INEQUALITIES FOR THE NAVIER AND DIRICHLET EIGENVALUES OF ELLIPTIC OPERATORS

QIAOLING WANG AND CHANGYU XIA
INEQUALITIES FOR THE NAVIER AND DIRICHLET EIGENVALUES OF ELLIPTIC OPERATORS

QIAOLING WANG AND CHANGYU XIA

This paper studies eigenvalues of elliptic operators on a bounded domain in a Euclidean space. We obtain lower bounds for the eigenvalues of elliptic operators of higher orders with Navier boundary condition. We also prove lower bounds and universal inequalities of Payne–Pólya–Weinberger–Yang type for the eigenvalues of second order elliptic equations in divergence form with Dirichlet boundary condition.

1. Introduction

Let Ω be a bounded domain in an n-dimensional Euclidean space \mathbb{R}^n ($n \geq 2$) with smooth boundary $\partial \Omega$. Let Δ be the Laplacian of \mathbb{R}^n and consider the fixed membrane or Dirichlet eigenvalue problem

$$\begin{cases}
\Delta u = -\lambda u & \text{in } \Omega, \\
u|_{\partial \Omega} = 0.
\end{cases}$$

(1-1)

Let

$$0 < \lambda_1 < \lambda_2 \leq \cdots \to \infty$$

denote the eigenvalues (repeated with multiplicity) of the problem (1-1). Weyl’s asymptotic formula [1912] tells us that

$$\lambda_k \sim C(n) \left(\frac{k}{|\Omega|} \right)^{2/n} \quad \text{as } k \to \infty,$$

(1-2)

where $|\Omega|$ is the volume of Ω and $C(n) = (2\pi)^2 \omega_n^{-2/n}$ with ω_n being the volume of the unit ball in \mathbb{R}^n. Pólya [1961] showed that for any “plane covering domain” Ω in \mathbb{R}^2 (those that tile \mathbb{R}^2) this asymptotic relation is a one-sided inequality (his proof

Wang was partially supported by CNPq. Xia was partially supported by CNPq and FAPDF.

MSC2000: primary 35P15, 53C20, 53C42; secondary 35P15, 53C42.

Keywords: eigenvalue, lower bound, universal inequality, elliptic operator, Navier boundary condition.
also works for \mathbb{R}^n-covering domains) and conjectured, for any domain $\Omega \subset \mathbb{R}^n$, the inequality

$$\lambda_k \geq C(n) \left(\frac{k}{|\Omega|} \right)^{2/n} \quad \text{for all } k. \quad (1-3)$$

Li and Yau [1983] showed the lower bound

$$\sum_{i=1}^{k} \lambda_i \geq \frac{n k C(n)}{n+2} \left(\frac{k}{|\Omega|} \right)^{2/n}, \quad (1-4)$$

which yields an individual lower bound on λ_k in the form

$$\lambda_k \geq \frac{n C(n)}{n+2} \left(\frac{k}{|\Omega|} \right)^{2/n}. \quad (1-5)$$

Similar bounds for eigenvalues with Neumann boundary condition were proved in [Kröger 1992; 1994; Laptev 1997]. It was pointed out in [Laptev and Weidl 2000] that (1-4) also follows from an earlier result of Berezin [1972] by using the Legendre transformation. Melas [2003] gave an improvement of (1-4):

$$\sum_{i=1}^{k} \lambda_i \geq \frac{n k C(n)}{n+2} \left(\frac{k}{|\Omega|} \right)^{2/n} + d_n k \frac{|\Omega|}{I(\Omega)}, \quad (1-6)$$

where the constant d_n depends only on the dimension and

$$I(\Omega) = \min_{a \in \mathbb{R}^n} \int_{\Omega} |x-a|^2 \, dx$$

is the “moment of inertia” of Ω.

In this paper, we study eigenvalues of elliptic operators of higher orders with Navier boundary condition and of second order elliptic equations in divergence form with Dirichlet boundary condition and prove lower bounds for them which are similar to the inequality (1-6). We will also prove universal inequalities of Yang type for the Dirichlet eigenvalues of second order equations in divergence form. The first two results concern eigenvalues with Navier boundary condition.

Theorem 1.1. Let Ω be a bounded domain in \mathbb{R}^n and let l be a positive integer. Consider the eigenvalue problem

$$\left\{ \begin{array}{l} (-\Delta)^l u = \lambda u \quad \text{in } \Omega, \ u \in C^\infty(\Omega), \\ u|_{\partial \Omega} = \Delta u|_{\partial \Omega} = \cdots = \Delta^{l-1} u|_{\partial \Omega} = 0. \end{array} \right. \quad (1-7)$$

Let

$$0 \leq \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_k \leq \cdots \to \infty$$
be the eigenvalues of (1-7) and denote by \(\mu_1, \ldots, \mu_n \) the first \(n \) nonzero eigenvalues of the Neumann problem

\[
- \Delta v = \mu v \quad \text{in } \Omega,
\]

\[
(\partial v / \partial \nu)|_{\partial \Omega} = 0,
\]

where \(v \) is the unit outward normal vector field along \(\partial \Omega \). Then

\[
\sum_{j=1}^{k} \lambda_j^{1/l} \geq nkC(n) \left(\frac{k}{|\Omega|} \right)^{2/n} + \frac{d(n)k}{\sum_{i=1}^{n} \mu_i^{-1}}.
\]

Here \(d(n) \) is a positive constant depending only on \(n \).

Theorem 1.2. Let \(\Omega \) be a bounded domain in \(\mathbb{R}^n \) and let \(l \) be a fixed positive integer. Let \(L \) be the elliptic operator given by

\[
Lu = \sum_{m=1}^{l} a_m (-\Delta)^m u, \quad u \in C^\infty(\Omega),
\]

where the \(a_m \) are constants with \(a_m \geq 0, 1 \leq m \leq l, \) and \(a_l = 1 \). Consider the eigenvalue problem

\[
\begin{cases}
Lu = \Lambda u & \text{in } \Omega, \\
u|_{\partial \Omega} = \Delta u|_{\partial \Omega} = \cdots = \Delta^{l-1} u|_{\partial \Omega} = 0.
\end{cases}
\]

Let

\[
0 < \Lambda_1 \leq \Lambda_2 \leq \cdots \leq \Lambda_k \leq \cdots \to \infty
\]

be the eigenvalues of (1-10). Then

\[
\Lambda_k \geq \sum_{m=1}^{l} a_m \left(\frac{nC(n)}{n+2} \left(\frac{k}{|\Omega|} \right)^{2/n} + \frac{d(n)k}{\sum_{i=1}^{n} \mu_i^{-1}} \right)^{m},
\]

where \(\mu_1, \ldots, \mu_n \) are the first \(n \) nonzero Neumann eigenvalues of \(\Omega \) and \(d(n) \) is a positive constant depending on \(n \).

