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Let C be an ACM (projectively normal) nonsingular curve in P3
C

not con-
tained in a plane, and suppose C is general in its Hilbert scheme — this is
irreducible once the postulation is fixed. Answering a question posed by
Peskine, we show the gonality of C is d − l , where d is the degree of the
curve and l is the maximum order of a multisecant line of C. Furthermore
l = 4 except for two series of cases, in which the postulation of C forces
every surface of minimum degree containing C to contain a line as well. We
compute the value of l in terms of the postulation of C in these exceptional
cases. We also show the Clifford index of C is equal to gon(C)− 2.

1. Introduction

Let C be a nonsingular projective curve over an algebraically closed field K. The
gonality of C , written gon(C), is the minimum degree of a surjective morphism
C → P1, or equivalently the minimum positive integer k such that there exists a
g1

k on C .
For curves of genus g ≥ 1 the gonality varies between 2, the value it takes on

hyperelliptic curves, and
[1

2(g+ 3)
]
, which by Brill–Noether theory is the gonality

of a general curve of genus g. It may be regarded as the most fundamental invariant
of the algebraic structure of C after the genus, providing a stratification of the
moduli space of curves of genus g.

When a curve is embedded in some projective space, it is natural to wonder
whether the gonality may be related to extrinsic properties of the curve. Here
is a classical result in this direction, already known to Noether [Ciliberto 1984;
Hartshorne 1986]:

Theorem 1.1. A smooth curve C⊂P2 of degree d≥3 has gonality gon(C)=d−1,
and any morphism C→P1 of degree d−1 is obtained by projecting C from one of
its points.
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See [Hartshorne 2002] for a proof and references. It is a simple exercise to
prove the statement using the method of [Lazarsfeld 1986], which associates a
vector bundle on P2 to a basepoint-free pencil on C . It is this method that we will
exploit in the proof of our result.

One may ask a similar question for a curve C ⊂ P3. If L is a line in P3,
projection from L induces a morphism πL : C → P1, whose degree is the degree
of C minus the number of points of intersection of C and L . Thus the morphisms
πL of minimal degree are those corresponding to maximal order multisecant lines.
We define

l = l(C)=max{deg(C ∩ L) : L a line in P3
}

By analogy with the plane curves case one might wonder whether

(1-1) gon(C)= deg(C)− l(C)

for a curve in P3, in which case following the terminology of [Hartshorne 2002]
we say the gonality of C is computed by multisecants. Of course, this is usually
not the case. For example, a general curve of genus g has gonality

[ 1
2(g+3)

]
and

can be embedded in P3 as a nonspecial linearly normal curve of degree g+3. Since
the Grassmannian of lines in P3 has dimension 4, and the set of lines meeting C
is a codimension one subvariety, one expects l(C) to be 4, and so

deg(C)− l(C)= g− 1>
[ 1

2(g+3)
]
= gon(C).

See [Hartshorne 2002, Examples 2.8 and 2.9] for specific counterexamples.
On the other hand, if the embedding of C in P3 is very special, one may hope

the gonality of C is computed by multisecants. In this vein Peskine raised the
question:

Question 1.2. If C is a smooth ACM curve in P3, is its gonality computed by
multisecants?

Here ACM means arithmetically Cohen–Macaulay: a curve in P3 is ACM if the
natural maps H 0(P3,O(n))→ H 0(C,OC(n)) are surjective for every n ≥ 0.

Some special cases have been treated in the literature. Early results about
uniqueness of the linear series |OC(1)| for complete intersections and other ACM
curves are in [Ciliberto and Lazarsfeld 1984]. Basili [1996] has proven that the
gonality of a smooth complete intersection is indeed computed by multisecants.
Ellia and Franco [2001] showed that the maximum order l of a multisecant to a
general complete intersection of type (a, b) is 4 if a≥b≥4 as one expects. Lazars-
feld [1997, 4.12] finds lower bounds for the gonality of a complete intersection
curve in Pn .

Results from [Martens 1996] and [Ballico 1997] show that the gonality of a
smooth curve C ⊂ P3 on a smooth quadric surface is computed by multisecants.
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In [Hartshorne 2002] it is shown that if a smooth curve C ⊂ P3 is ACM, lies on a
smooth cubic surface X , and is general in its linear system on X , then its gonality
is computed by multisecants. Farkas [2001] has shown that smooth ACM curves
C ⊂ P3 lying on certain smooth quartic surfaces that do not contain rational or
elliptic curves have gonality computed by multisecants.

In this paper, we show that, with the exception of very few cases we cannot
decide, the gonality of a general ACM curve is indeed computed by multisecants.
We have to make sense of the expression general ACM curve. To obtain an irre-
ducible parameter space for ACM curves one needs to fix the Hilbert function, that
is, the sequence of integers h0(OC(n)). This is more conveniently expressed by its
second difference or h-vector:

hC(n)= h0(OC(n))− 2h0(OC(n− 1))+ h0(OC(n− 2)).

which has the advantage of being finitely supported while still nonnegative. We
will denote by A(h) the Hilbert scheme parametrizing ACM curves in P3 with h-
vector h. By a theorem of Ellingsrud (see Remark 6.4), the Hilbert scheme A(h)
is smooth and irreducible. Thus by a general ACM curve we will mean a curve
in a Zariski open nonempty subset of A(h). We believe it is reasonable to assume
that C is general in the statement of our theorem, because it might happen that a
special ACM curve had a low degree pencil unrelated to the line bundle OC(1).

Theorem 1.3. Assume K = C is the field of complex numbers. Let C ⊂ P3 be a
nonplanar smooth ACM curve. If C is general in the Hilbert scheme A(hC), then

gon(C)= d − l,

where d = deg(C) and l = l(C) is the maximum order of a multisecant line to C ,
except perhaps when the degree d , the genus g and the least degree s of a surface
containing C form one of the following triples: (15, 26, 5), (16, 30, 5), (21, 50, 6),
(22, 55, 6), (23, 60, 6), (28, 85, 7), (29, 91, 7), (36, 133, 8).

For curves C contained in a quadric or a cubic surface, the statement follows
from the references cited above. So our contribution is for curves not lying on a
cubic surface.

We can also determine the integer l(C) in terms of the h-vector of C . Most of
the time l(C) = 4, with two families of exceptions. These exceptional cases arise
because the h-vector forces surfaces of minimal degree containing C to contain a
line as well; this line is then a multisecant of order higher than expected. If s as
above denotes the least degree of a surface containing C , we let

t =min{n : h0(IC(n))− h0(OP3(n− s)) > 0},
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so that (s, t) is the smallest type of a complete intersection containing C . We
denote by e the index of speciality of C : e =max{n : h1OC(n) > 0}.

The value of l(C) is given as follows:

Theorem 1.4. Let C⊂P3
C

be a general smooth ACM curve with s≥4. Let l= l(C)
denote the maximum order of a multisecant line to C. Then l = 4, unless

• the h-vector of C satisfies h(e+1)=3 and h(e+2)=2, in which case l= e+3
and C has a unique (e+ 3)-secant line, or

• t > s+3 and the h-vector of C satisfies h(t)= s−2 and h(t +1)= s−3, but
not h(e+ 1)= 3, h(e+ 2)= 2, in which case l = t−s+1 and C has a unique
(t−s+1)-secant line.

Nollet [1998] has found a sharp bound for the maximal order l = l(C) of a
multisecant line in terms of the h-vector of C , valid for any irreducible ACM
curve. If C is not a complete intersection, the bound is the largest integer n for
which hC(n − 1)− hC(n) > 1. Since this number is at least s, we see that l(C)
and the gonality of C vary in the family A(h), provided s ≥ 5, and the gonality of
the general curve is d − 4 (in fact the argument of Theorem 4.1 shows that l(C)
varies in the linear system |C | on a smooth surface X of degree s ≥ 5). On the
other hand, in the special case h(e+ 1)= 3 and h(e+ 2)= 2, then Nollet’s bound
is precisely e+ 3, so that l(C) is constant in A(h).

Finally, in most cases we can prove that every pencil computing the gonality of
C arises from a maximum order multisecant: the finite list of exceptions is given
in Theorem 9.1. In particular, C has a finite number of pencils of minimal degree,
and therefore its Clifford index is Cliff(C)= gon(C)− 2= d − l(C)− 2.

It would be interesting to investigate linear series gr
k on general ACM curves

also for r ≥ 2. For results in this direction we refer to [Lopez and Pirola 1995].

Outline of proof and structure of the paper. Since the conclusions of our result
are semicontinuous on the Hilbert scheme A(h), it suffices to show the existence
of a single curve C for which the result holds. Let C be a smooth ACM curve in P3

with given h-vector h, not lying on any surface of degree at most 3. In Section 3 we
review the classical result that for every smooth space curve D of degree at least
10 there exists a line L that is at least a 4-secant line of D. Thus gon(C)≤ d − 4.
Next, if C is general in A(h), it is contained in a smooth surface X of degree s. We
prove in Corollary 4.2 that, if C is general in its linear system on X and L is an
l-secant line of C with l ≥ 5, then L is contained in X . In fact, we prove a slightly
more general result, which gives explicit conditions for a space curve not to have
5-secant lines:
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Theorem 4.1. Let C ⊂ P3
K be a curve contained in an irreducible surface X of

degree s. Suppose C is a Cartier divisor on X and

H 0(P3,IC(s−2) )= 0, H 1(P3,IC(m) )= 0 for m = s−2, s−3, s−4.

If C is general in its linear system on X , then deg(C ∩ L) ≤ 4 for every line L not
contained in X , and C has only finitely many 4-secant lines not contained in X.

In particular, if X does not contain a line, then C does not have an l-secant line
for any l ≥ 5.

At this point to prove our main theorem we need to show that every pencil of
minimal degree arises from a multisecant line. The proof uses the technique from
[Lazarsfeld 1986], which associates to a basepoint-free pencil on C a vector bundle
E on the surface X , as explained in Section 5. In Section 6 we review enough
liaison theory for ACM curves to be able to show that the bundle E is Bogomolov
unstable. Thus it has a destabilizing divisor A ∈ Pic(X), whose degree x = A.H
satisfies stringent numerical restrictions in terms of the intersection numbers A2,
A.C and C2.

To use these constraints effectively we need to control the Picard group of X .
The hypothesis that the ground field is C allows us to apply the Noether–Lefschetz
type theorem of [Lopez 1991, II.3.1] or the more recent [Brevik and Nollet 2008]
to conclude that, if C is general in A(h) and X is very general among surfaces
of minimal degree containing C , then Pic(X) is freely generated by H and the
irreducible components of a curve 0 that is general among curves minimally linked
to C . Such a 0 is a general ACM curve, but it may not be irreducible. Thus
we are led to establish a structure theorem for general ACM curves. Section 7 is
devoted to the proof of this result. It generalizes Gruson–Peskine’s theorem [1978],
according to which the general ACM curve in A(h) is smooth and irreducible if h
is of decreasing type (“has no gaps”):

Theorem 7.21. Let A(h) denote the Hilbert scheme parametrizing ACM curves in
P3

K with h-vector h. If 0 is general in A(h), then

0 = D1 ∪ D2 ∪ · · · ∪ Dr ,

where r − 1 is the number of Gruson–Peskine gaps of h, and the Di are distinct
smooth irreducible ACM curves whose h-vectors are determined by the gap de-
composition of h as explained in Section 7. Furthermore, for every 1 ≤ i1 < i2 <

· · ·< ih ≤ r , the curve
Di1 ∪ Di2 ∪ · · · ∪ Dih

is still ACM.

Thus we can write the destabilizing divisor as A=aH+
∑

ai Di . In the proof of
the main Theorem 9.1, using the fact that the curves Di and their unions are ACM,
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together with the numerical constraints on x = A.H we show −s−1≤ x < 0. We
then play this inequality against the bounds of Corollary 8.9, which are essentially
upper bounds for the genus of an ACM curve lying on X in terms of the degree
of the curve and of degree of X . In fact, these bounds are a refinement of the
bounds for the genus of an ACM curve proven in [Gruson and Peskine 1978] (see
Remark 8.8). The end result is that there are only two possibilities for A: either
−A = H (the plane section) or −A = H − L for some line L on X .

Corollary 5.7 shows that in case A = −H the pencil arises from a multisec-
ant line not contained in X , while in case A = L − H the pencil arises from L .
This shows pencils of minimal degree on C all arise from multisecant lines, thus
completing the proof of the theorem.

2. Notation and terminology

A linear system of degree k and projective dimension r on C is denoted with the
symbol gr

k , and a g1
k is called a pencil. The gonality of C , written gon(C), is the

least positive integer k such that there exists a g1
k on C . Since a pencil of least

degree is automatically basepoint-free, the gonality of C is the least degree of a
surjective morphism C→P1. One can further notice that a g1

k with k = gon(C) is
complete, so that h0(C,OC(Z))= 2 for every divisor Z in the pencil.

