Pacific

Journal of

 MathematicsMULTIGRADED FUJITA APPROXIMATION
Shin-Yao Jow

MULTIGRADED FUJITA APPROXIMATION

Shin-Yao Jow

The original Fujita approximation theorem states that the volume of a big divisor D on a projective variety X can always be approximated arbitrarily closely by the self-intersection number of an ample divisor on a birational modification of X. One can also formulate it in terms of graded linear series as follows: Let $W_{\bullet}=\left\{W_{k}\right\}$ be the complete graded linear series associated to a big divisor D, where

$$
W_{k}=H^{0}\left(X, \bigcirc_{X}(k D)\right)
$$

For each fixed positive integer p, define $W_{\bullet}{ }^{(p)}$ to be the graded linear subseries of W_{\bullet} generated by W_{p} :

$$
W_{m}^{(p)}= \begin{cases}0 & \text { if } p \nmid m, \\ \operatorname{Image}\left(S^{k} W_{p} \rightarrow W_{k p}\right) & \text { if } m=k p .\end{cases}
$$

Then the volume of $W_{\bullet}{ }^{(p)}$ approaches the volume of W_{\bullet} as $p \rightarrow \infty$. We will show that, under this formulation, the Fujita approximation theorem can be generalized to the case of multigraded linear series.

1. Introduction

Let X be an irreducible variety of dimension d over an algebraically closed field \boldsymbol{K}, and let D be a (Cartier) divisor on X. When X is projective, the following limit, which measures how fast the dimension of the section space $H^{0}\left(X, O_{X}(m D)\right)$ grows, is called the volume of D :

$$
\operatorname{vol}(D)=\operatorname{vol}_{X}(D)=\lim _{m \rightarrow \infty} \frac{h^{0}\left(X, \mathcal{O}_{X}(m D)\right)}{m^{d} / d!} .
$$

One says that D is big if $\operatorname{vol}(D)>0$. It turns out that the volume is an interesting numerical invariant of a big divisor [Lazarsfeld 2004a, Section 2.2.C], and it plays a key role in several recent works in birational geometry [Tsuji 2000; Boucksom et al. 2004; Hacon and McKernan 2006; Takayama 2006].

[^0]When D is ample, one can show that $\operatorname{vol}(D)=D^{d}$, the self-intersection number of D. This is no longer true for a general big divisor D, since D^{d} may even be negative. However, Fujita [1994] showed that the volume of a big divisor can always be approximated arbitrarily closely by the self-intersection number of an ample divisor on a birational modification of X. This theorem, known as Fujita approximation, has several implications for the properties of volumes, and is also a crucial ingredient in [Boucksom et al. 2004] (see [Lazarsfeld 2004b, Section 11.4] for more details).

Lazarsfeld and Mustaţă [2009] (henceforth [LM]) recently obtained, among other things, a generalization of Fujita approximation to graded linear series. Recall that a graded linear series $W_{\bullet}=\left\{W_{k}\right\}$ on a (not necessarily projective) variety X associated to a divisor D consists of finite dimensional vector subspaces

$$
W_{k} \subseteq H^{0}\left(X, \widehat{O}_{X}(k D)\right)
$$

for each $k \geq 0$, with $W_{0}=\boldsymbol{K}$, such that

$$
W_{k} \cdot W_{\ell} \subseteq W_{k+\ell}
$$

for all $k, \ell \geq 0$. Here the product on the left denotes the image of $W_{k} \otimes W_{\ell}$ under the multiplication map $H^{0}\left(X, O_{X}(k D)\right) \otimes H^{0}\left(X, O_{X}(\ell D)\right) \rightarrow H^{0}\left(X, O_{X}((k+\ell) D)\right)$. In order to state the Fujita approximation for W_{\bullet}, they defined, for each fixed positive integer p, a graded linear series $W_{\bullet}^{(p)}$ which is the subgraded linear series of W_{\bullet} generated by W_{p} :

$$
W_{m}^{(p)}= \begin{cases}0 & \text { if } p \nmid m, \\ \operatorname{Im}\left(S^{k} W_{p} \rightarrow W_{k p}\right) & \text { if } m=k p .\end{cases}
$$

Then under mild hypotheses, they showed that the volume of $W_{\bullet}^{(p)}$ approaches the volume of W_{\bullet} as $p \rightarrow \infty$. See [LM, Theorem 3.5] for the precise statement, as well as [LM, Remark 3.4] for how this is equivalent to the original statement of Fujita when X is projective and $W_{\mathbf{0}}$ is the complete graded linear series associated to a big divisor D (that is, $W_{k}=H^{0}\left(X, O_{X}(k D)\right.$) for all $k \geq 0$).

