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We establish universal inequalities for the eigenvalues of the clamped plate
problem on compact submanifolds of Euclidean space, of spheres and of
real, complex and quaternionic projective spaces. We prove similar results
for the biharmonic operator on domains of Riemannian manifolds that ad-
mit spherical eigenmaps (this includes compact homogeneous Riemannian
spaces) and finally on domains of hyperbolic space.

1. Introduction

Let (M, g) be a Riemannian manifold of dimension n and let 1 be the Laplacian
operator on M .

We will be concerned with the following eigenvalue problem for the Dirichlet
biharmonic operator, called the clamped plate problem:

(1-1)

{
12u = λu in �,

u = ∂u
∂ν
= 0 on ∂�,

where � is a bounded domain in M , 12 is the biharmonic operator in M and ν
is the outward unit normal. It is well known that the eigenvalues of this problem
form a countable family 0< λ1 ≤ λ2 ≤ · · · →+∞.

For the case when M = Rn , Payne, Pólya and Weinberger [1956] established
the following inequality, for each k ≥ 1:

λk+1− λk ≤
8(n+2)

n2k

k∑
i=1

λi .
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Implicit in [Payne et al. 1956], as noticed by Ashbaugh [1999], is the better in-
equality

(1-2) λk+1− λk ≤
8(n+2)

n2k2

( k∑
i=1

λ
1/2
i

)2

.

Later, Hile and Yeh [1984] extended ideas from earlier work on the Laplacian by
Hile and Protter [1980] and proved the better bound

n2k3/2

8(n+2)
≤

( k∑
i=1

λ
1/2
i

λk+1− λi

)( k∑
i=1

λi

)1/2

.

Implicit in their work is the stronger inequality

n2k2

8(n+2)
≤

( k∑
i=1

λ
1/2
i

λk+1− λi

)( k∑
i=1

λ
1/2
i

)
,

which was proved independently by Hook [1990] and Chen and Qian [1990]; see
also [Chen and Qian 1993a; 1993b; 1994].

Cheng and Yang [2006] obtained the bound

(1-3)
k∑

i=1

(λk+1− λi )≤
(8(n+2)

n2

)1/2 k∑
i=1

(
λi (λk+1− λi )

)1/2
.

Very recently, Cheng, Ichikawa and Mametsuka [2009b] obtained an inequality for
eigenvalues of Laplacian with any order l on a bounded domain in Rn . In particular,
they showed that for l = 2,

(1-4)
k∑

i=1

(λk+1− λi )
2
≤

8(n+2)
n2

k∑
i=1

(λk+1− λi )λi .

For the case when M = Sn , Wang and Xia [2007] showed that

(1-5)
k∑

i=1

(λk+1− λi )
2
≤

1
n

( k∑
i=1

(λk+1− λi )
2(n2
+ (2n+ 4)λ1/2

i

))1/2

×

( k∑
i=1

(λk+1− λi ) (n2
+ 4λ1/2

i )

)1/2

,

from which they deduced, using a variant of Chebyshev’s inequality,

(1-6)
k∑

i=1

(λk+1− λi )
2
≤

1
n2

k∑
i=1

(λk+1− λi )
(
2(n+ 2)λ1/2

i + n2)(4λ1/2
i + n2).
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This last inequality was also obtained by a different method by Cheng, Ichikawa
and Mametsuka [2009a].

On the other hand, Wang and Xia [2007] also considered the problem (1-1) on
domains of an n-dimensional complete minimal submanifold M of Rm and proved

(1-7)
k∑

i=1

(λk+1− λi )
2

≤

(8(n+2)
n2

)1/2
( k∑

i=1

(λk+1− λi )
2λ

1/2
i

)1/2( k∑
i=1

(λk+1− λi )λ
1/2
i

)1/2

,

from which they deduced the following generalization of inequality (1-4) to mini-
mal Euclidean submanifolds:

(1-8)
k∑

i=1

(λk+1− λi )
2
≤

8(n+2)
n2

k∑
i=1

(λk+1− λi )λi .

