = −2H) such that Fu(η) = |η| (Fu(η) = −|η|), for every compact arc
η ⊂ η̃. Then u takes boundary value +∞ (−∞) on η̃.

Proof. Suppose that κ(η̃) = 2H . Let η be a compact arc as in the lemma, small
enough so that the domain 1 bounded by η and η∗ (the geodesic reflection of η) is
contained in D. Consider the solution v which takes values+∞ on η and v= u on
η∗; this solution exists by [Hauswirth et al. 2009, Theorem 7.11]. We need to show
that u= v. If this is not the case, the set O = {u−v < ε} is nonempty, where ε > 0
is a regular value of u−v. Let D′ be the connected component of the complement
of O in 1 which has ∂1− η in its boundary and let O ′ be the complement of
D′ in 1, so O ⊂ O ′ and ∂O ′ ⊂ ∂O . Let q be a point in ∂O ′ − η. For µ > 0,
let O ′(µ) be the set defined by O ′(µ) = {p ∈ O ′ | distH(p, η) > µ}. Let q1, q2

be the endpoints of the connected component of ∂O ′ ∩ ∂O ′(µ) which contains
q. Let pi be the projection of qi on η. Let Õ(µ) be the domain bounded by the
segments [p1, q1], [p2, q2], the arc [p1, p2] ⊂ η and the boundary component of
O ′(µ) between q1, q2, which is denoted by 0(µ). On 0(µ) the vector Xu − Xv
points outside Õ(µ). Calculating the flux of u− v across ∂O ′ gives

0= Fu−v =

∫
0(µ)

〈Xu − Xv, ν〉+
∫
[p1,q1]∪[p2,q2]

〈Xu − Xv, ν〉+
∫
[p1,p2]

〈Xu − Xv, ν〉 .

So applying the flux formula, we have

0<
∫
0(µ)

〈Xu − Xv, ν〉 = −
∫
[p1,q1]∪[p2,q2]

〈Xu − Xv, ν〉−
∫
[p1,p2]

〈Xu − Xv, ν〉

≤ 4µ,

since the last term in the first line vanishes by the hypothesis on u and Theorem 5.1
applied to v. Note that the integral on 0(µ) increases when µ → 0. So this
inequality cannot occur.

If κ(η̃) = −2H , we consider the domain 1 which is bounded by η and an arc
η′ of curvature greater than 2H (with respect to the domain 1) contained in D
having the same endpoints as η. Then we consider v the solution on 1 with values
−∞ on η and v = u on η′; this solution exists by [Hauswirth et al. 2009, Theorem
7.11]. Then the same argument made in the case κ(η)= 2H can be applied. �

6. Divergence lines

In this section, we will study some characteristics of the sets where a sequence of
solutions in a domain D converges or diverges. Jenkins and Serrin [1966] studied
the convergence of a sequence (monotone) using a maximum principle. They also
presented the structure of the divergence set of this sequence. Here, we study
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the convergence of a sequence defined over bounded or unbounded domains (not
necessarily monotone) without the aid of a maximum principle. Nevertheless, the
structure of the set where such a sequence converges is the same one found by
Jenkins and Serrin. Many ideas found here were inspired by [Mazet et al. 2008].

Definition 6.1. Let D be a domain with piecewise smooth boundary, and un a
sequence of solutions in D. We define the convergence set as

U=
{

p ∈ D | {‖∇un(p)‖} is bounded independent of n
}

and the divergence set as
V= D−U.

In this section, D denotes a domain in H with piecewise smooth boundary.

Lemma 6.1. Let p ∈ D and un be a sequence of solutions in the domain D. If
p ∈ U, there is a subsequence of {vn} with vn = un − un(p) converging uniformly
to a solution in a neighborhood of p in D. If p ∈ V, there is a compact arc L p(δ̃)

of curvature 2H containing p such that, after passing to a subsequence, {Nvn (p)}
converges to a horizontal vector which is orthogonal to L p(δ̃) having the same
direction as the curvature vector Eκ of L p(δ̃), where Nvn (p) is the upward unit
normal vector to the graph of vn at (p, 0).

Remark 6.1. All the vectors {Nun (p)} can be thought as vectors at (p, 0) by ver-
tical translation, with the identification Nun (p)= Nvn (p).

Proof of Lemma 6.1. Denote by G(vn) the graph of vn over D. Note that Nun (q)=
Nvn (q), and the convergence and divergence sets are the same for {un} and {vn}.

The curvature estimates (see [Zhang 2005]) give us a δ > 0 independent of n
(in fact δ depends only on the distance from p to ∂D) such that a neighborhood of
P = (p, vn(p))= (p, 0) in G(vn) is a graph, in geodesic coordinates, with height
and slope uniformly bounded over the disk Dn

δ (P) of radius δ centered at the origin
of TP G(vn). We call this graph G P(vn, δ).

If p∈U the sequence {‖∇un‖} is bounded, so there is a subsequence of {Nvn (p)},
still called {Nvn (p)}, which converges to a nonhorizontal vector and consequently
the tangent planes associated to this subsequence converge to a nonvertical plane5.
Then, since the graphs G P(vn, δ) have height and slope uniformly bounded, there
is a subsequence of {vn} such that these graphs converge to a graph G P(δ) with
constant mean curvature H over a disk of radius δ centered at the origin of 5.
Since this plane 5 is a nonvertical plane, there is δ̃, 0 < δ̃ ≤ δ such that G P(δ)

is a graph over a geodesic ball in D centered at p of radius δ̃. We conclude that
there is a neighborhood of p ∈ D such that a subsequence of {vn} converges to a
solution in this neighborhood.
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Now, suppose that p ∈V. Since {‖∇un‖} is unbounded, there is a subsequence
of {Nvn (p)} that converges to a horizontal vector NP , so (for this subsequence) the
tangent planes TP G(vn) converge to a vertical plane 5 and the graphs G P(vn, δ)

converge to a constant mean curvature H graph G P(δ
′) over a disk of radius δ′≤ δ

centered at the origin of5. By the choice of the direction of the normal vector and
the choice of H > 0, the limit of the curvature vectors of G P(vn, δ) has the same
direction as the normal limit.