The goal of this note is to generalize the Fujita approximation theorem to multigraded linear series. We will adopt the following notation from [LM, Section 4.3]: Let D_{1}, \ldots, D_{r} be divisors on X. For $\vec{m}=\left(m_{1}, \ldots, m_{r}\right) \in \mathbb{N}^{r}$, write $\vec{m} D=$ $\sum m_{i} D_{i}$, and put $|\vec{m}|=\sum\left|m_{i}\right|$.

Definition. A multigraded linear series $W_{\mathbf{0}}$ on X associated to the D_{i} consists of finite-dimensional vector subspaces

$$
W_{\vec{k}} \subseteq H^{0}\left(X, O_{X}(\vec{k} D)\right)
$$

for each $\vec{k} \in \mathbb{N}^{r}$, with $W_{\overrightarrow{0}}=\boldsymbol{K}$, such that

$$
W_{\vec{k}} \cdot W_{\vec{m}} \subseteq W_{\vec{k}+\vec{m}},
$$

where the multiplication on the left denotes the image of $W_{\vec{k}} \otimes W_{\vec{m}}$ under the natural map

$$
H^{0}\left(X, \widehat{O}_{X}(\vec{k} D)\right) \otimes H^{0}\left(X, \widehat{O}_{X}(\vec{m} D)\right) \rightarrow H^{0}\left(X, \widehat{O}_{X}((\vec{k}+\vec{m}) D)\right)
$$

Given $\vec{a} \in \mathbb{N}^{r}$, denote by $W_{\vec{a}, \bullet}$ the singly graded linear series associated to the divisor $\vec{a} D$ given by the subspaces $W_{k \vec{a}} \subseteq H^{0}\left(X, \bigcirc_{X}(k \vec{a} D)\right)$. Then put

$$
\operatorname{vol}_{W_{\mathbf{\bullet}}}(\vec{a})=\operatorname{vol}\left(W_{\vec{a}, \bullet}\right)
$$

(assuming that this quantity is finite). It will also be convenient for us to consider $W_{\vec{a}, \bullet}$ when $\vec{a} \in \mathbb{Q}_{\geq 0}^{r}$, given by

$$
W_{\vec{a}, k}= \begin{cases}W_{k \vec{a}} & \text { if } k \vec{a} \in \mathbb{N}^{r}, \\ 0 & \text { otherwise } .\end{cases}
$$

Our multigraded Fujita approximation, similar to the singly graded version, is going to state that (under suitable conditions) the volume of $W_{\mathbf{\circ}}$ can be approximated by the volume of the following finitely generated submultigraded linear series of $W_{\mathbf{0}}$:

Definition. Given a multigraded linear series $W_{\mathbf{0}}$ and a positive integer p, define $W_{\dot{\mathbf{e}}}^{(p)}$ to be the submultigraded linear series of $W_{\overrightarrow{\mathbf{0}}}$ generated by all $W_{\vec{m}_{i}}$ with $\left|\vec{m}_{i}\right|=p$, or concretely,

$$
W_{\vec{m}}^{(p)}=\left\{\begin{array}{cl}
0 & \text { if } p \nmid|\vec{m}|, \\
\sum_{\substack{\left|\vec{m}_{i}\right|=p \\
\vec{m}_{1}+\cdots+\vec{m}_{k}=\vec{m}}} W_{\vec{m}_{1}} \cdots W_{\vec{m}_{k}} & \text { if }|\vec{m}|=k p
\end{array}\right.
$$

We now state our multigraded Fujita approximation when $W_{\mathbf{0}}$ is a complete multigraded linear series, since this is the case of most interest and allows for a more streamlined statement. The Remark on page 335 points out what assumptions on $W_{\mathbf{0}}$ are actually needed in the proof.

