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AND SMOOTH FUNCTIONS

BUMA L. FRIDMAN AND DAOWEI MA

We study the convergence of a formal power series of two variables if its
restrictions on curves belonging to a certain family are convergent. Also
analyticity of a given C∞ function f is proved when the restriction of f on
analytic curves belonging to some family is analytic. Our results generalize
two known statements: a theorem of P. Lelong and the Bochnak–Siciak
theorem. The questions we study can be regarded as problems of Osgood–
Hartogs type.

Introduction

Hartogs’ theorem is a fundamental result in complex analysis: A function f in Cn ,
where n > 1, is holomorphic if it is holomorphic in each variable separately. That
is, f is holomorphic in Cn if for each axis it is holomorphic on every complex
line parallel to this axis. In the last interpretation this statement leads to a number
of questions described in an article by K. Spallek, P. Tworzewski, T. Winiarski
[Spallek et al. 1990] in the following way: “Osgood–Hartogs-type problems ask
for properties of ‘objects’ whose restrictions to certain ‘test-sets’ are well known”.
The article has a number of examples of such problems. Here are two classical
examples: a theorem of P. Lelong and one proved independently by J. Bochnak
and J. Siciak.

Theorem [Lelong 1951]. A formal power series g(x, y) converges in some neigh-
borhood of the origin if there exists a set E ⊂ C of positive capacity such that, for
each s ∈ E , the formal power series g(x, sx) converges in some neighborhood of
the origin (of a size possibly depending on s).

Theorem [Bochnak 1970; Siciak 1970]. Let f ∈ C∞(D), where D is a domain in
Rn containing 0. Suppose f is analytic on every line segment through 0. Then f is
analytic in a neighborhood of 0 (as a function of n variables).

In many articles the same two “objects” are usually considered: power series and
functions of several variables. The test sets in many cases form a family of linear
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subspaces of lower dimension. For example, articles by S. S. Abhyankar, T. T. Moh
[1970], N. Levenberg and R. E. Molzon, [1988], R. Ree [1949], A. Sathaye [1976],
M. A. Zorn [1947] and others consider the convergence of formal power series of
several variables provided the restriction of such a series on each element of a
sufficiently large family of linear subspaces is convergent. T. S. Neelon [2009;
2006] proved that a formal power series is convergent if its restrictions to certain
families of curves or surfaces parametrized by polynomial maps are convergent.
The articles [Bochnak 1970; Neelon 2004; 2009; Siciak 1970], among others,
prove that a function of several variables is highly smooth (or even analytic) if it
is smooth enough on each of a sufficiently large set of linear or algebraic curves
(or surfaces of lower dimension). The publication by E. Bierstone, P. D. Milman,
A. Parusiński [Bierstone et al. 1991] provides an interesting example of a noncon-
tinuous function in R2 that is analytic on every analytic curve.

In this article we also consider both: power series with complex coefficients
and functions in a neighborhood of the origin in R2. As test sets we consider
separately two families. They are derived the following way. First consider a
nonlinear analytic curve 0 = {x, γ (x)}, with γ (0) = 0. One family, =1, is a set
of dilations of 0: =1 = {sx, sγ (x)}, s ∈ 31}, where 31 ⊂ R is a closed subset of
C of positive capacity. The other family, =2, consists of curves 0θ , each of which
is a rotation of 0 about the origin by an angle θ ∈ 32, where 32 is a subset of
[0, 2π ] of positive capacity. If f is C∞ and its restriction on every curve of =1 can
be extended as an analytic function in a neighborhood of that curve, then f is real
analytic in a neighborhood of the origin in the region covered by the curves of =1.
The same is true regarding =2. (For precise statements see Theorems 2.1 and 2.2).

We start however with two results related to power series. First we prove a gen-
eralization of P. Lelong’s theorem. Namely, if g(x, y) is a formal power series and
h(x), h(0)= 0, is a convergent power series such that the inhomogeneous dilations
g(sσ x, sτh(x)) are convergent for sufficiently many s (σ, τ are fixed), then g(x, y)
is convergent (for the precise statement see Theorem 1.1). Theorem 1.2 is devoted
to a reverse claim: if h(x) is a formal power series and g(sσ x, sτh(x)) converges
for sufficiently many s, then h(x) is convergent.

