Pacific

Journal of

Mathematics

TWO KAZDAN-WARNER-TYPE IDENTITIES FOR THE
 RENORMALIZED VOLUME COEFFICIENTS AND THE GAUSS-BONNET CURVATURES OF A RIEMANNIAN METRIC

Bin Guo, Zheng-Chao Han and Haizhong Li

TWO KAZDAN-WARNER-TYPE IDENTITIES FOR THE RENORMALIZED VOLUME COEFFICIENTS AND THE GAUSS-BONNET CURVATURES OF A RIEMANNIAN METRIC

Bin Guo, Zheng-Chao Han and Haizhong Li

We prove two Kazdan-Warner-type identities involving the renormalized volume coefficients $v^{(2 k)}$ of a Riemannian manifold (M^{n}, g), the GaussBonnet curvature $G_{2 r}$, and a conformal Killing vector field on (M^{n}, g). In the case when the Riemannian manifold is locally conformally flat, we find

$$
v^{(2 k)}=(-2)^{-k} \sigma_{k} \quad \text { and } \quad G_{2 r}(g)=\frac{4^{r}(n-r)!r!}{(n-2 r)!} \sigma_{r}
$$

and our results reduce to earlier ones established by Viaclovsky in 2000 and the second author in 2006.

1. Introduction

Theorem A [Viaclovsky 2000b; Han 2006a]. Let (M, g) be a compact Riemannian manifold of dimension $n \geq 3$, let $\sigma_{k}\left(g^{-1} \circ A_{g}\right)$ be the σ_{k} curvature of g, and let X be a conformal Killing vector field on (M, g). When $k \geq 3$, assume also that (M, g) is locally conformally flat. Then

$$
\begin{equation*}
\int_{M}\left\langle X, \nabla \sigma_{k}\left(g^{-1} \circ A_{g}\right)\right\rangle d v_{g}=0 . \tag{1-1}
\end{equation*}
$$

Recall that on an n-dimensional Riemannian manifold (M, g) with $n \geq 3$, the full Riemannian curvature tensor Rm decomposes as

$$
R m=W_{g} \oplus\left(A_{g} \odot g\right),
$$

where W_{g} denotes the Weyl tensor of g,

$$
A_{g}=\frac{1}{n-2}\left(\operatorname{Ric}_{g}-\frac{R_{g}}{2(n-1)} g\right)
$$

denotes the Schouten tensor, and \odot is the Kulkarni-Nomizu wedge product. Under a conformal change of metrics $g_{w}=e^{2 w} g$, where w is a smooth function over the

[^0]manifold, the Weyl curvature changes pointwise as $W_{g_{w}}=e^{2 w} W_{g}$. Thus, essential information about the Riemannian curvature tensor under a conformal change of metrics is reflected by the change in the Schouten tensor. One often tries to study the Schouten tensor through the elementary symmetric functions $\sigma_{k}\left(g^{-1} \circ A_{g}\right)$ (which we later denote as $\sigma_{k}(g)$) of the eigenvalues of the Schouten tensor, called the σ_{k} curvatures of g, by studying how they deform under conformal change of metrics.

Question. For all $k \geq 1$, can we generalize Theorem A without the condition that (M, g) is locally conformally flat?

In this note, we show the answer is yes. The renormalized volume coefficients $v^{(2 k)}(g)$ of a Riemannian metric g, were introduced in the physics literature in the late 1990s in the context of AdS/CFT correspondence - see [Graham 2009] for a mathematical discussion - and were shown in [Graham and Juhl 2007] to be equal to $\sigma_{k}\left(g^{-1} A_{g}\right)$, up to a scaling constant, when (M, g) is locally conformally flat. In fact, in the normalization we are going to adopt,

$$
\begin{equation*}
v^{(2)}(g)=-\frac{1}{2} \sigma_{1}(g) \quad \text { and } \quad v^{(4)}(g)=\frac{1}{4} \sigma_{2}(g) \tag{1-2}
\end{equation*}
$$

For $k=3$, Graham and Juhl [2007, page 5] have also listed the formula

$$
\begin{equation*}
v^{(6)}(g)=-\frac{1}{8}\left(\sigma_{3}(g)+\frac{1}{3(n-4)}\left(A_{g}\right)^{i j}\left(B_{g}\right)_{i j}\right) \tag{1-3}
\end{equation*}
$$

where

$$
\left(B_{g}\right)_{i j}:=\frac{1}{n-3} \nabla^{k} \nabla^{l} W_{l i k j}+\frac{1}{n-2} R^{k l} W_{l i k j}
$$

is the Bach tensor of the metric. Just as $\int_{M} \sigma_{k}\left(g^{-1} \circ A_{g}\right) d v_{g}$ is conformally invariant when $2 k=n$ and (M, g) is locally conformally flat, Graham [2009] showed that $\int_{M} v^{(2 k)}(g) d v_{g}$ is also conformally invariant on a general manifold when $2 k=n$. Chang and Fang [2008] showed that, for $n \neq 2 k$, the Euler-Lagrange equations for the functional $\int_{M} v^{(2 k)}(g) d v_{g}$ under conformal variations subject to the constraint $\operatorname{Vol}_{g}(M)=1$ satisfies $v^{(2 k)}(g)=$ const, which is a generalized characterization for the curvatures $\sigma_{k}\left(g^{-1} \circ A_{g}\right)$ when (M, g) is locally conformally flat, as given by Viaclovsky [2000a].