Definition 2.1. Assume C ⊂P3 is a nonplanar curve. Given a line L , let πL :C→
P1 be obtained projecting C from L , and let Z(L) denote the g1

k corresponding to
πL . Note that Z(L) is obtained from the pencil cut out on C by planes through
L removing its base locus, which coincides with the scheme theoretic intersection
C ∩ L . In particular,

deg(πL)= deg Z(L)= deg(C)− deg(C.L)

and Z(L) is complete if deg(C.L) ≥ 2. We say that a g1
k on C arises from a

multisecant if it is of the form Z(L) for some line L . We say the gonality of C
can be computed by multisecants if there exists a line L such that Z(L) has degree
gon(C).

3. Existence of 4-secant lines

The following statement is classical and well known, but it seems hard to find a
reference.

Proposition 3.1. Let C be a smooth irreducible curve of degree d≥ 10 in P3. Then
C has an l-secant line L with l≥ 4. In particular, the gonality of C is at most d−4.

Proof. The statement is clear if deg(C) ≥ 4 and C is contained in a plane or
deg(C) ≥ 7 and C is contained in a quadric surface. If C is not contained in a
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quadric surface, we will show the Cayley number of 4-secants

C(d, g)=
(d − 2)(d − 3)2(d − 4)

12
−

g(d2
− 7d + 13− g)

2

is positive. The existence of L then follows from intersection theory as explained
in [Le Barz 1987] or in [Arbarello et al. 1985]. For fixed d ≥ 7, the number C(d, g)
is a decreasing function of g, because the partial derivative with respect to g is

g−
d2
− 7d + 13

2
,

which is negative because g ≤ d2/4− d + 1 when C is not contained in a plane.
But C is not even contained in a quadric surface; thus its genus is bounded above

by 1
6 d(d − 3)+ 1, and

C(d, g)≥ C
(
d, 1

6 d(d − 3)+ 1
)
=

d(d − 3)(d − 6)(d − 9)
72

,

which is positive for d ≥ 10. �

Remark 3.2. The result is sharp, because a smooth complete intersection of two
cubic surfaces has degree 9 and no 4-secant line.

4. Nonexistence of 5-secant lines

Theorem 4.1. Let C ⊂ P3 be a curve contained in an irreducible surface X of
degree s. Suppose C is a Cartier divisor on X and

H 0(P3,IC(s−2) )= 0, H 1(P3,IC(m) )= 0 for m = s−2, s−3, s−4.

If C is general in its linear system on X , then deg(C.L) ≤ 4 for every line L not
contained in X , and C has only finitely many 4-secant lines not contained in X.

In particular, if X does not contain a line, then C does not have an l-secant line
for any l ≥ 5.

Proof. The statement is obvious if s ≤ 3, so assume s ≥ 4. The hypotheses imply
h1O(D)= 0 for D = C , C − H , C − 2H because, by Serre duality,

h1(P3,IC(m))= h1(X,OX (m H −C))= h1(X,OX (C + (s− 4−m)H)).

Similarly, H 2(OX (C − nH)) is dual to

H 0(OX ((s− 4+ n)H −C))= H 0(X,IC,X (s− 4+ n)),

which by assumption is zero for n ≤ 2. Thus we see that h0OX (D)= χOX (D) for
D = C , C − H , C − 2H .
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Let L be a line not contained in X , and let V be the scheme theoretic intersection
of X and L . Then V has degree s, and there is an exact sequence

0→ OX (−2H)→ OX (−H)⊕2
→ IV,X → 0.

Twisting by OX (C) and taking cohomology we see that

h0(IV (C))= 2h0(OX (C − H))− h0(OX (C − 2H)).

Therefore

h0(OX (C))− h0(IV (C))= h0(OX (C))− 2h0(OX (C−H))+ h0(OX (C−2H))

= χ(OX (C))− 2χ(OX (C − H))+χ(OX (C − 2H))= s.

This shows that the points of V impose independent conditions on the linear
system |C |. It follows that the family of curves in |C | meeting L in a scheme of
length l ≤ s has codimension l in |C |. This implies the statement because L varies
in a four-dimensional family. �

Corollary 4.2. Let C ⊂ P3 be an ACM curve. Suppose that C is contained in a
smooth surface X ⊂ P3 of degree s = sC , and that C is general in its linear system
on X. Then deg(C.L)≤ 4 for any line L not contained in X.

In particular, if X does not contain a line, then C does not have an l-secant line
for any l ≥ 5.

Proof. The statement follows from Theorem 4.1 because C is ACM precisely when
H 1(P3,IC(m))= 0 for every m. �

5. Gonality of curves on a smooth surface: Lazarsfeld’s method

In this section we explain a construction due to Lazarsfeld [1986; 1997] that will
be crucial in proving that every pencil of minimal degree on a general ACM curve
arises from a multisecant.

When a curve C is contained in a smooth surface X , we associate a rank two
vector bundle on X to a basepoint-free g1

k on C as follows. The basepoint-free
g1

k is determined by a degree k line bundle OC(Z) on C , and a surjective map of
OC -modules

β : O⊕2
C → OC(Z).

(Note that, since k ≥ 1, the map H 0(β) : H 0(O⊕2
C )→ H 0(OC(Z)) is injective.)

Definition 5.1. Suppose C is an integral curve on the smooth projective surface
X , and Z is a basepoint-free pencil on C defined by β : O⊕2

C → OC(Z). Let

α : O⊕2
X → OC(Z)

denote the map obtained composing β with the natural surjection O⊕2
X → O⊕2

C .
Then the kernel E of α is called the bundle associated to the pencil Z.
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Proposition 5.2. Let E be the bundle associated to a pencil of degree k on C as in
the previous definition. Then

(a) E is a rank two vector bundle on X.

(b) H 0(E)= 0.

(c) c1(E)= OX (−C) and c2(E)= deg(Z), so that

1(E)
def
= c2

1(E)− 4c2(E)= C2
− 4k.

(Here we consider the first Chern class as an element of A1(X) ∼= Pic(X), while
we view the c2

1 and c2 as integers, via the degree map for zero cycles.)

Proof. By definition of E there is an exact sequence:

0→ E→ O⊕2
X → OC(Z)→ 0

Since OC has rank zero and projective dimension 1 as an OX -module, E is a rank
two vector bundle on X , whose Chern classes can be computed from the above
sequence. If H 0(E) were not zero, then H 0(α) : H 0(O⊕2

C )→ H 0(OC(Z)) would
not be injective, so α would induce a surjective map OC → OC(Z), contradicting
deg Z = k ≥ 1. �

We recall the definition of Bogomolov instability for rank two vector bundles
on a surface, and Bogomolov’s theorem which gives a numerical condition for
instability.

Definition 5.3. Let E be a rank two vector bundle on X . One says that E is Bo-
gomolov unstable if there exist a finite subscheme W ⊂ X (possibly empty) and
divisors A and B on X sitting in an exact sequence

(5-1) 0→ OX (A)→ E→ IW ⊗OX (B)→ 0.

where (A− B)2 > 0 and (A− B).H > 0 for some (hence every) ample divisor H .
We say A is a destabilizing divisor of E. It is unique up to linear equivalence.

Theorem 5.4 ([Bogomolov 1978]; compare [Huybrechts and Lehn 1997, 7.3.3]
and [Lazarsfeld 1997, 4.2]). Suppose the ground field K has characteristic zero.
Let E be a rank two vector bundle on the smooth projective surface X , and let
1(E)= c1(E)

2
− 4c2(E).

If 1(E) > 0, then E is Bogomolov unstable.

Following Lazarsfeld’s approach, we will show in Section 6 that the bundle
associated to a pencil computing the gonality of a smooth ACM curve satisfies
1(E) > 0, hence it is Bogomolov unstable, and there is a destabilizing divisor A.
To work effectively we will need the following technical result that will be useful
in two ways. First it immediately implies that, when −A = H (plane section) or
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−A=H−L (plane section minus a line), the given pencil arises from a multisecant;
later on the inequalities A2

≥ 0 and A.H < 0 will be used to exclude all other
possibilities for A.

Proposition 5.5. Suppose X is a smooth projective surface, C is an integral curve
on X , and |Z | is a complete basepoint-free pencil on C. Let E be the rank 2 bundle
on X associated to |Z |. Suppose there is an exact sequence

(5-2) 0→ OX (A)
h
→ E→ IW ⊗OX (B)→ 0

with W zero-dimensional and B not effective. Then the linear system | − A| on X
contains two effective curves D1 and D2 with the following properties:

(a) D1 and D2 meet properly in a 0-dimensional scheme V containing W .

(b) D1 and D2 meet C properly, and, if R is the base locus of the pencil cut out
on C by C.D1 and C.D2, then

OC(Z)∼= OX (−A)⊗OC(−R);

that is, the pencil |Z | is obtained by first restricting D1 and D2 to C and then
removing the base locus R.

(c) R is the residual scheme to W in V , that is, there is an exact sequence

0→ OW → OV → OR→ 0.

In particular h0IW (−A)≥ 2, A.H < 0 for every ample divisor H , and A2
≥ 0.

Remark 5.6. The proposition applies if E is Bogomolov unstable with destabi-
lizing sequence (5-2). Indeed in this case, if H is an ample divisor on X , then
(A− B).H > 0. Since c1(E)= A+ B =−C in Pic(X), we compute

−2B.H = (A− B).H +C.H > 0.

Therefore B is not effective.

Proof of Proposition 5.5. Dualizing 0→ E→ O⊕2
X → OC(Z)→ 0 we obtain an

exact sequence
0→ O⊕2

X → E(C)→ OC(C − Z)→ 0.

We now look at the composite map g : O⊕2
X → E(C)→ IW (−A).

This map is nonzero, otherwise O⊕2
X would map injectively into the kernel of

E(C)→ IW (−A), which is OX (C + A), absurd. Hence the image of g has rank
one, and has the form IY (−A) for some proper subscheme Y ⊂ X containing W .
Then IY =IV (−D)where D is the divisorial part of Y , and V is zero dimensional.
We obtain an exact sequence

0→ Ker(g)→ O⊕2
X → IV (−A− D)→ 0.
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It follows Ker(g)= OX (A+ D) and −A− D is effective. A diagram chase shows
there is an exact sequence

0→ OX (A+ D)→ OX (C + A)→ OC(C − Z)

from which we see there is an effective curve C0 linearly equivalent to C − D
contained in C . Since C is irreducible, this implies either D = C or D = 0.

Now −A− D is effective, so, if we had D = C , then B = −A−C would be
effective, contradicting the hypotheses. Hence the only possibility is D = 0.

Putting everything together we obtain a commutative diagram with exact rows:

0 −−−→ OX (A)
g∨
−−−→ O⊕2

X
(s1,s2)
−−−→ IV (−A) −−−→ 0yh

∥∥∥ y
0 −−−→ E −−−→ O⊕2

X −−−→ OC(Z) −−−→ 0

Now let D1 and D2 the divisors defined by the sections s1 and s2 of OX (−A). The
first row of the diagram shows D1 and D2 meet properly in the zero dimensional
scheme V , which contains W by construction. The two sections remain indepen-
dent in H 0(OC(Z)) because H 0(E) = 0. Hence D1 and D2 meet C properly, and
D1.C and D2.C span a pencil on C .

By the snake lemma, the kernel of the vertical map IV (−A) → OC(Z) is
IW (B)= IW (−A−C), hence a diagram chase produces an exact sequence

0→ OC(Z)→ OX (−A)⊗OC → OV /OW → 0

which proves the rest of the statement. �

Corollary 5.7. Assume X ⊂P3 is a smooth surface with plane section H , contain-
ing a smooth irreducible curve C. Suppose C is not contained in a plane. Let |Z |
be a complete basepoint-free pencil on C , and let E be the bundle on X associated
to |Z |.

(a) If there is an exact sequence

0→ OX (A)→ E→ IW (B)→ 0

with W zero dimensional and A+ H effective, then there is a line L such that
|Z | =Z(L) is the pencil cut out on C by planes through L. Furthermore, if X
does not contain L , then A = −H and W is the residual scheme to C ∩ L in
X ∩ L , while, if X contains L , then A = L − H and W is empty.

(b) Assume C is linearly normal and |Z | is the pencil cut out on C by planes
through a line L meeting C in a scheme of length at least 2. Then there
exists an exact sequence as above with A = −H if X does not contain L and
A = L − H if X contains L.
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Proof. (a) The divisor B is not effective; otherwise

B+ (A+ H)= (−A−C)+ (A+ H)= H −C

would be effective, which contradicts the assumption that C is not contained in
plane.

Thus we may apply Proposition 5.5 to the given exact sequence to conclude the
linear system |− A| contains a pencil. By assumption P = A+H is effective, and
therefore in order that | − A| = |H − P| may contain a pencil it is necessary that
P be empty or a line.

If P is empty, by 5.5 the are two plane sections D1 = H1∩ X and D2 = H2∩ X
of X meeting in a zero dimensional scheme V , hence the line L = H1 ∩ H2 is not
contained in X . Proposition 5.5b shows |Z | is obtained removing from the pencil
spanned by C ∩ H1 and C ∩ H2 its base locus C ∩ L , that is, |Z | = Z(L), and
Proposition 5.5c shows W is the residual scheme to C ∩ L in X ∩ L .

Finally, if P is a line, then D1 and D2 belong to |H−P|, hence their intersection
V = D1 ∩ D2 is empty. It follows from Proposition 5.5 that |Z | = Z(P) and that
and W is empty.