Take the curve L p ⊂ D passing through p orthogonal to NP , with curvature 2H
and the curvature vector at p having the same direction as NP . We want to prove
that G P(δ

′)⊂ (L p×R).
Since G P(δ

′) is tangent to L p × R at P , if G P(δ
′) is on one side of L p × R,

by the maximum principle, we have that G P(δ
′) ⊂ (L p × R). If this is not the

case, G P(δ
′) ∩ (L p × R) is composed of k ≥ 2 curves passing through p, meet-

ing transversely at p. So in a neighborhood of p these curves separate G P(δ
′)

in 2k components and the adjacent components lie in alternate sides of L p × R.
Moreover, the curvature vector alternates from pointing down to pointing up when
one goes from one component to the other. This implies that the normal vector to
G P(δ) points down and up. So, for n large enough, the normal vector to G P(vn, δ)

would point down and up, which does not occur.
Let L p(δ̃) ⊂ D, δ′ ≥ δ̃, be the curve contained in G P(δ

′) ∩ (L p × {0}) which
contains p and has length 2δ̃. Since G P(δ

′) ⊂ (L p×R), we have that for all
q ∈ L p(δ̃) the normal vector to G P(δ

′) at q is a horizontal vector normal to L p(δ̃)

having the same direction as the curvature vector of L p(δ̃) at q. �

Remark 6.2. Lemma 6.1 shows that the convergence set is a domain.

Lemma 6.2. Let {un} be a sequence of solutions in D. Given p ∈ V, there is a
curve L ⊂ D of curvature 2H which passes through p and such that, after passing
to a subsequence, the sequence of normal vectors {Nun |L} converges to a horizontal
vector normal to L having the same direction as the curvature vector of L. This
curve L contains the compact arc L p(δ̃) given in Lemma 6.1.

Proof. Let L be the curve of constant curvature 2H in D which contains L p(δ̃)

joining the points of ∂D (L p(δ̃) is given in Lemma 6.1). Given p, q ∈ D, denote
by pq the compact arc in L between p, q . We define

3= { q ∈ L | there is a subsequence of {un} such that {Nun |pq}

becomes horizontal, orthogonal to L having the same direction
as the curvature vector of L}.

We want to prove that3= L . Since p∈3,3 is nonempty. We will prove that3 is
open and closed. First, we will prove that3 is open. Let q be a point in3. Denote
{u3(n)} the subsequence associated to3. Since3⊂V, Lemma 6.1 gives us a curve
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Lq(δ) through q such that, after passing to a subsequence, {Nu3(n)|Lq (δ)} becomes
horizontal and having the same direction as the curvature vector of Lq(δ). Note
that this subsequence of {Nu3(n)|Lq (δ)} converges to a horizontal vector normal to
Lq(δ) and to L simultaneously, so Lq(δ)⊂ L , then 3 is open.

Now we will prove that 3 is closed. We take a convergent sequence {qn} in
3, qn → q ∈ L . We will show that q ∈ 3. For each m, there is a subsequence
of {u3(n)} such that {Nu3(n)|pqm } becomes horizontal with the same direction as
the curvature vector in pqm . By the diagonal process we obtain a subsequence of
{u3(n)} such that {Nu3(n)|pqm } converges to a horizontal vector having the same
direction as the curvature vector of L in pqm for all m. Then by Lemma 6.1, we
can find a curve Lqm (δ) having constant curvature 2H through qm , (for m large, δ
depends only on the distance from q to ∂D) such that {Nu3(n)|pqm } converges to a
horizontal vector having the same direction as the curvature vector to Lqm (δ). So
Lqm (δ) ⊂ L and since qm → q, we have that, for all m large enough, q ∈ Lqm (δ).
Consequently, q ∈3. �

An important conclusion of this lemma is that the divergence set is given by
V=

⋃
i∈I L i , where L i is a curve, called a divergence line, having curvature 2H .

Lemma 6.3. Let {un} be a sequence of solutions in D. Suppose that the divergence
set V of {un} is composed of a countable number of divergence lines. Then there is
a subsequence of {un}, again denoted by {un}, such that

(1) the divergence set of {un} is composed of a countable number of pairwise
disjoint divergence lines;

(2) for any connected component U′ of U = D − V and for any p ∈ U′, the
sequence {un − un(p)} converges uniformly on compact subsets of U′ to a
solution in U′.

Proof. Suppose that V 6= ∅ and let L1 be a divergence line of {un}. Lemma 6.1
guarantees that, after passing to a subsequence, {Nun (q)} converges to a horizontal
vector orthogonal to L1 at q for all q in L1. The divergence set of this subsequence
is contained in the divergence set of the original sequence, so the divergence set
associated to this subsequence has only a countable number of lines. This subse-
quence is still denoted by {un} and its divergence set by V. If there is a divergence
line L2 6= L1 in V, we can find a subsequence such that {Nun (q)} converges to
a horizontal vector orthogonal to L2 at q for each q ∈ L2. This implies that
L1 ∩ L2 = ∅. In fact, if this does not occur, we take a point q ∈ L1 ∩ L2 so
the sequence {Nun (q)} converges to a horizontal vector orthogonal to L1 and L2

at q having the same direction as the curvature vector of L1 and L2. Then the
uniqueness of a curve through q having curvature 2H with a given tangent vector
shows that L1 = L2. We continue this process to get a subsequence of {un}, still
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denoted by {un}, whose divergence set is composed of a countable number of
pairwise disjoint divergence lines.

Lemma 6.1 shows that there is a subsequence of {un} and a neighborhood of
each point p ∈ U such that the sequence {un − un(p)} converges to a constant
mean curvature graph H , and this convergence is uniform on compact subsets
of this neighborhood. Then taking a countable dense sequence {pi } in U′, by the
diagonal process we obtain a subsequence of {un} such that {un−un(p)} converges
uniformly on compact subsets of U′ for all p ∈U′. �

Lemma 6.4. Let {un} be a sequence of solutions in D such that its divergence set
is composed of a countable number of pairwise disjoint divergence lines. Suppose
that {un} converges to a solution u in a connected set U′ ⊂ D. Let γ be a compact
arc in ∂U′ included in a divergence line of {un} such that Xun→ν along γ , where ν
is the outer conormal to γ with respect to U′. Then if p ∈U′ and q ∈ γ , we have

lim
n→∞

(un(q)− un(p))=+∞.

