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ON ZERO-DIVISOR GRAPHS OF BOOLEAN RINGS

ALI MOHAMMADIAN

The zero-divisor graph of a ring R is the graph whose vertices consist of the
nonzero zero-divisors of R in which two distinct vertices a and b are adja-
cent if and only if either ab = 0 or ba = 0. In this paper, we investigate some
properties of zero-divisor graphs of Boolean rings. Among other results, we
prove that for any two rings R and S with 0(R) ' 0(S), if R is Boolean and
|R| > 4, then R ' S.

1. Introduction

Throughout the paper, R denotes a ring, not necessarily with identity, and D(R)
denotes the set of all zero-divisors of R. If X is either an element or a subset of
R, then the left annihilator of X is Ann`(X) = {a ∈ R | aX = 0} and the right
annihilator of X , denoted by Annr (X), is similarly defined. For any subset Y of R,
we let Y ∗= Y\{0}. The zero-divisor graph of R, denoted by 0(R), is a graph with
the vertex set D(R)∗ such that two vertices x and y are joined by an undirected
edge if and only if x 6= y and either xy = 0 or yx = 0. Notice that a ring R
is a domain if and only if 0(R) is the null graph. For a commutative ring R with
identity, the definition of a zero-divisor graph of R that was first introduced in [Beck
1988] coincides with the above definition of 0(R). The zero-divisor graph concept
for noncommutative rings was first defined in [Redmond 2002]. The zero-divisor
graphs offer a graphical representation of rings so that we may discover some new
algebraic properties of rings that are hidden from the viewpoint of classical ring
theorists. For an instance, using the notion of a zero-divisor graph, it has been
proven in [Redmond 2004] that for any finite ring R,

∑
x∈R |Ann`(x)\Annr (x)| is

even. A simple proof of this result is given in [Akbari and Mohammadian 2007].
Let us recall some definitions regarding graph theory and ring theory. For a

vertex v of a graph G, N(v) denotes the set of all vertices of G adjacent to v, and
the degree of v is defined by |N(v)|. A graph G is called a star if G contains
at least two vertices and there exists a vertex that is joined to all other vertices
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and G has no other edges. A path P in a graph G is a sequence of distinct vertices
v1, v2, . . . , vk+1 in which every two consecutive vertices are adjacent. The number
k is called the length of P . For two vertices u and v in a graph G, the distance
between u and v, denoted by d(u, v), is the length of the shortest path between u
and v, if such a path exists; otherwise, we define d(u, v)=∞. The diameter of a
graph G is defined by diam G = sup{d(u, v) | u and v are distinct vertices of G}.
In [Redmond 2002] it was shown that for any ring R, diam0(R)6 3. Furthermore,
two graphs G1 and G2 are said to be isomorphic if there is a bijective map ϕ
between the vertex set of G1 and the vertex set of G2 such that the adjacency
relation is preserved. Finally, we recall that a ring is called reduced if it has no
nonzero nilpotent elements. A ring whose elements are all idempotent is called
Boolean. We denote by Zn the ring of integers modulo n and by Fq the field with
q elements.

In this article we study the zero-divisor graphs of Boolean rings. We show that
for any reduced ring R that is not a domain, 0(R) is isomorphic to the zero-divisor
graph of a nonreduced ring, provided that 0(R) is a star. As a consequence, we
prove that Boolean rings with more than four elements are determined by their
zero-divisor graphs.

2. The results

In [Akbari and Mohammadian 2006, Theorem 17], it is proven that for any finite
ring R that is not a field, if 0(R) is isomorphic to the zero-divisor graph of a
reduced ring S, then R ' S, unless S ' Z2× Fq , where either q = 2 or (q + 1)/2
is a prime power. Since for any finite field F , 0(Z2 × F) is a star, the following
theorem presents an analogue of this result for the general case.

Remark 1. Let {Ai }i∈I and {B j } j∈J be two families of commutative domains with
identity, where |I | > 2. In [Anderson et al. 2003, Theorem 2.1], it is shown that
0
(∏

i∈I Ai
)
' 0

(∏
j∈J B j

)
if and only if there is a bijective map π : I → J such

that |Ai | = |Bπ(i)| for all i ∈ I . Hence there are many examples of nonisomorphic
pairs of infinite reduced commutative rings whose zero-divisor graphs are isomor-
phic.