(b) By the definition of E there is an exact sequence

0→ E→ O⊕2
X → OC(Z)→ 0.

Comparing this sequence with

0→ OC → OC(Z)→ OZ → 0,

we obtain
0→ OX (−C)→ E→ IZ ,X → 0.

Now twist by H and take cohomology to get a long exact sequence

0→ H 0(OX (H −C))→ H 0(E(H))→ H 0(IZ ,X (H))→ H 1(OX (H −C)).

Since Z is contained in a plane, h0(IZ ,X (H)) > 0, while H 1(OX (H − C)) =
H 1(IC(H)) = 0 because C is linearly normal. Hence E(H) has a section, and
after removing torsion in the cokernel if necessary we find an exact sequence:

0→ OX (P − H)→ E→ IW (H − P −C)→ 0,

with W zero dimensional and P effective. Now (b) follows from (a). �

6. ACM curves

In this section we show that, if C is an ACM curve of degree d having a pencil of
minimal degree k ≤ d − 4 on a smooth surface of degree s = sC , then the bundle
E associated to the given pencil satisfies 1(E) > 0 (except for a small list of cases
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given in Proposition 6.10); hence, if the ground field has characteristic zero, it is
Bogomolov unstable. The proof is based on the structure of the biliaison class of
ACM curves which we now briefly recall. We also include some information about
the minimal link 0 of a curve C , which we will need later.

Given a curve C in P3 its fundamental numerical invariants are, besides its
degree dC and its arithmetic genus g(C)= 1−χ(OC):

• its index of speciality e(C)=max{n : h1OC(n) > 0};

• the minimal degree sC of a surface containing C ;

• the integer tC = min{n : h0(IC(n))− h0(OP3(n− sC)) > 0)}. If C is integral
or more generally if C lies on an integral surface of degree sC , the integer tC
is the smallest n such that C is contained in a complete intersection of two
surfaces of degree sC and n.

When C is ACM, all its basic numerical invariants can be computed from the
Hilbert function. It is convenient to express the Hilbert function through its second
difference function, the so called h-vector hC of C — see [Migliore 1998, §1.4] —
because hC is a finitely supported function. Thus one defines

hC(n)= h0(OC(n))− 2h0(OC(n− 1))+ h0(OC(n− 2)).

If s = s(C) and e = e(C), the function hC satisfies

(6-1)


h(n)= n+ 1 if 0≤ n ≤ s−1,

h(n)≥ h(n+ 1) if n ≥ s−1,

h(e+ 2) > 0 and h(n)= 0 for n ≥ e+ 3.

Thus we may write h as

hC = {1, 2, . . . , s, hC(s), . . . , hC(e+ 2)}.

with s = hC(s−1)≥ hC(s)≥ hC(s+1)≥ · · · ≥ hC(e+ 2).
We say that a finitely supported function h :N→N is an h-vector if it satisfies

(6-1) for some s≥ 1. Every h-vector arises as the h-vector of an ACM curve in P3;
see [Martin-Deschamps and Perrin 1990, Theorem V.1.3, p. 111] and Remark 7.7
below. It will be convenient to allow the identically zero function among h-vectors,
and think of it as the h-vector of the empty curve. In terms of the h-vector, the
fundamental invariants of C are:

Proposition 6.1. For an ACM curve C in P3, with h-vector hC , we have

(1) dC =
∑

hC(n),

(2) g(C)= 1+
∑
(n− 1)hC(n),

(3) e(C)+ 2=max{n : hC(n) > 0},
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(4) sC =min{n ≥ 0 : hC(n) < n+ 1}, and

(5) tC =min{n ≥ 0 : hC(n− 1) > hC(n)}.

Consistently with these formulas, for the empty curve we define s = 0, d = 0,
g = 1, e =−∞.

Remark 6.2. If C is an ACM curve with sC = s, then

dC =
∑

hC(n)≥
s−1∑
n=0

(n+ 1)= 1
2 s(s+1).

The h-vectors of integral curves have a special form:

Definition 6.3 [Maggioni and Ragusa 1988]. An h-vector is of decreasing type if
h(a) > h(a+ 1) implies that for each n ≥ a either h(n) > h(n+ 1) or h(n)= 0.

Remark 6.4. By a result from [Ellingsrud 1975] (see also [Martin-Deschamps and
Perrin 1990, p. 5; corollaire 1.2 on p. 134; §1.7, p. 139]), the Hilbert scheme A(h)
of ACM curves in P3 with a given h-vector is smooth and irreducible, even when
h is not of decreasing type.

Gruson and Peskine [1978] (see also [Maggioni and Ragusa 1988] and [Nollet
1998]) showed that, if C is an integral ACM curve, then hC is of decreasing type,
and conversely, if h is an h-vector of decreasing type, then there exists a smooth
irreducible ACM curve C with hC = h. Thus an h-vector h is of decreasing type
if and only if the general curve C in A(h) is smooth and irreducible.

If C is not irreducible, it may happen that every pair of surfaces X1 and X2

containing C of minimal degrees sC and tC have a common component. Nollet
[1998, Proposition 1.5] generalized the result of Gruson and Peskine by showing
that if C is contained in a complete intersection of type (sC , tC), then hC is of
decreasing type. We partially reproduce his argument here:

Lemma 6.5. (i) Suppose an ACM curve D is contained in a complete intersec-
tion Y of type (sD, tD), and let 0 be the curve and linked to D by Y . Then

e(0)+ 3< sD.

(ii) Let 0 be an ACM curve, and suppose a≤ b are integers such that a≥ e(0)+3
and b ≥ e(0)+ 4. Then the h-vector of a curve D linked to 0 by a complete
intersection of type (a, b) is of decreasing type. If a ≥ e(0)+ 4, then sD = a
and tD = b. If a = e(0)+ 3, then sD = a and tD = b− 1.

Proof. If 0 and D are linked by a complete intersection Y of type (a, b), we have,
by [Migliore 1998, 5.2.19],

h0(n)= hY (n)− hD(a+ b− 2− n)= hY (a+ b− 2− n)− hD(a+ b− 2− n).
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Suppose first a = sD and b = tD . Then

h0(sD − 1)= hY (tY − 1)− hD(tD − 1)= sY − sD = 0.

Therefore e(0)+ 3≤ sD − 1.
Next suppose b ≥ a ≥ e(0)+ 4. Then sD ≤ a because D ⊆ Y , and

hD(b− 1)= hY (a− 1)− h0(a− 1)= hY (a− 1)= a

while
hD(b)= hY (a− 2)− h0(a− 2)≤ hY (a− 2)= a− 1

hence sD = a and tD = b.
If a= e(0)+3 and b≥ e(0)+4, then a similar calculation shows hD(b−2)= a

and hD(b− 1) < a, so that sD = a and tD = b− 1.
It remains to show hD is of decreasing type. Let u= s(0). Then u≤ e(0)+3≤a

and h0(n)= hY (n)= n+1 for n ≤ u−1; hence hD(n)= 0 for n ≥ a+b−1−u.
Since h0(n)≥ h0(n+1) for n≥ u−1, we see that for b−1≤m ≤ a+b−2−u

hD(m)−hD(m+1)= hY (m)−hY (m+1)−h0(a+b−2−m)+h0(a+b−1−m)

= 1−∂h0(a+b−1−m)≥ 1,

which shows that hD is of decreasing type. �

Fix a smooth surface X ⊂P3 of degree s. Two curves C and D on X are said to
be biliaison equivalent if C is linearly equivalent to D+ nH for some integer n.

Definition 6.6. A curve C on a surface X is minimal on X if C−H is not effective.

Proposition 6.7. A curve C is minimal on a smooth surface X if and only if

e(C)+ 3< deg(X).

Proof. To say C is minimal is equivalent to saying h0(OX (C−H))= 0. By duality
on X this is the same as h2(IC(s−3))= 0, where s = deg(X). On the other hand,
h2(IC(s−3))= h1(OC(s−3)), so the condition says s−3> e(C), or equivalently,
e(C)+ 3< s. �

Definition 6.8. We say that an h-vector is s-minimal if the corresponding curve
satisfies e + 3 < s. We say that an h-vector is s-basic if it is the h-vector of an
integral curve C satisfying sC = tC = s. Thus the s-basic h-vectors are those
h-vectors of decreasing type that begin with a string

{1, 2, . . . , s−1, s,m}

with m = h(s)≤ s−1.

Table 1 on the next page lists s-basic h-vectors for s = 4 and s = 5.
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d g h-vector C2
−4(d−4) C2

−4(d−5) λ (0 = t H−C) q(λ)

10 11 1,2,3,4 −4 0 1,2,3 20
11 14 1,2,3,4,1 −2 2 2,3 17
12 17 1,2,3,4,2 0 4 1,3 16

s
=

4 13 20 1,2,3,4,3 2 6 1,2 17
13 21 1,2,3,4,2,1 4 8 3 9
14 24 1,2,3,4,3,1 6 10 2 12
15 28 1,2,3,4,3,2 10 14 1 9
16 33 1,2,3,4,3,2,1 16 20 ∅ 0

15 26 1,2,3,4,5 −9 −5 1,2,3,4 50
16 30 1,2,3,4,5,1 −6 −2 2,3,4 46
17 34 1,2,3,4,5,2 −3 1 1,3,4 44
18 38 1,2,3,4,5,3 0 4 1,2,4 44
18 39 1,2,3,4,5,2,1 2 6 3,4 34
19 42 1,2,3,4,5,4 3 7 1,2,3 46
19 43 1,2,3,4,5,3,1 5 9 2,4 36

s
=

5 20 47 1,2,3,4,5,4,1 8 12 2,3 40
20 48 1,2,3,4,5,3,2 10 14 1,4 30
21 52 1,2,3,4,5,4,2 13 17 1,3 36
21 54 1,2,3,4,5,3,2,1 17 21 4 16
22 57 1,2,3,4,5,4,3 18 22 1,2 34
22 58 1,2,3,4,5,4,2,1 20 24 3 24
23 63 1,2,3,4,5,4,3,1 25 29 2 24
24 69 1,2,3,4,5,4,3,2 32 36 1 16
25 76 1,2,3,4,5,4,3,2,1 41 45 ∅ 0

21 50 1,2,3,4,5,6 −12 −8 1,2,3,4,5 105

s
=

6 22 55 1,2,3,4,5,6,1 −8 −4 2,3,4,5 100
23 60 1,2,3,4,5,6,2 −4 0 1,3,4,5 97
24 65 1,2,3,4,5,6,3 0 4 1,2,4,5 96

28 85 1,2,3,4,5,6,7 −12 −8 1,2,3,4,5,6 196

s
=

7

29 91 1,2,3,4,5,6,7,1 −7 −3 2,3,4,5,6 190
30 97 1,2,3,4,5,6,7,2 −2 2 1,3,4,5,6 186

35 130 1,2,3,4,5,6,7,4,3 29 33 1,2,5,6 154

s
=

8 36 133 1,2,3,4,5,6,7,8 −8 −4 1,2,3,4,5,6,7 336
37 140 1,2,3,4,5,6,7,8,1 −2 2 2,3,4,5,6,7 329
45 196 1,2,3,4,5,6,7,8,9 1 5 1,2,3,4,5,6,7,8 540

Table 1. s-basic h-vectors and s-minimal biliaison types.
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Proposition 6.9. Suppose C is an ACM curve contained in a smooth surface X of
degree sC . Let s = sC , t = tC and e = e(C). Then e+ 3≥ t ≥ s and

(a) hC is of decreasing type;

(b) if 0 ∈ |t H −C |, then e(0)+ 3< s and 0 is minimal on X ;

(c) C −m H is effective if and only if m ≤ e+ 4− s;

(d) if C1 ∈ |C − (t−s)H |, hC1 is s-basic;

(e) if C2 ∈ |C − (t−s+1)H |, hC2 is of decreasing type.

There is a one to one correspondence h0 7→ hC1 mapping s-minimal h-vectors
to s-basic h-vectors.

Proof. Since C is ACM, the ideal sheaf IC,P3 is (e+ 3)-regular, hence e+ 3 ≥ t .
By definition of t , we have t ≥ s, and C is contained in a surface F of degree t that
does not contain X . Therefore C is contained in the complete intersection X∩F of
type (s, t). Let 0 ∈ |t H−C | be the curve linked to C by X∩F : then e(00)+3< s
and 0 is minimal (by either Lemma 6.5 or by definition of t).

Each of the curves C , C1, C2 is linked to a curve in the linear system |0| by a
complete intersection of type (s, t), (s, s), or (s−1, s), respectively. By Lemma 6.5
the h-vectors of C , C1 and C2 are of decreasing type, and hC1 is s-basic. �

There is a unique 1-basic h-vector, namely h0={1}, the h-vector of a line. Every
(s−1)-basic h-vector gives rise to two s-basic h vectors by performing a type A
or type B transformation, defined as follows: (1) A type A = As transformation
consists of inserting an s to an (s−1)-basic h-vector h={1, 2, . . . , s−1,m, . . . } to
transform it into the s-basic vector h′ = {1, 2, . . . , s−1, s,m . . . }. Geometrically,
if h is the h-vector of a curve C on a surface X of degree s, h′ is the h-vector of the
effective divisor C + H on X . (2) A type B transformation consists of inserting a
string s, s−1 to an (s−1)-basic h-vector h = {1, 2, . . . , s−1,m, . . . } to transform
it into the s-basic vector h′′ = {1, 2, . . . , s−1, s, s−1,m . . . }. Geometrically, this
operation breaks into two steps: suppose h is the h-vector of a curve C on a surface
X1 of degree s−1. Let C1 = C+ H be obtained by adding to C a plane section of
X1, then pick a surface X2 of degree s containing C1, and finally let C2 = C1+ H
be obtained by adding to C1 a plane section of X2. Then h′′ is the h-vector of C2.

