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We prove that BDiff+(S2, {x1, . . . , xn+1}) is a K (π, 1) space, where π is the
mapping class group of an (n+1)-punctured sphere. As a consequence we
derive that the center-projecting braid monodromy of a fiber-type projec-
tive line arrangement determines the diffeomorphic type of its complement.

1. Introduction

A complex arrangement of hyperplanes A is a finite collection of C-linear sub-
spaces of dimension n − 1 in Cn . Denote by M(A) = Cn

−
⋃
{H : H ∈ A} the

complement of A. The theory of arrangements of hyperplanes is not only closely
related to singularity theory, algebraic geometry and hypergeometric function the-
ory, but also has its own interesting questions. For example, one of the central
problems is to find the relationship between the topological structure and combi-
natorial structure of an arrangement. In other words, one wants to understand the
topological properties of M(A) and how to classify the arrangements according
to their combinatorics. To study such problems, mathematicians have developed
many techniques, for example, the lattice-isotopy theorem and braid monodromy
method which will be used in this paper. The lattice-isotopy theorem was used
in [Jiang and Yau 1994; Wang and Yau 2005; 2007; 2008; Yau and Ye 2009] to
derive the structures of so-called nice arrangements and prove that their differential
structures are determined by their combinatorics. Braid monodromy method has
been widely used to study the topology of complements of plane algebraic curves
and line arrangements; see, for example, [Moishezon 1981; Cohen and Suciu 1997;
Dung 1999; Kulikov and Taı̆kher 2000; Cohen 2001; Artal Bartolo et al. 2003;
2007]. However, there are still many kinds of arrangements for which we are
far from understanding the relationship between the topology and combinatorics.
This is true even in the case of a fiber-type projective line arrangement, that is,
the projectivization of a fiber-type hyperplane arrangement in C3. Cohen [2001]
studied the structure and properties of the fundamental group of the complement of
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a fiber-type arrangement. He showed that the Whitehead group of the fundamental
group of the complement of a fiber-type arrangement is trivial, which was con-
jectured by Aravinda, Farrell and Roushon [2000]. He also proved the conjecture
by Xicoténcatl [1997] on the structure of the Lie algebra associated to the lower
central series of the fundamental group. Besides that, we still don’t know whether
the combinatorics of a line arrangement determines the topology of its complement.

It is well known that fiber-type projective line arrangements are the same as
supersolvable projective line arrangements (see, for example, [Orlik and Terao
1992]). Moreover, Jiang et al. [2001] studied the geometric characterization of
supersolvable line arrangements in CP2. They showed that any fiber-type line
arrangement in CP2 has a center through which every multiple point of the ar-
rangement has a line in the arrangement passing. The complement of a fiber-type
projective line arrangement is a locally trivial fiber bundle with punctured sphere
as base and fibers. It is a natural question how to classify the complements of
fiber-type line arrangements in CP2 by center-projecting braid monodromies (see
Definition/Construction 4.1). One of the applications of such braid monodromies is
that the fundamental group of a fiber-type projective line arrangement is isomorphic
to the semidirect product of free groups Fm oφFn , where φ is the center-projecting
braid monodromy [Cohen 2001]. The purpose of this paper is to use this center-
projecting braid monodromy to study the topology of the complement.

It is well known that the braid monodromy determines the homotopy type of
the complement of an algebraic curve [Libgober 1986]. In this paper, we prove
that for a fiber-type projective line arrangement its center-projecting braid mon-
odromy determines even the diffeomorphic type of its complement, consequently,
determines the homotopy type.

Main Theorem. Let A1 and A2 be two fiber-type projective line arrangements. If
they have the same center-projecting braid monodromies, then their complements
are diffeomorphic.

The key ingredient of the proof is Proposition 3.1. It shows that the classifying
space of the structure group of the complement, the orientation-preserving diffeo-
morphism group Diff+(S2, {x1, x2, . . . , xn+1}) of S2 fixing the set {x1, x2, . . . , xn+1},
is a K (π, 1) space, where π is the mapping class group of a punctured sphere.
Morita [1987] explained that BDiff0(6g), where Diff0(6g) is the subgroup of dif-
feomorphisms of a Riemann surface 6g which can be deformed to the identity, is
contractible for g ≥ 2, using a result of Earle and Eells [1967]. However, in our
case, Earle and Eells’ result is not applicable.

