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RENORMALIZED VOLUME COEFFICIENTS AND THE

GAUSS–BONNET CURVATURES OF A RIEMANNIAN METRIC

BIN GUO, ZHENG-CHAO HAN AND HAIZHONG LI

We prove two Kazdan–Warner-type identities involving the renormalized
volume coefficients v(2k) of a Riemannian manifold (Mn, g), the Gauss–
Bonnet curvature G2r , and a conformal Killing vector field on (Mn, g). In
the case when the Riemannian manifold is locally conformally flat, we find

v(2k)
= (−2)−kσk and G2r(g)=

4r(n− r)!r!
(n− 2r)!

σr

and our results reduce to earlier ones established by Viaclovsky in 2000 and
the second author in 2006.

1. Introduction

Theorem A [Viaclovsky 2000b; Han 2006a]. Let (M, g) be a compact Riemann-
ian manifold of dimension n ≥ 3, let σk(g−1

◦ Ag) be the σk curvature of g, and
let X be a conformal Killing vector field on (M, g). When k ≥ 3, assume also that
(M, g) is locally conformally flat. Then

(1-1)
∫

M
〈X,∇σk(g−1

◦ Ag)〉dvg = 0.

Recall that on an n-dimensional Riemannian manifold (M, g) with n ≥ 3, the full
Riemannian curvature tensor Rm decomposes as

Rm=Wg ⊕ (Ag � g),

where Wg denotes the Weyl tensor of g,

Ag =
1

n−2

(
Ricg −

Rg

2(n− 1)
g
)

denotes the Schouten tensor, and� is the Kulkarni–Nomizu wedge product. Under
a conformal change of metrics gw = e2wg, where w is a smooth function over the
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manifold, the Weyl curvature changes pointwise as Wgw = e2wWg. Thus, essential
information about the Riemannian curvature tensor under a conformal change of
metrics is reflected by the change in the Schouten tensor. One often tries to study
the Schouten tensor through the elementary symmetric functions σk(g−1

◦ Ag)

(which we later denote as σk(g)) of the eigenvalues of the Schouten tensor, called
the σk curvatures of g, by studying how they deform under conformal change of
metrics.

Question. For all k ≥ 1, can we generalize Theorem A without the condition that
(M, g) is locally conformally flat?

In this note, we show the answer is yes. The renormalized volume coefficients
v(2k)(g) of a Riemannian metric g, were introduced in the physics literature in the
late 1990s in the context of AdS/CFT correspondence — see [Graham 2009] for a
mathematical discussion — and were shown in [Graham and Juhl 2007] to be equal
to σk(g−1 Ag), up to a scaling constant, when (M, g) is locally conformally flat. In
fact, in the normalization we are going to adopt,

(1-2) v(2)(g)=− 1
2σ1(g) and v(4)(g)= 1

4σ2(g).

For k = 3, Graham and Juhl [2007, page 5] have also listed the formula

(1-3) v(6)(g)=−1
8

(
σ3(g)+

1
3(n−4)

(Ag)
i j (Bg)i j

)
,

where
(Bg)i j :=

1
n−3
∇

k
∇

l Wlik j +
1

n−2
Rkl Wlik j

is the Bach tensor of the metric. Just as
∫

M σk(g−1
◦ Ag) dvg is conformally invari-

ant when 2k=n and (M, g) is locally conformally flat, Graham [2009] showed that∫
M v

(2k)(g) dvg is also conformally invariant on a general manifold when 2k = n.
Chang and Fang [2008] showed that, for n 6= 2k, the Euler–Lagrange equations for
the functional

∫
M v

(2k)(g) dvg under conformal variations subject to the constraint
Volg(M)= 1 satisfies v(2k)(g)= const, which is a generalized characterization for
the curvatures σk(g−1

◦ Ag) when (M, g) is locally conformally flat, as given by
Viaclovsky [2000a].