Proof. We choose p, q as in the hypothesis of the lemma. Since Xun → ν we have
Fun (γ )→ |γ |, where Fun (γ ) is the flux of un across γ . So Lemma 5.2 ensures
that u|γ =+∞.

Claim 6.1. There is an ε > 0 such that ∂un/∂t ≥ 0 on {ϒ(t) | −ε < t ≤ 0}, where
ϒ(t) (−θ < t ≤ 0, θ ≥ ε) is the geodesic in U′ such that ϒ(0) = (q, 0) and
ϒ ′(0)= ν. The inequality is strict on {ϒ(t) | −ε < t < 0}.

Using Lemma 6.1 and the fact that u|γ = +∞, we obtain a ε > 0 such that
∂u/∂t ≥ 1 in {ϒ(t) |−ε < t < 0}. The convergence un→ u implies that ∂un/∂t > 0
in {ϒ(t) | −ε < t <−η}, for every 0< η < ε and n ≥ n0(η).

If the claim is not true, considering a subsequence if necessary, there is a se-
quence {qn} in {ϒ(t) | −η ≤ t ≤ 0} such that qn→ q and (∂un/∂t)(qn)= 0.

If the sequence {‖∇un(qn)‖} is bounded, we have from the curvature estimates
that {‖∇un‖} is uniformly bounded on a disk Dn of radius independent of n, cen-
tered at qn . Since qn → q , the sequence {‖∇un(q)‖} is bounded, because for n
large enough, q ∈ Dn . This contradicts that q is contained in the divergence set.

If the sequence {‖∇un(qn)‖} is unbounded, consider the sequence {un−un(qn)}

and D1
n the disk of radius δ in the graph of {un−un(qn)} centered at (qn, 0) given by

the curvature estimates, δ independent of n. Since (∂un/∂t)(qn)= 0, the disks D1
n

converge to a δ vertical disk centered at (q, 0) in ϒ̃ × R, where ϒ̃ is a curve
having constant curvature 2H through q orthogonal to γ . Let D2

n be the disk of
radius δ centered at (q, 0) in the graph of {un − un(q)}. Since γ is contained in
a divergence line, {D2

n} converges to a vertical disk centered at (q, 0) in γ × R.
Then, for n large enough, these disks D1

n and D2
n intersect transversally, but this is

impossible because the normal vectors to D1
n and D2

n only depend on the gradient
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of un , so they are the same vector (on domains where both sequences are defined)
for the two sequences. This proves Claim 6.1.

Let qt ∈U′ be the point qt =ϒ(t), t < 0, for t small enough. Claim 6.1 ensures
that for n large,

un(q)− un(p)≥ un(qt)− un(p)

≥ u(qt)− u(p)− 1.

The second inequality comes from the convergence of {un} to u. The third term is
as large as we want, because u|γ =+∞. �

Lemma 6.5. Let E⊂∂D be a smooth arc having κ(E)≥2H. Consider a sequence
of solutions {un} in D such that limn→∞ un|E = f for f a continuous function.
Then a divergence line cannot finish at an interior point of E.

Proof. Let p∈ E be an interior point. If κ(E)>2H at p, Lemma 4.9 in [Hauswirth
et al. 2009] (see also the lemma on page 139 of [Finn 1965]) shows that {un} is
uniformly bounded in a neighborhood of p in D. Then, a divergence line cannot
end at p.

If κ(E) = 2H at p, by [Hauswirth et al. 2009, Lemma 4.9], we have that the
sequence {un} does not diverge to +∞ in a neighborhood of p. Suppose there is
one divergence line L leaving p. Then there is a subset V ⊂ D which contains a
subarc (containing p) of E in its boundary, and the sequence diverges to−∞ on V .
Consider a point q ∈ E ∩∂V , and denote by pq the arc contained in E joining the
points p and q . Let s be a point in L and ps the arc in L joining p and s. Denote
by sq the geodesic joining s and q, suppose that q is as close to s as necessary, in
order to guarantee sq ⊂ V . We choose this “triangle” T so that the sequence {un}

diverges to −∞ in the domain 1T ⊂ V bounded by T . By the flux formulas,

2HA(1T )= Fun (ps)+ Fun (pq)+ Fun (sq).

We have
lim

n→+∞
Fun (pq)= |pq|.

Since ps ⊂ L , either

lim
n→+∞

Fun (ps)= |ps| or lim
n→+∞

Fun (ps)=−|ps|.

First, suppose that
lim

n→+∞
Fun (ps)= |ps|.

Then,

lim
n→+∞

2HA(1T )= lim
n→+∞

Fun (ps)+ lim
n→+∞

Fun (pq)+ lim
n→+∞

Fun (sq)

≥ |ps| + |pq| − |sq|
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which implies
2HA(1T )

|sq|
≥
|ps| + |pq|
|sq|

− 1.

We move q to q ′ and s to s ′ so that |pq ′| = λ|pq| and |ps ′| = λ|ps|. When λ→ 0,
the inequality

2HA(1T )

|sq|
≥
|ps| + |pq|
|sq|

− 1

tends to zero on the left side, but is bounded from zero in the right side; a contra-
diction.

Now we consider the case where

lim
n→+∞

Fun (ps)=−|ps|.

By Lemma 6.4 we have that {un} diverges to −∞ on a subset of D − V which
has L and a subarc of E in its boundary. Then applying the same argument as
above, we get a contradiction.

Now, suppose that there are two or more divergence lines leaving from p. We fix
two divergence lines, L1, L2. The point p ∈ E divides E in two curves E1, E2, and
we orient L1, L2, E1, E2 such that W1 is the domain bounded in part by L1 ∪ E1

and not containing L2, W2 is the domain bounded in part by E2 ∪ L2 and not
containing L1 and finally W3 is the domain bounded in part by L1 ∪ L2 and not
containing E1 ∪ E2. Let q ∈ L1, s ∈ L2, p1 ∈ E , p2 ∈ E be points. Denote by pq
the segment in L1 joining p and q , by ps the segment in L2 joining p and s, by
sq ⊂ W3 the segment of the geodesic joining q to s, by qp1 ⊂ W1 the segment of
the geodesic joining q and p1, and by sp2⊂W2 the segment of the geodesic joining
s and p2. In some of these subsets Wi , i = 1, 2, 3, the sequence {un} diverges to
−∞. Suppose that in W3 the sequence diverges to −∞, and that sq ⊂W3.