In this note, we will first show that the curvatures $v^{(2 k)}(g)$ will play the role of $\sigma_{k}\left(g^{-1} \circ A_{g}\right)$ in (1-1) for a general manifold. Graham [2009] also gives an explicit expression of $v^{(8)}(g)$, but the explicit expression of $v^{(2 k)}(g)$ for general k is not known because they are algebraically complicated; see [Graham 2009, page 1958]. Thus the study of the $v^{(2 k)}(g)$ curvatures involves significant challenges not shared by that of $\sigma_{k}(g)$: First, $v^{(2 k)}(g)$ for $k \geq 3$ depends on derivatives of curvature of g; in fact, these depend on derivatives of curvatures of order up to $2 k-4$. Second, the $v^{(2 k)}(g)$ are defined in [Graham 2009] via an indirect, highly nonlinear inductive
algorithm. Despite these difficulties, we can use some properties of these $v^{(2 k)}(g)$ curvatures to prove the following.

Theorem 1.1. Let (M, g) be a compact Riemannian manifold of dimension $n \geq 3$, and let X be a conformal Killing vector field on $\left(M^{n}, g\right)$. For $k \geq 1$, we have

$$
\begin{equation*}
\int_{M}\left\langle X, \nabla v^{(2 k)}(g)\right\rangle d v_{g}=0 . \tag{1-4}
\end{equation*}
$$

Remark 1.2. From (1-2), we know that Theorem 1.1 is equivalent to Theorem A when $k=1,2$, or when $\left(M^{n}, g\right)$ is locally conformally flat for $k \geq 3$.

One main reason for interest in identities such as (1-1) and (1-4) is that they play crucial roles in analyzing potentially blowing up conformal metrics with a prescribed curvature function, with $v^{(2 k)}(g)$ prescribed in this case. Although little is known about this problem at this stage, Theorem 1.1 establishes one ingredient for attacking this problem.

Our second result involves the Gauss-Bonnet curvatures $G_{2 r}$ for $2 r \leq n$, introduced by H. Weyl in 1939 and defined by

$$
G_{2 r}(g)=\delta_{i_{1} i_{2} \cdots i_{2 r-1} i_{2 r}}^{j_{1} j_{2} \cdots j_{2 r-1} j_{2 r}} R_{j_{1} j_{2}}^{i_{1} i_{2}} \cdots R^{i_{2 r-1} i_{2 r}}{ }_{j_{2 r-1} j_{2 r}},
$$

where $\delta_{i_{1} i_{2} \cdots i_{2 r-1} i_{2 r}}^{j_{1} j_{2} \cdots j_{2 r-1} j_{2 r}}$ is the generalized Kronecker symbol; see also [Labbi 2008]. Note that $G_{2}=2 R$, with R the scalar curvature.

Theorem 1.3. Let $\left(M^{n}, g\right)$ be a compact Riemannian manifold, and let X be a conformal Killing vector field. Then for the Gauss-Bonnet curvatures defined above, we have

$$
\int_{M}\left\langle X, G_{2 r}(g)\right\rangle d v_{g}=0 .
$$

Remark 1.4. When (M, g) is locally conformally flat, we see that the Gauss curvature satisfies

$$
G_{2 r}(g)=\frac{4^{r}(n-r)!r!}{(n-2 r)!} \sigma_{r}
$$

so Theorem 1.3 reduces to Theorem A.
Remark 1.5. M. Labbi [2008] proved that the first variation of the functional $\int_{M} G_{2 r} d v_{g}$ within metrics with constant volume gave the so-called generalized Einstein metric, and this functional has the variational property for $2 r<n$ and is a topological invariant for $2 r=n$. In fact, if $n=2 r$, this functional is the Gauss-Bonnet integrand up to a constant [Chern 1944].

In the next section, we first provide a general proof for Theorem 1.1 by adapting an ingredient in a preprint version [Han 2006b] of [Han 2006a], and using of a variation formula for $v^{(2 k)}(g)$ established in [Graham 2009] and [Chang and Fang 2008]. Because of the explicit expression for $v^{(6)}(g)$ and potential applications to
other related problems in low dimensions, we provide in Section 3 a self-contained proof for Theorem 1.1 in the case $k=3$. We prove Theorem 1.3 in Section 4.

2. Proof of Theorem 1.1

We will need the following variation formula for $v^{(2 k)}(g)$; see [Graham 2009].
Proposition 2.1. Under the conformal transformation $g_{t}=e^{2 t \eta} g$, the variation of $v^{(2 k)}\left(g_{t}\right)$ is given by

$$
\begin{equation*}
\left.\frac{\partial}{\partial t}\right|_{t=0} v^{(2 k)}\left(g_{t}\right)=-2 k \eta v^{(2 k)}+\nabla_{i}\left(L_{(k)}^{i j} \eta_{j}\right) \tag{2-1}
\end{equation*}
$$

where $L_{(k)}^{i j}$ is defined as in [Graham 2009] by

$$
L_{(k)}^{i j}=-\left.\sum_{l=1}^{k} \frac{1}{l!} v^{(2 k-2 l)}(g) \partial_{\rho}^{l-1} g^{i j}(\rho)\right|_{\rho=0},
$$

with $g_{i j}(\rho)$ denoting the extension of g such that

$$
g_{+}=\frac{(d \rho)^{2}-2 \rho g(\rho)}{4 \rho^{2}}
$$

is an asymptotic solution to $\operatorname{Ric}\left(g_{+}\right)=-n g_{+}$near $\rho=0$.
An integral version of (2-1) first appeared in [Chang and Fang 2008]:

$$
\int_{M}\left(\left.\frac{\partial}{\partial t}\right|_{t=0}\left(v^{(2 k)}\left(g_{t}\right)\right)+2 k \eta v^{(2 k)}(g)\right) d v_{g}=0
$$