Theorem 2. Let S be a reduced ring such that S is not a domain and 0(S) is not a
star. If R is a ring such that 0(R)' 0(S), then R is also a reduced ring.

Proof. We recall a well-known fact about reduced rings: for all elements x and y
of a reduced ring T , xy = 0 if and only if yx = 0. For this, note that if xy = 0
for some elements x, y ∈ T , then (yx)2 = 0 and since T is reduced, we find that
yx = 0. This fact implies that if two vertices u and v of 0(S) are adjacent, then
uv = vu = 0. We use this property frequently in what follows. We also state two
properties of 0(S):
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(i) For every two adjacent vertices u and v of 0(S) with at least one common
neighbor, u + v is a vertex of 0(S) and N(u + v) = N(u) ∩N(v). For this,
note that if x ∈ N(u) ∩N(v), then xu = xv = 0, and hence x(u + v) = 0.
Also, u + v 6= 0 since uv = 0 and S is reduced. Therefore, x ∈ N(u + v).
Conversely, if x ∈N(u+v), then (xu)u = x(u+v)u = 0 and thus u(xu)= 0.
Therefore (xu)2 = 0 and so xu = 0. This means that x ∈ N(u) and with a
similar argument, we find that x ∈N(v), as required.

(ii) For every three mutually adjacent vertices u, v andw of 0(S), we have N(u)*
N(v)∪N(w). Indeed, it easily seen that v+w ∈N(u) \ (N(v)∪N(w)).

Suppose that R is a ring with 0(R)' 0(S). So properties (i) and (ii) also hold
for 0(R). To the contrary, assume that a2

= 0 for some element a ∈ R∗.
Since S is reduced, [Akbari and Mohammadian 2006, Corollary 4] yields that

0(R) has at least two vertices. Note that a is not adjacent to all other vertices
of 0(R). To prove this, suppose otherwise. Since 0(R) is not a star, there exist
two adjacent vertices x, y ∈ N(a). So N(x) ⊆ N(a) ∪ N(y), which contradicts
(ii). Moreover, we have |N(a)| > 2. For this, suppose otherwise. Since 0(R)
is a connected graph [Redmond 2002] with at least two vertices, we may assume
that N(a) = {b} for some vertex b of 0(R). From a + b ∈ Ann`(a) ∪ Annr (a),
we conclude that a + b = 0. Hence b = −a and therefore 0(R) is a star on two
vertices, a contradiction.

We claim that either Ra = {0, a} or a R = {0, a}. Suppose that there exist two
elements b ∈ Ra \ {0, a} and c ∈ a R \ {0, a}. If b 6= c, then a, b and c are three
mutually adjacent vertices and N(a)⊆N(b)∪N(c), which contradicts (ii). Hence
b = c. For some vertex d ∈ N(a) \ {b}, the vertices a, b and d are mutually
adjacent and N(a) ⊆ N(b)∪N(d), which again contradicts (ii). Since Ra 6= {0}
and a R 6= {0}, the claim is proved.

We assume that Ra = a R = {0, a}. For any two vertices x, y 6∈ N(a), we have
xa = ya = a. Thus (xy)a = a and so xy 6= 0. This means that every edge of
0(R) has at least one endpoint in N(a). Working towards a contradiction, assume
that no two vertices in N(a) are adjacent. This means that 0(R), and so 0(S) is a
bipartite graph, and using [Akbari et al. 2003, Theorem 2.4], 0(S) and thus 0(R)
is a complete bipartite graph. Let r 6∈ N(a) and s ∈ N(a) ∩ N(r). Since 0(R)
is a complete bipartite graph and a + s ∈ N(a), r is adjacent to a + s. Therefore
a=r(a+s)r=0, a contradiction. Hence there are two adjacent vertices b, c∈N(a).
We now consider the two following cases.