If either

lim
n→+∞

Fun (ps)= |ps| or lim
n→+∞

Fun (pq)= |pq|,

with respect to W3, applying the flux formulas to the triangle formed by ps, pq
and sq, we obtain a contradiction as before.

If, with respect to W3, either

lim
n→+∞

Fun (ps)=−|ps| or lim
n→+∞

Fun (pq)=−|pq|,

then doing as we have done before to the triangle formed by qp1, pq and p1 p,
if limn→+∞ Fun (pq) = −|pq|, or to the triangle formed by ps, pp2 and sp2 if
limn→+∞ Fun (ps)=−|ps|, we obtain a contradiction. �
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7. Proof of the main theorems

Before the proof of the theorems we need to show that the conditions of the hy-
pothesis make sense, that is, we have to show that they are preserved for smaller
horocycles.

Let Hi be an horocycle at di . Suppose that the conditions of Theorems 3.1 and
3.2 are satisfied for a family of horocycles H= {Hi }i=1,...,n . These conditions are

(i) α(∂D)−β(∂D)= 2HÃ(D),

and for all admissible polygons P 6= ∂D,

(ii) 2α(P) < l(P)+ 2HÃ(�),

(iii) 2β(P) < l(P)− 2HÃ(�).

Fixing s ∈ {1, . . . , n}, we will show that these conditions are also true for a
family H′ = {Hi }i 6=s ∪ {H

′
s}, where H′s is contained in the horodisk Fs bounded

by Hs . We are interested in “smaller” horocycles because in this way we have
an exhaustion of P. To prove this we will use subindices T and T ′ to clarify the
dependence of α(P), β(P) and l(P) with respect to H and H′ respectively.

First, consider condition (i). We observe that when we change the family of
horocycles, the left side of (i) does not change. So our definition for Ã should not
change. This is the first reason for the definition of Ã.

Note that

α(∂DT ′)−β(∂DT ′)= α(∂DT )−β(∂DT )= constant.

Thus, if (i) is true for H, then it is also true for H′.
Condition (ii) is equivalent to

2α(P)− l(P) < 2HÃ(�).

When we change from family H to family H′ the left side of the above inequality
is nonincreasing and the right side is nondecreasing, so the inequality is preserved.

Finally, we handle the inequality of condition (iii).
There are two distinct situations. The first one is when the horocycle Hs meets

sides E1, E2 where κ(E1) = −2H, κ(E2) = 2H . The second one is when Hs

meets sides E1, E2 with κ(E1)= 2H, κ(E2)= 2H .
In the first case, the area Ã(�) does not change when we change from the family

H to H′, and 2β(P)− l(P) is nonincreasing, so the inequality is preserved.
The second case is the most delicate one. Here, it will be necessary to have

horocycles small enough.
More precisely, we consider the half-space model of H. We can suppose that

the vertices of P are d j = (x j , 0) for all j 6= l and dl ∈ {∂H−{y = 0}}. We choose
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the family {Hi } of horocycles at the vertices di . We define

(0,Ml)=Hl ∩ {x = 0}.

The necessary condition is

(5) Ml >
2H(|xl−1| + |xl+1|)

2
√

1− 4H 2
for all l = 1, . . . , n.

Remark 7.1. This is always the case for sufficiently small horocycles.

With this hypothesis on the horocycles, we can finish that the inequality in (iii)
is preserved for the family H′.

Suppose that Hs meets sides E1 and E2, where κ(E1)= κ(E2)= 2H . We point
out that this is the case where we use (5) and also the definition of Ã, since Ã

should have the right behavior as the area is infinite.
Note that

2β(PT ′)= 2β(PT ) < l(PT )− 2HÃ(�T ).

We will show
l(PT )− 2HÃ(�T ) < l(PT ′)− 2HÃ(�T ′),

that is,

(6)
(
l(PT ′)− l(PT )

)
−
(
2HÃ(�T ′)− 2HÃ(�T )

)
> 0.

In fact, we show that l(PT )− 2HÃ(�T ) increases when H decreases.
Consider the half-space model of H. We can assume that ds = (0, 0) ∈ ∂∞H.

Using an inversion I with respect to the geodesic centered at (0, 0) of radius 1,
we have that Hs and H′s are taken to the horizontal straight lines through (0,M)
and (0, y0), respectively, and the sides A and E are taken to tilted lines leaving
the points (−x0, 0) and (x1, 0) and making an angle θ with the vertical, where
sin θ = 2H , x0 > 0 and x1 > 0; see Figure 2.

ds−1 ds ds+1

A
Hs H′s E

I I (H′s)

I (Hs)

I (A) I (E)
(0, y0)

(0,M)

(−x0, 0) (x1, 0)

Figure 2. Using the inversion I .

Now, we calculate the length of the arcs of I (A) and I (E) bounded by I (H′s)
and I (Hs), denoted by l(AH,H′) and l(EH,H′), and the area limited by I (A), I (E),
I (Hs) and I (H′s), denoted by A(�H,H′).
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Then,

l(AH,H′)= l(EH,H′)=

∫ y0

M

sec θ
y

dy = sec θ ln y
∣∣y0

M

and the area satisfies

A(�H,H′)=

∫ y0

M

∫ x1+y tan θ

−x0−y tan θ

dxdy
y2

=

∫ y0

M

(2 tan θ
y
+
(x1+x0)

y2

)
dy

= 2 tan θ ln y
∣∣y0

M − (x1+ x0)
1
y

∣∣∣y0

M
.