Our next results are about second order equations in divergence form with Dirichlet boundary condition. Firstly, we have a Li–Yau type inequality.

Theorem 1.3. Let \(\Omega \) be a bounded domain in \(\mathbb{R}^n \) and let \(V \) be a nonnegative continuous function on \(\Omega \). Consider the eigenvalue problem

\[
\begin{cases}
- \sum_{\alpha,\beta=1}^{n} \frac{\partial}{\partial x_\alpha} \left(a_{\alpha\beta}(x) \frac{\partial u}{\partial x_\beta} \right) + V(x)u = \lambda u & \text{in } \Omega, \\
u|_{\partial \Omega} = 0.
\end{cases}
\]
Assume that there is a positive number ξ_0 such that the symmetric matrix $[a_{\alpha\beta}]$ satisfies $[a_{\alpha\beta}] \geq \xi_0 I$ in the sense of quadratic forms throughout Ω, where I is the identity matrix of order n. Let

$$0 < \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_k \leq \cdots \to \infty$$

be the eigenvalues of (1-12). Then

(1-13) \[\sum_{j=1}^{k} \lambda_j \geq \xi_0 k \left(\frac{nC(n)}{n + 2} \left(\frac{k}{|\Omega|} \right)^{2/n} + \frac{d(n)}{\sum_{i=1}^{n} \mu_i^{-1}} + \frac{V_0}{\xi_0} \right). \]

Here $V_0 = \inf_{x \in \Omega} V(x)$, μ_1, \ldots, μ_n and $d(n)$ are as in Theorem 1.1.

Theorem 1.4. Let Ω be a connected bounded domain in \mathbb{R}^n and let V be a non-negative continuous function on Ω with $V_0 = \inf_{x \in \Omega} V(x)$. Let ρ be a continuous function on Ω satisfying $\rho_1 \leq \rho(x) \leq \rho_2$ for all $x \in \Omega$, for some positive constants ρ_1 and ρ_2. Assume also that there are positive numbers ξ_1 and ξ_2 such that the symmetric matrix $[a_{\alpha\beta}]$ satisfies $[a_{\alpha\beta}] \geq \xi_1 I$ in the sense of quadratic forms and $\sum_{\alpha=1}^{n} a_{\alpha\alpha} \leq n \xi_2$ throughout Ω. Consider the eigenvalue problem

(1-14) \[\begin{cases} - \sum_{\alpha,\beta=1}^{n} \frac{\partial}{\partial x_{\alpha}} \left(a_{\alpha\beta}(x) \frac{\partial u}{\partial x_{\beta}} \right) + V(x) u = \lambda \rho u & \text{in } \Omega, \\ u|_{\partial \Omega} = 0. \end{cases} \]

Let

$$0 < \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_k \leq \cdots \to \infty$$

be the eigenvalues of (1-14). Then

(1-15) \[\sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i)^2 \leq \frac{4 \xi_2 \rho_2^2}{n \xi_1 \rho_1^2} \sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i) \left(\lambda_i - \frac{V_0}{\rho_2} \right). \]

Remark 1.5. Universal inequalities of Payne–Pólya–Weinberger-Yang type for eigenvalues of elliptic operators on Riemannian manifolds have been studied recently by many mathematicians. One can find various interesting results in this direction, for example, in [Ashbaugh 1999; 2002; Ashbaugh and Benguria 1993a; 1993b; Ashbaugh and Hermi 2004; Cheng and Yang 2005; 2006a; 2006b; 2006c; 2007; El Soufi et al. 2007; Harrell 1993; Harrell and Michel 1994; Harrell and Stubbe 1997; Harrell and Yıldırım Yolcu 2009; Hile and Protter 1980; Hook 1990; Laptev 1997; Levitin and Parnovski 2002; Sun et al. 2008; Wang and Xia 2007a; 2007b; 2008; 2010a; 2010b; 2010c; 2011].
2. An auxiliary result

Before proving 1.1–1.3, we show the following fact.

Theorem 2.1. Let \(\Omega \) be a bounded domain in \(\mathbb{R}^n \) and let \(w_1, \ldots, w_k : \Omega \to \mathbb{R} \) be smooth functions satisfying

\[
\textup{w}_i|_{\partial \Omega} = 0 \quad \text{and} \quad \int_{\Omega} w_i(x) w_j(x) \, dx = \delta_{ij} \quad \text{for } i, j = 1, \ldots, k.
\]

Then

\[
\sum_{j=1}^k \int_{\Omega} |\nabla w_j(x)|^2 \, dx \geq \frac{nkC(n)}{n+2} \left(\frac{k}{|\Omega|} \right)^{2/n} + \frac{d(n)k}{\sum_{i=1}^n \mu_i^{-1}},
\]

where \(d(n) \) is a computational positive constant depending only on \(n \) and the \(\mu_i \) are the first \(n \) nonzero Neumann eigenvalues of the Laplacian of \(\Omega \).