In this note, we will first show that the curvatures v(2k)(g) will play the role of
σk(g−1

◦ Ag) in (1-1) for a general manifold. Graham [2009] also gives an explicit
expression of v(8)(g), but the explicit expression of v(2k)(g) for general k is not
known because they are algebraically complicated; see [Graham 2009, page 1958].
Thus the study of the v(2k)(g) curvatures involves significant challenges not shared
by that of σk(g): First, v(2k)(g) for k ≥ 3 depends on derivatives of curvature of g;
in fact, these depend on derivatives of curvatures of order up to 2k−4. Second, the
v(2k)(g) are defined in [Graham 2009] via an indirect, highly nonlinear inductive



TWO KAZDAN–WARNER-TYPE IDENTITIES 259

algorithm. Despite these difficulties, we can use some properties of these v(2k)(g)
curvatures to prove the following.

Theorem 1.1. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3,
and let X be a conformal Killing vector field on (Mn, g). For k ≥ 1, we have

(1-4)
∫

M
〈X,∇v(2k)(g)〉dvg = 0.

Remark 1.2. From (1-2), we know that Theorem 1.1 is equivalent to Theorem A
when k = 1, 2, or when (Mn, g) is locally conformally flat for k ≥ 3.

One main reason for interest in identities such as (1-1) and (1-4) is that they
play crucial roles in analyzing potentially blowing up conformal metrics with a
prescribed curvature function, with v(2k)(g) prescribed in this case. Although little
is known about this problem at this stage, Theorem 1.1 establishes one ingredient
for attacking this problem.

Our second result involves the Gauss–Bonnet curvatures G2r for 2r ≤ n, intro-
duced by H. Weyl in 1939 and defined by

G2r (g)= δ
j1 j2··· j2r−1 j2r
i1i2···i2r−1i2r

Ri1i2
j1 j2 · · · R

i2r−1i2r
j2r−1 j2r

,

where δ j1 j2··· j2r−1 j2r
i1i2···i2r−1i2r

is the generalized Kronecker symbol; see also [Labbi 2008].
Note that G2 = 2R, with R the scalar curvature.

Theorem 1.3. Let (Mn, g) be a compact Riemannian manifold, and let X be a con-
formal Killing vector field. Then for the Gauss–Bonnet curvatures defined above,
we have ∫

M
〈X,G2r (g)〉dvg = 0.

Remark 1.4. When (M, g) is locally conformally flat, we see that the Gauss cur-
vature satisfies

G2r (g)=
4r (n− r)!r !
(n− 2r)!

σr ,

so Theorem 1.3 reduces to Theorem A.

Remark 1.5. M. Labbi [2008] proved that the first variation of the functional∫
M G2r dvg within metrics with constant volume gave the so-called generalized

Einstein metric, and this functional has the variational property for 2r < n and
is a topological invariant for 2r = n. In fact, if n = 2r , this functional is the
Gauss–Bonnet integrand up to a constant [Chern 1944].

In the next section, we first provide a general proof for Theorem 1.1 by adapting
an ingredient in a preprint version [Han 2006b] of [Han 2006a], and using of a
variation formula for v(2k)(g) established in [Graham 2009] and [Chang and Fang
2008]. Because of the explicit expression for v(6)(g) and potential applications to
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other related problems in low dimensions, we provide in Section 3 a self-contained
proof for Theorem 1.1 in the case k = 3. We prove Theorem 1.3 in Section 4.

2. Proof of Theorem 1.1

We will need the following variation formula for v(2k)(g); see [Graham 2009].

Proposition 2.1. Under the conformal transformation gt = e2tηg, the variation of
v(2k)(gt) is given by

(2-1) ∂

∂t

∣∣∣
t=0
v(2k)(gt)=−2kηv(2k)

+∇i (L
i j
(k)η j ),

where L i j
(k) is defined as in [Graham 2009] by

L i j
(k) =−

k∑
l=1

1
l!
v(2k−2l)(g)∂ l−1

ρ gi j (ρ)
∣∣
ρ=0,

with gi j (ρ) denoting the extension of g such that

g+ =
(dρ)2− 2ρg(ρ)

4ρ2

is an asymptotic solution to Ric(g+)=−ng+ near ρ = 0.

An integral version of (2-1) first appeared in [Chang and Fang 2008]:∫
M

(
∂

∂t

∣∣∣
t=0
(v(2k)(gt))+ 2kηv(2k)(g)

)
dvg = 0.