Theorem. Let X be an irreducible projective variety of dimension d, and let D_{1}, D_{2}, \ldots, D_{r} be big divisors on X. Let $W_{\mathbf{0}}$ be the complete multigraded linear series associated to the D_{i}, namely

$$
W_{\vec{m}}=H^{0}\left(X, O_{X}(\vec{m} D)\right)
$$

for each $\vec{m} \in \mathbb{N}^{r}$. Then given any $\varepsilon>0$, there exists an integer $p_{0}=p_{0}(\varepsilon)$ having the property that if $p \geq p_{0}$, then

$$
\begin{equation*}
\left|1-\frac{\operatorname{vol}_{W_{0}(p)}(\vec{a})}{\operatorname{vol}_{W_{\mathbf{0}}}(\vec{a})}\right|<\varepsilon \tag{1}
\end{equation*}
$$

for all $\vec{a} \in \mathbb{N}^{r}$.

2. Proof of the Theorem

The main tool in our proof is the theory of Okounkov bodies developed systematically in [Lazarsfeld and Mustaţă 2009]. Given a graded linear series W_{\bullet} on a d-dimensional variety X, its Okounkov body $\Delta\left(W_{\bullet}\right)$ is a convex body in \mathbb{R}^{d} that encodes many asymptotic invariants of W_{\bullet}, the most prominent one being the volume of W_{\bullet}, which is precisely $d!$ times the Euclidean volume of $\Delta\left(W_{\bullet}\right)$. The idea first appeared in Okounkov's papers [1996; 2003] in the case of complete linear series of ample line bundles on a projective variety. Later it was further developed and applied to much more general graded linear series by Lazarsfeld and Mustaţǎ [2009] and also independently by Kaveh and Khovanskii [2008; 2009].

Proof of the Theorem. Let $T=\left\{\left(a_{1}, \ldots, a_{r}\right) \in \mathbb{R}_{\geq 0}^{r} \mid a_{1}+\cdots+a_{r}=1\right\}$, and let $T_{\mathbb{Q}}$ be the set of all points in T with rational coordinates. The fraction inside (1) is invariant under scaling of \vec{a} due to homogeneity, hence it is enough to prove (1) for $\vec{a} \in T_{\mathbb{Q}}$.

Let $\Delta\left(W_{\dot{\bullet}}\right) \subseteq \mathbb{R}^{d} \times \mathbb{R}^{r}$ be the global Okounkov cone of $W_{\dot{\mathbf{}}}$ as in [LM, Theorem 4.19], and let $\pi: \Delta\left(W_{\overrightarrow{0}}\right) \rightarrow \mathbb{R}^{r}$ be the projection map. For each $\vec{a} \in T$, write $\Delta\left(W_{\vec{\bullet}}\right)_{\vec{a}}$ for the fiber $\pi^{-1}(\vec{a})$. Define in a similar fashion the convex cone $\Delta\left(W_{\vec{\bullet}}^{(p)}\right)$ and the convex bodies $\Delta\left(W_{\stackrel{\rightharpoonup}{*}}{ }^{(p)}\right)_{\vec{a}}$. By [LM, Theorem 4.19],

$$
\begin{equation*}
\Delta\left(W_{\bullet}\right)_{\vec{a}}=\Delta\left(W_{\vec{a}, \bullet}\right) \quad \text { for all } \vec{a} \in T_{\mathbb{Q}} . \tag{2}
\end{equation*}
$$

