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The original Fujita approximation theorem states that the volume of a big
divisor D on a projective variety X can always be approximated arbitrarily
closely by the self-intersection number of an ample divisor on a birational
modification of X . One can also formulate it in terms of graded linear series
as follows: Let W• = {Wk} be the complete graded linear series associated
to a big divisor D, where

Wk = H0(X, OX(k D)).

For each fixed positive integer p, define W ( p)
• to be the graded linear sub-

series of W• generated by Wp:

W ( p)
m =

{
0 if p - m,
Image(SkWp→Wkp) if m = kp.

Then the volume of W ( p)
• approaches the volume of W• as p→∞. We will

show that, under this formulation, the Fujita approximation theorem can
be generalized to the case of multigraded linear series.

1. Introduction

Let X be an irreducible variety of dimension d over an algebraically closed field K ,
and let D be a (Cartier) divisor on X . When X is projective, the following limit,
which measures how fast the dimension of the section space H 0(X,OX (m D))
grows, is called the volume of D:

vol(D)= volX (D)= lim
m→∞

h0(X,OX (m D))
md/d!

.

One says that D is big if vol(D) > 0. It turns out that the volume is an interesting
numerical invariant of a big divisor [Lazarsfeld 2004a, Section 2.2.C], and it plays
a key role in several recent works in birational geometry [Tsuji 2000; Boucksom
et al. 2004; Hacon and McKernan 2006; Takayama 2006].
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When D is ample, one can show that vol(D)= Dd , the self-intersection number
of D. This is no longer true for a general big divisor D, since Dd may even be
negative. However, Fujita [1994] showed that the volume of a big divisor can
always be approximated arbitrarily closely by the self-intersection number of an
ample divisor on a birational modification of X . This theorem, known as Fujita
approximation, has several implications for the properties of volumes, and is also a
crucial ingredient in [Boucksom et al. 2004] (see [Lazarsfeld 2004b, Section 11.4]
for more details).

Lazarsfeld and Mustaţǎ [2009] (henceforth [LM]) recently obtained, among
other things, a generalization of Fujita approximation to graded linear series. Re-
call that a graded linear series W•={Wk} on a (not necessarily projective) variety X
associated to a divisor D consists of finite dimensional vector subspaces

Wk ⊆ H 0(X,OX (k D))

for each k ≥ 0, with W0 = K , such that

Wk ·W` ⊆ Wk+`

for all k, `≥0. Here the product on the left denotes the image of Wk⊗W` under the
multiplication map H 0(X,OX (k D))⊗ H 0(X,OX (`D))→ H 0(X,OX ((k+ `)D)).
In order to state the Fujita approximation for W•, they defined, for each fixed
positive integer p, a graded linear series W (p)

•
which is the subgraded linear series

of W• generated by Wp:

W (p)
m =

{
0 if p - m,

Im(Sk Wp→Wkp) if m = kp.

Then under mild hypotheses, they showed that the volume of W (p)
•

approaches the
volume of W• as p→∞. See [LM, Theorem 3.5] for the precise statement, as
well as [LM, Remark 3.4] for how this is equivalent to the original statement of
Fujita when X is projective and W• is the complete graded linear series associated
to a big divisor D (that is, Wk = H 0(X,OX (k D)) for all k ≥ 0).

The goal of this note is to generalize the Fujita approximation theorem to multi-
graded linear series. We will adopt the following notation from [LM, Section 4.3]:
Let D1, . . . , Dr be divisors on X . For Em = (m1, . . . ,mr ) ∈ Nr , write Em D =∑

mi Di , and put | Em| =
∑
|mi |.

Definition. A multigraded linear series W
E•

on X associated to the Di consists of
finite-dimensional vector subspaces

WEk ⊆ H 0(X,OX (Ek D))
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for each Ek ∈ Nr , with WE0 = K , such that

WEk ·W Em ⊆ WEk+ Em,

where the multiplication on the left denotes the image of WEk⊗W Em under the natural
map

H 0(X,OX (Ek D))⊗ H 0(X,OX ( Em D))→ H 0(X,OX ((Ek+ Em)D)).

Given Ea ∈ Nr , denote by WEa,• the singly graded linear series associated to the
divisor EaD given by the subspaces WkEa ⊆ H 0(X,OX (kEaD)). Then put

volWE•(Ea) = vol(WEa,•)

(assuming that this quantity is finite). It will also be convenient for us to consider
WEa,• when Ea ∈Qr

≥0, given by

WEa,k =
{

WkEa if kEa ∈ Nr ,
0 otherwise.

Our multigraded Fujita approximation, similar to the singly graded version, is
going to state that (under suitable conditions) the volume of W

E•
can be approx-

imated by the volume of the following finitely generated submultigraded linear
series of W

E•
:

Definition. Given a multigraded linear series W
E•

and a positive integer p, de-
fine W (p)

E•
to be the submultigraded linear series of W

E•
generated by all W Emi with

| Emi | = p, or concretely,

W (p)
Em =


0 if p - | Em|,∑
| Emi |=p

Em1+···+ Emk= Em

W Em1 · · ·W Emk if | Em| = kp.

We now state our multigraded Fujita approximation when W
E•

is a complete
multigraded linear series, since this is the case of most interest and allows for a
more streamlined statement. The Remark on page 335 points out what assumptions
on W

E•
are actually needed in the proof.