Proof of Theorem 1.1 in the case $n \neq 2 k$. Let X be a conformal vector field on M. Let ϕ_{t} denote the local one-parameter family of conformal diffeomorphisms of (M, g) generated by X. Thus for some smooth function ω_{t} on M, we have

$$
\phi_{t}^{*}(g)=e^{2 \omega_{t}} g=: g_{t} .
$$

We have the properties

$$
\begin{align*}
& \phi_{t}^{*} v^{(2 k)}(g)=v^{(2 k)}\left(\phi_{t}^{*} g\right)=v^{(2 k)}\left(e^{2 \omega_{t}} g\right), \tag{2-2}\\
& \dot{\omega}:=\left.\frac{d}{d t}\right|_{t=0} \omega_{t}=\frac{\operatorname{div} X}{n}, \tag{2-3}\\
& \left.\frac{\partial}{\partial t}\right|_{t=0}\left(g_{t}^{-1} \circ A\left(g_{t}\right)\right)=-\nabla^{2} \dot{\omega}-2 \dot{\omega} g^{-1} \circ A(g), \tag{2-4}\\
& \left.\frac{\partial}{\partial t}\right|_{t=0} \operatorname{div}_{g_{t}} X=n X \eta=n\langle X, \nabla \eta\rangle . \tag{2-5}
\end{align*}
$$

Using (2-2), (2-3), and (2-1), we have

$$
\begin{aligned}
\left\langle X, \nabla v^{(2 k)}(g)\right\rangle & =\left.\frac{\partial}{\partial t}\right|_{t=0}\left(v^{(2 k)}\left(g_{t}\right)\right) \\
& =-2 k \dot{\omega} v^{(2 k)}+\nabla_{i}\left(L_{(k)}^{i j} \dot{\omega}_{j}\right) \\
& =-\frac{2 k}{n}(\operatorname{div} X) v^{(2 k)}+\nabla_{i}\left(L_{(k)}^{i j} \dot{\omega}_{j}\right) \\
& =-\frac{2 k}{n} \operatorname{div}\left(v^{(2 k)} X\right)+\frac{2 k}{n}\left\langle X, \nabla v^{(2 k)}(g)\right\rangle+\frac{1}{n} \nabla_{i}\left(L_{(k)}^{i j}(\operatorname{div} X)_{j}\right),
\end{aligned}
$$

from which it follows that

$$
\begin{equation*}
\left(1-\frac{2 k}{n}\right)\left\langle X, \nabla v^{(2 k)}(g)\right\rangle=-\frac{2 k}{n} \operatorname{div}\left(v^{(2 k)} X\right)+\frac{1}{n} \nabla_{i}\left(L_{(k)}^{i j}(\operatorname{div} X)_{j}\right) . \tag{2-6}
\end{equation*}
$$

Theorem 1.1 in the case $2 k \neq n$ follows directly by integrating (2-6) over M.
Proof of Theorem 1.1 in the case $2 k=n$. As in [Han 2006b], we will prove that for any conformal metric $g_{1}=e^{2 \eta} g$ of g,

$$
\int_{M}\left\langle X, v^{(2 k)}\left(g_{1}\right)\right\rangle d v_{g_{1}}=\int_{M}\left\langle X, v^{(2 k)}(g)\right\rangle d v_{g}=-\int_{M} \operatorname{div}_{g} X v^{(2 k)}(g) d v_{g},
$$

that is, $\int_{M}\left\langle X, v^{(2 k)}(g)\right\rangle d v_{g}$ is independent of the particular choice of metric in the conformal class. We only have to prove that

$$
\begin{equation*}
\left.\frac{\partial}{\partial t}\right|_{t=0} \int_{M} \operatorname{div}_{g_{t}} X v^{(2 k)}\left(g_{t}\right) d v_{g_{t}}=0 \quad \text { for } g_{t}=e^{2 t \eta} g \tag{2-7}
\end{equation*}
$$

We prove (2-7) by direct computations using Proposition 2.1. Indeed,

$$
\begin{aligned}
\left.\frac{\partial}{\partial t}\right|_{t=0} & \int_{M} \operatorname{div}_{g_{t}} X v^{(2 k)}\left(g_{t}\right) d v_{g_{t}} \\
& =\int_{M}\left(n\langle X, \nabla \eta\rangle v^{(2 k)}+\operatorname{div} X\left(-2 k \eta v^{(2 k)}+\nabla_{i}\left(L_{(k)}^{i j} \eta_{j}\right)\right)+n \eta \operatorname{div} X v^{(2 k)}\right) d v_{g} \\
& =\int_{M}\left(n\langle X, \nabla \eta\rangle v^{(2 k)}+\operatorname{div} X \nabla_{i}\left(L_{(k)}^{i j} \eta_{j}\right)\right) d v_{g} \\
& =\int_{M}\left(\left\langle n v^{(2 k)} X, \nabla \eta\right\rangle-L_{(k)}^{i j}(\operatorname{div} X)_{i} \eta_{j}\right) d v_{g} \\
& =\int_{M}\left(-\operatorname{div}\left(n v^{(2 k)} X\right)+\nabla_{j}\left(L_{(k)}^{i j}(\operatorname{div} X)_{i}\right)\right) \eta d v_{g}=0
\end{aligned}
$$

in the case $n=2 k$ by (2-6).
The remaining argument is an adaptation of an argument of Bourguignon and Ezin [1987]: either the connected component of the identity of the conformal group $C_{0}(M, g)$ is compact, and then there is a metric \hat{g} conformal to g admitting $C_{0}(M, g)$ as a group of isometries, from which it follows that $\operatorname{div}_{\hat{g}} X \equiv 0$ and therefore (1-4) holds; or, $C_{0}(M, g)$ is noncompact, and then by a theorem of

Obata and Ferrand, (M, g) is conformal to the standard sphere, in which case we can pick the canonical metric to compute the integral on the left hand side of (1-4) and conclude that it is zero.