Proof of Theorem 1.1 in the case n 6= 2k. Let X be a conformal vector field on M .
Let φt denote the local one-parameter family of conformal diffeomorphisms of
(M, g) generated by X . Thus for some smooth function ωt on M , we have

φ∗t (g)= e2ωt g =: gt .

We have the properties

φ∗t v
(2k)(g)= v(2k)(φ∗t g)= v(2k)(e2ωt g),(2-2)

ω̇ :=
d
dt

∣∣∣
t=0
ωt =

divX
n
,(2-3)

∂

∂t

∣∣∣
t=0
(g−1

t ◦ A(gt))=−∇
2ω̇− 2ω̇g−1

◦ A(g),(2-4)

∂

∂t

∣∣∣
t=0

divgt X = nXη = n〈X,∇η〉.(2-5)
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Using (2-2), (2-3), and (2-1), we have

〈X,∇v(2k)(g)〉 = ∂

∂t

∣∣∣
t=0
(v(2k)(gt))

=−2kω̇v(2k)
+∇i (L

i j
(k)ω̇ j )

=−
2k
n
(div X)v(2k)

+∇i (L
i j
(k)ω̇ j )

=−
2k
n

div(v(2k)X)+ 2k
n
〈X,∇v(2k)(g)〉+ 1

n
∇i (L

i j
(k)(div X) j ),

from which it follows that

(2-6)
(

1− 2k
n

)
〈X,∇v(2k)(g)〉 = −2k

n
div(v(2k)X)+ 1

n
∇i (L

i j
(k)(div X) j ).

Theorem 1.1 in the case 2k 6= n follows directly by integrating (2-6) over M . �

Proof of Theorem 1.1 in the case 2k = n. As in [Han 2006b], we will prove that
for any conformal metric g1 = e2ηg of g,∫

M
〈X, v(2k)(g1)〉dvg1 =

∫
M
〈X, v(2k)(g)〉dvg =−

∫
M

divg Xv(2k)(g)dvg,

that is,
∫

M〈X, v
(2k)(g)〉dvg is independent of the particular choice of metric in the

conformal class. We only have to prove that

(2-7) ∂

∂t

∣∣∣
t=0

∫
M

divgt Xv(2k)(gt)dvgt = 0 for gt = e2tηg.

We prove (2-7) by direct computations using Proposition 2.1. Indeed,

∂

∂t

∣∣∣
t=0

∫
M

divgt Xv(2k)(gt)dvgt

=

∫
M

(
n〈X,∇η〉v(2k)

+ div X (−2kηv(2k)
+∇i (L

i j
(k)η j ))+ nη div Xv(2k))dvg

=

∫
M

(
n〈X,∇η〉v(2k)

+ div X∇i (L
i j
(k)η j )

)
dvg

=

∫
M

(
〈nv(2k)X,∇η〉− L i j

(k)(div X)iη j
)
dvg

=

∫
M

(
− div(nv(2k)X)+∇ j (L

i j
(k)(div X)i )

)
ηdvg = 0

in the case n = 2k by (2-6).
The remaining argument is an adaptation of an argument of Bourguignon and

Ezin [1987]: either the connected component of the identity of the conformal
group C0(M, g) is compact, and then there is a metric ĝ conformal to g admit-
ting C0(M, g) as a group of isometries, from which it follows that divĝ X ≡ 0
and therefore (1-4) holds; or, C0(M, g) is noncompact, and then by a theorem of
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Obata and Ferrand, (M, g) is conformal to the standard sphere, in which case we
can pick the canonical metric to compute the integral on the left hand side of (1-4)
and conclude that it is zero. �

3. A self-contained proof of Theorem 1.1 in the case k = 3

We aim to give a direct, self-contained derivation for a more explicit version
of (2-1); namely, under conformal change of metric gt = e2tηg,

(3-1) ∂

∂t

∣∣∣
t=0
v(6)(gt)=−6v(6)(g)η+∇ j

((T (2)
i j (g)

8
+

Bi j (g)
24(n− 4)

)
∇

iη

)
,

where T (2)
i j (g) is the Newton tensor associated with Ag, as defined in Reilly [1977]:

Definition. For an integer k ≥ 0, the k-th Newton tensor is

T (k)
i j =

1
k!