The results in this paper do not carry over in a routine way to dimensions greater
than two. We intend to study corresponding problems for higher dimensions in
future work.

1. On the convergence of a power series in two variables

Let C[[x1, x2, . . . , xn]] denote the set of (formal) power series

g(x1, . . . , xn)=
∑

k1,...,kn≥0

ak1...kn xk1
1 · · · x

kn
n
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in n variables with complex coefficients. Let g(0)= g(0, . . . , 0) denote the coeffi-
cient a0,...,0. A power series equals 0 if all of its coefficients ak1...kn are equal to 0.
A power series g ∈C[[x1, x2, . . . , xn]] is said to be convergent if there is a constant
C = Cg such that |ak1...kn | ≤ Ck1+···+kn for all (k1, . . . , kn) 6= (0, . . . , 0). If g is
convergent, then it represents a holomorphic function in some neighborhood of 0
in Cn . If g ∈ C[[x1, x2, . . . , xn]] and s ∈ Cn , then gs(t) := g(s1t, . . . , snt) is well
defined and belongs to C[[t]]. By [Zorn 1947], g is convergent if and only if gs(t)
is convergent for each s ∈ Cn . The partial derivatives of a power series are well
defined even when it is divergent (not convergent). For example, if g ∈ C[[x, y]]
and if g =

∑
ai j x i y j , then

g′y =
∂g
∂y
=

∑
jai j x i y j−1.

Thus g′y 6= 0 simply means that g 6∈ C[[x]]. If g ∈ C[[x, y]], and if h ∈ C[[x]] with
h(0)= 0, then g(x, h(x)) is a well-defined element of C[[x]].

As mentioned above, a lot of work has been done on the convergence of a power
series with the assumption that the series is convergent after restriction to suffi-
ciently many subspaces; see [Abhyankar and Moh 1970; Levenberg and Molzon
1988; Lelong 1951; Siciak 1970; 1982].

We consider substitution of a power series y = h(x) into an inhomogeneous
dilation g(sσ x, sτ y) of a series g(x, y), where σ, τ are integers.

Let
Q :=

{
(σ, τ ) : σ, τ ∈ Z, (σ, τ ) 6= (0, 0)

}
.

Let cap E denote the (logarithmic) capacity of a closed set E in the complex plane.

We now present our two main theorems.

Theorem 1.1. Let g∈C[[x, y]] be a power series of two variables x, y, let h∈C[[x]]
be a nonzero convergent power series with h(0) = 0, let E be a closed subset of
C r {0} with cap E > 0, and let (σ, τ ) be a pair in the set Q. Assume, in case
στ > 0, that h(x) is not a monomial of the form bk xk with σk − τ = 0. Suppose
that g(sσ x, sτh(x)) is convergent for each s ∈ E. Then g is convergent.

Theorem 1.2. Let g ∈ C[[x, y]] be a power series with g′y 6= 0, let h ∈ C[[x]]
be a nonzero power series with h(0) = 0, let E be a closed subset of C r {0}
with cap E > 0, and let (σ, τ ) be a pair in the set Q with στ > 0. Suppose that
g(sσ x, sτh(x)) is convergent for each s ∈ E. Then h is convergent.

The examples in Section 3 show that if any condition in these two theorems
is dispensed with, the resulting statement is false. We now prove some auxiliary
results.

The following theorem is a consequence of a result by B. Malgrange [1966].
We present an independent short proof.
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Theorem 1.3. Let g ∈ C[[x1, . . . , xn, y]] with g′y 6= 0, and let h ∈ C[[x1, . . . , xn]]

with h(0) = 0. Suppose that g and g(x1, . . . , xn, h(x1, . . . , xn)) are convergent.
Then h must be convergent.

Proof. Let f ∈ C[[x1, . . . , xn, y]] be defined by

f (x1, . . . , xn, y)= g(x1, . . . , xn, y)− g(x1, . . . , xn, h(x1, . . . , xn)).

