Vol. 251, No. 2, 2011

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 334: 1  2
Vol. 334: 1
Vol. 333: 1  2
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Universal inequalities for the eigenvalues of the biharmonic operator on submanifolds

Saïd Ilias and Ola Makhoul

Vol. 251 (2011), No. 2, 315–329
Abstract

We establish universal inequalities for the eigenvalues of the clamped plate problem on compact submanifolds of Euclidean space, of spheres and of real, complex and quaternionic projective spaces. We prove similar results for the biharmonic operator on domains of Riemannian manifolds that admit spherical eigenmaps (this includes compact homogeneous Riemannian spaces) and finally on domains of hyperbolic space.

Keywords
eigenvalue, biharmonic operator, universal inequality, submanifold, eigenmap
Mathematical Subject Classification 2000
Primary: 35P15, 58A10, 58C40, 58J50
Milestones
Received: 28 April 2010
Accepted: 22 September 2010
Published: 3 June 2011

Proposed: Paul Yang
Authors
Saïd Ilias
Université François Rabelais de Tours
Laboratoire de Mathématiques et Physique Théorique, UMR CNRS 6083
Parc de Grandmont
37200 Tours
France
Ola Makhoul
Université François Rabelais de Tours
Laboratoire de Mathématiques et Physique Théorique, UMR CNRS 6083
Parc de Grandmont
37200 Tours
France