3. A self-contained proof of Theorem 1.1 in the case $k=3$

We aim to give a direct, self-contained derivation for a more explicit version of (2-1); namely, under conformal change of metric $g_{t}=e^{2 t \eta} g$,

$$
\begin{equation*}
\left.\frac{\partial}{\partial t}\right|_{t=0} v^{(6)}\left(g_{t}\right)=-6 v^{(6)}(g) \eta+\nabla^{j}\left(\left(\frac{T_{i j}^{(2)}(g)}{8}+\frac{B_{i j}(g)}{24(n-4)}\right) \nabla^{i} \eta\right) \tag{3-1}
\end{equation*}
$$

where $T_{i j}^{(2)}(g)$ is the Newton tensor associated with A_{g}, as defined in Reilly [1977]:
Definition. For an integer $k \geq 0$, the k-th Newton tensor is

$$
T_{i j}^{(k)}=\frac{1}{k!} \sum \delta_{i_{1} \cdots i_{k} i}^{j_{1} \cdots j_{k} j} A_{i_{1} j_{1}} \cdots A_{i_{k} j_{k}}
$$

where $\delta_{i_{1} \cdots i_{k} i}^{j_{1} \cdots j_{k} j}$ is the generalized Kronecker symbol.
With (3-1) we can repeat the proof in the last section to prove Theorem 1.1 in the case $k=3$.

First we recall the transformation laws for the tensors $B_{i j}$ and $A_{i j}$ under conformal change of metric $g_{t}=e^{2 t \eta} g$ - see [Chang and Fang 2008]:

$$
\begin{aligned}
& A_{i j}\left(g_{t}\right)=A_{i j}-t \nabla_{i j}^{2} \eta+t^{2} \nabla_{i} \eta \nabla_{j} \eta-\frac{1}{2} t^{2}|\nabla \eta|_{g}^{2} g_{i j} \\
& B_{i j}\left(g_{t}\right)=e^{-2 t \eta}\left(B_{i j}+(n-4) t\left(C_{i j k}+C_{j i k}\right) \nabla^{k} \eta+(n-4) t^{2} W_{i k j l} \nabla^{k} \eta \nabla^{l} \eta\right)
\end{aligned}
$$

where $C_{i j k}:=A_{i j, k}-A_{i k, j}$ are the components of the Cotton tensor, with $A_{i j, k}$ the components of the covariant derivative of the Schouten tensor $A_{i j}$.

Thus

$$
\begin{aligned}
& \left.\frac{\partial}{\partial t}\right|_{t=0} A^{i j}\left(g_{t}\right)=-\nabla^{i j} \eta-4 A^{i j}(g) \eta \\
& \left.\frac{\partial}{\partial t}\right|_{t=0} B_{i j}\left(g_{t}\right)=(n-4)\left(C_{i j k}+C_{j i k}\right) \nabla^{k} \eta-2 \eta B_{i j}
\end{aligned}
$$

Proposition 3.1 [Viaclovsky 2000a; Han 2006b; Hu and Li 2004]. We have
(i) $k \sigma_{k}(g)=\sum_{i, j} T_{i j}^{(k-1)} A_{i j}$
(ii) $\sum_{i} T_{i i}^{(k)}=(n-k) \sigma_{k}(g)$.
(iii) $\sum_{l} \nabla^{l} W_{l i j k}=-(n-3) C_{i j k}$.

Using the relation between $v^{(6)}$ and $\sigma_{3}(g)$, and with $A^{i j} B_{i j}$ as in (1-3), we find

$$
\begin{aligned}
& -\left.8 \frac{\partial}{\partial t}\right|_{t=0} v^{(6)}\left(g_{t}\right) \\
& =T_{i j}^{(2)}(g)\left(-\nabla^{i j} \eta-2 \eta A^{i j}(g)\right) \\
& \quad+\frac{1}{3(n-4)}\left(-B_{i j}(g) \nabla^{i j} \eta+(n-4) A^{i j}(g)\left(C_{i j k}+C_{j i k}\right) \nabla^{k} \eta-6 \eta A^{i j} B_{i j}\right) \\
& =-6\left(\sigma_{3}(g)+\frac{1}{3(n-4)} A^{i j} B_{i j}\right) \eta-\left(T_{i j}^{(2)}(g)+\frac{B_{i j}(g)}{3(n-4)}\right) \nabla^{i j} \eta+\frac{2}{3} A^{i j}(g) C_{i j k} \nabla^{k} \eta \\
& =48 v^{(6)}(g) \eta-\nabla^{j}\left(\left(T_{i j}^{(2)}(g)+\frac{B_{i j}(g)}{3(n-4)}\right) \nabla^{i} \eta\right) \\
& \quad+\left(\sum_{j}\left(T_{i j, j}^{(2)}(g)+\frac{B_{i j, j}(g)}{3(n-4)}\right)+\frac{2}{3} A^{k l} C_{k l i}\right) \nabla^{i} \eta,
\end{aligned}
$$

where we used (1-3) and Proposition 3.1(i). The following lemma implies that

$$
\sum_{j}\left(T_{i j, j}^{(2)}(g)+\frac{B_{i j, j}(g)}{3(n-4)}\right)+\frac{2}{3} A^{k l} C_{k l i}=0
$$

thus establishing (3-1).
Lemma 3.2. (i) $\sum_{j} T_{i j, j}^{(2)}=-A^{p q} C_{p q i}$.
(ii) $\sum_{j} B_{i j, j}=(n-4) A^{k l} C_{k l i}$.