Recently, Cheng, Ichikawa and Mametsuka [2010] extended this last inequality to
any complete Riemannian submanifold M in Rm and showed

(1-9)
k∑

i=1

(λk+1− λi )
2
≤

1
n2

k∑
i=1

(λk+1− λi )
(
n2δ+ 2(n+ 2)λ1/2

i

)
(n2δ+ 4λ1/2

i ),

with
δ = sup� |H |

2,

where H is the mean curvature of M .
The goal of Section 2 of this article is to study the relation between eigenvalues

of the biharmonic operator and the local geometry of Euclidean submanifolds M
of arbitrary codimension. The approach is based on an algebraic formula (see
Theorem 2.3) we proved in [Ilias and Makhoul 2010]. This approach is useful for
the unification and for the generalization of all the results in the literature. In fact,
using this general algebraic inequality, we obtain (see Theorem 2.4) the inequality

(1-10)
k∑

i=1

f (λi )≤
1
n

( k∑
i=1

g(λi )
(
2(n+ 2)λ1/2

i + n2δ
))1/2

×

( k∑
i=1

( f (λi ))
2

g(λi )(λk+1− λi )
(4λ1/2

i + n2δ)

)1/2

,

where f and g are two functions satisfying some functional conditions (see Defi-
nition 2.1), δ = sup� |H |

2 and H is the mean curvature of M . The family of such
pairs of functions is large. And particular choices for f and g lead to the known
results. For instance, if we take f (x)= g(x)= (λk+1− x)2, then (1-10) becomes
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(1-11)
k∑

i=1

(λk+1− λi )
2
≤

1
n

( k∑
i=1

(λk+1− λi )
2(2(n+ 2)λ1/2

i + n2δ
))1/2

×

( k∑
i=1

(λk+1− λi )(4λ
1/2
i + n2δ)

)1/2

,

which gives easily (see Remark 2.2) inequality (1-9) of Cheng, Ichikawa and
Mametsuka [2010].

In Section 3 we consider the case of manifolds admitting spherical eigenmaps
and obtain similar results. As a consequence, we obtain universal inequalities for
the clamped plate problem on domains of any compact homogeneous Riemannian
manifold.

In Section 4, we show how one can easily obtain, from the algebraic techniques
used in the previous sections, universal inequalities for eigenvalues of (1-1) on
domains of hyperbolic space Hn .

All our results hold if we add a potential to 12 (that is, 12
+ q where q is a

smooth potential). For instance, in this case instead of inequality (1-10), we obtain

(1-12)
k∑

i=1

f (λi )≤
1
n

( k∑
i=1

g(λi )
(
2(n+ 2)λ1/2

i + n2δ
))1/2

×

( k∑
i=1

( f (λi ))
2

g(λi )(λk+1− λi )
(4λ1/2

i + n2δ)

)1/2

,

where λi = λi − inf� q .
Finally, the case of the clamped problem with weight

(1-13)

{
12u = λ ρ u in �,

u = ∂u
∂ν
= 0 on ∂�,

can be easily treated with minor changes.

2. Euclidean submanifolds

Before stating the main result of this section, we introduce a family of pairs of
functions and a theorem obtained in [Ilias and Makhoul 2010], which will play an
essential role in the proofs of all our results.

Definition 2.1. Let λ ∈ R. A pair ( f, g) of functions defined on ]−∞, λ[ belongs
to =λ if f and g are positive and, for any distinct x, y ∈ ]−∞, λ[,

(2-1)
( f (x)− f (y)

x−y

)2
+

( (
f (x)

)2

g(x)(λ−x)
+

(
f (y)

)2

g(y)(λ−y)

)(g(x)−g(y)
x−y

)
≤ 0.



UNIVERSAL INEQUALITIES FOR EIGENVALUES OF THE BIHARMONIC OPERATOR 319

Remark 2.2. This definition of the family =λ differs slightly from that given in
[Ilias and Makhoul 2010], but all the results there are still valid.

A direct consequence of our definition is that g must be nonincreasing.
If we multiply f and g of =λ by positive constants, the resulting functions are

also in =λ. In the case where f and g are differentiable, one can easily deduce
from (2-1) the necessary condition(

(ln f (x))′
)2
≤
−2
λ−x

(ln g(x))′.