Conversely, any s-basic h-vector with m = h(s) ≤ s − 2 arises from a type A
transformation of an (s−1)-basic h-vector, while any s-basic h-vector with m =
h(s) = s−1 arises from a type B transformation of an (s−1)-basic h-vector. In
particular, the number of s-basic h-vectors is 2s−1 (see Table 1).

Proposition 6.10. Let C be an integral ACM curve in P3 with sC ≥ 4. Suppose C
is contained in a smooth surface X of degree s= s(C). Suppose C has a basepoint-
free pencil of degree k, and let E be the bundle on X associated to such a pencil.



286 ROBIN HARTSHORNE AND ENRICO SCHLESINGER

(a) If k ≤ d − 5, then 1(E) > 0 unless
• s = 4 and (d, g)= (10, 11), or
• s = 5 and (d, g)= (15, 26), (16, 30), or
• s = 6 and (d, g)= (21, 50), (22, 55), (23, 60), or
• s = 7 and (d, g)= (28, 85), (29, 91), or
• s = 8 and (d, g)= (36, 133).

(b) If k = d − 4, then 1(E) > 0 unless
• s = 4 and (d, g)= (10, 11), (11, 14), (12, 17), or
• s = 5 and (d, g)= (15, 26), (16, 30), (17, 34), (18, 38), or
• s = 6 and (d, g)= (21, 50), (22, 55), (23, 60), (24, 65), or
• s = 7 and (d, g)= (28, 85), (29, 91), (30, 97), or
• s = 8 and (d, g)= (36, 133), (37, 140).

Proof. We can compute 1(E) in terms of d = dC and g = g(C):

1(E)= C2
− 4k = 2g− 2− (s− 4)d − 4k = δs(d, g)+ 4(d − k),

where we have set δs(C) = δs(d, g) = 2g − 2 − ds. One can easily verify the
following facts:

(1) Let C ⊆ Xs be a curve on a surface X of degree s in P3, and consider the
divisor C + H on Xs . Then

δs(C + H)− δs(C)= 2d − 3s.

In particular, if d ≥ 1
2 s(s+1) and s ≥ 3, δs(C + H) > δs(C).

(2) Suppose C⊆ Xs+1 is a curve on a surface X of degree s+1 in P3, and consider
the divisor C + H on Xs+1 Then

δs+1(C + H)− δs(C)= d − 3(s+1).

In particular, if d ≥ 1
2 s(s+1) and s ≥ 6, δs+1(C + H) ≥ δs(C), and the in-

equality is strict unless s = 6 and d = 21.

To prove the proposition, we have seen that 1(E) can be computed in terms of
d, g, s, k, which depend only on the h-vector and the choice of s, k. Therefore,
using the two remarks (1), (2) just made and using biliaisons on each surface
to reduce to s-basic h-vectors, and using the transformations of type A and B
mentioned before the statement, it would be sufficient to prove that 1 > 0 for all
s-basic h-vectors with s = 4. Unfortunately this is not so, as 1 ≤ 0 for the first
three 4-basic h-vectors (see Table 1). Still the two remarks show that 1 becomes
positive using the transformations of type A and B, with the only exceptions listed
in the statement. Table 1 displays all h-vectors for which 1≤ 0 for k = d−4 and
k = d − 5. �
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7. General ACM curves

We now generalize the results of [Gruson and Peskine 1978] by giving a description
of a general ACM curve C with a given h-vector h, even when h is not of decreasing
type. We show (Theorem 7.21) that C is a union of smooth ACM subcurves whose
h-vectors are determined by that of C . The basic step is Proposition 7.18, which is
a special case of [Davis 1985, Corollary 4.2], and says that C is the union of two
ACM subcurves whenever hC is not of decreasing type. As a corollary we show
the existence of multisecant lines for ACM curves with h-vector of special types.

Definition 7.1. Let C0 and C be two curves in P3.

(a) Following [Martin-Deschamps and Perrin 1990] we say that C is obtained
by an elementary biliaison of height h from C0 if there exists a surface X
in P3 containing C0 and C so that IC,X ∼= IC0,X (−h). In the language of
generalized divisors [Hartshorne 1994] this means C is linearly equivalent to
C0+ h H on X , where H denotes the plane section.

(b) As a particular case, we say C is obtained by a trivial biliaison of height h if
IC,X = IC0,X IY,X where Y is a complete intersection of X and a surface of
degree h. If Y meets C0 properly, this means C is the union of C0 and Y .

(c) By a special biliaison of degree k we mean an elementary biliaison of height
one C ∼ C0 + H on a surface of degree k ≥ e(C0)+ 4. The condition k ≥
e(C0)+ 4 guarantees sC = sC0 + 1 and k = e(C)+ 3 by [Martin-Deschamps
and Perrin 1990, p. 68].

Proposition 7.2 (Lazarsfeld–Rao property). Suppose C is an ACM curve with in-
dex of speciality e. Then C can be obtained by a special biliaison of degree k=e+3
from some ACM curve C0 satisfying sC0 = sC−1.

Proof. One knows — see for example [Strano 2004] — that an ACM curve C with
index of speciality e can be obtained by an elementary biliaison of height 1 on a
surface X of degree e+ 3 from an ACM curve C0 satisfying

sC0 = sC−1 and e(C0) < e(C).

Since deg(X)= e+ 3≥ e(C0)+ 4, this is a special biliaison. �

Remark 7.3. When sC = 1, the curve C0 above is the empty curve, which is
therefore convenient to allow among ACM curves.

Corollary 7.4. Let C be an ACM curve. Then there exist positive integers k1 <

k2 < · · ·< ku such that C is obtained from the empty curve by a chain of u special
biliaisons of degrees k1, . . . , ku . The sequence λC = (k1, k2, . . . , ku) is uniquely
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determined by C , and we will call it the biliaison type of C. Morever, we have

dC =
u∑

i=1
ki , g(C)= 1+ 1

2

u∑
i=1

ki (ki − 3)+
u∑

i=1
(sC − i)ki ,

sC = u, tC − sC + 1= k1, e(C)+ 3= ku .

Example 7.5. If C ⊂ P3 is ACM , then dC ≥
1
2 sC(sC + 1), with equality if and

only if λC = (1, 2, 3, . . . , sC − 1, sC).

Remark 7.6. The biliaison type λC was introduced from a different point of view
in [Green 1998], and it essentially the same thing as the numerical character {n j }

of [Gruson and Peskine 1978]: the precise relationship, if s = sC , is

n j − j = ks− j for j = 0, . . . , s−1.

The biliaison type (hence the numerical character) is equivalent to the h-vector
of C . Indeed, hC can be recovered from λC because one knows how hC vector
varies in an elementary biliaison, while λC can be computed out of hC via the
formula

ki = #{n : hC(n)≥ sC + 1− i}.

One can visualize hC and λC as follows. In the first quadrant of the (x, y) plane,
draw a dot at (n, p) if n and p are integers satisfying 1 ≤ p ≤ h(n). Then h(n) is
the number of dots on the vertical line x = n, while ki is the number of dots on the
horizontal line y = s− i + 1. In particular, k1 = tC − sC + 1 is the number of dots
on the top horizontal line y = s, and ks = e(C)+ 3 is the number of dots on the
bottom line y = 1.

Remark 7.7. The statement that every h-vector arises as the h-vector of an ACM
curve in P3 is equivalent to the statement that every finite, strictly increasing se-
quence of positive integers λ = (k1, . . . , ku) occurs as λC for some ACM curve
C ⊂ P3. We can see this by induction on u. When u = 1, λ = (k) is the biliaison
type of a plane curve of degree k. If u > 1, by induction there is an ACM curve
C0 with λC0 = (k1, . . . , ku−1). Now sC0 ≤ e(C0)+ 3 = ku−1 < ku . Therefore we
can find a surface X of degree ku containing C0, and construct C from C0 by a
biliaison of height one on X . Since e(C0)+ 3< ku , the biliaison is special, hence
λC equals the given λ. A refined version of this construction is in Theorem 7.21.

Definition 7.8. A sequence λ= (k1, k2, . . . , ku) has a gap at i if ki+1− ki ≥ 3.

For example, the sequence λC of Figure 1 has a gap at i = 2.
Davis [1985] shows that a gap in λC forces C to break in the union of two ACM

subcurves. We now give a more geometric proof of this result. For this we need
some preliminary remarks. While in general the union C of two ACM curves B
and D can fail to be ACM, it is certainly ACM if ID/IC is isomorphic to RB up to
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s = 4

h = {1, 2, 3, 4, 2, 2}

k1 = t− s + 1 = 1

k4 = e + 3 = 6

n

h
λ = {1, 2, 5, 6}

Figure 1. Biliaison type and h-vector.

a twist. This condition is satisfied when C is obtained from B by a trivial biliaison,
and also when C is obtained from B by a chain of elementary biliaisons “trivial on
B” (Lemma 7.16 below). Here are some preliminary examples.

Example 7.9. If C is obtained from a curve B by a trivial biliaison of height h
on a surface X , “adding” to C the complete intersection Y of X with a surface of
degree h, then

IY /IC ∼=
IY /IX

IC/IX

∼=
H 0
∗
(IY,X )

H 0
∗
(IC,X )

∼=
H 0
∗
(OX (−h))

H 0
∗
(IB,X (−h))

∼= RB(−h)

Example 7.10. Let D ⊂ P3 be a curve, and L a line not contained in D. Set
C = D ∪ L , and let f be the degree of the scheme theoretic intersection D ∩ L .
Then ID,C ∼= ID∩L ,L ∼= OL(− f ). If D is ACM, it follows that C = D∪ L is ACM
if and only if ID/IC ∼= RL(− f ).

By the same argument, if B and D are two ACM curves meeting properly and
IB∩D,B ∼= OB(− f ), then C = B ∪ D is ACM if and only if ID/IC ∼= RB(− f ).

From another point of view, suppose B and D are two ACM curves contained
in a smooth surface X , and let C = B+ D. Then

OB(−D) def
= OX (−D)⊗OB ∼= ID,C .

If OB(−D)∼= OB(− f ), then C is ACM if and only if ID/IC ∼= RB(− f ).

The condition ID/IC ∼= RB(− f ) implies that C is obtained by a “generalized
liaison addition” of B and D in the sense of [Geramita and Migliore 1994]. The
following proposition is essentially a special case of Theorem 1.3 of that reference.

Proposition 7.11. Suppose that C contains two subcurves B and D, and that for
some integer f there is an isomorphism of RC -modules:

(7-1) ID/IC ∼= RB(− f ).
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(a) There is a surface S of degree f containing D but not C , and the curve D is
the scheme theoretic intersection of C and S. In particular, f ≥ sD .

(b) The degrees and genera of B, C and D are related by the formulas

dC = dB + dD, g(C)= g(B)+ g(D)+ f dB − 1.

If B and D have no common component, then C is the scheme-theoretic
union of B and D, IB∩D,B ∼= OB(− f ), and B.D = f dB .

If C is contained in a smooth surface X , then C = B + D on X , and
OX (D)⊗OB ∼= OB( f ). In particular, B.D = f dB .

(c) Suppose D is ACM. Then B is ACM if and only if C is ACM, in which case

hC(n)= hB(n− f )+ hD(n)

(d) Suppose B, C and D are ACM and f = sD . If max{λB}<min{λD} then

λC = λB ∪ λD.

Proof. The hypothesis ID/IC ∼= RB(− f ) is equivalent to there being a form
F ∈ H 0(P3,O( f )) such that the sequence

0→ IB/IC(− f )→ RC(− f )
F
→ RC → RD→ 0

is exact. In particular, ID = IC + IS where S is the surface of equation F = 0,
hence D is the scheme theoretic union of C and S. Sheafifying the exact sequence

0→ IB(− f )→ IC → ID/(F)→ 0

we obtain another exact sequence

0→ H 1
∗
(IB)(− f )→ H 1

∗
(IC)→ H 1

∗
(ID).

It follows that, if D is ACM, then H 1
∗
(IB)(− f )∼= H 1

∗
(IC), and B is ACM if and

only if C is ACM.
If B and D are ACM, the relation between the h-vectors follows immediately

from the exact sequence 0→ RB(− f )→ RC → RD→ 0.
The relation between the degrees and genera follows computing the Euler char-

acteristics of the two sides of ID,C ∼= OB(− f ).
Suppose B and D have no common components. The kernel of the natural

surjective map
OB(− f )∼= ID,C → IB∩D,B

is supported on D and is a subsheaf of OB . Since B is locally Cohen–Macaulay and
has no component in common with D, the kernel is zero, hence OB(− f )∼=IB∩D,B .
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Suppose C is contained in a smooth surface X . Since D⊆C , there is an effective
divisor A on X such that C = A+ D. Then

OB(− f )∼= ID,C ∼= OX (−D)⊗OA

from which we deduce A = B and OB( f )∼= OX (D)⊗OB , hence B.D = f dB .
We deduce (d) from (c). By assumption

e(B)+ 3=max{λB}<min{λD} = tD − sD + 1.