Proof of (i). In normal coordinates, we have

$$
\sum_{j} T_{i j, j}^{(2)}=\sum\left(\frac{1}{2!} \sum \delta_{i_{1} i_{2} i}^{j_{1} j_{2} j} A_{i_{1} j_{1}} A_{i_{2} j_{2}}\right)_{j}=\sum \delta_{i_{1} i_{2} i}^{j_{1} j_{2} j} A_{i_{1} j_{1}} A_{i_{2} j_{2}, j}=-A^{p q} C_{p q i}
$$

where we used

$$
\delta_{i_{1} i_{2} i}^{j_{1} j_{2} j}=\left|\begin{array}{ccc}
\delta_{i_{1} j_{1}} & \delta_{i_{1} j_{2}} & \delta_{i_{1} j} \\
\delta_{i_{2} j_{1}} & \delta_{i_{2} j_{2}} & \delta_{i_{2} j} \\
\delta_{i j_{1}} & \delta_{i j_{2}} & \delta_{i j}
\end{array}\right|
$$

and $\sum_{i} A_{i i, j}=\sum_{i} A_{i j, i}$, itself a consequence of the second Bianchi identity.
Proof of (ii). First, using Proposition 3.1(iii) and substituting $R_{i j}$ in terms of $A_{i j}$ in the definition of the Bach tensor $B_{i j}$, we obtain

$$
\begin{aligned}
B_{i j} & =-\sum_{k} C_{i k j, k}+\sum_{k, l} A_{k l} W_{l i k j} \\
& =-\sum_{k}\left(A_{i k, j k}-A_{i j, k k}\right)+\sum_{k, l} A_{k l} W_{l i k j}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \sum_{j} B_{i j, j} \\
&=-\sum_{j, k}\left(A_{i k, j k j}-A_{i j, k k j}\right)+\sum_{k, l, j}\left(A_{k l, j} W_{l i k j}+A_{k l} W_{l i k j, j}\right) \\
&=-\sum_{j, k}\left(A_{i k, j k j}-A_{i k, j j k}\right)+\sum_{k, l, j} A_{k l, j} W_{l i k j}-(n-3) \sum_{k, l} A_{k l} C_{k i l} \\
&=-\sum_{j, k, m}\left(A_{i k, m} R_{m j k j}+A_{i m, j} R_{m k k j}+A_{m k, j} R_{m i k j}\right) \\
&+\sum_{k, l, j} A_{k l, j} W_{l i k j}+(n-3) \sum_{k, l} A_{k l} C_{k l i} \\
&= \sum_{j, k, m}\left(-A_{m k, j} R_{m i k j}+A_{k m, j} W_{m i k j}\right)+(n-3) \sum_{k, l} A_{k l} C_{k i l} \\
&= \sum_{j, k, m} A_{m k, j}\left(-A_{m k} g_{i j}+A_{m j} g_{i k}-g_{m k} A_{i j}+g_{m j} A_{i k}\right)+(n-3) \sum_{k, l} A_{k l} C_{k l i} \\
&= \sum_{m, k}\left(-A_{m k, i} A_{m k}+A_{m i, k} A_{m k}-A_{m k, j} g_{m k} A_{i j}+A_{m j, k} g_{m k} A_{i j}\right) \\
&+(n-3) \sum_{k, l} A_{k l} C_{k l i} \\
&= \sum_{m, k} A_{m k}\left(A_{m i, k}-A_{m k, i}\right)+(n-3) \sum_{k, l} A_{k l} C_{k l i} \\
&= \sum_{m, k} A_{m k} C_{m i k}+(n-3) \sum_{k, l} A_{k l} C_{k l i} \\
&=(n-4) \sum_{k, l} A_{k l} C_{k l i},
\end{aligned}
$$

where we have used

$$
R_{m i k j}=W_{m i k j}+A_{m k} g_{i j}-A_{m j} g_{i k}+g_{m k} A_{i j}-g_{m j} A_{i k}
$$

Proof of Theorem 1.1 in the special case $k=3$. We use the notation of Section 2. Let ϕ_{t} be the local one-parameter family of conformal diffeomorphisms of (M, g) generated by X. For $g_{t}=\phi_{t}^{*}(g)=e^{2 \omega_{t}} g$, similarly to (3-1), we have

$$
\begin{align*}
\left\langle X, v^{(6)}\right\rangle & =\left.\frac{\partial}{\partial t}\right|_{t=0} v^{(6)}\left(g_{t}\right) \\
& =-6 v^{(6)}(g) \dot{\omega}+\sum_{i, j} \nabla^{j}\left(\left(\frac{T_{i j}^{(2)}(g)}{8}+\frac{B_{i j}(g)}{24(n-4)}\right) \nabla^{i} \dot{\omega}\right) \tag{3-2}
\end{align*}
$$

if $n \neq 2 k$. Then integrating (3-2) we can get Theorem 1.1.
If $n=2 k$, then by use of (3-1) and (3-2), we can prove that $\int_{M}\left\langle X, v^{(6)}(g)\right\rangle d v_{g}$ is independent of the particular choice of the metric within the conformal class. The remainder of the proof repeats verbatim that of Section 2.

4. Proof of Theorem 1.3

In this section, we will prove Theorem 1.3 using a method similar to the one used in Section 2. Let (M^{n}, g) be a compact Riemannian manifold, and denote by $R_{i j k l}$ the Riemann curvature tensor in local coordinates. Define a tensor P_{r} by

$$
P_{r_{i}}^{j}=\delta_{i i_{1} i_{2} \cdots i_{2 r-1} i_{2 r}}^{j j_{1} j_{2} \cdots j_{2 r r} j_{2 r}} R_{j_{1} j_{2}}^{i_{1} i_{2}} \cdots R^{i_{2 r-1} i_{2 r}}{ }_{j_{2 r-1} j_{2 r}} \quad \text { for } 2 r \leq n,
$$

where $\delta_{i i_{1} i_{2} \cdots i_{2 r-1} i_{2 r}}^{j_{1} j_{2} \cdots j_{2 r-1} j_{2 r}}$ is the generalized Kronecker symbol.
Lemma 4.1. The tensor P_{r} is divergence free, that is,

$$
P_{r_{i, j}}^{j}=0 \quad \text { for any } i
$$

This property was present in [Labbi 2008] and [Lovelock 1971], although with different notation and formalism. Since we define the tensor P_{r} explicitly as above, and the property of P_{r} in Lemma 4.1 is a direct consequence of the Bianchi identity, we include a proof here.