Therefore,

l(AH,H′)+ l(EH,H′)− 2HA(�H,H′)

= 2(sec θ − 2H tan θ) ln y
∣∣y0

M + 2H (x1+x0)

y

∣∣∣y0

M

= 2
(1−sin2 θ

cos θ

)
ln y

∣∣∣y0

M
+

2H(x1+x0)

y

∣∣∣y0

M

= 2 cos θ ln y0+
2H(x1+x0)

y0
− 2 cos θ ln M − 2H(x1+x0)

M
.

Then, to prove the inequality (6) it suffices to show that the function of y0 above is
increasing, because when y0 = M , it is zero. We show that its derivative is greater
than zero.

Differentiating we have

2 cos θ
y0
−

2H(x1+x0)

y2
0

.

So

2 cos θ
y0
−

2H(x1+ x0)

y2
0

> 0 ⇐⇒ 2y0 cos θ − 2H(x1+ x0) > 0,

that is,

y0 >
2H(x1+ x0)

2 cos θ
.

But our family H satisfies

M >
2H(x1+ x0)

2 cos θ
.

Thus, we have the inequality (6) as desired, and consequently the inequality in (iii)
is satisfied.

We fix some notation which will be useful in the proof of the theorems. Let
{di = (xi , yi )} be the set of vertices of ∂D. For each i , let Hi (n) be a horocycle
asymptotic to di such that Hi (n) belongs to 2 for all i, n. We choose Hi (n) such
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that Hi (n + 1) ⊂ Fi (n), where Fi (n) is the convex horodisk bounded by Hi (n).
Let D(n)⊂ D be the domain bounded by

∂D(n)=
(
∂D−

(⋃
i Fi (n)

))
∪
(⋃

i γi (n)
)
,

where γi (n)=Hi (n)∩ (∂D∪D). Let D∗(n)⊂ D be the domain bounded by

∂D∗(n)=
(
∂D−

(⋃
i Fi (n)

))
∪
(⋃

i γ
∗

i (n)
)
,

where γ ∗i (n) is the geodesic reflection of γi (n). Similarly, we define �(n) as the
domain whose boundary is

P(n)=
(
P−

(⋃
i Fi (n)

))
∪
(⋃

i γi (n)∩�(n)
)

and �∗(n) as the domain bounded by

∂�∗(n)=
(
P−

(⋃
i Fi (n)

))
∪
(⋃

i (γ
∗

i (n)∩�
∗(n))

)
.

Finally, given an arc η ⊂ P, we define η(n)= η∩P(n).

Proof of Theorem 3.1. Suppose that the conditions (2) and (3) are true for all
polygons in D.

Claim 7.1. There is a solution in D which boundary values

un =

{
n on

⋃
k Ak,

−n on
⋃

l B∗l .

Assume this Claim is true and take {un} a sequence of solutions in D, where un

is defined as in the Claim. Then, this sequence has, or does not have, a divergence
line.

First, we assume that there is some divergence line, and we will obtain a con-
tradiction. By Lemma 6.5, the endpoints of these lines are among vertices of D.
Since ∂D has only a finite number of vertices, we can suppose that the divergence
set is composed of a finite number of disjoint divergence lines. These lines separate
the domain D in at least two connected components, and the interior of these com-
ponents belongs to the convergence domain. By Lemma 6.4, in some connected
components of the convergence set, the sequence {un}, p ∈ D, diverges to +∞
or −∞. Suppose that in some connected component of the convergent set U′, the
sequence diverges to +∞ (the case −∞ is similar).

Since U′ ⊂ U, where U is the convergence domain, we have that the sequence
{un−un(p)}, p∈U′, converges uniformly on compact subsets of U′ to a solution u
in U′. On the other hand, by the choice of U′ we have un(p)→ +∞, p ∈ U′.
Moreover, we note that ∂U′ = P is an admissible polygon, we can choose P sat-
isfying the next Claim.
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Claim 7.2. One can choose P so that

Fu

(
P(n)−

((⋃
i Ai (n)

)
∪
(⋃

i (γi (n)∩U′)
)))

=−l
(

P(n)−
((⋃

i Ai (n)
)
∪
(⋃

i (γi (n)∩U′)
)))

,

where ∂U′ = P.

See [Mazet et al. 2008] for a proof.
We are supposing that there is a divergence line, so P 6= ∂D. By Claim 7.2 and

the flux formulas

Fu(P(n))= 2HA(U′(n))

= Fu

(
P(n)−

((⋃
i Ai (n)

)
∪
(⋃

i (γi (n)∩U′)
)))

+ Fu

((⋃
i Ai (n)

)
∪
(⋃

i (γi (n)∩U′)
))

≤−l
(

P(n)−
((⋃

i Ai (n)
)
∪
(⋃

i (γi (n)∩U′)
)))

+ l
((⋃

i Ai (n)
)
∪
(⋃

i (γi (n)∩U′)
))

= 2α(P)− l(P)+ l
(⋃

i (γi (n)∩U′)
)
.

When n→∞, the area A
(
D∩

(⋃
j F j

))
tends to zero, so

2HA(U′)≤ 2α(P)− l(P),

contradicting the hypothesis. So the sequence {un} has no divergence lines.
Since the sequence {un} does not have any divergence lines, D is the convergence

domain, so there is a subsequence of {un − un(p)}, p ∈ D which converges to a
solution u on D. If the sequence {un} is bounded at the point p ∈ D, u has the
boundary values as desired, that is, u|Ak =+∞ and u|Bl =−∞. We will show that
even if the sequence {un} is unbounded, the solution u has the boundary values as
prescribed.

Suppose the sequence {un(p)} tends to −∞. By the flux formulas,

lim
n→∞

Fun (P(m))= 2HA(D(m))

= 2HÃ(D)− 2HA
(
D∩

(⋃
i Fi (m)

))
=

∑
lim

n→∞
Fun (Ai (m))+

∑
lim

n→∞
Fun (Bi (m))

+

∑
lim

n→∞
Fun (γi (m))

≥ α(P)−β(P)−
∑
|γi (m)|

which implies
2β(P)≥ l(P)− 2HA(�).
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The hypothesis does not allow 2β(P) > l(P)− 2HA(�). Then equality holds:
2β(P) = l(P)− 2HA(�). This implies that limn→∞ Fun (Bl(m)) = |Bl(m)|. So
{un − un(p)} tends to −∞ on Bl for all l.