Proof. Let \(v_1, \ldots, v_n \) be orthonormal eigenfunctions corresponding to \(\mu_1, \ldots, \mu_n \):

\[
-\Delta v_i = \mu_i v_i \quad \text{in } \Omega, \quad \frac{\partial v_i}{\partial \nu} \bigg|_{\partial \Omega} = 0, \quad \int_{\Omega} v_i v_j = \delta_{ij} \quad \text{for } i, j = 1, \ldots, n.
\]

By a translation of the origin and a suitable rotation of axes, we can assume, using [Ashbaugh and Benguria 1993b, p. 563], that

\[
\int_{\Omega} x_i \, dx = 0 \quad \text{for } i = 1, \ldots, n,
\]

\[
\int_{\Omega} x_j v_i \, dx = 0 \quad \text{for } j = 2, \ldots, n, \quad i = 1, \ldots, j - 1.
\]

It then follows from inequality (2.8) in the same paper that

\[
\sum_{i=1}^n \frac{1}{\mu_i} \geq \int_{\Omega} \frac{|x|^2 \, dx}{|\Omega|}.
\]

By a simple rearrangement argument, we have

\[
\int_{\Omega} |x|^2 \, dx \geq \frac{n}{n+2} |\Omega| \left(\frac{|\Omega|}{\omega_n} \right)^{2/n}.
\]

Extend each \(w_i \) to \(\mathbb{R}^n \) by letting \(w_i(x) = 0 \) for \(x \in \mathbb{R}^n \setminus \Omega \). For a function \(g \) on \(\mathbb{R}^n \), we will denote by \(\mathcal{F}(g) \) the Fourier transformation of \(g \). For any \(z \in \mathbb{R}^n \), we have, by definition,

\[
\mathcal{F}(w_j)(z) = (2\pi)^{-n/2} \int_{\Omega} e^{-i(x,z)} w_j(x) \, dx.
\]
Since \(\{w_j\}_{j=1}^k \) is an orthonormal set in \(L^2(\Omega) \), the Bessel inequality gives

\[
(2-6) \quad \sum_{j=1}^k |\mathcal{F}(w_j)(z)|^2 \leq (2\pi)^{-n} \int_{\Omega} |e^{-i(x,z)}|^2 \, dx = (2\pi)^{-n} |\Omega|.
\]

For each \(q = 1, \ldots, n \) and \(j = 1, \ldots, k \), since \(w_j \) vanishes on \(\partial \Omega \), one gets from the divergence theorem that

\[
(2-7) \quad z_q \mathcal{F}(w_j)(z) = i (2\pi)^{-n/2} \int_{\Omega} \frac{\partial e^{-i(x,z)}}{\partial x_q} w_j(x) \, dx = -i (2\pi)^{-n/2} \int_{\Omega} \frac{\partial w_j(x)}{\partial x_q} e^{-i(x,z)} \, dx = -i \mathcal{F} \left(\frac{\partial w_j}{\partial z_q} \right)(z).
\]

It then follows from the Plancherel formula that

\[
(2-8) \quad \int_{\mathbb{R}^n} |z|^2 |\mathcal{F}(w_j)(z)|^2 \, dz = \int_{\mathbb{R}^n} \sum_{q=1}^n \left| \mathcal{F} \left(\frac{\partial w_j}{\partial z_q} \right)(z) \right|^2 \, dz = \int_{\Omega} \sum_{q=1}^n \left(\frac{\partial w_j}{\partial x_q} \right)^2 \, dx = \int_{\Omega} |\nabla w_j(x)|^2 \, dx.
\]

Since

\[
\nabla (\mathcal{F}(w_j))(z) = (2\pi)^{-n/2} \int_{\Omega} (-ixe^{-i(x,z)} w_j(x)) \, dx,
\]

we have

\[
(2-9) \quad \sum_{j=1}^k |\nabla (\mathcal{F}(w_j))(z)|^2 \leq (2\pi)^{-n} \int_{\Omega} \left|ixe^{-i(x,z)} \right|^2 \, dx = (2\pi)^{-n} \int_{\Omega} |x|^2 \, dx.
\]

Set

\[
G(z) = \sum_{j=1}^k |\mathcal{F}(w_j)(z)|^2.
\]

Then \(0 \leq G(z) \leq (2\pi)^{-n} |\Omega| \) and

\[
(2-10) \quad |\nabla G(z)| \leq 2 \left(\sum_{j=1}^k |\mathcal{F}(w_j)(z)|^2 \right)^{1/2} \left(\sum_{j=1}^k |\nabla (\mathcal{F}(w_j))(z)|^2 \right)^{1/2} \leq 2(2\pi)^{-n} \left(|\Omega| \int_{\Omega} |x|^2 \, dx \right)^{1/2}
\]

for every \(z \in \mathbb{R}^n \). We also have

\[
(2-11) \quad \int_{\mathbb{R}^n} G(z) \, dz = \sum_{j=1}^k \int_{\Omega} w_j(x)^2 \, dx = k.
\]
Let \(G^*(z) = g(|z|) \) be the decreasing spherical rearrangement of \(G \). By approximation, we may assume that \(g : [0, +\infty) \to [0, (2\pi)^{-n}|\Omega|] \) is absolutely continuous. Setting \(\alpha(t) = |\{G^* > t\}| = |\{G > t\}| \), we have

\[
\alpha(g(s)) = \omega_n s^n,
\]

which implies that \(n\omega_n s^{n-1} = \alpha'(g(s))g'(s) \) for almost every \(s \). The coarea formula \[\text{Chavel 1984}\] tells us that

\[
\alpha'(t) = -\int_{\{G = t\}} \frac{1}{|\nabla G|} \, dA_t.
\]

Set \(\eta = 2(2\pi)^{-n}(|\Omega| \int_{\Omega} |x|^2 \, dx)^{1/2} \); then one infers from (2-10) and the isoperimetric inequality that

\[
-\alpha'(g(s)) \geq \eta^{-1} \text{area}(\{G = g(s)\}) \geq \eta^{-1} n\omega_n s^{n-1},
\]

and so

\[
-\eta \leq g'(s) \leq 0
\]

for almost every \(s \). It follows from (2-11) that

\[
k = \int_{\mathbb{R}^n} G(z) \, dz = \int_{\mathbb{R}^n} G^*(z) \, dz = n\omega_n \int_0^\infty s^{n-1} g(s) \, ds
\]

and, by (2-8),

\[
\sum_{j=1}^k \int_{\Omega} |\nabla w_j|^2 = \int_{\mathbb{R}^n} |z|^2 G(z) \, dz \geq \int_{\mathbb{R}^n} |z|^2 G^*(z) \, dz
\]

\[
= n\omega_n \int_0^\infty s^{n+1} g(s) \, ds,
\]

since \(z \to |z|^2 \) is radial and increasing.