∑
δ

j1··· jk j
i1···ik i Ai1 j1 · · · Aik jk ,

where δ j1··· jk j
i1···ik i is the generalized Kronecker symbol.

With (3-1) we can repeat the proof in the last section to prove Theorem 1.1 in the
case k = 3.

First we recall the transformation laws for the tensors Bi j and Ai j under con-
formal change of metric gt = e2tηg — see [Chang and Fang 2008]:

Ai j (gt)= Ai j − t∇2
i jη+ t2

∇iη∇ jη−
1
2 t2
|∇η|2ggi j ,

Bi j (gt)= e−2tη(Bi j + (n− 4)t (Ci jk +C j ik)∇
kη+ (n− 4)t2Wik jl∇

kη∇lη
)
,

where Ci jk := Ai j,k− Aik, j are the components of the Cotton tensor, with Ai j,k the
components of the covariant derivative of the Schouten tensor Ai j .

Thus
∂

∂t

∣∣∣
t=0

Ai j (gt)=−∇
i jη− 4Ai j (g)η,

∂

∂t

∣∣∣
t=0

Bi j (gt)= (n− 4)(Ci jk +C j ik)∇
kη− 2ηBi j .

Proposition 3.1 [Viaclovsky 2000a; Han 2006b; Hu and Li 2004]. We have

(i) kσk(g)=
∑
i, j

T (k−1)
i j Ai j

(ii)
∑

i

T (k)
i i = (n− k)σk(g).

(iii)
∑

l

∇
l Wli jk =−(n− 3)Ci jk .
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Using the relation between v(6) and σ3(g), and with Ai j Bi j as in (1-3), we find

−8 ∂
∂t

∣∣∣
t=0
v(6)(gt)

= T (2)
i j (g)

(
−∇

i jη−2ηAi j (g)
)

+
1

3(n−4)
(
−Bi j (g)∇ i jη+(n−4)Ai j (g)(Ci jk+C j ik)∇

kη−6ηAi j Bi j
)

=−6
(
σ3(g)+

1
3(n−4)

Ai j Bi j

)
η−

(
T (2)

i j (g)+
Bi j (g)

3(n−4)

)
∇

i jη+ 2
3 Ai j (g)Ci jk∇

kη

= 48v(6)(g)η−∇ j
((

T (2)
i j (g)+

Bi j (g)
3(n−4)

)
∇

iη

)
+

(∑
j

(
T (2)

i j, j (g)+
Bi j, j (g)
3(n−4)

)
+

2
3 AklCkli

)
∇

iη,

where we used (1-3) and Proposition 3.1(i). The following lemma implies that∑
j

(
T (2)

i j, j (g)+
Bi j, j (g)
3(n− 4)

)
+

2
3 AklCkli = 0,

thus establishing (3-1).

Lemma 3.2. (i)
∑

j

T (2)
i j, j =−ApqC pqi .

(ii)
∑

j

Bi j, j = (n− 4)AklCkli .

Proof of (i). In normal coordinates, we have∑
j

T (2)
i j, j =

∑( 1
2!

∑
δ

j1 j2 j
i1i2i Ai1 j1 Ai2 j2

)
j
=

∑
δ

j1 j2 j
i1i2i Ai1 j1 Ai2 j2, j =−ApqC pqi ,

where we used

δ
j1 j2 j
i1i2i =

∣∣∣∣∣∣
δi1 j1 δi1 j2 δi1 j

δi2 j1 δi2 j2 δi2 j

δi j1 δi j2 δi j

∣∣∣∣∣∣
and

∑
i

Ai i, j =
∑

i
Ai j,i , itself a consequence of the second Bianchi identity. �

Proof of (ii). First, using Proposition 3.1(iii) and substituting Ri j in terms of Ai j

in the definition of the Bach tensor Bi j , we obtain

Bi j =−
∑

k

Cik j,k +
∑
k,l

Akl Wlik j

=−

∑
k

(Aik, jk − Ai j,kk)+
∑
k,l

Akl Wlik j .
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Thus∑
j

Bi j, j

=−

∑
j,k

(Aik, jk j − Ai j,kk j )+
∑
k,l, j

(Akl, j Wlik j + Akl Wlik j, j )