Proof. We have

$$
\begin{aligned}
& P_{r_{i, j}}^{j}=r \delta_{i i_{1} i_{2} \ldots i_{2 r-1} i_{2 r}}^{j j_{1} j_{2} \ldots j_{2 r-1} j_{2 r}} R_{{ }_{j_{1} j_{2}, j}^{i_{1} i_{2}}} \cdots R^{i_{2 r-1} i_{2 r}}{ }_{j_{2 r-1} j_{2 r}} \\
& =-r \delta_{i i_{1} i_{2} \cdots j_{2 r-1} i_{2 r}}^{j j_{1} j_{2} \cdots j_{2 r} j_{2 r}} R^{i_{1} i_{2}}{ }_{j_{2} j, j_{1}} \cdots R^{i_{2 r-1} i_{2 r}}{ }_{j_{2 r-1} j_{2 r}} \\
& -r \delta_{i i_{1} i_{2} \cdots i_{2 r-1} i_{2 r}}^{j_{1} j_{2} \cdots j_{2 r-1} j_{2 r}} R^{i_{1} i_{2}}{ }_{j j_{1}, j_{2}} \cdots R^{i_{2 r-1} i_{2 r} i_{2 r-1} j_{2 r}} \\
& =-2 r \delta_{i i_{1} i_{2} \cdots i_{2 r-1} i_{2 r}}^{j_{1} j_{2} j_{2 r-1} j_{2 r}} R^{i_{1} i_{2}}{ }_{j_{1} j_{2}, j} \cdots R^{i_{2 r-1} i_{2 r}}{ }_{j_{2 r-1} j_{2} r} \\
& =-2 P_{r_{i, j}}^{j} \text {, }
\end{aligned}
$$

where we have used the second Bianchi identity. It then follows that $P_{r_{i, j}}^{j}=0$.
Lemma 4.2. The generalized Kronecker symbol satisfies

$$
\sum_{i, j=1}^{n} \delta_{j}^{i} \delta_{i i_{1} \ldots i_{r}}^{j j_{1} \ldots j_{r}}=(n-r) \delta_{i_{1} \ldots i_{r}}^{j_{1} \ldots j_{r}} \quad \text { for any } 1 \leq i_{1}, \ldots, j_{r} \leq n \text { and } r \leq n
$$

The proof follows by a direct calculation from the definition.
Let X be a conformal vector field, and denote by ϕ_{t} the one-parameter subgroup of diffeomorphisms generated by X. Then there exists a family of functions ω_{t} such
that $g_{t}=\phi_{t}^{*} g=e^{2 \omega_{t}} g$. We have (2-3), $\omega_{0}=0$, and

$$
\begin{equation*}
G_{2 r}\left(g_{t}\right)=\phi_{t}^{*} G_{2 r}(g) \tag{4-1}
\end{equation*}
$$

Under the conformal change of metric $g_{t}=e^{2 \omega_{t}} g$, we have the formula (see for example [Chow et al. 2006])

$$
\begin{equation*}
R_{k l}^{i j}\left(g_{t}\right)=e^{-2 \omega_{t}}\left(R_{k l}^{i j}-(\alpha \odot g)_{k l}^{i j}\right) \tag{4-2}
\end{equation*}
$$

where we denote $\alpha_{i j}=\left(\omega_{t}\right)_{i j}-\left(\omega_{t}\right)_{i}\left(\omega_{t}\right)_{j}+\frac{1}{2}\left|\nabla \omega_{t}\right|^{2} g_{i j}$ for convenience (note that $\left(\omega_{t}\right)_{i j}$ is the covariant derivative with respect to the fixed metric g) and \odot is the Kulkarni-Nomizu product, defined by

$$
(\alpha \odot g)_{i j k l}=\alpha_{i k} g_{j l}+\alpha_{j l} g_{i k}-\alpha_{i l} g_{j k}-\alpha_{j k} g_{i l}
$$

From (4-2) we see that

$$
\begin{align*}
& G_{2 r}\left(g_{t}\right)=e^{-2 r \omega_{t}} \delta_{i_{1} i_{2} \ldots i_{2 r-1} i_{2 r}}^{j_{1} \ldots j_{2 r-} j_{2 r}} \tag{4-3}\\
& \quad \cdot\left(R_{j_{1} j_{2}}^{i_{1} i_{1}}-(\alpha \odot g)^{i_{1} i_{2}}{ }_{j_{1} j_{2}}\right) \cdots\left(R_{j_{2 r-1} j_{2 r}}^{i_{2 r-1} i_{2 r}}-(\alpha \odot g)^{i_{2 r-1} i_{2 r}}{ }_{j_{2 r-1} j_{2 r}}\right) .
\end{align*}
$$