We next apply the following lemma to the function \(g \), with \(A = \frac{k}{n\omega_n} \) and

\[
\eta = 2(2\pi)^{-n}(|\Omega| \int_{\Omega} |x|^2 \, dx)^{1/2}.
\]

Lemma [Melas 2003]. Let \(n \geq 1 \) and \(\eta \), \(A > 0 \) and let \(h : [0, +\infty) \to [0, +\infty) \) be a decreasing and absolutely continuous function such that

\[
-\eta \leq h'(s) \leq 0 \quad \text{and} \quad \int_0^\infty s^{n-1} h(s) \, ds = A.
\]

Then

\[
\int_0^\infty s^{n+1} h(s) \, ds \geq \frac{(nA)^{(n+2)/n}}{n + 2} h(0)^{-2/n} + \frac{Ah(0)^2}{6(n + 2)\eta^2}.
\]
After applying the lemma and using (2-17), we infer that

(2-19) \[\sum_{j=1}^{k} \int_{\Omega} |\nabla w_j(x)|^2 \, dx \geq \frac{n}{n+2} \frac{\omega_n^{2/n} k^{1+2/n} g(0)^{-2/n}}{6(n+2)\eta^2} \]

\[\geq \frac{n}{n+2} \frac{\omega_n^{2/n} k^{1+2/n} g(0)^{-2/n}}{6(n+2)\eta^2} \]

where \(\tau \) is any constant with \(0 < \tau \leq \frac{1}{6} \). From (2-4) we know that

(2-20) \[\eta \geq 2(2\pi)^{-n} \left(\frac{n}{n+2} \right)^{1/2} \omega_n^{-1/n} |\Omega|^{(n+1)/n}. \]

Observe that \(0 < g(0) \leq (2\pi)^{-n} |\Omega| \). Let \(\tau = \tau(n) \) be the constant given by

\[\tau = \min \left\{ \frac{1}{6}, \frac{16\pi^2 n}{(n+2)\omega_n^{4/n}} \right\}. \]

Then one can see by using (2-20) that the function

\[\beta(t) = \frac{n}{n+2} \omega_n^{-2/n} k^{1+2/n} t^{-2/n} + \frac{\tau k t^2}{(n+2)\eta^2} \]

satisfies

\(\beta'((2\pi)^{-n}|\Omega|) \leq 0, \)

and so \(\beta \) is decreasing on \((0,(2\pi)^{-n}|\Omega|] \). Hence, choosing \(d(n) = \frac{\tau}{4(n+2)} \), we have

(2-21) \[\sum_{j=1}^{k} \int_{\Omega} |\nabla w_j(x)|^2 \, dx \]

\[\geq \beta(g(0)) \geq \beta((2\pi)^{-n}|\Omega|) \]

\[= \frac{n}{n+2} \omega_n^{-2/n} k^{1+2/n} ((2\pi)^{-n}|\Omega|)^{-2/n} + \frac{\tau k ((2\pi)^{-n}|\Omega|)^2}{(n+2)\eta^2} \]

\[= \frac{n}{n+2} \left(\frac{2\pi}{\omega_n^{1/n}} \right)^{2} k^{1+2/n} |\Omega|^{-2/n} + \frac{d(n)k|\Omega|}{\int_{\Omega} |x|^2 \, dx}. \]

Substituting (2-3) into (2-21), one gets (2-2). completing the proof of Theorem 2.1.

\[\square \]

3. Proof of the main results

Proof of Theorem 1.1. Let \(\{u_i\}_{i=1}^{k} \) be a set of orthonormal eigenfunctions corresponding to \(\{\lambda_i\}_{i=1}^{k} \):
\((-\Delta)^{l} u_i = \lambda_i u_i \) in \(\Omega\), \(u_i|_{\partial\Omega} = \Delta u_i|_{\partial\Omega} = \cdots = \Delta^{l-1} u_i|_{\partial\Omega} = 0\).

\[\int_{\Omega} u_i u_j = \delta_{ij} \quad \text{for } i, j = 1, \ldots, k.\]

We show that for each \(s = 1, \ldots, l\) and \(i = 1, \ldots, k\),

\[(3-1) \quad 0 \leq \int_{\Omega} u_i (-\Delta)^s u_i \leq \lambda_i^{s/l}.\]

When \(l = 1\), (3-1) holds trivially, so assume \(l > 1\). When \(s \in \{1, \ldots, l\}\) is even, we have from the divergence theorem that

\[\int_{\Omega} u_i (-\Delta)^s u_i = \int_{\Omega} u_i \Delta^s u_i = \int_{\Omega} (\Delta^{s/2} u_i)^2 \geq 0.\]

On the other hand, if \(s \in \{1, \ldots, l\}\) is odd,

\[\int_{\Omega} u_i (-\Delta)^s u_i = -\int_{\Omega} u_i \Delta^s u_i\]

\[= -\int_{\Omega} \Delta^{(s-1)/2} u_i \Delta (\Delta^{(s-1)/2} u_i) = \int_{\Omega} |\nabla (\Delta^{(s-1)/2} u_i)|^2 \geq 0.\]

Thus the first inequality in (3-1) holds.

We claim now that for any \(s = 1, \ldots, l - 1\),

\[(3-2) \quad \left(\int_{\Omega} u_i (-\Delta)^s u_i\right)^{s+1} \leq \left(\int_{\Omega} u_i (-\Delta)^{s+1} u_i\right)^s.\]

Since

\[\left(\int_{\Omega} u_i \Delta u_i\right)^2 \leq \int_{\Omega} u_i^2 \int_{\Omega} (\Delta u_i)^2 = \int_{\Omega} u_i \Delta^2 u_i,\]

we know that (3-2) holds when \(s = 1\).