2. The complements of fiber-type line arrangements in CP2

We begin by recalling some definitions which one can find in [Orlik 1992].
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Definition 2.1. A hyperplane arrangement A is called strictly linear fibered if,
after a suitable linear change of coordinates, the restriction of the projection of
M(A) to the first (n − 1) coordinates is a fiber bundle projection with base the
complement M(B) of an arrangement B in C(n−1), and fiber the complement C∗
of finitely many points in C3.

Definition 2.2. A 1-arrangement A1 of finitely points in C is fiber-type. An n-
arrangement is fiber-type if it is strictly linear fibered over a fiber-type (n−1)-
arrangement. A fiber-type projective line arrangement A∗ in CP2 is the projec-
tivization of a fiber-type 3-arrangement A3 in C.

Definition 2.3. Let A∗ be an arrangement in CP2 and c be a point in the lattice
L(A∗). The point c is called a center of A∗ if for any multiple point p of A∗ there
is a line l in A∗ connecting c and p.

Let A∗ be a fiber-type projective line arrangement with complement M(A∗).
We now recall some geometric characterizations of fiber-type line arrangements.

Theorem 2.4 [Terao 1986]. An arrangement A is fiber-type if and only if L(A) is
supersolvable.

Theorem 2.5 [Jiang et al. 2001]. Let A be a 3-arrangement. The lattice L(A) is a
supersolvable if and only if the projectivization A∗ has a center.

Using the above two theorems, the structure of the complements of fiber-type
projective line arrangements can be characterized as follows.

Remark 2.6 [Jiang et al. 2001]. Let c be the center of A∗. After a suitable linear
transformation, we may assume that c= (0 : 1 : 0) and that one of the lines passing
through c is the line at infinity, z = 0. We can view M(A∗) as a subset of C2.
Assume that the lines passing c are defined by the equations

z = 0, x = k1z, . . . , x = kmz,

and the rest of the lines in A∗ are

y = a1x + b1z, . . . , y = anx + bnz.

Therefore, M(A∗) is a fiber bundle over base X = CP1
− {k1, . . . , km,∞} and

with fibers Fx = CP1
− {a1x + b1, . . . , anx + bn,∞}, x ∈ X , under the first

coordinate projection C2
→ C. Moreover, this fiber bundle admits a structure

group Diff+(S2, {x1, . . . , xn, xn+1}).

Definition 2.7. Let A∗ be a fiber-type projective line arrangement in CP2. Let
c = (0 : 1 : 0) be the center of A∗. Denote by St(c) the set of lines in A∗ passing
through c. Define the subarrangement associated to A∗ as B=A∗−St(c).

Note that B can be viewed as an affine arrangement in C2
= CP2

− L∞. We
will construct the braid monodromy of B related to A∗ in Section 4.
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3. Classification of the complements of fiber-type line arrangements in CP2

as fiber bundles

For any differentiable fiber bundle with fiber F , let the group Diff+(F) be its
structure group, the group generated by all orientation preserving diffeomorphisms
of F equipped with topology. It is well-known that Diff+(F) is also a manifold.
Two differentiable fiber bundles p1 : E1 → B and p2 : E2 → B are isomorphic
if there exists an diffeomorphism h : E1 → E2 such that the following diagram
commutes:

E1
h - E2

B

p2

�

p1

-

The following natural bijection is a well-known fact:

{ isomorphism class of differentiable fiber bundles over X} ∼= [X, BDiff+(F)],

where [X, BDiff+(F)] is the set of homotopy classes of differentiable maps from X
to the classifying space BDiff+(F).

Note that the homotopy classes of continuous maps and that of differential maps
are canonically the same (see Corollary 3.8.18 in [Conlon 2001]). So the classifi-
cation of differentiable fiber bundles over X with structure group Diff+(F) lies in
the set of homotopy classes of continuous maps X→ BDiff+(F).