Taking derivative with respect to t on both sides of (4-1) and using (4-3), we see by using (2-3) that

$$
\begin{align*}
\langle X, & \left.G_{2 r}(g)\right\rangle \\
& =\left.\frac{\partial}{\partial t}\right|_{t=0} G_{2 r}\left(g_{t}\right) \\
& =-2 r \dot{\omega} G_{2 r}(g)-r \delta_{i_{1} i_{2} \cdots i_{2 r-1} i_{2 r}}^{j_{1} j_{2} \cdots j_{2 r}}\left(\left.\frac{\partial \alpha}{\partial t}\right|_{t=0} \odot g\right)^{i_{1} i_{2}}{ }_{j_{1} j_{2}} R_{j_{3} j_{4}}^{i_{3} i_{4}} \cdots R^{i_{2 r-1} i_{2 r}}{ }_{j_{2 r-1} j_{2 r}} \\
& =-2 r \dot{\omega} G_{2 r}(g)-4 r(n-2 r+1) P_{r-1}{ }_{i}^{j} \dot{\omega}_{j}^{i} \tag{4-4}\\
& =-2 r \frac{\operatorname{div} X}{n} G_{2 r}(g)-\frac{4 r(n-2 r+1)}{n} P_{r-1}{ }_{i}^{j}(\operatorname{div} X)_{j}^{i} \\
& =-2 r \frac{\operatorname{div} X}{n} G_{2 r}(g)-\frac{4 r(n-2 r+1)}{n} \nabla_{j}\left(P_{r-1}{ }_{i}^{j}(\operatorname{div} X)^{i}\right) .
\end{align*}
$$

where we have used Lemma 4.2 in the third equality and Lemma 4.1 in the last. Integrating (4-4) over M and using the divergence theorem, we see that

$$
\begin{equation*}
\int_{M}\left\langle X, G_{2 r}(g)\right\rangle d v=-2 r \int_{M} \frac{\operatorname{div} X}{n} G_{2 r}(g) d v=\frac{2 r}{n} \int_{M}\left\langle X, G_{2 r}(g)\right\rangle d v \tag{4-5}
\end{equation*}
$$

Hence, if $n>2 r$, it follows from (4-5) that $\int_{M}\left\langle X, G_{2 r}(g)\right\rangle d v=0$. If $n=2 r$, we follow ideas in Section 2, that is, we need to prove that the integral

$$
\int_{M} G_{2 r}(g) \operatorname{div}_{g} X d v_{g}
$$

is independent of a particular choice of metric within a conformal class. Let $g_{1}=$ $e^{2 \eta} g\left(\eta \in C^{\infty}(M)\right)$ be any metric in the conformal class [g]. Considering a family of metrics $g_{t}=e^{2 t \eta} g$ connecting g and g_{1}, we need to prove that

$$
\left.\frac{\partial}{\partial t}\right|_{t=0} \int_{M} G_{2 r}\left(g_{t}\right) \operatorname{div}_{g_{t}} X d v_{g_{t}}=0
$$

By a direct computation, we have

$$
\begin{aligned}
& \left.\frac{\partial}{\partial t}\right|_{t=0} \int_{M} G_{2 r}\left(g_{t}\right) \operatorname{div}_{g_{t}} X d v_{g_{t}} \\
& \quad=\int_{M}\left(\left.\frac{\partial}{\partial t}\right|_{t=0} G_{2 r}\left(g_{t}\right) \operatorname{div} X+\left.G_{2 r}(g) \frac{\partial}{\partial t}\right|_{t=0} \operatorname{div}_{g_{t}} X+n \eta G_{2 r}(g) \operatorname{div} X\right) d v_{g} \\
& =\int_{M}\left(-2 r \eta G_{2 r}(g) \operatorname{div} X-4 r(n-2 r+1) P_{r-1}{ }_{i}^{j} \eta_{j}^{i} \operatorname{div} X\right. \\
& \\
& =\int_{M}\left(-2 r \eta G_{2 r}(g)\langle\nabla \eta, X\rangle+n G_{2 r}(g) \operatorname{div} X \eta\right) d v_{g} \\
& =0,
\end{aligned}
$$

where we have used (2-5) in the second equality, the divergence theorem in the third and (4-4) in the last. The remainder of the proof follows the idea of [Bourguignon and Ezin 1987] as in Section 2. Hence we complete the proof of Theorem 1.3.

References

[Bourguignon and Ezin 1987] J.-P. Bourguignon and J.-P. Ezin, "Scalar curvature functions in a conformal class of metrics and conformal transformations", Trans. Amer. Math. Soc. 301:2 (1987), 723-736. MR 88e:53054 Zbl 0622.53023
[Chang and Fang 2008] S.-Y. A. Chang and H. Fang, "A class of variational functionals in conformal geometry", Int. Math. Res. Not. 2008:7 (2008), Art. ID rnn008. MR 2009h:53072 Zbl 1154.53019
[Chern 1944] S.-s. Chern, "A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds", Ann. of Math. (2) 45 (1944), 747-752. MR 6,106a Zbl 0060.38103
[Chow et al. 2006] B. Chow, P. Lu, and L. Ni, Hamilton's Ricci flow, Graduate Studies in Mathematics 77, American Mathematical Society, Providence, RI, 2006. MR 2008a:53068 Zbl 1118.53001
[Graham 2009] C. R. Graham, "Extended obstruction tensors and renormalized volume coefficients", Adv. Math. 220:6 (2009), 1956-1985. MR 2010e:53060 Zbl 1161.53062
[Graham and Juhl 2007] C. R. Graham and A. Juhl, "Holographic formula for Q-curvature", $A d v$. Math. 216:2 (2007), 841-853. MR 2009a:53062 Zbl 1147.53030
[Han 2006a] Z.-C. Han, "A Kazdan-Warner type identity for the σ_{k} curvature", C. R. Math. Acad. Sci. Paris 342:7 (2006), 475-478. MR 2006j:53045 Zbl 1099.53028
[Han 2006b] Z.-C. Han, "A Kazdan-Warner type identity for the σ_{k} curvature", preprint, 2006, available at http://www.math.rutgers.edu/~zchan/current-preprint/KW.pdf.
[Hu and Li 2004] Z. Hu and H . Li, "A new variational characterization of n-dimensional space forms", Trans. Amer. Math. Soc. 356:8 (2004), 3005-3023. MR 2005d:53058 Zbl 1058.53029
[Labbi 2008] M.-L. Labbi, "Variational properties of the Gauss-Bonnet curvatures", Calc. Var. Partial Differential Equations 32:2 (2008), 175-189. MR 2009a:58013 Zbl 1139.58009
[Lovelock 1971] D. Lovelock, "The Einstein tensor and its generalizations", J. Mathematical Phys. 12 (1971), 498-501. MR 43 \#1588 Zbl 0213.48801
[Reilly 1977] R. C. Reilly, "Applications of the Hessian operator in a Riemannian manifold", Indiana Univ. Math. J. 26:3 (1977), 459-472. MR 57 \#13799 Zbl 0391.53019
[Viaclovsky 2000a] J. A. Viaclovsky, "Conformal geometry, contact geometry, and the calculus of variations", Duke Math. J. 101:2 (2000), 283-316. MR 2001b:53038 Zbl 0990.53035
[Viaclovsky 2000b] J. A. Viaclovsky, "Some fully nonlinear equations in conformal geometry", pp. 425-433 in Differential equations and mathematical physics (Birmingham, AL, 1999), edited by R. Weikard and G. Weinstein, AMS/IP Stud. Adv. Math. 16, Amer. Math. Soc., Providence, RI, 2000. MR 2001i:53057 Zbl 1161.53346