=−

∑
j,k

(Aik, jk j − Aik, j jk)+
∑
k,l, j

Akl, j Wlik j − (n− 3)
∑
k,l

AklCkil

=−

∑
j,k,m

(Aik,m Rmjk j + Aim, j Rmkk j + Amk, j Rmik j )

+

∑
k,l, j

Akl, j Wlik j + (n− 3)
∑
k,l

AklCkli

=

∑
j,k,m

(−Amk, j Rmik j + Akm, j Wmik j )+ (n− 3)
∑
k,l

AklCkil

=

∑
j,k,m

Amk, j (−Amk gi j + Amj gik − gmk Ai j + gmj Aik)+ (n− 3)
∑
k,l

AklCkli

=

∑
m,k

(−Amk,i Amk + Ami,k Amk − Amk, j gmk Ai j + Amj,k gmk Ai j )

+ (n− 3)
∑
k,l

AklCkli

=

∑
m,k

Amk(Ami,k − Amk,i )+ (n− 3)
∑
k,l

AklCkli

=

∑
m,k

AmkCmik + (n− 3)
∑
k,l

AklCkli

= (n− 4)
∑
k,l

AklCkli ,

where we have used

Rmik j =Wmik j + Amk gi j − Amj gik + gmk Ai j − gmj Aik . �

Proof of Theorem 1.1 in the special case k = 3. We use the notation of Section 2.
Let φt be the local one-parameter family of conformal diffeomorphisms of (M, g)
generated by X . For gt = φ

∗
t (g)= e2ωt g, similarly to (3-1), we have

(3-2)

〈X, v(6)〉 = ∂

∂t

∣∣∣
t=0
v(6)(gt)

=−6v(6)(g)ω̇+
∑
i, j

∇
j
((T (2)

i j (g)

8
+

Bi j (g)
24(n− 4)

)
∇

i ω̇

)
,
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if n 6= 2k. Then integrating (3-2) we can get Theorem 1.1.
If n = 2k, then by use of (3-1) and (3-2), we can prove that

∫
M〈X, v

(6)(g)〉dvg

is independent of the particular choice of the metric within the conformal class.
The remainder of the proof repeats verbatim that of Section 2. �

4. Proof of Theorem 1.3

In this section, we will prove Theorem 1.3 using a method similar to the one used
in Section 2. Let (Mn, g) be a compact Riemannian manifold, and denote by Ri jkl

the Riemann curvature tensor in local coordinates. Define a tensor Pr by

Pr
j

i = δ
j j1 j2··· j2r−1 j2r
i i1i2···i2r−1i2r

Ri1i2
j1 j2 · · · R

i2r−1i2r
j2r−1 j2r

for 2r ≤ n,

where δ j j1 j2··· j2r−1 j2r
i i1i2···i2r−1i2r

is the generalized Kronecker symbol.

Lemma 4.1. The tensor Pr is divergence free, that is,

Pr
j
i, j = 0 for any i .

This property was present in [Labbi 2008] and [Lovelock 1971], although with
different notation and formalism. Since we define the tensor Pr explicitly as above,
and the property of Pr in Lemma 4.1 is a direct consequence of the Bianchi identity,
we include a proof here.

Proof. We have

Pr
j
i, j = rδ j j1 j2... j2r−1 j2r

i i1i2...i2r−1i2r
Ri1i2

j1 j2, j · · · R
i2r−1i2r

j2r−1 j2r

=−rδ j j1 j2··· j2r−1 j2r
i i1i2···i2r−1i2r

Ri1i2
j2 j, j1 · · · R

i2r−1i2r
j2r−1 j2r

− rδ j j1 j2··· j2r−1 j2r
i i1i2···i2r−1i2r

Ri1i2
j j1, j2 · · · R

i2r−1i2r
j2r−1 j2r

=−2rδ j j1 j2··· j2r−1 j2r
i i1i2···i2r−1i2r

Ri1i2
j1 j2, j · · · R

i2r−1i2r
j2r−1 j2r

=−2Pr
j
i, j ,

where we have used the second Bianchi identity. It then follows that Pr
j
i, j = 0. �

Lemma 4.2. The generalized Kronecker symbol satisfies

n∑
i, j=1

δi
jδ

j j1... jr
i i1...ir

= (n− r)δ j1... jr
i1...ir

for any 1≤ i1, . . . , jr ≤ n and r ≤ n.

