MULTIGRADED FUJITA APPROXIMATION

SHIN-YAO JOW
MULTIGRADED FUJITA APPROXIMATION

SHIN-YAO JOW

The original Fujita approximation theorem states that the volume of a big divisor D on a projective variety X can always be approximated arbitrarily closely by the self-intersection number of an ample divisor on a birational modification of X. One can also formulate it in terms of graded linear series as follows: Let $W_\bullet = \{W_k\}$ be the complete graded linear series associated to a big divisor D, where

$$W_k = H^0(X, \mathcal{O}_X(kD)).$$

For each fixed positive integer p, define $W_\bullet^{(p)}$ to be the graded linear sub-series of W_\bullet generated by W_p:

$$W_m^{(p)} = \begin{cases} 0 & \text{if } p \nmid m, \\ \text{Image}(S^kW_p \to W_{kp}) & \text{if } m = kp. \end{cases}$$

Then the volume of $W_\bullet^{(p)}$ approaches the volume of W_\bullet as $p \to \infty$. We will show that, under this formulation, the Fujita approximation theorem can be generalized to the case of multigraded linear series.

1. Introduction

Let X be an irreducible variety of dimension d over an algebraically closed field K, and let D be a (Cartier) divisor on X. When X is projective, the following limit, which measures how fast the dimension of the section space $H^0(X, \mathcal{O}_X(mD))$ grows, is called the volume of D:

$$\text{vol}(D) = \text{vol}_X(D) = \lim_{m \to \infty} \frac{h^0(X, \mathcal{O}_X(mD))}{m^d/d!}.$$

One says that D is big if $\text{vol}(D) > 0$. It turns out that the volume is an interesting numerical invariant of a big divisor [Lazarsfeld 2004a, Section 2.2.C], and it plays a key role in several recent works in birational geometry [Tsuji 2000; Boucksom et al. 2004; Hacon and McKernan 2006; Takayama 2006].

MSC2000: 14C20.

Keywords: Fujita approximation, multigraded linear series, Okounkov body.
When D is ample, one can show that $\text{vol}(D) = D^d$, the self-intersection number of D. This is no longer true for a general big divisor D, since D^d may even be negative. However, Fujita [1994] showed that the volume of a big divisor can always be approximated arbitrarily closely by the self-intersection number of an ample divisor on a birational modification of X. This theorem, known as Fujita approximation, has several implications for the properties of volumes, and is also a crucial ingredient in [Boucksom et al. 2004] (see [Lazarsfeld 2004b, Section 11.4] for more details).

Lazarsfeld and Mustaţă [2009] (henceforth [LM]) recently obtained, among other things, a generalization of Fujita approximation to graded linear series. Recall that a graded linear series $W_\bullet = \{W_k\}$ on a (not necessarily projective) variety X associated to a divisor D consists of finite dimensional vector subspaces $W_k \subseteq H^0(X, \mathcal{O}_X(kD))$ for each $k \geq 0$, with $W_0 = K$, such that

$$W_k \cdot W_\ell \subseteq W_{k+\ell}$$

for all $k, \ell \geq 0$. Here the product on the left denotes the image of $W_k \otimes W_\ell$ under the multiplication map $H^0(X, \mathcal{O}_X(kD)) \otimes H^0(X, \mathcal{O}_X(\ell D)) \rightarrow H^0(X, \mathcal{O}_X((k + \ell)D))$. In order to state the Fujita approximation for W_\bullet, they defined, for each fixed positive integer p, a graded linear series $W_\bullet^{(p)}$ which is the subgraded linear series of W_\bullet generated by W_p:

$$W_\bullet^{(p)}_m = \begin{cases} 0 & \text{if } p \nmid m, \\ \text{Im}(S^k W_p \rightarrow W_{kp}) & \text{if } m = kp. \end{cases}$$

Then under mild hypotheses, they showed that the volume of $W_\bullet^{(p)}$ approaches the volume of W_\bullet as $p \rightarrow \infty$. See [LM, Theorem 3.5] for the precise statement, as well as [LM, Remark 3.4] for how this is equivalent to the original statement of Fujita when X is projective and W_\bullet is the complete graded linear series associated to a big divisor D (that is, $W_k = H^0(X, \mathcal{O}_X(kD))$ for all $k \geq 0$).