Received May 18, 2010.

Bin Guo
Department of Mathematical Sciences
Tsinghua University
BEIJING 100084
China
Current address:
Department of Mathematics
Rutgers University
110 Frelinghuysen Road
Piscataway, NJ 08854
United States
bguo@math.rutgers.edu
Zheng-Chao Han
Department of Mathematics
Rutgers University
110 Frelinghuysen Road
Piscataway, NJ 08854
United States
zchan@math.rutgers.edu

Haizhong Li
Department of Mathematical Sciences
Tsinghua University
BEIJING 100084
China
hli@math.tsinghua.edu.cn

PACIFIC JOURNAL OF MATHEMATICS

http://www.pjmath.org
Founded in 1951 by
E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)

EDITORS
V. S. Varadarajan (Managing Editor)

Department of Mathematics
University of California
Los Angeles, CA 90095-1555
pacific@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics University of California Riverside, CA 92521-0135 chari@math.ucr.edu

Robert Finn

Department of Mathematics Stanford University Stanford, CA 94305-2125
finn@math.stanford.edu
Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
liu@math.ucla.edu

Darren Long
Department of Mathematics University of California
Santa Barbara, CA 93106-3080 long@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong
jhlu@maths.hku.hk
Alexander Merkurjev
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
merkurev@math.ucla.edu

Sorin Popa
Department of Mathematics University of California
Los Angeles, CA 90095-1555 popa@math.ucla.edu Jie Qing
Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu
Jonathan Rogawski
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
jonr@math.ucla.edu

PRODUCTION

pacific@math.berkeley.edu
Silvio Levy, Scientific Editor Matthew Cargo, Senior Production Editor

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY
INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY
MATH. SCIENCES RESEARCH INSTITUTE NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA
UNIV. OF CALIFORNIA, BERKELEY
UNIV. OF CALIFORNIA, DAVIS
UNIV. OF CALIFORNIA, LOS ANGELES
UNIV. OF CALIFORNIA, RIVERSIDE
UNIV. OF CALIFORNIA, SAN DIEGO
UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ
UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA UNIV. OF UTAH UNIV. OF WASHINGTON WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or www.pjmath.org for submission instructions.
The subscription price for 2011 is US $\$ 420 /$ year for the electronic version, and $\$ 485 /$ year for print and electronic.
Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. Prior back issues are obtainable from Periodicals Service Company, 11 Main Street, Germantown, NY 12526-5635. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and the Science Citation Index.
The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 969 Evans Hall, Berkeley, CA 94720-3840, is published monthly except July and August. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOw ${ }^{\text {TM }}$ from Mathematical Sciences Publishers.
PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS
at the University of California, Berkeley 94720-3840
A NON-PROFIT CORPORATION
Typeset in $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$
Copyright ©2011 by Pacific Journal of Mathematics

PACIFIC JOURNAL OF MATHEMATICS

Volume 251 No. $2 \quad$ June 2011
Two Kazdan-Warner-type identities for the renormalized volume coefficients 257and the Gauss-Bonnet curvatures of a Riemannian metricBin Guo, Zheng-Chao Han and Haizhong Li
Gonality of a general ACM curve in P^{3} 269
Robin Hartshorne and Enrico Schlesinger
Universal inequalities for the eigenvalues of the biharmonic operator on 315 submanifoldsSaïd Ilias and Ola Makhoul
Multigraded Fujita approximation 331
Shin-Yao Jow
Some Dirichlet problems arising from conformal geometry 337
Qi-Rui Li and Weimin Sheng
Polycyclic quasiconformal mapping class subgroups 361
Katsuhiko Matsuzaki
On zero-divisor graphs of Boolean rings 375
Ali Mohammadian
Rational certificates of positivity on compact semialgebraic sets 385
Victoria Powers
Quiver grassmannians, quiver varieties and the preprojective algebra 393
Alistair Savage and Peter Tingley
Nonautonomous second order Hamiltonian systems 431
Martin Schechter
Generic fundamental polygons for Fuchsian groups 453
AKIRA UshiJima
Stability of the Kähler-Ricci flow in the space of Kähler metrics 469
Kai Zheng
The second variation of the Ricci expander entropy 499
Meng Zhu

[^0]: Haizhong Li is supported by NSFC grant number 10971110.
 MSC2000: primary 53C20; secondary 53A30.
 Keywords: renormalized volume coefficients, $v^{(2 k)}$ curvature, conformal transformation, locally conformally flat, σ_{k} curvature, Gauss-Bonnet curvatures, Kazdan-Warner.