This last condition helps us to find many pairs ( f, g) satisfying the conditions of
Definition 2.1, for example,

{(1, (λ− x)α) | α ≥ 0},

{((λ− x), (λ− x)β) | β ≥ 1
2},

{((λ− x)δ, (λ− x)δ) | 0< δ ≤ 2}.

Let H be a complex Hilbert space with scalar product 〈 · , · 〉 and corresponding
norm ‖·‖. For any two operators A and B, we denote by [A, B] their commutator,
defined by [A, B] = AB− B A.

Theorem 2.3. Let A : D ⊂ H→ H be a self-adjoint operator defined on a dense
domain D, which is semibounded below and has a discrete spectrum

λ1 ≤ λ2 ≤ λ3 ≤ · · · .

Let
{Tp : D→H}np=1

be a collection of skew-symmetric operators and

{Bp : Tp(D)→H}np=1

a collection of symmetric operators, leaving D invariant. Denote by

{ui }
∞

i=1

a basis of orthonormal eigenvectors of A, ui corresponding to λi . Let k ≥ 1 and
assume that λk+1 > λk . Then, for any ( f, g) in =λk+1

(2-2)
( k∑

i=1

n∑
p=1

f (λi )
〈
[Tp, Bp]ui , ui

〉)2

≤ 4
( k∑

i=1

n∑
p=1

g(λi )
〈
[A, Bp]ui , Bpui

〉)
×

( k∑
i=1

n∑
p=1

( f (λi ))
2

g(λi )(λk+1− λi )
‖Tpui‖

2
)
.
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Our first result is the following application of this inequality to the eigenvalues
of the clamped plate problem (1-1) on a domain of a Euclidean submanifold:

Theorem 2.4. Let X : M → Rm be an isometric immersion of an n-dimensional
Riemannian manifold M in Rm . Let � be a bounded domain of M and consider
the clamped plate problem (1-1) on�. Then for any k ≥ 1 such that λk+1 >λk and
for any ( f, g) in =λk+1 , we have

(2-3)
k∑

i=1

f (λi )≤
2
n

( k∑
i=1

g(λi )
(
2(n+ 2)λ1/2

i + n2δ
))1/2

×

( k∑
i=1

( f (λi ))
2

g(λi )(λk+1− λi )

(
λ

1/2
i +

n2

4
δ

))1/2

,

where δ= sup� |H |
2 and H be the mean curvature vector field of the immersion X

(that is, which is given by 1
n trace h, where h is the second fundamental form of X ).

Proof. We apply inequality (2-2) of Theorem 2.3 with A=12, Bp = X p and Tp =

[1, X p], p = 1, . . . ,m, where X1, . . . , Xm are the components of the immersion
X . This gives

(2-4)
( k∑

i=1

m∑
p=1

f (λi )
〈[
[1, X p], X p

]
ui , ui

〉
L2

)2

≤ 4
( k∑

i=1

m∑
p=1

g(λi )
〈
[12, X p]ui , X pui

〉
L2

)
×

( k∑
i=1

m∑
p=1

( f (λi ))
2

g(λi )(λk+1− λi )
‖[1, X p]ui‖

2
L2

)
,

where ui are the L2-normalized eigenfunctions. First we have, for p = 1, . . . ,m,

[12,X p]ui =1
2 X pui+2∇1X p.∇ui+21(∇X p ·∇ui )+21X p1ui+2∇X p.∇1ui .

Thus

〈 [12, X p]ui , X pui 〉L2

=

∫
�

u2
i X p1

2 X p + 2
∫
�

X pui∇1X p.∇ui + 2
∫
�

X pui1(∇X p · ∇ui )

+ 2
∫
�

X pui1X p1ui + 2
∫
�

X pui∇X p.∇1ui

=

∫
�

1X p1(X pu2
i )− 2

∫
�

div(X pui∇ui )1X p + 2
∫
�

1(X pui )∇X p · ∇ui

+ 2
∫
�

X p1X pui1ui − 2
∫
�

div(X pui∇X p)1ui .
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A straightforward calculation gives

(2-5) 〈 [12, X p]ui , X pui 〉L2 = 4
∫
�

ui1X p∇X p · ∇ui +

∫
�

(1X p)
2u2

i

+ 4
∫
�

(∇X p · ∇ui )
2
− 2

∫
�

|∇X p|
2ui1ui .