Case I. Suppose that a together with one of the elements b, c are contained in
one of the one-sided annihilators of the third element. Without loss of generality,
assume that {a, c} ∈ Ann`(b). By (i), there exists a vertex d in 0(R) such that
d 6∈ {a, b} and N(d)=N(a)∩N(b). If b 6= a+ c, then a+ c ∈N(a)∩N(b), and
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hence a = d(a + c)d = 0, a contradiction. Thus b = a + c, and it follows from
ab = 0 that ac = 0. Moreover, if ca 6= 0, then a = ca = cb− c2

= −c2, which
contradicts d ∈ N(c) \N(a). Therefore ca = 0 and so c2

= cb− ca = 0. Since
b = a+ c, we find that the product of any two elements of {a, b, c} is zero.

Suppose towards a contradiction that there is a vertex r ∈ (N(b)∩N(c)) \ {a}.
We have rar = r(b− c)r = 0 and by Ra = a R = {0, a}, we deduce that r ∈N(a).
By (i), there exists a vertex s in 0(R) such that N(s)=N(a)∩N(r). This implies
that sas = s(b− c)s = 0, since {b, c} ⊆N(a)∩N(r). On the other hand, s 6∈N(a)
and Ra = a R = {0, a} yields that sas = a, a contradiction. This establishes that
N(b)∩N(c)= {a}.

For convenience and without loss of generality, assume that cd = 0. From
{b, c} ⊆ Annr (c), d 6∈ N(a)∪N(b) and N(b)∩N(c) = {a}, we have Rc = {0, c}.
Therefore [R :Ann`(a)∩Ann`(c)]6 [R :Ann`(a)][R :Ann`(c)] = |Ra||Rc| = 4.
Since N(b)∩N(c)= {a} and the product of any two elements of {a, b, c} is zero,
we find that Ann`(a)∩Ann`(c)= {0, a, b, c}. This yields that |R|6 16. Using (i),
let e be a vertex of 0(R) in which N(e)=N(a)∩N(c). It is not hard to see that

R = {0, a, b, c} ∪
(
d +{0, a, b, c}

)
∪
(
e+{0, a, b, c}

)
∪
(
d + e+{0, a, b, c}

)
.

Therefore Ann`(a) = Annr (a) = {0, a, b, c} ∪ (d + e+ {0, a, b, c}). Because e 6∈
N(a)∪N(c), Ra = {0, a} and Rc = {0, c}, we conclude that ea = a and ec = c.
Therefore eb = b and by b ∈ N(a) ∩N(c), we obtain that be = 0. Furthermore,
e 6∈ N(a) ∪N(c) and N(b) ∩N(c) = {a} yield that Rb = {0, b}. It follows from
d 6∈N(b) that d+e ∈Ann`(b), and so N(a)⊆N(b)∪N(c), which contradicts (ii).

Case II. When Case I does not occur, by replacing b with c if necessary, we may
assume that ab = bc = ca = 0 and none of ba, cb and ac is zero. We have
{a, b} ∈ Ann`(cb), and so, applying the argument in the first paragraph of Case I
for cb and b instead of b and c, respectively, we obtain in particular that ba = 0,
which is a contradiction.

Next, with no loss of generality, assume that a R = {0, a} and there exists an
element g ∈ Ra \ {0, a}. Since a R = {0, a}, −a = a and so −g = g. Also,
from g ∈ Ra and a R = {0, a}, we easily obtain that ag = ga = 0. By (i), there
exists a vertex h in 0(R) such that N(h)=N(a)∩N(g). We claim that Annr (a)⊆
Annr (h)∪{0, a, g, a+g}. Suppose x ∈Annr (a)\(Annr (h)∪{a, g}). Since g ∈ Ra
and N(h)=N(a)∩N(g), we conclude that x ∈Ann`(h). Moreover, h 6∈N(a) and
a R = {0, a}, so ah = a. We have a + g ∈ N(a) ∩N(g) and (a + g)h = a + g,
and hence h(a + g) = 0. These equalities yield that h(a + g + x) = hx 6= 0
and (a + g + x)h = a + g 6= 0. On the other hand, a(a + g + x) = 0, so it
follows from g ∈ Ra and N(h) = N(a) ∩N(g) that a + g + x = 0. Therefore,
x = a + g, and the claim is proved. Since Annr (a), Annr (h) and {0, a, g, a + g}
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are three additive subgroups of R in which Annr (a) ⊆ Annr (h)∪ {0, a, g, a+ g}
and a ∈ Annr (a) \Annr (h), we deduce that Annr (a)= {0, a, g, a+ g}. Applying
(ii), there exists a vertex y ∈N(a)\(N(g)∪N(a+g)). We have ya= 0 and ay 6= 0.
By [R :Annr (a)] = |a R|, we conclude that R=Annr (a)∪ y+Annr (a). It follows
from Annr (a) = {0, a, g, a+ g} that Ra = {0}, a contradiction. Now the proof is
complete. �

Example 3. The condition on 0(S) in Theorem 2 is necessary. For examples
involving infinite rings, let S be an arbitrary infinite domain, R be the polynomial
ring in the set of variables {x} ∪ {xα |α ∈ S} with coefficients in Z2, and I be the
ideal of R generated by {x2

} ∪ {xxα − x |α ∈ S} ∪ {xαx− x |α ∈ S}. It is easy
to verify that 0(R/I) is a star on |S| vertices and x+ I is that vertex which is
adjacent to all other vertices of the graph. Therefore 0(R/I)' 0(Z2×S), while
R/I is not reduced.

Remark 4. It is easy to establish that every reduced ring whose zero-divisor graph
is a star is isomorphic to the direct product of Z2 and a domain. For this, let R be a
reduced ring with 0(R) a star and let e be that vertex which is adjacent to all other
vertices of 0(R). Obviously, e is idempotent, and using the fact that all idempotent
elements of a reduced ring are central, we may write R ' eR × (1− e)R. Since
0(R) is a star, we clearly conclude that eR = {0, e} and (1− e)R is a domain,
as required. From this, Theorem 2, Example 3, and [Akbari and Mohammadian
2006, Theorem 17], we imply that for every reduced ring R that is not a domain,
0(R) is isomorphic to the zero-divisor graph of a nonreduced ring if and only if
0(R) is either an infinite star or a star with q vertices, where either q = 2 or both
q and (q + 1)/2 are prime powers.

In [LaGrange 2007, Theorem 4.1], it is shown that if R and S are two commuta-
tive rings with identity such that S is a Boolean ring with more than four elements
and 0(R)' 0(S), then R ' S. In what follows, we generalize this result to every
arbitrary ring R. We need the following easy lemmas.

Lemma 5. Let R be a ring such that all elements in D(R) are idempotent. Then
R is either a domain or a Boolean ring.

Proof. Suppose that R is not a domain. By the hypotheses, R is reduced. Using the
fact that all idempotent elements of a reduced ring are central, D(R) is contained
in the center of R. Therefore, for every two elements a ∈ R and z ∈ D(R)∗, we
have az ∈D(R). Hence (az)2= az, and so (a2

−a)z= 0. The latter equality shows
that a2

− a ∈D(R) and also Ann`(a2
− a)=D(R). Thus a2

− a = (a2
− a)2 = 0

for each element a ∈ R, as desired. �

Lemma 6. Let R be a Boolean ring with |R| > 4. Then 0(R) contains no vertex
adjacent to all other vertices of the graph.
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Proof by contradiction. Suppose that a vertex r is adjacent to all other vertices
of 0(R). Let z ∈ D(R) \ {0, r}. We have r(r + z) = r 6= 0 and so r + z is a
nonzero-divisor idempotent of R. Thus 1 = r + z is the identity of R and so
R = {0, 1, r, 1− r}, which contradicts |R|> 4. �

Theorem 7. Let S be a Boolean ring with |S| > 4. Suppose that R is a ring
and ϕ : 0(R)→ 0(S) is a graph isomorphism. Then ϕ is extendable to a ring
isomorphism from R to S. In particular, R ' S.

Proof. Recall that the characteristic of every Boolean ring is 2. We first state the
following properties of 0(S).

(i) For every two vertices u and v of 0(S), if N(u)=N(v), then u = v. For this,
note that if u 6= uv, then u + uv ∈ N(v) \N(u), which is impossible. So we
conclude that u= uv, and similarly v= uv, which yield that u= v, as desired.