On the other hand, hD(n)= sD if and only if sD−1≤ n ≤ tD−1, and hB(n− sD)

is nonzero if and only if sD ≤ n ≤ sD + e(B)+ 2. Since tD > sD + e(B)+ 2,
we see hD(n) = sD whenever hB(n − sD) is nonzero (hB so to speak sits on the
top of hD , as in Figure 1). Now it follows from hC(n) = hB(n− f )+ hD(n) that
λC = λB ∪ λD . �

Example 7.12. Figure 1 on page 289 shows the h-vector of a curve which is the
union of a twisted cubic curve B and a divisor D of type (6, 5) on a smooth quadric
surface. The biliaison types are λB = {1, 2} and λD = {5, 6}.

Definition 7.13. Suppose D0 ⊆ C0 are curves in P3 contained in a surface X , and
D is obtained from D0 by an elementary biliaison of height h on X . The biliaison
is defined by an injective morphism v : ID0,X (−h)→ OX whose image is ID,X .
Then the image of the restriction of v to IC0,X (−h), is the ideal IC,X of a curve
C ⊂ X , obtained by biliaison from C0. In this case, we say that the biliaison from
C0 to C is induced by the given biliaison from D0 to D. Note that C contains D.

Remark 7.14. When D0 is empty, a biliaison induced from D0 is the same thing
as a trivial biliaison. Indeed, in this case v is multiplication by a local equation of
the complete intersection D in OX , and v maps IC0,X (−h) onto IC0,X ID,X .

Remark 7.15. For an elementary biliaison from C0 to C to be induced by a biliai-
son of D0 it is enough that the corresponding morphism u : IC0,X (−h)→ OX lift
to a morphism û : ID0,X (−h)→ OX . Indeed, û is automatically injective because
its kernel K is isomorphic to a subsheaf of ID0,C0(−h) ⊆ OC0(−h), and at the
same time is a subsheaf of OX (−h); since OX and OC0 have no common associated
points, we must have K= 0.

Lemma 7.16. Suppose C0 contains B and D0, and ID0/IC0
∼= RB(− f ). Suppose C

is obtained by an elementary biliaison from C0 induced by an elementary biliaison
of height h from D0 to D on a surface X. Then C contains D and B, and

ID/IC ∼= RB(− f − h).
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Proof. Since the biliaison from C0 to C is induced by that from D0 to D, C contains
D, and

ID/IC ∼=
ID0/IX (−h)
IC0/IX (−h)

∼= RB(− f − h)

In particular, RB(−h− f ) is an RC -module, therefore B ⊆ C . �

Lemma 7.17. Suppose C0 contains B and D0, and ID0/IC0
∼= RB(−sD0). If k is

an integer such that

k ≥max(sD0 + e(B)+ 6, e(C0)+ 4),

then any height-one biliaison from C0 to C on a surface of degree k is induced by
a biliaison from D0 to a curve D such that

ID/IC ∼= RB(−sD)

Proof. The lemma generalizes [Martin-Deschamps and Perrin 1990, Remark 2.7c,
p. 65], which treats the case C0 = B and D0 = ∅. The statement in this case
becomes: if k ≥ e(C0)+ 6, then every height-one elementary biliaison from C0 to
C on a surface of degree k is trivial.

To prove the statement, let X be the degree k surface on which the biliaison
from C0 to C is defined, and apply HomOX ( · ,OX ) to the exact sequence

0→ IC0,X (−1)→ ID0,X (−1)→ OB(−sD0 − 1)→ 0

to see that u : IC0,X (−1)→ OX lifts to û : ID0,X (−1)→ OX if and only if the
image of u in Ext1OX

(OB(−sD0 − 1),OX ) vanishes. Now by Serre duality on X the
latter Ext group is dual to

H 1(X,OB(k− sD0 − 5))

which is zero because k≥ sD0+e(B)+6. Thus u lifts to give a height-one biliaison
from D0 to a curve D inducing the biliaison from C0 to C . By Lemma 7.16 above
ID/IC ∼= RB(−sD0−1). Finally, since k ≥ sD0 + 1, we have sD = sD0 + 1. �

The following proposition is a special case of [Davis 1985, Corollary 4.2].

Proposition 7.18. Suppose the biliaison type λC = (k1, k2, . . . , ks) of an ACM
curve C has a gap at j . Then C contains ACM curves B and D such that

λB = (k1, k2, . . . , k j ), λD = (k j+1, k j+2, . . . , ks), and ID/IC ∼= RB(−sD).

Furthermore, (B, D) is the unique pair of ACM curves with the above properties.

Proof. Note that s = sC . Suppose first j = s−1, that is, ks ≥ ks−1 + 3. Since
ks = e(C)+3, by Proposition 7.2 C is obtained by a special biliaison on a surface
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X of degree ks from an ACM curve B. By definition of biliaison type, λB =

(k1, k2, . . . , ks−1). As ks−1 = e(B)+ 3, we see

ks ≥ ks−1+ 3= e(B)+ 6.

By Lemma 7.17 the biliaison is trivial, so C contains a plane section D of X , and
ID/IC ∼= RB(−1). Since λD = (deg(X))= (ks), the statement holds when j = s−1

We now suppose j < s−1 and proceed by induction on s− j . By Proposition 7.2
C is obtained by a special biliaison on a surface X of degree ks from an ACM curve
C0 whose biliaison type is λ0 := λC0 = (k1, k2, . . . , ks−1). Thus λ0 has a gap at j ,
and sC0 = s−1, hence by induction C0 contains ACM curves B and D0 such that
λB = (k1, k2, . . . , k j ), λD0 = (k j+1, k j+2, . . . , ks−1), and ID0/IC0

∼= RB(−sD0).
In particular, sD0 = s− j − 1, so that

ks ≥ k j+1+ s− j − 1≥ k j + 3+ sD0 = e(B)+ 6+ sD0 .

Since ks = e(C)+ 3 ≥ e(C0)+ 4, by Lemma 7.17 the biliaison from C0 to C is
induced by a biliaison from D0 to a curve D, and ID/IC ∼= RB(−sD). Finally, since
D is obtained from D0 by a special biliaison, D is ACM and λD = λD0 ∪ (ks) =

(k j+1, k j+2, . . . , ks).
It remains to prove uniqueness. Note that sD = s− j is determined by C , hence

so is tD because
tD − sd + 1=min(λD)= k j+1.

By assumption e(B)+ 3 = k j ≤ k j+1− 3 = tD − sD − 2, hence from the exact
sequence

0→ ωD(m)→ ωC(m)→ ωB(sD +m)→ 0

we see
H 0(ωD(m))= H 0(ωC(m)) for every m ≤ 3− tD.

We will show that �D = H 0
∗
(ωD) is generated over the polynomial ring R =

H 0
∗
(P3) by its elements of degree at most 3− tD . Taking this for granted for the

moment, it follows that �D is the submodule of �C generated by⊕
m≤3−tD

H 0(ωC(m));

hence it is determined by C . But ID is the annihilator of �D , because RD is
Cohen–Macaulay with canonical module �D , hence D is determined by C .

Since tD − sD + 1 = k j+1 > 1, the curve D is contained in a unique surface
S of degree sD , and therefore B is also determined, being the residual curve to
D = C ∩ S in C .

To finish, we need to show �D = H 0
∗
(ωD) is generated by its sections of degree

at most 3 − tD . For this we choose a complete intersection Y of type (sD, u)
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containing D and let E be the curve linked to D by Y . As �D ∼= IE/IY (−eY ) and
IE is generated by its elements of degree at most e(E)+ 3, it is enough to show
e(Y )− tD ≥ e(E).

From ωE(−e(Y ))∼= ID/IY and h0(ID(tD−1))= h0(IY (tD−1)), we see that
h0(ω(tD − 1− e(Y )))= 0; that is, tD − e(Y )≤−e(E), as desired. �

Corollary 7.19. Let C ⊂ P3 be an irreducible, reduced ACM curve that is con-
tained in a smooth surface X of degree s = sC . Let t = tC and e = e(C).

(a) If hC(e+ 1) = 3, hC(e+ 2) = 2, then C has a unique (e+ 3)-secant line L ,
and every surface of degree at most e+ 2 containing C contains L as well.

(b) If hC(t) = s − 2, hC(t + 1) = s − 3 (so that s ≥ 3), then X contains a line L
that is a (t−s+1)-secant of C.

Remark 7.20. As a partial converse, we will see in the proof of Theorem 9.1 that,
if, for every smooth C in the Hilbert scheme A(h), the general surface of degree s
containing C contains a line, then the h-vector of C satisfies either (a) or (b).

Proof of Corollary 7.19. Since X is smooth, by definition of t there is surface X t of
degree t containing C but not X . Thus C is contained in the complete intersection
Y = X ∩ X t . Let 0 the curve linked to C by Y . Then on X

C ∼ t H −0

where H denotes a plane section of X , and ∼ stands for linear equivalence. By
[Migliore 1998, Corollary 5.2.19],

h0(n)= hY (s+ t − 2− n)− hC(s+ t − 2− n).

Case A: h(e+ 1)= 3 and h(e+ 2)= 2. The formula above implies

s0 =min{s, s+ t − 4− e}.

But t ≤ e+ 3 because hC(e+ 3)= 0, hence s0 = s+ t − 4− e. The conditions on
hC then translate as follows:

h0(s0)= h0(s0 + 1)= s0 − 1.

If s0 = 1, this implies 0 = L is a line. If s0 ≥ 2, then the condition on h0 is
equivalent to λ0 = (1, k2, . . . ), with k2 ≥ 4 because h0(n) ≥ s0 − 1 at least for
n= s0−2, s0−1, s0, s0+1. By Proposition 7.18 0 contains a line L and an ACM
curve D with ID/I0 ∼= RL(1− s0). We can treat the two cases simultaneously if
we take D to be the empty curve when s0 = 1.

By Proposition 7.11, 0 = L + D on X , and L .D = s0 − 1. Thus

C.L = (t H − L − D).L = t + s− 2− s0 + 1= s+ t − s0 − 1= e+ 3.
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In particular, every surface of degree at most e+ 2 containing C contains L as
well. On the other hand, C + L is an ACM curve, because it is linearly equivalent
to D+ t H . Therefore

IC/IC+L ∼= RL(−C.L)= RL(−e− 3).

It follows that hC∪L(n) and hC(n) differ only for n=e+3, where their value is 1 and
0 respectively. In particular, hC∪L(e+2)= hC(e+2)= 2 and hC∪L(e+3)= 1, so
that by [Nollet 1998, Proposition 1.5] the homogeneous ideal of C∪L is generated
by its forms of degree at most e+ 2, hence by the forms in IC of degree at most
e+ 2.

Suppose now M is an (e+3)-secant line of C . Then the homogeneous ideals of
C and C ∪M coincide in degrees at most e+ 2. It follows that the ideal of C ∪ L
is contained in that of C ∪M , hence C ∪ L = C ∪M and L = M . Therefore L is
the unique (e+ 3)-secant of C .

Case B: hC(t)= s− 2 and hC(t + 1)= s− 3. Then h0(s−3) = h0(s − 2) = 1
and h0(s−1)= 0. This implies either λ0 = (s−1), or λ0 = (. . . , ku−1, s−1) with
s−1− ku−1 ≥ 3. By Proposition 7.18, 0 contains a plane curve P of degree s−1
and an ACM curve B (possibly empty) such that IP/I0 ∼= RB(−1).

By Proposition 7.11, 0= B+P on X , and B.P = dB . Let L be the line residual
to P in the intersection of X with the plane of P . Then B.L = B.H − B.P = 0;
hence

C.L = (t H − B− P).L = ((t − 1)H − B+ L).L = t − 1+ 2− s = t−s+1. �

Given any sequence λ = (k1, k2, , . . . , ku) with r−1 gaps (for any r ≥ 1), we
can decompose λ uniquely as

(7-2) λ= λ1 ∪ λ2 ∪ · · · ∪ λr ,

where each λi has no gaps and, if ai and bi denote respectively the minimum
and the maximum integer in λi , we have ai+1 − bi ≥ 3. We call (7-2) the gap
decomposition of λ.

Theorem 7.21. Let A(λ) denote the Hilbert scheme parametrizing ACM curves
having biliaison type λ. If C is general in A(λ), then C is reduced and for every
f ≥ e(C)+ 3, there exists a smooth surface F of degree f containing C.

Let λ= λ1 ∪ λ2 ∪ · · · ∪ λr be the gap decomposition of λ. Then:

(a) Every ACM curve C ∈ A(λ) contains ACM subcurves Di , i = 1, 2, . . . , r ,
such that λDi = λi .