Since X is an isometric immersion, we have

(2-6) nH = (1X1, . . . ,1Xm)

and

(2-7)
m∑

p=1

ui1X p∇X p · ∇ui = 0,
m∑

p=1

(∇X p · ∇ui )
2
= |∇ui |

2.

Incorporating these identities in (2-5) and summing on p from 1 to m, we obtain

m∑
p=1

〈 [12, X p]ui , X pui 〉L2 = 4
∫
�

|∇ui |
2
− 2n

∫
�

ui1ui + n2
∫
�

|H |2u2
i

= 2(n+ 2)
∫
�

ui (−1ui )+ n2
∫
�

|H |2u2
i

≤ 2(n+2)
(∫

�

(−1ui )
2
)1/2(∫

�

u2
i

)1/2

+ n2
∫
�

|H |2u2
i(2-8)

= 2(n+ 2)λ1/2
i + n2

∫
�

|H |2u2
i

≤ 2(n+ 2)λ1/2
i + n2δ,(2-9)

where the Cauchy–Schwarz inequality gave (2-8) and where δ = sup� |H |
2.

On the other hand, we have

[1, X p]ui = 2∇X p · ∇ui + ui1X p.

Then
m∑

p=1

‖[1, X p]ui‖
2
L2 =

m∑
p=1

∫
�

(2∇X p · ∇ui + ui1X p)
2

= 4
m∑

p=1

∫
�

(∇X p · ∇ui )
2
+ 4

m∑
p=1

∫
�

ui1X p∇X p · ∇ui

+

m∑
p=1

∫
�

(1X p)
2u2

i .
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Using the identities (2-6) and (2-7), we obtain

(2-10)
m∑

p=1

‖[1, X p]ui‖
2
L2 = 4

∫
�

|∇ui |
2
+ n2

∫
�

|H |2u2
i

= 4
∫
�

(−1ui ) · ui + n2
∫
�

|H |2u2
i

≤ 4
(∫

�

(−1ui )
2
)1/2(∫

�

u2
i

)1/2

+ n2δ

= 4λ1/2
i + n2δ.

A direct calculation gives〈
[[1, X p], X p]ui , ui

〉
L2 =

∫
�

(
1(X2

pui )− 2X p1(X pui )+ X2
p1ui

)
ui

= 2
∫
�

|∇X p|
2u2

i .

Therefore

(2-11)
m∑

p=1

〈
[[1, X p], X p]ui , ui

〉
L2 = 2

m∑
p=1

∫
�

|∇X p|
2u2

i = 2n.

To conclude, we simply use the estimates (2-9), (2-10) and (2-11) together with
inequality (2-4). �

Remarks 2.5. • As indicated in the end of the introduction, Theorem 2.4 holds
for a general operator 12

+ q, where q is a smooth potential. Indeed, this is an
immediate consequence of the fact that [12

+ q, X p] = [1
2, X p] and the entire

proof of Theorem 2.4 works in this situation. The only modification is in the
estimation of the term

∫
�
|∇ui |

2. In this case, letting λi = λi − inf� q , we have∫
�

|∇ui |
2
≤

(∫
�

(−1ui )
2
)1/2(∫

�

u2
i

)1/2

=

(
λi −

∫
�

qu2
i

)1/2

≤ (λi )
1/2.

Taking into account this modification in inequalities (2-8) and (2-10), we obtain
inequality (1-12).

• If f (x) = g(x) = (λk+1 − x)2, then inequality (2-3) extends inequality (1-7)
of Wang and Xia [2007] to any Riemannian submanifolds of Rm . By using a
Chebyshev inequality (for instance the one of [Cheng et al. 2009b, Lemma 1]),
inequality (1-9) of Cheng, Ichikawa and Mametsuka [2010] can be easily deduced
from inequality (2-3).