(ii) For every two adjacent vertices u and v of 0(S), using (i) together with an
easy argument, we find that u + v is the unique vertex of 0(S) such that
N(u + v) = N(u)∩N(v), if N(u)∩N(v) 6= ∅; and otherwise, 1 = u + v is
the identity of S, because in this case u + v is a nonzero-divisor idempotent
of S. Moreover, if S has identity, then v = 1+ u is the unique neighbor of u
in 0(S) such that N(u)∩N(v)=∅. For uniqueness, note that for any vertex
x ∈N(u), if x 6= 1+ u, then 1+ u+ x ∈N(u)∩N(x).

(iii) For every two nonadjacent vertices u and v of 0(S), N(u)∪N(v) ⊆ N(uv);
and if N(u)∪N(v)⊆N(w) for some vertex w of 0(S), then N(uv)⊆N(w).
For the second statement, let x ∈ Ann`(uv). We have vx ∈ Ann`(u). Since
N(u)⊆N(w), w(vx)= 0 and sowx ∈Ann`(v). It follows from N(v)⊆N(w)

that w(wx)= 0 and thus x ∈ Ann`(w), as required.

Since 0(R) ' 0(S), the above properties also hold for 0(R). Using Theorem 2
and Lemma 6, R is reduced. It is easily checked that N(z2)=N(z) for each vertex
z of 0(R). By (i), we have z2

= z for every element z ∈D(R). Applying Lemma 5,
R is a Boolean ring. Define ϕ(0)= 0. By (ii), 0(R) (respectively, 0(S)) contains
two adjacent vertices with no common neighbors if and only if R (respectively, S)
has identity. Since 0(R) ' 0(S), either both R and S have identity or neither of
them has identity. When the first case occurs, we define ϕ(1) = 1. Furthermore,
the properties (ii) and (iii) imply that for every two vertices u and v of 0(S), the
elements

• 1+ u, if S has identity;

• u+ v, if u and v are adjacent and u+ v 6= 1; and

• uv, if u and v are not adjacent,
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can be determined by 0(S). We claim that for every two distinct nonadjacent
vertices u and v of 0(S), the element u+ v can also be determined by 0(S). First
assume that uv 6∈ {u, v}. Using (iii), we obtain that the element uv is determined
by 0(S). By (i) and (ii), u + uv is the unique vertex of 0(S) such that N(u) =
N(uv)∩N(u+uv). This and a similar argument establish that the elements u+uv
and v + uv are determined by 0(S). Since the vertices u + uv and v + uv are
adjacent, we are done using (ii). Next, with no loss of generality, suppose that
uv = u. In this case, the vertices u and u+ v are adjacent, and so applying (i) and
(ii), we find that u+v is the unique vertex of0(S) such that N(v)=N(u)∩N(u+v).
This proves the claim. Now, by 0(R) ' 0(S) and the above reasonings, it is not
hard to verify that ϕ(a+b)= ϕ(a)+ϕ(b) and ϕ(ab)= ϕ(a)ϕ(b) for all a, b ∈ R,
as desired. �

As an interesting fact, it is well-known that every isomorphism between mul-
tiplicative semigroups of two Boolean rings is a ring isomorphism. Obviously,
Theorem 7 generalizes this fact. The following theorem asserts that the zero-divisor
graph of a Boolean ring R determines whether R has identity or not.

Theorem 8. Let R be a Boolean ring and |R| > 4. Then diam0(R) = 3 if R has
identity, and otherwise diam0(R)= 2.

Proof. We know from [Redmond 2002] that for any ring T , diam0(T ) 6 3. First
suppose that R has identity. Since |R|> 4, we can take an element e 6∈ {0, 1}. We
have R = eR ⊕ (1− e)R, so either |eR| > 2 or |(1− e)R| > 2. With no loss of
generality, let f ∈ eR \ {0, e}. Since e and 1+ e+ f are two nonadjacent vertices
with no common neighbors and diam0(R)6 3, the result follows.