(b) If C is general in A(λ), we have

C = D1 ∪ D2 ∪ · · · ∪ Dr ,
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where the Di are distinct smooth irreducible ACM curves satisfying λDi = λi ;
for every 1≤ i1 < i2 < · · ·< ih ≤ r , the curve

Di1 ∪ Di2 ∪ · · · ∪ Dih

is ACM and has biliaison type λi1 ∪ λi2 ∪ · · · ∪ λih .

Remark 7.22. The Di in Theorem 7.21 (for i ≥ 2) are not necessarily general in
A(λi ): this is because they are forced to lie on surfaces containing D j for j < i .

Proof of Theorem 7.21. Recall that by a theorem of Ellingsrud A(λ) is irreducible
(see Remark 6.4). By Proposition 7.18 and induction on the number of gaps we
see that for each i , 1≤ i ≤ r , there are ACM curves Ci and Di with the following
properties:

(1) Cr = C and C1 = D1.

(2) If 2≤ i ≤ r , Ci contains Ci−1 and Di , and IDi /ICi = RCi−1(−sDi ).

(3) λDi = λi for every 1≤ i ≤ r .

(4) λCi = λ1 ∪ λ2 ∪ · · · ∪ λi for every 1≤ i ≤ r .

We claim that for every 1 ≤ i1 < i2 < · · · < ih ≤ r there are ACM curves
Ei1,i2,...,ih ⊆ Cih such that

(1) if h = 1, Ei = Di , and, if h = r , E1,2,...,r = C ;

(2) if 2≤ h ≤ r , Ei1,i2,...,ih contains Ei1,i2,...,ih−1 and Dih , and

IDih
/Ei1,i2,...,ih = REi1,i2,...,ih−1

(−sDih
);

(3) λEi1,i2,...,ih
= λi1 ∪ λi2 ∪ · · · ∪ λih .

We prove the statement by induction on h. When h = 1 there is nothing to prove.
Suppose h > 1. By the induction hypothesis, there is a curve A = Ei1,i2,...,ih−1 ⊆

Cih−1 with the properties above. Let B=Cih−1. By Lemma 7.23 below there exists
a curve C0 ⊆ Cih containing B and Dih such that IDih

/IC0
∼= RA(−sDih

). Since A
and Dih are ACM, it follows from Proposition 7.11 that C0 is ACM as well. We
define Ei1,i2,...,ih to be C0. Then Ei1,i2,...,ih has the required properties (the formula
for the biliaison type follows from part (d) of the same proposition).

To see the components Di of a generic C are smooth, we follow the original
proof of [Gruson and Peskine 1978, 2.5]. More precisely we show that, if

λ= λ1 ∪ λ2 ∪ · · · ∪ λr

is the gap decomposition of λ = (k1, . . . , ks), there exists an ACM curve C with
λC = λ satisfying the following properties:

(1) C is contained in a smooth surface for every f ≥ ks = e(C)+ 3.
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(2) C = D1 ∪ D2 ∪ · · · ∪ Dr , where the Di are smooth irreducible ACM curves
satisfying λDi = λi ; in particular, C is reduced.

(3) ωDr (−e(Dr )) has a section whose scheme of zeros is smooth (contains no
multiple points).

We prove this statement by induction on s as in [Gruson and Peskine 1978,
2.5]. For s = 1, the statement is about plane curves and is well known (note that
e(C)+ 3= dC for a plane curve C).

Assume now the statement is true for λ, fix a curve C with the properties above,
and consider λ+ = λ∪ {ks+1}. We have two cases to consider:

Case 1: ks+1 ≤ ks + 3. In this case λ+ has a gap at s, and its gap decomposition
is λ+ = λ1 ∪ λ2 ∪ · · · ∪ λr ∪ {ks+1}.

By assumption, ks+1 ≥ ks + 3 = e(C)+ 6; thus there exists a smooth surface
X of degree ks+1 containing C . Let Dr+1 be a general plane section of X , and
let C+ = C ∪ Dr+1. Then Dr+1 is smooth with λ = (ks+1), thus C+ satisfies (2)
with respect to λ+. It also satisfies (3) because ωDr+1(−e(Dr+1)) ∼= ODr+1 . By
construction C+ lies on the smooth surface X of degree ks+1 = e(C+)+ 3. The
fact that C+ is contained in a smooth surface of degree f , for every f > e(C+)+3,
follows now from the fact that IC+(e(C+)+3) is generated by its global sections;
see, for example, [Peskine and Szpiro 1974] and [Nollet 1998, Corollary 2.9]. Thus
C+ also satisfies (1), and we are done in case 1.

Case 2: ks+1 = ks + 1 or ks + 2. In this case the gap decomposition of λ+ is

λ+ = λ1 ∪ λ2 ∪ · · · ∪ λr−1 ∪ λ
+

r

where λ+r = λr ∪ {ks+1}.
We can still find a smooth surface X of degree ks+1 containing C because ks+1>

e(C)+ 3. In particular, X contains Dr . The proof of [Gruson and Peskine 1978,
2.5] shows that the general curve D+r in the linear system Dr +H on X is smooth
with λD+r = λ

+
r , and that ωD+r (−e(D+r )) has a section whose scheme of zeros is

smooth. Thus

C+ = D1 ∪ D2 ∪ · · · ∪ D+r

has the required properties (note that e(C+)+ 3= ks+1 = deg(X)). �

Lemma 7.23. Suppose C ⊂ P3 is a curve, with subcurves B, D such that

ID/IC

β
∼= RB(− f ).

If A is a subcurve of B, there exists a unique curve C0 with the following properties:

(1) C0 is contained in C.
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(2) C0 contains A and D, and there is an isomorphism ID/IC0

α
∼= RA(− f ) which

makes commutative the diagram

ID/IC
β

−−−→
∼=

RB(− f )y y
ID/IC0

α
−−−→
∼=

RA(− f )

where the vertical arrows are induced by the inclusions C0 ⊆ C and A ⊆ B.

If A and D have no common components, then C0 = A∪ D.

Proof. The inclusion

IA/IB(− f ) ↪→ RB(− f )
β−1

∼= ID/IC ↪→ RC

defines an ideal J in RC . Uniqueness is clear, because if such a C0 exists, we
must have IC0/IC = J . To show existence, let I be the inverse image of J in the
polynomial ring R= H 0

∗
(OP3), so that I/IC ∼= IA/IB(− f ). The given isomorphism

ID/IC

β
∼= RB(− f ) induces ID/I

α
∼= RA(− f ), hence an exact sequence

0→ RA(− f )→ R/I → RD→ 0.

From this exact sequence we see that R/I has depth at least one, hence I is the
saturated ideal of a subscheme C0 ⊂ C .

By construction IC0/IC and IA/IB(− f ) are isomorphic, so that the given iso-

morphism ID/IC

β
∼= RB(− f ) induces another, ID/IC0

α
∼= RA(− f ), with the desired

properties. Finally, we can check C0 is a locally Cohen–Macaulay curve looking
at the exact sequence

0→ OA(− f )→ OC0 → OD→ 0.

If A and D have no common components, then C0 contains the union A ∪ D.
Since both C0 and A∪ D are locally Cohen–Macaulay curves of degree dA+ dD ,
they must be equal. �

8. Bounds on the quadratic form φ(D, D)

Let X ⊂P3 be a smooth surface of degree s ≥ 2. We will make use of the bilinear
form on Pic(X):

φ(D, E)= (D.H) (E .H)− s (D.E)= det
[

D.H H 2

D.E E .H

]
.
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This is essentially the positive definite product on Pic(X)/ZH induced by the in-
tersection product: by the algebraic Hodge index theorem, φ(D, D) ≥ 0 for any
divisor D on X , and φ(D, D)= 0 if and only if D is numerically (hence linearly)
equivalent to a multiple of H .

In the proof of our main theorem it will be crucial to be able to bound φ(D, D)
from below in terms of the degree dD when D is an ACM curve on X . Note that
if D is a curve on X , then

(8-1) φ(D, D)= d2
D + s(s− 4)dD − 2s(g(D)− 1)

Thus, if we fix the degree dD and s, then knowing φ(D, D) is the same as knowing
the genus g(D), and bounding φ(D, D) from below is the same as bounding g(D)
from above. In fact, the bounds of this section can be seen as a refinement of
the bounds on the genus of an ACM curve of [Gruson and Peskine 1978]; see
Remark 8.8. The form φ(D, D) has the advantage of being invariant if we replace
D with m H − D or D+ nH , that is, it is invariant under liaison and biliaison on
X . Thus one can compute φ(D, D) assuming D is a minimal curve on X .

To compute these bounds we note that, by (8-1), the form φ(D, D) for an ACM
curve D depends only on the h-vector (or the biliaison type λ) of D and on s. Since
it is enough to consider only minimal curves on X , and there only finitely many
possible biliaison types λ of minimal curves for each s, our proof will proceed by
a careful analysis of these λ.

We call a biliaison type λ s-minimal if it corresponds to a minimal ACM curve
on a smooth surface X of degree s. Since minimal is equivalent to e + 3 < s
by Proposition 6.7, the s-minimal types λ are just those increasing sequences of
positive integers λ= (k1, k2, . . . , ku) satisfying ku< s. There are 2s−1 such possible
sequences (including the empty one), and by Proposition 6.9 the corresponding
curves are linked by a complete intersection (s, s) to curves with s-basic h-vectors.
For any such λ, we let d, g, e be the corresponding invariants of the associated
curve 0, and we define

(8-2) q(λ)= φ(0, 0)= d2
+ s(s− 4)d − 2s(g− 1).

Then one verifies the formula

(8-3) q(λ)=
u∑

i=1

ki (s−1)(s− ki ) − 2
∑

1≤i< j≤u

ki (s− k j ).

Table 1 on page 284 lists all the s-basic h-vectors and associated s-minimal bili-
aison types λ for s = 4, 5 and a few for s = 6, 7, 8, 9, together with the values q
takes on them.
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Definition 8.1. Suppose λ = (k1, k2, . . . , ku) is s-minimal. Then we define the
s-dual λ′ of λ to be

λ′ = (s− ku, s− ku−1, . . . , s− k1)

if λ 6=∅. If λ=∅, then λ′=∅. Note that, if λ is the biliaison type of an ACM curve
0, then λ′ is the biliaison type of a curve linked to 0 by a complete intersection of
two surfaces of degree s0 = uλ and s (see Section 6).

Proposition 8.2. The invariants of λ′ are uλ′ = uλ, dλ′ = uλs− dλ, q(λ′)= q(λ).

Proof. The first two equalities are obvious. The equality q(λ′)= q(λ) follows from
(8-3), or can be deduced from the invariance of φ(D, D) under liaison on X . �

We say that λ1= (k1, k2, . . . , ku) precedes λ2= (l1, l2, . . . , lv) and write λ1<λ2

if ku < l1. In this case, if λ2 is s-minimal, then

λ1 ∪ λ2 = (k1, k2, . . . , ku, l1, . . . , lv)

is also s-minimal. Note that (λ∪µ)′ = µ′ ∪ λ′.

Example 8.3. A plane curve of degree k < s on a surface X of degree s ≥ 2 is
minimal. The corresponding λ sequence is λ= (k), and q(λ)= k(s−1)(s− k).

More generally if λ is the biliaison type of a complete intersection of two sur-
faces of degrees a ≤ b < s then q(λ)= ab(s− a)(s− b).

Example 8.4. Let λ= (1, 2, . . . , k−1, k) with k < s. Then dλ = 1
2 k(k+ 1) and

q(λ)= dλ
(
s2
−

2
3 s(2k+ 1)+ dλ

)
The first statement of Proposition 8.5 below determines, once q((k)) is known,

the function q(λ) by induction on the number uλ of elements of λ.

Proposition 8.5. Suppose λ < µ are s-minimal.

(a) q(λ∪µ)= q(λ)+ q(µ)− 2dλdµ′ .

(b) If λ < (k) and (k+ 1) < µ, then

q(λ∪ (k+ 1)∪µ)− q(λ∪ (k)∪µ)= (s−1)(s−1− 2k)− 2(dµ′ − dλ).

(c) Suppose β is another s-minimal biliaison type, and h, k are two integers such
that λ< (h−1), (h) < β < (k), and (k+1) <µ. Let δ= λ∪ (h)∪β∪ (k)∪µ
and ε = λ∪ (h−1)∪β ∪ (k+1)∪µ. Then

q(δ)− q(ε)= 2s(k− h− uβ)≥ 2s > 0.

We next show that q(λ) increases if one inserts a new integer in a sequence λ.
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Corollary 8.6. Let (k1, k2, . . . , ku) be s-minimal.

(a) If ku < k < s, then

q(k1, k2, . . . , ku, k)≥ q(k1, k2, . . . , ku)+ k(s− k)2

In particular, q(λ)≥ (s−1)2 unless λ=∅.

(b) If ki < k < ki+1, then

q(k1, k2, . . . , ki , k, ki+1, . . . , ku)≥ q(k1, k2, . . . , kr )+ k(s− k).

Proof. Let λ= (k1, k2, . . . , ku) By Proposition 8.5 we have

q(λ∪ (k))= q(λ)+ q(k)− 2dλ(s− k)= q(λ)+ (s− k) (k(s−1)− 2dλ) .