• If f (x)= g(x)2 = (λk+1− x), then inequality (2-3) generalizes inequality (1-3)
of Cheng and Yang [2006] to the case of Euclidean submanifolds.
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Using the standard embeddings of the rank one compact symmetric spaces in
a Euclidean space (see for instance [El Soufi et al. 2009, Lemma 3.1] for the val-
ues of |H |2 of these embeddings), we can extend easily the previous theorem to
domains or submanifolds of these symmetric spaces and obtain:

Theorem 2.6. Let M be the sphere Sm , the real projective space RPm , the com-
plex projective space CPm or the quaternionic projective space QPm endowed
with their respective metrics. Let (M, g) be a compact Riemannian manifold of
dimension n and let X : M→ M be an isometric immersion of mean curvature H.
Consider the clamped plate problem on a bounded domain � of M. For any k ≥ 1
such that λk+1 > λk and for any ( f, g) ∈ =λk+1 , we have

(2-12)
k∑

i=1

f (λi )≤
2
n

( k∑
i=1

g(λi )
(
2(n+ 2)λ1/2

i + n2δ′
))1/2

×

( k∑
i=1

( f (λi ))
2

g(λi )(λk+1− λi )

(
λ

1/2
i +

n2

4
δ′
))1/2

,

where

δ′ = sup(|H |2+ d(n)), where d(n)=


1 if M = Sm,

2(n+1)/n if M = RPm,

2(n+2)/n if M = CPm,

2(n+4)/n if M =QPm .

Remarks 2.7. • As in [El Soufi et al. 2009, Remark 3.2], in some special geomet-
rical situations, the constant d(n) in the inequality of Theorem 2.6 can be replaced
by a sharper one. For instance, when M = CPm and

– M is odd-dimensional, then d(n) can be replaced by d ′(n)=(2/n)(n+2−1/n),

– X (M) is totally real, then d(n) can be replaced by d ′(n)= 2(n+ 1)/n.

• When f (x) = g(x) = (λk+1 − x)2, and M is a sphere, (2-12) generalizes to
submanifolds inequality (1-5) established by Wang and Xia for spherical domains.

• As for Theorem 2.4, the result of Theorem 2.6 holds for a more general operator
12
+ q , with the same modification (that is, λ1/2

i instead of λ1/2
i ).

3. Manifolds admitting spherical eigenmaps

In this section, as before, we let (M, g) be a Riemannian manifold and � be a
bounded domain of M . A map X : (M, g)→Sm−1 is called an eigenmap if its com-
ponents X1, X2, . . . , Xm are all eigenfunctions associated to the same eigenvalue λ
of the Laplacian of (M, g). This is equivalent to say that the map X is a harmonic
map from (M, g) into Sm−1 with constant energy λ (that is,

∑m
p=1 |∇X p|

2
= λ).

The most important examples of such manifolds M are the compact homogeneous
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Riemannian manifolds. In fact, they admit eigenmaps for all the positive eigenval-
ues of their Laplacian; see [Li 1980].

Theorem 3.1. Let λ be an eigenvalue of the Laplacian of (M, g) and suppose that
(M, g) admits an eigenmap X associated to this eigenvalue λ. Let� be a bounded
domain of M and consider the clamped plate problem (1-1) on �. For any k ≥ 1
such that λk+1 > λk and for any ( f, g) ∈ =λk+1 , we have

(3-1)
k∑

i=1

f (λi )

≤

( k∑
i=1

g(λi )(λ+ 6λ1/2
i )

)1/2( k∑
i=1

( f (λi ))
2

g(λi )(λk+1− λi )
(λ+ 4λ1/2

i )

)1/2

.