Next suppose that R has no identity. Applying Lemma 6, we find diam0(R)>2.
Now, let a and b be two nonadjacent vertices of 0(R). Since R has no identity,
there exists an element c such that (a+b+ab)c 6= c. We have c+ac+bc+abc ∈
N(a)∩N(b), which clearly completes the proof. �

It is well-known that every finite Boolean ring has identity. We generalize this
fact in the following theorem.

Theorem 9. Let R be a Boolean ring such that 0(R) has a vertex of finite degree.
Then R has identity.

Proof. Recall that the adjoint multiplication ◦ of an arbitrary ring T is defined by
x ◦ y = x + y + xy for any two elements x, y ∈ T . Suppose that a is a vertex
of finite degree of 0(R) and N(a) = {a1, . . . , an} for some integer n > 1. Let
b = a1 ◦ · · · ◦ an . Clearly, ab = 0 and ai b = ai for all i . We show that a+ b is the
identity of R. Indeed, it is enough to prove that a+b is a nonzero-divisor. Toward
a contradiction, assume that (a + b)z = 0 for some element z ∈ R∗. Multiplying
this equality by a, we find that az = 0, and hence z = a j for some j ∈ {1, . . . , n}.
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Also, multiplying the equality (a + b)z = 0 by a j yields that a j z = 0, which is
impossible. This completes the proof. �

Remark 10. The converse of Theorem 9 is not true. Let R be the set consisting of
the empty set together with all finite unions of all left-closed right-open intervals
and all left-unbounded right-open intervals of real numbers. Clearly, R is a Boolean
ring with identity with respect to symmetric difference as the addition operation
and intersection as the multiplication operation, while obviously every vertex of
0(R) has infinite degree.

We conclude the paper with the following theorem on the polynomial rings over
Boolean rings.

Theorem 11. Let R and S be two Boolean rings such that 0(R[x]) ' 0(S[x]).
Then R ' S.

Proof. Let T be an arbitrary Boolean ring. 0(T [x]) is the null graph if and only if
T ' Z2. Hence we may assume that D(R)∗ and D(S)∗ are both nonempty. Using
Theorem 7, it suffices to establish that 0(R)'0(S). Since finitely generated one-
sided ideals of von Neumann regular rings, including Boolean rings, are principal
[Lam 2001, (4.23)], for each finitely generated ideal I of T , there exists a unique
element e such that I = (e). For a polynomial f (x)=anxn

+· · ·+a0∈T [x], let f̂ (x)
be the unique element of T such that (a0, . . . , an) = ( f̂ (x)). From [Armendariz
1974, Lemma 1], every reduced ring is Armendariz, and hence it is not hard to see
that for any polynomial f (x) ∈ D(T [x])∗, f̂ (x) is the unique element of T such
that N( f (x))=N( f̂ (x)).

Now, assume that φ : 0(R[x])→ 0(S[x]) is a graph isomorphism. We define
ψ :0(R)→0(S) byψ(a)= φ̂(a) for all a ∈D(R)∗, and we claim thatψ is a graph
isomorphism. If a and b are two adjacent vertices of 0(R), then φ(a)∈N(φ(b))=
N(ψ(b)). This yields that ψ(b) ∈ N(φ(a)) = N(ψ(a)) and therefore ψ(a) and
ψ(b) are adjacent in 0(S). The converse is clearly true, and so ψ preserves the
adjacency relation. Moreover, if ψ(a) = ψ(b) for two vertices a and b of 0(R),
then N(φ(a))=N(φ(b)) and thus N(a)=N(b). In particular, N(a)∩R=N(b)∩R.
Using the property (i) of the zero-divisor graphs of Boolean rings given in the proof
of Theorem 7, we deduce that a = b. This concludes the injectivity of ψ . Finally,
we prove that ψ is surjective. Suppose s ∈D(S)∗ and let

r = φ̂−1(s).

Since N(φ−1(s)) = N(r), we find that N(s) = N(φ(r)) = N(ψ(r)) and hence
s = ψ(r). This establishes the claim and completes the proof. �

Remark 12. Let n > 2 and R and S be two rings which each of them is the direct
product of n arbitrary finite fields. Using the result mentioned in Remark 1, it is
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easily checked that 0(R[x]) ' 0(S[x]). Therefore the conclusion of Theorem 11
is not true if one of R and S is not Boolean.
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