Thus the first claim follows from

(8-4) dλ =
r∑
1

ki ≤
1
2

k(k− 1).

For the second claim, set λ = (k1, k2, . . . , ki ) and µ = (ki+1, ki+2, . . . , ku).
Using Proposition 8.5 we compute

q(λ∪ ((k)∪µ))− q(λ∪µ)= q((k)∪µ)− q(µ)+ 2dλ(dµ′ − d((k)∪µ)′)

Now dµ′ − d((k)∪µ)′ =−(s− k), while by duality and the first claim

q((k)∪µ)− q(µ)= q(µ′ ∪ (s− k))− q(µ′)≥ (s− k)k2.

Hence

q(λ∪ ((k)∪µ))− q(λ∪µ)≥ (s− k)k2
− 2dλ(s− k)

= (s− k)(k2
− 2dλ)≥ k(s− k),

where the last inequality follows from (8-4). �

We now prove a lower bound for q(λ) in terms of the residue class of dλmodulo s.

Proposition 8.7. Let λ be s-minimal, of degree d congruent to f modulo s, with
0≤ f < s. Then

(a) If uλ = 2, so that λ= (h, k) with h+ k ≡ f (mod s), then

q(λ)=
{

f (s−1)(s− f )+ 2h(k−1)s if h+ k < s,
f (s−1)(s− f )+ 2(s−k)(s−h−1)s if h+ k ≥ s.

(b) If uλ ≥ 3 and s ≥ 5, we have

q(λ)≥ 2s+m( f, s),

where m( f, s) denotes the minimum of q(µ) as µ varies among s-minimal
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biliaison types satisfying uµ = 2 and dµ ≡ f or dµ ≡ s− f (mod s). In fact,

m( f, s)=
{

f (s−1)(s− f )+ 2s( f−2) if 3≤ f ≤ s− f or f = s−2, s−1,
f (s−1)(s− f )+ 2s(s− f−2) if 3≤ s− f ≤ f or f = 0, 1, 2.

This minimum is attained by λ= (1, f−1) and λ′= (s− f+1, s−1) when 3≤
f ≤ s− f or if f = s−2, s−1, and by λ= (1, s− f−1) and λ′ = ( f +1, s−1)
when 3≤ s− f ≤ f or f = 0, 1, 2.

Proof. Part (a) is a simple computation. To prove part (b), note that the role of f
and s− f is symmetric, reflecting the fact that q(λ)= q(λ′). Thus we can replace
λ with λ′ whenever convenient. If λ = (k1, k2, . . . , kr ) and there are two indices
i < j such that ki −1> ki−1 and k j +1< k j+1, we replace ki by ki −1 and k j by
k j+1 to obtain a new increasing sequence λ1 with the same degree as λ, hence the
same f . Then q(λ) ≥ q(λ1)+ 2s by Proposition 8.5(c). When uλ = 2, it follows
that the minimum m( f, s) is attained by sequences of the form (1, k) or (h, s−1),
as in the statement. When uλ ≥ 3, iterating the procedure above and passing to the
dual word if necessary, we may assume that λ is one of the following sequences:

(1, 2, . . . , h) 3≤ h < s

(1, 2, . . . , h, s−m, s−(m−1), . . . , s−1) 1≤ m ≤ h, 2≤ h ≤ s−m−2

(1, 2, . . . , h, k) 2≤ h ≤ k−2

(1, 2, . . . , h, k, s−m, s−(m−1), . . . , s−1) m ≤ h, 1≤ h ≤ k−2, k ≤ s−m−2

If λ= (1, 2, . . . , s−1), we replace it with (2, . . . , s−2), since

q(1, 2, . . . , s−1) > q(2, . . . , s−2)

If h ≥ 2, we define

µ= (2, . . . , h−1, h+ 1, . . . )

to be the sequence obtained removing 1 and h from λ and adding h+ 1. If h = 1,
then λ= (1, k, s−1) with 3≤ k ≤ s−3, in which case we define µ= (k+1, s−1).

Then dµ = dλ, uµ = uλ − 1, hence we will be done by induction on uλ if we
show q(λ) ≥ q(µ)+ 2s. By Proposition 8.5(a) we can assume λ = (1, 2, . . . , h)
and µ= (2, . . . , h−1, h+ 1). Then one computes q(λ)− q(µ)= 2s. �

Remark 8.8. One can show that the bound q(λ)≥ f (s−1)(s− f ) is equivalent to
the bound in [Gruson and Peskine 1978] for the genus of an ACM curve of degree
d > s(s−1) not lying on a surface degree s−1. They also show that curves of
maximal genus are linked to plane curves: in our notation this means uλ = 1 if
q(λ) attains its minimal value f (s−1)(s− f ).
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Corollary 8.9. Let λ be s-minimal of degree d congruent to f modulo s, with
0≤ f < s. If uλ ≥ 2, then

q(λ)≥


2s(s−2) if f = 0,
3s2
− 8s+1 if f = 1 or f = s−1,

2s2
− 4s+ 4 if f /∈ {0, 1, s−1}.

Proof. We may assume s ≥ 5 because the cases s = 3, 4 are easily checked; see
Table 1. If f =0, 1 or s−1, the statement follows immediately from Proposition 8.7.
If f 6= 0,1, s−1, again by the smae proposition we have

q(λ)≥ q( f )+ 2s ≥ q(2)+ 2s = 2s2
− 4s+ 4. �

Corollary 8.10. Suppose s ≥ 5 and let λ be s-minimal. Suppose q(λ) ≤ (s+1)2.
Then one of the following occurs:

(1) λ=∅ and q(λ)= 0.

(2) λ= (1) or λ= (s−1), and q(λ)= (s−1)2.

(3) 5≤ s ≤ 7 and λ= (2) or λ= (s−2), so that q(λ)= 2(s−1)(s−2).

(4) s = 6 and λ= (3), so that q(λ)= 3(s−1)(s−3)= 45.

(5) s = 5 or 6 and λ= (1, s−1).

(6) s = 5 and λ= (1, 3) or λ= (2, 4), in which case q(λ)= 36= (s+1)2.

(7) s = 5 and λ= (1, 2) or λ= (3, 4), in which case q(λ)= 34.

Furthermore, if q(λ)≤ (s−1)2, then either (1) or (2) occurs. If (s−1)2<q(λ)≤ s2,
then either s = 4 and λ= (2) or (1, 3), or s = 5 and λ= (2) or (3).

Proof. Suppose first λ = ( f ). Then q(λ) = f (s−1)(s− f ). One checks this is
bigger than (s+1)2 except in the cases listed in the statement.

Suppose now uλ ≥ 2. If f = 0, then q(λ)≥ 2s(s−2) by Corollary 8.9, and this
is bigger than (s+1)2 unless s ≤ 6. When s = 5 or 6, one checks by hand the only
possibility is λ= (1, s−1).

If f = 1 or s−1, the lower bound for q(λ) is

3s2
− 8s+1,

which is bigger than (s+1)2 unless s≤ 5. When s= 5, one finds the two sequences
λ= (1, 3) or λ= (2, 4).

If f 6= 0, 1, s−1, then q(λ) ≥ 2s2
− 4s+ 4 which is bigger than (s+1)2 unless

s ≤ 5. When s = 5, one finds the two sequences λ= (1, 2) or λ= (3, 4) for which
q(λ)= 34. �



304 ROBIN HARTSHORNE AND ENRICO SCHLESINGER

9. Gonality of a general ACM curve

In this section we give the proof of our main result.

Theorem 9.1. Assume K has characteristic zero. Let C ⊂ P3
K be an irreducible,

nonsingular ACM curve with h-vector h, and let s = sC , t = tC , e = e(C) and g =
g(C). Assume that s ≥ 4 and that (s, d, g) is not one of the following: (4, 10, 11),
(5, 15, 26), (5, 16, 30), (6, 21, 50), (6, 22, 55), (6, 23, 60), (7, 28, 85), (7, 29, 91),
(8, 36, 133).

Suppose there is a smooth surface X of degree s containing C with the following
properties:

(1) The linear system |t H − C | on X contains a reduced curve 0, such that the
irreducible components D1, . . . Dr are ACM curves, and

λ0 = λD1 ∪ λD2 ∪ · · · ∪ λDr

is the gap decomposition of λ0.

(2) The Picard group of X is Pic(X)= Z[H ]⊕Z[D1]⊕ · · ·⊕Z[Dr ].

(3) C is general in its linear system on X.

Then
gon(C)= d − l,

where l = l(C) is the maximum order of a multisecant of C. Furthermore, with
the possible exception of the values of (s, d, g) listed in Proposition 6.10(b), C has
finitely many g1

d−l ; hence its Clifford index is

Cliff(C)= gon(C)− 2= d − l − 2.

More precisely:

(a) If h(e+ 1) = 3, h(e+ 2) = 2, then the gonality of C is d−e−3 and there is
unique pencil of minimal degree, arising from the unique (e+ 3)-secant line
of C (compare Corollary 7.19).

(b) if h(t)= s− 2, h(t + 1)= s−3, t > s+ 3, but the condition of case (a) above
does not occur, then the gonality of C is d − (t−s+1), and there is unique
pencil of minimal degree, arising from the unique (t−s+1)-secant line of C.

(c) if neither case (a) nor (b) above occurs, then the gonality of C is d−4, and
every g1

d−4 on C arises from a 4-secant line, unless either

(1) (s, d, g) is in the list of Proposition 6.10(b), or
(2) s = 4, C ∈ |C0 + bH | where b ≥ 2 and C0 has degree 4 and arithmetic

genus 1; in this case |OC(b)| is the unique g1
d−4 that does not arise from a

4-secant.
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Finally, if C has a complete basepoint-free pencil of degree k < d − 4, then the
pencil arises either from an (e+ 3)-secant line or from a (t−s+1)-secant line.

Remark 9.2. The conditions on h in (a) and (b) are not satisfied in any of the cases
listed in Proposition 6.10(b).

Proof of Theorem 9.1. The gonality of C is at most d − 4 by Proposition 3.1.
Suppose Z is a complete basepoint-free pencil of degree k on C , and assume

k ≤ d−4, unless we are in one of the cases listed in Proposition 6.10(b), for which
we assume k ≤ d − 5. We will classify these pencils as follows. By the same
proposition the bundle E associated to Z on X satisfies 1(E) > 0, and then by
Bogomolov’s result (Theorem 5.4) it follows that E is Bogomolov unstable. Let
OX (A) be the line bundle that destabilizes E. We will show that only the following
cases can occur:

(1) for any h-vector, we can have A = −H ; then by Corollary 5.7 the pencil Z

arises from a multisecant line L that is not contained in X . Corollary 4.2
shows that k = deg Z= d − 4 and that there is a finite set of such pencils.

(2) when h(e+ 1)= 3 and h(e+ 2)= 2, then C has a unique (e+ 3)-secant line
L , and Z= Z(L). In this case L ⊂ X and A = L − H .

(3) if t > s+3, h(t)= s−2, h(t+1)= s−3, then C has a unique (t−s+1)-secant
line L , and Z= Z(L). In this case L ⊂ X and A = L − H .

(4) s = 4, C ∈ |C0+ bH | where b ≥ 2 and C0 has degree 4 and arithmetic genus
1. In this case Z= |OC(b)| and A =−C0. In particular, deg Z= d− 4 and Z

does not arise from a multisecant.

The statement of the theorem clearly follows from this classification. For the Clif-
ford index, we use the fact, proved in [Coppens and Martens 1991], that Cliff(C)=
gon(C)− 2 when C has a finite number of pencils of minimal degree.

We now proceed to classify the possible basepoint-free complete pencils Z of
degree at most d−4. Let A be the divisor that destabilizes the bundle E associated
to Z. Recall that A sits in an exact sequence

0→ OX (A)→ E→ IW,X (B)→ 0

where W is zero-dimensional and (A− B).H > 0. From the exact sequence we
see A− B = 2A+C and

(2A+C)2 = (A− B)2 ≥1(E)= C2
− 4k.

By Proposition 5.5 we also have (−A).H > 0 and A2
≥ 0.
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To be able to work effectively with the above inequalities, we write x = A.H
for the degree of A, and consider the bilinear form on Pic(X)

φ(D, E)= (D.H) (E .H)− s (D.E)= det
[

D.H H 2

D.E E .H

]
.

We then obtain the following numerical constraints on x :

(9-1) −d < 2x < 0, x2
≥ φ(A, A), x2

+ dx + ks ≥ φ(A, A+C),

the last two inequalities being equivalent to A2
≥ 0 and (2A + C)2 ≥ C2

− 4k
respectively.

In Pic(X) we can write A=
∑

ai Di +cH with ai ∈ Z, c ∈ Z. We wish to show

φ(A, A+C)≥ 0.