Although [LM, Theorem 4.19] requires \vec{a} to be in the relative interior of T, here we know that (2) holds even for those \vec{a} in the boundary of T because the big cone of X is open and $W_{\boldsymbol{\bullet}}$ was assumed to be the complete multigraded linear series. By the singly graded Fujita approximation, $\operatorname{vol}\left(W_{\vec{a}, \bullet}\right)$ can be approximated arbitrarily closely by $\operatorname{vol}\left(W_{\bar{a}, \bullet}^{(p)}\right)$ if p is sufficiently large. (Here by $W_{\bar{a}, \bullet}^{(p)}$ we mean $W_{\stackrel{\rightharpoonup}{\prime}}^{(p)}$ restricted to the \vec{a} direction, which certainly contains $\left(W_{\vec{a}, \bullet}\right)^{(p)}$.) Hence given any finite subset $S \subset T_{\mathbb{Q}}$ and any $\varepsilon^{\prime}>0$, we have

$$
\operatorname{vol}\left(\Delta\left(W_{\vec{\bullet}}^{(p)}\right)_{\vec{a}}\right) \geq \operatorname{vol}\left(\Delta\left(W_{\vec{\bullet}}\right)_{\vec{a}}\right)-\varepsilon^{\prime} \quad \text { for all } \vec{a} \in S
$$

as soon as p is sufficiently large.
Because the function $\vec{a} \mapsto \operatorname{vol}\left(\Delta\left(W_{\bullet}\right)_{\vec{a}}\right)$ is uniformly continuous on T, given any $\varepsilon^{\prime}>0$, we can partition T into a union of polytopes with disjoint interiors
$T=\bigcup T_{i}$, in such a way that the vertices of each T_{i} all have rational coordinates, and on each T_{i} we have a constant M_{i} such that

$$
\begin{equation*}
M_{i} \leq \operatorname{vol}\left(\Delta\left(W_{\overrightarrow{\mathbf{b}}}\right)_{\vec{a}}\right) \leq M_{i}+\varepsilon^{\prime} \quad \text { for all } \vec{a} \in T_{i} . \tag{3}
\end{equation*}
$$

Let S be the set of vertices of all the T_{i}. Then as we saw in the end of the previous paragraph, as soon as p is sufficiently large we have

$$
\begin{equation*}
\operatorname{vol}\left(\Delta\left(W_{\vec{\bullet}}^{(p)}\right)_{\vec{a}}\right) \geq \operatorname{vol}\left(\Delta\left(W_{\vec{\bullet}}\right)_{\vec{a}}\right)-\varepsilon^{\prime} \quad \text { for all } \vec{a} \in S . \tag{4}
\end{equation*}
$$

We claim that this implies

$$
\begin{equation*}
\operatorname{vol}\left(\Delta\left(W_{\vec{\bullet}}^{(p)}\right)_{\vec{a}}\right) \geq \operatorname{vol}\left(\Delta\left(W_{\vec{\bullet}}\right)_{\vec{a}}\right)-2 \varepsilon^{\prime} \quad \text { for all } \vec{a} \in T_{\mathbb{Q}} . \tag{5}
\end{equation*}
$$

To show this, it suffices to verify it on each of the T_{i}. Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be the vertices of T_{i}. Then each $\vec{a} \in T_{i}$ can be written as a convex combination of the vertices: $\vec{a}=\sum t_{j} \vec{v}_{j}$ where each $t_{j} \geq 0$ and $\sum t_{j}=1$. Since $\Delta\left(W_{\cdot}^{(p)}\right)$ is convex, we have

$$
\Delta\left(W_{\vec{\bullet}}^{(p)}\right)_{\vec{a}} \supseteq \sum t_{j} \Delta\left(W_{\vec{\bullet}}^{(p)}\right)_{\vec{v}_{j}},
$$

where the sum on the right means the Minkowski sum. By (3) and (4), the volume of each $\Delta\left(W_{\cdot}^{(p)}\right)_{\vec{v}_{j}}$ is at least $M_{i}-\varepsilon^{\prime}$, hence by the Brunn-Minkowski inequality [Kaveh and Khovanskii 2008, Theorem 5.4], we have

$$
\operatorname{vol}\left(\Delta\left(W_{\vec{\bullet}}^{(p)}\right)_{\vec{a}}\right) \geq M_{i}-\varepsilon^{\prime} \quad \text { for all } \vec{a} \in T_{i} \cap T_{\mathbb{Q}} .
$$

This combined with (3) shows that (5) is true on $T_{i} \cap T_{\mathbb{Q}}$, hence it is true on $T_{\mathbb{Q}}$ since the T_{i} cover T.