It is well known from obstruction theory (see for example Theorem 11 on page
428 in [Spanier 1981]) that if BDiff+(F) is a K (π, 1) space, then

[X, BDiff+(F)] ∼= homconj(π1(X), π1(BDiff+(F))

where homconj means the conjugacy classes of homomorphisms. Two homomor-
phisms f and g are in the same conjugacy class if and only if there is an inner
automorphism a of the target group such that f = a ◦g ◦a−1. In the following, we
will show that the classifying space of BDiff+(S2, {x1, . . . , xn+1}) is a K (π, 1)
space and the fundamental group is nothing but the mapping class group of an
(n+1)-punctured sphere, which is the group π0(Diff+(S2, {x1, . . . , xn+1})) of path
components of Diff+(S2, {x1, . . . , xn+1}); see, for example, Chapter 4 in [Birman
1974].

Proposition 3.1. BDiff+(S2, {x1, . . . , xn+1}) is a K (π, 1) space. Moreover,

π1(BDiff+(S2, {x1, . . . , xn+1}))= π0(Diff+(S2, {x1, . . . , xn+1}))

is the mapping class group of an (n+1)-punctured sphere.
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Proof. Let Diff+(S2, x1, . . . , xn+1) be the subgroup of Diff+(S2, {x1, . . . , xn+1})

consisting of diffeomorphisms fixing the base points xi , i = 1, . . . , n + 1. Then
Diff+(S2, x1, . . . , xn+1) is a normal subgroup in

Diff+(S2, {x1, . . . , xn+1})

with the symmetric group Sn+1 as its quotient. On the classifying space level, it
follows the fibration

BDiff+(S2, x1, . . . , xn+1)→ BDiff+(S2, {x1, . . . , xn+1})→ BSn+1;

see [Piccinini and Spreafico 1998, Theorem 6.1]. Since Sn+1 is a discrete group,
πi (Sn+1)= 0 for i ≥ 1. Then

πi (BSn+1)∼= πi−1(Sn+1)= 0

for i ≥ 2, which implies that BSn+1 is a K (Sn+1, 1)-space. The advantage of
working with Diff+(S2, x1, x2, . . . , xn+1) is that we can take xn+1 to be the point
at∞ and identify

Diff+(S2, x1, . . . , xn+1)∼= Diff+(S2
−{∞}, x1, . . . , xn)

with the group Diff+(R2, x1, . . . , xn) of diffeomorphisms of R2 that keep the n
points x1, . . . , xn fixed. The later is a better known group. Following from the
well-known criterion for classifying spaces [Steenrod 1999, Theorem 19.4; Cohen
1998, Proposition 2.15], we have another fibration

Diff+(R2)/Diff+(R2, x1, . . . , xn)→ BDiff+(R2, x1, . . . , xn)
f
−→ BDiff+(R2),

where f is defined by forgetting the n points. Consider the configuration space
Fn(R

2) of n points in R2:

Fn(R
2)= { (x1, . . . , xn) | xi ∈ R2 for i = 1, 2, . . . , n and xi 6= x j if i 6= j }.

It is easy to see that the fiber Diff+(R2)/Diff+(R2, x1, . . . , xn) equals Fn(R
2),

which can be considered as the quotient of the flowing homomorphism

Diff+(R2)→ Fn(R
2)

h 7→ (h(x1), . . . , h(xn)).

It is well known that the configuration space Fn(R
2) is a K (π, 1)-space and its

fundamental group is a braid group. On the other hand, by Theorem 1 in [Friberg
1973], Diff+(R2) has the same homotopy type as SO(2), which is homeomor-
phic to the circle S1. So π1(Diff+(R2)) ∼= π1(SO(2)) = Z and πi (Diff+(R2)) ∼=

πi (SO(2))= 0 for i ≥ 2. Hence to prove that

πi (BDiff+(R2, x1, . . . , xn))= 0
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for i ≥ 2, by using the long exact sequence of the fibration

πi (Fn(R
2)) - πi (BDiff+(R2, x1, . . . , xn)) - πi (BDiff+(R2))

∼=

πi−1(Diff+(R2))

∼=

πi−1(SO(2)),

it is enough to prove that the boundary map ∂ in the diagram

π2(BDiff+(R2))
∂- π1(Fn(R

2))

π1(Diff+(R2))

∼=

? ϕ

-

is injective. The map π1(Diff+(R2))
ϕ
−→ π1(Fn(R

2)) can be identified with the
induced homomorphism given by

Diff+(R2)→Fn(R
2)

h 7→(h(x1), . . . , h(xn)).