Then f is convergent and f (x1, . . . , xn, h(x1, . . . , xn))= 0. Fix s = (s1, . . . , sn)∈

Cn . Let fs(t, y) ∈ C[[t, y]] be defined by fs(t, y) = f (s1t, . . . , snt, y). Then
fs(t, y) is convergent and fs(t, hs(t))= 0. By the Weierstrass preparation theorem
(see [Griffiths and Harris 1978, p. 8], for example), there is a nonnegative integer k
such that fs(t, y)= tk P(t, y)Q(t, y), where P(t, y)= ym

+a1(t)ym−1
+· · ·+am(t)

is a polynomial in y with coefficients being convergent power series in t , and
Q(t, y) is a convergent power series with Q(0, 0) 6= 0. Hence P(t, hs(t))= 0. By
[Fuks 1963, Theorem 4.12, p. 73] there is a positive integer r such that P(tr , y)
splits into linear factors in y:

P(tr , y)= (y− u1(t)) · · · (y− um(t)),

where the u j (t) are convergent power series. Thus

0= P(tr , hs(tr ))= (hs(tr )− u1(t)) · · · (hs(tr )− um(t)).

It follows that hs(tr ) = u j (t) for some j . Therefore hs(t) is convergent. Since
hs(t) is convergent for each s ∈ Cn , the series h(x1, . . . , xn) must be convergent.

�

Let E be a closed bounded set in the complex plane. The transfinite diameter
of E is defined as

d∞(E)= lim
n

(
max

{∏
i< j
|zi − z j |

2/n(n−1)
: z1, . . . , zn ∈ E

})
.

For a probability measure µ on the compact set E , the logarithmic potential of µ is

pµ(z)= lim
N→∞

∫
min

(
N , log 1

|z−ζ |

)
dµ(ζ ),

and the capacity of E is defined by

cap E = exp(− min
µ(E)=1

sup
z∈C

pµ(z)).

It turns out that d∞(E) = cap E [Ahlfors 1973, pp. 23–28]. It follows from the
definition of the transfinite diameter that, for E1 ⊃ E2 ⊃ · · · ,

E =
⋂

En H⇒ cap E = lim(cap En),
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and from the definition of the capacity that, if E1 ⊂ E2 ⊂ · · · ,

(1) E =
⋃

En H⇒ cap E = lim(cap En).

If E is a closed set, its capacity can be defined by

cap E = lim
n

cap(E ∩ {|x | ≤ n}).

Lemma 1.4 (Bernstein inequality). Let E be a compact set in the complex plane
with cap E > 0. Then there exists a positive constant C = CE , depending only on
E , such that for each positive integer n and each polynomial P(z)=

∑
akzk
∈C[z]

of degree n, each coefficient ak , 0≤ k ≤ n, of P(z) satisfies

|ak | ≤ Cn max
z∈E
|P(z)|.

Proposition 4.6 in [Neelon 2009] can be used to prove this statement. Also
(we thank Nessim Sibony for pointing this out to us) this lemma follows from
considerations in [Sibony 1985]. We present here an independent short proof.

Proof. Without loss of generality we assume that maxz∈E |P(z)| = 1. Let � be
the unbounded component of the complement of E in C. It is known that � has a
Green’s function with a pole at∞ [Ahlfors 1966; 1973, pp. 25–27]. The Green’s
function is harmonic in �, 0 on ∂�, and its asymptotic behavior at∞ is

u(z)= log |z| − logα+ o(1),

where α := cap E . On applying the maximum principle to the subharmonic func-
tion log |P(z)|−(n+ε)u(z), we obtain |P(z)| ≤ enu(z) for z ∈�. Choose an R> 1
so that E ⊂ {z : |z|< R}. Set C =max|z|=R eu(z). Then |P(z)| ≤Cn if |z| = R, and

|ak | =

∣∣∣∣ 1
2π i

∫
|z|=R

P(z)
zk+1 dz

∣∣∣∣≤ R−k max
|z|=R
|P(z)| ≤ Cn.

This proves the lemma. �

Proof of Theorem 1.1. We assume that a00 = g(0, 0) = 0, that E is bounded, that
gcd(σ, τ ) = 1, that σ ≥ 0, and, in case σ = 0, that τ = −1. This causes no loss
of generality. Indeed, if E is unbounded, set En = {s ∈ E : n ≥ |s| ≥ 1/n}. Since
lim cap En=cap E>0, the set En has positive capacity when n is sufficiently large.
On replacing E by En , we obtain that 0 6∈ E and E is bounded. If d :=gcd(σ, τ )>1,
we can replace (σ, τ ) by (σ/d, τ/d), and E by the set {s ∈ C : sd

∈ E}. Finally,
if σ < 0, or if (σ, τ ) = (0, 1), we can replace (σ, τ ) by (−σ,−τ), and E by
{s ∈ C : s−1

∈ E}.
Let

h(x)=
∞∑

i=1

bi x i .