We first prove φ(Di , D j )< 0. Let λ0 =λ1∪λ2∪· · ·∪λr be the gap decomposition
of λ0, so that λDi = λi . If i < j , Di + D j is ACM with λDi+D j = λi ∪ λ j by
Theorem 7.21. Since φ(D, D) = q(λD) for an ACM curve D with sD < s, by
Proposition 8.5

(9-2) φ(Di , D j )=−dλi dλ′j < 0

(note that the formula φ(Di , D j )=−dλi dλ′j is correct only for i < j).
To simplify notation we let qi = φ(Di , Di ) and bi = −

∑
j 6=i φ(Di , D j ). We

claim that qi > 2bi for every i . To prove this let Ei =
∑

j 6=i D j . Then

φ(0, 0)= φ(Di + Ei , Di + Ei )= φ(Di , Di )+φ(Ei , Ei )+ 2φ(Di , Ei )

= φ(Ei , Ei )+ qi − 2bi ;

thus it is enough to show φ(0, 0) > φ(Ei , Ei ), that is, q(λ0) > q(λEi ). The latter
inequality holds by Corollary 8.6; hence qi > 2bi .

We now compute

φ(A, A)=
∑

i
a2

i φ(Di , Di )+ 2
∑
i< j

ai a jφ(Di , D j )

=
∑

i
a2

i (qi − bi )−
∑

i
a2

i
∑
j 6=i
φ(Di , D j )+ 2

∑
i< j

ai a jφ(Di , D j )

=
∑

i
a2

i (qi − bi )−
∑
i< j
(ai − a j )

2φ(Di , D j ),

φ(A,C)= φ
(∑

i
ai Di , tC H −

∑
j

D j

)
= φ

(∑
i

ai Di ,−
∑

j
D j

)
=−

∑
i, j

aiφ(Di , D j )=−
∑

i
ai (qi − bi ).
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Therefore

φ(A, A)=
∑

i
a2

i (qi − bi )−
∑
i< j
(ai − a j )

2φ(Di , D j ),(9-3)

φ(A,C)=−
∑

i
ai (qi − bi ),(9-4)

φ(A, A+C)=
∑

i
(a2

i − ai )(qi − bi )−
∑
i< j
(ai − a j )

2φ(Di , D j ).(9-5)

The last equality implies φ(A, A + C) ≥ 0 because the ai are integers, qi >

2bi ≥ bi and φ(Di , D j ) < 0.
We now show that φ(A, A+C)≥ 0 implies x ≥−s−1.
By hypothesis k ≤ d − 4; therefore

x2
+ dx + (d − 4)s ≥ x2

+ dx + ks ≥ φ(A, A+C)≥ 0.

Let δ be the discriminant of the equation x2
+ dx + (d − 4)s = 0:

δ = d2
− 4sd + 16s = (d − 2s)2− 4s(s− 4).

Let y= d−2s. Since C is ACM and s= sC , we have d ≥ 1
2 s(s+1) by Remark 6.2,

hence
y− 2= d − 2s− 2≥ 1

2(s
2
− 3s− 4)≥ 1

2(s
2
− 4s).

In fact, we can have equality only if s = 4 and d = 10, while the hypotheses of the
theorem when s = 4 require d to be at least 11. Thus y− 2> 1

2 s(s− 4) and

δ = y2
− 4s(s− 4) > y2

− 8y+ 16= (y− 4)2.

Thus δ is positive, and the equation has two real roots, one smaller than −d/2, the
other one, say x̄ , larger than −d/2. Since −d/2 < x < 0, we conclude x ≥ x̄ .
Furthermore, unless s = 4 and d = 11, we have y−4≥ 0 under the hypotheses of
the theorem, hence

x̄ =−d
2
+

1
2

√
δ >−

d
2
+

1
2

√
y2− 8y+ 16=−d

2
+

1
2
(y− 4)=−s− 2.

The inequality x̄ >−6 holds also in case s = 4 and d = 11. Thus x ≥−s−1. Then
from x2

≥ φ(A, A) we see that

(s+1)2 ≥ φ(A, A).

If all the ai are zero, then A= cH (this is the case if C is a complete intersection
of X and another surface). Since −s−1≤ x = deg A< 0, we must have A=−H .

If not all the ai are zero, let 1 ≤ i1 < · · · < ih ≤ r be the indices for which
ai 6= 0. Formula (9-3) holds with this new set of indices, and shows that, if all the



308 ROBIN HARTSHORNE AND ENRICO SCHLESINGER

coefficients ai are nonzero, then φ(A, A) attains its minimum when all the ai are
equal to 1. Thus

φ(A, A)≥ φ(D, D),

where D = Di1 + · · ·+ Dih is the support of A.
Now D is ACM with biliaison type λD = λi1 ∪· · ·∪λih by Theorem 7.21. If λD

is not one of the special cases listed in Corollary 8.10, then

φ(D, D)= q(λD) > (s+1)2,

contradicting (s+1)2 ≥ φ(A, A).
Suppose now λD is one of the special cases listed in Corollary 8.10. We still

have φ(A, A) ≥ (s−1)2 because λD is not empty. Before examining the various
cases, let us remark that, if only one of the ai is nonzero, so that

A = aD+ cH

with D irreducible and a 6= 0, then either a = 1 or a =−1. This follows from

a2
=
φ(A, A)
φ(D, D)

≤
(s+1)2

(s−1)2
< 4.

Also note that D is irreducible precisely when λD has no gaps, that is, in all cases
of Corollary 8.10 except when s = 5 or 6 and λ= (1, s−1).

To complete the list of Corollary 8.10, observe from Table 1 that for s = 4 there
are 7 possibilities for λD , because λ 6=∅ and uλ < 4, namely

(1), (2), (3), (1, 2), (1, 3), (2, 3), (1, 2, 3).

Case 1: λD 6= (1), λD 6= (s−1), and, when s = 5 or 6, λD 6= (1, s−1).
Then φ(D, D) > (s−1)2 and λD has no gaps by Corollary 8.10. Thus D is

irreducible, A = aD+ cH with a =±1 and

(s+1)2 ≥ x2
≥ φ(A, A)= a2φ(D, D) > (s−1)2.

Hence x =−s−1 or x =−s.

Case 1a: a = 1, x = −s−1. In this case dD ≡ x ≡ −1 (mod s), and by
Corollary 8.10 we must have s ≤ 5. Furthermore by the last inequality in (9-1)

x2
+ dx + (d − 4)s ≥ 0,

that is
s2
+ 2s+1− sd − d + (d − 4)s ≥ 0

so d ≤ s2
−2s+1. This gives d ≤ 9 if s= 4, and d ≤ 16 if s= 5, while d ≥ 1

2 s(s+1)
because C is an ACM curve sC = s. Thus we must have s = 5, and examining
the list in Corollary 8.10 we find λD = (1, 3) is the only possibility. Then, for
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0 = t H − C , we know λ0 contains λD = (1, 3) in its gap decomposition and
uλ0 < 5. This forces λ0 = λD , hence D = 0 and therefore

d = st − deg(0)≥ 25− 4= 21

a contradiction, so this case does not occur.

Case 1b: a = 1, x =−s. In this case dD ≡ x ≡ 0 (mod s) and s2
= x2
≥ q(λ).

By Corollary 8.10 the only possibility is s = 4 and λD = (1, 3), which forces
D = 0 = t H − C . Furthermore, we must have gon(C) = k = d − 4 for the
inequality x2

+ dx + ks ≥ φ(A, A+C) of (9-1) to hold.
Since x = −4 = deg(D+ cH), we see c = −2. Now pick an effective divisor

C0 ∈ | − A| = |2H − D|. Then C0 is ACM with biliaison type (1, 3), thus C0 is
up to a deformation with constant cohomology an elliptic quartic. By construction
C ∈ |C0+bH | with b= t−2≥ 2. (Note that b= 2 gives (d, g)= (12, 17), which is
in the list of Proposition 6.10(b).) For b≥ 2 the restriction of |C0| to C is |OC(b)|,
and is a g1

d−4 on C that does not arise from a multisecant.

Case 1c: a=−1, x =−s−1 or−s. In this case A=−D+cH , hence, if D= Di ,

φ(A, A)+φ(A,C)=2φ(Di , Di )+
∑
j 6=i
φ(−Di ,−D j )=2qi−bi ≥

3
2qi >

3
2(s−1)2.

Therefore
x2
+ dx + (d − 4)s ≥ 3

2(s−1)2,

which contradicts both x =−s−1 and x =−s, so this case does not occur.

Case 2: λD = (1), so that D is a line L ⊂ X , and A = cH + aL with a =±1. In
this case either 0 = L and λ0 = (1), or λ0 has a gap at the beginning:

λ0 = (1, 4, . . . )

In both cases L = D1 is unique. The proof of Corollary 7.19 shows that the h-
vector of C satisfies hC(e+1)= 3 and hC(e+2)= 2, and that C.L = e+3. Thus
in any case

deg(Z)= gon(C)≤ d − e− 3.

We wish to show that A = L − H and Z = Z(L).
Recall that the degree x of A must satisfy the inequalities −s−1< x < 0 and

x2
≥ a2φ(L , L)= (s−1)2.

We also know x = cs+a with a =±1. Therefore c=−1 and either A=−H − L
or A =−H + L .

Suppose first A =−H − L . Since deg(X)= s ≥ 4,

H 0OX (H + L)∼= H 0OX (H)
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thus every curve B in the linear system |− A| = |H + L| contains the line L . This
contradicts Proposition 5.5, according to which we can find two effective divisors
in |−A|meeting properly. So A=−H−L is impossible. Therefore A=−H+L ,
and Z = Z(L) by Corollary 5.7.

Case 3: λD = (s−1), so that D = H − L is a plane curve of degree s−1, residual
to a line L in a plane section of X . Furthermore, A = cH + aD = (c+ a)H − aL
with a =±1.

In this case D = Dr , thus L is unique, and either 0 = Dr or λ0 has a gap
at the end. The proof of Corollary 7.19 shows that the h-vector of C satisfies
hC(t) = s − 2, hC(t + 1) = s−3 and that L is a (t−s+1)-secant line for C . An
argument analogous to the one of the previous case shows A = −H + L , so that
Z= Z(L).

Case 4: λD = (1, s−1) with s = 5 or 6, hence A = cH + a1L1+ a2 P where L1

is a line, P is a plane curve of degree s−1, and a1 and a2 are nonzero. Note that
φ(L1, P)=−1, therefore

φ(A, A)= (a2
1 + a2

2)(s−1)2− 2a1a2

= (a2
1 + a2

2)(s
2
− 2s)+ (a1− a2)

2
≥ 2(s2

− 2s) > s2.

On the other hand, (s+1)2 ≥ x2
≥ φ(A, A). Therefore we must have x = −s−1

and a2
1 + a2

2 < 3, that is, a1 and a2 can only be 1 or −1.
Then

−s−1= x = cs+ a1+ a2(s−1),

from which we see −1≡ a1−a2 (mod s). This is impossible because a1=±1 and
a2 =±1.

This complete the list of possible cases, and proves the classification of complete
basepoint-free pencils Z of degree at most d − 4, hence the theorem �

Remark 9.3. In the first of the cases excluded in the theorem, namely s = 4 and
(d, g)= (10, 11), we can prove gon(C)= 6= d−4 by the method of [Hartshorne
2002].

Theorem 9.4. Assume the ground field is the complex numbers. Then the conclu-
sions of Theorem 9.1 hold for the general ACM curve C in A(h).

Proof. Since the conclusions of Theorem 9.1 are semicontinuous on A(h) (cf. [Ar-
barello and Cornalba 1981]), it is enough to show the existence of a single curve C
for which the hypotheses of that theorem are satisfied. To check this, let h′ denote
the h-vector of a curve 0 linked by two surfaces of degrees s and t= tC to C ∈ A(h).
Note that h′ may not be of decreasing type, but in any case s0 ≤ e0 + 3 < s by
Lemma 6.5. By Theorem 7.21 a general curve 0 in A(h′) is reduced, its irreducible
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components are ACM, with biliaison type prescribed by λ0; and, since s > e0+3,
there exist smooth surfaces of any degree ≥ s− 1 containing 0.

Now let h2 be the h-vector of a curve C2 linked to 0 by the complete intersection
of two smooth surfaces of degree s−1 and s respectively. The flag Hilbert schemes
parametrizing pairs (0, Y ), where 0 ∈ A(h′) and Y is a complete intersection of
type (s−1, s), is irreducible [Martin-Deschamps and Perrin 1990, VII §3]. Thus a
general 0 in A(h′) can be linked to a general C2 ∈ A(h2). By Lemma 6.5 h2 is of
decreasing type, hence we may assume C2 is smooth, and lies on smooth surfaces
of degree s−1 and s. Since we are working over the complex numbers, we can
use the Noether–Lefschetz type theorem of [Lopez 1991, II 3.1]. We apply this
theorem to C2 with d = s, e = 1, and T a smooth surface of degree s−1 through
C2 to conclude that, if X is a very general surface of degree s containing C2, then
Pic(X) is freely generated by the classes of a plane section H and of the irreducible
components of 0 (here “very general” means, as usual, outside a countable union
of proper subvarieties).

Now on X we can take for C a general curve in the linear system

|C2+ (t − s+ 1)H | = |t H −0|.

The hypotheses of Theorem 9.1 are then satisfied for the smooth surface X and the
curve C .

One can simplify the argument using a more recent result [Brevik and Nollet
2008, Theorem 1.1], which allows one to work directly with 0 rather than C2. �
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