From this interpretation, it is easy to see that a generator of π1(Diff+(R2)) is
mapped to a nontrivial element in π1(Fn+1(R

2)). Thus ∂ is injective and hence
BDiff+(S2, x1, . . . , xn+1) is a K (π, 1)-space. So BDiff+(S2, {x1, . . . , xn+1}) is
also a K (π, 1)-space and

π1(BDiff+(S2, {x1, . . . , xn+1}))= π0(Diff+(S2, {x1, . . . , xn+1}))

is the mapping class group of an (n+1)-punctured sphere. �

It follows immediately that:

Theorem 3.2. Let B= S2
\{k1, k2, . . . , km+1} and F= S2

\{x1, x2, . . . , xn+1}. The
isomorphic classes of differentiable fiber bundles over B with fiber F and structure
group G =Diff+(F) are in one-to-one correspondence with the conjugacy classes
of homomorphisms from π1(B) to π1(BG) = Mn , where Mn is the mapping class
group of an n-punctured sphere.

4. Application of braid monodromy

Before we prove our Main Theorem, we will give the definition of center-projecting
braid monodromy of a fiber-type projective line arrangement and some useful re-
sults [Cohen and Suciu 1997; Dung 1999; Artal Bartolo et al. 2003].
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Let fi (x)= ai x + bi , 1≤ i ≤ n, be the linear functions of the lines not passing
through the center c of a fiber-type projective line arrangement. Define

f : C \ {k1, . . . , km} → Fn(C)

to be the map f (x)= ( f1(x), f2(x), . . . , fn(x)).

Definition/Construction 4.1. Let A∗ be a fiber-type line arrangement in CP2 with
center c and let B be the subarrangement associated to A∗. Choose the projection
from the complement M(B) in C2 to C so that it coincides with the projection
from M(A∗) to a CP1 through the center c. Let∞, k1, k2, . . . , km be the points in
CP1 that are the projective images of the lines in A∗ passing through c. The braid
monodromy of B is the homomorphism ϕ : π1(C \ {k1, . . . , km})→ Bn induced
by the map f , where Bn is the braid group of n strings (see [Birman 1974]) and
n is the number of the lines in A∗ not passing through the center c. Such a braid
monodromy is called the center-projecting braid monodromy of the fiber-type line
arrangement A∗ in CP2.

One can easily check that the braid monodromy of B coincides with the mon-
odromy of the fiber bundle M(A∗).

This fact about the bundle structure of M(A∗) is a theorem of Cohen [2001]:

Theorem 4.2. The complement of A∗ with the natural bundle structure is equiva-
lent to the pullback of the bundle of configuration spaces pn+1 : Fn+1(C)→ Fn(C)

via f .

The next corollary follows immediately from Theorem 4.2 and Proposition 3.1.

Corollary 4.3. Let g : π1(B)→ Mn be a classifying morphism representing the
isomorphism class of the bundle M(A∗)→ B and q : Bn→Mn be the classifying
morphism representing the isomorphism class the fiber bundle Fn+1(C)→ Fn(C).
Then g factors through q via the center-projecting braid monodromy ϕ.

Proof. Let G = Diff+(S2, {x1, . . . , xn, xn+1}) be the structure group of the bundle
M(A∗)→ B. Let g′ : B→ BG be a differentiable map which induces the map g
and q ′ : Fn(C)→ BG be a differentiable map which induces the map q. Then
we have the following bundle isomorphisms: g′∗EG ∼= M(A∗)∼= f ∗(Fn+1(C))∼=

f ∗(q ′∗(EG))= (q ′◦ f )∗(EG), where BG is the classifying space of G and EG is
the universal fiber bundle over BG. Then q ′ ◦ f and g′ are representing the same
bundle. Therefore g = q ◦ ϕ, because the braid monodromy ϕ is induced by the
map f . �

Denote by Fm the free group generated by m elements.

Definition 4.4. Let ψ1, ψ2 : π1(C \ {k1, . . . , km}) = Fm → Bn be the center-
projecting braid monodromies of A∗1 and A∗2 respectively. We say that A∗1 and
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A∗2 have the same braid monodromy if there exists an element ρ ∈ Bn such that
ψ2(α)= ρ ·ψ1(α) · ρ

−1 for any α ∈ Fm .

Main Theorem. Let A∗1 and A∗2 be two fiber-type projective line arrangements. If
they have the same center-projecting braid monodromies, then their complements
M(A∗1) and M(A∗2) are diffeomorphic.