Suppose the sequence {un(p)} tends to +∞. By the flux formulas,

lim
n→∞

Fun (P(m))= 2HA(D(m))= 2HÃ(D)− 2HA
(
D∩

(⋃
i Fi (m)

))
=

∑
lim

n→∞
Fun (Ai (m))+

∑
lim

n→∞
Fun (Bi (m)) lim

n→∞
Fun (γi (m))

≤ α(P)−β(P)+
∑
|γi (m)|,

which implies

2α(P)≥ l(P)+ 2HA(�).

Since we cannot have 2α(P)> l(P)+2HA(�), we have 2α(P)= l(P)+2HA(�),
which implies limn→∞ Fun (Ak(m)) = |Ak(m)|. Then {un − un(p)} tends to +∞
on Ak for all k.

Proof of Claim 7.1. By the existence theorem for continuous boundary values and
bounded domains [Hauswirth et al. 2009], for each m in D∗(m) there is a solution
with boundary values

um =


n on

⋃
k Ak(m),

−n on
⋃

l B∗l (m),

0 on
⋃

i γ
∗

i (m).

Fix m0. For all m > m0, we have that {um |D∗(m0)} is a sequence of solutions in
D∗(m0). If there were any divergence lines, we would find a divergence set which
would contradict the hypothesis, as in the proof of Theorem 3.1. Moreover, as
there are no divergence lines, either this sequence is bounded or it is not bounded.
If this sequence is not bounded, say um(p)→+∞, p ∈ D∗(m0), a subsequence
{um |D∗(m0)−um(p)} converges to a solution in D∗(m0) and tends to−∞ on each arc
Ai (m0), which cannot occur. If {um(p)}→−∞, p ∈D∗(m0), some subsequence
of {um |D∗(m0) − um(p)} converges to a solution in D∗(m0) and tends to +∞ on
each arc Ai (m0), B∗l (m0). Taking m0 →∞ we again get a contradiction, since
two arcs with the same vertex point have values +∞. So this sequence is bounded
and some subsequence is convergent, by the boundary values of the {um}, we have
um |Ak(m0) = n and um |Bl (m0) = −n. By the diagonal process, we have in D a
solution un given by

un =

{
n on

⋃
k Ak,

−n on
⋃

l B∗l ,

which completes the proof. �
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We return to the proof of Theorem 3.1 and prove the necessary conditions. Sup-
pose there is a solution u in D of the Dirichlet problem. Applying the flux formulas
to P(n)= ∂D(n), and remembering that, in this case, Ã=A, we have

Fu(P(n))= 2HA(D(n))= 2HÃ(D)− 2HA
(
D∩

(⋃
i Fi (n)

))
=
∑

Fu(Ai (n))+
∑

Fu(Bi (n))+
∑

Fu(γi (n)).

Since D̃= D∩
(⋃

i Fi (n)
)
,∑

|Ai (n)| −
∑
|Bi (n)| −

∑
|γi (n)| ≤ 2HÃ(D)− 2HA(D̃)

≤
∑
|Ai (n)| −

∑
|Bi (n)| +

∑
|γi (n)|.

It follows that

α(D)−β(D)−
∑
|γi (n)| ≤ 2HÃ(D)− 2HA(D̃)≤ α(D)−β(D)+

∑
|γi (n)|.

When n→∞, we have |γi |→0 and A(D̃)→0, so α(D)−β(D)=2HÃ(D).Now,
we prove the inequalities (3). Applying the flux formulas to the polygon P(n), and
denoting its interior arcs by Em , we have

Fu(P(n))= 2HA(�(n))

=
∑
k

Fu(Ak(n))+
∑

l
Fu(Bl(n))+

∑
m

Fu(Em(n))+
∑

j
Fu(γ j (n)∩�(n))

≥
∑
k
|Ak(n)| −

∑
l
|Bl(n)| + δ−

∑
|Em(n)| −

∑
j
|γ j (n)∩�(n)|

= 2α(P)− l(P)+ δ−
∑

j
|γ j (n)∩�(n)|.

We see that Ã(�)>A(�(n)) and
∑

j
|γ j (n)∩�(n)|−δ < 0 for n large enough, so

2α(P) < l(P)+ 2HÃ(�).

Similarly,

Fu(P(n))= 2HA(�(n))

=
∑
k

Fu(Ak(n))+
∑

l
Fu(Bl(n))+

∑
m

Fu(Em(n))+
∑

j
Fu(γ j (n)∩�)

≤
∑
k
|Ak(n)|−

∑
l
|Bl(n)|−δ+

∑
m
|Em(n)|+

∑
j
|γ j (n)∩�|

= −2β(P)+l(P)−δ;

that is, for n sufficiently large,

2β(P)≤ l(P)− 2HA(�(n))− δ

< l(P)− 2HÃ(�). �
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Proof of Theorem 3.2. This is similar to the proof of Theorem 3.1.

Claim 7.3. There is a solution on D having boundary values

un =


n on Ak,

−n on B∗l ,
fn on Cm,

where fn = ϕ ◦ f for ϕ : R→ R defined by

ϕ(x)=


x if − n ≤ x ≤ n,
−n if x <−n,

n if x > n.

Assume that Claim 7.3 is true and take a sequence {un} on D given by this claim.
Suppose that {un} has a divergence line. By Lemma 6.5, we can suppose that

the divergence set is composed of a finite number of disjoint divergence lines.
These lines separate the domain D in at least two connected components, and the
interior of these components belongs to the convergence domain. By Lemma 6.4,
in connected components of the convergence set the sequence {un}, p∈D, diverges
to +∞ or −∞. We observe that if there is some arc C ⊂ ∂D having κ(C) > 2H ,
Lemma 4.9 in [Hauswirth et al. 2009] ensures that in a neighborhood of this arc
the sequence {un} is bounded.

As in the proof of Theorem 3.1 we will work on subdomains of D where the
sequence diverges to +∞ or −∞, so the boundary of these domains only has arcs
of curvature 2H . This means that the boundary of these domains are admissible
polygons. From now on, the proof is similar to the proof of Theorem 3.1.