Suppose that (3-2) is true for \(s - 1\), that is,

\[(3-3) \quad \left(\int_{\Omega} u_i (-\Delta)^{s-1} u_i\right)^s \leq \left(\int_{\Omega} u_i (-\Delta)^s u_i\right)^{s-1}.\]

When \(s\) is even, we have

\[\int_{\Omega} u_i (-\Delta)^s u_i = \int_{\Omega} \Delta^{s/2-1} u_i \Delta (\Delta^{s/2} u_i) = -\int_{\Omega} \nabla (\Delta^{s/2-1} u_i) \nabla (\Delta^{s/2} u_i)\]

\[\leq \left(\int_{\Omega} |\nabla (\Delta^{s/2-1} u_i)|^2\right)^{1/2} \left(\int_{\Omega} |\nabla (\Delta^{s/2} u_i)|^2\right)^{1/2}\]

\[= \left(-\int_{\Omega} \Delta^{s/2-1} u_i \Delta^{s/2} u_i\right)^{1/2} \left(-\int_{\Omega} \Delta^{s/2} u_i \Delta^{s/2+1} u_i\right)^{1/2}\]

\[= \left(\int_{\Omega} u_i (-\Delta)^{s-1} u_i\right)^{1/2} \left(\int_{\Omega} u_i (-\Delta)^{s+1} u_i\right)^{1/2}.\]
On the other hand, when \(s \) is odd,
\[
\int_{\Omega} u_i (-\Delta)^s u_i = \int_{\Omega} (-\Delta)^{(s-1)/2} u_i (-\Delta)^{(s+1)/2} u_i \leq \left(\int_{\Omega} (-\Delta)^{(s-1)/2} u_i \right)^{1/2} \left(\int_{\Omega} (-\Delta)^{(s+1)/2} u_i \right)^{1/2} = \left(\int_{\Omega} u_i (-\Delta)^s u_i \right)^{1/2} \left(\int_{\Omega} u_i (-\Delta)^{s+1} u_i \right)^{1/2}.
\]
Thus we always have
\[
\int_{\Omega} u_i (-\Delta)^s u_i \leq \left(\int_{\Omega} u_i (-\Delta)^s u_i \right)^{1/2} \left(\int_{\Omega} u_i (-\Delta)^{s+1} u_i \right)^{1/2}.
\]
Substituting (3-3) into (3-4), we know that (3-2) is true for \(s \). Using (3-2) repeatedly, we get
\[
\int_{\Omega} u_i (-\Delta)^s u_i \leq \left(\int_{\Omega} u_i (-\Delta)^{s+1} u_i \right)^{s/(s+1)} \leq \cdots \leq \left(\int_{\Omega} u_i (-\Delta)^l u_i \right)^{s/l} = \lambda_i^{s/l}.
\]
Thus the second inequality in (3-1) is also true. Consequently,
\[
\sum_{j=1}^{k} \int_{\Omega} |\nabla u_j|^2 = \sum_{j=1}^{k} \int_{\Omega} u_j (-\Delta u_j) \leq \sum_{j=1}^{k} \lambda_j^{1/l}
\]
which implies (1-9) by applying Theorem 2.1 to the functions \(u_1, \ldots, u_k \). This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. Let \(\{u_i\}_{i=1}^k \) be a set of orthonormal eigenfunctions of the problem (1-11) corresponding to \(\{\lambda_i\}_{i=1}^k \):
\[
Lu_i = \lambda_i u_i \quad \text{in } \Omega, \quad u_i|_{\partial \Omega} = \Delta u_i|_{\partial \Omega} = \cdots = \Delta^{l-1} u_i|_{\partial \Omega} = 0,
\]
\[
\int_{\Omega} u_i u_j = \delta_{ij} \quad \text{for } i, j = 1, \ldots, k.
\]
Denote by \(\{\lambda_i\}_{i=1}^k \) the first \(k \) fixed membrane eigenvalues of the Laplacian of \(\Omega \) corresponding to the orthonormal eigenfunctions \(\{v_i\}_{i=1}^k \):
\[
-\Delta v_i = \lambda_i v_i \quad \text{in } \Omega, \quad v_i|_{\partial \Omega} = 0,
\]
\[
\int_{\Omega} v_i v_j = \delta_{ij} \quad \text{for } i, j = 1, \ldots, k.
\]
Let \(w = \sum_{j=1}^{k} \alpha_j u_j \neq 0 \) be such that
\[
\int_{\Omega} w v_i = 0 \quad \text{for } i = 1, \ldots, k - 1.
\]
Such an element \(w \) exists because \(\{ \alpha_j \mid 1 \leq j \leq k \} \) is a nontrivial solution of a system of \(k-1 \) linear equations

\[
(3-7) \quad \sum_{j=1}^{k} \alpha_j \int_{\Omega} u_j v_i = 0, \quad 1 \leq i \leq k-1,
\]
in \(k \) unknowns. Also assume without loss of generality that

\[
(3-8) \quad \int_{\Omega} w^2 = 1.
\]

Then it follows from the Rayleigh–Ritz inequality that

\[
(3-9) \quad \lambda_k \leq \int_{\Omega} w(-\Delta w).
\]

By using the arguments similar to those in the proof of (3-2), we have

\[
(3-10) \quad \left(\int_{\Omega} w(-\Delta)^j w \right)^{j+1} \leq \left(\int_{\Omega} w(-\Delta)^{j+1} w \right)^j, \quad j = 1, \ldots, l - 1.
\]

Hence

\[
(3-11) \quad \int_{\Omega} w(-\Delta w) \leq \left(\int_{\Omega} w(-\Delta)^s w \right)^{1/s}, \quad s = 1, \ldots, l,
\]

which, combined with (3-9), gives

\[
\lambda_k^s \leq \int_M w(-\Delta)^s w, \quad s = 1, 2, \ldots, l.
\]

Thus we have

\[
(3-12) \quad a_1 \lambda_k + a_2 \lambda_k^2 + \cdots + a_{l-1} \lambda_k^{l-1} + \lambda_k^l
\]

\[
\leq \int_{\Omega} w\left(a_1 (-\Delta) + a_2 (-\Delta)^2 + \cdots + a_{l-1} (-\Delta)^{l-1} + (-\Delta)^l \right) w
\]

\[
= \int_{\Omega} w \Lambda w = \sum_{i,j=1}^{k} \alpha_i \alpha_j \int_{\Omega} u_i \Lambda_j u_j = \sum_{i,j=1}^{k} \alpha_i \alpha_j \int_{\Omega} u_i \Lambda_j u_j
\]

\[
= \sum_{i,j=1}^{k} \alpha_i \alpha_j \Lambda_j \delta_{ij} = \sum_{i=1}^{k} \alpha_i^2 \Lambda_i \leq \Lambda_k,
\]

where, in the last equality, we have used the fact that

\[
\sum_{i=1}^{k} \alpha_i^2 = \int_{\Omega} w^2 = 1.
\]
It is easy to see by taking \(l = 1 \) in (1-9) that

\[(3-13) \quad \lambda_k \geq \frac{nC(n)}{n+2} \left(\frac{k}{|\Omega|} \right)^{2/n} + \frac{d(n)}{\sum_{i=1}^{n} \mu_i^{-1}}.\]

Substituting (3-13) into (3-12), we get (1-11). Theorem 1.2 follows.