72 BUMA L. FRIDMAN AND DAOWEI MA

Then

h(x) j
=

∞∑
k= j

c jk xk,

where

c jk =
∑

l1+···+l j=k

bl1 · · · bl j .

Note that c jk = 0 for k < j . Hence

g(sσ x, sτh(x))=
∑
i, j,k

ai j c jksσ i+τ j x i+k
=

∞∑
p=1

( (σ+τ+)p∑
q=−τ− p

dpqsq
)

x p,

where τ+ =max(0, τ ), τ− =−min(0, τ ), and

(2) dpq =
∑

σ i+τ j=q

ai j c j,p−i .

For each p ≥ 1 and each q ∈ Z, the sum (2) contains only a finite number
of nonzero terms. Let u p(s) =

∑
q dpqsq . Then sτ

− pu p(s) is a polynomial in
s of degree at most (σ + |τ |)p, and g(sσ x, sτh(x)) =

∑
u p(s)x p. For s ∈ E ,

since g(sσ x, sτh(x)) is convergent, its coefficients u p(s) satisfy |u p(s)| ≤ C p
s for

some positive constant Cs , possibly depending on s, and p = 1, 2, . . . . Set, for
n = 1, 2, . . . ,

En = {s ∈ E : |u p(s)| ≤ n p for all p > 0}.

The sequence (En) is an increasing sequence of closed sets. Since lim cap En =

cap E > 0, the set En has positive capacity for some n. On replacing E by En , we
obtain |u p(s)| ≤ n p for s ∈ E and p = 1, 2, . . . . The polynomial sτ

− pu p(s) is of
degree at most (σ + |τ |)p, and satisfies

|sτ
− pu p(s)| ≤ Mτ− pn p, s ∈ E,

where M=maxE |s|. By Lemma 1.4, the coefficients of the above mentioned poly-
nomial satisfy |dpq | ≤ C (σ+|τ |)p

E Mτ− pn p, where CE is the constant in Lemma 1.4,
depending only on E . Set C = Cσ+|τ |

E Mτ−n. Then

(3) |dpq | ≤ C p.

Let

(4) gq(x, y)=
∑

σ i+τ j=q

ai j x i y j ,
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and let φq(x) = gq(x, h(x)), for q ∈ Z. Then gq ∈ C[[x, y]] in general, and it is a
polynomial when σ, τ > 0. It is straightforward to verify that

(5) φq(x)= gq(x, h(x))=
∞∑

p=1

dpq x p.

The series φq(x) is convergent because of (3). Choose a positive number r < 1/C ,
where C is the constant in (3), so that h(x) converges in a neighborhood of the
closed ball {x ∈C : |x |≤ r} and h(x) 6=0 when 0< |x |≤ r . Let m=min|x |=r |h(x)|.
Then m > 0. For x ∈ C, |x | ≤ r ,

|φq(x)| ≤
∑
|dpq ||x |p ≤

∑
(Cr)p

=
1

1−Cr
.

We now consider two cases, depending on whether στ is positive.

Case (i): σ > 0, τ > 0. Let

(6) �q = {(i, j) : i, j ∈ Z, i, j ≥ 0, σ i + τ j = q}.

Let ωq be the cardinality of �q . It is clear that ωq ≤ q + 1. Fix a q ≥ 1 so that
ωq > 0. Let (λ, µ) be the element of �q so that µ is the minimum. Then

�q = {(λ− kτ, µ+ kσ) : k = 0, 1, . . . , ωq − 1},

and

gq(x, y)= xλyµ
ωq−1∑
k=0

aλ−kτ, µ+kσ (x−τ yσ )k .

Let

ψq(t)=
ωq−1∑
k=0

aλ−kτ, µ+kσ tk,

so that gq(x, y)= xλyµψq(x−τ yσ ), and

(7) ψq(x−τh(x)σ )= x−λh(x)−µφq(x).