The goal of this note is to generalize the Fujita approximation theorem to multigraded linear series. We will adopt the following notation from [LM, Section 4.3]: Let D_1, \ldots, D_r be divisors on X. For $\vec{m} = (m_1, \ldots, m_r) \in \mathbb{N}^r$, write $\vec{m} D = \sum m_i D_i$, and put $|\vec{m}| = \sum |m_i|$.

Definition. A multigraded linear series W_\bullet on X associated to the D_i consists of finite-dimensional vector subspaces

$$W_\vec{k} \subseteq H^0(X, \mathcal{O}_X(\vec{k}D))$$
for each $\tilde{k} \in \mathbb{N}^r$, with $W_{\tilde{0}} = K$, such that

$$W_{\tilde{k}} \cdot W_{\tilde{m}} \subseteq W_{\tilde{k} + \tilde{m}},$$

where the multiplication on the left denotes the image of $W_{\tilde{k}} \otimes W_{\tilde{m}}$ under the natural map

$$H^0(X, \mathcal{O}_X(\tilde{k}D)) \otimes H^0(X, \mathcal{O}_X(\tilde{m}D)) \to H^0(X, \mathcal{O}_X((\tilde{k} + \tilde{m})D)).$$

Given $\tilde{a} \in \mathbb{N}^r$, denote by $W_{\tilde{a}}$ the singly graded linear series associated to the divisor $\tilde{a}D$ given by the subspaces $W_{k\tilde{a}} \subseteq H^0(X, \mathcal{O}_X(k\tilde{a}D))$. Then put

$$\text{vol}_{W_{\tilde{a}}} (\tilde{a}) = \text{vol}(W_{\tilde{a}}, \cdot)$$

(assuming that this quantity is finite). It will also be convenient for us to consider $W_{\tilde{a}}$ when $\tilde{a} \in \mathbb{Q}^r_{\geq 0}$, given by

$$W_{\tilde{a},\tilde{k}} = \begin{cases} W_{k\tilde{a}} & \text{if } k\tilde{a} \in \mathbb{N}^r, \\ 0 & \text{otherwise.} \end{cases}$$

Our multigraded Fujita approximation, similar to the singly graded version, is going to state that (under suitable conditions) the volume of W_{\cdot} can be approximated by the volume of the following finitely generated submultigraded linear series of W_{\cdot}:

Definition. Given a multigraded linear series W_{\cdot} and a positive integer p, define $W_{\tilde{m}}^{(p)}$ to be the submultigraded linear series of W_{\cdot} generated by all $W_{\tilde{m}_i}$ with $|\tilde{m}_i| = p$, or concretely,

$$W_{\tilde{m}}^{(p)} = \begin{cases} 0 & \text{if } p \nmid |\tilde{m}|, \\ \sum_{|\tilde{m}_1| = p} W_{\tilde{m}_1} \cdots W_{\tilde{m}_k} & \text{if } |\tilde{m}| = kp. \end{cases}$$

We now state our multigraded Fujita approximation when W_{\cdot} is a complete multigraded linear series, since this is the case of most interest and allows for a more streamlined statement. The Remark on page 335 points out what assumptions on W_{\cdot} are actually needed in the proof.

Theorem. Let X be an irreducible projective variety of dimension d, and let D_1, D_2, \ldots, D_r be big divisors on X. Let W_{\cdot} be the complete multigraded linear series associated to the D_i, namely

$$W_{\tilde{m}} = H^0(X, \mathcal{O}_X(\tilde{m}D))$$
for each \(\vec{m} \in \mathbb{N}^r \). Then given any \(\varepsilon > 0 \), there exists an integer \(p_0 = p_0(\varepsilon) \) having the property that if \(p \geq p_0 \), then

\[
\left| 1 - \frac{\text{vol}_{W_0\left(p\right)}(\vec{a})}{\text{vol}_{W_0}(\vec{a})} \right| < \varepsilon
\]

for all \(\vec{a} \in \mathbb{N}^r \).