Proof of Theorem 1.3. Let \(\{u_i\}_{i=1}^{k} \) be a set of orthonormal eigenfunctions of the problem (1-12) corresponding to \(\{\lambda_i\}_{i=1}^{k} \):

\[(3-14) \quad - \sum_{\alpha, \beta = 1}^{n} \frac{\partial}{\partial x_\alpha} \left(a_{\alpha \beta}(x) \frac{\partial u_i}{\partial x_\beta} \right) + V(x)u_i = \lambda_i u_i \quad \text{in} \quad \Omega,\]

\[(3-15) \quad u_i |_{\partial \Omega} = 0, \quad \int_{\Omega} u_i u_j = \delta_{ij} \quad \text{for} \quad i, j = 1, \ldots, k.\]

Multiplying (3-14) by \(u_i \), integrating over \(\Omega \), and using the divergence theorem and the inequalities \(V \geq V_0 \) and \([a_{\alpha \beta}] \geq \xi_0 I \), we obtain

\[(3-16) \quad \lambda_i = \int_{\Omega} \left(\sum_{\alpha, \beta = 1}^{n} a_{\alpha \beta}(x) \frac{\partial u_i}{\partial x_\alpha} \frac{\partial u_i}{\partial x_\beta} + V(x)u_i^2 \right) \geq \int_{\Omega} \xi_0 \sum_{\alpha = 1}^{n} \left(\frac{\partial u_i}{\partial x_\alpha} \right)^2 + V_0 \int_{\Omega} u_i^2 = \xi_0 \int_{\Omega} |\nabla u_i|^2 + V_0,\]

which gives

\[(3-17) \quad \sum_{i=1}^{k} \int_{\Omega} |\nabla u_i|^2 \leq \frac{1}{\xi_0} \left(\sum_{i=1}^{k} \lambda_i - kV_0 \right).\]

Observing (3-15), one gets (1-13) by using Theorem 2.1 applied to \(u_1, \ldots, u_k \). Theorem 1.3 follows.

Proof of Theorem 1.4. Let \(x_1, \ldots, x_n \) be the coordinate functions on \(\mathbb{R}^n \). For a function \(f : \Omega \rightarrow \mathbb{R} \), set \(f_\alpha = \partial f / \partial x_\alpha \), \(\alpha = 1, \ldots, n \). Let \(\{u_i\}_{i=1}^{k} \) be a set of orthonormal eigenfunctions of the problem (1-14) corresponding to \(\{\lambda_i\}_{i=1}^{k} \):

\[- \sum_{\alpha, \beta = 1}^{n} \frac{\partial}{\partial x_\alpha} \left(a_{\alpha \beta}(x) \frac{\partial u_i}{\partial x_\beta} \right) + V(x)u_i = \lambda_i u_i \quad \text{in} \quad \Omega, \]

\[u_i |_{\partial \Omega} = 0, \quad \int_{\Omega} u_i u_j = \delta_{ij} \quad \text{for} \quad i, j = 1, \ldots, k. \]

For each \(\alpha = 1, \ldots, n \) and \(i = 1, \ldots, k \), following [Payne et al. 1956], consider the functions \(\phi_{\alpha i} : \Omega \rightarrow \mathbb{R} \) given by

\[\phi_{\alpha i} = x_\alpha u_i - \sum_{j=1}^{k} r_{\alpha ij} u_j, \]
where

\[r_{\alpha ij} = \int_{\Omega} \rho x_{\alpha} u_i u_j. \]

Since \(\phi_{\alpha i} |_{\partial \Omega} = 0 \) and
\[\int_{\Omega} \rho u_j \phi_{\alpha i} = 0 \quad \text{for } i, j = 1, \ldots, k \text{ and } \alpha = 1, \ldots, n, \]

it follows from the Rayleigh–Ritz inequality that

\[\lambda_{k+1} \int_{\Omega} \rho \phi_{\alpha i}^2 \]
\[\leq \int_{\Omega} \phi_{\alpha i} \left(-\sum_{\beta, \gamma = 1}^{n} (a_{\beta \gamma} \phi_{\alpha i, \gamma}),_{\beta} + V \phi_{\alpha i} \right) \]
\[= \int_{\Omega} \phi_{\alpha i} \left(-\sum_{\beta, \gamma = 1}^{n} (a_{\beta \gamma} (x_{\alpha} u_i),_{\beta} + V x_{\alpha} u_i - \sum_{j=1}^{k} r_{\alpha ij} \lambda_j \rho u_j) \right) \]
\[= \int_{\Omega} \phi_{\alpha i} \left(\lambda_i \rho x_{\alpha} u_i - \sum_{\beta = 1}^{n} ((a_{\alpha \beta} u_i),_{\beta} + a_{\alpha \beta} u_i,_{\beta}) \right) \]
\[= \int_{\Omega} \phi_{\alpha i} \left(\lambda_i \rho x_{\alpha} u_i - \sum_{\beta = 1}^{n} ((a_{\alpha \beta} u_i),_{\beta} + a_{\alpha \beta} u_i,_{\beta}) \right) \]
\[= \lambda_i \int_{\Omega} \rho \phi_{\alpha i}^2 - \int_{\Omega} \phi_{\alpha i} \left(\sum_{\beta = 1}^{n} ((a_{\alpha \beta} u_i),_{\beta} + a_{\alpha \beta} u_i,_{\beta}) \right) + \sum_{j=1}^{k} r_{\alpha ij} s_{\alpha ij}, \]

where
\[s_{\alpha ij} = \int_{\Omega} \left(\sum_{\beta = 1}^{n} ((a_{\alpha \beta} u_i),_{\beta} + a_{\alpha \beta} u_i,_{\beta}) \right) u_j. \]