Let u(x) = x−τh(x)σ , S = {x ∈ C : |x | = r}, and F = u(S). Since h(x) is not
a monomial of the form bk xk with σk− τ = 0, the function u(x) is a nonconstant
meromorphic function, hence F has positive capacity. For t = x−τh(x)σ ∈ F , we
obtain, by (7), that

(8) |ψq(t)| ≤
r−λm−µ

1−Cr
≤
(1+ r−1

+m−1)λ+µ

1−Cr
.

The summand 1 in the right-hand side of the above inequality is included to ensure
that the numerator is greater than 1 as needed later. Hence |ψq(t)| ≤ Lq on F ,
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where

L =
1+ r−1

+m−1

1−Cr
,

for λ+µ ≤ q . By Lemma 1.4, the coefficients of ψq are bounded by LqCωq−1
F .

Thus for (i, j) ∈�q ,

|ai j | ≤ LqCωq−1
F ≤ (L +CF )

2q
≤ (L +CF )

2(σ+τ)(i+ j),

or |ai j | ≤ K i+ j , where K = (L +CF )
2(σ+τ). The number K does not depend on

q . It follows that
|ai j | ≤ K i+ j , if σ i + τ j ≥ 1.

This proves that g is convergent.

Case (ii): σ ≥ 0, τ ≤ 0. In this case the set �q in (6) can be written as

�q = {(λ− kτ, µ+ kσ) : k = 0, 1, 2, . . . },

where (λ, µ) is the element in �q with least value of µ when σ > 0, and (λ, µ)=
(0,−q) when (σ, τ )= (0,−1). Let

ψq(t)=
∞∑

k=0

aλ+k|τ |, µ+kσ tk .

Then gq(x, y)= xλyµψq(x |τ |yσ ). The formal power series ψq(t) satisfies φq(x)=
xλh(x)µψq(x |τ |h(x)σ ). Since xλh(x)µ and φq(x) are convergent, the series

α(x) := ψq(x |τ |h(x)σ )

has to be convergent. Write x |τ |h(x)σ = cxν + · · · , c 6= 0. There is a power series
β(x), also convergent in a neighborhood of {|x | ≤ r}, such that x |τ |h(x)σ = β(x)ν .
Reducing r if necessary, we assume that β(x) is univalent in a neighborhood of
{|x | ≤ r}. Note that the reduction in the value of r is independent of q . The set
{β(x) : |x | < r} contains an open disc {z ∈ C : |z| < δ}. The series β(x) has an
inverse γ (z), convergent in {z∈C : |z|<δ}, such that γ (β(x))= x and β(γ (z))= z.
Now ψq(zν) is converge nt in {|z| < δ}, so ψq(t) is convergent in {|t | < δν}. Let
t ∈ C with |t |< δν . Then t = zν for some z with |z|< δ, and z = β(x) for some x
with |x |< r . Hence

|ψq(t)| = |ψq(β(x)ν)| = |α(x)| ≤max
|x |=r
|α(x)|.

Thus

sup
|t |<δν
|ψq(t)| ≤max

|x |=r

∣∣∣∣ φq(x)
xλh(x)µ

∣∣∣∣≤ r−λm−µ

1−Cr
.
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By the Cauchy estimates, the coefficients of ψq satisfy

|aλ+k|τ |, µ+kσ | ≤
r−λm−µ

1−Cr
δ−kν
≤
(1+ r−1

+m−1
+ δ−ν)λ+µ+k

1−Cr
.

The summand 1 in the right-hand side of the above inequality is included to ensure
that the numerator is greater than 1 as needed later. It follows that, for (i, j) ∈�q ,

|ai j | ≤

(
1+ r−1

+m−1
+ δ−ν

1−Cr

)i+ j

.

The number K := (1+r−1
+m−1

+δ−ν)/(1−Cr) does not depend on q. Therefore,
|ai j | ≤ K i+ j for all (i, j). This proves that g is convergent. �

Proof of Theorem 1.2. This proof and the proof of Theorem 1.1 share the discussion
through Equation (5). Note that the convergence of h has not been used in the
derivation of (5). We define polynomials gq(x, y) by (4). Then gq(x, h(x)) are
convergent by (3) and (5). Since g′y(x, y) 6= 0, ∂gq/∂y 6= 0 for some q . It follows
from Theorem 1.3 that h(x) is convergent. �

For h ∈ C[[x]] with h(0)= 0, let hs(x)= s−1h(sx).