Proof of Claim 7.3. The only difference between Claim 7.3 and Claim 7.1 is found
in the construction of solutions over bounded domains. Let {di } be the vertices
points of D, after some isometry of the hyperbolic plane, we can assume that each di

belongs to {(x, y) ∈ R2
| y = 0}. Let σi [m] be geodesics which are semicircles

centered at di with radius 1/m. The hypothesis on the curvature of the arcs Ci

enables us to conclude that, if m is big enough, σi [m] divides D in exactly two
components, one of them having di in its asymptotic boundary. Let %i [m] be the
arc of the equidistant curve to σi [m] having curvature 2H joining points of the
boundary of D. Then %i [m] divides D in exactly two components, one having
di in its asymptotic boundary. We chose the curvature vector of %i [m] pointing
to the component of D which does not have di on its boundary. Now we can
find a solution with prescribed boundary values using the existence theorem of
[Hauswirth et al. 2009]. Let Ai [m] be the compact arcs contained in Ai bounded
by the endpoints of {%i [m]}, Bi [m] be the compact arcs contained in Bi bounded by
the endpoints of {%i [m]} and Ci [m] be the compact arcs contained in Ci bounded
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by the endpoints of {%i [m]}. So there exists

un =


n on Ai [m],
−n on B∗i [m],

fn on Ci [m],
0 on %i [m],

where fn = ϕ ◦ f , for ϕ : R→ R given by

ϕ(x)=


x −n ≤ x ≤ n,
−n x <−n,

n x > n.

From now on, the same procedure as in Claim 7.1 enables us to conclude the
existence of a solution over D as desired in Claim 7.3. �

Now, we go back to the proof of Theorem 3.2. Suppose that there is a solution u
for the Dirichlet problem. Let � be the domain bounded by the admissible poly-
gon P and �(n),P(n) as found in the notation at the beginning of this section.
Applying the flux formulas,

Fu(P(n))

= 2HA(�(n))

=
∑
k

Fu(Ak(n))+
∑

l
Fu(Bl(n))+

∑
p

Fu(C p(n))+
∑
m

Fu(Em(n))+
∑

j
Fu(γ j (n)∩�)

≥
∑
k
|Ak(n)| −

∑
l
|Bl(n)| −

∑
p
|C p(n)| + δ−

∑
|Em(n)| −

∑
j
|γ j (n)∩�|

= 2α(P)− l(P)+ δ−
∑

j
|γ j (n)∩�|.

Either A(D) < ∞, or A(D) = ∞. If A(D) < ∞, since Ã(�) > A(�H) and
|γ j (n)| → 0 for all j , we have

2α(P) < l(P)+ 2HA(�(n)) < l(P)+ 2HÃ(�).

If A(D)=∞, we have

2HÃ(�)≥ 2HA(�H) > 2α(P)− l(P)−
∑

j
|γ j (n)∩�|,

Then,
2HÃ(�)+ l(P)− 2α(P) >−

∑
j
|γ j (n)∩�|.

Remembering that l(P)−2α(P) is nondecreasing, we have that the left side of this
inequality is increasing and tends to+∞, when the horocycles tend to the vertices.
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Therefore, we can suppose

2HÃ(�)+ l(P)− 2α(P) > 0.
Similarly,

Fu(P(n))

= 2HA(�H)

=
∑
k

Fu(Ak(n))+
∑

l
Fu(Bl(n))+

∑
p

Fu(C p(n))+
∑
m

Fu(Em(n))+
∑

j
Fu(γ j (n)∩�)

≤
∑
k
|Ak(n)| −

∑
l
|Bl(n)| +

∑
p
|C p(n)| − δ+

∑
m
|Em(n)| +

∑
j
|γ j (n)∩�|

= − 2β(P)+ l(P)− δ+
∑

j
|γ j (n)∩�|.

Then, if A(D) <∞,

2β(P) < l(P)− 2HA(�H)−
δ

2
≤ l(P)− 2HÃ(�),

since we can choose 2HA(�∩ (∪i Fi ))≤
δ
2 and

∑
j
|γ j (n)∩�|< δ

2 .

If A(D)=∞,

2HÃ(�)+ 2β(P)− l(P) < 2HA(�(n))+ 2β(P)− l(P)≤
∑

j
|γ j (n)|,

because we can choose 2HA(�̃)<δ. Since 2HÃ(�)+2β(P)−l(P) tends to−∞
when the horocycles converge to vertices, we can suppose

2HÃ(�)+ 2β(P)− l(P) < 0. �

8. Example

Consider a domain D whose boundary has sides A1, B1, A2 and B2 and vertices
d1= (xd1, 0), d2= (xd2, 0), d3= (xd3, 0) and d4∈{∂∞H−y = 0}with xd1<xd2<xd3 .
Suppose that the vertices of A1 are d4 and d1, the vertices of B1 are d1 and d2, the
vertices of A2 are d2 and d3 and the vertices of B2 are d3 and d4. So A1, B2 are
tilted lines and B1 and A2 are contained in Euclidean circles; see Figure 3.

Denote by 2µ = xd2 − xd1 , 2ω = xd3 − xd2 , and 0 < θ < π
2 the angle such that

2H = sin θ . This domain is not defined for all values of µ,ω, θ . We have to
suppose that B1 ∩ B2 =∅.

Claim 8.1. With the notation above, for

2H <

√
ω

ω+µ
,

the domain D is well defined.
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Proof. Since B2 is a tilted line making angle θ with vertical, we can write

B2(y)= (xd3 − y tan(θ), y).

The curve B1 satisfies (x − (xd1 + µ))
2
+ (y − µ tan θ)2 =

(
µ

cos θ

)2
for y > 0.

Since xd3 = xd1 + 2µ+ 2ω, we have B1 ∩ B2 6=∅ if

y > 0 and (µ+ 2ω− y tan θ)2+ (y−µ tan θ)2 =
(
µ

cos θ

)2
.

Then B1 ∩ B2 =∅ if

2H = sin(θ) <
√

ω

ω+µ
. �

We will assume that the domain D is well defined. We will show that the con-
ditions of Theorem 3.1 are true for some choice of the horocycles at the vertices
of D, provided that 2H <

√
2/2.