The proof follows by a direct calculation from the definition.
Let X be a conformal vector field, and denote by φt the one-parameter subgroup

of diffeomorphisms generated by X . Then there exists a family of functionsωt such
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that gt = φ
∗
t g = e2ωt g. We have (2-3), ω0 = 0, and

(4-1) G2r (gt)= φ
∗

t G2r (g).

Under the conformal change of metric gt = e2ωt g, we have the formula (see for
example [Chow et al. 2006])

(4-2) Ri j
kl(gt)= e−2ωt (R

i j

kl − (α� g)i j
kl),

where we denote αi j = (ωt)i j−(ωt)i (ωt) j+
1
2 |∇ωt |

2gi j for convenience (note that
(ωt)i j is the covariant derivative with respect to the fixed metric g) and � is the
Kulkarni–Nomizu product, defined by

(α� g)i jkl = αik g jl +α jl gik −αil g jk −α jk gil .

From (4-2) we see that

(4-3) G2r (gt)= e−2rωt δ
j1 j2... j2r−1 j2r
i1i2...i2r−1i2r

·
(
R

i1i2
j1 j2 − (α� g)i1i2

j1 j2

)
· · ·
(
R

i2r−1i2r
j2r−1 j2r

− (α� g)i2r−1i2r
j2r−1 j2r

)
.

Taking derivative with respect to t on both sides of (4-1) and using (4-3), we see
by using (2-3) that

(4-4)

〈X,G2r (g)〉

=
∂

∂t

∣∣∣
t=0

G2r (gt)

=−2r ω̇G2r (g)− rδ j1 j2··· j2r−1 j2r
i1i2···i2r−1i2r

(
∂α

∂t

∣∣∣
t=0
� g

)i1i2

j1 j2
R

i3i4
j3 j4 · · · R

i2r−1i2r
j2r−1 j2r

=−2r ω̇G2r (g)− 4r(n− 2r + 1)Pr−1
j

i ω̇
i
j

=−2r
div X

n
G2r (g)−

4r(n− 2r + 1)
n

Pr−1
j
i (div X)i j

=−2r
div X

n
G2r (g)−

4r(n− 2r + 1)
n

∇ j
(
Pr−1

j
i (div X)i

)
.

where we have used Lemma 4.2 in the third equality and Lemma 4.1 in the last.
Integrating (4-4) over M and using the divergence theorem, we see that∫

M
〈X,G2r (g)〉dv =−2r

∫
M

div X
n

G2r (g)dv =
2r
n

∫
M
〈X,G2r (g)〉dv,(4-5)

Hence, if n > 2r , it follows from (4-5) that
∫

M〈X,G2r (g)〉dv = 0. If n = 2r , we
follow ideas in Section 2, that is, we need to prove that the integral∫

M
G2r (g) divg Xdvg,
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is independent of a particular choice of metric within a conformal class. Let g1 =

e2ηg(η ∈ C∞(M)) be any metric in the conformal class [g]. Considering a family
of metrics gt = e2tηg connecting g and g1, we need to prove that

∂

∂t

∣∣∣
t=0

∫
M

G2r (gt) divgt Xdvgt = 0.

By a direct computation, we have

∂

∂t

∣∣∣
t=0

∫
M

G2r (gt) divgt Xdvgt

=

∫
M

(
∂

∂t

∣∣∣
t=0

G2r (gt) div X +G2r (g)
∂

∂t

∣∣∣
t=0

divgt X + nηG2r (g) div X
)

dvg

=

∫
M

(
−2rηG2r (g) div X − 4r(n− 2r + 1)Pr−1

j
i η

i
j div X

+ nG2r (g)〈∇η, X〉+ nG2r (g) div Xη
)
dvg

=

∫
M

(
−2rηG2r (g) div X − 4ηr(n− 2r + 1)Pr−1

j
i (div X)ij
− nη〈∇G2r (g), X〉

)
dvg

= 0,

where we have used (2-5) in the second equality, the divergence theorem in the third
and (4-4) in the last. The remainder of the proof follows the idea of [Bourguignon
and Ezin 1987] as in Section 2. Hence we complete the proof of Theorem 1.3.