2. Proof of the Theorem

The main tool in our proof is the theory of Okounkov bodies developed systematically in [Lazarsfeld and Mustaţă 2009]. Given a graded linear series \(W_0 \) on a \(d \)-dimensional variety \(X \), its Okounkov body \(\Delta(W_0) \) is a convex body in \(\mathbb{R}^d \) that encodes many asymptotic invariants of \(W_0 \), the most prominent one being the volume of \(W_0 \), which is precisely \(d! \) times the Euclidean volume of \(\Delta(W_0) \). The idea first appeared in Okounkov’s papers [1996; 2003] in the case of complete linear series of ample line bundles on a projective variety. Later it was further developed and applied to much more general graded linear series by Lazarsfeld and Mustaţă [2009] and also independently by Kaveh and Khovanskii [2008; 2009].

Proof of the Theorem. Let \(T = \{(a_1, \ldots, a_r) \in \mathbb{R}^r_+ \mid a_1 + \cdots + a_r = 1\} \), and let \(T_Q \) be the set of all points in \(T \) with rational coordinates. The fraction inside (1) is invariant under scaling of \(\vec{a} \) due to homogeneity, hence it is enough to prove (1) for \(\vec{a} \in T_Q \).

Let \(\Delta(W_0) \subseteq \mathbb{R}^d \times \mathbb{R}^r \) be the global Okounkov cone of \(W_0 \) as in [LM, Theorem 4.19], and let \(\pi : \Delta(W_0) \to \mathbb{R}^r \) be the projection map. For each \(\vec{a} \in T \), write \(\Delta(W_0)_{\vec{a}} \) for the fiber \(\pi^{-1}(\vec{a}) \). Define in a similar fashion the convex cone \(\Delta(W_0^{(p)}) \) and the convex bodies \(\Delta(W_0^{(p)})_{\vec{a}} \). By [LM, Theorem 4.19],

\[
\Delta(W_0)_{\vec{a}} = \Delta(W_{0\vec{a},0}) \quad \text{for all } \vec{a} \in T_Q.
\]

Although [LM, Theorem 4.19] requires \(\vec{a} \) to be in the relative interior of \(T \), here we know that (2) holds even for those \(\vec{a} \) in the boundary of \(T \) because the big cone of \(X \) is open and \(W_0 \) was assumed to be the complete multigraded linear series. By the singly graded Fujita approximation, \(\text{vol}(W_{0\vec{a},0}) \) can be approximated arbitrarily closely by \(\text{vol}(W_{0\vec{a}^{(p)}}) \) if \(p \) is sufficiently large. (Here by \(W_{0\vec{a}^{(p)}} \) we mean \(W_{0\vec{a},0}^{(p)} \) restricted to the \(\vec{a} \) direction, which certainly contains \((W_{0\vec{a},0})^{(p)} \).) Hence given any finite subset \(S \subset T_Q \) and any \(\varepsilon' > 0 \), we have

\[
\text{vol}(\Delta(W_0^{(p)})_{\vec{a}}) \geq \text{vol}(\Delta(W_0)_{\vec{a}}) - \varepsilon' \quad \text{for all } \vec{a} \in S
\]
as soon as \(p \) is sufficiently large.

Because the function \(\vec{a} \mapsto \text{vol}(\Delta(W_0)_{\vec{a}}) \) is uniformly continuous on \(T \), given any \(\varepsilon' > 0 \), we can partition \(T \) into a union of polytopes with disjoint interiors
$T = \bigcup T_i$, in such a way that the vertices of each T_i all have rational coordinates, and on each T_i we have a constant M_i such that

$$M_i \leq \text{vol}(\Delta(W_\bullet(\bar{a})) \leq M_i + \varepsilon' \quad \text{for all } \bar{a} \in T_i.$$

Let S be the set of vertices of all the T_i. Then as we saw in the end of the previous paragraph, as soon as p is sufficiently large we have

$$\text{vol}(\Delta(W_\bullet(p))_{\bar{a}}) \geq \text{vol}(\Delta(W_\bullet(\bar{a})) - \varepsilon' \quad \text{for all } \bar{a} \in S.$$