Theorem. Let X be an irreducible projective variety of dimension d , and let D1,
D2, . . . , Dr be big divisors on X. Let W

E•
be the complete multigraded linear series

associated to the Di , namely

W Em = H 0(X,OX ( Em D))
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for each Em ∈ Nr . Then given any ε > 0, there exists an integer p0 = p0(ε) having
the property that if p ≥ p0, then

(1)

∣∣∣∣∣1− volW (p)
E•
(Ea)

volWE•(Ea)

∣∣∣∣∣< ε
for all Ea ∈ Nr .

2. Proof of the Theorem

The main tool in our proof is the theory of Okounkov bodies developed system-
atically in [Lazarsfeld and Mustat,ă 2009]. Given a graded linear series W• on a
d-dimensional variety X , its Okounkov body 1(W•) is a convex body in Rd that
encodes many asymptotic invariants of W•, the most prominent one being the vol-
ume of W•, which is precisely d! times the Euclidean volume of 1(W•). The idea
first appeared in Okounkov’s papers [1996; 2003] in the case of complete linear
series of ample line bundles on a projective variety. Later it was further developed
and applied to much more general graded linear series by Lazarsfeld and Mustaţǎ
[2009] and also independently by Kaveh and Khovanskii [2008; 2009].

Proof of the Theorem. Let T = {(a1, . . . , ar ) ∈ Rr
≥0 | a1 + · · · + ar = 1}, and let

TQ be the set of all points in T with rational coordinates. The fraction inside (1)
is invariant under scaling of Ea due to homogeneity, hence it is enough to prove (1)
for Ea ∈ TQ.

Let 1(W
E•
) ⊆ Rd

× Rr be the global Okounkov cone of W
E•

as in [LM, Theo-
rem 4.19], and let π : 1(W

E•
)→ Rr be the projection map. For each Ea ∈ T , write

1(W
E•
)
Ea for the fiber π−1(Ea). Define in a similar fashion the convex cone1(W (p)

E•
)

and the convex bodies 1(W (p)
E•
)
Ea . By [LM, Theorem 4.19],

(2) 1(W
E•
)
Ea =1(WEa,•) for all Ea ∈ TQ.

Although [LM, Theorem 4.19] requires Ea to be in the relative interior of T , here
we know that (2) holds even for those Ea in the boundary of T because the big cone
of X is open and W

E•
was assumed to be the complete multigraded linear series. By

the singly graded Fujita approximation, vol(WEa,•) can be approximated arbitrarily
closely by vol(W (p)

Ea,• ) if p is sufficiently large. (Here by W (p)
Ea,• we mean W (p)

E•

restricted to the Ea direction, which certainly contains (WEa,•)(p).) Hence given any
finite subset S ⊂ TQ and any ε′ > 0, we have

vol(1(W (p)
E•
)
Ea)≥ vol(1(W

E•
)
Ea)− ε

′ for all Ea ∈ S

as soon as p is sufficiently large.
Because the function Ea 7→ vol(1(W

E•
)
Ea) is uniformly continuous on T , given

any ε′ > 0, we can partition T into a union of polytopes with disjoint interiors
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T =
⋃

Ti , in such a way that the vertices of each Ti all have rational coordinates,
and on each Ti we have a constant Mi such that

(3) Mi ≤ vol(1(W
E•
)
Ea)≤ Mi + ε

′ for all Ea ∈ Ti .

Let S be the set of vertices of all the Ti . Then as we saw in the end of the previous
paragraph, as soon as p is sufficiently large we have

(4) vol(1(W (p)
E•
)
Ea)≥ vol(1(W

E•
)
Ea)− ε

′ for all Ea ∈ S.

We claim that this implies

(5) vol(1(W (p)
E•
)
Ea)≥ vol(1(W

E•
)
Ea)− 2ε′ for all Ea ∈ TQ.

To show this, it suffices to verify it on each of the Ti . Let Ev1, . . . , Evk be the vertices
of Ti . Then each Ea ∈ Ti can be written as a convex combination of the vertices:
Ea =

∑
t j Ev j where each t j ≥ 0 and

∑
t j = 1. Since 1(W (p)

E•
) is convex, we have

1(W (p)
E•
)
Ea ⊇

∑
t j 1(W (p)

E•
)
Ev j
,

where the sum on the right means the Minkowski sum. By (3) and (4), the volume
of each 1(W (p)

E•
)
Ev j

is at least Mi − ε
′, hence by the Brunn–Minkowski inequality

[Kaveh and Khovanskii 2008, Theorem 5.4], we have

vol(1(W (p)
E•
)
Ea)≥ Mi − ε

′ for all Ea ∈ Ti ∩ TQ.

This combined with (3) shows that (5) is true on Ti ∩ TQ, hence it is true on TQ

since the Ti cover T .
Since (1) follows from (5) by choosing a suitable ε′, the proof is complete. �

Remark. In the statement of the Theorem we assume that W
E•

is the complete
multigraded linear series associated to big divisors. But in fact since the main tool
we used in the proof is the theory of Okounkov bodies established in [Lazarsfeld
and Mustat,ă 2009], in particular [LM, Theorem 4.19], the really indispensable
assumptions on W

E•
are the same as those in [LM] (which they called Conditions

(A′) and (B′), or (C′)). The only place in the proof where we invoke that we are
working with a complete multigraded linear series is the sentence right after (2),
where we want to say that (2) holds not only in the relative interior of T but also
in its boundary. Hence if W

E•
is only assumed to satisfy Conditions (A′) and (B′),

or (C′), then given any ε>0 and any compact set C contained in T∩int(supp(W
E•
)),

there exists an integer p0 = p0(C, ε) such that if p ≥ p0 then

volW (p)
E•
(Ea) > volWE•(Ea)− ε

for all Ea ∈ C ∩ TQ.
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