References

[Bourguignon and Ezin 1987] J.-P. Bourguignon and J.-P. Ezin, “Scalar curvature functions in a
conformal class of metrics and conformal transformations”, Trans. Amer. Math. Soc. 301:2 (1987),
723–736. MR 88e:53054 Zbl 0622.53023

[Chang and Fang 2008] S.-Y. A. Chang and H. Fang, “A class of variational functionals in conformal
geometry”, Int. Math. Res. Not. 2008:7 (2008), Art. ID rnn008. MR 2009h:53072 Zbl 1154.53019

[Chern 1944] S.-s. Chern, “A simple intrinsic proof of the Gauss–Bonnet formula for closed Rie-
mannian manifolds”, Ann. of Math. (2) 45 (1944), 747–752. MR 6,106a Zbl 0060.38103

[Chow et al. 2006] B. Chow, P. Lu, and L. Ni, Hamilton’s Ricci flow, Graduate Studies in Mathemat-
ics 77, American Mathematical Society, Providence, RI, 2006. MR 2008a:53068 Zbl 1118.53001

[Graham 2009] C. R. Graham, “Extended obstruction tensors and renormalized volume coefficients”,
Adv. Math. 220:6 (2009), 1956–1985. MR 2010e:53060 Zbl 1161.53062

[Graham and Juhl 2007] C. R. Graham and A. Juhl, “Holographic formula for Q-curvature”, Adv.
Math. 216:2 (2007), 841–853. MR 2009a:53062 Zbl 1147.53030

[Han 2006a] Z.-C. Han, “A Kazdan–Warner type identity for the σk curvature”, C. R. Math. Acad.
Sci. Paris 342:7 (2006), 475–478. MR 2006j:53045 Zbl 1099.53028

[Han 2006b] Z.-C. Han, “A Kazdan–Warner type identity for the σk curvature”, preprint, 2006,
available at http://www.math.rutgers.edu/~zchan/current-preprint/KW.pdf.



268 BIN GUO, ZHENG-CHAO HAN AND HAIZHONG LI

[Hu and Li 2004] Z. Hu and H. Li, “A new variational characterization of n-dimensional space
forms”, Trans. Amer. Math. Soc. 356:8 (2004), 3005–3023. MR 2005d:53058 Zbl 1058.53029

[Labbi 2008] M.-L. Labbi, “Variational properties of the Gauss–Bonnet curvatures”, Calc. Var. Par-
tial Differential Equations 32:2 (2008), 175–189. MR 2009a:58013 Zbl 1139.58009

[Lovelock 1971] D. Lovelock, “The Einstein tensor and its generalizations”, J. Mathematical Phys.
12 (1971), 498–501. MR 43 #1588 Zbl 0213.48801

[Reilly 1977] R. C. Reilly, “Applications of the Hessian operator in a Riemannian manifold”, Indi-
ana Univ. Math. J. 26:3 (1977), 459–472. MR 57 #13799 Zbl 0391.53019

[Viaclovsky 2000a] J. A. Viaclovsky, “Conformal geometry, contact geometry, and the calculus of
variations”, Duke Math. J. 101:2 (2000), 283–316. MR 2001b:53038 Zbl 0990.53035

[Viaclovsky 2000b] J. A. Viaclovsky, “Some fully nonlinear equations in conformal geometry”, pp.
425–433 in Differential equations and mathematical physics (Birmingham, AL, 1999), edited by R.
Weikard and G. Weinstein, AMS/IP Stud. Adv. Math. 16, Amer. Math. Soc., Providence, RI, 2000.
MR 2001i:53057 Zbl 1161.53346

Received May 18, 2010.