Multiplying the equation

\[-\sum_{\beta, \gamma = 1}^{n} (a_{\beta \gamma} u_{j, \gamma})_{,\gamma} + Vu_j = \lambda_j \rho u_j \]

by \(x_{\alpha} u_i \), we have

\[-\sum_{\beta, \gamma = 1}^{n} (a_{\beta \gamma} u_{j, \gamma})_{,\gamma} x_{\alpha} u_i + V x_{\alpha} u_i u_j = \lambda_j \rho x_{\alpha} u_i u_j. \]
Interchanging the roles of \(i\) and \(j\), we get

\[
- \sum_{\beta, \gamma = 1}^{n} (a_{\beta \gamma} u_{i, \beta}, \gamma x_{\alpha} u_{j}) + V x_{\alpha} u_{i} u_{j} = \lambda_{i} \rho x_{\alpha} u_{i} u_{j}.
\]

Subtracting (3-21) from (3-22) and integrating the resulted equation on \(\Omega\), we get by using the divergence theorem that

\[
(\lambda_{i} - \lambda_{j}) r_{aij} = \sum_{\beta, \gamma = 1}^{n} \int_{\Omega} ((a_{\beta \gamma} u_{j, \beta}, \gamma x_{\alpha} u_{i} - (a_{\beta \gamma} u_{i, \beta}, \gamma x_{\alpha} u_{j}))
\]

\[
= \sum_{\beta, \gamma = 1}^{n} \int_{\Omega} (-a_{\beta \gamma} u_{j, \beta}(x_{\alpha} u_{i}), \gamma + a_{\beta \gamma} u_{i, \beta}(x_{\alpha} u_{j}), \gamma)
\]

\[
= \sum_{\beta = 1}^{n} \int_{\Omega} (-a_{\alpha \beta} u_{j, \beta} u_{i} + a_{\alpha \beta} u_{i, \beta} u_{j})
\]

\[
= \sum_{\beta = 1}^{n} \int_{\Omega} ((a_{\alpha \beta} u_{i}), \beta + a_{\alpha \beta} u_{i, \beta}) u_{j} = s_{aij},
\]

which, combined with (3-19), gives

\[
(\lambda_{k+1} - \lambda_{i}) \int_{\Omega} \rho \phi_{ai}^{2}
\]

\[
\leq - \int_{\Omega} \phi_{ai} \left(\sum_{\beta = 1}^{n} ((a_{\alpha \beta} u_{i}, \beta + a_{\alpha \beta} u_{i, \beta}) \right)
\]

\[
= - \int_{\Omega} x_{\alpha} u_{i} \left(\sum_{\beta = 1}^{n} ((a_{\alpha \beta} u_{i}, \beta + a_{\alpha \beta} u_{i, \beta}) \right) + \sum_{j=1}^{k} (\lambda_{i} - \lambda_{j}) r_{aij}^{2}.
\]

Set

\[
t_{aij} = \int_{\Omega} u_{j} u_{i, \alpha},
\]

then \(t_{aij} + t_{aiji} = 0\) and

\[
\int_{\Omega} (-2) \phi_{ai} u_{i, \alpha} = -2 \int_{\Omega} x_{\alpha} u_{i} u_{i, \alpha} + 2 \sum_{j=1}^{k} r_{aij} t_{aij} = \|u_{i}\|^{2} + 2 \sum_{j=1}^{k} r_{aij} t_{aij}.
\]

Multiplying (3-25) by \((\lambda_{k+1} - \lambda_{i})^{2}\) and using the Schwarz inequality and (3-24), we get

\[
(\lambda_{k+1} - \lambda_{i})^{2} \left(\|u_{i}\|^{2} + 2 \sum_{j=1}^{k} r_{aij} t_{aij} \right)
\]
\[(\lambda_{k+1} - \lambda_i)^2 \int_\Omega (\lambda_{k+1} - \lambda_i) \int_\Omega \| \sqrt{\rho} \phi_{\alpha i} \|^2 + \frac{(\lambda_{k+1} - \lambda_i)}{\delta} \int_\Omega \left(\frac{1}{\sqrt{\rho}} u_{i,\alpha} - \sum_{j=1}^{k} t_{\alpha ij} \sqrt{\rho} u_j \right) \]

\[\leq \delta (\lambda_{k+1} - \lambda_i)^3 \| \sqrt{\rho} \phi_{\alpha i} \|^2 + \frac{(\lambda_{k+1} - \lambda_i)}{\delta} \int_\Omega \left(\frac{1}{\sqrt{\rho}} u_{i,\alpha} - \sum_{j=1}^{k} t_{\alpha ij} \sqrt{\rho} u_j \right) \]

\[= (\lambda_{k+1} - \lambda_i)^3 \| \sqrt{\rho} \phi_{\alpha i} \|^2 + \frac{(\lambda_{k+1} - \lambda_i)}{\delta} \int_\Omega \left(\frac{1}{\sqrt{\rho}} u_{i,\alpha} - \sum_{j=1}^{k} t_{\alpha ij} \sqrt{\rho} u_j \right) \]

where \(\delta\) is any positive constant. Summing over \(i\) and noticing that \(r_{\alpha ij} = r_{\alpha ji}\) and \(t_{\alpha ij} = -t_{\alpha ji}\), we infer that

\[\sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i)^2 \| u_i \|^2 \leq 2 \sum_{i,j=1}^{k} (\lambda_{k+1} - \lambda_i) (\lambda_{i+1} - \lambda_j) r_{\alpha ij} t_{\alpha ij} \]

\[\leq \delta \sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i)^2 \left(-\int_\Omega x_{\alpha} u_i \left(\sum_{\beta=1}^{n} (a_{\alpha \beta} u_{i,\beta} + a_{\alpha \beta} u_{\alpha \beta}) \right) \right) \]

\[+ \sum_{i=1}^{k} \frac{(\lambda_{k+1} - \lambda_i)}{\delta} \left(\frac{1}{\sqrt{\rho}} u_{i,\alpha} \right)^2 - \sum_{i,j=1}^{k} (\lambda_{k+1} - \lambda_i) (\lambda_{i+1} - \lambda_j) r_{\alpha ij}^2 - \sum_{i,j=1}^{k} \frac{(\lambda_{k+1} - \lambda_i)^2}{\delta} t_{\alpha ij}^2. \]