Proof. As in the proof of Theorem 2.4, we apply Theorem 2.3 with A = 12,
Bp = X p and Tp = [1, X p], p = 1, . . . ,m, to obtain

(3-2)
( k∑

i=1

m∑
p=1

f (λi )〈 [[1, X p], X p]ui , ui 〉L2

)2

≤ 4
( k∑

i=1

m∑
p=1

g(λi )〈 [1
2, X p]ui , X pui 〉L2

)
×

( k∑
i=1

m∑
p=1

( f (λi ))
2

g(λi )(λk+1− λi )
‖[1, X p]ui‖

2
L2

)
,

where {ui }
∞

i=1 is a complete L2-orthonormal basis of eigenfunctions of 12 associ-
ated to {λi }

∞

i=1. As in (2-11), and using the equality

m∑
p=1

|∇X p|
2
= λ,

we have

(3-3)
m∑

p=1

〈
[[1, X p], X p]ui , ui

〉
L2 = 2

m∑
p=1

∫
�

|∇X p|
2u2

i = 2λ.

We further have
m∑

p=1

‖[1, X p]ui‖
2
L2

=

m∑
p=1

∫
�

(
[1, X p]ui

)2

= 4
∫
�

m∑
p=1

(∇X p · ∇ui )
2
+

∫
�

m∑
p=1

(1X p)
2u2

i + 4
∫
�

m∑
p=1

ui1X p∇X p · ∇ui
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Applying Cauchy–Schwarz and the equalities

m∑
p=1

X2
p = 1 and X p =−λX p,

we then obtain
m∑

p=1

‖[1, X p]ui‖
2
L2

≤ 4
∫
�

m∑
p=1

|∇X p|
2
|∇ui |

2
+ λ2

∫
�

( m∑
p=1

X2
p

)
u2

i − 2λ
∫
�

ui∇

( m∑
p=1

X2
p

)
·∇ui

= 4λ
∫
�

(−1ui )ui + λ
2
≤ 4λ

(∫
�

(−1ui )
2
)1/2(∫

�

u2
i

)1/2

+ λ2

= 4λλ1/2
i + λ

2.

Similarly, we infer from (2-5) that

m∑
p=1

〈 [12, X p]ui , X pui 〉L2

= λ2
∫
�

u2
i − λ

∫
�

∇

( m∑
p=1

X2
p

)
·∇u2

i + 4
m∑

p=1

∫
�

(∇X p · ∇ui )
2
+ 2λ

∫
�

(−1ui )ui

≤ λ2
+ 4

∫
�

m∑
p=1

|∇X p|
2
|∇ui |

2
+ 2λ

(∫
�

(−1u)2
)1/2(∫

�

u2
i

)1/2

≤ λ2
+ 4λλ1/2

i + 2λλ1/2
i

= λ2
+ 6λλ1/2

i .

Incorporating these two bounds, together with (3-3), in inequality (3-2) gives the
theorem. �

Corollary 3.2. Let (M, g) be a compact homogeneous Riemannian manifold with-
out boundary and let λ1 be the first nonzero eigenvalue of its Laplacian. Then the
inequality (3-1) of Theorem 3.1 holds with λ= λ1.

Remark 3.3. As before, one can get a similar result for the operator 12
+ q .

4. Domains in hyperbolic space

We turn next to the case of a domain� of hyperbolic space. It is easy to establish a
universal inequality for eigenvalues of the clamped plate problem (1-1) on� in the
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vein of the preceding ones. Unfortunately, until now we have not succeeded in ob-
taining a simple generalization for the case of domains of hyperbolic submanifolds.
In what follows, we take the half-space model for Hn , that is,

Hn
= {x = (x1, x2, . . . , xn) ∈ Rn

: xn > 0}

with the standard metric

ds2
=

dx2
1 + dx2

2 + · · ·+ dx2
n

x2
n

.

In terms of the coordinates (xi )
n
i=1, the Laplacian of Hn is given by

1= x2
n

n∑
j=1

∂2

∂x j∂x j
+ (2− n)xn

∂

∂xn
.

Theorem 4.1. For any k≥1 such that λk+1>λk , the eigenvalues λi of the clamped
problem (1-1) on the bounded domain � of Hn must satisfy for any ( f, g) ∈ =λk+1 ,

(4-1)
k∑

i=1

f (λi )≤

( k∑
i=1

g(λi )(6λ
1/2
i − (n− 1)2)

)1/2

×

( k∑
i=1

(
( f (λi ))

2

g(λi )(λk+1− λi )

)
(4λ1/2

i − (n− 1)2)
)1/2

.