We claim that this implies

$$\text{vol}(\Delta(W_\bullet(p))_{\bar{a}}) \geq \text{vol}(\Delta(W_\bullet(\bar{a}))-2\varepsilon' \quad \text{for all } \bar{a} \in T_Q.$$

To show this, it suffices to verify it on each of the T_i. Let $\bar{v}_1, \ldots, \bar{v}_k$ be the vertices of T_i. Then each $\bar{a} \in T_i$ can be written as a convex combination of the vertices: $\bar{a} = \sum t_j \bar{v}_j$ where each $t_j \geq 0$ and $\sum t_j = 1$. Since $\Delta(W_\bullet(p))$ is convex, we have

$$\Delta(W_\bullet(p))_{\bar{a}} \supseteq \sum t_j \Delta(W_\bullet(p))_{\bar{v}_j},$$

where the sum on the right means the Minkowski sum. By (3) and (4), the volume of each $\Delta(W_\bullet(p))_{\bar{v}_j}$ is at least $M_i - \varepsilon'$, hence by the Brunn–Minkowski inequality [Kaveh and Khovanskii 2008, Theorem 5.4], we have

$$\text{vol}(\Delta(W_\bullet(p))_{\bar{a}}) \geq M_i - \varepsilon' \quad \text{for all } \bar{a} \in T_i \cap T_Q.$$

This combined with (3) shows that (5) is true on $T_i \cap T_Q$, hence it is true on T_Q since the T_i cover T.

Since (1) follows from (5) by choosing a suitable ε', the proof is complete. □

Remark. In the statement of the Theorem we assume that W_\bullet is the complete multigraded linear series associated to big divisors. But in fact since the main tool we used in the proof is the theory of Okounkov bodies established in [Lazarsfeld and Mustaţă 2009], in particular [LM, Theorem 4.19], the really indispensable assumptions on W_\bullet are the same as those in [LM] (which they called Conditions (A') and (B'), or (C')). The only place in the proof where we invoke that we are working with a complete multigraded linear series is the sentence right after (2), where we want to say that (2) holds not only in the relative interior of T but also in its boundary. Hence if W_\bullet is only assumed to satisfy Conditions (A') and (B'), or (C'), then given any $\varepsilon > 0$ and any compact set C contained in $T \cap \text{int}(\text{supp}(W_\bullet))$, there exists an integer $p_0 = p_0(C, \varepsilon)$ such that if $p \geq p_0$ then

$$\text{vol}_{W_\bullet(p)}(\bar{a}) > \text{vol}_{W_\bullet}(\bar{a}) - \varepsilon$$

for all $\bar{a} \in C \cap T_Q$.

Acknowledgments

The author would like to thank Robert Lazarsfeld for raising this question during an email correspondence.

References

Received May 10, 2010.

SHIN-YAO JOW
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF PENNSYLVANIA
209 SOUTH 33RD STREET
PHILADELPHIA, PA 19104-6395
UNITED STATES
jows@math.upenn.edu
Two Kazdan–Warner-type identities for the renormalized volume coefficients and the Gauss–Bonnet curvatures of a Riemannian metric

Bin Guo, Zheng-Chao Han and Haizhong Li

Gonality of a general ACM curve in \mathbb{P}^3

Robin Hartshorne and Enrico Schlesinger

Universal inequalities for the eigenvalues of the biharmonic operator on submanifolds

Saïd Ilias and Ola Makhoul

Multigraded Fujita approximation

Shin-Yao Jow

Some Dirichlet problems arising from conformal geometry

Qi-Rui Li and Weimin Sheng

Polycyclic quasiconformal mapping class subgroups

Katsuhiko Matsuzaki

On zero-divisor graphs of Boolean rings

Ali Mohammadian

Rational certificates of positivity on compact semialgebraic sets

Victoria Powers

Quiver grassmannians, quiver varieties and the preprojective algebra

Alistair Savage and Peter Tingley

Nonautonomous second order Hamiltonian systems

Martin Schechter

Generic fundamental polygons for Fuchsian groups

Akira Ushijima

Stability of the Kähler–Ricci flow in the space of Kähler metrics

Kai Zheng

The second variation of the Ricci expander entropy

Meng Zhu