Corollary 1.5. Let g ∈ C[[x, y]] be a power series, let h ∈ C[[x]] be a nonzero and
nonlinear power series with h(0) = 0, and let E be a closed subset of R r {0}
with cap E > 0. Suppose that g(x, hs(x)) is convergent for each s ∈ E. Then g is
convergent.

Proof. If g′y = 0 then the statement holds. Suppose g′y 6= 0. For s 6= 0, g(x, hs(x))
is convergent if and only if g(s−1x, hs(s−1x)) = g(s−1x, s−1h(x)) is convergent.
By Theorem 1.2, h is convergent. Then g is convergent by Theorem 1.1. �

For f ∈ C[[x, y]] and θ ∈ [0, 2π ], write

fθ (x, y)= f (x cos θ − y sin θ, x sin θ + y cos θ).

Theorem 1.6. Let f ∈ C[[x, y]] be a power series, let h ∈ C[[x]] be a convergent
power series with h(0)= 0, and let E be a closed subset of [0, 2π ] with cap E > 0.
Suppose that fθ (x, h(x)) is convergent for each θ ∈ E. Then f is convergent.

Proof. Let g(x, y)= f ((x+ y)/2,−i(x− y)/2). Then f (x, y)= g(x+ iy, x− iy)
and fθ (x, y)= g(eiθ (x+ iy), e−iθ (x− iy)). Let φθ (x)= fθ (x, h(x))= g(eiθ (x+
ih(x)), e−iθ (x − ih(x))). Then φθ (x) is convergent for θ ∈ E . The x terms of the
two series x±ih(x) cannot both be zero. Say, the x term of x+ih(x) is nonzero. So
x+ih(x) has an inverse ψ(x) which is a convergent power series such that ψ(x)+
ih(ψ(x))= x . Set ψ(x)− ih(ψ(x))=ω(x). Then φθ (ψ(x))= g(eiθ x, e−iθω(x))
is convergent for θ ∈ E . It follows that g(sx, s−1ω(x)) is convergent for each s in
the set {eiθ

: θ ∈ E}, which has positive capacity. By Theorem 1.1, g is convergent.
Therefore f is convergent. �
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2. Analytic functions in R2

Suppose that f (x, y), φ(x), q(x) are C∞ functions defined near the origin with
φ(0)= 0. Let f̂ , φ̂, q̂ denote the Taylor series at 0 of those functions. Then f̂ lies
in C[[x, y]] and φ̂, q̂ lie in C[[x]]. By the chain rule, f (x, φ(x)) = q(x) implies
f̂ (x, φ̂(x)) = q̂(x). We consider here complex-valued analytic functions of real
variables. If I is an interval and if 0 = {(t, γ (t)) : t ∈ I } is a curve, the dilation by
s of 0 is

0s = {(st, sγ (t))} = {(t, γ1/s(t))}, γs(t)= s−1γ (st).

Theorem 2.1. Let f be a C∞ function defined in an open set � ⊂ R2 containing
the origin, let 0 = {(t, φ(t))} be a nonlinear analytic curve in R2 passing through
or ending at the origin, and let E be a closed subset of Rr{0} of positive capacity.
Suppose that for each s ∈ E , there is a real analytic function Fs defined in a
neighborhood Qs of 0s ∩� in R2 such that f and Fs coincide on 0s ∩�. Then
there is a neighborhood U of the origin, and a real analytic function F defined on
U that coincides with f on U ∩3, where 3 :=

⋃
s∈E 0s .

Proof. Without loss of generality we assume that φ(0)=0. Since f and Fs coincide
on 0s , we have

(9) f (x, φ1/s(x))= Fs(x, φ1/s(x)).

Let g, h denote the Taylor series of f , φ respectively. Then (9) implies

g(x, h1/s(x))= Fs(x, h1/s(x)).

Hence g(x, h1/s(x)) is convergent for s ∈ E . By Corollary 1.5, g is convergent.
Thus g represents a real analytic function F in some neighborhood U of the ori-
gin that satisfies F(x, h1/s(x)) = Fs(x, h1/s(x)). It follows that the real analytic
function F coincides with f on U ∩3. �

Note that f does not need to be analytic in a neighborhood of the origin.
If 0 = {(t, φ(t) : t ∈ I } is a curve, its rotation by θ is

0θ = {(t cos θ +φ(t) sin θ,−t sin θ +φ(t) cos θ) : t ∈ I }.