Proof. By Remark 2.6, the complements of the two fiber-type line arrangements
are fiber bundles. Since they have the same center-projecting braid monodromy,
they have the same base, fiber and structure group. By Theorem 3.2, we know
that the isomorphism classes of such fiber bundles over same base with same
fiber and structure group are in one-to-one correspondence with the homomor-
phisms π1(S2

\ {x1, . . . , xm+1})→ Mn up to conjugation. By Corollary 4.3, the
isomorphism class of the complement of a fiber-type projective line arrangement
as a fiber bundle is determined by the braid monodromy. Let the homomorphism
q : Bn→Mn be a representative of the isomorphism class of the bundle of config-
urations Fn+1(C)→ Fn(C). If ψ1, ψ2 : π1(C \ {k1, . . . , km}) = Fm → Bn are the
same center-projecting braid monodromies associated to A∗1 and A∗2 respectively,
then there exists a ρ ∈ Bn such that ψ2(α)= ρ ·ψ1(α) ·ρ

−1 for any α ∈ Fm . Thus
q◦ψ2(α)=q(ρ)·(q◦ψ1(α))·(q(ρ))−1 for any α ∈Fm . This implies that q◦ψ1 and
q ◦ψ2 determine the same isomorphism class. By the definition of isomorphism
of differentiable fiber bundles, any two members in the isomorphism class have
diffeomorphic total spaces. This proves the theorem. �

Combined with a theorem of Jiang and Yau [1993], our Main Theorem implies
that the center-projecting braid monodromy of a fiber-type projective line arrange-
ment determines its lattice. In fact:

Theorem 4.5 [Cohen and Suciu 1997]. The braid monodromy of a line arrange-
ment determines its lattice.

The braid monodromies they considered are generic braid monodromies, that
is, projecting from a generic point such that each fiber of the projection contains
at most one singularity. However, their method seems also work for nongeneric
cases. In fact, when there is more than one singularity in a fiber, the images of
the local braid monodromies still record the twists of the braids which reflect the
intersecting of lines.

Example 4.6. The complements of any two line arrangements A∗1 and A∗2 of six
lines with four triple points and three nodes are diffeomorphic. Clearly, any triple
point can be viewed as a center for such an arrangement. Assume that the line at
infinity passes through the center. After removing the center, the subarrangement in
C2 contains three lines, the three solid lines in Figure 1, and the braid monodromy
is uniquely determined. In fact, the center-projecting braid monodromies of A∗1



TOPOLOGY OF COMPLEMENTS OF FIBER-TYPE LINE ARRANGEMENTS IN CP2 215

1

2

3

4 5z = 0

Remove z = 0,
then lines 4 and 5

1

2

3

45

Figure 1. Arrangement of six lines with four triple points and
three nodes and its associated subarrangement.

and A∗2 coincide with the generic braid monodromy of arrangement of 3 lines. Let
ξ1 and ξ2 be two circles centered at x1 and x2, in the base B = C \ {x1, x2}, where
x1 and x2 are the projections of lines 4 and 5 respectively. Assume that ξ1 and ξ2

have a tangent point between x1 and x2. Then the fundamental group of the base B
is π1(B)= 〈ξ1, ξ2〉. It is easy to see that the braid monodromy of arrangement of 3
lines as shown in Figure 1 is uniquely determined up to conjugacy by the images
of ξ1 and ξ2 which are the monodromy generators σ 2

1 (the image of ξ1) and σ 2
2 (the

image of ξ2), where σ1 and σ2 are the two generators of the braid group B3 on 3
strings as shown in Figure 2 (see, for example, [Cohen and Suciu 1997] on how
to calculate braid monodromy generators in general). Hence by our theorem, the
complements M(A∗1) and M(A∗2) are diffeomorphic.

1 2 3 1 2 3

σ1 σ2

Figure 2. Braid generators of B3.

Remark 4.7. The arrangement in the example above is well studied in many as-
pects. For example, it has been shown in a recent paper [Nazir and Yoshinaga
2010] that the moduli space of line arrangements of six lines with four triple points
and three nodes is irreducible, so is connected. In fact, it is easy to see that line
arrangements of six lines with four triple points and three nodes are of simple C3

type in the sense of Nazir and Yoshinaga.
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