Proof. Theorem 2.3 remains valid for A =12, Bp = F = ln xn and Tp = [1, F],
for all p = 1, . . . , n. Thus, denoting by ui the eigenfunction corresponding to λi ,
we have

(4-2)
( k∑

i=1

f (λi )
〈
[[1, F], F]ui , ui

〉
L2

)2

≤ 4
( k∑

i=1

g(λi )〈 [1
2, F]ui , Fui 〉L2

)
×

( k∑
i=1

(
( f (λi ))

2

g(λi )(λk+1− λi )

)
‖[1, F]ui‖

2
L2

)
.

We start with the calculation of〈
[[1, F], F]ui , ui

〉
L2 =

∫
�

(
[1, F](Fui )− F[1, F]ui

)
ui

=

∫
�

(
1(F2ui )− 2F1(Fui )+ F21ui

)
ui .

Note that

(4-3) 1F = 1− n and |∇F |2 = 1.
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Thus a direct calculation gives

(4-4)
〈
[[1, F], F]ui , ui

〉
L2 = 2

∫
�

|∇F |2u2
i = 2.

On the other hand, using again the identities of (4-3), we obtain

(4-5) ‖[1, F]ui‖
2
L2 =

∫
�

(1Fui + 2∇F · ∇ui )
2

=

∫
�

(1F)2u2
i + 4

∫
�

(∇F · ∇ui )
2
+ 4

∫
�

1Fui∇F · ∇ui

= (1− n)2+ 4
∫
�

(∇F · ∇ui )
2
+ 4(1− n)

∫
�

ui∇F · ∇ui .

But ∫
�

ui∇F · ∇ui =−

∫
�

ui∇F · ∇ui −

∫
�

u2
i1F,

hence

(4-6)
∫
�

ui∇F · ∇ui =
n−1

2
.

Then we infer from (4-3), (4-5) and (4-6) that

(4-7) ‖[1, F]ui‖
2
L2 ≤−(n− 1)2+ 4

∫
�

|∇F |2 |∇ui |
2

=−(n− 1)2+ 4
∫
�

|∇ui |
2
=−(n− 1)2+ 4

∫
�

ui (−1ui )

≤−(n− 1)2+ 4
(∫

�

u2
i

)1/2(∫
�

(−1ui )
2
)1/2

= 4λ1/2
i − (n− 1)2.

Now,

(4-8) [12,F]ui =1
2(Fui )−F12ui =1(1Fui+2∇F ·∇ui+F1ui )−F12ui

= 2(1−n)1ui+21(∇F ·∇ui )+2∇F ·∇1ui ;

thus

〈 [12, F]ui , Fui 〉L2

= 2(1− n)
∫
�

Fui1ui + 2
∫
�

Fui1(∇F · ∇ui )+ 2
∫
�

Fui∇F · ∇1ui

= 2(1− n)
∫
�

Fui1ui + 2
∫
�

1(Fui )∇F · ∇ui − 2
∫
�

div(Fui∇F)1ui

= 2
∫
�

1Fui∇F · ∇ui + 4
∫
�

(∇F · ∇ui )
2
− 2

∫
�

|∇F |2ui1ui .
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We infer from (4-3) and (4-6) that

(4-9) 〈 [12, F]ui , Fui 〉L2 ≤−(n− 1)2+ 4
∫
�

|∇F |2 |∇ui |
2
+ 2

∫
�

ui (−1ui )

=−(n− 1)2+ 6
∫
�

ui (−1ui )

≤ 6
(∫

�

u2
i

)1/2(∫
�

(−1ui )
2
)1/2

− (n− 1)2

= 6λ1/2
i − (n− 1)2.

Inequality (4-2) along with (4-4), (4-7) and (4-9) gives the theorem. �

Remarks 4.2. • It will be interesting to look for an extension of Theorem 4.1 to
domains of hyperbolic submanifolds.

• Our method works for any bounded domain � of a Riemannian manifold admit-
ting a function such that |∇h| is constant and |1h| ≤ C , where C is a constant.

• As before, we have the same statement as in Theorem 4.1 for the operator12
+q;

it suffices to replace λ1/2
i by λ1/2

i .
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