BIN GUO

DEPARTMENT OF MATHEMATICAL SCIENCES

TSINGHUA UNIVERSITY

BEIJING 100084
CHINA

Current address:
DEPARTMENT OF MATHEMATICS

RUTGERS UNIVERSITY

110 FRELINGHUYSEN ROAD

PISCATAWAY, NJ 08854
UNITED STATES

bguo@math.rutgers.edu

ZHENG-CHAO HAN

DEPARTMENT OF MATHEMATICS

RUTGERS UNIVERSITY

110 FRELINGHUYSEN ROAD

PISCATAWAY, NJ 08854
UNITED STATES

zchan@math.rutgers.edu

HAIZHONG LI

DEPARTMENT OF MATHEMATICAL SCIENCES

TSINGHUA UNIVERSITY

BEIJING 100084
CHINA

hli@math.tsinghua.edu.cn



PACIFIC JOURNAL OF MATHEMATICS
http://www.pjmath.org

Founded in 1951 by
E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

V. S. Varadarajan (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

pacific@math.ucla.edu

Darren Long
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

long@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Alexander Merkurjev
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

merkurev@math.ucla.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

Jonathan Rogawski
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

jonr@math.ucla.edu

PRODUCTION
pacific@math.berkeley.edu

Silvio Levy, Scientific Editor Matthew Cargo, Senior Production Editor

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or www.pjmath.org for submission instructions.

The subscription price for 2011 is US $420/year for the electronic version, and $485/year for print and electronic.
Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Pacific Journal of
Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. Prior back issues are obtainable from Periodicals Service Company,
11 Main Street, Germantown, NY 12526-5635. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt
MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and the Science Citation Index.

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 969 Evans
Hall, Berkeley, CA 94720-3840, is published monthly except July and August. Periodical rate postage paid at Berkeley, CA 94704,
and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA
94704-0163.

PJM peer review and production are managed by EditFLOW™ from Mathematical Sciences Publishers.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS
at the University of California, Berkeley 94720-3840

A NON-PROFIT CORPORATION
Typeset in LATEX

Copyright ©2011 by Pacific Journal of Mathematics

http://www.pjmath.org
mailto:chari@math.ucr.edu
mailto:finn@math.stanford.edu
mailto:liu@math.ucla.edu
mailto:pacific@math.ucla.edu
mailto:long@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:merkurev@math.ucla.edu
mailto:popa@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:jonr@math.ucla.edu
mailto:pacific@math.berkeley.edu
http://www.pjmath.org
http://www.periodicals.com/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.emis.de/ZMATH/
http://www.inist.fr/PRODUITS/pascal.php
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/


PACIFIC JOURNAL OF MATHEMATICS

Volume 251 No. 2 June 2011

257Two Kazdan–Warner-type identities for the renormalized volume coefficients
and the Gauss–Bonnet curvatures of a Riemannian metric

BIN GUO, ZHENG-CHAO HAN and HAIZHONG LI

269Gonality of a general ACM curve in P3

ROBIN HARTSHORNE and ENRICO SCHLESINGER

315Universal inequalities for the eigenvalues of the biharmonic operator on
submanifolds

SAÏD ILIAS and OLA MAKHOUL

331Multigraded Fujita approximation
SHIN-YAO JOW

337Some Dirichlet problems arising from conformal geometry
QI-RUI LI and WEIMIN SHENG

361Polycyclic quasiconformal mapping class subgroups
KATSUHIKO MATSUZAKI

375On zero-divisor graphs of Boolean rings
ALI MOHAMMADIAN

385Rational certificates of positivity on compact semialgebraic sets
VICTORIA POWERS

393Quiver grassmannians, quiver varieties and the preprojective algebra
ALISTAIR SAVAGE and PETER TINGLEY

431Nonautonomous second order Hamiltonian systems
MARTIN SCHECHTER

453Generic fundamental polygons for Fuchsian groups
AKIRA USHIJIMA

469Stability of the Kähler–Ricci flow in the space of Kähler metrics
KAI ZHENG

499The second variation of the Ricci expander entropy
MENG ZHU

0030-8730(201106)251:2;1-C

Pacific
JournalofM

athem
atics

2011
Vol.251,N

o.2


	
	
	