Since (1) follows from (5) by choosing a suitable ε^{\prime}, the proof is complete.
Remark. In the statement of the Theorem we assume that $W_{\mathbf{0}}$ is the complete multigraded linear series associated to big divisors. But in fact since the main tool we used in the proof is the theory of Okounkov bodies established in [Lazarsfeld and Mustață̆ 2009], in particular [LM, Theorem 4.19], the really indispensable assumptions on $W_{\dot{0}}$ are the same as those in [LM] (which they called Conditions $\left(\mathrm{A}^{\prime}\right)$ and $\left(\mathrm{B}^{\prime}\right)$, or $\left(\mathrm{C}^{\prime}\right)$). The only place in the proof where we invoke that we are working with a complete multigraded linear series is the sentence right after (2), where we want to say that (2) holds not only in the relative interior of T but also in its boundary. Hence if $W_{\mathbf{0}}$ is only assumed to satisfy Conditions (A^{\prime}) and (B^{\prime}), or $\left(\mathrm{C}^{\prime}\right)$, then given any $\varepsilon>0$ and any compact set C contained in $T \cap \operatorname{int}\left(\operatorname{supp}\left(W_{\boldsymbol{\bullet}}\right)\right)$, there exists an integer $p_{0}=p_{0}(C, \varepsilon)$ such that if $p \geq p_{0}$ then

$$
\operatorname{vol}_{W_{\mathbf{\bullet}}(p)}(\vec{a})>\operatorname{vol}_{W_{\bullet}}(\vec{a})-\varepsilon
$$

for all $\vec{a} \in C \cap T_{\mathbb{Q}}$.

Acknowledgments

The author would like to thank Robert Lazarsfeld for raising this question during an email correspondence.

References

[Boucksom et al. 2004] S. Boucksom, J.-P. Demailly, M. Paun, and T. Peternell, "The pseudoeffective cone of a compact Kähler manifold and varieties of negative Kodaira dimension", preprint, 2004. arXiv math/0405285
[Fujita 1994] T. Fujita, "Approximating Zariski decomposition of big line bundles", Kodai Math. J. 17:1 (1994), 1-3. MR 95c:14053 Zbl 0814.14006
[Hacon and McKernan 2006] C. D. Hacon and J. McKernan, "Boundedness of pluricanonical maps of varieties of general type", Invent. Math. 166:1 (2006), 1-25. MR 2007e:14022 Zbl 1121.14011
[Kaveh and Khovanskii 2008] K. Kaveh and A. Khovanskii, "Convex bodies and algebraic equations on affine varieties", preprint, 2008. arXiv 0804.4095
[Kaveh and Khovanskii 2009] K. Kaveh and A. Khovanskii, "Newton convex bodies, semigroups of integral points, graded algebras and intersection theory", preprint, 2009. arXiv 0904.3350
[Lazarsfeld 2004a] R. Lazarsfeld, Positivity in algebraic geometry, I: Classical setting: line bundles and linear series, Ergebnisse der Math. und ihrer Grenzgebiete (3) 48, Springer, Berlin, 2004. MR 2005k:14001a Zbl 1093.14501
[Lazarsfeld 2004b] R. Lazarsfeld, Positivity in algebraic geometry, II: Positivity for vector bundles, and multiplier ideals, Ergebnisse der Math. und ihrer Grenzgebiete (3) 49, Springer, Berlin, 2004. MR 2005k:14001b Zbl 1093.14500
[Lazarsfeld and Mustață 2009] R. Lazarsfeld and M. Mustață, "Convex bodies associated to linear series", Ann. Sci. Éc. Norm. Supér. (4) 42:5 (2009), 783-835. MR 2011e:14012 Zbl 1182.14004
[Okounkov 1996] A. Okounkov, "Brunn-Minkowski inequality for multiplicities", Invent. Math. 125:3 (1996), 405-411. MR 99a:58074 Zbl 0893.52004
[Okounkov 2003] A. Okounkov, "Why would multiplicities be log-concave?", pp. 329-347 in The orbit method in geometry and physics (Marseille, 2000), edited by C. Duval et al., Progr. Math. 213, Birkhäuser, Boston, 2003. MR 2004j:20022 Zbl 1063.22024
[Takayama 2006] S. Takayama, "Pluricanonical systems on algebraic varieties of general type", Invent. Math. 165:3 (2006), 551-587. MR 2007m:14014 Zbl 1108.14031
[Tsuji 2000] H. Tsuji, "Effective birationality of pluricanonical systems", preprint, 2000. arXiv math/0006166

Received May 10, 2010.