Suppose that B1 and A2 are contained in Euclidean circles centered at (xd1+µ, h)
and (xd2 +ω, RA), respectively, where RA = ω/cos θ , RB = µ/cos θ are the Eu-
clidean radii of these circles and l = ω tan θ, h = µ tan θ ; see Figure 3.

A1
B1

A2

B2

D

d1 d2 d3µ

h
RB

θ ω

l
RA

θ

Figure 3. The domain D.

On each vertex di we put horocycles Hi , Hi∩H j =∅, i 6= j . Since this domain
does not have inscribed polygons we will verify only condition (3) of Theorem 3.1.
When µ=ω and 2H <

√
2/2 we have, for this choice of horocycles, that α(∂D)=

β(∂D), so condition (2) of Theorem 3.1 can’t occur. The next proposition shows
that there is a choice of ω such that this condition is satisfied for 2H <

√
2/2.

Proposition 8.1. With the notation above, given µ ≥ 3 and 2H <
√

2/2, there is
ω0 ≥ µ such that the condition α(∂D)−β(∂D)= 2HA(D) is satisfied.
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Proof. First, we calculate the area A(D). Since the arc B1 satisfies the equa-
tion (x − (xd1 + µ))

2
+ (y − h)2 = R2

B and the arc A2 satisfies the equation
(x − (xd2 +ω))

2
+ (y+ l)2 = R2

A, we have

A(D)= lim
a→0

2(µ+ω)
a

− 2 lim
a→0+

∫ RB+h

a

∫ √R2
B−(y−h)2+xd1+µ

xd1+µ

dxdy
y2

− 2 lim
a→0+

∫ RA−l

a

∫ √R2
A−(y+l)2+xd2+ω

xd2+ω

dxdy
y2 ,

where the first term is the area between the arcs A1, B2 and straight line segment
joining d1, d2, d3.

Then

A(D)= 2π + 2 tan θ ln
2ω2(RA− l)

R2
A− l RA

+ 2 tan θ ln
R2

B + h RB

2µ2(RB + h)
= 2

(
π + ln

ω

µ

)
.

Now, we are interested in the difference α(∂D) − β(∂D). We can suppose the
horocycles H1,H2,H3 are the same, that is, they differ by a horizontal translation.
With this choice of the horocycles, we have α(∂D)−β(∂D)= |A2| − |B1|, where
|A2| and |B1| are the lengths of the compact arcs of A2, B1, respectively, which
are outside of the horodisks bounded by H1, H2 and H3. Moreover, we will sup-
pose that ω ≥ µ and that Hi ∩ϒi = (xdi , µ/2), where ϒi is the vertical geodesic
through xdi . It is possible to show that the intersection of B1 and H1 occurs at
(xd1, 0) and at

(x0, y0)=
(
−

√
R2

B − (y0− h)2+ xd1 +µ,
8µ3

17µ2+ 16h2− 8hµ

)
,

where B1 and H1 satisfy the equations (x − (xd1 + µ))
2
+ (y − h)2 = R2

B and
(x − xd1)

2
+ (y−µ/4)2 = µ2/16 respectively.

Similarly, the intersection of A2 and H2 occurs at (xd2, 0) and at

(7) (x1, y1)=
(
−

√
R2

A− (y1+ l)2+ xd2 +ω,
8ω2µ

16ω2+µ2+ 16l2+ 8µl

)
,

where A2 and H2 satisfy the equations (x − (xd2 + ω))
2
+ (y + l)2 = R2

A and
(x − xd2)

2
+ (y−µ/4)2 = µ2/16, respectively.

Then, the length of B1 with respect to the horocycles H1,H2 is

|B1| = 2
∫ RB+h

y0

RB

y
√

R2
B − (y− h)2

dy

=
2

cos θ

(
− ln RB − ln y0+ ln

(
µ
√

R2
B − (y0− h)2+µ2

+ hy0
))
.
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A1

B1

A2

B2

H1 H2 H3

H4

(xd1 ,
µ

2 ) (xd2 ,
µ

2 ) (xd3 ,
µ

2 )

Figure 4. The domain D with the horocycles.

Analogously, the length of A2 with respect to the horocycles H2,H3 is

|A2| = 2
∫ RA−l

y1

RA

y
√

R2
A− (y+ l)2

dy

=
2

cos θ

(
− ln RA− ln y1+ ln

(
ω
√

R2
A− (y1+ l)2+ω2

− ly1
))
.

So α(∂D)−β(∂D)− 2HA(D) only depends on µ and ω, because θ also depends
on µ or ω. Thus consider, for each µ ∈ R, µ≥ 3 fixed, the function

F(ω)= α(∂D)−β(∂D)− 2HA(D).

We will show that at any moment this function is zero. We know for µ = ω that
F(ω)=−2HA(D) < 0; thus we must show that for ω large enough, F(ω) > 0, so
there exists a ω0 such that F(ω0)= 0 for each µ≥ 3 fixed. We have

F(ω)= 2
cos θ

(
− ln RA− ln y1+ ln

(
ω
√

R2
A− (y1+ l)2+ω2

− ly1
)
.

+ ln RB + ln y0− ln
(
µ
√

R2
B − (y0− h)2+µ2

+ hy0
))

− 4H
(
π + ln ω

µ

)
=

2
cos θ

(
ln
( 1

RA y1

(
ω
√

R2
A− (y1+ l)2+ω2

− ly1
))

+ ln
RB y0

µ
√

R2
B − (y0− h)2+µ2+ hy0

)

− 4Hπ − 2 sin θ ln ω
µ
.



64 ABIGAIL FOLHA AND SOFIA MELO

The second logarithmic term in the big parentheses is constant, because we are
supposing µ fixed. As for the remaining terms, we substitute the value of y1 from
(7) and find that the difference

2
cos θ

ln
( 1

RA y1

(
ω
√

R2
A− (y1+ l)2+ω2

− ly1
))
− 2 sin θ ln ω

µ

is strictly positive and increasing, so the function F is increasing and unbounded.
Thus there is a ω0 such that F(ω0)= 0. �
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