Hence,

\[\sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i)^2 \| u_i \|^2 \leq \delta \sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i)^2 \left(-\int_\Omega x_{\alpha} u_i \left(\sum_{\beta=1}^{n} (a_{\alpha \beta} u_{i,\beta} + a_{\alpha \beta} u_{\alpha \beta}) \right) \right) \]

\[+ \frac{1}{\delta} \sum_{i=1}^{k} \frac{(\lambda_{k+1} - \lambda_i)}{\delta} \left(\frac{1}{\sqrt{\rho}} u_{i,\alpha} \right)^2. \]

Summing over \(\alpha\), we infer

\[n \sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i)^2 \| u_i \|^2 \]

\[\leq \delta \sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i)^2 \left(-\sum_{\alpha=1}^{n} \int_\Omega x_{\alpha} u_i \left(\sum_{\beta=1}^{n} (a_{\alpha \beta} u_{i,\beta} + a_{\alpha \beta} u_{\alpha \beta}) \right) \right) \]

\[+ \frac{k}{\delta} \sum_{i=1}^{k} \frac{(\lambda_{k+1} - \lambda_i)}{\delta} \left(\frac{1}{\sqrt{\rho}} |\nabla u_i| \right)^2. \]
Since $\int_{\Omega} \rho u_i^2 = 1$ and $\rho_1 \leq \rho(x) \leq \rho_2$ for $x \in \Omega$, we have

$$\frac{1}{\rho_2} \leq \|u_i\|^2 \leq \frac{1}{\rho_1}. \tag{3-27}$$

One gets from the divergence theorem that

$$-\sum_{\alpha=1}^{n} \int_{\Omega} x_\alpha u_i \left(\sum_{\beta=1}^{n} (a_{\alpha\beta} u_i, \beta + a_{\alpha\beta} u_i, \beta) \right) \leq \int_{\Omega} \left(\sum_{\alpha, \beta=1}^{n} (a_{\alpha\beta} u_i, \alpha u_i, \beta - a_{\alpha\beta} u_i, \beta x_\alpha u_i) \right) = \int_{\Omega} \left(\sum_{\alpha=1}^{n} a_{\alpha\alpha} \right) u_i^2 \leq n \xi_2 \int_{\Omega} u_i^2 \leq \frac{n \xi_2}{\rho_1}. \tag{3-28}$$

Multiplying the equation $-\sum_{\alpha, \beta=1}^{n} (a_{\alpha\beta} u_i, \alpha + V(x) u_i = \lambda_i \rho u_i)$ by u_i and integrating over Ω, we get

$$\lambda_i = \int_{\Omega} \left(\sum_{\alpha, \beta=1}^{n} a_{\alpha\beta}(x) u_i, \alpha u_i, \beta + V(x) u_i^2 \right) \geq \int_{\Omega} \xi_1 |\nabla u_i|^2 + \frac{V_0}{\rho_2}, \tag{3-29}$$

which gives

$$\frac{\left\| \frac{1}{\sqrt{\rho}} |\nabla u_i| \right\|^2}{\frac{1}{\rho_1} \int_{\Omega} |\nabla u_i|^2} \leq \frac{1}{\rho_2} \int_{\Omega} |\nabla u_i|^2 \leq \frac{1}{\rho_1 \xi_1} \left(\lambda_i - \frac{V_0}{\rho_2} \right). \tag{3-30}$$

Substituting (3-27), (3-28) and (3-30) into (3-26), we infer

$$\frac{n}{\rho_2} \sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i)^2 \leq \delta \sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i)^2 + \sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i) \cdot \frac{n \xi_2}{\rho_1} + \sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i) \cdot \frac{1}{\rho_1 \xi_1} \left(\lambda_i - \frac{V_0}{\rho_2} \right).$$

Taking

$$\delta = \left(\sum_{i=1}^{k} (\lambda_{k+1} - \lambda_i) \left(\frac{\lambda_i - \frac{V_0}{\rho_2}}{\rho_1 \xi_1} \right)^{1/2} \right)^{1/2}, \tag{3-31}$$

we get (1-15). This completes the proof of Theorem 1.4. \(\square\)

References

Received April 22, 2009. Revised October 20, 2009.

QIAOLING WANG
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF BRASÍLIA
ASA NORTE
70910-900 BRASÍLIA
BRAZIL
wang@impa.br

CHANGYU XIA
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF BRASÍLIA
ASA NORTE
70910-900 BRASÍLIA
BRAZIL
xia@pq.cnpq.br
An analogue of the Cartan decomposition for p-adic symmetric spaces of split p-adic reductive groups

Patrick Delorme and Vincent Sécherre

Unital quadratic quasi-Jordan algebras

Raúl Felipe

The Dirichlet problem for constant mean curvature graphs in $\mathbb{H} \times \mathbb{R}$ over unbounded domains

Abigail Folha and Sofia Melo

Osgood–Hartogs-type properties of power series and smooth functions

Buma L. Fridman and Daowei Ma

Twisted Cappell–Miller holomorphic and analytic torsions

Rung-Tzung Huang

Generalizations of Agol’s inequality and nonexistence of tight laminations

Thilo Kueßner

Chern numbers and the indices of some elliptic differential operators

Ping Li

Blocks of the category of cuspidal \mathfrak{sp}_{2n}-modules

Volodymyr Mazorchuk and Catharina Stroppel

A constant mean curvature annulus tangent to two identical spheres is Delauney

Sung-Ho Park

A note on the topology of the complements of fiber-type line arrangements in $\mathbb{C}\mathbb{P}^2$

Sheng-Li Tan, Stephen S.-T. Yau and Fei Ye

Inequalities for the Navier and Dirichlet eigenvalues of elliptic operators

Qiaoling Wang and Changyu Xia

A Beurling–Hörmander theorem associated with the Riemann–Liouville operator

XueCheng Wang