Shin-Yao Jow
Department of Mathematics
University of Pennsylvania
209 South 33Rd Street
Philadelphia, PA 19104-6395
United States
jows@math.upenn.edu

PACIFIC JOURNAL OF MATHEMATICS

http://www.pjmath.org

Founded in 1951 by
E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)

EDITORS
V. S. Varadarajan (Managing Editor)

Department of Mathematics University of California
Los Angeles, CA 90095-1555
pacific@math.ucla.edu

Vyjayanthi Chari Department of Mathematics University of California
Riverside, CA 92521-0135 chari@math.ucr.edu
Robert Finn
Department of Mathematics
Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu
Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
liu@math.ucla.edu

Darren Long
Department of Mathematics University of California
Santa Barbara, CA 93106-3080
long@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong jhlu@maths.hku.hk
Sorin Popa
Department of Mathematics University of California
Los Angeles, CA 90095-1555 popa@math.ucla.edu

Jie Qing
Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu
Alexander Merkurjev
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
merkurev@ math.ucla.edu
Jonathan Rogawski
Department of Mathematics
University of California
Los Angeles, CA 90095-1555 jonr@math.ucla.edu

PRODUCTION

pacific@math.berkeley.edu
Silvio Levy, Scientific Editor Matthew Cargo, Senior Production Editor

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY
INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY
UNIV. OF BRITISH COLUMBIA
UNIV. OF CALIFORNIA, BERKELEY
UNIV. OF CALIFORNIA, DAVIS
UNIV. OF CALIFORNIA, LOS ANGELES
UNIV. OF CALIFORNIA, RIVERSIDE
UNIV. OF CALIFORNIA, SAN DIEGO
UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ
UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA UNIV. OF UTAH
UNIV. OF WASHINGTON
WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or www.pjmath.org for submission instructions.
The subscription price for 2011 is US $\$ 420 /$ year for the electronic version, and $\$ 485 /$ year for print and electronic.
Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. Prior back issues are obtainable from Periodicals Service Company, 11 Main Street, Germantown, NY 12526-5635. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and the Science Citation Index.

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 969 Evans Hall, Berkeley, CA 94720-3840, is published monthly except July and August. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PACIFIC JOURNAL OF MATHEMATICS

Volume 251 No. 2 June 2011
Two Kazdan-Warner-type identities for the renormalized volume coefficients 257
and the Gauss-Bonnet curvatures of a Riemannian metric
Bin Guo, Zheng-Chao Han and Haizhong Li
Gonality of a general ACM curve in \mathbb{P}^{3} 269
Robin Hartshorne and Enrico Schlesinger
Universal inequalities for the eigenvalues of the biharmonic operator on 315
submanifoldsSaïd Ilias and Ola Makhoul
Multigraded Fujita approximation 331
Shin-Yao Jow
Some Dirichlet problems arising from conformal geometry 337
Qi-Rui Li and Weimin Sheng
Polycyclic quasiconformal mapping class subgroups 361
Katsuhiko Matsuzaki
On zero-divisor graphs of Boolean rings 375
Ali Mohammadian
Rational certificates of positivity on compact semialgebraic sets 385
Victoria Powers
Quiver grassmannians, quiver varieties and the preprojective algebra 393
Alistair Savage and Peter Tingley
Nonautonomous second order Hamiltonian systems 431
Martin Schechter
Generic fundamental polygons for Fuchsian groups 453
Akira Ushijima
Stability of the Kähler-Ricci flow in the space of Kähler metrics 469
Kai Zheng
The second variation of the Ricci expander entropy 499
Meng Zhu

[^0]: MSC2000: 14C20.
 Keywords: Fujita approximation, multigraded linear series, Okounkov body.