Theorem 2.2. Let f be a C∞ function defined in an open set � ⊂ R2 containing
the origin, let 0= {(t, φ(t))} be an analytic curve in R2 passing through or ending
at the origin, and let E be a closed subset of [0, 2π ] of positive capacity. Suppose
that for each θ ∈ E , there is a real analytic function Fθ defined in a neighborhood
Qθ of 0θ ∩ � in R2 such that f and Fθ coincide on 0θ ∩ �. Then there is an
analytic function F defined in some neighborhood U of the origin that coincides
with f on U ∩3, where 3 :=

⋃
θ∈E 0θ .
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Proof. The proof is similar to that of Theorem 2.1. Let

gθ (x, y) := g(x cos θ + y sin θ,−x sin θ + y cos θ).

Then gθ (x, h(x)) is convergent for each θ ∈ E . By Theorem 1.6, g is convergent.
�

Corollary 2.3. Let f be a C∞ function defined in a neighborhood of 0 in R2, and
let 0 = {(t, φ(t))} be an analytic curve passing through or ending at the origin in
R2. Suppose that for each θ ∈ [0, 2π ], the restriction of f to 0θ extends to a real
analytic function Fθ in a neighborhood Qθ of the origin. Then f is analytic in a
neighborhood of the origin.

Remark 2.4. We can see from the proofs that in Theorem 2.1, Theorem 2.2, and
Corollary 2.3 the hypothesis on f can be weakened to f having a Taylor series
at the origin in the sense that there are numbers ai j such that for each positive
integer n,

f (x, y)−
∑

i+ j≤n

ai j x i y j
= o((x2

+ y2)n/2).

3. Examples

Here we show that the restrictions in our main theorems are necessary.

Example 3.1. P. Lelong [1951] proved that if E is a set with cap E = 0 then
one can find a divergent power series g(x, y) such that for all s ∈ E , g(x, sx) is
convergent. For completeness we present here a construction of such an example.
Since cap E = 0, there is a sequence of positive numbers (δn) with lim δn = 0, and
a sequence of polynomials (Pn(x)) with maxx∈E |P(x)| ≤ δn

n , where

Pn(x)=
n∑

j=0

bnj xn− j ,

with bn0 = 1. Let

ai j = δ
−(i+ j)
i+ j bi+ j,i and g(x, y)=

∑
ai j x i y j .

Then
g(x, sx)=

∑
δ−n

n Pn(s)xn.

For s ∈ E we have |δ−n
n Pn(s)| ≤ 1, so g(x, sx) is convergent. Note that a0 j = δ

− j
j ,

which obviously implies that g is divergent, since lim δ j = 0.

Example 3.2. We show that the condition in Theorem 1.1 that h(x) is not a mono-
mial of the form bk xk with σk−τ =0 cannot be dispensed with. Let σ, k be positive
integers, and φ∈C[[x]] a divergent series with φ(0)=0. Let g(x, y)=φ(xk)−φ(y)
and h(x)= xk . Then g is divergent; but g(sσ x, sσkh(x))= 0 for each s ∈ C.
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Example 3.3. We show that the hypothesis in Theorem 1.1 that h(x) is convergent
cannot be dispensed with when στ ≤ 0. (By Theorem 1.2 that hypothesis can be
dispensed with when στ > 0.) The example also shows that Theorem 1.2 fails for
στ ≤ 0.

Suppose that τ ≤ 0, σ > 0. Let u(x) = x + · · · be a divergent series. Let
h(x), φ(x) be the series satisfying φ(u(x)) = x and x |τ |h(x)σ = u(xσ+|τ |). Then
φ, h are divergent. Let f (x, y)= φ(x |τ |yσ ). Then f is divergent; but

f (sσ x, sτh(x))= xσ+|τ | for each s ∈ C r {0}.

Now we consider the case where σ = 0, τ = 1. Let h(x)= x+· · · be a divergent
series, and let φ(x) be the series satisfying h(x)φ(x) = x2. Then φ is divergent.
Let f (x, y)= φ(x)y. Then f is divergent; but f (x, sh(x))= sx2 for each s ∈ C.
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